
Delft Center for Cyber Security

Predicting vulnerable files by
using machine learning method

Xiwei Shen

M
as

te
ro

fS
cie

nc
e

Th
es

is

Predicting vulnerable files by using
machine learning method

Master of Science Thesis

For the degree of Master of Science in Computer Science at Delft
University of Technology

Xiwei Shen

September 20, 2018

Faculty of Electrical Engineering, Mathematics and Computer Science(EWI) · Delft
University of Technology

The work in this thesis was supported by eBay classified group Incorporated. Their cooperation
is hereby gratefully acknowledged.

Copyright c© Delft Center for Cyber Security Group
All rights reserved.

Table of Contents

1 INTRODUCTION 1
1-1 BACKGROUND INFORMATION . 1
1-2 PROBLEMS . 2
1-3 RESEARCH QUESTION . 2
1-4 RESEARCH SCOPE . 3
1-5 RESEARCH CONTRIBUTION . 3
1-6 READING GUIDE . 4

2 LITERATURE REVIEW 5
2-1 MACHINE LEARNING . 5
2-2 MACHINE LEARNING FOR SOFTWARE FAULT PREDICTION 6
2-3 IMBALANCED DATA LEARNING . 7
2-4 VULNERABILITY PREDICTION AND DETECTION 8

2-4-1 Code File Level Static Analysis . 8
2-4-2 Program Statement Level Analysis . 10

3 DATASET AND FEATURES 15
3-1 DATA RESOURCE . 15

3-1-1 Source Code File . 16
3-1-2 GitHub Repository . 17

3-2 FEATURE DEFINITION . 18
3-3 FEATURE COLLECTION . 19

3-3-1 Code Complexity Metrics . 19
3-3-2 Developer Metrics . 19

3-4 LABEL DATASET . 22
3-5 NORMALIZATION . 23
3-6 DATA VISUALIZATION . 25

3-6-1 Feature Value Differential . 25
3-6-2 Feature Value Distribution . 26

3-7 Discussion . 27

Master of Science Thesis Xiwei Shen

ii Table of Contents

4 EXPERIMENTS 29
4-1 Framework . 29
4-2 Training . 29

4-2-1 Imbalanced Learning Criteria . 30
4-2-2 Parameter Tuning . 31

4-3 Imbalanced Learning Assessment . 31
4-3-1 Receiver Operating Characteristics(ROC) Curve Analysis 34
4-3-2 Probability Analysis . 34

4-4 Test and evaluation . 36
4-4-1 Feature Importance Analysis . 37
4-4-2 Feature Value Analysis . 39
4-4-3 Probability Estimation Analysis . 41
4-4-4 Comparison between feature set . 42
4-4-5 Investigation on False Positive files . 43

4-5 Discussion . 45

5 DISCUSSION 47
5-1 Research Work Recap . 47

5-1-1 Data Collection . 47
5-1-2 Classifier Training . 48
5-1-3 Testing and Evaluation . 48

5-2 Conclusion . 49
5-2-1 Research Question 1 . 49
5-2-2 Research Question 2 . 49
5-2-3 Research Question 3 . 49

5-3 Future Work . 50
5-3-1 Exploring features . 50
5-3-2 Labelling source code files . 50
5-3-3 Unsupervised learning . 50

Bibliography 51

Xiwei Shen Master of Science Thesis

Abstract

Web applications have been gaining increased popularity around the globe, in such a way
that a growing number of users are attracted to make use of the functionality and information
provided by these applications. While providing solutions to complicated problems in a fast
and reliable way is one of the most advantages of using web applications, these platforms can
cause adverse effect on user’s life if controlled in unauthorized way by malicious people. A
platform with more vulnerabilities are more likely to be attacked. This research is focusing on
building a prediction model for detecting vulnerabilities of web applications at eBay. Based
on the analysis of important features, we dig deeper to find decisive factors of web application
vulnerabilities. Making use of data on GitHub, we extract features related to source code
files and developer networks, such as modification frequency, number of involved developers
and duration between two commits. By applying machine learning techniques in the field
of vulnerability prediction, we are able to provide reasonable suggestions for developers
in the beginning phase. This can help develop relative defect-free and well-documented
software. In this paper, we will explain the prediction model in detail from the aspects
of code complexity, developers’ behaviors and their networks. Moreover, according to results
of various classifiers, we offer possible causes of vulnerabilities and reasonable suggestions
for avoiding vulnerabilities in the future. To conclude, main contributions of this thesis
are valuable feature engineering, the machine learning model and applicable suggestions for
predicting vulnerabilities effectively at eBay.

Keywords Machine learning, imbalanced learning, network theory

Master of Science Thesis Xiwei Shen

iv Table of Contents

Xiwei Shen Master of Science Thesis

Preface

This thesis is the final work of my master study in Computer Science at TU Delft. The thesis
project is performed at eBay as a nine-month internship. The process of production of my
thesis work is quite interesting and enjoyable. I would like to express my gratitude to the
following people for their help during my thesis project. My dear supervisors Sicco Verwer,
who helps me to find this internship opportunity and help me find new research directions
when I am lost. Thanks to Pieter Hartel and Saeed Sedghi, without their professional guidance
and suggestions, I could not produce so much wonderful work in this research. Dr. Maurício
Aniche, who is so nice helping with my graduation process and helping me a lot with the
tool that I used to collect GitHub log files, and he is so kind to be my committee member.
And my colleague Arnoud Witt, Jack Schilder and Nico Mossel, they are the kindest people
I have met here. Without their assistance and support, this internship would be much difficult.

I would also like to thank all my dear friends. Their support and their accompany makes
my life much more happy. Besides, I would like to give my thanks to my best friend, Hanxi
Wang. With her encouragements from China, I feel fulfilling all the time.

At last, I would like to express many gratefulness to my dear parents, who support my
decisions all the time and always give their best wishes to my life!

Xiwei Shen
September, 2018

Master of Science Thesis Xiwei Shen

vi Table of Contents

Xiwei Shen Master of Science Thesis

Chapter 1

INTRODUCTION

1-1 BACKGROUND INFORMATION

Nowadays, web applications are widely used in many of our daily activities on the Internet.
More and more Hackers now work on hacking these web applications by putting efforts into
finding available vulnerabilities exposed in web applications. A web application vulnerability
is a hole or weakness in the application that allows an attacker to do harm to application
owner, users and other entities that rely on the application. Normally, a vulnerability is
caused by a design flaw or an implementation bug. How to detect and fix web application
vulnerabilities is a fundamental and important problem for e-commercial platform runners to
concern about. In order to help reduce the number of vulnerabilities caused by implementation
bug during the development process, most Internet companies apply security check tools or
get help from third-party security testing companies. Both these security check tools and
security check companies do almost the same thing: using an existing regulation library
to do testing on applications and then generate reports. There are also some differences
between them: security check tools have the full access to source code, so they are able to
detect existing vulnerabilities and their corresponding code file or code line; Security testing
company can only point out which web page has which kind of vulnerability and generate
reliable vulnerability reports since they do testing work on client side.

The whole security process is shown below: First, developers develop platforms. Second,
doing regularly security check on their implemented platform and receiving security reports
from security analysis tools or security check companies. Third, storing security reports into
an internal system and assigning tasks to different groups. Forth, responsible developers
do modifications on the source code to fix a specific implementation bug based on security
reports. At last, security check companies would do validation on each bug and generate a
new report to show the state of these bugs. This procedure is proven to be favorable for
reducing the number of vulnerabilities existed in each platform. However, there are also
drawbacks. Normally, the whole process of detecting vulnerabilities and fixing them might
take over months. Developers are required to do a large amount of repeating work and this

Master of Science Thesis Xiwei Shen

2 INTRODUCTION

is expensive. Meanwhile, none of these steps in the procedure can prevent developers from
creating web application vulnerabilities.

This project is aiming at achieving two goals in the end. First, finding main causes of web
application vulnerabilities from perspectives of code characteristics and developer factors.
Code characteristics can be achieved from source code files, and developer factors are quantified
by analyzing Github commits history. Second, intuitively describe what do those feature
values indicate. Based on statistical data analysis, giving reliable suggestions for development
group in order to prevent making vulnerabilities from the very beginning. Third, building a
vulnerability detection model by using a machine learning technique.

1-2 PROBLEMS

The research on vulnerability detection is never stopped. Various tools are created to help
developers find vulnerabilities during their application development, and most of them are
static analysis tools. The major shortage of static analysis tools is that they are more likely
to provide false positive vulnerable results. Despite, the static analysis tool is only able to
do alarm on having vulnerable source code line or file. Although these tools have a good
performance on having a good overview and understanding of source code files, including
security check functions and package designed structure, they do not have access to learn
how developers behaved during the application development, but human factors are directly
related with the appearance of vulnerabilities. Due to the widespread of version control
system Git, it is possible to trace developer work from beginning till the end.

1-3 RESEARCH QUESTION

For the sake of achieving these goals mentioned in section 1, this thesis would focus on
introducing methods to extract features about source code complexity, developer behavior,
and developer network. To structure this research project and select the research direction
to proceed in each stage, several research questions are set up and will be answered based on
the experiment results.
For completing this research step by step, three research questions are defined in the first
place:

• How to quantify developer works on each source code file from developer working log
files?
By learning from developer working log files, we can focus on studying the aspects
of extracting features from the developer network and calculating developer working
pattern by going through all the commit history. The method to build a complete
developer network will be described in Chapter 3.

• What suggestions can be made to adjust developer behaviors based on collected metrics
by using data analysis method?

Xiwei Shen Master of Science Thesis

1-4 RESEARCH SCOPE 3

In this big data era, data-driven strategies are much more reliable and efficient since a
result is supported by a large amount of history data. This research also emphasizes the
importance of having results from analyzing data, and this research will mainly use data
visualization method to support my conclusion because it directly shows the difference
between features and classes.

• Is code complexity, developer behavior and developer network metrics important for
detecting web application vulnerabilities? Which one is most important to distinguish
vulnerable files from normal files?
Based on the study on accessible data resource, I select three aspects to study further.
The feature collection procedure is a basic and significant procedure for building a whole
machine learning project. To make this project meaningful, project result should be
instructive. For instance, if code complexity is the killer of application safety according
to the result, developer groups should be reminded of avoiding making complex code
file.

In conclusion, these research questions are settled to guide the procedure of building a
prediction model for web application vulnerabilities. At the same time, analyzing collected
features to find main causes of vulnerabilities, then giving suggestions for developers to adjust
their behavior. At last, evaluating and proving the value of this research.

1-4 RESEARCH SCOPE

This research involves several areas, One part of these areas is data engineering on accessible
raw data including data collection, data pre-processing, feature measurement and data labeling.
Another part is about classification by different machine learning technique, and imbalanced
learning is specially introduced to this project due to the characteristic of the collected data
set. Despite, this research also contains a comparison between different evaluation criterion
and data analysis methods to answer my research questions. Among these different parts,
feature measurement quality is the dominant factor that would influence the performance of
my designed prediction model.
In this research, I study all aspects of a program developer and quantify their contribution
to each file and their role in each development group based on the study result. After having
the input data for machine learning scheme, I only choose to use the traditional machine
learning classifier instead of using neural network or deep learning technique because my
available data set size is rather small. For making my prediction model performs better on
predicting vulnerabilities, more efforts are paid to tune classifier parameters and select the
best-performed classifier by testing and comparing different classifiers. For supporting the
experimental result, more result analysis would be made at last.

1-5 RESEARCH CONTRIBUTION

In this thesis, we provide a solution based on the prediction model that aims at discovering
the behavior of the developers into security posture of products. Our solution provides a
model that predicts security vulnerabilities based on the application development behavioral

Master of Science Thesis Xiwei Shen

4 INTRODUCTION

features, such as the duration and rate of modifying application source codes, using machine
learning techniques. The contributions of our vulnerabilities prediction model are as follows:

• Provide insightful information on the impact of the behavior model of the application
model into the security vulnerabilities.

• Provide root causes of appearing vulnerabilities in the applications.

• Provide insight on how to adjust features and development parameters in such a way
that vulnerabilities are can be considerably reduced.

• Provide visibility on how to allocate and prioritize technology resources on development
platforms based on the vulnerability prediction model

1-6 READING GUIDE

In Chapter 2, first introducing some basic knowledge related with this research, then having
reviews on related papers of prediction models for vulnerability and implementation bug and
also point out which part is used for this research. Chapter 3 is all about the input data
of this research, including introducing data resources, details of how to calculating defined
features. The experimental procedure is shown in Chapter 4, starting with proposing my
designed framework, to describe all technical details during each step. This chapter aiming
at showing the performance of this model is reliable. In Chapter 5, After recapping the whole
research, I will make some discussions on the result and classifier performance, also present
feature relation figures to make suggestions for developers on their daily work. Furthermore,
listing future works in this research area.

Xiwei Shen Master of Science Thesis

Chapter 2

LITERATURE REVIEW

This chapter will have a review of papers about detecting software failure or vulnerabilities
and how machine learning techniques can be used in the security area. I will first introduce
some papers Quite a number of researchers have already made efforts on studying how to
detect injection attack risk hole in web applications from different aspects.

This Chapter consists following parts: The first section gives an overview of machine learning
techniques, especially supervised learning algorithms, which is related to this research. The
second section introduces how to using machine learning techniques to do software faults
prediction, also propose the importance of having an imbalanced learning method into consideration
when building a fault prediction model in Section 3. In the last section, I highlight several
papers building vulnerability prediction models from different aspects, and according to their
study object, I categorize these researches into two types, including code file level analysis and
program statement level analysis. Despite looking into their design of procedure, I mainly
focus on discussing their selected features that are used in the model.

2-1 MACHINE LEARNING

Machine learning technique is widely used for data analysis to build prediction models.
According to recent papers, machine learning techniques, which are widely used these days,
can be divided into three categories: supervised learning, unsupervised learning and reinforcement
learning. To conclude, a supervised learning method can only learn from labeled training data,
and on the contrary, unsupervised learning does not require the access to the label of data.
Especially, reinforcement learning does not have a restriction on using labeled and unlabeled
data. This method is designed to learn from feedback that is retrieved from its interaction
with the environment. After considering the advantages and disadvantages of different types
of machine learning methods, I decided to use supervised learning for this research. Supervised
learning algorithms can be used to train a model of class labels distribution, and this model is
able to predict class labels for testing instances. An example of supervised learning algorithms

Master of Science Thesis Xiwei Shen

6 LITERATURE REVIEW

process flowchart is shown in Figure 2-1, this whole process is also called classification. This
is the foundation of my designed prediction model as well. It is essential to select which

Figure 2-1: The process of supervised learning[1]

classification method to use for a certain problem. There is a review on several widely
used supervised learning algorithms in [1]. To decide which classifiers are more suitable
for this research, first I look into their pros and cons. In paper[1], the author pointed out
that comprehensibility of Decision Tree make this classifier helpful for understanding why an
instance is assigned to a certain class, and Decision Tree is a suitable choice when dealing with
discrete features. Linear Discriminant Analysis(LDA) and Naive Bayes are both statistical
learning algorithms, which can provide a probability about labeling an instance. Moreover,
in order to meet the requirement of this research, accuracy, tolerance to noise, the risk of
being overfitting and explanation ability are some vital aspects to consider when selecting
classifiers. These models are considered in this research.

2-2 MACHINE LEARNING FOR SOFTWARE FAULT PREDICTION

Most classifiers expect equal distributed class data, unfortunately, vulnerabilities detecting
training data are more likely to be imbalanced data, since there are always more neutral
files existed than vulnerable files in a development project. This directly resulted in having
imbalanced data for learning.

Xiwei Shen Master of Science Thesis

2-3 IMBALANCED DATA LEARNING 7

Imbalanced learning result is not reliable, because imbalanced learning can make a classifier
compromise on achieving better performance instead of predicting its actual label. He et al.[2]
summarized different kinds solutions for imbalanced data. The sampling method is a way to
do acceptable modifications on imbalanced data in order to achieve a balanced distributed
data, such as oversampling and undersampling. Another way to deal with imbalanced data
pursue creating a balanced distributed data, instead, setting cost matrices to describe the
costs for misclassifying a data, this kind of method is called a cost-sensitive method.

Wang et al. in their paper[3] emphasized that a well-designed software defect prediction
should have a balance between defect detection rate and overall performance. It is the same
for vulnerability detection.

2-3 IMBALANCED DATA LEARNING

Because of the class distribution skew problem, it is a crucial issue to deal with imbalanced
data learning in this research. According to the study on existed techniques, there are several
methods to deal with the imbalances:

Assessment Metrics

For assessing the performance of the classifier on training and testing balanced data, previous
researches used accuracy and error rate as an important evaluation metrics. However if
the classifier can assign all instance into the majority class, the accuracy value could be
still high, but it is not an ideal classifier we want to have. Thus, this research chooses to
use precision, recall, G-mean, balance, ROC curve and AUC value. Intuitively, precision
represents exactness about labeling correctly. On the contrary, recall is a measure of how
many instances belong to the positive class were labeled correctly. G-mean value is expressed
as the geometric mean of recall values of both the positive and negative classes, a classifier
with a good performance should have higher G-mean value. Balance is retrieved by measuring
the distance between a certain (precision, recall) point to the ideal point on the ROC curve
which is (0,1). ROC curve plots the true positive rate (TPR) against the false positive rate
(FPR) with various discrimination thresholds. AUC measures the area under the curve, which
can be used as a good evaluation criterion.

Sampling Techniques

Overall, there are two methods suitable for sampling imbalanced data, including random
under-sampling and random oversampling. The idea of these two sampling methods is
randomly adding(removing) a randomly selected dataset from minority(majority) class to
make the whole set becoming balanced. However, these random sampling methods have some
shortages. The under-sampling method would cause information loss to majority class, and
the oversampling could bring about the over-fitting issue on minority class. Due to a limited
number of vulnerable files, this research only uses random oversampling on the dataset.

Master of Science Thesis Xiwei Shen

8 LITERATURE REVIEW

Generating Synthetic Data Samples

Methods of generating synthetic data samples are aiming at creating new data samples to
solve the over-fitting issue. Among existed methods, SMOTE[4] and ADASYN[5] are widely
used within imbalanced learning area. By using SMOTE method, the minority class is
over-sampled by adding new synthetic samples along the line segments joining any/all of
the k nearest neighbors of each sample in minority.[4] But SMOTE method cannot avoid
creating overlapping samples, ADASYN is another method to prevent having an overlapping
problem. This method would create new data samples based on minority class distribution.
Despite, there is a research[6] on combining SMOTE and standard boosting method to utilize
their ability to deal with unbalanced data.

2-4 VULNERABILITY PREDICTION AND DETECTION

According to the study object of their researches, we can categorize them into two kinds:

2-4-1 Code File Level Static Analysis

This paper[7] drew a conclusion that data mining static code file attributes are useful for
detecting web application vulnerabilities. They argued that whether to use complexity metrics
during building prediction models are meaningless, since how to use these metrics are more
essential than select which metrics to use. It raised two important issues while building the
model.

• In a prediction model, when target detecting class (here it means the vulnerable class)
is in the minority, accuracy value cannot represent the performance of the prediction
model.

• The aim of their designed predictor is to detect true positive defects on future projects,
so self-test result is not reliable.

To deal with issue 1, despite calculating prediction accuracy, they measured the confusion
metrics to calculate false alarm rates, detected rates in this situation. For issue 2, instead of
using the self-test method, they selected attribute subset iteratively by M*N cross-evaluation,
where the dataset is divided into N buckets, and for each bucket performed M-way cross-evaluation.
After comparing the performance of different classifiers, they determined to use Naive Bayes
(with log-transforms) in their predictor.

Vulnerable Code Change

The Vulnerable code change is defined by Bosu et al. in paper[8]. This paper identified which
characteristics that indicate which code changes are more likely to contain vulnerabilities
by analyzing several open source software. There are three main aspects studied in this
paper, including code attributes, code commit characteristics, and human factors. They
processed mining procedure on peer code review data since peer code review data documented

Xiwei Shen Master of Science Thesis

2-4 VULNERABILITY PREDICTION AND DETECTION 9

rich discussion between developers regards to potential vulnerabilities. In the aspect of
characteristic of developers, this paper raised two hypothesis, first one is "Does an author’s
experience affect the likelihood of writing vulnerable code changes", second one is "In cases
where an open source project is sponsored by an organization, are authors employed by that
organization less likely to write vulnerable code changes than other authors?" By building
the initial set of keywords. This kind of text mining method for detecting vulnerabilities
can also be used in mining GitHub commit comments data. However, most developers did
not develop a reliable coding habit during their work, and their commit comments are more
likely to be "fix all things" which has no meaning for text mining. So we can not collect rich
commit-comment database for analyzing the characteristics of vulnerable code changes in this
project.

Characteristic of Applications and Vulnerabilities

Scandariato and Walden[9] designed a new model to predict a component of the application is
likely to be vulnerable or not via text mining technique. They generated a vector of monogram
frequency to represent each java file as independent data.

During the development of detecting vulnerabilities, researchers looked into different levels
to extract features that can be used for detection from a project. Some try to relate
characteristics of the software product itself with vulnerabilities, for example, studying the
complexity of the source code. Another aspect is to study characteristics of the process of
code development by tracking developers behavior or modification on the file.

Shin first discussed whether software complexity relates to the appearance of vulnerabilities
or not in his early research[10]. By using metrics tools, they collect the following features
to numerically present software complexity, including cyclomatic complexity with different
measurement methods, nesting complexity, number of possible paths, number of lines and
executable statements. After drawing a conclusion that a vulnerable file seems to be more
complex than a neutral file in this early work, he started another study taking both aspects
into account including internal and external characteristics in his paper[11]. They made
three hypotheses for establishing complexity metrics: First, vulnerable files are more complex
than neutral ones. Second, vulnerable files have a higher unit complexity than neutral ones.
Third, vulnerable files have a higher coupling than neutral ones. Forth, vulnerable files have
a lower comment density than neutral ones. In addition, they also made hypotheses on
code churn. For example, a higher code churn results in vulnerable files, frequent check-ins
makes vulnerable files, and vulnerable files have more lines of code that have been changed
than neutral files. As have mentioned before, developer activity was also considered, they
made following hypotheses for developer network: vulnerable files are more likely to have
been worked on by non-central developers, vulnerable files are more likely to be changed by
multiple, separate developer clusters than neutral files.

Based on these hypotheses above, they collect corresponding metrics from the project, and
then do an evaluation on each metrics categorizes by using discriminant analysis. It turns out
that organizations can use complexity and developer activity metrics to proactively improve

Master of Science Thesis Xiwei Shen

10 LITERATURE REVIEW

software security.

Predicting Vulnerabilities by Measuring Code Churn

Code churn is a measure of modifications happened during development an application or a
software, and it can be extracted from development log files, which are recorded by a version
control system. Despite recording basic information about one change, such as responsible
developer, modification time, a version control system is able to show the difference between
previous versions and later versions. And these information are all the basis of code churn
measurement.

To study further about the relationship between vulnerabilities and code churn metrics, it is
also meaningful to look into those researches which is relating software defect density with
code churn. Tracing back to 2005, Nagappan et al.[12] used statistical regression models
to prove that although absolute measures of code churn have weak relationship with defect
density, they calculate several relative measures of code churn is a good predictor of software
defect density.

Predicting Vulnerabilities with Exploring Developer Network

Shin is not the only one that takes developers network into account while studying software
vulnerabilities. Meneely[13] explored the relationship between software failure and developer
network. In order to quantitative variations on the centrality and connectivity of a developer
network, they capture the number of developers working on same source code file, and
calculate the betweenness of node v based on equation below, where θst(v) is the number
of geodesic paths from developer s to t passing through node v and θst is the total number of
paths from s to t. Pointing out that a developer with high betweenness means being central
in the network.

B(v) =
∑ θst(v)

θst
(2-1)

[14] [7] After building a developer network based on code churn information, then summing
up metrics of developers who contribute to one file to present file-based metrics. Comparisons
were made to examine the performance of the promoted model in practice, including comparing
the source-lines-of-code basic model with promoted model and comparing model containing
code churn metrics only or network metrics only with this promoted model. According to
their study, a degree was positively correlated and closeness was negatively correlated with
software failure. Their conclusion motivates this research to take developer network of a
application into consideration.

2-4-2 Program Statement Level Analysis

Another type of study object is the program statements. Unlike file level study, statement
study on predicting vulnerabilities considers more about input and output data.

Xiwei Shen Master of Science Thesis

2-4 VULNERABILITY PREDICTION AND DETECTION 11

Detection Model Based on Taint-based Analysis

In spite of having an overview on the whole context file, researchers also looked deeper into
source code by studying each statement inside to precisely detect the location of existing
vulnerability. Shar first started his work [15] on proposing a method to detect and automatically
remove XSS vulnerability. Their job can be mainly divided into two different phases. To
detect potential XSS vulnerability, they used taint-based analysis technique which is a typical
static analysis on detecting vulnerabilities. In the second phase, they designed two steps
to remove XSS vulnerability. Firstly, identifying the statements referenced by untrusted
data in an HTML output statement can be escaped without influencing intended HTML
outputs and security aspects. Then extracting the HTML document structure surrounding
each untrusted data from the source code and using pattern matching to identify the HTML
context. Secondly, generates secure code structures using ESAPI’s escaping APIs, which
created by OWASP[16], as replacements for the original code, and this process is fully
automatic.

However, taint-based static analysis, which is based on predefined regulations to determine
whether the source code is vulnerable or not, could cause a large amount of false positive
results during the practical use.

Detection Model Based on Hybrid Analysis

Philipp’s paper[17] introduced tainting-based dynamic method to detect malicious part. Data
taint starts from marking untrusted data as malicious data, then propagate through the
program and track the propagation. By following this procedure, traditional server-side
protection mechanisms like [18] [19] could successfully prevent tainted malicious data from
being used. Unlike traditional tainting-based approaches applied on the server side, Philipp
proposed an approach on the client side by modifying Firefox Web browser. Meanwhile, he
pointed out that dynamic techniques cannot be used for detection of all kinds of control
dependencies, so their "dynamic" tainting method is actually a mixture of static and dynamic
techniques in order to achieve a full protection against XSS attacks.

So based on Balzarotti’s paper[20], Shar promoted a new prediction model for preventing
injection attack by introducing hybrid analysis to collect features from the source code. In the
first place, Shar focused on studying two vulnerabilities including SQL injection and cross-site
scripting in shar2013mining, and using a data dependence graph to present a web program.
Each node in the dependency graph that they were studying during feature selection and
classification was "sink". A sink is a program statement that would interact with a database
or web client. According to their static and dynamic analysis, they extract 22 attributes from
the data dependence graph and use them as input to train and test classifiers. To collect the
static analysis attributes for each sink, Shar used an open source analysis tool called Pixy
[21], which is specially designed for analyzing PHP language.
Afterwards, Shar wrote another paper[22] that leverage control dependency information instead
of data dependency one to make some progress on this prediction model. Despite, more
efforts on classifying method was also made by introducing a semi-supervised classifier into

Master of Science Thesis Xiwei Shen

12 LITERATURE REVIEW

Figure 2-2: program statement level vulnerability prediction framework proposed in[22]

this prediction model, in order to deal with lacking labeled vulnerability information.

Both two works are based on a framework in Figure 4-1, which includes two main parts,
including generating feature vectors for each sink and training classifiers to filter vulnerable
sinks from neutral sinks. They concluded 22 attributes based on static and dynamic analysis
both in [22], and all the attributes that they used are numeric. Table ?? shows the attributes
that are extracted by using static analysis only. Point out that these attributes all have clear
definitions concerning security requirements consensus or are directly associated with known
vulnerability issues, they could be predefined easily and collecting these metrics can be made
statically.

Despite standard security functions, some operations might involve complex string manipulations,
simple static analysis cannot help to classify the attributes, therefore dynamic analysis is
needed.

Xiwei Shen Master of Science Thesis

2-4 VULNERABILITY PREDICTION AND DETECTION 13

Article Approach Focusing area Limitation
Shar
and Tan
2011[15]

Taint-based
Static
Analysis
(Java)

Detection of stored
and reflected XSS
vulnerability

high false positive rate in
results by using taint-based
static anaylsis, might miss
some vulnerabilities since
the method do not track
information flow across web
pages.

Shar
and Tan
2013[23]

Hybrid
Analysis
(PHP) +
cluster

Detection of SQL
injection and XSS
vulnerability

Not accurate as full static or
dynamic analysis

Shar
and Tan
2015[22]

Hybrid
Analysis
(PHP) +
semi-supervised

Detection of SQL
injection and XSS
vulnerability

static and dynamic analysis
results are acheived by using
Pixy[21]

Table 2-1: Comparing different detection model

Master of Science Thesis Xiwei Shen

14 LITERATURE REVIEW

Xiwei Shen Master of Science Thesis

Chapter 3

DATASET AND FEATURES

This project focuses on studying three main aspects of the GitHub repository, including
source code complexity, developer network structure and developer behaviors. This Chapter
will be separated into the following section: First, it would focus on describing what kind of
resources I can get access to extract features for detecting vulnerabilities, and explaining why
I use them for my project. Then, the definitions of all features selected to generate a feature
vector are shown in the second section, also briefly introduce the methods of calculating these
metrics. Next, noticing values from different platforms are differ from each other, I introduced
normalization process. At last, using visualization method to present the feature values and
generalize useful suggestions to developer team.

3-1 DATA RESOURCE

This project focus on three main aspects of the GitHub repository and the data was provided
by eBay company, including source code complexity, developer network structure and developer
behaviors during constructing platforms. A raw dataset consists of all JavaScript source code
files and whole commit history files from GitHub.

• Source code files
This project is a code file level study, we treated each file as a unit. Every feature
we used here is for constructing a feature vector for each file. In the previous study
on detecting vulnerabilities in applications, researchers studied the relationship between
source code complexity and vulnerabilities, based on their result, we designed to extract
complexity metrics from source code file to study further.

• GitHub commit history
The human factor, which is usually being neglected during designing a defect detection
model, is actually an important aspect to look further. One way to learn about
developers habits is to conduct a survey on developer group and gathering the information.
But limited valid data can be retrieved from this survey, and by this way, updating

Master of Science Thesis Xiwei Shen

16 DATASET AND FEATURES

Figure 3-1: results of web developer’s most popular programming language

detection model along with the changes on developer group setting can only be done
by conducting newer surveys, which is not efficient. In order to learn extendable
information from developers, it is a wise idea to track their developing behaviors.

3-1-1 Source Code File

According to the annual developer survey conducted by Stack Overflow in 2017, JavaScript
is the most popular programming languages among web developers, which is also shown in
Figure 3-1. Why is JavaScript widely used for web development? Firstly, JavaScript is an
object-oriented language with prototype inheritance, which allows objects to inherit properties
from each other directly. Secondly, due to the success of Node.js and its large open-source
library "npm". Node.js is initially designed for data-intensive real-time applications and keeps
to be lightweight and efficient, and it also enables it to execute JavaScript code on the server
side. Thirdly, JavaScript is available in many web browsers.

Some vulnerabilities are related to an unsecured design of web application structure, but the
features used in this paper are more related with the quality of coding. So this paper only
focus on those risks caused by unsecured coding.
Before collecting metrics from source code files, I put some efforts into studying the web
application coding file structure. As is shown in Figure3-2, Java or Scala file is developed to
collect requested data or store processed data. However, before sending these collected data
to web browsers, it is necessary to do pre-processing on raw data. Using unsanitized data is
possible to exploit a weakness to attackers, for example, it could lead to cross-site scripting
or SQL injection etc. And these pre-processing data methods are settled in JavaServer Pages
or imported to JavaScript files from manually designed packages.

There is a trend that Java or Scala for the server side data processing will be replaced by the
Node.js framework in commercial platforms. Current and future code file structure are shown
in Figure 3-2 and 3-3. In this project, since the Node.js framework was recently introduced
to frontend development department, a relatively small number of developer GitHub commit

Xiwei Shen Master of Science Thesis

3-1 DATA RESOURCE 17

history for Node.js based frontend file package can be used to study further. Current structure
in Figure 3-2 has been used for more than 7 years, and adequate commit history record is
available in GitHub repository.

Figure 3-2: current frontend code file structure

Figure 3-3: future frontend code file structure

3-1-2 GitHub Repository

With the rapid increase in the popularity of decentralized source code management(DSCM),
GitHub becomes one of the most important resources of software artifacts on the Internet[24].
A large number of works on mining GitHub’s event logs have proven the rich informativeness
that GitHub owns. In essence, GitHub is an online version control system. As mentioned
in Chapter 2, previous researches have already related software defect with code churn
measures, and proven the close relations between them. This paper was inspired by the idea of
associating web application vulnerabilities with code churn measures. Moreover, the previous
study put efforts on discovering the relationship between developer network characteristics
and software failures. On the foundation of their research, I introduce social network analysis
into my research. In order to have basic information about developers, I pay attention to
the information provided by a version control system. It is easy to build a developer network
based on GitHub repository data.
GitHub is a popular social coding site that uses Git as its distributed revision control and
source code management system.

Master of Science Thesis Xiwei Shen

18 DATASET AND FEATURES

3-2 FEATURE DEFINITION

As briefly introducing some researches of predicting software fails and web application vulnerabilities,
various of aspects can be selected to study further. Considering all accessible resources and
aim of this research, this research will look at three aspects: code complexity, developer
behavior, and developer network. For preparing the feature vector of this project, a large
number of calculations is needed. The target of feature engineering procedure in this study is
to define some distinguished features to identify files from different classes and format these
feature vectors as the input of the selected machine learning algorithm.

Code Complexity Metrics Code quality assurance is the foundation of preventing vulnerabilities.
Despite a limited number of vulnerabilities are caused by inappropriate framework design,
most of them are code-level related. In this project, complexity metrics are collected to
represent objective code quality by applying static analysis. Halstead[25] and McCabe[26]’s
metrics are collected. Definitions of these metrics are shown in the following:

• path: the file path to be used as an index

• sloc: physical line of codes, which is the number of lines in a module or function

• cyclomatic: the number of cycles in the program flow control graph.

• cyclomatic density: a percentage of cycles in the logical lines of code

• operator: the total number of operators

• operand: the number of distinct operands

• vocabulary: the sum of distinct operators and operands

• length: the sum of appearance times of operators and operands

• difficulty: D = η1
2 ×

N2
η2

where η1 is number of distinct operators, η2 is number of distinct
operands, N2 is total appearance number of operands.

• maintainability: derived from the logical lines of code, the cyclomatic complexity, and
the Halstead effort.

Developer Behavior Metrics In order to quantify the developer’s behavior during development,
I used the information from GitHub commits. Each commit includes basic information about
who edited the code, when it happened, which line is modified. By crawling all GitHub
commit history per each platform, we are able to compute some basic metrics and some
derived metrics that are showed below:

• num_churn: the total number of modification times on source code file

• duration: the number of days since each code file was created till last edited date

• frequency: the average number of commits within a day

Xiwei Shen Master of Science Thesis

3-3 FEATURE COLLECTION 19

• commit_du: the average duration between two commits

• num_dailychurn: count the number of days that a code file changes were committed
several times a day

• num_dev: the number of developers who have done contribution to this file

• work_dev: the number of developers who are still making contributions to this file

• leave_dev: the number of developers who stopped contributing to this file.

Developer Network Metrics The measurement of features for each file is based on developer
network measures, so it is necessary to create a developer network first. In this undirected
developer network, each node represents a contributed developer and we add edges between
two nodes when both of them do contribution to the same code files. To quantify developer
network, graph theory is introduced to this project.

• degree: the sum/average of each developer’s degree

• closeness: the sum/average of each developer’s closeness centrality

• betweenness: the sum/average of each developer’s betweenness

3-3 FEATURE COLLECTION

3-3-1 Code Complexity Metrics

Since each file is characterized by looking into three different aspects, the method of collecting
different metrics for each one varies from each other. In this project, in order to identify these
files, the unique index is their file path. As described before, we only focus on collecting
attributes from JavaScript files in this project. For analyzing JavaScript files, Phil Booth
implemented an open source tool called "PLATO"[27] on the basis of Halstead’s and McCabe’s
theory for generating code complexity statistical report. "PLATO" is able to find all JavaScript
file existed in the development package automatically, and it returns a JSON file report that
contains all details of each JavaScript file.

3-3-2 Developer Metrics

In order to compute code churn measures and characteristics of the developer network,
we should have data that records what developers have done during the development. In
order to crawl GitHub commitments history from the GitHub repository, this research uses
PyDriller [28], which eases the commitment information extraction procedure. PyDriller is
able to write a detailed record. According to the author’s description, there are two domain
objects showing below:

Master of Science Thesis Xiwei Shen

20 DATASET AND FEATURES

• Commit This domain object is designed to store all the information related to a
commit:the hash(which is a unique code for each commit), the committer (who have
the right to confirm a commit), the author (who does the modifications), the message
(comments left by author), the authored and committed dates (useful for computing
some features like frequency and duration), a list of its parents’ hashes (a merge commit
has two parents), and the list of modified files (create a new domain ’Modification’ to
store the information about each modified file).

• Modification modification object is settled to carry information about file modification
in a commit history, and this object has several fields:

– Filename: name of the modified file
– OldPath: path of the file before modification
– NewPath: path of the file after modification
– Change Type: including ADD, RENAMED, MODIFY, DELETE
– Difference: code line difference between versions, and shown in Git way.
– Added: the number of added code lines
– Removed: the number of removed code lines

Developer Behavior Metrics

Before computing developer behaviors and developer network metrics, the first step is doing
initial cleaning on these commit records, and it is an important step regarding modification
type. According to the definition, there are four main kinds of different modifications. Among
them, only ADD, MODIFY, DELETE operations are valid modifications to be considered
during calculating developer behavior metrics. It is because that RENAMED operation has
no impact on the code quality and no relationship with the existence of web application
vulnerabilities.

Not all information provided by Git will be used in this research, developer behavior features
are only related with author identity and time. Table 3-1 shows all defined developer behavior
metrics with their corresponding Git commit information details, in other words, these metrics
are measured by considering this information. The computation for these features are directly
derived from Git commit information, but we have to make sure that the definition of these
features is in accord to actual situation of code files. The challenging part of collecting
developer behavior related metrics is to determine the definitions of these features. It is
crucial to define duration because frequency and commit_du both depend on it. I generate
two reasonable definitions based on the understanding of software development life circle, one
is measuring days since a file was created till it was last edited, another one is calculating
days of existence. In order to determine which one to use in this research, I visualize the
distribution of duration with these two definitions separately, details and proven are shown
in section 3-6.

Despite duration, work_dev and leave_dev also have ambiguous meanings in actual use. These
two features are initially designed to categorize developer with contributions. Most Internet

Xiwei Shen Master of Science Thesis

3-3 FEATURE COLLECTION 21

Feature Related Git Commit Info
num_churn NewPath, Change Type
duration NewPath, commited date, Change Type
fequency NewPath, commited date, Change Type
commit_du NewPath, commited date, Change Type
num_dailychurn NewPath, commited date, Change Type
num_dev NewPath, author
work_dev NewPath, commited date, author
leave_dev NewPath, commited date, author

Table 3-1: Developer behavior features with corresponding Git commit information

companies have multiple developer groups working on diverse projects, it is common to have
a high turnover of technical personnel within them. Instead of collecting active developer
name list from each developer group manually, this research settles an automatic method
to distinguish working developer and left developer by seeing their commitments history. If
a developer stop contributing to a file over months, it is possible that this developer was
moved to other teams or had already left the company. So, we can categorize these inactive
developers into left developer regarding each code file. On the contrary, the developer who
has done contribution to this file within months will be categorized into working developer.
How to determine the boundary between the working developer and left developer is discussed
in section 3-6.

Developer Network Metrics

Unlike measuring developer behavior metrics, collecting network metrics for each file to
quantify the developer’s experience and group work quality are based on network analysis.
In this part, we will introduce graph theory and social network analysis.

In network analysis, each vertex is called nodes in a network graph, and every edge between
two nodes is named as a connection. Despite these two essential elements, a sequence of
non-repeating, adjacent nodes is a path, and the shortest path between two nodes is called a
geodesic path. From the perspective of social network analysis, a geodesic path is the “social
distance” from one node to another in social network analysis.

In terms of characteristics of code files, it is unrealistic to do social network analysis on a code
file network directly, so procedure of collecting network metrics per each file can be divided
into two phases:

• Constructing Developer Network In this undirected network, each vertex node
represents an individual developer, including active and inactive developers. The connection
between two developers represents that they have worked on the same code file before.
Moreover, the weight of the edge between nodes is accumulated by the times they work
together. An example network graph is shown in Figure 3-4, in this figure, I colored
edge with large weight (more than 3 times) in Red and other edge are colored by Orange.

Master of Science Thesis Xiwei Shen

22 DATASET AND FEATURES

• Collecting Developer Network Metrics By introducing social network analysis
into this research, we can quantitatively measure the structure of a developer network.
According to the previous study, metrics that measure direct connections between vertex
nodes are connectivity metrics, and other metrics that measure how each node are
indirectly connected to the rest of nodes in the network are centrality metrics. The
target of applying graph theory in this research is to interpret network structure in
a statistical way. Among all network metrics, this research will use degree, closeness
and betweenness to study further. All these 3 metrics all have intuitive meaning in a
developer network. Degree can represent how experienced a developer is by calculating
how many developers and files he/she had worked with. Closeness is derived from
shortest path measures, which can be used to show the way of each developer working
with others. Betweenness is a metrics can evaluate whether the developer is usually
the center of the team or not. Defined measurement equations for closeness and
betweenness are shown below, where σst(v) is the number of geodesic paths from node
s to t going through node v, σst is the total number of geodesic paths from node s to t
for betweenness, and |V (G, v)| is the number of reachable nodes in the graph of node v,
dG(v, t) is the number of edges from node v to t.

Closeness(v) =
∑

s,t,v∈G

σst(v)
σst

(3-1)

Betweenness(v) = (1
|V (G, v)|)

∑
v,t∈G

dG(v, t) (3-2)

• Generating Network Metrics for each File After quantifying the experience of
developers and the way they work with others, the next step is to use these collected
developer network metrics to measure each file. From GitHub log file, I can collect a list
of contribution developers for each file. Based on previous steps, we have developer-based
network metrics already. When determining file-based network metrics, I use the average
and sum of developer-based metrics.

3-4 LABEL DATASET

The web application is facing with various types of vulnerabilities, but in general, they can
be categorized into two main kinds based on the causes of them, including design flaw and
implementation bug. Obviously, most design flaws are hard to detect by only analyzing
individual source code files. In this research, only implementation bugs caused vulnerabilities
are considered.

When doing classification on these data sample by using machine learning algorithms, we do
not subdivide web application vulnerabilities into specific kinds of vulnerabilities. It means
that dataset in this research only is binary, in other words, a file can only be vulnerable or
normal. For labelling collected files, we have two resources. One is vulnerability reports
provided by third party security testing company. Another one is reports generated by
automatic security check tools. The major difference between these two kind of resources

Xiwei Shen Master of Science Thesis

3-5 NORMALIZATION 23

Figure 3-4: An Developer Network Example Presented by Graph

package code file number vulnerable file number
pck1 156 4
pck2 452 2
pck3 146 7

Table 3-2: Package information: Total number of JavaScript files and number of vulnerable files

is that testing company has no access to source code files, so they can only point out which
website is vulnerable. While security check tools have full access to all data files, the detection
result of these tools are accurate to the source code file. I show the number of vulnerable
files along with number of all existing code files separately for each package in Table 3-2. In
average, there is only one vulnerable file within 58 files. So when designing the prediction
model for this research, I need to consider how to deal with imbalanced data in priority.

3-5 NORMALIZATION

In this research, data samples are collected from different development packages and platforms.
For improving the performance of classifiers, it is essential to have data set in value consistence.
To see whether values collected from different packages are consistent, I visualize the distribution
of each feature.

The distribution of feature duration and line of code (sloc) is shown in Figure 3-5 as examples.

Master of Science Thesis Xiwei Shen

24 DATASET AND FEATURES

The duration metric represents the existence days of a file, and the value could be influenced
by several factors, for example when the platform was established, how often the framework
version was updated. As a result, the distribution of duration varies from development package
to package. The duration of package 3 ranges from 0 to 350, however that of package 1
distributed from 0 to around 2000. The distribution of sloc metric is similar to duration since
the distributions of metric values are quite different between these packages.

Due to the inconsistency within different packages that I used, the normalization process
is necessary before learning patterns from these collected data. In this research, I apply
"min-max" normalization strategy which transforms x to y following the equation below:

y = x−min
max−min

(3-3)

The density curve of duration and sloc are plotted in Figure 3-6. Apparently, the dataset after
normalization process is consistent between different packages, and the value ranges from 0
to 1 without influencing the original value distribution.

(a) duration (b) line of code

Figure 3-5: Feature value distribution before Normalizing

(a) duration (b) line of code

Figure 3-6: Feature value distribution after Normalizing

Xiwei Shen Master of Science Thesis

3-6 DATA VISUALIZATION 25

Figure 3-7: Difference feature value between vulnerable and normal files

Files are labelled by using results of different detection tools

3-6 DATA VISUALIZATION

In order to better understand the data I collected in this research before carrying out further
pre-processing procedure on the dataset, data visualization is helpful for concluding initial
results. In this initial analysis, I select two prospects to study further.

3-6-1 Feature Value Differential

Here, I use the dataset before normalization procedure to visualize the difference, the major
problem is that feature values varies greatly from each other, which means the difference value
can range from single digit to thousands. For showing difference value of various metrics in
the same figure, an equation is defined in 3-4, where Average is the average number of all
metric value.

Diff = Avg(Normal)−Avg(V ulnerable)
Average

(3-4)

The difference value of each metrics can be influenced by which files are included in Normal
data samples and Vulnerable samples separately. Two factors can determine what files are
included in each sample, including using reports generated by different vulnerability detection
tools to label source code files and files belong to different platforms. When visualizing the
difference, I utilize control variate method. In Figure 3-7, all files are from the same platform,
but labels of these files are determined by results of different detection tools. And in Figure
3-8, files from different platforms are labelled based on Checkmarx result.

A feature, which is worth to be study further, is always with positive(negative) differential
value, no matter how the influential factors are changed. As is shown in the figure, days of
having frequent modification (num_dailychurn) and duration between two commits (commit_du)
might be greatly influenced by using different detection tools result and also using files from
different platforms. In conclusion, prediction results that is based on these two features might
be unreliable.

Master of Science Thesis Xiwei Shen

26 DATASET AND FEATURES

Figure 3-8: Difference feature value between vulnerable and normal files

Files belongs to different platforms

3-6-2 Feature Value Distribution

In this section, by visualizing the distribution of normal and vulnerable files’ feature values
separately, some initial results can be derived from comparing the data from two classes.
Figure 3-9 shows the distribution of four features, including duration, num_dev, leave_dev
and vocabulary. Duration measures the time that a file exists, the value distribution indicates
that most of the normal files have shorter existence time. Several vulnerable files have existed
for a long period of time, which make it different from most normal files. num_dev is a
metric to count how many developers have contributed to a file. More people can produce
more implementation bugs, while more people are more likely to discover the bugs and fix
them. Various factors can influence the relation between developer and vulnerability. As can
be seen from the figure, most normal files have contribution from only 2 to 4 developers. Also
the distribution between 2 to 8 of vulnerable files is similar to normal files, so when assigning
works to developer, 2 to 4 developer in a team is enough for developing a file. On noticing the
frequent personnel changes, attentions are also paid to analyse whether number of left people
are related with web application vulnerabilities. The figure shows that vulnerable files are
more likely to have more people left the group. The last figure is related with code complexity
metrics. When vocabulary is larger, the file is more complex. As can be seen from the figure,
vulnerable files are more complex than normal files.

Another important aspects in this research is introducing network theory into evaluating
developer group work. In Figure 3-10, I first display the relationship between closeness and
degree derived from network structure. It is obvious that degree value increases along with
the increase of closeness value. We can also interpret the relationship as that experienced
developer group tends to work more closely to each other. The other two plots show the
distributions of these two file-based network metrics. closeness density curve shows that peak
point of normal file density curve is with larger avg_closeness value than that of vulnerable
files, which indicates that a development team with close collaboration is more successful in
maintaining files to be secured. Different from the density curve of avg_closeness, the majority
of normal files are developed by group of developers having low degree value. However, it is
also obvious that none of the vulnerable file is developed by a group of rather experienced

Xiwei Shen Master of Science Thesis

3-7 Discussion 27

developers.

(a) duration (b) number of contribution developers

(c) number of left developers (d) vocabulary

Figure 3-9: Feature value distribution of normal and vulnerable files

3-7 Discussion

In conclusion, code complexity metrics can be achieved from inspecting source code files
themselves, and the static metrics related with developer behavior can be extracted from
GitHub log files directly. In order to measure the metrics of developer team, it is necessary to
introduce social network theory into this research. Despite collecting feature values, labeling
each file is also the foundation of supervised learning. Since this research uses the results of
checkmarx security report, file labels might have false positive results. However, this issue
could be solved in the future. To analyze collected data, I inspect the facts by visualizing
these values by using different kinds of visualization methods.

According to the information that can be learned from these visualization figures in this
Chapter, several suggestions are proposed for developers or development group manager
to consider about. To clarify these suggestions clearly, I also divided them into different

Master of Science Thesis Xiwei Shen

28 DATASET AND FEATURES

(a) Relationship between closeness
and degree

(b) average of closeness (c) average of degree

Figure 3-10: File-based network metrics relation and distribution

categories.

Source code files

• Avoid creating complex source code files. The prevention methods include dividing a
file into small parts, each function is implemented in an individual file.

• Accelerate the pace on updating the package framework. From the duration metrics,
we can know that some files have existed for a long time. If the framework of packages
are frequently updated, there would be not that much old files which exist over 3 years
in a development package.

Developer team

• For each file, 2 working developers is enough to maintain the security problem. By
calculating how many developers are still contributing to each file, it turns out the
maintainence work do not require a large group of developers. Assigning more people
is a waste of resource and also has risk on creating more security issues.

• Prevent developers from leaving the developer team. According to the study, it shows
that number of left developers is related to the appearance of vulnerabilities.

• Motivate developers to work closely with each other. In order to enhance the collaboration
between developers, it is also important to have experienced developers in the team.

For supporting code complexity and developer related metrics are important for building
vulnerability prediction model, the next chapter would first introduce the prediction model
framework for this research and doing different aspects of analysis on the prediction result to
answer the research questions raised in the beginning of this thesis.

Xiwei Shen Master of Science Thesis

Chapter 4

EXPERIMENTS

This Chapter includes three parts to introduce the experiments in this research. The first
section describes an overview of the structure of my designed framework. Then, I will explain
the details of each procedure in this experiment, including the settlement of training and
testing parts, along with introducing data pre-processing procedure and evaluation metrics or
methods that would be used to compare the performance of classifiers. Finally, to understand
the testing results generated by this prediction model, different prospects are selected to study
further.

4-1 Framework

In Chapter 3, I describe the way of cleaning the dataset. These collected data are the input
of my designed prediction model. In Figure 4-1, I present the framework of this prediction
model. Follow the diagram; the whole process starts with cleaning raw data and collecting
features from source code files and GitHub commit history. Because of using different aspects
to inspect the raw data, the collected features can be categorized into three kinds. Afterward,
I do feature normalization on feature values, and this procedure should be done for different
platform file separately. Then, the whole dataset would be divided into two parts: the
training set and testing set. During the training process, the main purpose is to achieve a
best-performed classifier that can be used to generate the final result of this model in the
testing phase. Finally, analyzing the obtained result to the reasoning why it is a good model
or not regarding system setting, and concluding instructive information to give suggestions
to platform developers.

4-2 Training

The whole procedure follows the procedures below:

• Feature extraction by Principle Component Analysis(PCA)

Master of Science Thesis Xiwei Shen

30 EXPERIMENTS

Figure 4-1: Vulnerability detection model using machine learning scheme

• Generating training and testing dataset

• Data resampling on training data

• Classifier parameters settlement

• Classifiers assessment

4-2-1 Imbalanced Learning Criteria

Classic machine learning researches are aiming at improving prediction accuracy. For imbalanced
learning, accuracy is not the only evaluating criteria to compare the performance of different
classifiers. True Positive Rate (TPR) and False Positive Rate (FPR) are often used to evaluate
the performance of different classifiers. G-mean and AUC value are often used to measure the
performance of predictor on balancing two classes for having a more comprehensive evaluation
of predictors in the imbalanced data. G-mean is defined in Equation 4-1. A classifier with good
performance should achieve high accuracy for positive and negative classes at the same time,
so a good classifier should have higher G-mean value. AUC value measures the area under
the ROC curve, and the ROC curve presents the relative trade-off between FPR and TPR.
A ROC curve shows the performance of a classifier across all possible decision thresholds. A
better classifier should have a higher AUC value. Despite these two criteria, balance metrics
is also used to evaluate the performance of classifiers. As we known, The ideal point for ROC
curve is the point with FPR = 0 and TPR = 1, and balance measures the Euclidean distance

Xiwei Shen Master of Science Thesis

4-3 Imbalanced Learning Assessment 31

from the real (FPR, TPR) point to (0, 1). The higher balance is, the better a classifier is.

G−mean =
√
recall(1− FPR); balance = 1−

√
(0− FPR)2 + (1− recall)2

√
2

(4-1)

4-2-2 Parameter Tuning

Before comparing the performance of using different classifiers to predict vulnerabilities, it is
essential to ensure. To help to improve the result, I introduce an oversampling method to
deal with the imbalanced issue and PCA method to avoid over-fitting. The process of tuning
parameter for these two methods are shown below.

Oversampling Method

SMOTE method is widely used in the imbalanced learning area. This special oversampling
method is designed to simulate the distribution of data samples existed by creating synthetic
new data. According to previous researches, smote_ratio, which is a parameter that can
control the percentage of data to be resampled. For finding which ratio value for SMOTE
method can improve the performance of the prediction model. Concretely, I apply a 5-fold
cross-validation method to this research. To avoid the random situation, each run would
repeat five times. In total, a classifier along with using the same oversampling ratio will
have 5*5 results, which means every point in Figure 4-2 is the average number of 25 results.
Moreover, in order to compare the performance, we consider all three metrics mentioned in the
previous section for both training and testing data. Details in figures can tell the increasing
of G-mean and balance along with increasing SMOTE ratio value. Meanwhile AUC value
fluctuates by using different SMOTE ratio. So the decision on SMOTE ratio depends on
finding the highest AUC value. In summary, for Naive Bayes, I choose to use 0.4 as the ratio;
For the Random forest, 0.4 is also the most suitable choice; For Decision tree, 0.5 is more
suitable; For logistic discriminant analysis, 0.5 is also a reasonable value.

Principle Component Analysis

In total, I collect 26 features for about 1000 files from three different aspects of platform
development. However, most classifiers are not good at dealing with the high dimensional
dataset, so we need to do feature selection or extraction to reduce dimensions of the dataset.
Feature extraction is a procedure of transforming raw data into new features space which is
suitable for modeling. Among all feature extraction methods, PCA is one of the most popular
method for data science research. Generally, PCA compute the eigenvectors of a covariance
matrix with the highest eigenvalues, uses those vectors to transfer the original data into a
new feature space with n components. Selecting how many components to be used as input
of this prediction model can influence the performance.

4-3 Imbalanced Learning Assessment

In this research, I select four supervised learning algorithms to classify collected files.

Master of Science Thesis Xiwei Shen

32 EXPERIMENTS

(a) Naive Bayes

(b) Random Forest

(c) Decision Tree

(d) Logistic Discriminant Analysis

Figure 4-2: Evaluation on using Different Smote Ratio

Xiwei Shen Master of Science Thesis

4-3 Imbalanced Learning Assessment 33

(a) assessment value of Naive Bayes trained by different number of components

(b) assessment value of Random Forest trained by different number of components

(c) assessment value of Decision Tree trained by different number of components

(d) assessment value of Logistic Discriminant Analysis trained by different number
of components

Figure 4-3: Evaluation on selecting number of principle components to transform original data

Figure 4-4: Confusion matrix for performance evaluation

Master of Science Thesis Xiwei Shen

34 EXPERIMENTS

(a) Logistic Discriminant Analysis (b) Decision Tree

(c) Random Forest (d) Naive Bayes

Figure 4-5: Machine learning algorithms comparison based on ROC curve and AUC value

4-3-1 Receiver Operating Characteristics(ROC) Curve Analysis

In order to inspect how different machine learning algorithms performs in this designed
prediction model, most researches on imbalanced data learning used ROC curve to present
the relative trade-off between FPR and TPR. During this part, I apply 4-fold cross-validation
on the experiment. Therefore, each fold can have an adequate number of vulnerable files.
After tuning the parameters of classifiers, Figure 4-5 plots ROC curves of different supervised
learning algorithms. One method to evaluate these classifiers is to compare their AUC values.
Instead of computing the average number of AUC values from four folds, I compare the AUC
value generated by these classifiers under using the same fold. Logistic Discriminant Analysis
has the highest AUC value in Fold 0 and 1, and Random Forest ranks the first in Fold 3.
However, it is difficult to compare each point in the ROC curve, so I need to introduce another
comparison method to this research.

4-3-2 Probability Analysis

Despite computing metrics used in previous researches to evaluate the performance of selected
machine learning algorithms, it is worthwhile inspecting which kind of data samples is more

Xiwei Shen Master of Science Thesis

4-3 Imbalanced Learning Assessment 35

likely to be labeled as ’Vulnerable file’ by our prediction model regarding their feature values.
In total, this research collects 13 vulnerable files from 4 different platform development
package. The idea of this comparison is similar to presenting the ROC curve, but is more
straightforward to understand than ROC curve method.

Cost is defined as how many normal files are misclassified when labeling all vulnerable files
correctly based on the probability estimates calculated by machine learning algorithms per
each file. In Table 4-1, we list all vulnerable files with its probability of being vulnerable
and probability estimation descending ranking. Ranking number directly shows the cost of
labeling a vulnerable file. For example, the probability of file 635 being labeled as ’vulnerable’
ranks 7, which means first seven files with higher probability estimation will be classified to
the vulnerable category if file 635 is marked to be vulnerable. These labeled ’vulnerable’ files
would include several normal files, and these normal files are named as false positives. The
ideal situation is that a classifier can be distinct from all these listed vulnerable files without
producing any false positives result. From this perspective, we can compare the cost value to
evaluate the performance of selected classifiers.

In order to collect probability estimation for each vulnerable file calculated by different
classifiers, we use two different methods. First one is to generate a resampling dataset by
using SMOTE method and then we train the classifiers on these resampling data. Then,
using selected classifiers to test original dataset without resampling process and record the
probability estimations. Finally, sorting source code files according to their probability
estimations and recording their probability ranking place. Results are all shown in Table
4-1. Another one is introducing cross validation idea by separating the dataset into five folds;
each fold is then used once as a validation set while the remaining folds make up the training
set. This result is presented in Table 4-2.

We can set several perspectives to analyze which classifier gives the best performance according
to these two tables. First, we compare the cost of discovering all vulnerable files. Learning
from the Table 4-1, by using Logistic Regression and Naive Bayes classifier, we know that
vulnerable file index 672 is the one most likely to be treated as a normal file with low
probability estimation calculated by these two classifiers. It ranks the 559th and 624th
place separately. However, the results of random forest vary for these two classifiers. It
shows the confidence in categorizing file index 672 into vulnerable class, which probability
estimation is 100 percent. Although an ideal predictor can discover all vulnerable files, this
aim is always hard to be realized. So we need a trade-off between high true positive rate
and low false positive rate. Considering this issue, I set another inspection on the cost of
discovering 80 percent of vulnerable files. In other words, how many files will be labeled as
vulnerable, if we want to have ten true positives? In this way, the random forest classifier still
gives the best performance by categorizing all ten vulnerable files into positive class without
producing any false positive. Learned from the table, decision tree result is different from
other classifiers. Due to its settlement, the probability estimation value is binary. In order to
compare decision tree’s performance with other classifiers, the third perspective is designed
to compute the average and variance value of file ranking result. Since a large number of
normal files are classified to Vulnerable, the average cost of all vulnerable files estimated by
decision tree is expensive, but the standard variance is comparatively low. In other words,

Master of Science Thesis Xiwei Shen

36 EXPERIMENTS

File Naive Bayes Random Forest Decision Tree Logistic Regression
Rank Probability Rank Probability Rank Probability Rank Probability

672 559 0.0600 1 1.0000 437 0.1546 624 0.1266
737 123 0.4029 1 1.0000 107 0.4847 201 0.3842
738 122 0.4036 1 1.0000 107 0.4847 200 0.3849
581 288 0.1595 13 0.5083 107 0.4847 496 0.1759
710 0 0.9999 1 1.0000 437 0.1546 0 0.9400
588 495 0.0860 11 0.7000 437 0.1546 490 0.1772
734 92 0.4633 1 1.0000 107 0.4847 54 0.6286
48 284 0.1605 8 0.9000 107 0.4847 155 0.4344
722 113 0.4186 10 0.8000 169 0.4847 180 0.4101
153 1 0.9912 1 1.0000 107 0.4847 2 0.8222
635 58 0.5363 8 0.9000 107 0.4847 97 0.51847
124 5 0.8329 1 1.0000 107 0.4847 115 0.4902
30 80 0.4831 8 0.9000 437 0.1546 174 0.4159

Average 170.7 0.4821 6.1 0.8745 243.9 0.3834 214.5 0.4575
Std 176.1 0.3059 3.9 0.1362 161.7 0.1569 190.2 0.2174

Table 4-1: Prediction score value with its ranking based on different machine learning algorithms

decision tree founds that truly vulnerable files are more similar to each other. In conclusion,
all these three aspects indicate that random forest gives the best performance among these
four selected classifiers.

The method of analyzing Table 4-2 is different from previous analysis since each ranking
value in this table is a relative score comparing to other files in the same fold. We can not
compare file ranking or probability estimation between files from different folds directly. When
studying this table, I also start with two different angles. First, we inspect vulnerable files
in the same fold. As we can see from the table, file 737 and 738 are all in fold 5, and all our
selected classifiers assign them similar popularity estimation value. However only Random
Forest gives a higher value of estimations to these two files. In most situations, decision trees
can find the similarity between vulnerable files in the same fold, but the probability computed
is rather lower than other classifiers did. From the perspective of comparing average value of
ranking and probability, although random forest did not perform as good as shown in Table
4-1, it still has the lowest average rank among all four classifiers.

To conclude, both these two tables indicate that Random Forest classifier is a good comparative
choice for building this prediction model. In the following section, I would describe the testing
part of this experiment. For having the conclusion on this research, all four classifiers are
used during the testing.

4-4 Test and evaluation

As is shown in the framework description section, all collected data samples are separated
into the training set and testing set. While doing the training section, classifiers are designed
to learn from the training set. Then we can do testing and evaluation using our trained

Xiwei Shen Master of Science Thesis

4-4 Test and evaluation 37

Fold File Naive Bayes Random Forest Decision Tree Logistic Regression
Rank Probability Rank Probability Rank Probability Rank Probability

Fold 1
48 146 3.53e-08 76 0.1100 134 0.5711 79 0.5920
124 29 0.5529 38 0.1889 134 0.5711 76 0.6000
30 91 0.0180 133 0.0633 156 0.1153 140 0.2792

Fold 2
153 2 0.9650 13 0.3933 97 0.5146 78 0.4522
588 109 0.0182 144 0.0033 156 0.0980 140 0.0266
581 94 0.0259 144 0.0033 156 0.0980 142 0.0227

Fold 3
672 153 2.67e-14 117 0.0067 155 0.1536 155 0.0221
635 55 0.0844 117 0.0067 66 0.4559 16 0.4272
710 155 1.21e-52 36 0.0567 66 0.4559 1 0.9866

Fold 4 722 10 0.3951 25 0.1400 154 0.2089 55 0.2734
734 39 0.3296 125 0.0133 154 0.2089 2 0.4515

Fold 5 737 106 0.2899 5 0.9500 131 0.4962 118 0.5799
738 105 0.2900 6 0.9467 131 0.4962 119 0.5798

Average 88.4 0.2 83.7 0.2 125.8 0.37 90.9 0.38
Std 50.7 0.304 59.4 0.334 32.8 0.189 52.3 0.280

Table 4-2: Probability Estimation Value with its Ranking of Different Machine Learning
Algorithms

classifiers. In this section, machine learning algorithms are evaluated by presenting testing
results and analyzing the relation between file feature values and classifier estimations.

One purpose of this research is to discover those features which are closely related with the
existence of vulnerable files. In answering the question, the study uses two different methods.

4-4-1 Feature Importance Analysis

Random Forest is an averaging algorithm based on several randomized decision trees. Decision
tree classifier is trained by learning and setting a series of decision rules inferred from the
data features. During the learning procedure, along with the increasing of tree depth, more
decision nodes are added to the tree to split smaller size of data samples. So the relative
node depth can be used to assess feature importance in a tree. The higher feature importance
value is, the more critical feature node is in the tree.

As mentioned in the previous section, I apply principal component analysis (PCA) on original
feature space, and the result turns out that machine learning algorithms give better performance
on transformed data than on original data. Due to the use of feature extraction method,
feature importance values derived from trained Random Forest classifier are corresponding to
PCA feature space. PCA components consist of several original features, and If we want to
know feature importance for the variables in original feature space, the first step is inverse the
importance value from PCA feature space to the original one. Each component in PCA space
is generated by a linear combination of several features, also feature importance value is a
relative value, linear decomposition process will not destroy the relative relationship between
features. Feature importance value ranking is shown in Figure 4-6. To avoid the randomness
of Random Forest classifier, I divide the training set into five folds and do training on different
folds individually. According to the figure, the most important feature to distinguish between

Master of Science Thesis Xiwei Shen

38 EXPERIMENTS

Figure 4-6: Feature importance value retrieved from Random Forest

normal and vulnerable files is maintainability, which is a derived feature measuring source
code complexity, and two features defined to quantify network structure follows. Among top
ten features with high importance value, four of them are developer metrics (avg_closeness,
avg_degree, duration and leave_dev), rest of the feature is all about code complexity metrics
(maintainability, difficulty, operator, vocabulary, length, and operand).

Feature importance value in Figure 4-6 is the result of learning from the training set. For
comparison, I also extract feature importance value from the testing set, and the top 10
important features are displayed in Figure 4-7. As can be seen from the figure, the results
learned from the training set and testing set are almost the same. The only difference is that
work_dev metrics is more important than leave_dev for test set.

Through this important features analysis learning from data samples, we can find these causes
of web application vulnerabilities distinguished from all the features that I collected. In the
next section, I will analyze the classification results from different aspects based on this feature
importance analysis.

Xiwei Shen Master of Science Thesis

4-4 Test and evaluation 39

Figure 4-7: Feature Importance Value of Test Set Retrieved from Random Forest

4-4-2 Feature Value Analysis

In Figure 4-4, we defined the confusion matrix for this research. True label use ’true’ and
’false’ to represent ’vulnerable’ and ’normal’ separately, and for prediction result, ’positive’
means the file is labeled to be vulnerable, and ’negative’ stands for labeling a file as ’normal’
file. To inspect why a file is classified into the normal or vulnerable class based on the feature
value analysis, I separate this analysis into several parts.

Vulnerable Files Comparison

In the test set for this research, there are five vulnerable files in total. During the test,
Random Forest classifier can find 1 True Vulnerable file while classifying four vulnerable files
into the normal class.

Although we made a comparison between classifiers during training part which proves Random
Forest gives the best performance, I still use all these four classifiers to test and compare their
detected files in order to understand the relation between file features and its label. As we
can see from Table 4-3, despite Decision Tree classifier, all other three classifiers provides the
same result. It is obvious that file 737 is more likely to be classified into vulnerable class.
For knowing the reason, further analysis is made on file 737 by feature importance analysis.
From the feature importance analysis, we can find out the top ten relevant features. While
introducing the collected dataset in Chapter 3, we have noticed the incoherence that relates to
combining data from multiple platforms. The normalization process is done for each platform,
feature values of each file show relative degrees comparing to other files in the same platform.
Table 4-4 presents the values of these ten features for file 737, it is clear that file 737 has high
maintainability value than that of other files in the same platform, and its network metrics
values are about the average. Meanwhile, most relevant, important features have relatively
low value.

Master of Science Thesis Xiwei Shen

40 EXPERIMENTS

Classifier TP file index FN file index FP file index
Random Forest 737 [588, 30, 581, 48] [676, 723, 680, 163]

Logistic Discriminant Analysis 30 [588, 737, 581, 48] [213, 230, 725, 771]
Decision Tree [30, 48] [737, 588, 581] [690, 723, 716, 39]
Naive Bayes 737 [588, 30, 581, 48] [159, 341]

Table 4-3: TP and FN Files List Generated by Different Classifiers

file index maintainability avg_closeness avg_degree difficulty duration operator vocabulary length work_dev operand
737 0.8353 0.5000 0.6703 0.0309 0.0624 0.0046 0.0236 0.0047 0.01 0.0205

Table 4-4: Vulnerable file feature value list

From this individual file analysis, we can only know the characteristics of it compared to other
files in the same platform. The similarity shared by all vulnerable files is something we also
need to consider about. In Table 4-5, presenting all False Negative results with their feature
values. True positive results and false negative results are all labeled vulnerable files, based
on this; first analysis perspective is to find a similarity between them. Directly shown in the
table, all vulnerable files have a small size of active developers. Code complexity metric value
varies from file to file, from the table we can not tell whether a more complex file would have
a higher probability of being vulnerable. After finding the similarity, we also need to know
the difference between them considering not all vulnerable files are detected by our prediction
model. False positive files preserve higher value on most code complexity metrics, and if
avg_closeness and avg_degree of a file are both larger than that of the true positive file, this
file is more likely to be normal.

Comparison between Normal Files and Vulnerable Files

In this section, Normal file means the file is actually without any vulnerabilities, and Vulnerable
file represents a file with vulnerabilities. Moreover, a positive file stands for a file which is
labeled as vulnerable by our designed prediction model and negative file means it is labeled
as normal.

For showing the distribution of feature value, we use the boxplot method to visualize the
result. In the figure, all positive files share similar code complexity feature values, while these
features can distinguish positive and negative files. So derived from these figures by comparing
all positive files with negative files, code complexity metrics play an important role in helping
classifier to make predictions, although the result is not that good enough. While through
comparing true files with false files, the figure also shows only developer metrics, including

file index maintainability avg_closeness avg_degree difficulty duration operator vocabulary length work_dev operand
588 0.6929 0.1875 0.1429 0.3206 0.0607 0.0665 0.1019 0.0609 0.25 0.0723
30 0.3172 0.5789 0.6117 0.7309 0.8476 0.7333 0.4038 0.3783 0.01 0.3867
581 0.7191 0.1875 0.1428 0.0332 0.00 0.0051 0.0204 0.0050 0.01 0.3867
48 0.3894 0.6842 0.6808 0.3933 0.7363 0.5000 0.0938 0.0586 0.01 0.0138

Table 4-5: Vulnerable File Feature Value List

Xiwei Shen Master of Science Thesis

4-4 Test and evaluation 41

Figure 4-8: Value Distribution of Top 10 Important Features

avg_closeness, duration and avg_degree, are able to distinguish false positive file and true
positive file. An initial conclusion can be drawn from the figure is that developer metrics
including developer behavior metrics, and developer network metrics are more important for
distinguishing normal and vulnerable files. Based on this initial conclusion, further researches
are done in section 4-4-4 to prove the conclusion by using another method.

4-4-3 Probability Estimation Analysis

We focus on analyzing feature values to discover the cause of having web application vulnerabilities
in previous sections. In this section, I focus on studying the estimation probability computed
by different classifiers. In Figure 4-9, the x-axis shows the index of all vulnerable files in the
test set, and the y-axis displays the estimation probability. Also, for understanding how a
classifier makes decisions on labeling, the figure also shows the decision boundary determined
by these classifiers. Random Forest assigns high probability estimation on file 737, but fail to
distinguish other four vulnerable files from normal files. The situation faced by Naive Bayes is
similar to Random Forest, but Naive Bayes is more likely to find something abnormal on file
30. This plotting also has some disadvantages, since the figure cannot show the probability
distribution for normal files. We cannot determine the expense of lowering the decision
boundary from this figure, so we are not able to conclude that Logistic Discriminant Analysis
is better than other classifiers. However, this figure can instruct us which file might be valuable
look into further. Like file 581 and 588, all classifiers assign both of them with low probability
estimation. According to my investigation, both of them are from a new platform that has
been recently updated, and only this platform is developed based on Node.js framework.
This result inspires a new direction for the future work on studying the relationship between

Master of Science Thesis Xiwei Shen

42 EXPERIMENTS

(a) Naive Bayes (b) Random Forest

(c) Decision Tree (d) Logistic Discriminant Analysis

Figure 4-9: Probability Estimation Result of all Vulnerable Files by Using Different Classifiers

developer metrics with web application vulnerabilities.

4-4-4 Comparison between feature set

At the beginning of this research, I raise a research question about studying whether code
complexity, developer behavior and developer network features are important for predicting
web application vulnerabilities or not. For answering this research question, I divided the
collected data into three individual datasets, and they include features about developer
behavior, developer network and code complexity separately. I use three datasets as the
input of designed prediction model in turns, and for evaluation, I choose to use ROC curves
to show the result.

All results are shown in Figure 4-11, to make the comparison, I set 0.7 as the ideal true positive
rate. For Code Complexity dataset, the false positive rate would be greater than 0.6 in most
folds. However, developer behavior dataset results in lower false positive rates than code
complexity. Moreover, if we set 0.2 as the ideal number of false positive rate, developer-related

Xiwei Shen Master of Science Thesis

4-4 Test and evaluation 43

(a) Code Complexity (b) Developer Behavior

(c) Developer Network

Figure 4-10: ROC curve and AUC value by using different feature sets

metrics can result in higher true positive rate than dataset with code related metrics. Also, the
average AUC value also indicates the better performance brought by using developer related
metrics. From this part of the research, we can conclude that developer related metrics are
more important than code complexity metrics when building a web vulnerability prediction
model.

4-4-5 Investigation on False Positive files

In this research, Checkmarx’s detection result is settled to be the ground truth. It is possible
that this designed prediction model is able to discover some vulnerabilities existed in the files
that have not been detected by Checkmarx. To investigate whether the research can discover
vulnerabilities that Checkmarx cannot detect, with the support from developer team, I select
several false positive files from the prediction result, including file 39, 163 and 230.

Before discussing with developers about the false positive results made by the prediction
model, I did an analysis based on collecting feature contributions extracted from the Random
Forest classifier. It is common known that the Random Forest classifier is a black-box
method and it is impossible to interpret the whole decision process. As a tree-based classifier,
prediction value calculation is defined in Equation 4-2, where each k represents a feature.
The larger the contribution value is, the feature would have more influence on prediction.

Master of Science Thesis Xiwei Shen

44 EXPERIMENTS

(a) File 39 (b) File 163

(c) File 230

Figure 4-11: Feature Contribution of labelling files

prediction = cinitial +
K∑
k=1

contribution(x, k) (4-2)

When comparing contribution value for predicting each source code file, the result is similar
to the result shown in feature Importance Analysis in section 4-4-1, developer network
metrics, like avg_degree and avg_closeness, also have high contribution value According to
the information provided by developer team, file 163 is a source code file created by the
third-party team. A third-party file can contain more potential factors other than the aspects
we considered that can result in producing vulnerabilities. This information gives inspiration
to the future work that considering the source of files is also useful for this area of research.

The other two files are all related with providing information to page viewers. The similarity
shared by these files also highlight a new direction that the functions realized in the file might
also related with the probability of having vulnerabilities. For example, a function to build a
message box is more likely to have vulnerabilities than a static web page without any input
form.

Figure 4-11 shows the feature contributions for labeling different files, which is clear that
file-based network metrics like avgdegree and avgcloseness have made large contributions
for labeling a file. For further study, we can collect developer network metrics from other
resources instead of introducing network theory, in order to know whether the actual developer
team structure and collaboration is correspond to metric values.

Xiwei Shen Master of Science Thesis

4-5 Discussion 45

4-5 Discussion

Previous analysis on the prediction results can be divided into two main parts. During training
phases, the analysis helps the research to build a prediction model with good performance.
While in testing part, I analyze the prediction results and point out how a trained classifier
makes decisions on classifying each file. These analysis proves the importance of considering
developer related metrics when building a prediction model, and these developer related
metrics are more useful than code complexity metrics.

However, this research also has several limitations. Firstly, the number of vulnerable files is
limited, because we only take JavaScript files into account. With only 13 vulnerable files in
nearly 1000 normal files, it is vital to decide how to divide training and testing set properly
and introduce imbalanced learning method into this research. Secondly, file ground truth
labels are not reliable enough due to the existence of false positive labels. For improving the
performance of this designed prediction model, it might be useful to label each file by using
reliable vulnerability check result. Thirdly, the performance of this prediction model is not
good enough, although we have done data processing and parameter tuning in this research.

Master of Science Thesis Xiwei Shen

46 EXPERIMENTS

Xiwei Shen Master of Science Thesis

Chapter 5

DISCUSSION

This Chapter concludes this research on building a prediction model for discovering web
application vulnerable files. In this Chapter, we do recall on the whole experiment process
by pointing out how to execute the experiments and what we have found during the research
in the beginning, then discussing the experimental methods, results and limitations of this
research. At last, answering three research questions raised in Chapter 1. Also, on the basis
of research limitation, promoting new direction and suggestions to the future works.

5-1 Research Work Recap

This research is focusing on building a prediction model for detecting vulnerable files. All
collected data are originally acquired from GitHub repository. GitHub repository consists two
main kind of resource, including source code files and commitment history log files. Previous
researches on building prediction models for detecting vulnerable files considers only the
quality of the code, without taking human factors into account. This research starts from a
new perspective of introducing developer related metrics into input feature space, and using
traditional machine learning algorithms to learn from input data to predict sample data. The
whole experiment procedure includes three parts.

5-1-1 Data Collection

Data collection process not only involves determining the features that is useful for the
prediction model, but also includes where to collect designed features. Both of them could
influence the performance of the prediction model. Due to this reason, we put efforts on
studying what resources are useful for this project and how to use them. By using npm project
"PLATO", I am able to extract all code complexity metrics from each development package.
For developer related metrics, I can only use GitHub commitment record to calculate some
static metrics, for measuring developer team network structure, I introduce network theory
into this research. Moreover, there is no guarantee that the vulnerability check results could

Master of Science Thesis Xiwei Shen

48 DISCUSSION

provide the ground-truth result to label our files, which have false vulnerable files records,
and it might influence the performance. We did an initial data analysis on the raw data by
visualizing the feature value distributions of normal files and vulnerable files separately. The
figures present that some features show the distinctions between these two kinds of files. Based
on the visualization, I raised several suggestions to developers and managers that can help
to reduce the risk of having vulnerabilities by adjusting the settlement of their development
teams.

5-1-2 Classifier Training

Building a machine learning system for this prediction model is also count for a large part my
research. In the beginning, I notice that this research should pay attention to the imbalance
of the collected dataset which was inspired by several papers about software defects detection.
Considering that I have all labeled data for training, so only supervised learning algorithms
are considered in this research. For imbalanced data learning, resampling method is used to
improve the performance of prediction model, like many other research on imbalanced data
learning, I used SMOTE method to do oversampling on training set. When selecting machine
learning algorithms to build the prediction model, I take both black-box and white-box
methods into account, and decided to use Naive bayes, Random Forest, Decision Tree and
LDA classifiers. Methods for imbalanced learning evaluation are different from other balanced
learning evaluation, and most researches used ROC curve and AUC value to evaluate and
compare the performance. To show the details about prediction probabilities of each file, I
listed prediction probabilities and rankings for vulnerable files. By comparing the rankings
generated by different classifiers, it turns out that Random Forest gives the best performance.

5-1-3 Testing and Evaluation

For testing and evaluation on this prediction model, I select several different aspects to analyze
the prediction results. Random Forest is a tree-based classifier, so it can compute the feature
importance value according to the decisions made by each tree branch. The ranking of feature
importance value presents that developer network metrics is important for making decisions,
but half of the metrics are related with code complexity. Since there are limited number of
vulnerable files in test set, I used a table to show their predicted label. Noticing that file 737
is more likely to be classified into vulnerable class, I display the feature values of this file and
try to find patterns of a vulnerable file. Despite before, I also do the comparison between
some normal files and vulnerable files and the result turns out that developer related metrics
are more useful for distinguishing true positive and false positive results. Then, to answer
the research question raised in Chapter 1, I do some experiments by using different feature
sets and compare the performance. The result clearly indicate that using developer related
metrics are performing better than code related metrics on predicting vulnerable files. At
last, in order to find some new directions for future work, I spend some time to study the
false positive files. According to my discovery, a third-party file is always misclassified to
vulnerable file, which might be useful to add a metric which can present the source of a code
file.

Xiwei Shen Master of Science Thesis

5-2 Conclusion 49

5-2 Conclusion

To draw conlcusions, we first recall our research question.

• How to quantify developer works on each source code file from developer working log
files?

• What suggestions can be made to adjust developer behaviors based on collected metrics
by using data analysis method?

• Is code complexity, developer behavior and developer network metrics important for
detecting web application vulnerabilities? Which one is most important to distinguish
vulnerable files from normal files?

5-2-1 Research Question 1

• How to quantify developer works on each source code file from developer working log
files?

In this research, several static metrics are defined to measure developer’s working behaviour.
I used the information included in GitHub repository. Details for calculation are shown in
Chapter 3.

5-2-2 Research Question 2

• What suggestions can be made to adjust developer behaviors based on collected metrics
by using data analysis method?

In Chapter 3, I visualize the density distribution of some features and suggestions are made in
the conclusion part. Based on the information provided in the figure, I am able to give some
advice to platform developers. Also, the feature importance values can also give indication
to the way of adjusting development work.

5-2-3 Research Question 3

• Is code complexity, developer behavior and developer network metrics important for
detecting web application vulnerabilities? Which one is most important to distinguish
vulnerable files from normal files?

According to the results I found during the experiment, it shows that developer related
metrics are more important than code related metrics. But code complexity metrics are also
important for predicting vulnerable files, as is shown in the feature importance value results.

Master of Science Thesis Xiwei Shen

50 DISCUSSION

5-3 Future Work

5-3-1 Exploring features

The features we collected in this research are all static features. Adding version label to each
file. Inspired from predicting third-party code files to be vulnerable, it is also useful to add
another feature to distinguish whether the file is developed by internal groups or not. Also,
classifying files according to their usages might also help. Moreover, all the metrics that I
collected in this research are static. So further work could be done to collect some dynamic
metrics to measure developer works. For example, we can collect metrics every once in a
while and add time stamp to these metrics.

5-3-2 Labelling source code files

In this research, the ground truth label is determined by Checkmarx (a vulnerability detection
tool) result. As an automatic detection tool, it is unavoidable that Checkmarx’s vulnerability
report would have false positive, in other words, detected vulnerability actually do not exist.
For improving the performance of this prediction model, learning procedure is deterministic.
If we can ensure true labels do not contain false positive result, the prediction model can
learn things more precisely.

5-3-3 Unsupervised learning

This research only choose supervised learning to build the prediction model, because of
considering that the labeled data is accessible. If it was difficult to access the ground-truth
label of training data samples, it would be a wise choice to use unsupervised learning algorithms.
Some papers about software defects also mentioned about using semi-supervised learning
method to do prediction, which also worth to try.

Xiwei Shen Master of Science Thesis

Bibliography

[1] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: A review
of classification techniques,” Emerging artificial intelligence applications in computer
engineering, vol. 160, pp. 3–24, 2007.

[2] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on
Knowledge & Data Engineering, no. 9, pp. 1263–1284, 2008.

[3] S. Wang and X. Yao, “Using class imbalance learning for software defect prediction,”
IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434–443, 2013.

[4] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic
minority over-sampling technique,” Journal of artificial intelligence research, vol. 16,
pp. 321–357, 2002.

[5] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic sampling approach
for imbalanced learning,” in Neural Networks, 2008. IJCNN 2008.(IEEE World Congress
on Computational Intelligence). IEEE International Joint Conference on, pp. 1322–1328,
IEEE, 2008.

[6] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “Smoteboost: Improving
prediction of the minority class in boosting,” in European conference on principles of
data mining and knowledge discovery, pp. 107–119, Springer, 2003.

[7] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn
defect predictors,” IEEE transactions on software engineering, vol. 33, no. 1, pp. 2–13,
2007.

[8] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “Identifying the characteristics of
vulnerable code changes: An empirical study,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 257–268, ACM,
2014.

Master of Science Thesis Xiwei Shen

52 Bibliography

[9] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting vulnerable
software components via text mining,” IEEE Transactions on Software Engineering,
vol. 40, no. 10, pp. 993–1006, 2014.

[10] Y. Shin and L. Williams, “Is complexity really the enemy of software security?,” in
Proceedings of the 4th ACM workshop on Quality of protection, pp. 47–50, ACM, 2008.

[11] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating complexity, code
churn, and developer activity metrics as indicators of software vulnerabilities,” IEEE
Transactions on Software Engineering, vol. 37, no. 6, pp. 772–787, 2011.

[12] N. Nagappan and T. Ball, “Use of relative code churn measures to predict system defect
density,” in Proceedings of the 27th international conference on Software engineering,
pp. 284–292, ACM, 2005.

[13] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting failures with developer
networks and social network analysis,” in Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, pp. 13–23, ACM, 2008.

[14] I. Chowdhury and M. Zulkernine, “Using complexity, coupling, and cohesion metrics
as early indicators of vulnerabilities,” Journal of Systems Architecture, vol. 57, no. 3,
pp. 294–313, 2011.

[15] L. K. Shar and H. B. K. Tan, “Automated removal of cross site scripting vulnerabilities
in web applications,” Information and Software Technology, vol. 54, no. 5, pp. 467–478,
2012.

[16] O. W. A. S. Project, “Xss (cross site scripting) prevention cheat sheet,” 2018.

[17] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna, “Cross site
scripting prevention with dynamic data tainting and static analysis.,” in NDSS, vol. 2007,
p. 12, 2007.

[18] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation for java,” in
Computer Security Applications Conference, 21st Annual, pp. 9–pp, IEEE, 2005.

[19] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans, “Automatically
hardening web applications using precise tainting,” in IFIP International Information
Security Conference, pp. 295–307, Springer, 2005.

[20] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna, “Saner: Composing static and dynamic analysis to validate sanitization in web
applications,” in Security and Privacy, 2008. SP 2008. IEEE Symposium on, pp. 387–401,
IEEE, 2008.

[21] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool for detecting
web application vulnerabilities,” in Security and Privacy, 2006 IEEE Symposium on,
pp. 6–pp, IEEE, 2006.

[22] L. K. Shar, L. C. Briand, and H. B. K. Tan, “Web application vulnerability prediction
using hybrid program analysis and machine learning,” IEEE Transactions on Dependable
and Secure Computing, vol. 12, no. 6, pp. 688–707, 2015.

Xiwei Shen Master of Science Thesis

53

[23] L. K. Shar, H. B. K. Tan, and L. C. Briand, “Mining sql injection and cross site scripting
vulnerabilities using hybrid program analysis,” in Proceedings of the 2013 International
Conference on Software Engineering, pp. 642–651, IEEE Press, 2013.

[24] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian, “The
promises and perils of mining github,” in Proceedings of the 11th working conference on
mining software repositories, pp. 92–101, ACM, 2014.

[25] M. H. Halstead et al., Elements of Software Science (Operating and programming systems
series). Elsevier Science Inc., New York, NY, 1977.

[26] T. J. McCabe, “A complexity measure,” IEEE Transactions on software Engineering,
no. 4, pp. 308–320, 1976.

[27] C. D. D. L. Jesse Harlin, Jarrod Overson, “es6-plato.” https://github.com/deedubs/
es6-plato, 2012.

[28] D. Spadini, M. Aniche, and A. Bacchelli, PyDriller: Python Framework for Mining
Software Repositories. 2018.

Master of Science Thesis Xiwei Shen

https://github.com/deedubs/es6-plato
https://github.com/deedubs/es6-plato

54 Bibliography

Xiwei Shen Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents

	Main Matter
	INTRODUCTION
	BACKGROUND INFORMATION
	PROBLEMS
	RESEARCH QUESTION
	RESEARCH SCOPE
	RESEARCH CONTRIBUTION
	READING GUIDE

	LITERATURE REVIEW
	MACHINE LEARNING
	MACHINE LEARNING FOR SOFTWARE FAULT PREDICTION
	IMBALANCED DATA LEARNING
	VULNERABILITY PREDICTION AND DETECTION
	Code File Level Static Analysis
	Program Statement Level Analysis

	DATASET AND FEATURES
	DATA RESOURCE
	Source Code File
	GitHub Repository

	FEATURE DEFINITION
	FEATURE COLLECTION
	Code Complexity Metrics
	Developer Metrics

	LABEL DATASET
	NORMALIZATION
	DATA VISUALIZATION
	Feature Value Differential
	Feature Value Distribution

	Discussion

	EXPERIMENTS
	Framework
	Training
	Imbalanced Learning Criteria
	Parameter Tuning

	Imbalanced Learning Assessment
	Receiver Operating Characteristics(ROC) Curve Analysis
	Probability Analysis

	Test and evaluation
	Feature Importance Analysis
	Feature Value Analysis
	Probability Estimation Analysis
	Comparison between feature set
	Investigation on False Positive files

	Discussion

	DISCUSSION
	Research Work Recap
	Data Collection
	Classifier Training
	Testing and Evaluation

	Conclusion
	Research Question 1
	Research Question 2
	Research Question 3

	Future Work
	Exploring features
	Labelling source code files
	Unsupervised learning

	Appendices
	Back Matter
	Bibliography

