
MULTI-FLGANs: Multi Distributed Adversarial Networks for Non-IID
distributed datasets

Akash Amalan
Supervisor(s): Kaitai Liang, Rui Wang

EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Abstract

Federated learning is an emerging concept in the
domain of distributed machine learning. This con-
cept has enabled GANs to benefit from the rich
distributed training data while preserving privacy.
However, in a non-iid setting, current federated
GAN architectures are unstable, struggling to learn
the distinct features and vulnerable to mode col-
lapse. In this paper, we propose a novel architec-
ture MULTI-FLGAN to solve the problem of low-
quality images, mode collapse and instability for
non-iid datasets. Our results show that MULTI-
FLGAN is four times as stable and performant (i.e.
high inception score) on average over 20 clients
compared to baseline FLGAN.

1 Introduction
General Adversarial Networks (GANs)[1] [2] have been used
in applications ranging from style transfer to image-to-image
translation. While they are widely used, they suffer from
three main problems:

• A lack of data affects their ability to generate high-
quality images [3][4].

• They are vulnerable to mode collapse, a case in which a
GAN only generates a specific subset of the real images.
[5][6].

• They can be unstable (i.e. fluctuations in IS score), fail-
ing to converge or visibly improve.[6].

Several architectures[7][3][4][8] were proposed to address
the first problem through traditional and differential data aug-
mentation methods. Federated learning(FL), an emerging
concept [9], also showed promise in overcoming the inabil-
ity of GANs to generate high-quality images when lacking
data. This paper will address this problem by adapting GANs
to a distributed setting through FL. In FL, each client uses
their private datasets to jointly learn the global model. The
clients trains the model locally with their training data and
send the updated weights to the central server to aggregate
and update the global model. Thus, FL benefits from rich
distributed training data while also potentially preserving the
client’s privacy.

Similarly, many architectures were proposed to address the
last two problems. For instance, Ishan et al. [10] proposed
GMAN, a generic architecture with one generator and multi-
ple discriminators. By introducing a one vs all game where
the generator tries to fool many discriminators, the chance of
mode collapse is significantly reduced. Likewise, Q. Hoang
et al.[11] suggested a Multi-Generator GAN (MGAN) with
an arbitrary grouping of generators and discriminators to mit-
igate instability and improve convergence.

FLGAN(or FedAvgGan)[12] was the first architecture to
bridge the gap between FL and GANs by assigning a gen-
erator and discriminator to each client. For each iteration,
FLGAN uses the aggregated weights[13] of local models to
update the global model, i.e. global generator and discrim-
inator. However, this baseline architecture was found to be
vulnerable to mode collapse[14] and privacy leaks[15].

Although other variants[16] [17] were proposed to im-
prove the performance and privacy of the FLGAN architec-
ture, Hardy et al[18]. were the first to suggest decreasing the
computation cost at worker nodes. They did this by introduc-
ing MDGAN, a novel architecture that extends GMAN to a
distributed setting with a central generator at the server and a
discriminator per client. To elaborate, MDGAN swaps each
discriminator every k iteration and aggregates their weights
using fedAvg. This way, a one vs all game is introduced
where the generator at the server attempts to fool all discrim-
inators in each client node. By decreasing the computation
cost for each client node, MDGAN has achieved phenom-
enal[18] performance relative to standard FLGAN for inde-
pendent and identically distributed(iid) datasets.

Similar to online streaming data with varying bit distribu-
tion, real-world data distributions are hardly ever iid. In a
non-iid setting, each client’s dataset may have a different dis-
tribution, significantly increasing training difficulty and mode
collapse vulnerability.

Some works[19][20] have presented unique architectures
to solve this problem. However, none of these works address
the stability problem due to increasing clients. The above
discussion raises the following open question: As the num-
ber of clients increase, can an architecture maintain high
and stable performance for non-iid datasets while avoid-
ing mode collapse?

We propose MULTI-FLGAN, an architecture inspired by
both MDGAN and MGAN. MULTI-FLGAN extends MGAN
to a distributed setting to produce an architecture with high
and stable performance for non-iid distributions.

Contributions: This paper’s contributions are:

• To propose MULTI-FLGAN, a novel architecture that
can produce diverse high-quality images with faster con-
vergence than the baseline FLGAN.

• To compare the performance of MULTI-FLGAN against
baseline FLGAN and similar competitors over multi-
ple clients using Inception(IS) and Frechet inception
scores(FID).

• To compare the learning performance of MULTI-
FLGAN against baseline FLGAN and similar competi-
tors on fixed number of clients, i.e. how well MULTI-
FLGAN performs over iterations compared to other
competitors on IS score.

• To highlight privacy risks and relevant attacks on
MULTI-FLGAN. Specifically, Inference attacks and
Model poisoning attacks.

Paper Organisation: In section 2, we give a general back-
ground of GAN and FLGAN. Section 3 introduces MULTI-
FLGAN. Section 4 details the experimental setup. Section
5 presents the experiments conducted on different architec-
tures along with their results. Section 6 presents a variety of
possible improvements to MULTI-FLGAN. Section 7 details
responsible research practices. Finally, Section 8 concludes
this paper with recommendations for future work.

2

2 Preliminaries
Classical GANs
A classical GAN, as proposed by Ian Goodfellow et al. [21]
consists of two neural networks: a generator G and a dis-
criminator D. Their objective can be described by a min-max
game, where the discriminator tries to minimize the proba-
bility of classifying a fake sample as real while the generator
tries to fool the discriminator by producing data similar to the
training set.

Discriminator Learning Phase:
The generator takes in a random noise signal V and generates
data df in the same format as the training data (e.g. 28x28
with 1 color channel as in MNIST dataset). The data df is
then fed into the discriminator along with real data dr. The
discriminator acts as a classifier, classifying whether a sam-
ple is fake or real. The classification loss is used to train the
weights of the discriminator through back-propagation.

Generator Learning Phase:
The generator learns from the loss of the discriminator. It
does so by using the Kullback-Leibler Divergence(KL)[22]
loss function. KL quantifies how much the generated distri-
bution differs from the actual distribution. The generator can
learn from the discriminator and update its weights by em-
ploying this loss function.

FLGAN
FLGAN[12] extends classical GAN to a distributed setting.
Suppose we have the following setup with N clients: Each
client i is equipped with a private dataset di, a generator, and
a discriminator. The main server has a global model w, i.e
a global generator and discriminator. A global iteration of
FLGAN’s learning algorithm is as follows:

• Each client trains their local models wi and sends the
updated weights to the server.

• The server aggregates these weights using fedAvg[13].
• In the next iteration, the server sends the updated global

model w to the clients.
• After e epochs, the main server will have a trained global

discriminator and generator.

3 Problem Formulation:
Suppose N clients wish to learn a global model W and agree
on a common protocol. Each client i has a private dataset
di distributed in a non-iid fashion1. This highlights that all
clients will have an uneven sample distribution. For instance,
client A may have 100 samples of label c and only 10 samples
of label d, while client B may possess 10 samples of label c
but 200 samples of label d .

The clients agree beforehand on the number of discrimina-
tors X and generators Y to use. The problem is to efficiently
learn the global model W by minimizing the error on each
local model wi using dataset di.

1This is further explained under Experiment Setup

We seek to develop an architecture to solve this problem,
with the following characteristics:

• Robust: The architecture should maintain a high IS score
even in the case of uneven labels for each client. More-
over, the algorithm should perform even when limited
training samples are available, i.e. 2000 to 5000 sam-
ples.

• Stable: The architecture should perform in a consistent
fashion. The IS score of the generated images should
not fluctuate greatly when increasing or decreasing the
number of clients.

• Performant: The architecture should be able to generate
high quality and diverse images.

4 The MULTI-FLGAN Architecture
Rationale: Our architecture is mainly inspired by MGAN

and MDGAN. By using multiple generators instead of one
generator, MGAN successfully avoided the problem of mode
collapse while achieving phenomenal performance. Simi-
larly, MDGAN achieved a comparable performance by hav-
ing a generator compete against multiple discriminators for
a lower computation cost per client. As shown in figure 1,
MULTI-FLGAN integrates these approaches by introducing
an all vs all game with multiple discriminators and generators
for each client.

Figure 1: High Level Architecture

3

Components of architecture
Federated Learning Unit(FLU) - An FLU contains a cluster

of N identical GANs, keeping track of their average genera-
tor and discriminator weights. For instance, an FLU G2D1
contains a cluster of N identical GANs with generator id 2
and discriminator id 1.

Generator Sync server(G-sync) - A G-sync server aggre-
gates the generator weights from its FLUs and stores the re-
sulting weight. For instance, G-sync server G2 aggregates the
generator weights of ids G2D1 and G2D2.

Discriminator Sync server(D-sync) - Similarly, a D-sync
server aggregates the discriminators’ weights from its FLUs
and stores the resulting weight.

Sync server(s) - A general component referring to both D-
sync and G-sync servers.

Main server(m) - This component is responsible for both
allocating and initiating connections between FLUs and Sync
servers.

Protocol: MULTI-FLGAN follows the following protocol:

• Step 1: Protocol Initiation
The client initiates the protocol by sharing parameters X
and Y with the server.

• Step 2: Sync Server Allocation.
Main server m allocates X D-sync servers and Y G-
sync servers. For example, in figure 1, m allocates 4
Sync servers in total.

• Step 3: FLU Allocation.
The main server allocates X*Y FLUs. Each Sync server
then connects to its respective FLU. In figure 1, G-sync
server G1 connects to FLU ids G1D1, G1D2, and G-
sync server G2 connects to ids G2D1, G2D2. Respec-
tively, D-sync server D1 connects to ids G1D1, G2D1
while D2 connects to ids G1D2 and G2D2.

• Step 4: Client Distribution.
Each FLU will create a partition for each client by repli-
cating identical GANs. For instance, FLU G2D1 cre-
ates identical replicas of GANs with generator G2 and
discriminator D1 for each client.

Table 1: Summary of notations

Notation Description
D Global Dataset
W Global Model
di Training dataset of client i
e epochs
X Number of discriminators
Y Number of generators
G Generator
D Discriminator
fl Set of all FLUs
s Set of all Sync servers
sj Sync Server j
wi Local model of client i
wj Local model of sj
wa Local model of FLU a (fla)

Learning Algorithm: The goal of our algorithm2 is to
minimize the empirical loss Fw of the global model W on
dataset D, with global learning rate α and e epochs. How-
ever, in a distributed setting, each client will solve the opti-
mization problem of minwf(di, {wi1, ..., wik}) , where f is
the empirical loss of local models {wi1, ..., wik} under the
client i and k is bounded by X ∗ Y . Our algorithm takes the
following steps to solve this objective:

• Step 1: Synchronization of global model with FLU
Each Sync server sj has a Sync model wj . sj sends wj

to its respective FLU fla, which updates its model wa

with the incoming model wj .
• Step 2: Training local models

Each client i trains local models {wi1, ..., wik} with
learning rate α ∗ N and a randomly selected and per-
muted batch of training dataset Di.To force the models
to converge, we increased the learning rate proportion-
ally to the number of clients. Additionally, we allow
for diversity by training each model with a randomly se-
lected and permuted batch. This enables GANs to gen-
eralize over uneven distributions.

• Step 3: Update FLU through aggregation
Upon training, each FLU aggregates the weights of its
generators and discriminators using fedAvg[13]. Then
the FLUs send the updated models to their respective
Sync servers.

• Step 4: Update Sync servers through aggregation
Each G-sync and D-sync server average the generator
and discriminator weights of connected FLUs, respec-
tively. Then, they update their Sync model wj with these
new weights.

• Step 5: Termination
After e epochs, the main server chooses the best gen-
erator out of all G-sync server models using a generic
metric such as inception score.

Client Model Learning Procedure: All client models are
trained in batches of 64 samples. From a random noise vec-
tor V in each iteration, the generator generates a Df batch
with the same dimensions as a real sample. This is sent along
with real batch Dr to the discriminator. The discriminator
uses the loss of miss-classifying fake samples to update its
weights. Similarly, the generator uses the KL [22] loss func-
tion to learn the true training sample distribution from the
discriminator.

Main Characteristics of our algorithm:
• Our architecture introduces a new all vs all game where

multiple generators play against multiple discriminators.
• By extending the idea of MGAN3, we essentially mini-

mize the risk of mode collapse
• Although the distributions for each client are

different(non-iid), our algorithm is still able to learn
their distinct features.

2The learning algorithm of the proposed architecture is presented
on page 5

3Refer to the paper on MGAN

4

Algorithm 1: The Multi-FLGAN Algorithm

procedure SYNC(X , Y , fl, s)
for j = 1, 2 ... X+Y do

for a = 1, 2 ... X*Y do
if ISCONNECTED(sj , fla) then

SEND(sj , fla, wj)
Update (wa, wj)

end
end

end

procedure TRAINFLU(N , X , Y)
for i = 1, 2 ... N do

for a = 1, 2 ... X*Y do
batchi = GETRANDOM(Di)
TRAINLOCAL(wia ,batchi, α ∗N , e)

end
end

procedure UPDATEFLU(N , X , Y , fl)
for a = 1, 2 ... X*Y do
sumg = 0
sumd = 0
for i = 1, 2 ... N do

sumgen = sumg + GETGWEIGHT(flai)
sumdisc = sumd + GETDWEIGHT(flai

)
end
fla.SETGWEIGHT(sumg

N)
fla.SETDWEIGHT(sumd

N)
end

procedure UPDATESYNCSERVER(N , X , Y , fl)
for j = 1, 2 ... X+Y do
sg = 0
sd = 0
for a = 1, 2 ... X*Y do

if ISCONNECTED(sj , fla) then
sg = sg + fla.GETGWEIGHT()
sd = sd +fla.GETDWEIGHT()

end
end
sj .SETGWEIGHT(sumg

X)
sj .SETDWEIGHT(sumd

Y)
end

procedure TERMINATION(N , X , Y , S)
score = 0
bestw = None
for j = 1, 2 ... X+Y do

if score > GETSCORE(sj) then
score = GETSCORE(sj)
bestw = sj

end
end

return bestw

5 Experimental Setup
Computational Setup: Recently, there has been a trend in
adapting serverless [18] frameworks(e.g. gossip protocol in-
troduced by Dynamo back in 2007). However, the case for
deep learning and machine learning systems is not yet suffi-
cient. Distributed deep learning systems use massive amounts
of data that use data-intensive operations such as back and
forward propagation, making it necessary to operate in a par-
allel environment. We extended the implementation4 of Dis-
tibuted GAN using Ray to emulate a parallel environment for
distributed learning. Ray [23] was mainly used due to its su-
perior performance benchmarks in distributed machine learn-
ing instead of frameworks like Dask[24].

Ray’s distributed framework uses a central Redis server to
simulate a head node responsible for communication and ag-
gregation between different worker nodes. We simulated the
main server as the head node and each Sync server as a worker
node. We also assigned worker nodes for each FLU to sim-
ulate multiple FLUs under a sync server. In total, we used 8
worker nodes - 4 for Sync servers and 4 for FLUs.

Moreover, each GAN was given its own thread for each
FLU worker node. This allowed for parallel training across
all FLUs over multiple nodes. Of course, such an elaborate
setup introduces latency and bandwidth issues. Nevertheless,
such an environment was necessary to mimic real life use
cases.

Datasets: We experimented with two classical datasets
used for machine learning: MNIST[25] and Fashion
MNIST(FMNIST) [26]. The MNIST and FMNIST datasets
are comprised of 60,000 28 x 28-pixel grayscale image sam-
ples of handwritten digits, and clothing, respectively.

Sampling Process: To distribute k samples in a non-iid
fashion from a global dataset D, we took a unique approach.
We randomly selected 5000 samples from D as the training
set t, to emulate the lack of data and decrease the training
time. Next, we reserved a random fraction Fi of t, using
Mersenne Twister[27], for each client. Each Fi was then di-
vided into batches of 64 samples and assigned to their respec-
tive client.

Hardware: Our experiments were made using a Tensor-
Flow backend with 4 NVIDA Tesla v100 GPUs and 100 CPU
cores made available by DelftBlue5[28]. The head node was
given 44 cores and each worker node was assigned a partition
of available GPUs.

Gan Architectures: In our experiments, we used a tradi-
tional type of GAN named DCGAN[29] 6. The generator is
comprised of six transposed convolution layers of 128, 64,
32, and 1 with kernels of size 5 x 5. On the other hand, the
discriminator uses four transposed convolution layers of 32,
64, 128 and 256 with kernels of size 5 x 5 and a fully con-
nected dense layer. Typically, a dropout layer is also included
in both of these neural networks. Instead, we opted for batch
normalization, as it helps quicken the learning process.

Hyperparameters: Since the dropout layer was removed,
we introduced a decay factor to prevent over-fitting. In order
to fine-tune the hyperparameters of a standalone DCGAN, we
performed grid search, varying the decay factor and learning

4https://github.com/bbondd/DistributedGAN
5High Performance Computing Platform
6Refer to Appendix A.1 for architecture diagram

5

rate. We found that the optimal decay factor was 1.5e−8 with
a fixed learning rate of 2e−4.

Competing Approaches: We tested our architecture
against traditional FLGAN and AFLGAN, a variant of
MDGAN that aggregates only the generator weights while
leaving the discriminator weights unchanged across itera-
tions. We simulated AFLGAN and FLGAN using the same
Ray setup and hardware. The main server was assigned its
own head node, while each client was assigned one worker
node.

Metrics: Evaluating GANs is often difficult as an objective
metric is needed to capture image diversity and quality. We
must ask, ”Do images look like a specific object” and ”Is a
wide range of objects generated?”

A popular metric, Inception Score(IS)[30] addresses qual-
ity by considering how strongly an image is classified as one
class over others. Similarly, it considers diversity by exam-
ining the marginal probability distribution of the generated
images. Typically, a low inception score indicates low qual-
ity and uniform image, while a high inception score implies
diverse and high-quality images.

However, the inception score does not reveal how far off
the generated images are from the real images. Therefore we
also use Frechet Inception Distance[31] or FID for short, as
proposed by Heusel et al. FID calculates the distance between
feature vectors of the original set of images and the generated
set of images. In contrast with the IS score, a low FID score
is preferred, as it implies that the difference between the dis-
tributions is small.

Table 2: Experiment Parameters

Experiment IV DV Samples LearningRate
Type 1 Clients IS/FID 5000 0.0002
Type 2 Iterations IS 5000 0.0002

Experiments: We conducted two kinds of experiments.
First, we tested how well each architecture performs by
varying the number of clients N ∈ [2, 3, 5, 10, 20] on both
datasets(FMNIST and MNIST). Each experiment was per-
formed for 100 epochs with noise vector V of dimension 100.
IS and FID scores were computed every 10 epochs. Note that
FID scores were computed using the test dataset dimensions:
10000 samples.

Second, we use IS score to compare how well
different architectures learn through iterations e ∈
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90] for fixed clients N ∈
[2, 3, 5, 10, 20] on both datasets(FMNIST and MNIST).

The experiments used MULTI-FLGAN with only two dis-
criminators and generators. We opted for 2 discriminators
and generators to demonstrate that even with minimal param-
eters, our architecture is far more performant than other alter-
natives. While this may not be the ideal amount of discrimi-
nators and generators, it suffices for the purposes of this study.
Testing precise head-to-head comparisons between different
discriminators and generators is left to future work.

6 Experiment Evaluation
Tables 3 and 4 report the average, min and max FID and IS
scores of over 20 clients for experiments testing clients’ per-
formance. Additionally, figure 2 depicts graphs7 of the client
and learning performance experiments.

Table 3: Client Performance of FMNIST(IS/FID)

Heuristic AFLGAN FLGAN MULTI-FLGAN
Min 1.00 / 328.10 1.00 / 442.41 3.82 / 11.60
Max 2.70 / 847.00 1.89 / 646.39 6.48 / 129.35

Average 2.00 / 535.30 1.37 / 495.75 4.95 / 82.33

2) Competitor score for FMNIST: With an average IS
score of 1.37 and an FID score of 495.75, we observe that FL-
GAN performs the worst relative to its competitors. It is also
apparent from the FMNIST dataset inception scores shown in
figure 2 that FLGAN struggles to generate high-quality data,
having only achieved a maximum IS score of 1.89 for two
clients. The learning performance of the FMNIST dataset is
also unimpressive. For 2 to 3 clients, it reaches an average IS
score of 4.5. For 5 clients, performance drops further to 2, and
for 10 to 20 clients, hardly any learning occurs. This poor per-
formance is further reflected by the generated8 images, which
gradually become undecipherable with increasing clients.

On the other hand, AFLGAN performs relatively well
compared to FLGAN for 2,3, and 5 clients but drops to a min-
imum inception score of 1 for 10 and 20 clients, resulting in
an average inception score of 2.00 and a FID score of 535.00.
This sudden drop implies that AFLGAN cannot maintain its
performance over increasing clients.

Interestingly, the learning performance graphs of FMNIST
for 10 and 20 clients show that AFLGAN peaks at 30 - 40
iterations, even matching MULTI-FLGAN performance, be-
fore suddenly decreasing in performance. This behavior is
verified by the generated images in Appendix A.3, where an
obvious decrease in quality between iterations 40 and 50 is
apparent.

We believe that this behavior is a consequence of uneven
training samples. For instance, if generator G1 trains on 200
samples of label A while generator G2 trains on only 10 sam-
ples of label A, their weights will differ considerably. This
leads to not only training instability, but also failure to con-
verge, as evident in figure 2. Of course, it is unrealistic to
expect convergence from only 100 iterations. Having said
that, the parabolic behavior is proof of AFLGAN’s inability
to converge.

In contrast, MULTI-FLGAN tackles uneven distributions
by having multiple generators compete against multiple dis-
criminators. This results in more robust scores, as depicted
in Table 3. While the fluctuation between 2, 3 and 5 clients
shows that uneven label distributions still influence our archi-
tecture, it still maintains an average IS score of 4.95 and a
82.33 FID score, outperforming the other competitors. Addi-
tionally, the IS and FID graphs for FMNIST shown in figure
2 make clear that our architecture is performant even with 10

7Note that learning performance graphs for 2, 3 and 5 clients are
presented in figure 6 of Appendix A.2

8Refer to Appendix A.3

6

Figure 2: Experiment Scores

and 20 clients, achieving four times AFLGAN and FLGAN
scores.

Table 4: MNIST(IS/FID)

Heuristic AFLGAN FLGAN MULTI-FLGAN
Min 3.30/ 60.70 1.00/ 15.46 6.39/ 8.07
Max 5.10/ 141.90 7.10/ 1087.00 7.15/ 26.50

Average 4.10/ 101.20 3.81/ 341.34 6.84/ 17.10

2) Competitor score for MNIST: All architectures per-
formed much better on MNIST than FMNIST, as seen on ta-
ble 4, since it is much easier to learn the distribution of num-
bers than complex fashion designs with only 5000 samples
and 100 epochs.

Interestingly, FLGAN experienced a drop in IS score from
7 to 1 between 5 and 10 clients. Inspecting the generated im-
ages 9, it indicates that FLGAN experienced mode collapse,
resulting in an average IS score of 3.81 and FID score of
341.34. In this case, the mode collapse happened at iteration
50 where FLGAN exclusively generated the number 3. Sub-
sequent iterations show that FLGAN was unable to generalize
over other numbers, leading to a meaningless final outcome.

In contrast, AFLGAN performed exceedingly well. It sus-
tained an average inception score of 4.10 and an FID score
of 101.20. Although it exceeds the learning performance of
MULTI-FLGAN in the first few iterations for clients 10 and
20, AFLGAN performance gradually decreases over subse-
quent iterations. This parabolic behavior reconfirms its in-
ability to converge. Moreover, the images in figures 30 and
31 of Appendix A.4 show that AFLGAN mostly generates
the number 1, hinting at a possible mode collapse.

MULTI-FLGAN, on the other hand, maintained the same
performance using MNIST as FMNIST, resulting in an aver-
age IS score of 6.84 and an FID score of 17.10 without signs
of mode collapse. Interestingly, the learning performance
graphs for 10 and 20 clients show a sudden jump in improve-

9Refer to figure 24 of Appendix A.4

ment for both MNIST and FMNIST. For MNIST, the jump
occurs at 50 iterations for 20 clients, while for FMNIST, the
jump occurs at 20 iterations for 20 clients. This may be due to
a lack of encountered samples in the first 20 or 50 iterations.
However, once MULTI-FLGAN sees sufficient samples, its
performance increases exponentially.

It is also interesting to compare the stability of MULTI-
FLGAN with other competitors. We quantify stability as
the difference between the max and min of FID scores. In-
tuitively, the distance between generated and actual images
should not drastically fluctuate between clients.

Table 5: Stability(MNIST/FMNIST)

Heuristic AFLGAN FLGAN MULTI-FLGAN
Stability 81.2/518.9 1071.9/203.9 18.43/117.8

Table 5 shows that MULTI-FLGAN is at least 30 times
as stable as AFLGAN and 58 times times as stable as FL-
GAN. Trained on FMNIST, FLGAN’s stability is deceptively
close to that of MULTI-FLGAN. Note, however, that FL-
GAN’s FID score is far higher relative to MULTI-FLGAN,
indicating that the generated images vary significantly from
the actual distribution.

2) Overall Performance: FLGAN performs poorly on both
datasets, struggling to converge on higher number of clients.
AFL-GAN produces decent results for the first 5 clients but
then experiences a sudden drop when generalizing over 10 or
more clients. On the other hand, MULTI-FLGAN has outper-
formed both architectures on both datasets. The graphs and
the generated images show that MUTLI-FLGAN can both
generalize over uneven samples and produce high-quality im-
ages with stable IS and FID scores over increasing clients.

3)Trends: It is hard to predict any architecture’s learning
performance trend for 50 or 100 clients. However, seeing that
the learning performance of AFLGAN has already peaked
within 100 iterations for 10 and 20 clients, it is safe to as-
sume that it will only perform worse on a higher number of

7

clients. Since FLGAN reached a minimum IS score of 1 on
both data sets for ten clients, it cannot be reasonably expected
to learn for a higher number of clients. However, we cannot
rule out the possibility of FLGAN realizing a jump similar to
MULTI-FLGAN when given enough samples.

The learning performance graphs of FMNIST show that
MULTI-FLGAN is stabilizing around iteration 70, while on
MNIST, it is still increasing beyond 90 iterations. Regard-
less, the IS and FID scores lead us to believe that even for
clients above 50, MULTI-FLGAN would be able to maintain
the average inception score without significant fluctuations.

7 Improvements & Considerations
MULTI-FLGAN has shown promise in terms of performance,
robustness, and stability. Nonetheless, we must still consider
other aspects such as cost, scaling, and security prior to de-
ployment.

Complexity: One of the main concerns is the architec-
ture’s suitability for the storage and computation limitations
of small devices such as mobiles. To aid the discussion on
computation and space complexity, we will introduce new
notations in addition to Table 1. Let o be the object size(e.g
image size in MB), b batch size and Dio , number of objects
in local dataset Di of client i.

The computation complexity and space complexity of FL-
GAN and MULTI-FLGAN have been summarized in table 6.

Table 6: Complexity

FLGAN MULTI-FLGAN

O(C) O(eb
∑N

i=1
|wi|
Dio

) O(eb(
∑N

i=1

∑XY
j=1

|wij |
Dio

)

O(S) O(
∑N

i=1 |wi|)
∑N

i=1

∑XY
j=1

∣∣wij

∣∣)
Admittedly, the computation complexity of MULTI-

FLGAN is much more expensive than traditional FL-GAN
as it depends on both N and XY . Furthermore, in prac-
tice, there is the additional cost of communication between
the main server, Sync servers and FLUs. Table 7 presents
the computation time of different architectures used in exper-
iment type 1.

Table 7: Time taken for Experiment Type 1

Architecture Time Taken

Clients
2 3 5 10 20

FLGAN 0.1 0.2 0.6 2.5 4.5
AFLGAN 0.1 0.2 0.7 2.4 4.5
MUTLI-FLGAN 0.2 0.4 6.0 12.0 23.0

We notice that MULTI-FLGAN takes almost 6 times as
long as FLGAN and AFLGAN. However, there are several
adaptations we can make to improve this computational com-
plexity. One possible way is to adapt a similar technique to
MDGAN, where the number of FLUs are significantly re-
duced.

The strategy is to divide each combination of generators
and discriminators among the clients avoiding the need for
replication. Consider the case with two generators, three
discriminators, and three clients. Client A will train G1D1
and G1D2, Client B - G2D1 and G2D3, and Client C -
G2D2 and G1D3 reducing the number of FLUs needed to
two. Eventhough, there is a significant improvement in the
computation complexity, each client now trains a fraction of
the models in the former architecture. To compensate for the
lack of models, we will introduce a peer-to-peer mechanism
where each discriminator and generator is swapped with a
random client every two epochs .

The adapted strategy results in a drastic decrease in compu-
tation cost while preserving the same notion of an All vs ALL
game. A possible drawback of using this adapted approach is
connectivity. If a client disconnects during training, the al-
gorithm loses unique pairs of generators and discriminators
hindering the performance of the global model.

As seen from the space complexity of table 4, our al-
gorithm uses much more memory than baseline FLGAN.
However, we assume clients that adopt our protocol would
meet the computational and spatial requirements. Besides
most modern smart devices can easily handle 5 to 10 MB of
data(Size of a model). Therefore we believe that our archi-
tecture is still feasible for a rational choice of X and Y .

Scalability: The second aspect to consider is whether our
architecture is readily scalable. Currently, our architecture
can accommodate any amount of clients with arbitrary pa-
rameters X and Y. Any client may participate in the training
as long as they join at Step 1 of our learning procedure us-
ing the same X and Y parameters as other clients. If not, the
client will be asked to wait until it reaches step 1 of our learn-
ing algorithm again for synchronization. In this sense, our
architecture is scalable on demand.

However, our architecture does not currently support
clients with different X and Y parameters. But by cluster-
ing FLUs based on X and Y, we can allow multiple clients
with different parameters to train simultaneously.

Fault Tolerance: Our architecture is also resilient to node
failures. If one FLU fails, then the respective Sync server will
simply continue aggregating models from other connected
FLUs. Likewise, if a Sync server fails the training would still
continue with other available Sync servers. The same princi-
ple holds for a client who disconnects form the main server.

Security: Federated learning is vulnerable to different
types of attacks. We will mainly consider Inference and
Model poisoning attacks.

We consider a similar attack model to that of FL-
TRUST[32]. More specifically, an attacker manipulates a mi-
nority of malicious clients, which can be fake clients injected
by the attacker or genuine clients compromised by the at-
tacker. The malicious clients can send arbitrary updates with
the intent of destroying the model or inferring the private data
of other clients. We assume that the attacker has full knowl-
edge and access to the following information: learning rate,
models and latent vector of compromised clients.

Inference Attacks: In an inference attack, the attacker is in-
terested in inferring the private data of other clients. Our ar-
chitecture is particularly vulnerable, as each client has access
to a partition of all models in FLUs.

8

We assume the following setting: N clients train MULTI-
FLGAN with 2 discriminators and generators on both MNIST
and FMNIST dataset. Each malicious client j does not ac-
tively participate in training models

{
wj1, ..., wjk

}
, instead

they return the models as it is. After e epochs, the attacker
can simply use any of the compromised clients’ generators to
produce images from random noise. These generated images
can then be easily reconstructed as described by hitaj et al.
[33]. We have presented the result of such an attack with 15
genuine clients and 5 malicious clients in figure 3.

Figure 3: Inference attacks

From figure 3, it is clear that the malicious clients could
successfully infer private training data through this attack.
Inference attacks can be mitigated using differential pri-
vacy. Differential privacy obfuscates the generator weights
by adding Gaussian noise to protect the privacy of the train-
ing data set.

Typically, the noise level can have a perturbing effect on
the performance of the global model. A lot of research was
done to mitigate its affect on the IS score of the generated
images. For example, Xie et al. [34] suggested using DP
with carefully designed noise vectors with gradient clipping
to minimise the impact on the global model. Similarly, Xina-
glong et al. [35] proposed training generators, with a special
loss function that obfuscates only the visual features. Both
these methods cause little harm to the overall performance of
the model. Our architecture could be adapted to use either of
these methods by changing the Client learning procedure.

Model Poisoning Attacks: Another common family of at-
tacks are model poisoning attacks. In this scenario, the at-
tacker wants to destroy or force the global model only to gen-
erate images that the attacker is interested in. The only differ-
ence from the previous scenario is that the malicious clients
update the models with random weights instead of returning
the model. Admittedly, we have not conducted any experi-
ments to deduce the effect of model poisoning on our archi-
tecture. However, we would like to remark that this is very
similar to having uneven distributions for each client. There-
fore, we believe that for a minority of clients, our architecture
would still be quite resilient.

However, the averaging operation used by the FLUs is
quite sensitive to differences in weight. This operation could
be improved by replacing the it with criteria-based aggrega-
tion methods. For instance, one could use the inception score
as a metric to choose the best model for the next iteration or
even other statistical methods such as trim-mean[36], median
and Krum[37].

8 Responsible Research
Any research aims to discover, enrich and reinforce the cur-
rent domain of science through insights into existing work or
discoveries that broaden the current domain. However, the

researchers have to take careful measures to ensure the re-
search’s validity and integrity.

Research Integrity Research integrity primarily focuses
on ensuring a fair and truthful subject analysis. To provide
a truthful analysis, the researcher must ensure that the re-
sults are not manipulated or trimmed without a valid expla-
nation. For instance, if the researcher notices certain outliers
in a subject, it may be necessary to remove them to highlight
the findings. However, the researcher must then explicitly
mention and explain why it was necessary in that context.
In contrast, if the researcher willingly manipulated the data
- trimming, clipping or discarding without any explicit men-
tion, the research loses its integrity. The second aspect of re-
search integrity is focused on the authenticity of the research.
Typically, researchers refer to extensive scientific literature
when formalizing the literature study. However, they must
take extra care to give credit to all the work that has been
used, even if it has not been explicitly published. In our pa-
per, we explicitly mention the use of an adapted implemen-
tation even though the author has wished to remain anony-
mous. The third aspect is to ensure a fair test of the subject.
Highlighting the positive aspects of research is essential, but
it is equally important to highlight its disadvantages. In other
words, the researcher must ensure that his or her work can
stand the scrutiny of other peers. Besides, without a proper
analysis, the research might come to a biased conclusion that
may not be objectively true. In our research, we took extra
care to mention the improvements that can be made to our
architecture.

Research Reproducability As previously mentioned, any
research must withstand the scrutiny of fellow peers. How-
ever, to truly criticise a subject, the subject must be clearly
reproducible. But there are occasions where the research can-
not be reproduced to the exact decimal; in such cases, the
researcher should be able to defend and explain why a dis-
crepancy is plausible. This is only possible if the researcher
clearly and transparently explains the methodology to arrive
at the results as indicated by the research.

In other cases, the scientific community may not agree with
the author’s interpretation of the results. However, this does
not have any implications for reproducibility. In our work,
we extensively explain the methodology and share the pseudo
code and our setup to ensure that others can reproduce our
results.

9 Conclusion
We proposed General Adversarial Networks in the novel con-
text of distributed learning to solve the instability and model
collapse problem for non-iid datasets. We drew inspiration
from MDGAN and MGAN to develop an all vs all game that
allows GANs to easily generalize over uneven labels . Our
extensive evaluations of 2 datasets show that our architecture
can achieve phenomenal performance and stability with min-
imal discriminators and generators. In particular, MULTI-
FLGAN was able to achieve to maintain the highest average
IS score over the 20 clients we experimented with. How-
ever, in our research, we tested MULTI-FLGAN only on two
grayscale datasets. It would be interesting to see how well
MULTI-FLGAN performs on coloured datasets and with dif-
ferent parameters. We believe this work has introduced a vi-

9

able solution for the instability problem experienced by fed-
erated GANs and hope that raised perspectives will inspire
future works.

References
[1] J. Brownlee, 18 impressive applications of genera-

tive adversarial networks (gans), Jul. 2019. [Online].
Available: https : / / machinelearningmastery . com /
impressive - applications - of - generative - adversarial -
networks/.

[2] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-
to-image translation with conditional adversarial net-
works,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jul.
2017.

[3] D. 7 and I. Salian, Nvidia research achieves ai training
breakthrough, Jun. 2021. [Online]. Available: https://
blogs.nvidia.com/blog/2020/12/07/neurips-research-
limited-data-gan/.

[4] S. Zhao, Z. Liu, J. Lin, J.-Y. Zhu, and S. Han, “Dif-
ferentiable augmentation for data-efficient gan train-
ing,” in Advances in Neural Information Process-
ing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, Eds., vol. 33, Curran Asso-
ciates, Inc., 2020, pp. 7559–7570. [Online]. Available:
https : / / proceedings . neurips . cc / paper / 2020 / file /
55479c55ebd1efd3ff125f1337100388-Paper.pdf.

[5] X. Mao and Q. Li, “Generative adversarial networks
(gans),” Generative Adversarial Networks for Image
Generation, pp. 1–7, 2020. DOI: 10 .1007/978- 981-
33-6048-8 1.

[6] S. A. Barnett, “Convergence problems with gen-
erative adversarial networks (gans),” CoRR,
vol. abs/1806.11382, 2018. arXiv: 1806 . 11382.
[Online]. Available: http://arxiv.org/abs/1806.11382.

[7] Y. Burad and K. Burad, “A comparative study of cy-
cle gan and progressive growing gan for synthetic data
generation,” International Journal of Engineering Ap-
plied Sciences and Technology, vol. 5, no. 3, pp. 657–
660, 2020. DOI: 10.33564/ijeast.2020.v05i03.114.

[8] T. Chen, Y. Cheng, Z. Gan, J. Liu, and Z. Wang,
“Ultra-data-efficient GAN training: Drawing A lot-
tery ticket first, then training it toughly,” CoRR,
vol. abs/2103.00397, 2021. arXiv: 2103.00397. [On-
line]. Available: https://arxiv.org/abs/2103.00397.

[9] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtarik,
A. T. Suresh, and D. Bacon, “Federated learning:
Strategies for improving communication efficiency,”
in NIPS Workshop on Private Multi-Party Machine
Learning, 2016. [Online]. Available: https://arxiv.org/
abs/1610.05492.

[10] I. Durugkar, I. Gemp, and S. Mahadevan, Genera-
tive multi-adversarial networks, 2016. DOI: 10.48550/
ARXIV.1611.01673. [Online]. Available: https://arxiv.
org/abs/1611.01673.

[11] Q. Hoang, T. D. Nguyen, T. Le, and D. Phung, Multi-
generator generative adversarial nets, 2017. DOI: 10.
48550/ARXIV.1708.02556. [Online]. Available: https:
//arxiv.org/abs/1708.02556.

[12] R. Ghonima, “Implementation of gans using federated
learning,” in 2021 Tenth International Conference on
Intelligent Computing and Information Systems (ICI-
CIS), 2021, pp. 142–148. DOI: 10.1109/ICICIS52592.
2021.9694141.

[13] T. Sun, D. Li, and B. Wang, Decentralized federated
averaging, 2021. DOI: 10.48550/ARXIV.2104.11375.
[Online]. Available: https://arxiv.org/abs/2104.11375.

[14] G. Xie, J. Wang, Y. Huang, et al., Fedmed-gan: Feder-
ated multi-modal unsupervised brain image synthesis,
Jan. 2022.

[15] X. Zhang and X. Luo, Exploiting defenses against gan-
based feature inference attacks in federated learning,
2020. DOI: 10.48550/ARXIV.2004.12571. [Online].
Available: https://arxiv.org/abs/2004.12571.

[16] D. Chen, T. Orekondy, and M. Fritz, Gs-wgan: A
gradient-sanitized approach for learning differentially
private generators, Jun. 2020.

[17] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou, Differ-
entially private generative adversarial network, 2018.
DOI: 10.48550/ARXIV.1802.06739. [Online]. Avail-
able: https://arxiv.org/abs/1802.06739.

[18] C. Hardy, E. L. Merrer, and B. Sericola, “MD-
GAN: Multi-discriminator generative adversarial net-
works for distributed datasets,” in 2019 IEEE Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS), IEEE, May 2019. DOI: 10.1109/ipdps.2019.
00095. [Online]. Available: https://doi.org/10.1109%
2Fipdps.2019.00095.

[19] X. Cao, G. Sun, H. Yu, and M. Guizani, Perfed-gan:
Personalized federated learning via generative adver-
sarial networks, 2022. DOI: 10.48550/ARXIV.2202.
09155. [Online]. Available: https://arxiv.org/abs/2202.
09155.

[20] W. Li, J. Chen, Z. Wang, Z. Shen, C. Ma, and X.
Cui, “Ifl-gan: Improved federated learning genera-
tive adversarial network with maximum mean discrep-
ancy model aggregation,” IEEE Transactions on Neu-
ral Networks and Learning Systems, pp. 1–14, 2022.
DOI: 10.1109/tnnls.2022.3167482.

[21] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, et
al., Generative adversarial networks, 2014. DOI: 10 .
48550/ARXIV.1406.2661. [Online]. Available: https:
//arxiv.org/abs/1406.2661.

[22] J. M. Joyce, “Kullback-leibler divergence,” in Interna-
tional Encyclopedia of Statistical Science, M. Lovric,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 720–722, ISBN: 978-3-642-04898-2. DOI:
10 .1007/978- 3- 642- 04898- 2 327. [Online]. Avail-
able: https : / / doi . org / 10 . 1007 / 978 - 3 - 642 - 04898 -
2 327.

[23] P. Moritz, R. Nishihara, S. Wang, et al., “Ray: A
distributed framework for emerging AI applications,”
CoRR, vol. abs/1712.05889, 2017. arXiv: 1712.05889.
[Online]. Available: http://arxiv.org/abs/1712.05889.

[24] M. Rocklin, “Dask: Parallel computation with blocked
algorithms and task scheduling,” in Proceedings of the
14th Python in Science Conference, K. Huff and J.
Bergstra, Eds., 2015, pp. 130–136.

10

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://blogs.nvidia.com/blog/2020/12/07/neurips-research-limited-data-gan/
https://blogs.nvidia.com/blog/2020/12/07/neurips-research-limited-data-gan/
https://blogs.nvidia.com/blog/2020/12/07/neurips-research-limited-data-gan/
https://proceedings.neurips.cc/paper/2020/file/55479c55ebd1efd3ff125f1337100388-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/55479c55ebd1efd3ff125f1337100388-Paper.pdf
https://doi.org/10.1007/978-981-33-6048-8_1
https://doi.org/10.1007/978-981-33-6048-8_1
https://arxiv.org/abs/1806.11382
http://arxiv.org/abs/1806.11382
https://doi.org/10.33564/ijeast.2020.v05i03.114
https://arxiv.org/abs/2103.00397
https://arxiv.org/abs/2103.00397
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://doi.org/10.48550/ARXIV.1611.01673
https://doi.org/10.48550/ARXIV.1611.01673
https://arxiv.org/abs/1611.01673
https://arxiv.org/abs/1611.01673
https://doi.org/10.48550/ARXIV.1708.02556
https://doi.org/10.48550/ARXIV.1708.02556
https://arxiv.org/abs/1708.02556
https://arxiv.org/abs/1708.02556
https://doi.org/10.1109/ICICIS52592.2021.9694141
https://doi.org/10.1109/ICICIS52592.2021.9694141
https://doi.org/10.48550/ARXIV.2104.11375
https://arxiv.org/abs/2104.11375
https://doi.org/10.48550/ARXIV.2004.12571
https://arxiv.org/abs/2004.12571
https://doi.org/10.48550/ARXIV.1802.06739
https://arxiv.org/abs/1802.06739
https://doi.org/10.1109/ipdps.2019.00095
https://doi.org/10.1109/ipdps.2019.00095
https://doi.org/10.1109%2Fipdps.2019.00095
https://doi.org/10.1109%2Fipdps.2019.00095
https://doi.org/10.48550/ARXIV.2202.09155
https://doi.org/10.48550/ARXIV.2202.09155
https://arxiv.org/abs/2202.09155
https://arxiv.org/abs/2202.09155
https://doi.org/10.1109/tnnls.2022.3167482
https://doi.org/10.48550/ARXIV.1406.2661
https://doi.org/10.48550/ARXIV.1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1007/978-3-642-04898-2_327
https://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1712.05889

[25] L. Deng, “The mnist database of handwritten digit im-
ages for machine learning research,” IEEE Signal Pro-
cessing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[26] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-
mnist: A novel image dataset for bench-
marking machine learning algorithms, cite
arxiv:1708.07747Comment: Dataset is freely available
at https://github.com/zalandoresearch/fashion-mnist
Benchmark is available at http://fashion-mnist.s3-
website.eu-central-1.amazonaws.com/, 2017. [On-
line]. Available: http://arxiv.org/abs/1708.07747.

[27] M. Matsumoto and T. Nishimura, “Mersenne twister,”
ACM Transactions on Modeling and Computer Simu-
lation, vol. 8, no. 1, pp. 3–30, 1998. DOI: 10 . 1145 /
272991.272995.

[28] D. H. P. C. C. (DHPC), DelftBlue Supercomputer
(Phase 1), https:/ /www.tudelft .nl/dhpc/ark:/44463/
DelftBluePhase1, 2022.

[29] A. Radford, L. Metz, and S. Chintala, Unsupervised
representation learning with deep convolutional gen-
erative adversarial networks, 2015. DOI: 10 . 48550 /
ARXIV.1511.06434. [Online]. Available: https://arxiv.
org/abs/1511.06434.

[30] T. Salimans, I. Goodfellow, W. Zaremba, et al., “Im-
proved techniques for training gans,” in Advances in
Neural Information Processing Systems, D. Lee, M.
Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds.,
vol. 29, Curran Associates, Inc., 2016. [Online]. Avail-
able: https://proceedings.neurips.cc/paper/2016/file/
8a3363abe792db2d8761d6403605aeb7-Paper.pdf.

[31] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler,
and S. Hochreiter, “Gans trained by a two time-scale
update rule converge to a local nash equilibrium,” Dec.
2017.

[32] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “Fltrust:
Byzantine-robust federated learning via trust boot-
strapping,” CoRR, vol. abs/2012.13995, 2020. arXiv:
2012.13995. [Online]. Available: https://arxiv.org/abs/
2012.13995.

[33] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep mod-
els under the gan: Information leakage from collab-
orative deep learning,” Oct. 2017, pp. 603–618. DOI:
10.1145/3133956.3134012.

[34] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou, Differ-
entially private generative adversarial network, 2018.
DOI: 10.48550/ARXIV.1802.06739. [Online]. Avail-
able: https://arxiv.org/abs/1802.06739.

[35] X. Luo and X. Zhu, “Exploiting defenses against gan-
based feature inference attacks in federated learning,”
CoRR, vol. abs/2004.12571, 2020. arXiv: 2004.12571.
[Online]. Available: https://arxiv.org/abs/2004.12571.

[36] R. Kowalchuk, H. Keselman, J. Algina, and R. Wilcox,
“Multiple comparison procedures, trimmed means and
transformed statistics,” Journal of Modern Applied
Statistical Methods, vol. 5, pp. 43–64, May 2006. DOI:
10.22237/jmasm/1146456300.

[37] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J.
Stainer, “Machine learning with adversaries: Byzan-
tine tolerant gradient descent,” in Advances in Neu-
ral Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, et al., Eds., vol. 30, Curran
Associates, Inc., 2017. [Online]. Available: https :
/ / proceedings . neurips . cc / paper / 2017 / file /
f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf.

11

http://arxiv.org/abs/1708.07747
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://doi.org/10.48550/ARXIV.1511.06434
https://doi.org/10.48550/ARXIV.1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://arxiv.org/abs/2012.13995
https://arxiv.org/abs/2012.13995
https://arxiv.org/abs/2012.13995
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.48550/ARXIV.1802.06739
https://arxiv.org/abs/1802.06739
https://arxiv.org/abs/2004.12571
https://arxiv.org/abs/2004.12571
https://doi.org/10.22237/jmasm/1146456300
https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf

A Appendix
A.1 DCGAN Architecture

Figure 4: Generator Figure 5: Discriminator

12

A.2 Learning Performance Graphs
Figure 6: Learning performance for Clients: 2, 3 ,5

13

A.3 FMNIST Batches Per 10 Epochs
Figure 7: FMNIST FLGAN Clients:2

FMNIST FLGAN Final Outcome Clients:2

14

Figure 8: FMNIST FLGAN Clients:3

FMNIST FLGAN Final Outcome Clients:3

15

Figure 9: FMNIST FLGAN Clients:5

FMNIST FLGAN Final Outcome Clients:5

16

Figure 10: FMNIST FLGAN Clients:10

FMNIST FLGAN Final Outcome Clients:10

17

Figure 11: FMNIST FLGAN Clients:20

FMNIST FLGAN Final Outcome Clients:20

18

Figure 12: FMNIST AFLGAN Clients:2

FMNIST AFLGAN Final Outcome Clients:2

19

Figure 13: FMNIST AFLGAN Clients:3

FMNIST AFLGAN Final Outcome Clients:3

20

Figure 14: FMNIST AFLGAN Clients:5

FMNIST AFLGAN Final Outcome Clients:5

21

Figure 15: FMNIST AFLGAN Clients:10

FMNIST AFLGAN Final Outcome Clients:10

22

Figure 16: FMNIST AFLGAN Clients:20

FMNIST AFLGAN Final Outcome Clients:20

23

Figure 17: FMNIST MULTI-FLGAN Clients:2

Multi-FLGAN Final Outcome Clients:2

24

Figure 18: FMNIST MULTI-FLGAN Clients:3

Multi-FLGAN Final Outcome Clients:3

25

Figure 19: FMNIST MULTI-FLGAN Clients:5

Multi-FLGAN Final Outcome Clients:5

26

Figure 20: FMNIST MULTI-FLGAN Clients:10

Multi-FLGAN Final Outcome Clients:10

27

Figure 21: FMNIST MULTI-FLGAN Clients:20

Multi-FLGAN Final Outcome Clients:20

28

A.4 MNIST Batches Per 10 Epochs
Figure 22: MNIST FLGAN Clients:2

MNIST FLGAN Final Outcome Clients:2

29

Figure 23: MNIST FLGAN Clients:3

MNIST FLGAN Final Outcome Clients:3

30

Figure 24: MNIST FLGAN Clients:5

MNIST FLGAN Final Outcome Clients:5

31

Figure 25: MNIST FLGAN Clients:10

MNIST FLGAN Final Outcome Clients:10

32

Figure 26: MNIST FLGAN Clients:20

MNIST FLGAN Final Outcome Clients:20

33

Figure 27: MNIST AFLGAN Clients:2

MNIST AFLGAN Final Outcome Clients:2

34

Figure 28: MNIST AFLGAN Clients:3

MNIST AFLGAN Final Outcome Clients:3

35

Figure 29: MNIST AFLGAN Clients:5

MNIST AFLGAN Final Outcome Clients:5

36

Figure 30: MNIST AFLGAN Clients:10

MNIST AFLGAN Final Outcome Clients:10

37

Figure 31: MNIST AFLGAN Clients:20

MNIST AFLGAN Final Outcome Clients:20

38

Figure 32: MNIST MULTI-FLGAN Clients:2

MNIST MULTI-FLGAN Final Outcome Clients:2

39

Figure 33: MNIST MULTI-FLGAN Clients:3

MNIST MULTI-FLGAN Final Outcome Clients:3

40

Figure 34: MNIST MULTI-FLGAN Clients:5

MNIST MULTI-FLGAN Final Outcome Clients:5

41

Figure 35: MNIST MULTI-FLGAN Clients:10

MNIST MULTI-FLGAN Final Outcome Clients:10

42

Figure 36: MNIST MULTI-FLGAN Clients:20

MNIST MULTI-FLGAN Final Outcome Clients:20

43

	Introduction
	Preliminaries
	Discriminator Learning Phase:
	Generator Learning Phase:

	Problem Formulation:
	The MULTI-FLGAN Architecture
	Experimental Setup
	Experiment Evaluation
	Improvements & Considerations
	Responsible Research
	Conclusion
	Appendix
	DCGAN Architecture
	Learning Performance Graphs
	FMNIST Batches Per 10 Epochs
	MNIST Batches Per 10 Epochs

