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SUMMARY

Time-varying network data are essential in several real-world applications, such as
temperature forecasting and earthquake classification. Spatial and temporal dependen-
cies characterize these data and, therefore, conventional machine learning tools often
fail to learn these joint correlations from data. On the one hand, hybrid models to learn
from time-varying network data combine several specialized models able to capture
these dependencies separately, thus ignoring their joint spatio-temporal interactions.
On the other hand, state-of-the-art approaches for jointly learning time-varying net-
work data do not exploit the useful prior provided by a graph-time product graph. This
prior structural knowledge can aid learning and help the models improve their perfor-
mance. For this reason, we propose a novel neural network architecture to learn from
time-varying network data using product graphs and graph convolutions, thus exploit-
ing this prior during learning. In particular, our architecture (i) learns the most suit-
able graph-time product graph to represent the time-varying network data and model
the graph-time interactions; (ii) performs graph convolutions over this product graph
to learn the graph-time interactions from data; (iii) employs graph-time pooling to re-
duce the dimensionality over layers. To the best of our knowledge, no research has
yet attempted to capture spatial and temporal dependencies using graph convolutions
over product graphs. Results on synthetic and real-world data show that the proposed
method is useful in learning from time-varying network data for both regression and
classification tasks. For classification, we cure a real-world dataset for earthquake clas-
sification and compare the proposed approach with state-of-the-art models. Results in-
dicate that graph-aware models outperform graph-unaware models on this task. For
regression, we evaluate the proposed method on two real-world temperature datasets
and compare our architecture with graph-aware and graph-unaware models. Results
on the smaller dataset show that linear models outperform neural-network models. On
the larger dataset, we find that prior knowledge about graph-time interactions seems to
be less beneficial in case of abundance of data. For the synthetic experiments, we find
that (i) learning the structure of the graph-time product graph from data improves the
performance compared to adopting a fixed type of product graph; (ii) learning sparser
graph-time product graphs further improves the performance; (iii) the proposed graph-
time pooling technique contributes to the model’s generalization capabilities.
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2 1. INTRODUCTION

Network data are important in several real-world applications such as temperature
forecasting [1], traffic management [2], and earthquake detection [3], to name a few (see
[4] for an extended survey). These network data often evolve over both space and time.
As an example, consider a network of weather stations and links representing distances
between pairs of nodes. The stations measure temperature over a temporal observation
window, as shown in Figure 1.1. The resulting time-varying data possesses both spa-
tial and temporal properties since the temperature recorded at a particular station cor-
relates with previous values at that station, but also with the temperatures recorded at
neighbouring stations. These combined dependencies over space and time make it chal-
lenging to capture the correlations in time-varying data. Therefore, conventional tools
focusing either on spatial or temporal dependencies fail to learn these spatio-temporal
correlations [2, 5]. To overcome this issue and successfully learn from time-varying net-
work data, a learning framework is required which jointly exploits these correlations [6,
4, 5].TV 
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Figure 1.1: Time-varying network data. In this example, the network consists of six
weather stations and each station records temperatures over a temporal observation
window. The links between the stations encode the distance between them.

Graphs are a suitable and widespread tool to model complex relationships between
the data and represent the underlying structure. The most appealing characteristic about
graphs is their flexibility to model information living on irregular and complex struc-
tures. In the weather station example introduced above, the graph represents distances
between stations, but a graph can also represent a road network or spatial dependen-
cies in a seismic network. In general, graphs can serve as a relevant prior about the data
structure, which is proven to be beneficial to learn meaningful representations [7].

Difficulties arise when learning from graph data as they do not live in the structured
Euclidean domain. For example, standard Convolutional Neural Networks (CNN) can-
not learn from graph data. The reason for this is the convolution operation assuming
Euclidean data as input. To overcome this issue, researchers have worked on meth-
ods to apply learning techniques to unstructured data, giving life to the so-called Graph
Convolutional Neural Networks (GCNNs) [6]. Analogously to CNNs performing standard
convolutions over the Euclidean domain, GCNNs perform graph convolutions over un-
structured data defined on a graph. GCNNs are often employed to capture the spatial
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correlations from the data, while RNNs (and its variants) or CNNs are adopted to cap-
ture the temporal correlations [6]. GCNNs, however, ignore the temporal dependencies
in time-varying data and likewise, the popular RNN models ignore spatial dependencies
in network data.

Building upon GCNNs and RNNs, the number of works that try to learn spatio-temporal
dependencies is steadily growing [6, 4]. This is because recent findings have shown the
benefits of jointly processing time-varying network data [8, 2]. A first direction to cap-
ture spatio-temporal dependencies comprises hybrid model, exploiting GCNNs to learn
the spatial dependency, and subsequently an RNN or CNN to learn the temporal de-
pendency [6, 4, 9, 10, 5]. Conversely, other works achieve spatio-temporal learning by
fusing the spatial and temporal information in a unified model, often modifying recur-
rent models to also take into account the topology of the data [7, 11, 3, 12, 5, 13]. We
shall detail hybrid and fused models in Chapter 3. Our rationale is that combining sev-
eral specialized models to capture graph-time dependencies misses some information
in graph-time correlations since part of the pipeline focuses on learning the spatial de-
pendency and part on the temporal dependency. Therefore, we follow the direction of
the fused models and propose a unified graph-time learning framework.

We argue that the most natural way to model time-varying network data is to repre-
sent them on an extended graph that provides a structure for values over the graph and
over time. This structure is common in graph signal processing literature, and it is known
as product graph [14]. Therefore, product graphs provide a useful prior w.r.t. the graph-
time interactions in the data. We show an example of modelling time-varying network
data with product graphs in Figure 1.2. Such a representation allows graph convolutions
to capture the joint correlations in the data. However, state-of-the-art models ignore this
prior knowledge and do not exploit such information during learning. To the best of our
knowledge, no research has yet attempted to capture spatial and temporal dependencies
using graph convolutions over product graphs.

TV 
Graph 
signal

𝑡 − 1

𝑡

𝑡 + 1

Figure 1.2: Product graph representation of the temperature time-varying network data
over three timesteps. A static network data on this larger graph can now represent all the
measurements recorded by the network in Figure 1.1 over three timesteps. In this exam-
ple, blue links imply that the temperature at a particular station affects the subsequent
temperature at the same station. Red links imply that the temperature at a particular
station affects the subsequent temperatures at its neighbouring stations. For illustration
purposes, we show the red links only for the central station in the network.
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Therefore, in this thesis, we investigate how to learn from time-varying network data
through a fully convolutional framework over product graphs, answering the research
question:

(RQ) “How to learn meaningful representations from time-varying network data by means
of graph convolutions and product graphs?”

We first use product graphs to represent time-varying network data as static data
over this extended graph. There are different types of product graphs, each modelling
the graph-time interactions differently [cf. Section 2.3.1]. Thus, we first ask the following
question:

(RQ1) “How to learn the correct product graph for modelling signal variations over graph
and time domains?”

To answer this question, we propose to use parametric product graphs [15] in the
learning framework and learn the most suitable graph-time interactions for the task at
hand. Once we represent the time-varying network data using product graphs, we ask
the question:

(RQ2) “How to develop a graph convolutional architecture to jointly process time-varying
graph signals over parametric product graphs?”

We propose a novel neural network architecture to perform graph convolutions over
a learned parametric product graph. Graph convolutions are performed using the graph
filters introduced in [16], which consist of polynomials in the shift operator. We also
propose a new graph-time pooling module that reduces the dimensionality of the con-
volutional features both over the graph and the time domain. This pooling strategy is
inspired by the so-called zero-padding pooling used in conventional GCNNs [17]. Fi-
nally, for the proposed architecture we ask the research question:

(RQ3) “How to use the developed architecture for classification and regression tasks?”

For classification, we predict the geographic location of an earthquake’s epicentre
given seismic measurements prior to the strike, relying on the data from the Interna-
tional Federation of Digital Seismograph Networks (FDSN) in New Zealand [18]. For re-
gression, we forecast temperatures across several locations in two real-world datasets:
the Molene [19] and the NOAA [20] datasets, providing temperature data across an area
of France and the US, respectively.

More specifically, the answer to these research questions yielded the following con-
tributions:

• A novel neural network architecture that can learn from time-varying network data
(Chapter 4). Within this architecture, we propose:

– a parametric graph-time convolutional layer, which uses product graphs to
learn the graph-time interactions from data (Section 4.2). We also propose a
regularization term to enforce sparsity in the learned product graphs.

– a graph-time pooling layer, which builds upon the zero-padding pooling in
[17] to reduce the dimensionality of the features also over time (Section 4.3).
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• A new dataset for classifying seismic measurements, which relies on seismic wave
measurements in New Zealand. We use this dataset to evaluate the proposed ar-
chitecture for classification (Chapter 5).

• An evaluation of the proposed approach for temperature forecasting with the Mo-
lene and the NOAA datasets (Chapter 6).

This thesis is organized as follows. Chapter 2 introduces the background informa-
tion. Chapter 3 contains the literature review related to spatio-temporal learning. Chap-
ter 4 presents the proposed GTCNN architecture to learn from time-varying graph sig-
nals. Chapter 5 evaluates the proposed architecture for earthquake classification, based
on measurements prior to the strike. Chapter 6 evaluates the proposed architecture for
temperature forecasting. Finally, Chapter 7 concludes this thesis and lays down some
future research directions.





2
BACKGROUND

In this chapter, we introduce the background information that we will leverage in the
following chapters. The chapter is organized as follows. Section 2.1 introduces the build-
ing blocks of Graph Signal Processing. Section 2.2 presents the Graph Convolutional
Neural Network model, including the graph convolutional layer and pooling. Section
2.3 introduces the concept of time over graphs and shows how we can represent time
series on graphs using product graphs. Finally, Section 2.4 introduces graph-aware and
graph-unaware models for time series modelling.

7
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2.1. GRAPH SIGNAL PROCESSING
Graph Signal Processing (GSP) is a framework that extends concepts of signal pro-

cessing such as Fourier transform and filters to unstructured domains such as graphs
[21]. This section introduces the building blocks of GSP. Section 2.1.1 defines graphs
as well as their matrix representations. Section 2.1.2 introduces graph signals and the
Graph Fourier Transform. Section 2.1.3 defines the Graph Shift Operator, which is then
used in Section 2.1.4 to formulate graph convolutional filters.

2.1.1. GRAPHS
A graph G = (V ,E ) consists of a set of N nodes V = {1, . . . , N } and a set of edges E ⊆ V ×

V connecting the nodes. We denote by |E | the number of edges in the graph. If (i , j ) ∈ E ,
it means nodes i and j are connected, i.e., there exists an edge connecting nodes i and
j . Graphs can be undirected or directed. For undirected graphs, if edge (i , j ) ∈ E then
also ( j , i ) ∈ E ; i.e., if node i is connected to node j, also node j is connected to node i.
In directed graphs, edges have a direction associated with them; i.e., (i , j ) ∈ E does not
imply that ( j , i ) ∈ E . We define N k

i as the set of nodes that are reachable from node i in
k hops or fewer, i.e., following a path with k edges or fewer. For directed graphs, we look
at incoming edges when computing the neighbourhoods. Figure 2.1 shows two graphs
of six nodes. In the undirected graph on the left, N 1

4 = {1,5}, while N 2
4 = {1,2,3,4,5,6}.

In the directed graph on the right, N 1
4 = {1}, while N 2

4 = {1,2}.
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(a) Undirected graph.

Graphs

1

2

3
5

4 6

1

2

3
5

4 6

(b) Directed graph.

Figure 2.1: Nodes one to six are represented with circles containing the indices. The
lines connecting the nodes represent edges. An edge with the arrow pointing from node
i to node j means ( j , i ) ∈ E .

The adjacency matrix A ∈RN×N is one way to represent a graph G . The entries of A are:

Ai j ≥ 0 if (i , j ) ∈ E and Ai j = 0 otherwise.

The scalar Ai j captures the strength of the connection between nodes i and j . If all edges
(i , j ) ∈ E have binary weights Ai j ∈ {0,1}, then the graph is said unweighted. For undi-
rected graphs, the adjacency matrix A is symmetric, i.e., A> = A. For directed graphs, we
follow the notation adopted in [21]: if the entry Ai j is non-zero, it means there is an edge
going from node j to node i , i.e., the i -th row of A indicates the in-edges of node i .

The degree matrix D ∈RN×N for undirected graphs is a diagonal matrix with diagonal
elements Di i =∑N

j=1 Ai j . For unweighted graphs, the degree of a node is the number of
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its edges. For weighted graphs, the degree of a node is the sum of the weights of its edges.

We can also represent the graph with the normalized adjacency matrix An = D− 1
2 AD− 1

2 .
The graph Laplacian matrix L ∈ RN×N is another representation matrix of graph G and
is defined as

L = D − A

which is also symmetric. Likewise, the normalized Laplacian matrix is Ln = D− 1
2 LD− 1

2 .
The adjacency matrix A can be used with both directed and undirected graphs, while

the Laplacian matrix L can only be used with undirected graphs. If we need the eigenval-
ues of the matrix to be bounded, we should use the normalized counterpart. The choice
of the graph representation matrix is, however, application dependent. For example,
from a graph spectral perspective, the graph Laplacian matrix is a popular choice [21].

In general, we will consider a matrix S to represent the graph called the graph shift
operator (GSO). The GSO is a square matrix S ∈ RN×N having the same sparsity pattern
of the graph. In other words, Si j 6= 0 if and only if (i , j ) ∈ E . Valid choices for the GSO are
the graph matrices introduced above, such as the adjacency matrix, the graph Laplacian,
and their normalized counterparts.

2.1.2. GRAPH SIGNALS

A graph signal x = [x1, x2, . . . , xN ]> is defined as a set of N values, where entry xi is as-
sociated with node i ∈ V of the graph. The edges connect nodes, thus encoding pairwise
relationships between signal values. For instance, a graph signal can represent measure-
ments obtained from a network of N sensors: the graph topology A ∈ RN×N encodes
pairwise relationships between sensors (the distance between them or the communi-
cation network), while the graph signal x represents the values measured by the sensor
network. Figure 2.2 illustrates an example of graph signal.

Graph 
signal

1

2

3
5

4 6

𝒙 = 2 0 0 1 0 − 1

Figure 2.2: A graph signal x defined on top of a graph of six nodes. The green lines on
top of the nodes represent the value of the graph signal associated with each node. The
signal is zero on the nodes without a green line.
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GRAPH FOURIER TRANSFORM

The Graph Fourier Transform (GFT) is the equivalent for graph signals of the stan-
dard Fourier Transform [16]. When the GSO allows for its eigendecomposition (such as
the case where S = L), the eigenvectors represent the modes of the graph and the eigen-
values represent the frequencies [21]. More in detail, the eigendecomposition of the GSO
S is written as S =UΛU H, where U = [u1, . . . ,uN ] ∈ RN×N contains the eigenvectors of S
and Λ = diag(λ1, . . . ,λN ) ∈ RN×N is a diagonal matrix that contains the i -th eigenvalue
on the i -th diagonal entry. The eigenvalues can be ordered as λ1 <= . . . <= λN without
loss of generality. One attractive property of this decomposition is that, when S = L, the
eigenvectors associated with smaller eigenvalues are smoother over the graph compared
to eigenvectors associated with higher eigenvalues [22]. That is, the eigenvectors and
eigenvalues obtained from the eigendecomposition of the Laplacian carry information
about the graph frequencies.

The GFT of a graph signal x is then defined as

x̂ =U Hx (2.1)

and provides an expansion of x in terms of the eigenvectors u1, . . . ,uN . The i -th entry of
x̂ indicates the weight of eigenvector ui in such expansion. The inverse Graph Fourier
Transform (IGFT) is defined as

x =U x̂ . (2.2)

The GFT is useful because it allows analyzing the signal from a graph spectral per-
spective. This spectral equivalent will be critical to assess the operation of convolutions
on the graph and subsequently to process times series on graphs.

2.1.3. GRAPH SIGNAL SHIFTING

Given a graph signal x (0) = x , its graph-shifted version is

x (1) = Sx (0). (2.3)

By expanding (2.3) for the i-th component of x (1) as

x(1)
i = Si 1x(0)

1 +Si 2x(0)
2 + . . .+Si N x(0)

N , (2.4)

we can see the application of the GSO is a local operation that replaces the value at node
i with a linear combination of the values at the neighbours of i [17]. If the shift operator
is the adjacency matrix A, i.e., Si j = Ai j , the value x(1)

i is a weighted sum of the values
measured at the neighbouring nodes of node i, weighted by the strength of the edges.
For a directed graph, the nodes contributing to x(1)

i are those with an edge ending at
node i , see Figure 2.1b. We can obtain a K -shifted version of x over the graph through
successive applications of the GSO to signal x :

x (K ) = SK x (0) = S(SK−1x (0)) = S(x (K−1)) . (2.5)

For the example in Figure 2.3, the value at node four after two successive applications of
the GSO is x(2)

4 = A41x(1)
1 + A45x(1)

5 = 1+1.
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𝒙(1) = 𝑨𝒙(0) = 1 0 0 0 1 0 𝒙(2) = 𝑨𝒙(1) = 0 1 1 2 0 1

𝑨 =

0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

a) b) c) d)

Figure 2.3: Applications of two successive shifts to a graph signal x over an undirected graph. The
GSO is the adjacency matrix A. In each shift, neighbours exchange values between them. a) The
initial graph signal is zero everywhere except on node four. b) One shift of the signal x(0): node
four contributes to the new values on node one and five. c) A second shift to the signal: the nodes
exchange their values again. Node four reaches the highest value, due to nodes one and five, both
contributing to the new value on node four. d) The adjacency matrix of the graph.

Shift on directed graph
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1
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1
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5

4 6
𝑨 =

0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

𝒙(0) = 0 1 0 0 2 0 𝒙(1) = 𝑨𝒙(0) = 1 0 0 0 0 2 𝒙(2) = 𝑨𝒙(1) = 0 2 1 1 0 0

a) b) c) d)

Figure 2.4: Applications of two successive shifts to a graph signal x over a directed graph. The GSO
is the adjacency matrix A. a) Initial signal. b) One shift is performed. c) A second shift is performed.
d) The adjacency matrix of the graph. Recall the notation adopted; if the entry Ai j is non-zero it
means there is an edge going from node j to node i .

Shifting the signal once over the graph amounts to a complexity of O (|E |). This is be-
cause the GSO is a sparse matrix containing non-zero elements only in positions related
to the edges. Thus, the graph signal shifting operation is computationally less expen-
sive than a matrix-vector product of dense matrices [14]. The cost of computing the K -
shifted version of x over the graph as per (2.5) is of order O (K |E |), as it requires comput-
ing K times the operation in (2.3). Figures 2.3 and 2.4 illustrate successive applications
of the GSO to a graph signal x over undirected and directed graphs, respectively.

To better understand how the application of the shift operator S is a natural extension
to graphs of the standard time shifts for signals, it is useful to think about a directed cyclic
graph Gc as support of a discrete periodic time signal x[t ] [21]. The adjacency matrix CT

of the directed cyclic graph has non-zero entries [CT ]i+1 mod T,i = 1, for i = 0, . . . ,T − 1.
For example, if T = 4, this formulation of CT results in

C4 =
(0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

)
.

Graph Gc has as many nodes as the values of the discrete time signal, see Figure 2.5. If
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we consider x[t ] as a graph signal x = [x[1], ..., x[T ]]> defined on top of graph Gc , then
applying the shift operator Sc =CT is equivalent to a shift in time of x[t ], i.e., the shifted
graph signal x (1) = Sc x is a circularly time-shifted version of the initial time signal x :
x (1) = [xT , x1, . . . , xT−1]>. As illustrated in Figure 2.5, the shift operation results in each
node obtaining the value from its previous node.

1 2 3 … 𝑇

Cyclic graph

1 2 3 … 𝑇

𝑥1 𝑥2 𝑥3 𝑥𝑇 𝑥𝑇 𝑥1 𝑥2 𝑥𝑇−1

1 2 3 … 𝑇

𝑪𝑇 =

0 0 0 … 0 1
1 0 0 … 0 0
0 1 0 … 0 0
⋮ ⋮ ⋱ ⋱ ⋱ 0
0 0 … 1 0 0
0 0 … 0 1 0

a) b) c)

Figure 2.5: The directed cyclic graph Gc with T nodes can be thought of as the support of a time
discrete signal having T values. a) Before shift. The graph signal shown is x . b) After shift. The
graph signal shown is x(1) = Sc x =CT x . c) The adjacency matrix of the graph.

2.1.4. GRAPH CONVOLUTIONAL FILTERS
Let x[t ] be a discrete time signal and h[k] a finite impulse response (FIR) filter of

order K . Recall, the output y[t ] of a discrete convolution between x[t ] and the filter h(·)
is

y[t ] = (x ∗h)[t ] =
K∑

k=0
h[k]x[t −k] , (2.6)

where “∗” indicates time convolution. The output y[t ] is the convolution of the filter
h(·) with the input x[t ] and is computed as a weighted sum of time-shifted versions of the
discrete input signal x[t ]. Analogously, a graph convolution can be defined as a weighted
sum of graph-shifted versions of the input graph signal.

We denote the input graph signal as x , the GSO as S, and as h = [h0,h1, . . . ,hK ]> a set
of K +1 parameters. The output y of a graph convolution is defined as

y = h ∗s x =
K∑

k=0
hk Sk x = H(S)x , (2.7)

where “∗s ” indicates that this convolution involves the GSO of the graph. That is, the
GSO S performs signal shifting over the graph, and the output y is a weighted sum of
shifted signals. Matrix H(S) ∈RN×N is called a graph filter of order K and has the form:

H(S) =
K∑

k=0
hk Sk . (2.8)

By comparing (2.6) with (2.7), we can see how the time shift in (2.6) is linked to the
graph shift in (2.7), which is obtained through the application of the GSO. Therefore, the
graph filter H(S) uses the signal shift [cf. (2.3)] to perform convolutions through K suc-
cessive applications of the graph shift operator. When k = 0, S0x = I x is the original
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input graph signal, x . For k > 0, Sk x represents the k-shifted version of x over the graph
and gathers at each node information from its k-hop neighbourhood. Therefore, a graph
filter with K filter taps aggregates at each node information from its K -hop neighbour-
hood. The complexity of (2.7) is O (K |E |), since it requires the computation of K graph
shifts as in (2.5). The graph convolution operation is illustrated in Figure 2.6.

Filtering

𝑺 𝑺 𝑺 𝑺… 𝒙 𝑺𝒙 𝑺𝟐𝒙 𝑺𝑲𝒙

ℎ0 ℎ1 ℎ2 ℎ𝐾



… 

𝒚

Figure 2.6: Illustration of the filtering process for graph signals. Each graph-shifted ver-
sion Sk x of the input signal x is weighted by coefficient hk . The output y is the weighted
sum of the graph-shifted versions of x .

The graph filter formulation is given here from a vertex perspective, since we define
graph convolutions as shift-and-sum operations using the GSO. However, graph filtering
can also be defined as a pointwise multiplication in the spectral domain [23, 21]. That
is, given the GFT x̂ of a graph signal x , the output ŷ = [ŷ(λ0), ŷ(λ1), . . . , ŷ(λN−1)]> of the
filtering operation is

ŷ = h(Λ)x̂ , (2.9)

where h(Λ) = diag(h(λ0),h(λ1), . . . ,h(λN−1)) is the graph filter frequency response. In
other words, each graph frequency content x̂(λi ) is multiplied by the corresponding filter
coefficient h(λi ). Starting from a graph signal x , the filtered (from a spectral perspective)
output graph signal is obtained as:

y =U h(Λ)U>x =U h(Λ)x̂ =U ŷ . (2.10)

2.2. GRAPH CONVOLUTIONAL NEURAL NETWORKS
Consider a dataset of pairs (xi , yi ), where xi represents the input data, and yi is the

associated output. Depending on the type of application, these (x , y) pairs can arbitrar-
ily be scalars or vectors. For example, in a dataset representing temperatures across N
sensors, the input data xi may consist of N values, each one associated to a sensor, while
the output yi may be a scalar representing the season during which such temperatures
were recorded.

A Graph Convolutional Neural Network (GCNN) is a neural network which makes a
prediction ŷi to match the associated output yi , given the input xi and the graph struc-
ture (expressed by the GSO S). The GCNN is composed of L layers, each consisting of
a graph convolutional module, a graph pooling, and a pointwise non-linearity [17], [6].
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The output of the GCNN is obtained from the last layer L. Depending on the applica-
tion, a number of fully connected layers can be added after the L-th layer to form the
final output ŷ . Next, we detail the building blocks of GCNNs.

2.2.1. GRAPH CONVOLUTIONAL LAYER

𝒖𝑙
31

GCNN features evolution

𝒖𝑙
32

𝑯𝑙
21(𝑺)

𝑯𝑙
22(𝑺)

𝒖𝑙
21

𝒖𝑙
22

𝒖𝑙
11

𝒖𝑙
12

𝒙𝑙−1
2

𝒙𝑙−1
1







𝒖𝑙
3

𝒖𝑙
2

𝒖𝑙
1

a) b) c)

𝑿𝑙−1
𝑼𝑙

d)

Figure 2.7: Convolutional features at layer l . a) The input Xl−1 = [x1
l−1, x2

l−1] is com-

posed of Fl−1 = 2 features. b) The intermediate features u
f g
l

in (2.11) are computed

using the filters H
f g
l

(S). For each of the Fl = 3 output features u
f
l

we have Fl−1 = 2 fil-

ters H
f g
l

(S) involved. c) The intermediate features u
f g
l

are summed as in (2.11). d) The

Fl convolutional features u
f
l

are obtained and form the output Ul = [u1
l ,u2

l ,u3
l ].

The graph convolutional layer is the core of the GCNN. It performs graph convolu-
tions as in (2.7), generating a pre-defined number of convolutional features. The in-

put to layer l is a set of Fl−1 features Xl−1 = [x1
l−1, x2

l−1, . . . , xFl−1
l−1 ] ∈ RNl−1×Fl−1 whose

columns represent features (each of dimensionality Nl−1). At the input layer, the input
X0 = x0 ∈ R|V | is a graph signal of dimensionality equal to the number of nodes. How-
ever, as we will see in Section 2.2.2, the dimensionality of these features is reduced at
each layer because of pooling, i.e., Nl < Nl−1.

The output of layer l consists of a set of Fl convolutional features Ul = [u1
l ,u2

l , . . . ,uFl
l ] ∈

RNl−1×Fl (each of dimensionality Nl−1), obtained as

u f
l =

Fl−1∑
g=1

u f g
l =

Fl−1∑
g=1

H f g
l (S) x g

l−1 =
Fl−1∑
g=1

K∑
k=0

h f g
k Sk x g

l−1 for f = 1, . . . ,Fl , (2.11)

where u f g
l ∈RNl−1 are referred to as intermediate features and H f g

l (S) is a K -th order lin-

ear shift invariant filter [cf. (2.8)]. Filter H f g
l (S) is used to process the g-th input feature

x g
l−1 when computing the f -th output feature u f

l . Figure 2.7 illustrates how the convolu-
tional features Ul are computed from the input Xl−1.
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The input signals x g
l−1 in (2.11) can have dimensionality lower than N due to pool-

ing. Therefore, it is impossible to compute the matrix-vector product Sk x g
l−1 of (2.11),

since the GSO S is of dimension N ×N . The solution to this dimensionality mismatch
is achieved by padding the input with zero entries to bring the dimensionality of x g

l−1
to N , and then compute (2.11) with the GSO S without requiring any graph coarsening
algorithm [17].

The number of learnable parameters to obtain Ul is (K + 1)Fl−1Fl : for each of the
Fl output features of layer l , there are Fl−1 filters H f g (S), each consisting of K +1 coef-

ficients h f g
k . The computational cost of computing the output Ul is of order O (|E |(K +

1)Fl−1Fl ), since the cost of a single convolutional filtering operation is O (|E |(K +1)) and
in (2.11) we repeat this operation Fl−1Fl times. Notice we considered the filter order K
fixed at each layer. However, in practice, the order may also be layer dependent; i.e., Kl .

2.2.2. GRAPH POOLING

Pooling reduces the dimensionality of the convolutional features Ul = [u1
l ,u2

l , . . . ,uFl
l ]

to reduce the overall number of parameters. In the context of this thesis, pooling is a
non-learnable operation which summarizes the convolutional features Ul at layer l , re-
ducing the dimensionality from Nl−1 × Fl to Nl × Fl , with Nl < Nl−1. In other words,

each of the Fl features u f
l is reduced from dimensionality Nl−1 to Nl . To achieve this

dimensionality reduction, there are two steps involved: summarization and downsam-
pling. In the summarization step, illustrated in Figure 2.8 b), the value in each node is
changed accordingly to a summarization criterion (such as max pooling), by considering
its neighbouring nodes, up to a predefinedα-hop neighbourhood. In the downsampling
step, illustrated in Figure 2.8 c), we select only Nl summarized values per feature out of
Nl−1.

The summarization step is implemented at layer l by applying the pooling operator

ρ(·) on the convolutional features u f
l . The summarized features Vl = [v 1

l , v 2
l , . . . , v Fl

l ] ∈
RNl−1×Fl are defined as

v f
l = ρ(u f

l ; α,G ) for f = 1, . . . ,Fl , (2.12)

where ρ(· ; α,G ) operates on the values reached by the α-neighbourhood of each node.
That is, the summarized value at node i is given by applying ρ(·) to the values corre-
sponding to the set of nodes N α

i .
Downsampling poses a more difficult challenge. When decreasing the dimensional-

ity of the generated features by pooling, the downsampled graph signal will not match
the graph support. Adopting a zero-padding pooling implies activating or deactivating
specific nodes in the nominal graph to always preserve the same dimensionality [17].
To be precise, denote by Cl the Nl × Nl−1 sampling matrix at layer l and consider the

reduced features Bl = [b1
l ,b2

l , . . . ,bFl
l ] ∈RNl×Fl computed as

b f
l =Cl v f

l for f = 1, . . . ,Fl . (2.13)

Following [17], there are different sampling criteria for the active nodes. In this thesis, we
consider matrix Cl is built to select the Nl nodes with highest degree from the available
Nl−1.
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GCNN pooling 
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Figure 2.8: Max pooling at layer l (shown for one convolutional feature u
f
l

). In this ex-
ample, we have Nl−1 = 6, Nl = 4, and α= 1, i.e., the pooling operation is performed over
the one-hop neighbourhood of each node and only four out of six nodes are kept. a) Ini-

tial values of the convolutional feature u
f
l

before pooling. b) Values of the summarized

feature v
f
l

after the summarization step. c) Values of the reduced feature b
f
l

after the
downsampling step.

The reduced features are fed to a pointwise non-linearity (activation function), such

as ReLU, to obtain the output of layer l . Therefore, the output Xl = [x1
l , x2

l , . . . , xFl
l ] ∈

RNl×Fl of layer l is

x f
l =σ(b f

l ) for f = 1, . . . ,Fl . (2.14)

The output Xl is sent as input to layer (l +1) and operations (2.11)-(2.14) are repeated for
all layers l = 1, . . . ,L. If the network is composed of L layers, the output of the GCNN is
the output XL of the last layer:

ŷ = XL . (2.15)

Optionally, the output XL of the last layer can be sent to a fully connected layer to obtain
the final output ŷ of the GCNN as

ŷ =σ(WFC XL) , (2.16)

where WFC is the B × NLFL weight matrix of this fully connected layer and B is the di-
mensionality of the output ŷ .

Without considering the fully connected layer, the number of parameters at each
layer of the GCNN is (Kl +1)Fl−1Fl , as we discussed in Section 2.2.1. Thus, this number
depends only on the length of the graph convolutional filters and the number of features
at each layer, but not on the size of the graph N . The complexity of the GCNN is linear in
the number of edges at each layer. Let us define by Ml the maximum number of edges
at each layer, then the complexity is of order O (Ml (Kl +1)Fl−1Fl ) at each layer.

2.2.3. LOSS
Given the parametric nature of the network, we can represent the output as ŷ =

f (x ; θ) where f (· ; θ) represents the GCNN and θ is a vector comprising all parameters:
the (K +1)Fl−1Fl weights at each layer l and the optional weights of the fully connected
layer.
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The network is trained to minimize a loss function that quantifies how far the output
ŷ of the model is from the ground truth y . That is, given a training set T of R samples, a
model f (· ; θ), and a loss function L (y , ŷ), the objective of the training phase is to find
the parameters which minimize the loss over T as

argmin
θ

LT (y , ŷ) = argmin
θ

LT (y , f (x ; θ)) . (2.17)

This training is achieved through backpropagation, since all operations are differen-
tiable [24]. Backpropagation uses (stochastic) gradient descent (SGD) to learn the pa-
rameters of the network in a supervised learning setting. On a high level, backpropaga-
tion computes the gradient of the loss with respect to the weights θ. Then, it uses this
gradient to update the weights and repeats the process for a fixed number of iterations.

The type of loss depends on the downstream task. For regression, we consider the
mean squared error (MSE):

MSE = 1

R

∑
i∈T

∥∥ŷi − yi
∥∥2

2 . (2.18)

For classification, we adopt the cross-entropy loss (CE):

CE = 1

R

∑
i∈T

(
−

C∑
c=1

yi c log (pi c )

)
, (2.19)

where yi c is a binary value indicating whether the input xi is assigned to the correct class
c, and pi c is the predicted probability of xi being from class c (C classes in total).

2.3. GRAPH-TIME SIGNAL PROCESSING
In this section, we deal with graph signals that evolve over time. In Section 2.3.1, we

present the concept of product graph, and in Section 2.3.2, we show how to use product
graphs to model time-varying graph signals.

2.3.1. PRODUCT GRAPHS
A product graph Gä = (Vä,Eä) is a graph which can be written as the product “ä” of

smaller factor graphs G0 = (V0,E0) and G1 = (V1,E1) with N0 and N1 nodes, respectively.
The product graph Gä is written as

Gä =G0 ä G1 , (2.20)

where the vertex set Vä is the Cartesian product of the vertex sets of the two graphs, i.e.,
Vä = V0×V1 consisting of N0N1 nodes. The edge set of the product graph Eä depends on
the type of product operation. We indicate with |Eä| the cardinality of the edge set Eä,
i.e., the number of edges in the product graph. Next, we detail the most frequently used
product graphs.

TYPES OF PRODUCT GRAPHS

There exist three main product graphs in the literature: the Kronecker product graph,
the Cartesian product graph, and the strong product graph [25][14]. These product graphs
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are shown in Figure 2.9. Starting from the GSOs of the factor graphs, we can derive the
GSO Sä of the product graph.

The Kronecker product graph G⊗ = (V⊗,E⊗) has the shift operator S⊗:

S⊗ = S0 ⊗ S1 , (2.21)

where ⊗ indicates the Kronecker product [14], for which we recall in Appendix A. The
number of edges of the Kronecker product graph G⊗ is |E⊗| = |E0||E1|. The Cartesian
product graph G× = (V×,E×) has the shift operator S×:

S× = S0 ⊗ IN1 + IN0 ⊗ S1 , (2.22)

where IN is the N × N identity matrix. The number of edges of the Cartesian product
graph G× is |E×| = N0|E1| +N1|E0|. The strong product graph G4 = (V4,E4) combines
both the Cartesian and the Kronecker product graphs and has the shift operator S4:

S4 = S⊗+S× = S0 ⊗ S1 +S0 ⊗ IN1 + IN0 ⊗ S1. (2.23)

The number of edges of the strong product graph G4 is |E4| = |E⊗| + |E×| = |E0||E1| +
N0|E1|+N1|E0|.

All product graphs

0

1

2

0

1

2

0

1

2

0

1

2

Figure 2.9: Kronecker, Cartesian, and Strong product graph. On the left, the two fac-
tor graphs. On the right, the resulting product graph. Node colours, together with the
indices, indicate which two nodes in the factor graphs contribute to a specific node in
the product graph. The Kronecker product graph leads to the edges colored in red, the
Cartesian product graph leads to the edges colored in blue and black, while the strong
product graph considers both sets of edges.

PARAMETRIC PRODUCT GRAPH

It is possible to represent all product graphs in a more compact form. Let S3 be the
GSO of the parametric product graph defined as

S3 =
1∑

i=0

1∑
j=0

si j (S i
0 ⊗S j

1) , (2.24)

where S0 and S1 are GSOs of the two factor graphs G0 and G1, respectively, and si j are
scalars. For specific parameters si j , (2.24) captures all the product graphs previously
introduced, i.e., the Kronecker, the Cartesian, and the strong product [15]. If we allow the
parameters si j to take on continuous values, we can also “weigh” the different building
blocks in (2.24). To clarify, by expanding (2.24) as

S3 = s00(I0 ⊗ I1)+ s01(I0 ⊗S1)+ s10(S0 ⊗ I1)+ s11(S0 ⊗S1) , (2.25)
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we see how it encompasses equations (2.21), (2.22), and (2.23). If s00 = 0 and si j = 1
for all remaining indices, we obtain the strong product graph, while if s01 = s10 = 1 and
s00 = s11 = 0, we obtain the Cartesian product graph. We also see that (2.25) contains an
additional term, I0⊗I1, which adds potential self-loops to all N0N1 nodes of the product
graph. Therefore, when all si j parameters are non-zero, the number of edges in G3 is
|E3| = |E4| + N0N1, i.e, the number of edges in a strong product graph plus the N0N1

self-loops.
From the next chapter onwards, we will leverage the flexibility of the parametric

product graph to learn from the data the type of product.

2.3.2. TIME-VARYING GRAPH SIGNALS
So far, we considered the graph signal x to be time-invariant and saw how the GCNN

can process it (Section 2.2). Here, we consider graph signals that evolve over time. We
denote by xt ∈ RN the time-varying graph signal over graph G = (V ,E ) at time t . Con-
sidering T time instances, we can describe the time-varying graph signal with matrix
X = [x1 x2 . . . xT ] ∈ RN×T . The i -th row of X , Xi :, contains the T values observed at
node i , while the j -th column of X , X : j , contains the graph signal x j observed at time
j . Figure 2.10 shows an example of a time-varying graph signal. An example of a time-
varying graph signal consists of seismic waves over time across N stations (Chapter 5).
At each timestep t , the N seismic measurements across the locations constitute a graph
signal.
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Figure 2.10: A time-varying graph signal over T timesteps on a graph G of four nodes.
Xiτ indicates the value on node i at time τ.

Product graphs represent a structure that can capture the evolution of a time-varying
graph signal over G . Specifically, the two factor graphs are the nominal graph G and a
graph Gt , where each of the T nodes represents a time instant, see Figure 2.11. This
graph is built in the same way as the directed cyclic graph in Section 2.1.2. We will refer
to Gt as time graph.

Time graph

1 2 3 … 𝑇

1 2 3 … 𝑇

Figure 2.11: Directed cyclic graph representing the evolution of time over T timesteps.
Node i represents the i -th time instant.
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Space-time cartesian graph
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Figure 2.12: Cartesian product graph representation of a time-varying graph signal on
four nodes over T timesteps.

As illustrated in Figure 2.12, we can look at the product graph Gä as the graph com-
bining T copies of the nominal graph G on which the time-varying graph signal x evolves
over T timesteps. To refer to different nodes at different timesteps, we introduce here the
following notation: node (i , t ) indicates the node in Gä which represents node i of G at
timestep t , i.e., the i -th value of the graph signal xt . Moreover, set N k

i ,t represents the
k-hop neighbourhood of node (i , t ). For example, in Figure 2.12, value X4,2 resides on
top of node (4,2).

The type of product graph plays a role in how to model time. For the Cartesian prod-
uct graph, node (i , t ) is connected to the nodes at timestep t which are its neighbours in
the nominal graph G , i.e., all nodes in N 1

i in G . Moreover, node (i , t ) is also connected
to its previous copy in time in Gä, denoted as node (i , t −1).

graph-time cartesian product 
graph reach
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Figure 2.13: The 1-hop neighbourhood of node (2, t ) in a Cartesian product graph:
N 1

2,t = {(1, t ), (4, t ), (2, t −1)}. We highlight in yellow the node for which we are looking
at the neighbourhood, in blue the nodes included in the one-hop neighbourhood of the
yellow node due to edges representing time, and in white the nodes included in the one-
hop neighbourhood of the yellow nodes due to edges existing in the nominal graph G .
All remaining nodes are shown in grey.

If we build the product graph Gä with the strong product, then we would increase
the neighbourhood of each node. Node (i , t ) would be connected to its neighbours in G

both considering the copy at time t and the copy at time t −1, as shown in Figure 2.14.
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graph-time strong product 
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Figure 2.14: Reach of the one-hop neighbourhood of node (2, t ) in a Strong product
graph: N 1

2,t = {(1, t ), (4, t ), (2, t − 1), (1, t − 1), (4, t − 1)}. We highlight in yellow the node
for which we are looking at the neighbourhood, in blue the nodes included in the one-
hop neighbourhood of the yellow node due to edges representing time, and in white the
nodes included in the one-hop neighbourhood of the yellow nodes due to edges existing
in the nominal graph G . Additionally, we color in red the nodes included in the one-hop
neighbourhood of the yellow node due to the Kronecker product graph. For visualiza-
tion purposes, we show the edges of the Kronecker product graph for node (2, t ) in red,
while the other Kronecker edges are colored in light grey. All remaining nodes are shown
in grey.

We can also construct a product graph in a parametric fashion without constrain-
ing the representation to any specific products [cf. (2.24)], as illustrated in Section 2.3.1.
That is, we can represent the structure of time-varying graph signal xt employing the
parametric product graph, thus allowing for a more flexible representation when learn-
ing the interactions from data. We denote as G3 the parametric product graph between
the directed time graph Gt and the graph G , similarly to [26]. Specifically, the graph shift
operator (GSO) of G3 is

S3 =
1∑

i=0

1∑
j=0

si j (C i
T ⊗S j ) , (2.26)

where CT is the adjacency matrix of the directed cyclic graph and S is the GSO of the
nominal graph G . We can now represent the time-varying graph signal xt as a (time-
invariant) graph signal x3 ∈ RN T defined on G3. The new graph G3 encodes now both
the notions of space and time, providing a structure for all values of the time-varying
graph signal. The vertex set V3 consists of N T nodes, and the edge set E3 will depend
on the weights of the product graph [cf. (2.25)].

2.3.3. FILTERING ON PRODUCT GRAPHS
Consider a parametric product graph G3 = (V3,E3) with |V3| = N3 = N T nodes and

shift operator S3 obtained as in (2.26). Given a graph signal x3 = [x1, x2, . . . , xN3 ] ∈ RN3

representing a time-varying graph signal on the nominal graph G over this graph-time
structure, a K -th order FIR graph filter on G3 has the form:

H(S3) =
K∑

k=0
hk Sk

3 =
K∑

k=0
hk

(
1∑

i=0

1∑
j=0

si j (C i
T ⊗S j )

)k

, (2.27)
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where hk denotes the coefficients of the graph filter [cf. (2.8)] and si j denotes the co-
efficients of the parametric product graph [cf.(2.25)]. Analogously to (2.7), the output
y3 ∈RN3 of the filtering operation is

y = H(S3)x3 , (2.28)

where the graph filtering operation is no longer performing shifts and sum over the nom-
inal graph, but rather on the parametric product graph G3. The definition of a paramet-
ric graph filter with a parametric shift operator allows for more flexibility than the graph
filter counterpart working with the shift operator of a fixed product graph. Furthermore,
recall the parametric product graph S3 [cf. (2.24)] captures the Kronecker, the Cartesian,
and the strong product graph. Therefore, it generalizes FIR filtering of the latter. Recall,
we construct G3 using a parametric product graph between the directed cyclic graph
GT (representing the time graph) and the nominal graph G . Therefore, the cost of graph
filtering in (2.28) is of order O (K |E3|), where |E3| = N T +N |ET |+T |EG |+ |ET ||EG |.

To provide further intuition on the convolution performed over this product graph,
we illustrate the filtering process over the Cartesian and the strong product graph in the
following example.

Example 1: Filtering on Graph-Time product graphs

In this example, we show the filtering process for the Cartesian and the strong
product graphs. To be more precise, we aim at showing which values are aggre-
gated at a particular node as we perform graph convolutions over the product
graph, depending on the type of product graph.

We consider a time-varying graph signal evolving over T = 3 timesteps on a
graph G consisting of N = 3 nodes (see Figure 2.15). In the following Figures
(Figure 2.16 and 2.17) we adopt the following colour scheme. We depict as yel-
low the node for which we analyze the neighbourhood during filtering, as black
the nodes reached through the (black) edges belonging to the nominal graph G ,
in blue the nodes reached through the (blue) edges produced by the Cartesian
product, and in red the nodes reached through the (red) edges produced by the
Kronecker product.

Ti
m
e

𝑡 − 1

𝑡

𝑡 + 1

Figure 2.15: Nominal graph G on top of which the time-varying graph signal evolves over time.
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Example 1: Filtering on Graph-Time product graphs

FILTERING ON CARTESIAN PRODUCT GRAPH

b)

Example reach Cartesian v2

a) c)

Ti
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𝑡 − 1

𝑡

𝑡 + 1

Figure 2.16: Cartesian product graph filtering.

Figure 2.16 a) shows the structure of the Cartesian product graph. Figure 2.16 b)
shows that a graph convolution with K = 1 [cf. (2.7)] over the Cartesian prod-
uct graph aggregates values at the yellow node from; (i) its spatial neighbours
reached by the black edges, and (ii) its previous (if any) copy in time reached by
the blue edges. Figure 2.16 c) shows that at least K = 2 is required to take into
account also previous values of the spatial neighbours of the yellow node. These
nodes are depicted half blue and half black, since they are reached through a
path involving both black and blue edges.

FILTERING ON STRONG PRODUCT GRAPH

Example reach Strong v2

a) b)
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𝑡 − 1

𝑡

𝑡 + 1

Figure 2.17: Strong product graph filtering.

Figure 2.17 a) shows the strong product graph (which we recall is the combina-
tion of both the Cartesian and the Kronecker products). To have a less cluttered
figure, we highlight in red the Kronecker edges only for the yellow node, while in
light grey the remaining Kronecker edges.
Figure 2.17 b) shows that a graph convolution with K = 1 [cf. (2.7)] over the
strong product graph aggregates values at the yellow node from; (i) its spatial
neighbours reached through the black edges; (ii) its previous (if any) copy in time
reached by the blue edges; and (iii) the previous values of its spatial neighbours
reached by the red edges.

The two examples of Figures 2.16 and 2.17 showed that performing filtering on
this graph-time product graph aggregates information from both graph and time
domains. Also, it shows how this filtering is different depending on the product
graph adopted. This supports the choice of a parametric product graph to avoid
constraining the architecture to a specific type of filtering.
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JOINT GRAPH-TIME FOURIER TRANSFORM

We now present the joint graph-time Fourier transform (JFT), an extension of the
GFT (Section 2.1.2) to analyze the frequencies of time-varying graph signals both along
the time and graph dimensions. Although we present the JFT considering the Cartesian
product graph, other product graphs formulations are possible [27].

Recall Section 2.3.2, we can describe a time-varying graph signal of T timesteps with
matrix X = [x1 x2 . . . xT ] ∈RN×T . Furthermore, let us consider the vectorized form x3 =
vec(X ) ∈ RN T , representing the time-varying graph signal over the graph-time product
graph. Therefore, x3 is obtained by stacking the columns of X , i.e., the graph signals at
each timestep t .

First, let us introduce the Discrete Fourier Transform (DFT) to analyze the frequency
content of the rows of X along the temporal axis. Recall each row of X contains the T
values observed at a certain node. We can apply the DFT to each row independently as
[27, 22]

X̂DFT = X F∗ , (2.29)

where F∗ indicates the complex conjugate of the normalized DFT matrix defined as

Ft ,k = e jωk t

p
T

, with ωk = 2π(k −1)

T
, (2.30)

where t ,k = 1, . . . ,T . Furthermore, we can apply the GFT independently to each column
of X to analyze the graph frequency content of the graph signals at each timestep as

X̂GFT =U HX , (2.31)

where U is the eigenvector matrix of the GSO of the nominal graph G . Then, we can
obtain the JFT X̂JFT by applying the DFT along the time domain (the rows of X ) and the
GFT along the graph domain (the columns of X ) [27, 22]:

X̂JFT =U HX F∗ = X̂GFTF∗ =U H X̂DFT . (2.32)

That is, we can obtain the JFT by applying first the GFT and then the DFT, or vice versa.
We can also express (2.32) in a vectorized form as

x̂3JFT = vec(X̂JFT) = vec(U HX F∗) = (F ⊗U )Hvec(X ) =U H
3x3 , (2.33)

where U3 = F ⊗U is the N T ×N T matrix obtained through the Kronecker product of the
basis [27].

In Section 2.1.4, we introduced the spectral approach to graph filtering of graph sig-
nals. We now provide a formulation for graph-time filtering of a time-varying graph sig-
nals by leveraging the JFT introduced above. Graph-time filtering of the form of (2.7)
over graph-time product graphs can be seen as a pointwise multiplication in the spec-
tral domain that alters the graph-time frequency content of the input. To show this, let
us write the output y3 of the filtering process on the product graph as

y3 = H(S3)x3 =
K∑

k=0
hk Sk

3 x3 . (2.34)
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Then, by performing the eigendecomposition of the GSO S3, we obtain

y3 =
K∑

k=0
hk (U3Λ

k
3U H

3) x3 , (2.35)

where Λ3 = Λ1 ⊗ IT +Λ2 ⊗ IN is the N T × N T diagonal matrix whose diagonal entries
contain the eigenvalues of the Cartesian product graph [22], while Λ1 and Λ2 are the
eigenvalues matrices of the nominal and time graphs, respectively.

To obtain the JFT of the output, we then left-multiply both sides of (2.35) by U H
3 as in

(2.33), yielding:

ŷ3JFT =
K∑

k=0
hkΛ

k
3 U H

3 x3 =
K∑

k=0
hkΛ

k
3 x̂3JFT = h(Λ3) x̂3JFT , (2.36)

where h(Λ3) = ∑K
k=0 hkΛ

k
3 is an N T ×N T diagonal matrix called joint time-vertex fre-

quency response [7]. The i -th diagonal entry of h(Λ3), therefore, is a scalar altering
the i -th graph-time frequency content of the input as a pointwise multiplication [27].
To summarize, given a time-varying graph signal over T timesteps, we represent it as a
graph signal x3 on the product graph G3. Then, we can filter this graph signal (from a
spectral perspective) as

y3 =U3h(Λ3)U H
3x3 =U3h(Λ3)x̂3JFT =U3 ŷ3JFT . (2.37)

2.4. TIME SERIES MODELING
In this section, we present other models capable of processing and learning of mul-

tivariate time series. In Section 2.4.1, we cover methods that process time series only by
taking into account the evolution of the signals over time, but ignore a sparse pairwise
relationship between data points, i.e., there is no graph involved. In Section 2.4.2, we dis-
cuss methods that take into account also the graph describing the relationships among
the data points when processing multivariate series.

2.4.1. GRAPH-UNAWARE METHODS
In this section, we show two types of models to learn from multivariate series: a linear

vector autoregressive model, and the recurrent neural networks.

VECTOR AUTOREGRESSIVE MOVING-AVERAGE

The Vector Autoregressive Moving-Average (VARMA) model is a linear model for mul-
tivariate time series [28]. Suppose we have N variables that vary over time. At timestep
t , we have yt = [y1t , y2t , . . . , yN t ]>, consisting of values at timestep t . Then, according to
the VARMA(P, Q) model we can write

yt = A1 yt−1 + . . .+ Ap yt−p +M0ut +M1ut−1 + . . .+Mq ut−q

=
P∑

p=1
Ap yt−p +

Q∑
q=0

Mq ut−q ,
(2.38)
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where ut is white noise with zero mean and covariance matrix Σu . Matrices Ap (p ∈
{1, . . . ,P }) are N × N and model the correlation between the N observations at time t
and the past observations up to t − p. Matrices Mq (q ∈ {0, . . . ,Q}) are also N × N and
model the correlation between the N observations at time t and the past noise up to
t −q . Matrices Ap constitute the autoregressive (VAR) part of the model, while matrices
Mq constitute the moving-average (MA) part. The parameters of matrices Ap and Mq

can be estimated through a maximum likelihood approach [29].
VARMA models have a long history of modeling multivariate time series and we will

use them in Section 2.4.2 to show how they particularize to time-varying graph signals.
Nevertheless, we should remark the number of parameters of the VARMA models is of
order O (N 2), which becomes data demanding for large values of N .

RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs) are neural networks that model series, including
multivariate time-varying signals. Let us denote by xt ∈ RN the input vector at timestep
t , by ht ∈RH the hidden state at timestep t , and by ot ∈RO the output at timestep t . The
equations governing the RNN model are

ht =σ(Whhht−1 +Wxh xt +bh) (hidden state)

ot =σ(Who ht +bo) (output)
(2.39)

where σ(·) is a non-linear activation function (such as tanh), bh ∈ RH and bo ∈ RO are
optional bias vectors, and matrices Whh ∈RH×H , Wxh ∈RH×N and Who ∈RO×H represent
the fully connected layers used to obtain the hidden state ht and output ot at timestep t .
These matrices and bias vectors are learned during training using backpropagation [24].
Figure 2.18 illustrates the usage of an RNN to learn from a multivariate time series.

RNN

Time

𝒉1

𝒙1

𝒐1

𝑾𝑥ℎ

𝑾ℎ𝑜, 𝒃𝑜

𝒉2

𝒙2

𝒐2

𝑾𝑥ℎ

𝑾ℎ𝑜, 𝒃𝑜

𝑾ℎℎ, 𝒃ℎ

. . . 𝒉𝑇

𝒙𝑇

𝒐𝑇

𝑾𝑥ℎ

𝑾ℎ𝑜, 𝒃𝑜

𝑾ℎℎ, 𝒃ℎ

Figure 2.18: Unrolled RNN for a multivariate time series of length T . Notice how the
weights of the RNN [cf. (2.39)] are shared across each timestep.

The RNNs in (2.39) suffer from vanishing and exploding gradients. We refer the
reader to [30] for additional details on the matter. On a high level, this means that,
although RNNs can virtually learn any temporal dependency, these models struggle in
learning long-term dependencies [31].
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This problem led to the development of a more complex recurrent architecture called
Long Short Term Memory network (LSTM) that can learn both short and long term tem-
poral dependencies from time series [32]. We show a representation of the LSTM in Fig-
ure 2.19. The LSTM consists of a cell, a memory unit able to maintain short and long
term information. The information is allowed to enter/leave the cell only through two
gates, namely the input and forget gates. Moreover, the output gate is used to compute
the output of the LSTM. Next, we detail these building blocks of the LSTM and explain
how the gating mechanism works. The equations explaining the LSTM are as follows:

𝒙𝑡

𝑪𝑡𝑪𝑡−1

𝒉𝑡

𝒉𝑡−1

෩𝑪𝑡

𝜎 tanh𝜎 𝜎

+

𝒇𝑡
𝒊𝑡

𝒐𝑡

tanh

Figure 2.19: LSTM. The orange boxes indicate a layer followed by the specified
non-linearity. Blue circles indicate pointwise operations. We denote the input vector by
xt . We also denote the previous and current outputs by ht−1 and ht , respectively, and
the previous and current cell state by Ct−1 and Ct , respectively.

ft =σ(Wx f xt +Wh f ht−1 +b f ) (2.40a)

it =σ(Wxi xt +Whi ht−1 +bi ) (2.40b)

ot =σ(Wxo xt +Who ht−1 +bo) (2.40c)

C̃t = tanh(Wxc xt +Whc ht−1 +bc ) (2.40d)

Ct = ft ◦Ct−1 + it ◦C̃t (2.40e)

ht = ot ◦ tanh(Ct ) (2.40f)

where matrices Wx f , Wh f , Wxi , Whi , Wxo , Who , Wxc , Whc and bias vectors b f , bi , bo ,
bc are parameters learned during training, similarly to the RNN case. The operator “◦”
indicates element-wise multiplication and σ(·) is a sigmoid activation function.

We can see the forget, input, and output gates are obtained similarly and depend on
the current input xt and previous hidden state ht−1 [cf. (2.40a)-(2.40c)]. The forget gate
ft deletes part of the old information (first term of (2.40e)) and the input gate it adds
some new information (second term of (2.40e)). This new information C̃t is computed
from the current input xt and previous hidden state ht−1 [cf. (2.40d)]. Finally, the output
gate ot computes the current output ht by transforming the newly updated cell state Ct

[cf. (2.40f)].
In other words, the cell Ct maintains information that the model believes to be im-

portant. The sigmoid of the gates ‘forces’ the values between zero and one. Therefore,
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successive pointwise multiplications translate into ‘maintaining’ information (when the
value is one) and ‘deleting’ information (when the value is zero). On a high level, the
input gate controls how much information from the current input xt should be stored in
the current cell state Ct . The forget date controls how much of the information present
in the previous cell state Ct−1 should be discarded. Finally, the output gate controls what
information of the current cell state Ct should be used to produce the current output ht .

This complex mechanism allows the network to store important pieces of informa-
tion into the cell state and maintain it for as long as needed. That is, if the critical in-
formation is found at the beginning of a long sequence, the LSTM can update the cell
state when this information is found, and then avoid overriding those cells for the rest
of the sequence processing. This gating mechanism allows learning both long and short
temporal dependencies [31].

2.4.2. GRAPH-AWARE METHODS
In this section, we look into models that take into account the graph describing pair-

wise relationships between data points when learning from multivariate time series. The
main reason behind graph-aware methods is that, if the data points are described by a
graph, a model exploiting this information can achieve good results while reducing the
number of parameters effectively. This results in faster training procedures and better
generalization capabilities.

G-VARMA AND GP-VAR
The VARMA model [cf. (2.38)] is a suitable choice to learn from multivariate se-

quences while keeping the complexity of the model low due to its linear form. In this
section, we describe the method proposed in [7], where the VARMA model is extended to
graphs to forecast time-varying graph signals. In Chapter 6, we will compare this model
to our proposed approach for predicting temperatures across several locations.

The graph-VARMA (G-VARMA) model is defined as

xt =−
P∑

p=1
ap (S)xt−p +

Q∑
q=0

bq (S)εt−q , (2.41)

where the N×N matrices ap (S) and bq (S) are graph filters of the form: ap (S) =U ap (Λ)U>,
b0(S) = IN , and bq (S) = U bq (Λ)U> (see Section 2.1.4). The term εt is a random vector
with zero-mean and covariance matrixΣε [7]. Since matrixΛ is an N×N diagonal matrix,
the G-VARMA is essentially learning N ARMA models of P +Q parameters, each learned
w.r.t. one of the N frequencies of the graph. Therefore, this approach drastically reduces
the number of parameters compared to the VARMA model, i.e., N (P +Q) parameters
instead of N 2(P +Q).

The second model proposed in [7] is obtained from (2.41) by writing the graph filters
ap (S) as polynomials in the GSO (ap (S) = Hp (S) =∑K

k=0 hpk Sk ) and by dropping the MA
part of the G-VARMA model, i.e., Q = 0. Thus, we obtain the graph polynomial-VAR (GP-
VAR) model:

xt =−
P∑

p=1
Hp (S)xt−p +εt =−

P∑
p=1

K∑
k=0

hpk Sk xt−p +εt , (2.42)
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where the scalars hpk are the coefficients of the graph filters. The GP-VAR has P (K +1)
parameters which do not depend on the size of the graph N , differently from the VARMA
and the G-VARMA. Additionally, since the graph filter in the GP-VAR model is a polyno-
mial in the GSO, it no longer requires the eigendecomposition of the GSO. This choice for
the graph filters makes the GP-VAR computationally less expensive than the G-VARMA.

For details about the fitting process adopted to learn the parameters of the G-VARMA
and GP-VAR models, we refer to [7].

GGRNN
Lastly, we describe the Gated Graph Recurrent Neural Network (GGRNN) proposed

in [3]. The GGRNN is an extension to graph data of the RNN model introduced in Section
2.4.1, where, instead of combining the current hidden state ht through fully connected
layers, we consider graph convolutions.

The dimensionality of the hidden state ht is set to the number of nodes in the graph
N . Then, we update the hidden state and compute the output ot as

ht =σ(Hxh(S)xt +Hhh(S)ht−1) (hidden state)

ot =σ(Hho(S)ht ) (output)
(2.43)

where S is the GSO of the graph, σ(·) is a non-linearity, and the N ×N matrices Hxh(S),
Hhh(S), and Hho(S) are graph convolutional filters of the form of (2.8). By comparing
(2.43) to the RNN case [cf. (2.39)], we see that the hidden state and the output are up-
dated in substantially the same way, with the fully connected layers of the RNN now
replaced by graph convolutions. Thus, the number of parameters is reduced and, more
importantly, is no longer dependent on the size of the graph.

From (2.43), it is possible to see why it is necessary to set the dimensionality of the
hidden state to the number of nodes in the graph: the graph filter Hhh(S) is an N × N
matrix and, for the product to be defined, it is required that the hidden state is of dimen-
sionality N . However, since the size of the hidden state is an essential hyperparameter
for recurrent neural networks, this choice limits the flexibility of the model. The authors
in [3], therefore, consider each one of the entries of ht no longer as a scalar, but rather
as a vector of dimensionality G . Thus, the dimensionality of the hidden state is trans-
formed from N to N ×G . This modification then requires the computation of the new
hidden state to be redefined to account for the additional dimension (see Eq. 7 and 8 of
[3]).

Since this model is an extension of the RNN architecture to graphs, it suffers from
the same problem of exploding/vanishing gradients (see Section 2.4.1). To tackle this,
the authors in [3] provide the GGRNN with a gating mechanism (hence the name ‘Gated
GRNN’). This gating mechanism controls how much the hidden state should be updated
with new information and how much of the old information should be instead deleted.
This approach is the same we discussed in the LSTM model.

2.5. CONCLUSION
In this chapter, we presented background material, including the building blocks of

GSP, Graph Convolutional Neural Networks, and product graphs for time-varying graph
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signals. We will use this material in the remainder of this thesis. In the next chapter,
we review current literature to showcase different approaches adopted for learning from
time-varying graph signals.



3
LITERATURE REVIEW

Time-varying graph signals often exhibit both spatial and temporal dependencies
[2]. In this chapter, we will discuss different approaches exploiting such dependencies,
both separately and jointly. The chapter is structured as follows. Section 3.1 discusses
graph convolutional neural networks for learning the spatial dependency. Section 3.2
presents methods to capture the temporal dependency. Then, Section 3.3 introduces
recent works that jointly capture both spatial and temporal dependencies, which is the
topic of interest for this thesis. Section 3.4 discusses methods for earthquake prediction,
both with and without neural networks. We conclude the chapter in Section 3.5.

31
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3.1. LEARNING SPATIAL DEPENDENCY THROUGH GCNNS
Graph Convolutional Neural Networks are very effective in learning spatial depen-

dencies [6, 5]. The general idea behind Graph Convolutional Networks (GCNNs) is to
extend the approach of Convolutional Neural Networks (CNNs) [33] to unstructured do-
mains, such as graphs [34]. CNNs have gained popularity over the last decade due to
their ability to effectively extract meaningful local features while reducing the complexity
of the model. However, they can be applied only to Euclidean domains, such as images
which are represented as a regular grid [6]. A GCNN stacks several graph convolutional
layers to generate features and capture the spatial correlations in the data. Each of these
layers generally aggregates node features from their respective neighbourhoods through
graph filtering operations [6]. Figure 3.1 illustrates one of the possible GCNN architec-
tures.

There are two main categories of Graph Convolutional Neural Networks: spectral-
based and spatial-based [35, 6]. The former group looks at the graph convolution op-
eration from a graph signal processing perspective, i.e., a convolution is obtained by
a multiplication in the graph spectral domain [23, 36, 37, 38]. The latter category, in-
stead, looks at graph convolutions as propagating node information along edges [6], i.e.,
the convolution operation essentially aggregates the information from the neighbours of
each node. The work in [37] shows the two approaches are indeed similar and based on
the same graph signal processing theory. That is, the spatial-based convolution can be
seen as a convolution between the graph signal and a graph filter having a polynomial
transfer function. This work also provides a unified framework under which state-of-
the-art GCNN models can be seen as specific cases. Such a framework encompasses not
only the GCNNs presented above but also attention-based graph neural networks, such
as Graph Attention Networks (GATs) [39].

Input

Graph 
Convolutions

Graph
Pooling

… …

Graph 
Convolutions

… 𝑦MLP

Figure 3.1: Example of a GCNN architecture. The model represented is the one intro-
duced in [36]. Image adapted from [6].

POOLING

As in standard GCNNs, pooling is necessary to reduce the parameters in the network.
Generalizing pooling to graphs is not straightforward, and led several works on GCNNs
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to avoid performing pooling at all [17]. The complexity resides in identifying the correct
coarsened graph to represent the pooled features and that, since graph clustering algo-
rithms are NP-hard, approximations need to be employed [36]. In general, a possible
way to categorize different pooling techniques for GCNNs can be whether or not they
adopt graph coarsening techniques.

In [36], the authors propose an efficient algorithm to reduce the computational com-
plexity of graph coarsening-based pooling. Their pooling approach employs a greedy
algorithm which roughly reduces by a factor of two the number of nodes at each pool-
ing layer. In [40] and [41], the methods employed hierarchical clustering techniques to
apply average and max pooling. As stated in [40], however, finding the right clustering
approach for a given graph is still an open area of research.

Differently from the pooling methods discussed above, the work in [17] proposes a
pooling approach that bypasses the creation of a coarsened graph. Such an approach
makes use of zero-padding to “activate” and “deactivate” nodes while still preserving
the dimensionality match between the input graph and the generated features at each
layer. By doing this, the approach eliminates the need for creating a new smaller graph
at each pooling layer while obtaining dimensionality reduction. This method is easier
and faster than graph-coarsening approaches and does not require approximations. For
these reasons, we will devise in this thesis a graph-time pooling approach which borrows
ideas from the zero-padding pooling introduced above.

3.2. LEARNING THE TEMPORAL DEPENDENCY
Learning temporal dependencies is key to time series regression and classification.

In this section, we look at those models who are employed to learn temporal dependency
but who do not employ any spatial structure in their inner-working mechanisms. Models
that fit into this domain can be divided into categories according to whether or not they
employ neural networks.

Many different models can be used to learn temporal dependencies without neural
networks. An example is the class of the ARMA model and its extensions, such as sea-
sonal ARIMA [42] and VARMA [28], to name a few. Although these models are relatively
simple and fast to learn, their simplicity comes at the cost of not being able to learn com-
plex non-linear relationships in the data [43]. Therefore, other methods able to learn
more complex relationships are often applied, such as Kalman filters [44] or SVMs [45,
46].

The second group of models that can be used to learn temporal dependencies con-
sists of neural network-based models. Neural networks models can, in principle, learn
arbitrarily complex functions [47]. In particular, recurrent neural networks (RNNs) rep-
resent the most promising family of neural network models for time series and are effec-
tive in learning temporal dependency from the data [48, 49, 5]. Vanilla RNNs are the first
type of recurrent neural networks. These models, although being simple and powerful,
are challenging to train due to the problem of exploding and vanishing gradients [50].
LSTMs [32] and GRUs [51], instead, tackle these problems by using input, output, and
forget gates and seem to be better at learning long and short term temporal dependen-
cies [43].

The neural network-based approaches discussed above all involve the use of recur-
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rent networks. However, empirical evidence has shown that CNN-based models can
yield even better results when applied to time series modelling, such as the TCN model
presented and evaluated in [52]. This model adopts causal dilated convolutions along
the time axis to learn both short and long term temporal dependencies. Causal dilated
convolutions are introduced to (i) avoid leakage from future data and (ii) increase the
receptive field of the model exponentially with the number of stacked layers, rather than
linearly.

Indeed, although most of the research related to time series modelling involves re-
current neural networks, the authors in [52] concluded that convolutional architectures
should be looked at as the “natural starting point for sequence modelling”. Following
this line of thought, our approach will be fully convolutional and will not involve the use
of recurrent neural networks.

3.3. LEARNING SPATIAL AND TEMPORAL DEPENDENCIES
Having shown how to capture spatial and temporal dependencies separately, we now

turn our attention into methods that jointly capture such dependencies, which is also
the focus of this thesis. These methods are of interest for us since we are interested in
learning from time-varying graph signals, which jointly vary over the graph and along the
time axis [22]. As we will see later in this thesis, our proposed method fits into this cate-
gory. We will divide these approaches based on how they combine spatial and temporal
information to process and learn from time-varying graph signals. First, we will discuss
methods that combine existing domain-specific models. We refer to such models as hy-
brid models. Then, we discuss methods where existing models are fused to capture the
graph topology and the temporal information in a unified framework.

Last but not least, we highlight that there is an entire branch of literature which deals
with time-varying signals defined on regular domains (grids) [2, 53, 54, 55]. Although
similar to the topic of interest of this thesis, these methods do not apply to irregular
domains such as graphs. Therefore, we will not discuss them any further.

3.3.1. HYBRID MODELS
Hybrid models tackle the problem of learning time-varying graph signals by com-

bining existing models known to be effective in learning either graph signals or time se-
ries. There is a subcategorization that can be made in this section: whether the models
combined to obtain the hybrid model include recurrent neural networks, or whether the
models are fully convolutional.

RNN-BASED HYBRID MODELS

Many researchers decide to adopt models from the family of recurrent neural networks
because of their ability to capture long and short temporal dependencies from sequen-
tial data [10]. The general idea is first to extract spatial features exploiting the graph
topology through Graph Convolutional Networks and then treat the newly extracted fea-
tures as time series to feed into a recurrent neural network. The idea behind this ap-
proach is that GCNNs are effective in capturing spatial correlations, while recurrent neu-
ral networks are effective in capturing temporal correlations. Thus, combining these two
domain-specific architectures allows these hybrid models to learn both temporal and
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spatial correlations from time-varying graph signals. Figure 3.2 shows an example of an
RNN-based hybrid model.

Inputs

Spatial Features

Temporal Features

Time

𝑥𝑡−𝑛 𝑥𝑡−1 𝑥𝑡…

GCNN GCNN GCNN…

GRU GRU GRU

𝑦

…

Figure 3.2: An example of hybrid model combining Graph Convolutional Networks and
recurrent neural networks (GRUs). The model was proposed in [2]. At each timestep, a
GCNN extracts spatial features which are then fed into a GRU to generate temporal
features. The last hidden state of the GRU model is used to output the prediction. Image
adapted from [2].

As said in Section 3.2, the most common types of recurrent neural networks adopted
in the literature are vanilla RNNs or LSTMs and GRUs, which aim to combat the issue of
vanishing and exploding gradients to capture both long and short-term dependencies
[2]. In [56], the temporal information is also taken into account when constructing the
graph instead of solely relying on geographical information, thus obtaining a graph con-
structed on both geographic and long-term temporal similarity between nodes. Then,
such a graph is used for graph convolutions, and the extracted features are fed into an
LSTM. In [9], the authors adopt a GCNN to process the node features at each timestep
and then use an LSTM for each vertex to process the extracted convolutional features.
The work in [57] fuses multiple graphs, each obtained using different types of measure-
ments, and then exploits this new graph employing a GCNN followed by an LSTM.

The dual version of the above methods consists of swapping the order of GCNNs and
RNNs to extract temporal features at the node level first, and then include the topological
information through graph convolutions [58]. That is, the time series “seen” by a specific
node over time is fed into a recurrent neural network to extract temporal features. Then,
these temporal features at each node are processed using graph convolutional networks.

By making use of recurrent neural networks, the models introduced in this section
might lead to time-consuming training as well as problems with vanishing/exploding
gradients, especially when using RNNs. For these reasons, several authors experimented
with non-recurrent fully convolutional models, which lead to higher parallelization and
stable gradients [6]. Similarly, in this thesis, we will work towards a solution which does
not make use of recurrent neural networks.
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CNN-BASED HYBRID MODELS

Instead of adopting recurrent neural networks along the time axis to capture the tempo-
ral dependencies, another approach is to obtain hybrid models by combining only fully
convolutional models. That is, using GCNNs over the graph domain to learn the spa-
tial dependencies, and 1D convolutions over the time domain to learn the temporal one
[59, 60, 35, 61]. Reasons to move from RNN-based hybrid models to CNN-based can be
summarized into (i) easier training, (ii) higher parallelization, (iii) stable gradients and
(iv) fewer parameters [62, 52]. However, a problem with CNN-based solutions is that,
when adopting 1D convolutions along the time axis, many layers are required to cap-
ture long-term correlations because the receptive field grows linearly with the number
of layers[35].

To tackle this problem, in [60] and [35], instead of using standard convolutions along
the time axis, the authors employ dilated causal convolutions ([63, 52]) to exponentially
increase the receptive field of the model on the time axis, thus increasing the ability to
learn long-term temporal dependency. In [64], a multi-resolution temporal module is in-
troduced which stacks together different layers of dilated causal convolutions, each one
with a different dilation rate. By doing this, the goal is to capture both short and long-
term dependencies through dilated convolutions. Similarly, the authors in [65] propose
a fully convolutional model that extracts multi-scale temporal features using a stack of
temporal convolutions, and multi-scale spatial features using a stack of GCNNs. Then, a
third network fuses the extracted spatial and temporal information to forecast the level
of air pollution. In [66] and [62], the authors employ a spatial-temporal convolutional
block consisting of a “sandwich” structure made of a graph convolutional layer (captur-
ing the spatial dependency) between two gated temporal convolutions (capturing the
temporal dependency). The gated temporal convolutions are simply convolutions fol-
lowed by a GLU non-linearity and have been found successful in language modelling,
where temporal dependency plays a vital role [58, 67].

Graph Convolution 1D Temporal Convolution

Figure 3.3: Model proposed in [59], obtained combining graph convolutions and 1-D
convolutions. The spatial-temporal dependencies are captured by performing a graph-
convolution over the graph dimension to capture spatial dependencies, and then per-
forming a 1-dimensional convolution along the time axis to capture the temporal de-
pendencies. Image adapted from [59].

In this section, we discussed hybrid models that are obtained by combining existing
models which aim to capture a specific type of dependency, either temporal or spatial.
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Now, let us take a look at models obtained by fusing different architectures, and that can
capture both types of dependencies in a unified framework.

3.3.2. FUSED MODELS
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Figure 3.4: Illustration of the graph convolutional LSTM proposed in [68]. a) Standard
LSTM network. b) Graph convolutional LSTM. The main difference between the graph
convolutional LSTM (on the right) and the standard LSTM (on the left) is that the matrix
multiplications for the input xt and the hidden state ht−1 are now replaced by graph
convolutions (green boxes).

In this category, we cover those methods where existing models are modified to in-
clude the graph topology information into their inner-working mechanisms, while also
learning the temporal dependency. In other words, we no longer combine existing mod-
els which process the signals on the graph and time domains separately but instead fuse
them into a new unified model.

A first category consists of models that do not involve neural networks. Such models
capture spatial and time dependencies extending some more standard statistical meth-
ods. Specifically, in [7], the authors extend VAR and VARMA models [28] to model and
forecast time-varying graph signals utilizing graph filters. The G-VARMA model is a nat-
ural extension of the VARMA model to graphs employing spectral graph filters, while the
GP-VAR model is obtained by writing the coefficient matrices of the G-VARMA model as
polynomials of the graph Laplacian. The two models proposed in [7], called G-VARMA
and GP-VAR, will be used for comparison in this thesis when dealing with regression of
time-varying graph signals. These models are simple and do not have many parame-
ters that need to be learned. However, if the relationships in the data are complex and
non-linear, such linear models are not able to learn them.

As explained before in this literature review, neural networks can be used to capture
arbitrarily complex relationships in the data, provided enough data to learn from. An ex-
ample of this approach is the graph convolutional LSTM introduced in [11], where graph
convolutions replace the matrix multiplications of the standard LSTM model. That is,
this architecture reduces the number of parameters necessary to compute the input,
forget, and output gates by adding the graph prior to their computation. The same ap-
proach was followed in [68], which we illustrate in Figure 3.4. However, this approach
is not limited to LSTMs only and can be applied to any recurrent neural network [11].
For example, in [3], the authors propose the GGRNN model by adopting an RNN struc-
ture where the dimensionality of the hidden state is set to match the number of nodes in
the graph, and then update the hidden state values using graph convolutions. By doing



3

38 3. LITERATURE REVIEW

this, they obtain interpretability of the hidden state (for example, it can be interpreted as
a graph signal, allowing for frequency interpretations) while capturing both spatial and
time dependencies.

A different approach is the one adopted in [69], where the authors model the spatial
dependency as a diffusion process using random walks with restarts. Once obtained the
corresponding diffusion convolutional layer, the matrix multiplications in a GRU model
are replaced with such diffusion convolutions, similarly to the model represented in Fig-
ure 3.4b. The same approach of fusing GRUs and graph convolutions was employed in
[12], although their graph convolutional layer is built using attention mechanisms. To
the best of our knowledge, the work closest to the approach we propose in this thesis is
the one of [70], where the authors develop a spatial-temporal convolutional module by
extending graph convolutions to take into account also nodes’ values over time, consid-
ering multiple copies of the graph over time. As we will see, this can be seen as a specific
case of the method proposed in this thesis, i.e., when the learned parametric product
graph is a Cartesian product graph [cf. Section 2.24].

3.4. EARTHQUAKE PREDICTION
The task of predicting when and where an earthquake will happen is generally diffi-

cult because of its intrinsic random nature [71]. However, due to the increase in earth-
quake activity over the last decade, more effort is being put into finding reliable ways
to predict such phenomena in advance [72]. There are two main approaches for earth-
quake detection: trend-based (also referred to as statistical methods) and precursors-
based (also referred to as geophysical methods) [71]. The trend-based category tries to
identify periodicity in the occurrences of earthquakes without relying on seismic mea-
surements. Such methods are often used for long-term risk assessment (years) and can-
not be used to predict upcoming earthquakes in the short-term [73]. Precursor-based
methods, instead, are more suitable for short-term prediction and rely on analyzing phe-
nomena thought to be correlated with the earthquakes activity, such as the velocity of
seismic waves, gas emissions and temperature, to name a few.

Standard methods for earthquake prediction which do not involve the use of neural
networks are waveform similarity using correlation, principal component analysis, FAST,
etc [72]. However, since it is still not known how to predict earthquakes effectively, the
end-to-end learning capabilities of deep learning-based methods seem promising, also
due to the increase of available data concerning earthquakes. The works in [74], [75],
and [71] adopt multilayer perceptrons and LSTM to perform trend-based earthquake
prediction. Instead, [72] uses a CNN to process multi-dimensional wave velocity mea-
surements and outputs a probability distribution of the earthquake location. Although
obtaining promising results, this approach takes into account wave measurements at a
single geographic location instead of considering a graph involving many different lo-
cations. Therefore, if the considered area for the prediction of the earthquake location
grows too large and involves areas far away from the considered measurement location,
such a method does not scale well. In [3], a graph is constructed using several seismic
stations, and graph recurrent neural networks are employed to predict the location of the
coming earthquake. That is, the experimental setting does not aim to predict whether
the earthquake will happen, but it instead predicts where the earthquake is going to hap-
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pen out of many clustered location. In this thesis, we will have a similar setting in the
experiments concerning earthquakes.

3.5. DISCUSSION
In this chapter, we looked at different approaches to learn spatial and temporal de-

pendencies, both separately and jointly. In Section 3.1, we saw how GCNNs can be used
to capture the spatial dependency while keeping the model complexity low, while in Sec-
tion 3.2 we presented methods for learning the temporal dependency with and without
involving the use of neural networks. Then, we moved towards methods to jointly cap-
ture such dependencies (Section 3.3) and provided a categorization between hybrid and
fused models. Finally, we provided in Section 3.4 an overview of different approaches for
earthquake prediction, which constitutes a significant part in our experiments.

The methods presented in Sections 3.1 and 3.2 serve mainly as building blocks for the
following sections, as in this thesis we are interested in jointly learning such dependen-
cies. It is also clear from this review that when there are complex non-linear relationships
in the data, neural networks are among the most popular models adopted in the litera-
ture, especially when there is an abundance of data. Moreover, although hybrid models
are said to learn temporal and spatial dependencies jointly, we argue that they do so in a
somewhat separated fashion, with part of the pipeline focusing on spatial dependency,
and part of the pipeline focusing on the temporal one. Differently, the approach of fused
models (Section 3.3.2) is the one we decide to follow in this work, since we believe it to be
the approach to truly learn such dependencies in a joint fashion. A valuable insight from
the literature involves recurrent neural networks, which appear to be harder to train and
more complex than convolutional networks. This motivated researchers to pursue the
direction of devising fully convolutional approaches, similar to the one we propose in
this work.

In this thesis, we will propose a new approach which uses GCNNs to learn from time-
varying graph signals. Our method, called GTCNN, can be categorized as fully convolu-
tional since it does not make use of recurrent neural networks. However, our method is
different from the hybrid methods above in the sense that it does not combine different
models operating either on the graph or the time domain. Instead, it performs standard
graph convolutions over a new graph which is obtained employing parametric product
graphs, learned during training. Such graph carries both the notion of space and time.
Therefore, we can categorize our approach into the fused models category.





4
GRAPH-TIME CONVOLUTIONAL

NEURAL NETWORK

In this chapter, we introduce our proposed approach for modelling and learning
from time-varying graph signals. The main contribution is a new deep learning architec-
ture which performs graph convolutions over parametric product graphs. These product
graphs provide a natural structure to represent time-varying graph signals. In the next
two chapters, we will use this model for earthquakes classification and temperature fore-
casting.

The chapter is structured as follows. Section 4.1 presents a high-level introduction to
the Graph-Time Convolutional Neural Network (GTCNN). Sections 4.2 and 4.3 present
the two building blocks of the GTCNN, namely the graph-time convolutional layer and
the graph-time pooling layer. We provide a summary of the overall architecture in Sec-
tion 4.4 and, in Section 4.5, we introduce an optional regularization term to enforce
sparsity in the learned product graphs. Section 4.6 investigates the proposed GTCNN
on a synthetic dataset to interpret its different components. We conclude the chapter in
Section 4.7.
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4.1. OVERVIEW
The GTCNN follows the same layered structure of the GCNN in Section 2.2 with two

key differences that we detail in this chapter. First, the graph convolutional module [cf.
Section 2.2.1] is replaced with a parametric graph-time convolutional module which also
takes into account the evolution of the signal over time. Second, the zero-padding pool-
ing of the GCNN [cf. Section 2.2.2] is redesigned to also pool values across timesteps.
This approach reduces the dimensionality not only over the graph dimension but also
over the time dimension. The output of the GTCNN is again the output of the last layer
or, optionally, the output of fully connected layers added at the end of the graph-time
convolutional part.

4.2. PARAMETRIC GRAPH-TIME CONVOLUTIONAL LAYER
The parametric graph-time convolutional layer constitutes the core of the GTCNN

architecture. It constructs a parametric product graph and generates graph-time con-
volutional features by performing convolutions on it (see Section 2.3.3 for details about
convolutions on the parametric product graph).

At layer l , we denote as Tl−1 the temporal window of observation, i.e., how many
timesteps of the time-varying graph signal are considered as input. We indicate with Fl−1

the number of features of the input. For each input feature g = 1, . . . ,Fl−1, we denote as
X g

l = [x g
1 , x g

2 , . . . , x g
Tl−1

] ∈ RNl−1×Tl−1 the matrix containing the Tl−1 consecutive feature-

specific graph signals x g
t ∈ RNl−1 , for t = 1, . . . ,Tl−1. The rows of X g

l contain the feature-

specific values over time for a certain node, while the columns of X g
l contain the feature-

specific graph signals for each timestep.

PARAMETRIC PRODUCT GRAPH

First, this layer computes a parametric product graph Gl = (Vl ,El ) following the ap-
proach presented in Section 2.3.2: a graph of Tl−1 nodes representing time with shift
operator CTl−1 and the nominal graph G = (V ,E ) of N nodes with shift operator S are
combined as

Sl =
1∑

i=0

1∑
j=0

si j (C i
Tl−1

⊗S j ) , (4.1)

where Sl is the GSO of the parametric product graph Gl at layer l and si j are learnable
parameters. Therefore, Gl is a graph consisting of N Tl−1 nodes. The subscript l stresses
the fact that the parametric product graph Gl is computed at each layer and does not
need to have the same vertex set nor the same edge set across layers. This is due to
the graph-time pooling layer which reduces the number of timesteps Tl−1 as well as the
number of active nodes Nl−1 ≤ N . Therefore, the resulting GSO Sl varies as we go deeper
in the network. We will explain graph-time pooling in detail in Section 4.3.

Following our discussion in Section 2.3.2, the product graph in (4.1) is a suitable
structure to represent a time-varying graph signal, since it captures its variations both
along the time and graph dimensions. Once we obtain Sl at layer l , we can process the
time-varying graph signal as a standard graph signal, following the same approach of the
standard GCNN described in Section 2.2. To achieve this, we obtain the feature-specific
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graph-time signal x g
l ,3 ∈RNl−1Tl−1 for each input feature g as

x g
l ,3 = vec(X g

l ) = [xg
1,1, xg

2,1, . . . , xg
Nl−1,1, xg

1,2, . . . , xg
Nl−1,Tl−1

]> , (4.2)

where vec(·) is the operation that transforms a matrix into a column vector by stacking
the columns of the matrix. In other words, we obtain the graph signal x g

l ,3 by stacking

the feature-specific graph signals for each timestep. We again highlight the fact that x g
l ,3

is a standard graph signal defined on the parametric product graph Gl at layer l .

CONVOLUTIONAL FEATURES

Next, we obtain the Fl output convolutional features u f
l ,3 ∈RNl−1Tl−1 as

u f
l ,3 =

Fl−1∑
g=1

u f g
l ,3 =

Fl−1∑
g=1

H f g
l (Sl ) x g

l ,3 =
Fl−1∑
g=1

K∑
k=0

h f g
l ,k Sk

l x g
l ,3 for f = 1, . . . ,Fl , (4.3)

where H f g
l (Sl ) is the K -th order linear shift invariant graph filte

u f
l ,3 =

Fl−1∑
g=1

u f g
l ,3 =

Fl−1∑
g=1

H f g
l (Sl ) x g

l ,3 =
Fl−1∑
g=1

K∑
k=0

h f g
l ,k Sk

l x g
l ,3 for f = 1, . . . ,Fl , (4.4)

r used to process the g -th input feature x g
l ,3 when computing the intermediate features

u f g
l ,3 related to the f -th output feature u f

l ,3. This was illustrated in Figure 2.7 for the
GCNN.

As we will see in the next section, the graph-time pooling reduces the dimension-
ality of the features. Therefore, when graph-time pooling is used, the computation of
the intermediate features [cf. (4.4)] is not possible due to the dimensionality mismatch
between the GSO Sl and the input graph signal x g

l ,3. That is, the matrix-vector multi-

plication between Sl ∈ RN Tl−1×N Tl−1 and x g
l ,3 ∈ RNl−1Tl−1×Nl−1Tl−1 cannot be performed.

This situation is equivalent to what we discussed for the GCNN case in Section 2.2.2. To
overcome this, we adopt the same approach of the GCNN and employ zero-padding to
resolve the dimensionality mismatch. That is, the input signal is zero-padded to match
the dimensionality, as we discussed in Section 2.2.2. For additional information regard-
ing the use of zero-padding, we refer the reader to Section III.A of [17].

CONNECTION TO 2D FILTERING

Notice, when the time window T in the parametric product graph grows large, the
resulting filtering process becomes memory and computationally expensive. In such a
case, we can substitute the filtering on the graph-time product graph with alternatives
that bypass the construction of this bigger graph.

In GSP, the concept of 2D filters that capture time variations of graph signals was
introduced in [8]. The authors introduced a graph-time FIR filter of the form:

yt =
Kg∑

k=0

Kt∑
k ′=0

hkk ′Sk xt−k ′ , (4.5)
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where xt is a graph signal, S is the GSO, and hkk ′ are parameters that need to be learned.
In such a formulation, S is the GSO of the original graph and, thus, no product graph
is constructed. Instead, this equation implements graph-shifting through S (up to Kg

hops), and time-shifting by indexing past realizations of xt (up to Kt past realizations).
Although a filtering as in (4.5) seems different from that of (2.28), the following propo-

sition shows that filtering on product graphs can be written as the two-dimensional fil-
tering in (4.5).

Proposition 1 (Connection to two-dimensional filtering) Denote by xt ∈RN the t-th oc-
currence of a time-varying graph signals evolving for T timesteps over an N -node graph G

with GSO S. Denote by x3 = vec([x1, . . . , xT ]) ∈RN T its representation as a standard graph
signal on the product graph G3 with GSO S3 obtained as in (4.1). Performing graph fil-
tering over G3 using (2.27) as

y3 = H(S3)x3

with

H(S3) =
K∑

k=0
hk Sk

3 =
K∑

k=0
hk

(
1∑

i=0

1∑
j=0

si j (C i
T ⊗S j )

)k

can be written as the two-dimensional filter introduced in [8], which we recall:

yt =
Kg∑

k=0

Kt∑
k ′=0

hkk ′Sk xt−k ′ .

Proof of Prop. 1
As stated in [15], a filter of the form:

H(S3) =
K∑

k=0
hk Sk

3

=
K∑

k=0
hk

(
1∑

i=0

1∑
j=0

si j (C i
T ⊗S j )

)k

can be written as a more general filter:

H(S3) =
K∑

k=0

M∑
m=0

hkm

(
C m

T ⊗Sk
)

(4.6)

for some parameters hkm (cf. Eq (8) of [15]).
Let us use notation x(i ,t ) to indicate the scalar value on node i at timestep t . With this
notation and the definition of x3, we can see x3 has the form:

x3 = [x(1,0), x(2,0), . . . , x(N ,0), x(1,1), . . . , x(N ,T−1)]
> =


x0

x1
...

xT−1

 . (4.7)
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The output filtered signal y3 ∈RN T is then obtained as

y3 =


y0

y1
...

yT−1

= H(S3) x3

=
K∑

k=0

M∑
m=0

hkm

(
C m

T ⊗Sk
)
) x3 .

(4.8)

We are interested in the values yt ∈RN rather than the entire filtered signal y3. Consider
an N ×N T binary matrix Et defined as

Et = et ⊗ IN

= [
0 . . . 0 1 0 . . . 0

]⊗ IN

= [
0N . . . 0N IN 0N . . . 0N

]
,

(4.9)

where et ∈ R1×T is a row vector with zero entries except the t-th entry and IN ∈ RN×N is
the identity matrix. In other words, Et is obtained by concatenating T square matrices
of dimension N , where such matrices are the null matrices except the t-th matrix, which
is IN .

Then, we can obtain yt from y3 [cf. (4.8)] as

yt = Et y3

= (et ⊗ IN )
K∑

k=0

M∑
m=0

hkm

(
C m

T ⊗Sk
)

x3

=
K∑

k=0

M∑
m=0

hkm (et ⊗ IN ) (C m
T ⊗Sk ) x3

=
K∑

k=0

M∑
m=0

hkm

(
(et C m

T )⊗ (IN Sk )
)

x3 (Mixed-product property (A.1))

=
K∑

k=0

M∑
m=0

hkm

(
(et C m

T )⊗Sk
)

x3 .

(4.10)

The product (et C m
T ) selects the t-th row of C m

T , which we indicate with [C m
T ]t : ∈ R1×T .

Since t is used to index the rows of C m
T , admissible values are t = 0, . . . ,T − 1. Due to

the definition of CT (Section 2.1.2), it can be verified that [C m
T ]t : is a 1×T row vector

with all entries zeros except the entry indexed by (t −m)mod(T ). Therefore, the Kro-
necker product ([C m

T ]t : ⊗Sk ) yields a N ×N T matrix containing zero matrices except for

the (t −m)mod(T )-th matrix, which is Sk (similarly to the Kronecker product in (4.9)).
Therefore, all the other graph signals x j , for j 6= (t −m)mod(T ), are multiplied by a zero
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matrix 0N , allowing us to write

((et C m
T )⊗Sk ) x3 = [

0N . . . 0N Sk 0N . . . 0N
]


x0

x1
...

xT−1

= Sk x(t−m)mod(T ) .

We can then rewrite (4.10) as

yt =
K∑

k=0

M∑
m=0

hkm Sk x(t−m)mod(T ) . (4.11)

For T going to infinity, we can drop the mod(·) operation and write (t −m)mod(T ) sim-
ply as (t −m), yielding:

yt =
K∑

k=0

M∑
m=0

hkm Sk xt−m ,

which was the objective of this proof. As such, we have shown how graph filtering over
the parametric product graph defined by S3 can be written as the two-dimensional fil-
tering of (4.5). 2

A key difference between the two approaches is that, by using the parametric prod-
uct graph in (2.28), we gain interpretability over the type of product graphs learned by
the GTCNN and provide a useful prior w.r.t the graph-time interactions in the data. Pre-
cisely, we can track the parameters si j [cf. (4.1)] during training and understand what
parametric product graph is being learned by the GTCNN. We will provide a concrete
example of this in the experiments in Section 4.6. Due to time constraints, in this thesis
we experimented the GTCNN only with the product graphs-based implementation.

4.3. GRAPH-TIME POOLING
Graph-time pooling is a non-learnable operation whose effects are twofold. First, it

reduces the dimensionality of the convolutional features u f
l ,3 [cf. Eq (4.4)] from Nl−1Tl−1

to Nl Tl , with the constraint that Nl ≤ Nl−1 and Tl ≤ Tl−1. That is, this module reduces
the number of active nodes per timestep from Nl−1 to Nl . Second, it reduces the number
of timesteps from Tl−1 to Tl . The summarization and downsampling steps, presented in
Section 2.2 for the pooling of the GCNN are still employed. In addition, we consider an
additional step, which we call time slicing.

SUMMARIZATION STEP

The first operation in pooling is the summarization step. Recall, from the graph-

time convolutional layer [cf. Section 4.2], we have the Fl convolutional features u f
l ,3 ∈

RNl−1Tl−1 , for f = 1, . . . ,Fl . First, we introduce a pooling operator ρ(· ; α, Gl ,×), where we
indicate with Gl ,× the Cartesian product graph between the directed cyclic graph repre-
senting Tl−1 timesteps (Section 2.3.2) and the underlying graph G 1. Graph Gl ,× serves as

1Note that this support can be any valid product graph, such as the Kronecker, the Cartesian, the Strong, or the
parametric product graph Sl . However, we found that the parametric product graph and the Strong product



4.3. GRAPH-TIME POOLING

4

47

support over which we compute the α-hop neighbourhoods needed for pooling, which
behaves in the same way as the pooling operator introduced for the GCNN in Section
2.2.2. The difference is that now it operates on neighbourhoods defined over both the
graph and time, while for the GCNN neighbourhoods were defined only over the graph
G . Therefore, parameter α controls how many hops are taken into account when ap-
plying the pooling operator ρ(·) both with respect with time and graph. Analogously to

(2.12), the summarized features v f
l ,3 ∈RNl−1Tl−1 are obtained as

v f
l ,3 = ρ(u f

l ,3 ; α, Gl ,×) f = 1, . . . ,Fl , (4.12)

where ρ(·) can be the max operator, as illustrated in Figure 2.8 for the GCNN, but it can
also be the average operator or any other function that operates on a set of real values.
Since the neighbourhood of a node in Gl ,× includes also nodes in different timesteps, as

shown in Figure 2.16, the values of v f
l ,3 are obtained through a summarization over both

the graph and the time domain.

SLICING STEP

graph-time pooling: slicing
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Figure 4.1: Slicing step. The number on top of each slice indicates the slice index. a) The input
(all nodes) has Tl−1 = 5 timesteps and Nl−1 = 4 nodes per timestep. The slicing ratio is Rl = 2.
Therefore, slices two and four are removed (grey nodes). b) The sliced features resulting from the
slicing operation. The result has Tl = d 5

2 e = 3 slices and Nl−1 = 4 nodes per timestep.

The second operation in pooling is slicing. Here, the summarized features v f
l ,3 are sliced

across the time dimension. Consider a single feature v f
l ,3 ∈ RNl−1Tl−1 as a graph signal

on the Cartesian product graph (Figure 2.12). We can see v f
l ,3 as Tl−1 slices of features,

where each slice has dimension Nl−1, as illustrated in Figure 4.1.
Given a slicing ratio Rl , we keep one every Rl slices out of the Tl−1 available, thus re-

sulting in Tl = dTl−1
Rl

e output slices. For example, if v f
l ,3 consists of Tl−1 = 5 timesteps and

graph lead to the summarization of features across areas that are too large, due to their higher number of
edges compared to the Cartesian. This wide summarization leads to a loss of information since it flattens the
variations of the features too much. Thus, we proceed with the Cartesian product graph for the graph-time
pooling step.
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the slicing ratio is Rl = 2, then we retain one every two slices, resulting in d5/2e = 3 output
slices. That is, the graph-time pooling layer will preserve the values of the summarized

features v f
l ,3 corresponding to the slices one, three, and five, discarding the values of

slices two and four, as we show in Figure 4.1.
We denote as h(·) : RNl−1Tl−1 7→ RNl−1Tl the slicing operation described above. Then,

we obtain the sliced features p f
l ,3 ∈RNl−1Tl as

p f
l ,3 = h(v f

l ,3 ; Rl ) for f = 1, . . . ,Fl . (4.13)

While it is possible to apply another summarization function (such as averaging) across
time slices instead of discarding values, note that the summarization step in (4.12) al-
ready takes into account values across slices. Thus, we proceed with discarding slices, to
keep the architecture complexity low.

DOWNSAMPLING STEP

The last step of the graph-time pooling layer is downsampling. We again use zero-
padding (see Section 2.2.2) along the graph dimension to reduce the number of nodes
per timestep from Nl−1 to Nl . To do this, we use a sampling matrix Cl ∈ RNl Tl×Nl−1Tl to

compute the reduced features b f
l ,3 ∈RNl Tl as

b f
l ,3 =Cl p f

l ,3 f = 1, . . . ,Fl . (4.14)

This procedure is illustrated in Figure 4.2. Analogously to the graph pooling in Section
2.2, the sampling matrix Cl selects the Nl nodes with highest degree out of the Nl−1

nodes available for each timestep.

graph-time pooling: 
downsampling
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Figure 4.2: Downsampling step. a) The input (all nodes) has Tl = 3 timesteps and Nl−1 = 4 nodes
per timestep. b) The output (green nodes) of the downsampling step has Tl = 3 and Nl = 2 nodes
per timestep. The values associated with the Nl −Nl−1 remaining grey nodes are discarded.

Let us summarize the steps of the pooling stage. The input to the graph-time pooling

layer l consists of Fl convolutional features u f
l ,3 ∈RNl−1Tl−1 . We first obtain the summa-

rized features v f
l ,3 ∈ RNl−1Tl−1 by means of a Cartesian product graph Gl ,× and a pooling
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operator ρ(·) as in (4.12). Subsequently, we obtain the sliced features p f
l ,3 ∈ RNl−1Tl by

slicing the summarized features across the time dimension as in (4.13). The third step

comprises obtaining the reduced features b f
l ,3 ∈ RNl Tl by selecting only Nl values out

of Nl−1 available values for each timestep, as in (4.14). The output of the graph-time

pooling layer consists of Fl features b f
l ,3 ∈RNl Tl .

Following graph-time pooling, we obtain the output of layer l by applying a pointwise

non-linearity σ(·), such as the ReLU function, to the reduced features b f
l ,3:

x f
l+1,3 =σ(b f

l ,3) f = 1, . . . ,Fl , (4.15)

which are then sent as input to the next layer.

4.4. OVERALL ARCHITECTURE
After having introduced the building blocks of our architecture in the previous sec-

tions, here we combine them and present the overall GTCNN architecture.
The input signal is a time-varying graph signal observed for T timesteps, as in Sec-

tion 2.3.2. The GTCNN exploits information about the spatial graph G , on top of which
the time-varying graph signal evolves in time. This information is encoded through
the spatial GSO S. At the input layer, the signal has a window of observation T0 = T
timesteps. For each timestep, the signal dimensionality equals the number of nodes in
G , i.e., N0 = N .

At each layer, the GTCNN generates convolutional features through graph convolu-
tions over the parametric product graph Sl as in (4.4). Thus, the GTCNN jointly learns

both the si j ,l parameters of the parametric product graph and the h f g
k,l parameters of the

graph convolutional filters [cf. (4.1)]. Then, the graph-time pooling module reduces the
dimensionality of these features across the graph dimension (through downsampling)
and time dimension (through slicing), see Section 4.3.

The output of each layer is sent as input for the next layer. If the network is composed
of L layers, the output of the GTCNN is the output of the last layer:

ŷ = [x1
L,3 , . . . , xFL

L,3] ∈RNL TL×FL . (4.16)

Optionally, the output ŷ can be further sent to a number of fully connected layers to
change the output dimensionality. Finally, the output ŷ is compared with the target la-
bels to compute the loss function. We provide in Figure 4.3 an illustration of all the steps
summarized above.

The number of parameters the network needs to learn at each layer l is (K +1)Fl−1Fl ,
plus the four additional parameters si j ,l necessary to compute the parametric product
graph in (4.1). This number is unaffected by the size of the graph, which has N Tl−1 nodes
at layer l . The network needs to learn also the weights of the final fully connected layers,
if present. Suppose we have C target classes, then the fully connected layer comprises
NLTLFL ∗C parameters. The computational cost of layer l is the one of the parametric
graph-time convolutional module, since the cost of the graph-time pooling operations
is negligible. That is, this equals the cost of computing (4.4) and is of order O (|El |(K +
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1)Fl−1Fl ), where |El | denotes the number of edges in the parametric product graph Gl

[cf. Section 2.3.1].
In the next section, we introduce a regularization term that can be added to the loss

function to encourage sparsity on the product graphs Gl .

4.5. L1-NORM REGULARIZATION
We introduce a regularization term to achieve sparsity in the coefficients si j ,l the

GTCNN learns when building the parametric product graph at each layer (see Section
4.2). This regularization will allow us to avoid overfitting and also learn sparse connec-
tions with the GTCNN. The notation si j ,l indicates the coefficient si j [cf. (4.1)] used to
construct the parametric product graph Sl at layer l . To achieve sparsity, we employ the
`1-norm; a known method to achieve sparse coefficients when training machine learn-
ing models [76]. We denote as s ∈R4L the vector containing the 4L coefficients si j ,l (each
layer l has four si j parameters), and we can define the regularization loss:

L (s) = ‖s‖1 =
∑

i , j ,l
|si j ,l | . (4.17)

With this regularization term in place, the final loss of the GTCNN is

LGTCNN =L (ŷ , y)+βL (s) , (4.18)

where β is a scalar value that controls the importance of the regularization term L (s),
and L (ŷ , y) is the loss computed between the true label y and the prediction ŷ (Section
2.2.3).

The goal of the regularization is twofold. On the one hand, it is common practice in
machine learning to add a regularization term to reduce overfitting. Moreover, graphs
are in nature inherently sparse [77] and, therefore, we want to encourage sparsity in the
GTCNN learning process. On the other hand, sparser graphs at each layer reduce the
computational cost, since the number of edges reduces.
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4.6. NUMERICAL INSIGHTS: SOURCE LOCALIZATION
In this section, we use a synthetic dataset for the source localization problem [17,

37] to characterize the different components introduced in the previous sections. This
includes analyzing the convolutions over the parametric product graph, the graph-time
pooling, and the sparse regularizer.

PROBLEM FORMULATION

Consider a graph G = (V ,E ) with C communities, C = {0, . . . ,C −1}. At timestep t = 0,
the graph signal is a vector with all entries set to zero except the entry indexed by i, de-
noted as x (0) = δi ∈ RN . The index i of the unique non-zero entry of x (0) identifies the
source node. Due to the community-like structure of the graph, the source node i be-
longs to community c ∈C , see Figure 4.4. As t increases (i.e., t = 1,2, . . . ,T −1), the graph
signal x (t ) undergoes a diffusion process modelled through successive applications of
the GSO as in (2.5). To avoid numerical instabilities, the GSO adopted for such a diffu-
sion process is a normalized version of the adjacency matrix An = 1

λmax
A, where λmax is

the largest eigenvalue of A. The problem of Source Localization is to predict the commu-
nity c ∈ C from which the signal originated (the community source node i belongs to)
given the diffused signal x (t ) at an unknown timestep t.

Source

Source localization problem

Community 1

Community 2

Community 3

Figure 4.4: Source localization problem. The source node (depicted in red) belongs to
community two. The graph signal shown is all zero except for the source node i, for which
it has value one: x(0) =δi ∈RN .

We consider as input all consecutive observations within a window T : x (t ), x (t+1), . . . , x (t+T−1).
We formulate the Source Localization task as

[x (t ), x (t+1), . . . , x (t+T−1)]
f (·)−−→
G

c ∈C ,

where f (·) is the function mapping a set of observations x (t ) to a community c, while ex-
ploiting the topology of G . Our aim is to learn f (·), given a number of labeled examples.

EXPERIMENTAL SETTING

We generated a synthetic dataset using the Stochastic Block Model (SBM), a gener-
ative model for random graphs that creates graphs with communities. We built graphs
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with five communities of 20 nodes each. The probability of an edge between nodes of
the same community is 0.8, while for an edge between nodes of different communities is
0.2. Since SBM is a stochastic model, we generated ten different graphs, and for each one
of them, we performed ten different splits. The results are then averaged across them. In
each split, 80% of the data goes into the training set, 10% into the validation set, and the
remaining 10% into the test set.

We investigated: (i) the GCNN baseline models; (ii) the use of non-parametric, i.e.,
fixed product graphs; (iii) the use of the parametric product graph; (iv) the effect of the
sparse regularizer for the parametric product graph; (v) the impact of pooling. When
adopting product graphs, we investigated modelling time as a directed graph [cf. Sec-
tion 2.3.2] and as an undirected graph. Our rationale is that future time instants may
carry meaningful information also about the past time instants. For the product graphs,
we consider the Cartesian product graph, the strong product graph, and the parametric
product graph. Each of these product graphs models graph-time interactions in a differ-
ent manner. For each approach we investigated, we tested the models using observation
windows T of two and three observations in time. For all experiments except (v), we
set the number of features F = 2 and the filter taps K = 2. Furthermore, since graph-
time pooling reduces the number of weights of the final fully connected layer and allows
for wider and deeper architectures, we then experimented the complete GTCNN with a
higher number of features than in the previous experiments.

The learning rate is 0.001 and we adopt the ADAM optimizer with decay ratesβ1 = 0.9
and β2 = 0.999 [78]. Since different observation windows mean a different size for the
dataset, we adjust the number of epochs to train the networks with around 8000 training
steps in all cases. Finally, we adopt a batch size of 100 samples.

EXPERIMENTS AND RESULTS

1 2 3
Observation window T

0.1

0.2

0.3

0.4
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cu
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Figure 4.5: Baselines models. (Left) the GCNN proposed in [17], which does not take
into account multiple observations in time but rather a single observation. (Middle-
right) The same GCNN but the graph signals evolving over time are features of a multi-
dimensional graph signal.

Baselines. We considered two baseline GCNNs. The first is a GCNN working with a sin-
gle observation, where time is not taken into account as the one considered for source
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localization in [17]. The second is a GCNN where different observations in time are re-
garded as features. In this second approach, each feature represents the value at a cer-
tain timestep t, thus modelling the time-varying graph signal x (t ) as a multi-dimensional
graph signal with T features [3]. Both these cases are processed using the GCNN of Sec-
tion 2.2. Figure 4.5 shows boxplots for each baseline method. First of all, it is worth
noticing that the models do not always learn and behave similarly to a random classi-
fier (20% accuracy) in several cases. However, this happens more frequently when the
number of input features in the GCNN increases. We believe this is because of missing
information about the relationships between data instances over time since they are just
considered features.

We observe the approach proposed in [17] outperforms the other two baselines that
consider the observations in time as features. In the approach of [17], time is not taken
into account, and the classification is performed based on a single observation x (t ) at
an unknown timestep t . This result shows that just considering observations in time as
features of each node does not help the neural network improve its performance. On
the contrary, it leads to worse performance. We believe this is because such an approach
causes an increase in the input dimensionality, without providing information about the
relationship between these additional features. This finding further supports our deci-
sion to explicitly model time through our parametric product graph architecture, which
we investigate next.

Non-parametric product graphs. To investigate our approach of explicitly modelling
time using a directed cyclic graph and graph products (see Section 4.2), we started with
the case of a fixed (non-parametric) product graph. Recalling Section 2.3.1, valid options
are the Kronecker, the Cartesian, and the strong product graphs. We experimented only
with the Cartesian and the Strong product graphs since the Kronecker product graph
does not retain the spatial edges of the nominal graph G [cf. Figure 2.9]. We also investi-
gated whether modelling time as a directed or undirected cyclic graph led to a different
performance. Figure 4.6 shows the boxplots of such models. Although we do not observe
any significant difference in the performance of these models, the Cartesian product
graph models, shown in Figure 4.6 a) seem to achieve slightly higher accuracy. More-
over, these results show that modelling time as directed rather than undirected graph
leads to an increase in performance. A possible explanation for this result is that the
strong product graph models more graph-time interactions than the Cartesian product
graph, since it has a higher number of edges. This may lead to unnecessary connections
and, therefore, worsen the performance.

Parametric product graph. Next, we show the performance of the models which use a
parametric product graph [cf. Section 4.2]. We investigate the behaviour of the mod-
els when initializing the si j coefficients [cf. (2.25)] to either one or a random number
between 0 and 1. Moreover, we investigate the effect of modelling time as a directed or
undirected cyclic graph. In Figure 4.7, we see the models perform better when mod-
elling time as a directed graph. In fact, models which use an undirected graph fail to
learn more often. A possible motivation for this behaviour is that by modelling time as
a directed graph, the resulting graph-time product graph has fewer connections than in
the case of time being modelled as an undirected path graph. Moreover, in the case of a
directed time graph, the graph-time interactions modelled by the product graph follow
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(b) Strong product graph.

Figure 4.6: Non-parametric models. In both cases, we tested the models with observation windows of two and
three timesteps and modelled time either as directed or undirected. a) Cartesian product graph. b) Strong
product graph.
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Figure 4.7: Parametric models. In both cases, we tested the models with observation windows of two and
three timesteps and modelled time either as directed or undirected. a) si j coefficients initialized at one. b) si j
coefficients initialized at random. Note that no sparse regularizer is adopted in these experiments, i.e., β= 0.

causality, and this is not true for the undirected case. Furthermore, we do not experience
significant differences in the behaviour of the models when changing the initialization
of the si j parameters. For the rest of this thesis, we will then consider time as a directed
graph and initialize the si j coefficients to one, which implies the parametric product
graph starts as a strong product graph with the addition of self-loops [cf. (2.25)].

With the parametric product graph, we can also track the learning of the four pa-
rameters si j (in each layer) weighting the different building blocks [cf. (2.25)]. By doing
this, we can understand how the structure of the parametric product graph evolves over
training. We show one of the most common situations when learning these coefficients
in Figure 4.8. The model seems to give high importance to the self-loop parameter s00,
thus suggesting that the model maintains information about the initial value at a specific
node when performing graph filtering. Also, in the first layer, a common situation is that
parameter s11, related to the edges of the Kronecker graph product, is the weight which
is lowered the most during training. Finally, we see that the learned product graphs do
not achieve sparsity w.r.t the si j parameters when the sparse regularizer [cf. Section 4.5]
is not employed.

Sparse regularizer. Subsequently, we experiment with different values for the regular-
izer parameter β when adding the `1-norm regularization term in (4.18). Figure 4.10
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Figure 4.8: Parametric product graph learnable weights without the `1-norm
regularization.
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Figure 4.9: Parametric product graph learnable weights with the `1-norm
regularization. In this specific case, we choose β= 0.0025.

shows the result of applying this regularization technique to the best performing model
obtained with previous experiments: parametric product graph with si j coefficients ini-
tialized to 1, modelling time as a directed path graph. When β = 0, the regularization
is not present, and the loss of the GTCNN only compares the output ŷ with the label y .
As we increase β (the importance of the `1-norm regularization), the model seems to
improve the accuracy on the test set, supporting our intuition about the effectiveness
of learning a sparse parametric product graph. As expected, if β becomes too high, the
accuracy of the model significantly drops as the model no longer minimizes the initial
loss L (ŷ , y), but rather the regularization loss L (s) [cf. (4.18)]. We provide additional
details on this experiment in Table B.3 in Appendix B.

Finally, comparing Figure 4.9 with Figure 4.8, we notice coefficients si j differ when
adopting the `1-norm regularization: while in the first case the self-loop building block
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(s00) received the highest weight in both layers, this is true for the s10 coefficient when us-
ing the sparse regularizer. Moreover, when using regularization, the coefficient s01 goes
to zero in both layers, thus supporting the fact that a sparse parametric product graph
can achieve higher performance. Moreover, we see that the sparse regularizer also pro-
motes the convergence of the si j parameters. In fact, comparing Figure 4.9 with Figure
4.8, we see that the coefficients seem to converge faster when the regularizer is adopted.
To conclude, we highlight that the resulting product graphs learned in Figures 4.8 and 4.9
are different from any product graph obtained using a fixed graph product (Kronecker,
Cartesian, or Strong).
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Figure 4.10: Best performing parametric model (si j coefficients initialized to one, time
modelled as directed graph) with `1-norm regularization term. The values of β range
from zero (no regularization) to one.

Impact of pooling. We now investigate the impact of the graph-time pooling compo-
nent, which was absent in the previous models. We keep the number of layers of the
GTCNN fixed at two, to offer a fair comparison with the models above. Given the higher
number of hyperparameters of the GTCNN compared to the other models, we limit our-
selves to experimenting with an observation window T = 2. We set the pooling slicing
ratios to R1 = 1, R2 = 2. This means all the T0 = T time slices of the input are kept af-
ter the first convolutional layer, while only one slice out of two is kept after the second
convolutional layer. We start with a GTCNN similar to the models previously introduced
with F1 = 2 and N1 = N = 100 and assess the model by varying the number of features
F2 and the number of nodes N2 kept at the second layer. To be more precise, we choose
F2 ∈ {2,4,16,32} and N2 ∈ {10,30,50}, representing 10%, 30%, and 50% of the total num-
ber of nodes. These results are shown in Figure 4.11. We see the performance is higher
for F2 > 4 and N2 ≥ 30. For these hyperparameters, we do not see any significant per-
formance difference. Therefore, we choose F2 = 16 and N2 = 30, thus obtaining a model
without too many parameters.

Next, we explore options for the hyperparameters F1, N1 of the first layer. Precisely,
we evaluate F1 = {2,4,16,32} and N1 = {30,75,100}, as we want to keep N1 ≥ N2. These
results are shown in Figure 4.12.
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First, we see that the accuracy worsens when the number of features at the first layer
grows. This is especially true for the case when F1 = 32, suggesting that the number of
features at the first layer should not be too high, and can be increased in deeper layers.
Second, we see that the GTCNN achieves the best performance (both in terms of median
and spread) for F1 = 2 and N1 = 100. The latter result suggests that the convolutional
features generated by the GTCNN at the first layer are important for the majority of the
nodes and, thus, the number of nodes N1 kept at the first layer should be close to the
total number of nodes N .
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Figure 4.11: GTCNN experiments with varying F2 and N2. The other hyperparameters
are fixed as F1 = 2, N1 = 100.
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Figure 4.12: GTCNN experiments with varying F1 and N1. The other hyperparameters
are fixed as F2 = 16, N2 = 30.

Overall comparison. We now compare the best performing model of each category
(baselines, non-parametric product graphs, parametric product graphs, GTCNNs). For
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specific categories, such as the non-parametric models, there is not an outstanding model
to pick, as the performance is relatively similar across the different settings.

We report the mean, median, and standard deviation of the accuracy of these four
models in Table 4.1. When adopting product graphs to model the time-varying graph
signals, we notice we obtain a higher average accuracy than the best baseline. We also
see an increase in performance when using a parametric product graph rather than a
fixed product graph. More interestingly, we see the GTCNN model can achieve a sig-
nificantly higher average accuracy while, at the same time, yielding a smaller standard
deviation. This result means the GTCNN can perform well across different realizations
of the SBM graph for the source localization, better than the other models.

Table 4.1: Average accuracy and its standard deviation of the best performing model for
each category.

Model Average Accuracy Standard Deviation Median Accuracy
Baseline 0.642 0.16 0.688

Non-parametric 0.67 0.174 0.711
Parametric 0.693 0.182 0.737

GTCNN 0.734 0.024 0.734

4.7. CONCLUSION
In this chapter, we presented our approach for learning from time-varying graph sig-

nal. This model, which we call GTCNN, consists of layers that perform graph-time con-
volutions (Section 4.2), graph-time pooling (Section 4.3), and apply a non-linearity func-
tion. We also introduced in Section 4.5 a regularization term based on `1-norm that can
enforce sparsity in the learned product graph at each layer.

We validated the effectiveness of the different components of the GTCNN in Section
4.6 with a synthetic dataset. We found that the use of product graphs is beneficial for the
model, yielding a higher accuracy compared to employing the conventional GCNN with
these values as features. We also found that the GTCNN architecture further improved
the accuracy while, at the same time, yielding a lower standard deviation across differ-
ent initializations. Our rationale behind this result is that, due to graph-time pooling, we
can drastically reduce the number of parameters of the model while retaining the capa-
bility of capturing graph-time correlations. Moreover, we showed how to interpret the
product graphs learned at each layer and how these graphs are affected by the sparsity
regularization term. Over the next chapters, we will investigate the GTCNN model on
real-world datasets for earthquake classification and temperature prediction.





5
EARTHQUAKES CLASSIFICATION

In this chapter, we investigate the GTCNN model in the context of earthquake clas-
sification. The chapter is structured as follows. Section 5.1 sets the context for the ex-
periments. Since we cure a new dataset for these experiments, we provide in Section
5.2 a detailed overview of the steps taken to create the dataset. Section 5.3 details the
properties of the dataset. Next, Section 5.4 describes the experiments performed.
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5.1. INTRODUCTION
As discussed in Section 3.4, there are two main approaches for earthquake detection:

trend-based and precursor-based. In this thesis, since we deal with short-term predic-
tions (the classification is performed using data recording up to 20 seconds before the
strike), we decided to adopt a precursor-based approach. That is, the data that we use
for the classification consists of measurements thought to correlate with earthquake ac-
tivity.

For the experiments of this chapter, we cured a dataset consisting of earthquakes
happening in New Zealand between 2016 and 2020. In total, the dataset contains 4633
earthquakes. For each of these earthquakes, the data we collected consists of weak mo-
tion (velocity) measurements across a sensor network of 58 seismic stations, recorded at
100Hz. The label of each earthquake is the station closest to its epicentre. Next, we detail
all the steps taken to cure such a dataset.

5.2. DATASET
In this section, we explain the steps taken to build the earthquake dataset used in this

chapter. Section 5.2.1 describes the area captured by the dataset and the stations provid-
ing the measurements. Section 5.2.2 describes the process of gathering the earthquakes.
Section 5.2.3 provides details about the seismic waves measured by the stations. Section
5.2.4 describes the labelling process. Section 5.2.5 introduces some preprocessing steps
to obtain a more balanced dataset. Finally, Section 5.2.6 describes the process to create
and weigh the graph for the sensor network.

5.2.1. AREA OF INTEREST AND SEISMIC STATIONS

First of all, we defined a Bounding Box1 to determine the geographic area for our
dataset. A Bounding Box is uniquely determined given the coordinates (latitude and lon-
gitude) of the bottom-left and upper-right corners. The area captured by the Bounding
Box of Table 5.1 is depicted in Figure 5.1.

Coordinate type Value
Bottom-left longitude 166.104
Bottom-left latitude -47.749
Top-right longitude 178.990
Top-right latitude -33.779

Table 5.1: Coordinates specifying the
Bounding Box for the New Zealand
earthquake dataset.

Figure 5.1: Area defined by the Bounding Box in
Table 5.1.

1https://wiki.openstreetmap.org/wiki/Bounding_Box

https://wiki.openstreetmap.org/wiki/Bounding_Box
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Next, we identified several stations that provide seismic wave measurements. All de-
tails of the available stations can be found on the website of the International Federa-
tion of Digital Seismograph Networks (FDSN) [18]. The details of the N = 58 stations we
considered are provided in Table D.1 in Appendix D. To obtain information about such
stations, we used the ‘Station Service’ provided by the FDSN website.

5.2.2. EARTHQUAKES

We then gathered a list of all the earthquakes that happened in the Bounding Box
since the 1st of January, 20162. This amounts to more than 90.000 earthquakes, which
we show in Figure 5.2. For each earthquake, the available information consists of mag-
nitude, coordinates (latitude and longitude) of the epicentre, and distance from the sur-
face.

Figure 5.2: Earthquakes since 1st of January, 2016. Each yellow dot represents an earth-
quake in the dataset.

Initially, we investigated the distributions of magnitude and depth. We show the two
respective histograms in Figures 5.3a and 5.3b. We can see that the majority of the earth-
quakes have magnitudes around two and a depth less than 200 kilometres. Therefore, to
obtain a dataset consisting of earthquakes comparable between them, we retain earth-
quakes with a magnitude between one and three, and with depth less than 200. This
choice is a trade-off between how many earthquakes we want to keep and how simi-
lar they are in the properties describing them, i.e., magnitude and depth. This filtering
choice led us to approximately 87.000 earthquakes.

2We used the ‘Event Service’ [18] to obtain this information. This web service also provides data regarding
previous years, but some of the stations were not active before 2016.
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Figure 5.3: Histograms of magnitude and depth for the gathered earthquakes.

5.2.3. SEISMIC WAVES
For each of the earthquakes, we adopted the Data Select Service [18] to obtain the

waveform time series from 30 seconds before the earthquake timestamp until 30 sec-
onds after it. We kept the default parameters for the query, i.e. location 10 and channel
HHZ. This configuration implies the waveforms consist of weak motion (velocity) mea-
sured along the vertical axis and recorded at 100 Hz, i.e. 100 samples per second. We
downsampled3 the waveforms to obtain time series at 2 Hz, as in [3].

To summarize, for each earthquake, we collected 58 waveforms (one per station)
each consisting of 120 samples (60 seconds of data). We discarded those data points
for which the stations were not active in some timespans and retained only the earth-
quakes for which we had full data at all 58 stations. Figure 5.4 shows the waveforms for
a randomly chosen earthquake. We note that different stations (different colours in the
plot) have different ranges for the measurements. To account for the latter variability, we
normalized the data station-wise.

5.2.4. LABELLING PROCESS
Next, we labelled the earthquakes. We assigned each earthquake to its closest sta-

tion based on the great-circle distance. We show in Figure 5.5 the distribution of such
distance. Those earthquakes in the distribution tail whose distance from the closest sta-
tion is high are the earthquakes that can be seen in the ocean, away from the coast, in
Figure 5.2. We argue that a station label for such earthquakes is less meaningful than
for those earthquakes happening near the stations. Therefore, we retain only the earth-
quakes whose distance from their closest station is below 75 kilometres. This choice
leaves us with approximately 70.000 earthquakes. We show in Figure 5.6 two examples

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample.html
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Figure 5.4: 60 seconds of data at 2 Hz. The earthquake is reportedly happening halfway
through the recording. Each colour represents the waveform measured at a different
seismic station. The waveforms shown in these plots belong to stations 1, 20, and 30. a)
Raw measurements. Note how the mean of the waveforms differs for each station. b)
Normalized measurements. The mean and standard deviation for normalization are
computed per station.

of the result of our labelling process.
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Figure 5.5: Histogram of the distance to the closest station for each earthquake.
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5.2.5. FURTHER PREPROCESSING
The distribution of earthquakes is not uniform across New Zealand, as shown in Fig-

ure 5.2. Due to this, we observe a substantial imbalance among stations with regards to
the number of assigned earthquakes. To be more precise, as we show in Figure 5.7, al-
though only one station did not receive any earthquake, there are several stations which
obtained less than 100 earthquakes. At the same time, 27 stations had more than 1000
earthquakes assigned. For a machine learning approach, imbalanced data is problem-
atic since it can lead to poorer performance and additional hyperparameter tuning [79].

To mitigate the issue of imbalanced data, we performed two additional preprocess-
ing steps. First, we discarded the stations (and the assigned earthquakes) with less than
150 earthquakes. Next, we randomly undersampled some earthquakes in the stations
with a higher number of earthquakes. As a result, we obtained a more balanced dataset
consisting of 45 station labels (out of the 58 stations available) and 4633 samples. We
want to clarify that this filtering is performed only for the classes/labels. That is, the
graph is still defined over N = 58 stations, but the final classes for the classification task
will be only 45; those w.r.t. the stations for which we retained the data.

(a) Earthquake #16981 (b) Earthquake #17408

Figure 5.6: Labelling process for two earthquakes. The small pink dots represent
stations. The yellow dot represents the earthquake of interest, while the red dot
represents its closest station (the station chosen as label).

5.2.6. GRAPH CONSTRUCTION
There are many possible choices to create a graph for the sensor network. Since

there is no common acknowledged approach to obtain such a graph, we decided to com-
pute pairwise distances between the N available stations and find a threshold such that
the average degree of the obtained graph is approximately ten. We adopted the great-
circle distance [80] to measure the distance between the stations. This approach led to a
threshold of 170.29 kilometres, obtaining the adjacency matrix shown in Figure 5.8a. In
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Figure 5.7: Count of assigned earthquakes for each station.

other words, there is an edge connecting two stations if their great-circle distance is be-
low 170.29 kilometres. In Figure 5.8b, we show the corresponding graph, which provides
a good qualitative representation of the area of interest. We again highlight that other
choices are possible to construct the graph, such as using a nearest neighbour-based
approach or choosing a different desired average degree.
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Figure 5.8: Graph representing the relationship between stations

Moreover, we decided to weigh the adjacency matrix following the approach adopted
for the Molene dataset in Section 6.2. That is, we denote by d(i , j ) the great-circle dis-
tance between stations i and j , and by d̄ the average great-circle distance among the
connected stations (those stations whose great-circle distance is below the chosen thresh-
old of 170.29 kilometres). The N×N weighted adjacency matrix A has entries of the form:

Ai j = e−d(i , j )/d̄ .

Notice that Ai j ∈ [0,1], where smaller values indicate a higher distance between stations.
Thus, our hypothesis is that the closer the stations, the stronger their connection.
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5.3. DATASET PROPERTIES

The final dataset consists of 4633 data samples and 45 classes. We discuss in this
section the properties of the obtained dataset. Figure 5.9 shows the dataset. We can
see the graph structure together with the earthquakes resulting from the filtering and
labelling process. We can also see that we still have many earthquakes happening in
the ocean.However, they are not as far away from the coast as in Figure 5.2. Figure 5.10

Figure 5.9: Summary of the earthquake data after filtering and labelling. Yellow dots represent earthquakes.
White nodes of the graph represent stations whose labels have been discarded since their number of assigned
earthquakes was below the selected threshold. Red nodes of the graph represent stations with enough earth-
quakes.

shows the number of earthquakes per year. Year 2017 is the one with the highest number
of earthquakes. In Figures 5.11, 5.12, and 5.13, we show for each station the average
magnitude, depth, and the average distance from the earthquakes to the station label.
We infer from these plots that although there is no significant difference between classes
with regards to the earthquake magnitudes, the average depth and the average distance
from the labelled station exhibit significant difference among classes. This is because
we mitigated this effect by filtering the earthquakes based on depth and magnitude in
Section 5.2.2. In our opinion, these data distributions are satisfactory to run machine
learning algorithms; further filtering would discard additional information which would
lead to an even smaller dataset and hence affect the performance.



5.4. EXPERIMENTS

5

69

2016 2017 2018 2019 2020
Year

0

500

1000

1500

2000

N.
 o

f e
ar

th
qu

ak
es

Figure 5.10: Number of earthquakes per year. The reason why fewer data samples were
obtained from 2018 and 2019 is that many of the chosen stations were not active and we,
therefore, discarded such incomplete samples.
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Figure 5.11: Average magnitude of earthquakes within each class.
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Figure 5.12: Average depth of earthquakes within each class.

5.4. EXPERIMENTS
Our objective is to investigate the GTCNN’s capabilities for identifying the station

closest to the earthquake’s epicentre. This problem translates into a multi-class classi-
fication problem for the measured seismic wave. Specifically, we are interested in pre-
dicting the closest station given 10 seconds (20 timesteps) of the waveform before the
reported earthquake timestamp.
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Figure 5.13: Average distance between earthquakes and corresponding label.

EXPERIMENTAL SETUP

We consider the weighted adjacency A to represent the graph G = (V ,E ) between
stations [cf. Section 5.2.6]. The input for the models consists of T graph signals x (t ),
representing the 20 measurements prior to the strike. Each graph signal x (t ) has di-
mensionality |V | = N = 58 since it contains the measurements across the sensor net-
work at timestep t . In other words, for an earthquake happening at time Te at station
c ∈ {0,1, . . . ,44}, we formulate the classification task as

[x (Te−20), . . . , x (Te−1)]
f (·)−−→
G

c ,

where we stress the fact that the mapping f (·) learned by the GTCNN takes into account
not only the input graph signals but also the graph G .

Since our setup is a multi-class classification problem, a data sample is assigned to
one station out of the possible 45. Such station is the one closest to the earthquake,
according to the great-circle distance.

5.4.1. EVALUATION METRICS
We measure the performance of the models through the accuracy, precision, recall,

and f1 score. Due to the preprocessing steps [cf. Section 5.2], the dataset is not im-
balanced. Therefore, we adopt the macro-averaged versions of these metrics. That is,
each metric is computed for each class independently and then averaged to obtain the
macro-averaged metric.

However, consider the multi-class problem and suppose the model predicts a station
that is only a few kilometres away from the true station. Due to these stations being
sufficiently close in space, one might still consider this prediction to be valid. Since the
metrics mentioned above are not able to deal with this situation, we propose a type of
evaluation metrics designed to this end.

RADIUS-BASED METRICS

We address this by considering as “correct” all the stations included in a circle of
radius R, centered at the station of interest. More formally, let us consider the case of
the i -th station. We can describe this set of stations as Rr

i = { j : dist(i , j ) < r }. Given
the stations in Rr

i , we can consider them as a single class and compute the standard
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metrics w.r.t the new classes. For r = 0, the metrics defined w.r.t. R0
i coincide with those

for the 45 initial classes and do not take into account the radius-based approach. We
show an example of this in Figure 5.14. Notice that although we achieved the desired
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Figure 5.14: Radius-based metrics. a) Example graph consisting of six stations. We select
station two (yellow) and radius R. In this example, only station one (green) is included in the
circle described by the radius R. b) The initial confusion matrix for a multi-class classification
problem with six classes. c) The result of the confusion matrix transformation which takes into
account a circle of radius R centered at station two. This can be seen as considering classes
one and two as a new single class in the confusion matrix.

effect with the radius-based metrics, we can still have a different number of stations
for a fixed radius R. In fact, dense areas, i.e., areas where stations are closer to each
other, will include more stations in the circle compared to sparse areas. The only way to
address this problem is to obtain a graph with stations uniformly distributed across the
considered region. However, we shall not discuss this aspect further in this thesis and
defer this analysis for future work.

5.4.2. MULTI-CLASS EXPERIMENTS AND RESULTS

EXPERIMENTAL SETTING

The input data for the models consists of 10 seconds (20 timesteps) of waveform data
measured over the graph consisting of N = 58 seismic stations. We split the dataset into
training, validation, and test sets using 60%, 20% and 20% of the data, respectively. We
use the training set to learn the parameters, and the validation set to perform tuning
and stop the training if the model’s validation loss does not decrease for 20 epochs. The
test set is used to compute the final results. We train the model for 100 epochs and we
use a learning rate of 0.001. We considered the ADAM optimization algorithm and chose
decay rates β1 = 0.9 and β2 = 0.999 [78]. The loss adopted is the cross-entropy loss (CE),
introduced in Section 2.2.3. To account for the random initializations, we averaged the
results over 20 iterations.

In this experiment, we compare the following models: (i) our proposed GTCNN; (ii)
a standard LSTM model; and (iii) the GGRNN model [3]. We will additionally consider
the random classifier as a baseline. The LSTM model [cf. Section 2.4.1] sees the wave-
form data as a multi-dimensional time series and does not use any information regard-
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ing topology. The GGRNN model [cf. Section 2.4.2] consists of an RNN model where the
internal matrix multiplications are replaced with graph convolutions and an attention
mechanism is added to weight information differently along edges4. For the GTCNN and
LSTM models, we grid searched the respective hyperparameters, while for the GGRNN
we kept the hyperparameters from [3]: 20 features for the hidden state and 4 filter taps
for each graph convolutional filter.

The grid search yielded the following configurations: the GTCNN consists of three
layers with features F1 = 4, F2 = 8, F3 = 12, filter taps K1 = K2 = K3 = 2, slicing ratios
R1 = R2 = R3 = 2. Moreover, at the first layer 100% of the nodes per timestep are kept,
while at the second and third layer the GTCNN retains 90% and 70% of the nodes per
timestep, respectively; the LSTM has 20 hidden units.

RESULTS

In Figure 5.15, we show the radius-based accuracy for the above mentioned models.
We see that the GTCNN has the highest accuracy, followed by the GGRNN model and
the LSTM model. This result shows that exploiting the graph structure aids learning by
reducing the number of parameters in the LSTM efficiently. Furthermore, all three mod-
els perform better than the random classifier. Although the models seem to maintain
the same gap between the accuracies as we increase the radius, it is insightful to analyze
their behaviour for a small radius.

In Figure 5.15b, we show a zoom of the first 25 kilometres for the radius-based ac-
curacy. We can observe the GTCNN, LSTM, and GGRNN show a steeper increase in ac-
curacy compared to the random classifier, meaning that several predictions which were
considered wrong with a standard accuracy metric (when the radius is zero) are correct
if we consider a radius of three kilometres around the target station. This finding con-
firms the usefulness of radius-based metrics. Interestingly, when observing this increase
in accuracy, we can see how the GTCNN is the model exhibiting the steepest increase
over the first kilometres. Nevertheless, we shall recall these accuracies are still far from
satisfactory in practice. This is in part attributed to the complexity of the problem, and
to the limited amount of data we are dealing with.

For the remaining radius-based metrics, we show them in Figure 5.16 for R ∈ {0,20,90}.
We see that the GTCNN has the highest recall for the reported radiuses, while the pre-
cision and f1 is lower compared to the other models. However, this effect is mitigated
for R = 90, where the precision and f1 of the GTCNN reach the level of the other models
while maintaining a higher recall. We refer the reader to Appendix D for the full plots of
radius-based precision, recall, and f1-score.

VALIDATION OF THE DOWNSAMPLING STEP

Notice in the above results we downsampled the waveforms from 100 Hz down to 2
Hz following [3]. This harsh down sampling represents information loss if we approach
the problem from the signal reconstruction perspective. Likewise, one may also argue
this downsampling is also responsible for the low performance reported in the previ-
ous section. We here analyze the classification accuracies when using the full waveform

4In [3], this model is referred to as e-GGRNN. It is the model achieving the best performance with earthquake
data, and thus more suitable for our comparisons.
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Figure 5.15: Radius-based accuracy for the models. We also compute this metrics for a
random classifier as baseline. a) Radius-based accuracy for radius ranging from 0 km to
100 km. b) Zoom of the initial part of the plot in a), showing the different behaviour of
the models for a slight increase in the radius.

of 100Hz. To investigate this, we trained the LSTM model on the raw data, and then
compare its performance with the LSTM model trained on the downsampled data. We
choose to compare the two models using the radius-based metrics of Section 5.4.1.

We report the radius-based accuracy of the models in Figure 5.17, while recall, preci-
sion, and f1 can be found in Appendix D (Figures D.2a, D.2b, and D.2c). We see that there
is no significant difference in accuracy between the model trained on the downsampled
data (2 Hz) compared to the model trained on the original data (100 Hz). Moreover, for
larger radiuses the raw data led to a poorer performance when compared to the down-
sampled data. We believe this is because the downsampling step may filter out high-
frequency noise contained in the raw data, which would make the classification harder.
Therefore, it is safe to assume the downsampling step is not the main factor leading to
low accuracies saw above, but that is somewhat due to the complexity of the problem.

5.4.3. TOWARDS A MORE SIMPLIFIED SETTING

We argue that the multi-class problem is a difficult one, arising from the fact that
predicting (or classifying) earthquakes is inherently a hard task [74, 71]. On top of this,
a multi-class experimental setting with 45 classes and only 4633 data points adds to this
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Figure 5.16: Radius-based metrics (precision, recall, f1) for the models. We compute such metrics with radius
R ∈ {0,20,90}. Note the y-axis scale is different for the plot with R = 90.
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Figure 5.17: LSTM radius-based accuracy with and without downsampling (2 Hz data
versus 100 Hz data). As a baseline, we also add the radius-based accuracy of a random
classifier.

complexity. Although superior to a random classifier, all models are still far from a de-
sired accuracy. Thus, we investigated the possibility of simplifying the problem without
loss of generality, in order to gain more insights about the performance of the models.

We converted the multi-class classification problem (with C classes) into C binary
classification problems, one per labelled station. This means a model is trained to pre-
dict whether the earthquake will occur at a particular station or somewhere else. Let us
consider the binary classification problem for the i -th station, with label ci . Suppose
there are Ni data samples whose label is station ci . We refer to these samples as samples
assigned to the positive class. Then, to obtain a balanced dataset, we uniformly sample
the same number of data points, i.e., Ni data points, from the remaining C −1 classes.
We refer to these samples as samples assigned to the negative class. Then, the model is
trained on this smaller dataset for the binary classification, i.e., a new dataset where we
assign label 1 to the positive class and label 0 to the negative class.

EXPERIMENTAL SETTING AND RESULTS

For these experiments, we decided not to perform grid search a second time and
instead used the same hyperparameters found for the multi-class setting [cf. Section
5.4.2]. We compared the GTCNN, the LSTM, and the GGRNN models.

Figure 5.18 shows the boxplots of the accuracy for each binary classification prob-
lem, computed running 20 iterations in each case. Although the task is inherently hard,
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we can see the proposed models can reach a median accuracy of about 60% in about
11 binary problems, with an accuracy hitting up to 70%, such as when the index of the
positive class is 20, 34 or 43.

It is also clear that certain classes lead, on average, to higher performance than oth-
ers. For example, when the positive class is class 22 or 43, all models obtain higher per-
formance for all models. This result is consistent with the fact that these two stations
are situated in less dense areas, and thus it should be intuitively easier to discriminate
them from the other stations. The same consistent behaviour can be observed in the
boxplots computed for the precision, recall, and f1 (Figure D.3, Figure D.4, and Figure
D.5 in Appendix D).

To evaluate the different models on a global context, we also show in Figure 5.19 the
histograms for the adopted metrics obtained across the 20 iterations of the 45 binary
problems. That is, each model has 900 values in the histogram. We can see that although
the performances of the GTCNN and the LSTM model are similar, the GTCNN histogram
exhibits higher values of accuracy. We observe a similar behaviour when comparing the
GTCNN and the GGRNN, although the performance of the two models is more similar.
This result again indicates that the knowledge of the topology proved beneficial for the
learning process.
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Figure 5.18: Boxplots of the accuracy for each binary classification setting. The number
of iterations (per boxplot) is 20.
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Figure 5.18: Boxplots of the accuracy for each binary classification setting (cont.). The
number of iterations (per boxplot) is 20.
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(a) Histogram of accuracy, precision, recall, and f1-score for the GTCNN and the LSTM models.
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Figure 5.19: Histogram of accuracy, precision, recall, and f1-score for the GTCNN, the
LSTM, and the GGRNN models. For each of the 45 binary classification problems, a
different positive class was chosen, and 20 iterations were performed. The vertical lines
represent the average score for each model.

5.5. CONCLUSION

In this chapter, we tested the capability of the GTCNN for earthquake classification
problems. For this, we used the FDSN service of New Zealand to gather a balanced
dataset consisting of 4633 earthquakes across New Zealand [cf. Section 5.2]. Then, we
experimented on this dataset with two different experimental settings. Firstly, we for-
mulated the earthquake classification problem as a multi-class classification where the
model predicts the station closest to the epicentre of the upcoming earthquake, out of
the 45 available stations [cf. Section 5.4.2]. Secondly, we simplified the problem by trans-
forming the multi-class classification into 45 binary classifications (one per station). In
this second setting, the model is trained to predict whether the earthquake will hap-
pen at a particular station or somewhere else [cf. Section 5.4.3]. To better measure the
performance of the models in the multi-class setting, we devised an approach to trans-
form standard metrics to radius-based metrics, able to take into account the topology
of the sensor network. This approach allows the metrics to discriminate between pre-
dictions that are entirely wrong (from a geographic perspective) and predictions that are
still close to the correct station [cf. Section 5.4.2].

We compared the proposed GTCNN model with a conventional LSTM and a state-
of-the-art graph-based RNN model called GGRNN. Our results on the multi-class exper-
imental setting suggest that models that know the graph topology can achieve higher
accuracy. In fact, both the GTCNN and the GGRNN both yield higher accuracy than
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the LSTM for all the considered radius values. Moreover, when comparing the GTCNN
and the GGRNN, it appears that our model can obtain slightly higher accuracy for all
radius values. When looking at the binary classification setting, we noticed the models
exhibit a significantly different performance based on which class is considered as posi-
tive class in the binary classification setting. This finding suggests that different stations
have different properties, and further work is required to understand whether this stems
from our process of data gathering or, instead, is a natural property of the earthquakes
data. However, when observing the models’ behaviour across all the binary problems,
our proposed GTCNN appears to take on higher values for all the considered metrics
from a global perspective.

A concluding remark for this chapter is that all the experiments have been performed
with a monodimensional time-varying graph signal as input. That is, the input consists
of weak motion (velocity) measurements across the sensor network over time. However,
including different sources of data, such as temperature, pressure, etcetera, may be ben-
eficial for the problems we dealt with in this chapter.



6
FORECASTING TIME-VARYING

GRAPH SIGNALS

In this chapter, we evaluate the GTCNN capability of predicting time series with
two real-world datasets: the Molene temperature dataset and the NOAA temperature
dataset. The chapter is structured as follows. Section 6.1 formulates the problem of fore-
casting time-varying graph signals. Section 6.2 provides details about the two datasets.
Section 6.3 describes the experimental setup. Section 6.4 presents the results and Sec-
tion 6.5 concludes the chapter.
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6.1. PROBLEM FORMULATION
In this forecasting task, the dataset consists of a graph representation matrix A (such

as the Adjacency matrix) of G = (V ,E ) and a collection of T graph signals x (t ) ∈RN , with
|V | = N . The GTCNN receives as input T0 consecutive graph signals x (t ), x (t−1), . . . , x (t−T0+1)

and provides an estimate for h number of steps ahead ŷ (t+h) of the true value y (t+h) =
x (t+h). More formally, the forecasting task is expressed as

[x (t ), x (t−1), . . . , x (t−T0+1)]
f (·)−−→
G

x (t+h) ∈RN .

Our aim is to learn function f (·), given a number of labeled examples.
Our models are optimized to make the prediction only at h = 1 step ahead. If h > 1,

the predicted output is fed back into the GTCNN in an iterative fashion to reach a longer
prediction horizon. As shown in [81], this method (called iterated prediction) is often
reliable only for short prediction horizons, i.e., for small h values, since the model can
quickly diverge due to accumulated errors. In these experiments, the maximum horizon
considered is h = 5 (five hours ahead) likewise [7].

6.2. DATASETS
We consider the Molene [19] and the NOAA [20] datasets, which contain hourly tem-

perature measurements across several locations. To make a fair comparison with other
models, we follow the graph construction and preprocessing techniques adopted in [7]
for both datasets.

For all the experiments, we adopt 35% of the data for training, 15% for validation, and
50% for testing. This choice is made to enable a fair comparison with the models in [7].
The split is performed sequentially. For instance, assume we have 100 successive hourly
measurements: the first 35 measurements are used for training, the next 15 measure-
ments are used for validation, and the last 50 measurements for testing. We refer to the
union of the training and validation data as the “in-sample” data, while we refer to the
test data as “out-of-sample” data. To provide a fair comparison between our approach
and the ones reported in [7], we subtract the in-sample mean from the raw data for both
datasets: we compute the in-sample mean for each station, and we subtract it from the
raw data of such station1.

MOLENE TEMPERATURES

The first dataset will be referred to throughout this section as “Molene”. It provides
T = 744 hourly measurements across N = 32 weather stations in the region of Brest,
France. The data was recorded in January 2014. The graph is constructed starting from
the node coordinates using a 10-NN approach and a Gaussian kernel weighting of the
edges, as in [7]. The 10-NN graph is constructed based on the Euclidean distance be-
tween the stations, considering the Lambert II coordinates (x, y coordinates) and the
altitude (in meters)2. We indicate as A ∈ RN×N the weighted adjacency matrix of the

1Notice mean-centering time series is a standard procedure for forecasting [82].
2https://pygsp.readthedocs.io/en/stable/reference/graphs.html#pygsp.graphs.NNGraph

https://pygsp.readthedocs.io/en/stable/reference/graphs.html##pygsp.graphs.NNGraph
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obtained graph. The edge weights are defined as

Ai j = e−d(i , j )/d̄ , (6.1)

where d(i , j ) is the Euclidean distance between stations i and j , and d̄ is the average
Euclidean distance in the dataset. Figure 6.1 shows the hourly measurements available
at a specific station.
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Figure 6.1: Example of time series on a specific station for the Molene dataset. Station
id: 56007001. Station name: AURAY.

The Molene dataset contains little time series and, therefore, a strong prior is needed
to aid learning. Our rationale is that full end-to-end solutions may fail in these circum-
stances, and we hypothesize our graph-based prior will help further.

NOAA TEMPERATURES

The NOAA dataset offers hourly temperature measurements across N = 109 weather
stations in the United States, recorded over the year 2010. In total, this dataset provides
T = 8579 hourly measurements, each consisting of 109 values. Therefore, the NOAA
dataset is larger than the Molene dataset. To construct the graph, we follow the method
adopted in [1], [26], and [7], which relies on the 7-NN geographical distances. Figure 6.2
shows the hourly measurements available at a specific station in the dataset for the first
month.
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Figure 6.2: Example of time series (first month of the year) on a specific station for the
NOAA dataset. Node 78.

Since the NOAA dataset contains data for one year only, it exhibits different distri-
butions between training, validation and test sets. To be precise, data belonging to the
beginning and the end of the year will be lower temperatures than the middle months.
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This distribution problem is illustrated in Figure 6.3a. To address this issue, we adopt
the technique of computing the first-order difference of the time series data [83]. That
is, we subtract from the graph signal x (t ) the graph signal x (t−1), for all the T timesteps
available in the dataset. By doing this, we obtain the distributions shown in Figure 6.3b.
We provide additional details in Appendix C.
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Figure 6.3: NOAA distributions (training, validation and test) before and after
differencing the data.

6.3. EXPERIMENTAL SETUP

TRAINING LOSS

When training neural networks for regression, there are some popular choices with
regards to the loss function. The most common include Mean Squared Error [cf. (2.18)],
the Mean Absolute Error (MAE3), or a combination of the two (Huber loss4). Since both
these datasets do not contain outliers, we adopt the MSE as the training loss. Following
(4.18), we can add an `1-based regularization term to encourage the GTCNN to learn a
sparser product graph. For a set of data T , our complete training loss is expressed as

LT =LT (ŷ , y)+βL (s) = 1

R

∑
i∈T

(ŷi − yi )2 +β ∑
i , j ,l

|si j ,l | , (6.2)

where R represents the number of datapoints, and β is a hyperparameter that controls
the importance of the sparsity regularizer L (s) [cf. Section 4.5].

To compare the performance of the GTCNN to the graph-based forecasting meth-
ods in [7], we adopt the root Normalized Mean Squared Error (rNMSE) as our evaluation
metric. We compute the rNMSE by comparing the true labels y and the corresponding
predictions ŷ :

rNMSET =
√√√√∑

i∈T

∥∥ŷi − yi
∥∥2

2∑
i∈T

∥∥yi
∥∥2

2

. (6.3)

3https://pytorch.org/docs/stable/nn.html#torch.nn.L1Loss
4https://pytorch.org/docs/stable/nn.html#torch.nn.SmoothL1Loss

https://pytorch.org/docs/stable/nn.html##torch.nn.L1Loss
https://pytorch.org/docs/stable/nn.html##torch.nn.SmoothL1Loss
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MODEL SELECTION

We selected the model yielding the lowest one step-ahead rNMSE on the validation
set. Grid Search was used to choose the hyperparameters of the models. We adopted the
ADAM optimizer with decay rates β1 = 0.9 and β2 = 0.999 and optimized the learning
rate (from 0.01 to 0.0005). We also looked at the metrics on the validation set to decide
when to stop training and avoid overfitting. For the GTCNN and the GGRNN models, we
used the weighted adjacency matrix of the graph as GSO.

For the GTCNN, we experimented with networks consisting of two and three layers,
followed by a fully connected layer. The features F in each layer are F ∈ {2, . . . ,12}, the
number of taps K in each layer are K ∈ {2,3,4}, the window of observation T0, i.e., the
number of graph signals in input, is T0 ∈ {3,4,5}, the `1-norm sparsity regularizer has a
weight β varying from 0 to 0.05. For the LSTM, we varied the number of hidden units
from 8 to 64, and for the GGRNN we varied the number of state features F ∈ {2, . . . ,20}
and the number of filter taps K ∈ {2,3,4,5}.

6.4. RESULTS

MOLENE

We compare the GTCNN model with the conventional LSTM network [cf. Section 2.4.1]
and with the GGRNN [cf. Section 2.4.2]. We also compare our model with the two graph-
based models in [7], named G-VARMA and GP-VAR [cf. Section 2.4.2].

Figure 6.4 shows the rNMSE for each step-ahead prediction. In general, we see that
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Figure 6.4: rNMSE versus step-ahead for the Molene dataset: comparison of the GTCNN
model and other approaches proposed in the literature. G-VARMA and GP-VAR were
introduced in [7]. The GGRNN was introduced in [3].

the linear model (G-VARMA and GP-VAR) outperform the neural network-based mod-
els. This may be due to the size of the dataset, which only contains a total of 744 data
points. Furthermore, we see our GTCNN performs worse for shorter horizons, but better
for longer horizons because it accumulates less error when predicting over longer hori-
zons. This can be seen by looking at the slope of the lines in Figure 6.4. To better show
this behaviour, we show in Figure 6.5 the rNMSE relative increment w.r.t. the one step-
ahead prediction. We see that the neural network-based models show smaller increases
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compared to the linear models, particularly in the case of the GTCNN. This result may be
due to the GTCNN being more conservative and predicting values closer to the mean of
the training data, thus diverging less when iterating to reach longer prediction horizons.
A second motivation for this behaviour may be that the sparse regularizer on the product
graphs reduces the overfitting on the one step-ahead, thus performing better for larger
steps-ahead.
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Figure 6.5: rNMSE relative increment (%) versus step-ahead for the Molene dataset. The
relative increment is computed with respect to the rNMSE obtained for the one step-
ahead prediction. The values used for this plot are the values shown in Figure 6.4.

The parameters of the GTCNN shown in Figure 6.4 are as follows: window of obser-
vation T0 = 4; features at first layer F1 = 4; features at second layer F2 = 12; filter taps at
first and second layer K1 = K2 = 2; slicing ratio at first layer R1 = 2; slicing ratio at second
layer R2 = 2; number of nodes per timestep at first layer N1 = 25; number of nodes per
timestep at second layer N2 = 16; `1 regularization weight β = 0.00025. For the LSTM,
the model has 32 hidden units. For the GGRNN, the model has F = 4 state features and
K = 2 filter taps. We refer the reader to Appendix C for additional visualizations regarding
these experiments.

NOAA
We compare the GTCNN model against the same models chosen for the Molene

dataset. We show the performance in Figure 6.6. We see that the nonlinear learning
approaches (GTCNN, GGRNN, and LSTM) achieve better performance than the linear
models. This result is not surprising since this dataset is much bigger than the Molene
dataset, and this boosts the performance of the deep learning models over the linear
ones. However, when comparing the LSTM and the GTCNN, we see the performance
of the two models is very similar for shorter horizons, and we observe a lower rNMSE
for the LSTM only for the four and five step-ahead predictions. This result suggests
that the prior of the graph is not necessary when the size of the training data is large
enough. An interesting result, however, is that the GTCNN model outperforms the other
graph-aware models, confirming again that the proposed approach can learn from time-
varying graph signals effectively. Finally, we show in Figure 6.7 the rNMSE relative in-
crement w.r.t. the one step-ahead prediction. Differently from the Molene dataset, the
model with the smallest increases is the LSTM, followed by the GTCNN and the other
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graph-aware methods. This finding again suggests how the prior of the graph may not
bring as many benefits when the amount of data is significantly larger.

The parameters of the GTCNN shown in Figure 6.2 are as follows: window of obser-
vation T0 = 4; features at first layer F1 = 4; features at second layer F2 = 12; filter taps at
first and second layer K1 = K2 = 2; slicing ratio at first layer R1 = 2; slicing ratio at sec-
ond layer R2 = 2; number of nodes per timestep at first layer N1 = N = 109; number of
nodes per timestep at second layer N2 = 76; `1 regularization weight β = 0.00025. For
the LSTM, the model has 64 hidden units. For the GGRNN, the model has F = 3 state
features and K = 2 filter taps.
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Figure 6.6: rNMSE versus step-ahead for the NOAA dataset: comparison of the GTCNN
model and other approaches proposed in the literature. G-VARMA and GP-VAR were
introduced in [7]. The GGRNN was introduced in [3].
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Figure 6.7: rNMSE relative increment (%) versus step-ahead for the NOAA dataset. The
relative increment is computed with respect to the rNMSE obtained for the one step-
ahead prediction. The values used for this plot are the values shown in Figure 6.6.

PARAMETRIC PRODUCT GRAPH VALIDATION

Without performing additional hyperparameter tuning, we investigated the perfor-
mance of the GTCNN when adopting either the parametric formulation of the product
graph [cf. (2.24)] of a fixed product graph. We show in Figure 6.8 the rNMSE for the
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five different horizons. We see that the strong product graph leads to a lower rNMSE for
longer horizons, while the Cartesian does not. We also notice that the parametric prod-
uct graph follows the performance of the strong product graph for shorter horizons, and
the performance of the Cartesian product graph for longer horizons. This result suggests
that the parametric product graph formulation lets the GTCNN learn how to combine
these product graphs and adapt them to the task at hand.
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Figure 6.8: rNMSE versus step-ahead for the NOAA dataset: comparison of the paramet-
ric product graph, the Cartesian product graph, and the Strong product graph.

6.5. CONCLUSION
In this chapter, we investigated the applicability of the GTCNN to forecasting prob-

lems. We considered two datasets of different sizes, providing hourly temperature mea-
surements across several locations. We see the deep-learning methods (GTCNN, GGRNN,
and LSTM) perform better than the standard graph-based methods G-VARMA and GP-
VAR on the bigger dataset (NOAA). This suggests the GTCNN is flexible enough to out-
perform standard graph-based approaches, provided enough data. This is an expected
behaviour, since both the neural network-based models have a higher number of pa-
rameters and can learn more complex functions [79].

Furthermore, when looking at the LSTM and the GTCNN models, we notice that the
gap between their performance is wider in the Molene setting (Figure 6.4) than in the
case of NOAA (Figure 6.6). This suggests the prior knowledge provided by the graph is
useful and can improve the performance of the GTCNN in case of shortage of data. Inter-
estingly, we found for the Molene dataset that the GTCNN accumulates less error when
iterating over the predictions to reach longer prediction horizons (higher step ahead).
In other words, the rNMSE of the GTCNN grows with a smaller slope compared to the
other models when predicting over longer horizons. On the NOAA dataset, this effect is
less pronounced, and the slope of the rNMSE is similar for the models.

Finally, we evaluated the usefulness of employing a parametric product graph rather
than a fixed product graph in the GTCNN architecture. We found that the performance of
the parametric product graph seems to be a combination of the performances obtained
by the fixed product graphs, suggesting that the GTCNN was able to learn the correct
product graph for the task at hand.



7
CONCLUSION

In this chapter, we conclude the thesis and discuss possible future work. The chapter
is structured as follows. Section 7.1 provides a summary of the work carried out in this
thesis, outlining the results obtained. Section 7.2 answers the research questions posed
in Chapter 1. Finally, Section 7.3 lays down possible future research directions that stem
from this work.
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7.1. THESIS SUMMARY
In Chapter 1, we motivated this research and set the context for the remaining chap-

ters. Chapter 2 provided the background information, including Graph Convolutional
Neural Networks and graph convolutional filters. Chapter 3 reviewed current literature
w.r.t. learning of spatial and temporal dependencies, which play a fundamental role
in learning from time-varying graph signals. In particular, we highlighted methods to
capture either spatial or temporal dependency and the differences between hybrid and
fused approaches when learning spatio-temporal dependency from the data.

We presented in Chapter 4 our main contribution, consisting of a novel convolutional-
inspired neural network architecture that can learn from time-varying graph signals. In-
stead of combining different models to capture the spatial and temporal dependencies,
the GTCNN constructs a parametric product graph to represent the time-varying graph
signal as a standard graph signal on this larger graph. Then, it employs graph convolu-
tions over the larger graph to generate features [cf. Section 4.2], and applies graph-time
pooling to reduce the dimensionality and allow for a deeper structure [cf. Section 4.3].
We evaluated the different building blocks on the GTCNN in Section 4.6, showing the
benefits of learning sparse parametric product graphs and providing an interpretation
of the learned product graphs at each layer.

We then evaluated the proposed GTCNN for classification and regression using real-
world datasets. In Chapter 5, we evaluated the GTCNN for earthquake classification and
cured a real-world dataset for the experiments. Finally, in Chapter 6, we evaluated the
GTCNN for temperature prediction on two different real-world datasets. In earthquake
classification, we found that models using a prior about the data topology obtained a
higher performance compared to graph-unaware models. In temperature forecasting,
we saw that the models behaved differently on the two datasets, with neural network
models (including the proposed GTCNN) performing best on the largest dataset.

7.2. ANSWERS TO RESEARCH QUESTIONS
In this section, we address the research questions posed in Section 1 based on the

work carried out in this thesis.

(RQ1) “How to learn the correct product graph for modelling signal variations over graph
and time domains?”

We answered this question in Chapter 4, where we included the parametric formulation
of product graphs within the layer structure of the GTCNN architecture. The parametric
product graph addresses the fact that different types of product graphs [cf. Section 2.3.1]
are possible and lets the model learn which product graph best fits the task at hand [cf.
Section 4.2]. The parametric formulation [cf. (2.24)] performs a weighted sum of the
Kronecker, the Cartesian, and the Strong product graph (also considering self-loops) [cf.
(2.25)], where the weights are learned during training. Moreover, we introduced an `1-
norm regularization that can be added to the loss function during training [cf. Section
4.5] to enforce sparsity in these learned product graphs.

(RQ2) “How to develop a graph convolutional architecture to jointly process time-varying
graph signals over parametric product graphs?”
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We answered this question in Chapter 4, where we proposed the GTCNN model. The
GTCNN includes two novel components: (i) the parametric graph-time convolutional
layer that learns the parametric product graph and generates features through graph
convolutions [cf. Section 4.2]; and (ii) the graph-time pooling layer, which can reduce
the dimensionality along the graph domain (through downsampling) and the time do-
main (through slicing) [cf. Section 4.3]. During training, the neural network learns the
graph convolutional filters as well as the coefficients to construct the parametric product
graphs. The GTCNN is, therefore, able to perform convolutions over the learned graph-
time product graph, thus learning how to aggregate and combine values both over the
graph and over time.

(RQ3) “How to use the developed architecture for classification and regression tasks?”

We answered this question in Chapter 5 and Chapter 6, respectively. In Chapter 5, we
evaluated the GTCNN’s capability for predicting the station closest to the earthquake’s
epicentre, given a time-varying graph signal consisting of seismic measurements before
the strike. We concluded that graph-aware models obtained a higher performance, indi-
cating the structural knowledge is useful to aid learning. The proposed GTCNN achieved
higher accuracy than other models, suggesting the approach of learning graph-time cor-
relations through product graphs and graph convolutions is effective. In Chapter 6,
we evaluated the GTCNN’s capability for forecasting temperatures on two real-world
datasets. We observed different behaviours for the two datasets, which differ in size.
On the smaller dataset, linear models outperformed the neural network approaches, in-
cluding the proposed GTCNN. However, the GTCNN accumulated less error when iter-
ating over the predictions to reach longer horizons, showing higher robustness. On the
bigger dataset, we found the opposite behaviour, with the neural network approaches
outperforming the linear models, suggesting these more complex models are a reason-
able choice only when there is enough training data. The latter result also suggested that
the use of prior knowledge regarding the graph structure seems to be less beneficial in
case of abundance of data.

Based on the answer to these research questions, we can now answer the thesis main
question.

(RQ) “How to learn meaningful representations from time-varying network data by means
of graph convolutions and product graphs?”

The proposed GTCNN effectively captured and exploited the graph-time correlations in
time-varying graph signals by performing graph convolutions over graph-time product
graphs learned directly from the data. The GTCNN uses these learnable product graphs
as a prior about the graph-time interactions. The graph-time convolutional features gen-
erated by the GTCNN proved to be effective representations in both classification and
regression tasks.

7.3. FUTURE WORK
To conclude this thesis, we discuss possible future research directions that stem from

this work. In general, these suggestions pursue two goals. The first two extensions aim
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to improve the GTCNN performance by increasing its flexibility and adaptability to the
task at hand. The remaining research direction aims to create new experimental settings
to better evaluate the capabilities of the proposed GTCNN architecture.

DILATED TIME MODELLING

One limitation of the proposed GTCNN architecture is that the parametric product
graph assumes time interactions happen between values at adjacent timesteps. While
this prior seems a reasonable assumption, it has one main drawback. Suppose the graph-
time convolutions [cf. Section 4.2] need to aggregate temporal information from K timesteps
ahead. This necessarily implies that a graph filter of order K that captures this temporal
information will also capture spatial information from the K -hop neighbourhood. How-
ever, it would be useful for the GTCNN to learn graph filters that capture graph-time in-
teractions at different temporal gaps, without necessarily increasing the neighbourhood
along the spatial domain.

Building upon the idea of dilated temporal convolutions [52], it would be possible to
model time according to different dilation factors. At each layer, instead of constructing
a single graph-time parametric product graph Sl [cf. Section 4.2], the GTCNN could
learn an arbitrary number of graph-time product graphs Sl ,d , each modelling time with
a different time dilation factor d . With this new notation, it is straightforward to see that
the proposed GTCNN adopts a time dilation factor d = 1. We show in Figure 7.1 two
product graphs with different time dilation factors.

(a) (b)

Figure 7.1: Two graph-time product graphs obtained with a different dilation factor d . a) A graph-time
product graph obtained by modelling time with a dilation factor d = 1, equivalent to the formulation of the
proposed GTCNN [cf. Chapter 4]. b) A graph-time product graph obtained by using a dilation factor d = 2. We
note this graph connects over time each node with its second next version.

Following the construction of these product graphs Sl ,d , the convolutional features
generated by performing graph convolution over each graph can be aggregated accord-
ing to a certain criterion. For example, suppose the GTCNN constructs D product graphs
at a given layer, each with a different time dilation factor d . Then, the aggregated convo-
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lutional features could be defined as

u f
l ,3 =

D∑
d=1

wd u f
l ,3,d , (7.1)

where u f
l ,3,d denotes the convolutional features generated by performing graph convo-

lutions [cf. (4.4)] over the product graph having time dilation factor d and wd are learn-
able coefficients. This extension would extend the reach of the graph convolutions over
time, without necessarily extending it also over the nominal graph. In fact, by consider-
ing different dilation factors, the order of the graph filters can remain low while capturing
interactions between values that are distant in time.

HIGHER ORDER PRODUCT GRAPH

Throughout this thesis, we considered the parametric product graph formulation of
(2.26), which we recall here:

S3 =
1∑

i=0

1∑
j=0

si j (C i
T ⊗S j ) .

A possible extension of the GTCNN would be to consider higher powers for the GSOs of
the two factor graphs, yielding:

S3 =
Kc∑

i=0

Kn∑
j=0

si j (C i
T ⊗S j ) , (7.2)

where Kc defines the maximum power considered w.r.t. the GSO CT of the time graph,
and Kn defines the maximum power considered w.r.t. the GSO S of the nominal graph.

Let us briefly discuss how this revisited formulation of the product graph would af-
fect how the GTCNN models graph-time interactions. For the sake of this discussion,
let us consider the adjacency matrix as GSO of a given graph. The k-th power of the
adjacency matrix carries information about the number of k-hop walks between each
pair of nodes in the graph [84]. Therefore, when considering higher powers of the GSO
CT , the resulting product graph will also include time interactions between nodes that
are non-adjacent along the temporal evolution. Analogously, when considering higher
powers of the GSO S, the resulting product graph will also include spatial interactions
between nodes that are not direct neighbours in the nominal graph G . However, de-
tailed research is needed to reduce the computational cost of computing powers of the
adjacency matrices as well as to understand the benefits of it.

MULTIDIMENSIONAL FEATURES FOR EARTHQUAKES CLASSIFICATION

In Chapter 5, we dealt with earthquakes classification. As detailed in Section 5.2.3,
the input data consists of weak motion (velocity) measured along the vertical axis and
recorded at 100 Hz. However, since earthquakes are complex phenomena, there may be
a different set of measurements that represents a better input for the task we dealt with1,

1A list of the available measurements can be found at https://www.geonet.org.nz/data/supplementa
ry/channels in the “Channel Code” section.

https://www.geonet.org.nz/data/supplementary/channels
https://www.geonet.org.nz/data/supplementary/channels
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such as temperature and pressure, to name just a few. Therefore, a future research di-
rection on earthquakes classification may be pursued by providing to the GTCNN mul-
tidimensional measurements at each seismic station, and fully exploit the end-to-end
learning capability of the GTCNN.
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Given two matrices A ∈Rm×n and B ∈Rp×q , their Kronecker product C = A⊗B ∈Rmp×nq

is obtained as [85]:

A ⊗B =

 a11B · · · a1n B
...

. . .
...

am1B · · · amn B

 .

Among all the properties of the Kronecker product, which are listed in [85], we report
here an important one which we exploit in this work. Given four matrices A ∈ Rp×q ,
B ∈Rr×s , C ∈Rq×k , D ∈Rs×l , it follows that:

(A ⊗B )(C ⊗D) = AC ⊗B D . (A.1)

Given two square matrices A ∈Rn×n , B ∈Rm×m , it follows from (A.1) that:

(A ⊗B )k = Ak ⊗B k . (A.2)
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B.1. NON-LEARNING RUNS
Most likely due to the initialization of the network parameters, it may happen that the
models do not learn and behave similarly to a random classifier (they exhibit an accuracy
close to 1

C , where C is the number of classes). For the sake of completeness, we report in
this Appendix some additional information about these runs. Table B.1 shows informa-
tion about the baseline models adopted for the Source Localization task. Moreover, we
show in Table B.2 detailed information about the runs involving product graph-based
models (without graph-time pooling).

B.2. SPARSE REGULARIZATION
In Section 4.6, we showed the boxplots for different values on the parameter β con-

trolling the importance of the sparse regularizer [cf. Figure 4.10]. We report here in Table
B.3 the average accuracy and its standard deviation for these experiments.

Table B.1: Statistics about the baselines for the Source Localization task

Model Window Accuracy # Failed
GCNN 1 0.642 (0.16) 4
GCNN 2 0.424 (0.217) 17
GCNN 3 0.446 (0.227) 17

Table B.2: Statistics about all the product graph-based models for the Source Localization task.

Parametric Product type Time Init Window Accuracy # Failed
No Cartesian Directed - 2 0.645 (0.186) 5
No Cartesian Directed - 3 0.662 (0.185) 5
No Cartesian Undirected - 2 0.623 (0.194) 6
No Cartesian Undirected - 3 0.646 (0.201) 6
No Strong Directed - 2 0.634 (0.201) 6
No Strong Directed - 3 0.67 (0.174) 4
No Strong Undirected - 2 0.505 (0.262) 14
No Strong Undirected - 3 0.608 (0.227) 8
Yes - Directed 1 2 0.677 (0.18) 4
Yes - Directed 1 3 0.655 (0.203) 6
Yes - Directed Random 2 0.606 (0.244) 9
Yes - Directed Random 3 0.693 (0.182) 4
Yes - Undirected 1 2 0.46 (0.26) 17
Yes - Undirected 1 3 0.53 (0.257) 13
Yes - Undirected Random 2 0.589 (0.246) 10
Yes - Undirected Random 3 0.539 (0.262) 13

Table B.3: Average accuracy and standard deviation of the experiments on the `1-norm regularization.

β 0 2.5×10−4 5×10−4 0.001 0.0025 0.005 0.0075 0.01 0.05 0.1 0.5 1
Avg. Acc. 0.616 0.681 0.69 0.702 0.718 0.658 0.704 0.694 0.684 0.688 0.616 0.626

Std. 0.22 0.158 0.148 0.129 0.086 0.188 0.106 0.126 0.122 0.11 0.139 0.073
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We have shown in Section 6.2 the problem with the training, validation, and test set
distribution with the NOAA dataset. We show in Figure C.1 the NOAA time series data
before and after the differencing step. The resulting distributions were shown in Figure
6.3.
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(a) Original data.
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(b) Differenced data (first order difference).

Figure C.1: NOAA full data at node 78 before and after first order difference.

Moreover, to demonstrate the prediction capability of the GTCNN, we show in Fig-
ures C.2 and C.3 the predictions for the Molene and NOAA datasets. We show predic-
tions for one, three, and five steps-ahead to illustrate how the prediction worsens as we
increase the length of the horizon h.
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(a) One step-ahead prediction.
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(b) Three steps-ahead prediction.
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(c) Five steps-ahead prediction.

Figure C.2: GTCNN prediction on the Molene dataset (test set) at a specific node,
randomly chosen. Station id: 22135001. Station name: LOUARGAT. The model never
saw this data before.
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(a) one step-ahead prediction.
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(b) three steps-ahead prediction.
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(c) five steps-ahead prediction.

Figure C.3: GTCNN prediction for the NOAA dataset (test set) at node 78, randomly
chosen. For illustration purposes, only a week of data is shown. The model never saw
this data before.
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D.1. SEISMIC STATIONS
Section 5.2.1 introduced the earthquake dataset, discussing the 58 seismic stations

providing the wave measurements. We show in Table D.1 the details regarding these
stations. Each station can be uniquely identified on the FDSN service using a ‘network’
code and ‘station’ code. The most important details for us are the ‘index’ column, which
relates each station with a node in the graph, and the ‘latitude’ and ‘longitude’ columns,
locating the stations on the geographic map.

D.2. MULTI-CLASS CLASSIFICATION METRICS
In Section 5.4.2, we performed the multi-class classification experiment and showed

the plot for the radius-based accuracy only. We report in Figures D.1a, D.1b, and D.1c
the other radius-based metrics (precision, recall, and f1) for the multi-class experiment.
While the recall of the GTCNN is higher than the other models, the GTCNN exhibits a
lower precision and f1 score. However, we also see that for a value of radius R > 65, the
precision of the GTCNN catches up with the GGRNN model, also improving the resulting
f1 score.

D.3. DOWNSAMPLING STEP VALIDATION
In Section 5.4.2, we performed an experiment to make sure our downsampling step

does not represent information loss and showed the plot for the radius-based accuracy
only. We report in Figures D.2a, D.2b, and D.2c the other radius-based metrics (preci-
sion, recall, and f1) for this experiment. The behaviour for these metrics is similar to the
one observed in the accuracy [cf. Figure 5.17], i.e., the model trained on the raw data
performs similarly to the model trained on the downsampled data for small values of R,
and worse for larger radiuses.

D.4. BINARY CLASSIFICATION
In Section 5.4.3, we performed the binary classification experiment and showed the

boxplots for the accuracy only. We report in Figures D.3, D.4, and D.5 the boxplots for
the precision, recall and f1. We can still observe that certain classes lead, on average, to
higher performance on these metrics. This result is consistent with the findings shown
for the accuracy [cf. Figure 5.18]. Moreover, we see that the spread of the boxplots is
significantly higher for the recall than for any other chosen metric. For example, when
the positive class is class 8, the GGRNN scored both recall 0% and 100%.
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Table D.1: Stations for the New Zealand earthquake dataset presented in section 5.2.

index network station latitude longitude sitename

0 NZ BFZ -40.679647 176.246245 Birch Farm
1 NZ BHW -41.408231 174.871115 Baring Head
2 NZ BKZ -39.165666 176.492544 Black Stump Farm
3 NZ COVZ -39.199914 175.542402 Chateau Observatory
4 NZ CVZ -44.383180 171.006160 Cave
5 NZ DCZ -45.464713 167.153533 Deep Cove
6 NZ DSZ -41.744961 171.804614 Denniston North
7 NZ EAZ -45.231053 169.308253 Earnscleugh
8 NZ ETVZ -39.135700 175.710600 East Tongariro
9 NZ FWVZ -39.254945 175.552952 Far West
10 NZ GRZ -36.250200 175.457800 Great Barrier Island
11 NZ GVZ -42.967365 173.034750 Greta Valley
12 NZ HAZ -37.756100 177.782600 Te Kaha
13 NZ HIZ -38.512929 174.855686 Hauiti
14 NZ INZ -42.724500 171.444100 Inchbonnie
15 NZ JCZ -44.073210 168.785473 Jackson Bay
16 NZ KHEZ -39.294200 174.014500 Kahui Hut
17 NZ KHZ -42.415980 173.538970 Kahutara
18 NZ KNZ -39.021755 177.673669 Kokohu
19 NZ KUZ -36.745229 175.720873 Kuaotunu
20 NZ LBZ -44.385553 170.184420 Lake Benmore
21 NZ LTZ -42.781667 172.271035 Lake Taylor Station
22 NZ MLZ -45.366544 168.118407 Mavora Lakes
23 NZ MQZ -43.706082 172.653766 McQueen’s Valley
24 NZ MRZ -40.660545 175.578527 Mangatainoka River
25 NZ MSZ -44.673334 167.926399 Milford Sound
26 NZ MWZ -38.334001 177.527779 Matawai
27 NZ MXZ -37.562259 178.306631 Matakaoa Point
28 NZ NNZ -41.217103 173.379477 Nelson
29 NZ ODZ -45.043982 170.644622 Otahua Downs
30 NZ OPRZ -37.844300 176.554929 Ohinepanea
31 NZ OPZ -45.884356 170.597767 Otago Peninsula
32 NZ OUZ -35.219689 173.596133 Omahuta
33 NZ OXZ -43.325900 172.038300 Oxford
34 NZ PUZ -38.071548 178.257209 Puketiti
35 NZ PXZ -40.030644 176.862145 Pawanui
36 NZ QRZ -40.825522 172.529148 Quartz Range
37 NZ RATZ -38.866498 175.772176 Rangitukua
38 NZ RPZ -43.714608 171.053865 Rata Peaks
39 NZ RTZ -38.615440 176.980518 Ruatahuna
40 NZ SYZ -46.536890 169.138823 Scrubby Hill
41 NZ THZ -41.762474 172.905218 Top House
42 NZ TLZ -38.329400 175.538000 Tolley Road
43 NZ TMVZ -39.115610 175.704064 Te Maari
44 NZ TOZ -37.730956 175.501847 Tahuroa Road
45 NZ TRVZ -39.298816 175.547822 Turoa
46 NZ TSZ -40.058553 175.961124 Takapari Road
47 NZ TUZ -45.953975 169.631143 Tuapeka
48 NZ URZ -38.259249 177.110894 Urewera
49 NZ VRZ -39.124341 174.758453 Vera Road
50 NZ WCZ -35.938642 174.345043 Waipu Caves
51 NZ WEL -41.284048 174.768184 Wellington
52 NZ WHVZ -39.282500 175.588600 Whangaehu Hut
53 NZ WHZ -45.892428 167.947031 Wether Hill Road
54 NZ WIZ -37.524511 177.189302 White Island
55 NZ WKZ -44.827021 169.017562 Wanaka
56 NZ WSRZ -37.518110 177.177805 White Island Summit
57 NZ WVZ -43.074350 170.736754 Waitaha Valley
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Figure D.1: Radius-based macro-averaged metrics for the multi-class classification
problem presented in section 5.4.2. a) Macro-averaged recall, b) Macro-averaged
precision, c) Macro-averaged f1-score. The radius ranges from 0km (standard
macro-averaged metrics) to 100km.
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Figure D.2: LSTM radius-based metrics with and without downsampling (2Hz data
versus 100Hz data). The experiment is detailed in section 5.4.2. a) Macro-averaged
precision, b) Macro-averaged recall, c) Macro-averaged f1-score. The radius ranges
from 0km (standard macro-averaged metrics) to 150km.
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Figure D.3: Boxplots of the precision for each binary classification setting. The number
of iterations (per boxplot) is 20.
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Figure D.4: Boxplots of the recall for each binary classification setting. The number of
iterations (per boxplot) is 20.
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Figure D.5: Boxplots of the f1-score for each binary classification setting. The number of
iterations (per boxplot) is 20.
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