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Abstract—Workflows are important computational tools in
many branches of science, and because of the dependencies
among their tasks and their widely different characteristics,
scheduling them is a difficult problem. Most research on
scheduling workflows has focused on the offline problem of
minimizing the makespan of single workflows with known
task runtimes. The problem of scheduling multiple workflows
has been addressed either in an offline fashion, or still with
the assumption of known task runtimes. In this paper, we
study the problem of scheduling workloads consisting of an
arrival stream of workflows without task runtime estimates.
The resource requirements of a workflow can significantly
fluctuate during its execution. Thus, we present four scheduling
policies for workloads of workflows with as their main feature
the extent to which they reserve processors to workflows to deal
with these fluctuations. We perform simulations with realistic
synthetic workloads and we show that any form of processor
reservation only decreases the overall system performance and
that a greedy backfilling-like policy performs best.

I. INTRODUCTION

In many branches of science such as astronomy and

bioinformatics, workflows (WFs) are widely used for all

kinds of computational and data analysis problems. Because

of the dependencies among their tasks and because of

the diversity of their structures, sizes, and task runtimes,

scheduling WFs efficiently on clusters and datacenters is a

difficult problem. Most research on scheduling WFs focuses

on the offline problem of minimizing the makespan of single

WFs for which estimates of the task runtimes are known. In

contrast, in this paper we propose four scheduling policies

for online scheduling workloads consisting of arriving WFs

with unknown task runtimes, and we perform simulations to

evaluate their performance.

The problem of minimizing the makespan of single WFs

has been studied very extensively, usually assuming that the

task runtimes are known. Well-known approaches for task

selection when resources become available are the HEFT

policy [1] that schedules each WF task on the processor

that minimizes its finish time, and policies that try to

optimize the schedule of the critical path of a WF [2]–[4].

Scheduling multiple WFs has received some attention in the

past. However, some of this work still considers the offline

problem of minimizing the total makespan of a fixed set of

WFs, without or with the added requirement of fairness [5].

Other work does consider the online problem with an arrival

stream of WFs but translates the problem into scheduling

and executing complete batches of WFs before considering

later arrivals [6], or builds a single Directed Acyclic Graph

(DAG) from the DAGs representing a set of WFs [7]. In this

paper we study the online problem of scheduling an arrival

stream of WFs, which in addition to the problem of task

selection involves the problem of WF selection from which

to pick tasks to run.

The WFs that are used in practice are still growing in size,

complexity, as well as in the number of dependencies among

their tasks [8]–[10]. Even though WFs are popular as an

automation tool for e-Science experiments [11], obviously,

the workloads of real clusters consist of jobs of different

types in addition to WFs, such as parallel applications and

Bags of Tasks. When WFs are run very often, either the user

or the system may be able to derive reasonable estimates of

the runtimes of tasks of WFs. However, in this paper, we

take a step back and we address the fundamental question

of how well a workload consisting exclusively of WFs of

which the task runtimes are not known can be scheduled.

When scheduling WFs from the queue of WFs that have

been submitted but that have not yet completed, resources

may be available while the WFs towards the head of the

queue may not have tasks that are eligible to run. Thus, the

main distinguishing feature of the four scheduling policies

we propose is to what extent they are greedy in scheduling

any task of any WF in the queue versus to what extent they

reserve processors for WFs towards the head of the queue

in order not to unduly delay these WFs. Our policies range

from a very strict reservation-based policy that guarantees

no delay to the WF at the head of the queue due to

later WFs, to a greedy backfilling policy. The jobs for

the simulations we generate are based on real scientific

workloads [8]–[11]. In our performance evaluation we report

the average job slowdown of the WFs and the maximal

utilization—because WF scheduling is not work-conserving

due to the precedence constraints among WF tasks, the

system may become saturated for utilizations well below 1.0.



For the implementation of the system model and the proposed

scheduling policies we use an improved version of the DGSim

discrete event simulator [12].

This paper is organized as follows. In Section II we provide

our problem statement. Section III motivates and presents our

scheduling policies. Section IV discusses our experimental

setup and characterizes the synthetic workloads. In Section V

we show and explain the obtained results. Section VI contains

a survey of related work. Finally, in Section VII we present

our conclusions and ideas for future work.

II. THE PROBLEM STATEMENT

We consider large-scale computing systems such as large

clusters and datacenters that are subject to an arrival stream

of WFs. We only consider processors as the type of system

resources that can be controlled by the scheduler. Every

computing node in the system contains only one processor.

Furthermore, we assume that the system is homogeneous,

with identical processors and communication links between

them. Since we focus on the computational properties of WFs,

we assume that the data transfer times between computing

nodes in our simulated system can be neglected. This is

equivalent to the situation in a real system when all the tasks

of a WF write their results to a shared storage so that all

the required data are immediately available for any WF task

when all of its dependencies are satisfied.

In this paper we assume that each WF task requires only

one processor. The size of a WF is defined as the number of

tasks it has. All the considered WF structures have a single

entry node and a single exit node. We guarantee this by

adding, if necessary, one or two artificial nodes with zero

runtime.

Many WF scheduling algorithms employ user estimates

or predictions of task runtimes. It is well known that the

estimates provided by users are usually quite inaccurate [13].

At the same time, the runtime prediction approaches are often

relatively complex, do not work well for some situations,

and can also be inaccurate. Finally, always new or unknown

WFs can be submitted to systems. For all of these reasons,

we suppose that the runtimes of the tasks of the WFs are

unknown to the scheduler.

Scheduling WFs is in itself not work-conserving as there

may be idle processors in the system while there is no

waiting task with all its dependencies satisfied. In addition,

a property of several of our policies is that they reserve

processors to WFs in order to deal with their fluctuating

resource requirements. As a consequence, policies scheduling

workloads of WFs may not be able to drive a system up to a

utilization of 1.0. Therefore, we use the maximal utilization

as a system-oriented metric to assess the performance of WF

scheduling policies. The maximal utilization ρm is defined as

the utilization such that for any ρ1 with ρ1 < ρm the system

is stable (not saturated), and for any ρ2 with ρ2 > ρm the

system is unstable (saturated).

As a user-oriented metric to assess WF scheduling policies

we use the (average) slowdown, which is defined in steps in

the following way:

• The wait time Tw of a WF is the time between its

arrival and the start of its first task.

• The execution time Te of a WF is the sum of the

runtimes of all its tasks.

• The makespan Tm of a WF is the time between the

start of its first task until the completion of its last task.

• The response time Tr of a WF is the sum of its wait

time and its makespan: Tr = Tw + Tm.

• The slowdown S of a WF is its response time (in a busy

system, when the WF runs simultaneously with other

WFs) normalized by its makespan T ′
m in an empty

system of the same size (when the WF has exclusive

access to all the processors): S = Tr / T
′
m.

The research question we address in this paper is “What

are appropriate policies for online scheduling WFs without

having knowledge of task runtimes, and what is their

performance in terms of the job slowdown as a function

of the system utilization, and of the maximal utilization?”

III. SCHEDULING POLICIES

In this section we will describe the four policies for

scheduling workloads consisting of WFs the simulation

results of which we will show later in the paper. Before doing

so, we will present some definitions and concepts required for

explaining the policies, and the way the scheduler manages

the queue of waiting WFs.

A. Definitions

For a WF, at any point in time before or during its

execution, its eligible set (of tasks) is defined as the set

of non-completed tasks of which the precedence constraints

have been satisfied. In other words, the eligible set is the set of

all tasks that are currently running and those that are waiting

but that could run if sufficient resources were available. More

generally, we introduce the notion of the generation-i eligible
set (or the eligible set of generation i) at any point in the

execution of a WF, which is a potential future eligible set.

The generation-0 eligible set of a WF is simply equal to its

current eligible set. The generation-(i+ 1) eligible set of a

WF contains all the tasks that will become eligible when

(exactly and only) all the tasks from its generation-i eligible
set have completed. It is important not to confuse eligible

sets with levels in a WF. The levels consist of the tasks

that have the same distance from the entry task. However,

the eligible sets of generation-i can differ from the levels,

because paths of different lengths can exist in a WF from

the entry task to any other single task.

For a WF that has not yet completed, we define its Level
of Parallelism (LoP) as the maximum number of processors

it may ever use at any future point in its execution, which is

equal to the maximum number of tasks in any of its potential



future eligible sets. Of course, the LoP of a WF can only

stay the same or decrease during its execution. The LoP is

used in the definition of some of our scheduling policies.

B. Calculating the Level of Parallelism

In some of our scheduling policies, we will use the LoP

of the remaining part of a WF consisting of the tasks that

have not yet completed for deciding how many processors to

reserve for it. Then, whenever a task of a WF completes, the

LoP of the remaining part of the WF has to be recomputed,

leading to a very large number of LoP recomputations. The

DAG representing the non-completed part of a WF is a sub-

DAG of the DAG of the original WF. Such a sub-DAG can

have multiple entry nodes but will always have a single

exit node. We say that a node a precedes (follows) node b
in a DAG when there is a path of precedence constraints

from a (b) to b (a). Two nodes a and b are said to be

comparable (incomparable) if one (none) of them precedes

or follows the other. With the “comparable” relation, a DAG

can be considered as a partially ordered set (poset). The

value of the LoP is equal to the width of this poset, which is

defined as the cardinality of the maximum set of incomparable

elements in the poset. There exist multiple algorithms [14] to

compute the exact LoP using Dilworth’s chain partition of the

original DAG, but they require the creation of an additional

comparability graph or a bipartite graph. Dilworth’s theorem

[15] represents the width of a poset as a partition of the

poset into a minimum number of chains, where each chain is

a path from a source to a sink in the directed comparability

graph.

To avoid the construction of any auxiliary data structures,

we will use a simple LoP approximation algorithm that

calculates the LoP in an adequate time even for large WF

structures, and, as we will show, it does so with only a

relatively small amount of underestimation of the actual LoP

for many well-known WF structures. Our approximation

algorithm uses the size of the largest generation-i eligible

set as the value of the LoP. To find the size of this set the

algorithm employs tokens to simulate an execution “wave”

in a DAG. Initially, the algorithm places tokens in the entry

nodes of the DAG. Then it moves in successive steps the

tokens to all the nodes all of whose parents have already

received tokens, until the exit node gets a token (Figure 1a).

After each such step, the set of tokenized nodes is recorded.

At the end of the algorithm, the size of the largest recorded

tokenized set is the approximated LoP value. Note that in

fact, these tokenized sets coincide with the eligible sets of

different generations as defined in Section III-A.

We have compared the results provided by this approxi-

mation algorithm with the exact LoPs for different WF sizes

for five popular WF structures, LIGO, SIPHT, Montage,

Cybershake, and Epigenomics. For each considered size of

each WF type, we generate 50 DAGs using the generator

from [16]. As can be seen from Figure 2, our method

approximates the true LoP value extremely well. We provide

the LoPs here only for LIGO, SIPHT, and Montage, since

Cybershake and Epigenomics show similar results. For both

methods, the LoP values obtained for the 50 DAGs of each

WF type are all very close to the mean. Of course, there

can be situations where our approach does underestimate

the LoP, see for instance the simple example in Figure 1.

However, since the algorithm works well for the selected

WFs, which are quite popular and representative, we will

use the LoPs computed by it when simulating policies that

use LoP in their scheduling decisions.

From the results in Figure 2, we can conclude that the

tested WFs have rather regular, but still different, structures.

First of all, for all three WF structures, the (average) LoP

increases superlinearly (and especially for Montage and

SIPHT, in a very strong way). Secondly, even for LIGO,

but especially for the other two, the LoP is very large in

relation to their total size. For LIGO, the LoP is slightly less

than 200 for a WF size of 800, but Montage and SIPHT

already reach that LoP for WFs of size less than 400.

C. Queue management and task selection

We assume that the scheduler maintains a single queue of

waiting WFs. Every arriving WF is appended to the tail of

the queue, and the scheduler decides which tasks of which

WFs in the queue are scheduled when resources become

available. For all the policies we will consider, the scheduler

is invoked when a task of a WF completes, or when a new

WF arrives (possibly to a non-empty queue). The WFs are in

principle processed in the order of their arrival, but multiple

WFs can be partially in execution while the remainder of

their tasks are still waiting (either for a lack of resources or

because of precedence constraints between tasks), in which

case we still regard them to be present in the queue. A WF

only leaves the queue when all of its tasks are finished.

When the scheduler is activated, it selects the WFs in the

queue from which tasks are scheduled in a way dictated by

the actual scheduling policy. As we assume that all WF tasks

require only one processor and that we do not have user

estimates or predictions of task runtimes, after the scheduler

has selected a WF from which to start a task, it picks a task

from its eligible set randomly. As the execution order of the

tasks from the current eligible set may influence subsequent

eligible sets, and so, the makespan of the WF, this random

task selection may not lead to the optimal schedule for the

WF, but without knowledge of task runtimes it is difficult

to do better. Giving priority to tasks in the eligible set that

would enable large numbers of other tasks might improve

the makespan of a WF, but this is highly dependent on the

task runtimes.

D. The Strict Reservation policy

The most classic and simple general queuing policy is

FCFS. When scheduling WFs, the definition of FCFS is not
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(b) Exact LoP

Figure 1: An example of LoP approximation (a) versus the exact LoP (b).

(a) Montage (b) LIGO (c) SIPHT

Figure 2: A comparison of the exact and the approximation method for calculating the LoP for different WF structures.

completely straightforward. The idea behind our version of

the FCFS policy for WFs can be summarized by the condition

that the service to a WF will only be influenced by the WFs

ahead of it in the queue and never by WFs behind it in the

queue. We enforce this condition by strictly reserving for

any WF in the queue sufficient resources so that it will never

be delayed by any later WF—hence the alternative name is

Strict Reservation (SR) policy.

With the SR policy, when the scheduler is invoked and the

WF at the head of the queue has fewer processors allocated

to it than its LoP (which may be in use or idle), it allocates

additional available processors to the WF at the head of the

queue until the WF has LoP processors or until there are no

more available processors. When at a later time the scheduler

is invoked again while the WF at the head of the queue has

not yet been completed, the scheduler recomputes its LoP,

keeps LoP processors allocated to the WF, and releases any

remaining processors. If any idle processors remain after

LoP processors have been allocated to the WF, the scheduler

tries to schedule the next WF in the queue—it does so in

exactly the same way as if that WF were at the head of the

queue.

E. The Scaled LoP policy

Of course, WFs may never attain their LoPs, and especially

for large WFs, the SR policy may be very wasteful and lead

to a low maximal utilization. Whereas the SR policy executes

a WF in the shortest possible time once it starts allocating

processors to it, the wait times of the WFs with SR may be

excessive. A straightforward solution to this problem is to

reduce the reservation of a WF to a number of processors

that is lower than its LoP. Thus, the Scaled LoP (SLoP)

policy with scaling factor f, 0 ≤ f ≤ 1, tries at all times

to keep f · LoP processors allocated to a WF. This means

that if at some point the size of the eligible set of a WF is

smaller than f · LoP, the scheduler will try to keep reserved

a number of processors equal to the difference between these

two values. If, however, at some point the size of the eligible

set of a WF exceeds f · LoP, the SLoP policy will allocate

any available processors to eligible tasks of WF. The SLoP

policy behaves similar to the SR policy albeit with a lower

reservation target, and in the boundary case when f = 1 it

is equal to it. At the other extreme, as we will see below,

our backfilling policy is in fact identical to the SLoP policy

with scaling factor equal to 0.

F. The Future Eligible Sets policy

The idea behind reserving processors for WFs is to reduce

the delay in placing tasks in the eligible set. Rather than,

when reserving processors, taking a worst-case perspective

on the number of processors a WF may ever need as we did

in the SR policy, we may also try to look into the future

of the execution of the WFs. Thus, the Future Eligible Sets

(FES) policy with depth n tries to allocate to a WF a number

of processors that is equal to the size of largest eligible set

of any generation from 0 through n. With our approximation

of computing the LoP as presented in Section III-B, the FES

policy with depth ∞ coincides with the SR policy. At the



other extreme, as we will see below, our backfilling policy

is in fact identical to the FES policy with depth equal to 0.

G. The Backfilling policy

Depending on the scaling factor and the depth, the

SLoP and FES policies may be very wasteful of resources

because of useless reservations. To completely do away with

reservations and the waste of resources it entails, we now

define the Backfilling (BF) policy that tries to allocate to any

WF any number of processors up to the size of its current

eligible set. Thus, at every invocation, the scheduler scans

the queue from head to tail and from each WF it encounters

it places as many tasks from the corresponding eligible set as

it can. Thus, the BF policy is greedy as it allows to schedule

any task from any eligible set of any WF in the queue. As

we assume that each task requires only one processor, there

will only be idle processors in the system when all tasks in

the eligible sets of all WFs in the queue are actually running.

As already remarked above, the BF policy is a special case

of the SLoP policy with scaling factor f = 0.

Our BF policy for WFs is similar to the backfilling policies

that have been introduced for parallel jobs [13], [17], but our

policy does not use runtime estimates. However, even so, with

our BF policy for WFs and because of our assumption that

each task requires one processor, starvation is intrinsically

impossible—we always try to schedule as many tasks of a

WF as possible before considering the next WF, thus always

granting at least some resources to a WF before allowing

WFs later in the queue to receive resources. In contrast,

unless special measures are taken, starvation is possible

when backfilling parallel jobs (and when backfilling WFs

with parallel tasks).

Compared to the SR policy, with BF, on the one hand WFs

can be delayed by later WFs, thus increasing the makespans

and so the job slowdowns. On the other hand, BF allows

the WFs in the queue to start their execution earlier, thus

decreasing the wait times and so the job slowdowns. From

our evaluation we will see which of these two effects is

stronger.

IV. EXPERIMENTAL SETUP

In this section, we present our simulation environment and

we characterise the synthetic workloads we use to analyse

the performance of our scheduling policies.

We have modified the DGSim simulator [12], [18] for

cluster and grid systems to include our scheduling policies.

The only resource modeled in our simulations is the proces-

sors. We assume that the WFs submitted to the simulated

cluster arrive according to a Poisson process. The size of the

homogeneous cluster we use in all of our simulations is 100.

For our simulations, we select three representative types

of WFs from different application domains, i.e., astronomy

(Montage [8]–[10], [19]), physics (LIGO [8]–[10], [20]),

and bioinformatics (SIPHT [8], [9], [21]). Montage builds

mosaic images of the sky obtained from different telescopes.

LIGO is used to process the data from detectors of the Laser

Interferometer Gravitational Wave Observatory (LIGO) [22]

and its mission is to detect gravitational waves predicted

by general relativity. SIPHT helps to search for small

untranslated bacterial regulatory RNAs.

In Figure 3 we show the structure of the DAGs of the three

WF types. Montage has the most complicated structure and

its size is determined by the number of processed images.

A LIGO WF usually consists of many smaller WFs combined

into a single WF. Similarly to LIGO, the SIPHT WF combines

smaller independent WFs, but with very similar structures.

The WF types are diverse not only in the structure of their

DAGs, but also with respect to the processing requirements

of the component tasks as we will see below. Furthermore,

we have already analysed the maximum levels of parallelism

they can achieve in Section III-B.

We generate four workloads of 3,000 jobs each using the

WF generator [16] presented in [8]: one workload per WF

type, and an additional workload that mixes equal fractions of

the three types. As with many other workloads in computer

systems, in practice, WFs are usually small, but very large

ones may exist too [11]. Therefore, in our simulations we

distinguish small, medium, and large WFs, which constitute

fractions of 75%, 20%, and 5% of the workloads. We assume

all WFs to have even sizes. The size of the small, the medium,

and the large WFs is uniformly distributed on the intervals

[30, 38], [40, 198], and [200, 600], respectively.

In order to obtain simulation results for the different

WF types that can easily be compared (especially when

simulating the mixed workload), we use the same total

execution time distribution for all three WF types. This

distribution is a two-stage hyper-Gamma distribution derived

from the model presented in [23]. The shape and scale

parameters (α, β) of two component Gamma distributions are

set to (5.0, 501.266) and (45.0, 136.709), respectively. Their

proportions in the overall distribution are 0.7 and 0.3. The

average total execution time is one hour. Figure 4 visualizes

this distribution. For every WF, we normalize the task

runtimes generated so that its total processing requirement

is equal to the corresponding sample of the execution

time distribution. In Figure 5 we show the distributions

of the normalized task runtimes for each WF type. The

maximum task runtimes in Montage and LIGO are an order

of magnitude smaller than the maximum task runtimes in

SIPHT, but all three WF types share the phenomenon that

they are dominated by short tasks.

In our simulations, we vary the utilization starting at 0.05

with step size 0.05. If for some utilization the system did

not become stable in the simulations, we will only show

performance results up to that utilization. We will consider

the highest utilization for which the system did become stable

as the maximal utilization as defined in Section II. We set

the scaling factor f in our SLoP policy to 0.2, 0.8, and 0.9,



(a) Montage (b) LIGO (c) SIPHT

Figure 3: The WF structures we use in our simulations.

Figure 4: The distribution of the total WF execution times

in the workloads.

and we evaluate the FES policy with depths 1, 2, and 10.

For each experiment, we report the average job slowdown

over three repetitions, and we only show results when the

system is in steady state. Thus, when reporting performance

results, we omit the performance information for the first

1,000 jobs in each simulation and for those WFs that have

not completed their execution before the start of the last

arriving WF.

V. EXPERIMENTAL RESULTS

In this section we report our simulation results and their

analysis. In Figure 6 we show for all the policies and for all

four workload types the mean WF slowdown as it depends

on the utilization in the system. The last point in all curves

is for the highest utilization for which the system is stable

in the simulations. In Table I we summarize these maximal

utilizations.

As a first general observation, we find that for all policies

that do some form of reservation, the maximal utilization is

Figure 5: The distribution of the task runtimes for each

WF type (the horizontal axes have different scales, and the

vertical axes are in log scale).

low, or even very low. The worst is a maximal utilization

of only 0.2 for the SR policy with the SIPHT workload.

Apparently, reserved resources often remain idle, and the

benefit of reservations for a short makespan don’t balance

their negative effect of having long wait times.

Our second general observation is that the performance

both in terms of mean slowdown and maximal utilization

varies considerably across the three workloads consisting of

a single WF type. However, the different WF types almost

always have the same relative performance. In particular,



(a) SR

(b) SLoP, f = 0.9

(c) SLoP, f = 0.8

(d) SLoP, f = 0.2

(e) FES, depth 10

(f) FES, depth 2

(g) FES, depth 1

(h) BF

Figure 6: The mean slowdown of WFs as a function of the utilization for the different policies and for each of the four

workload types (the vertical axis is in log scale).



(a) SR at a utilization of 0.35

(b) BF at a utilization of 0.95

Figure 7: Scatter plots of the slowdowns versus the sizes of

all WFs in the simulations for the mixed workload with the

SR and BF policies at their maximal utilizations (both axes

are in log scale).

for all the policies except FES with depth 1 and BF, LIGO

performs the best and SIPHT performs the poorest. This

can be explained from the perspective that the number of

reserved processors that is actually used is higher for LIGO

than for the other WF types. In contrast, SIPHT and Montage

use smaller fractions of the reserved processors.

Thirdly, as can be expected, the performance for the

mixture workload is always somewhere in between the

performance of the pure workloads. Except for the cases

with the FES policy with depth 1 and the BF policy, it has a

very low maximal utilization that is well below the maximal

Table I: The maximal utilizations for the considered schedul-

ing policies.

Workload type

Policy Montage LIGO SIPHT Mixture

SR 0.55 0.70 0.20 0.35

SLoP, f = 0.9 0.55 0.70 0.20 0.35

SLoP, f = 0.8 0.55 0.70 0.25 0.40

SLoP, f = 0.2 0.75 0.85 0.50 0.65

FES, depth 10 0.55 0.70 0.20 0.35

FES, depth 2 0.55 0.70 0.20 0.35

FES, depth 1 0.55 0.95 0.80 0.80

BF 0.95 0.95 0.95 0.95

utilizations for the Montage and LIGO workloads.

As to the performance of the SR and SLoP policies,

decreasing the scaling factor f improves the performance as

the curves for all workloads move to the right in the plots

when going down from Figure 6a to Figure 6d. Going from

a scaling factor of 1.0 (SR) through 0.9 and 0.8 to 0.2, the

maximal utilization for the mixture workload increases from

0.35 (for scaling factors of 1.0 and 0.9) through 0.4 (for a

scaling factor of 0.8) to 0.65 (for 0.2). Apparently, when

decreasing the scaling factor, the SLoP policy decreases the

number of idle but reserved processors.

Our experiments with the FES policy show that increasing

the depth decreases the performance because the scheduler

reserves ever more processors to each WF. As Figure 6f

shows, with a depth of 2 the FES policy already starts to

behave like SR, and with a depth of 10 it has almost identical

performance to SR. For a depth of 1 the FES policy goes

closer to the BF policy, and an interesting effect can be

observed. Whereas SIPHT for most policies exhibits the

poorest performance, with FES with depth 1 it suddenly

achieves a maximal utilization of 0.8. It means that with a

depth of 1 the reservation size for SIPHT sharply drops. In

contrast, Montage has the same maximal utilization with FES

for depths 1, 2, and 10. The reason for this is the structure

of the Montage WF, which causes the scheduler to reserve

quite a large number of processors even with a depth of 1.

Finally, the BF policy (which is identical to SLoP with a

scaling factor of 0.0 and to FES with depth equal to 0) shows

by far the best performance results. As can be seen from

Figure 6h, it treats all the WF types almost equally, and it

is even stable at a utilization 0.95. Apparently, at extremely

high utilizations there are always eligible waiting tasks to be

found in the queue to start when a task finishes. Overall, we

can conclude from Figure 6 that the SR policy is the worst

and the BF policy is the best among our policies—reserving

processors for WFs with workloads consisting solely of WFs

is not a good idea!

In Figure 7 we show scatter plots with the slowdowns

versus the sizes of all WFs in the simulations for the mixed



Figure 8: The dynamics of the joint eligible set size and the

number of reserved processors during the simulation of the

SR policy at a utilization of 0.35 during a 5-hour period.

workload with the SR and BF policies at their maximal

utilizations. We show these plots for these two cases as they

are the policies that are at the extremes of the spectrum of

policies we consider. The most striking thing about these plots

is not that they are very different, because in fact, they are

not. The striking thing is that they are almost identical at such

widely different utilizations (0.35 versus 0.95), exhibiting

the huge advantage of using the BF policy. The variation of

the density of dots in the horizontal direction is caused by

the job size distribution in the used workloads as described

in Section IV, with many small jobs of sizes below 40,

and much smaller number of medium-sized jobs with sizes

between 40 and 200, and a still smaller number of jobs

with sizes between 200 and 600. Since we only generated

even WF sizes, it also explains the columns for small WF

sizes. None of our policies takes into account the size of

a WF when processing the queue. Still, in Figure 7 there

are somewhat more outliers with slowdowns over 20 among

the larger jobs than among the smaller ones, although the

difference is not really significant. Among the outliers, most

WFs are of the type LIGO, which has the smallest LoP; there

are hardly any outliers of type SIPHT.

In Table II we present the mean wait time and the mean

makespan for small, medium, and large WFs as defined in

Section IV with the mixed workload for all our policies

at their maximal utilizations, and in an empty system. As

expected, for every policy separately, the mean wait time

does not depend on the WF size. The longer mean wait times

for the SLoP policy with scaling factor f equal to 0.8 and

0.2 are explained by the step size of 0.05 we use to vary

the utilization in our experiments—with a smaller step size

to detect the maximal utilization all the mean wait times

in Table II would be in the same range. For all policies,

the values of the makespans of three groups of WFs are

relatively similar. This can be explained from the perspective

that when the system is close to its maximal utilization, then

Table II: The mean wait time and the mean makespan for

the small (S), medium (M) and large (L) WFs with the

mixed workload for the considered scheduling policies at

their maximal utilizations, and in an empty system.

Mean wait time (s) Mean makespan (s)

Policy S M L S M L

Empty system — — — 1136 429 130

SR 636 628 658 1162 484 263

SLoP, f = 0.9 584 578 645 1188 492 249

SLoP, f = 0.8 3195 3121 3329 1174 546 295

SLoP, f = 0.2 879 892 938 1291 597 297

FES, depth 10 637 632 652 1160 480 264

FES, depth 2 526 525 547 1189 503 278

FES, depth 1 596 631 581 1191 530 273

BF 703 707 694 1199 546 271

despite the length of the queue, the scheduler considers only

some set of WFs that are close to the head of the queue.

The size of this set is related to the size of the system: the

larger the system, the deeper the scheduler should inspect the

queue for eligible WF tasks. Another interesting observation

is that the larger the WFs, the shorter their makespans. This

effect is explained by our usage of the same total execution

time distribution for all the WF sizes, and by the fact that

smaller WFs have lower levels of parallelism.

Furthermore, while for small and medium WFs the

makespans at the maximal utilizations of the policies are

almost equal to those in an empty system, large WFs then

have makespans that are twice as large. Apparently, even in

a busy system small and medium WFs can get a number of

processors close to their LoPs, while large WFs suffer more

from the presence of other WFs in the system.

Finally, we investigate in more detail how reservations

limit the maximal utilization. Figure 8 shows the size of the

joint eligible set, which comprises the tasks of the eligible

sets of all WFs in the queue, and the number of reserved

processors for the SR policy at its maximal utilization during

a 5-hour period of the simulation. Obviously, the size of

the joint eligible set can exceed the size of the system (in

Figure 8 we crop these outliers higher than size 110) and is

related to the queue size and the properties of WFs in the

queue. The minimum of the two curves gives the number of

wasted processors. Apparently, with SR, when the utilization

is equal to 0.35, the system capacity spent on reservations

approaches 0.65, and the system is saturated.

VI. RELATED WORK

There is an enormous amount of literature on the problem

of scheduling WFs. Most of it concentrates on scheduling

single WFs in order to minimize the makespan, for which

many techniques have been proposed. For instance, the HEFT

policy [1] computes the upward rank of a task as the length of



the critical path from that task to the exit task in terms of the

time it takes to process the tasks on the path, and schedules

the task with the highest upward rank. Previously, we have

presented and analyzed a scheduling algorithm for WFs that

recursively schedules partial critical paths [4]. There are also

several nice overview papers that present and discuss many

algorithms for scheduling WFs [24], [25]. Invariably, all of

these algorithms assume knowledge of task runtimes.

The problem of scheduling multiple WFs can be split up

in the offline problem of scheduling a fixed set of WFs and

the problem of online scheduling an arrival stream of WFs as

we do in this paper. Two approaches to the offline problem

are executing batches with mixtures of multiple WFs [6],

and building a single composite WF from multiple WFs

and then execute it [5]. In [7], an online stream of WFs is

considered, but the authors use a DAG composition approach

and task runtime information to prioritize the tasks using

HEFT. Also in [26], a stream of arriving WFs is used and

the ideas from [7] are extended by considering the critical

path for each WF. In [27], the Pegasus planner [28] and

the DAGMan [29] batch workflow executor are used. In

addition, a scheduling algorithm that allocates resources

based on their runtime performance is proposed and real-

world experiments are conducted using grid middleware

over clusters. Despite the fact that they treat each WF

separately without composing a single DAG, their algorithm

still uses task runtime information. In [30], a trace of a

Teragrid cluster with applications representing (modified)

Montage WFs is simulated. Different provisioning policies

and priority schemes are considered, with a cap on the amount

of resources that can be used by a single WF.

A large body of work proposes backfilling as the main

technique to improve the system utilization and reduce the

job slowdowns in the area of parallel applications [31]–[35].

Despite the simplicity of the backfilling technique, there

exist many variations of the algorithm. For instance, the

number of reservations granted by the backfilling algorithm

distinguishes two main strategies, conservative and aggressive.

The former assigns to each job a reservation when it enters

the system and moves smaller jobs forward in the queue

as long as no delays are incurred on any of the previously

queued jobs. The latter allows any job to be backfilled as long

as it does not delay the first job in the queue. The number

of queued jobs considered by the backfilling algorithm may

have a significant impact on the overall performance. To

maximize the utilization, dynamic programming may be

employed to find the optimal packing of the jobs [34]. These

aspects have been analyzed and incorporated in the Maui

project which currently provides a real-world implementation

of the general backfill algorithm [35]. The main feature

distinguishing backfilling for parallel jobs and WFs is that

with WFs, as soon as any number, however low, of resources

are available, a WF can make progress. So the concerns about

not delaying WFs with backfilling are much less pressing.

VII. CONCLUSION

In this paper, we have presented a family of four policies

for scheduling workloads consisting of arrival streams of WFs

with unknown task runtimes. The main distinguishing feature

of these policies is to what extent they reserve processors to

WFs towards the head of the queue to deal with fluctuations

in their level of parallelism. We have simulated these four

policies in a cluster with synthetic workloads derived from

popular real WFs with as metrics the average WF slowdown

and the maximal utilization that can be achieved. Our main

conclusion is that any form of processor reservation for WFs

without runtime estimates only decreases the overall system

performance, leading to low or even to very low maximal

utilizations.

As future work, we plan to show the effect of task runtime

estimates in our model, we plan to consider workloads

consisting of mixes of WFs and other types of jobs, and

we plan to include other resource types than processors in

our model to assess the performance of I/O-intensive and

memory-bound jobs.
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