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Chapter 1

Introduction

Massive open online courses (MOOCs) have attracted extensive attention
from learners, educators, and education institutes since 2012 (known as the
year of the MOOC [85]) [28, 18, 32, 87, 114, 75]. MOOCs have thus become
one of the most prominent examples of technology-enhanced learning. Based
on the definition in [87, 75], MOOCs refer to online courses which can be
accessed by a massive number of learners with internet connections anytime
and anywhere, and there are no entry qualifications and charges for the access
of all course materials'. UNESCO [87] treats MOOCs as an important tool
to achieve the 4th Sustainable Development Goal (SDG 4), Ensure inclusive
and equitable quality education and promote lifelong learning opportunities for
all, as set by the United Nations in 2015. Class Central [114], whose annual
reports on MOOCs are referenced by both UNESCO [87] and OECD [75],
reports that by the end of 2017, there were around 9,400 MOOCs provided
by more than 800 universities and companies online, which had attracted
81 million learners—it is equivalent to around 40% of the total number of
students in higher education institutions around the world in 2014 [133].

However, a low completion rate—compared to the large number of learn-
ers registered in MOOCs, only a small percentage of them got scores higher
than or equal to the course requirements—is a ubiquitous and severe problem
in MOOCs. In [54], it is reported that the median completion rate was 6.5%

among 39 MOOCs across different premier MOOC platforms (e.g. Coursera?,

!"Nowadays, for the sustainability of MOOCSs, some MOOC platforms (e.g. Coursera,
edX, Udacity, and FutureLearn) charge learners for the enrolment of some MOOCs for
professional development and provide fee-based certification for the course completion [75].

*https://www.coursera.org,/



2 Chapter 1. Introduction

edX?, and Udacity*) from 2011 to 2013. Inspired by this study, we investigate
32 popular MOOCSs provided by Delft University of Technology on edX from
2013 to 2017. There are 50 runs in total, as some MOOCSs ran repeatedly
in these years. In each run, at least 1,000 learners were registered and the
average number of registered learners was 14,841. As shown in Figure 1.1,
we find that the completion rates of most MOOCs were lower than 5%.

In this thesis, we investigate learner engagement, since it is highly related
to the completion rates of MOOCs [28, 32]. For learners, engagement is con-
sidered as a necessary prerequisite for effective learning in MOOCs [41]. For
MOOC providers, maintaining and cultivating learner engagement help them
to make their impact broadly [95]. In traditional classroom contexts, experi-
enced educators can observe learner engagement and keep learner engagement
by adjusting course content and the way they teach. However, due to the
properties of this MOOC technology and its nature of asynchronous inter-
actions between educators and a large number of learners, educators cannot
observe learner engagement in MOOC learning the same way they usually do
in traditional classrooms. Without support from educators, current MOOC
contexts, which revolve around a large number of videos and automatically
graded questions, require learners to be skilled in self-regulated learning [92]
(e.g. to plan their learning, monitor their learning progress, or keep their fo-
cus during learning by themselves). Many learners lack such skills and cannot
keep their engagement across a course, even in a single learning session, which
leads to high dropout rates of MOOC:s.

Learning analytics technology has been used by educators and researchers
to not only observe learners in MOOC learning but also provide feedback
about their learning progress based on large-scale data generated from learner
interactions on MOOC platforms [102]. For example, to explore learners’ reg-
istration and enrollment for the first-year MOOCs in HarvardX and MITx,
Ho et al. [49] analyze large-scale data about learners’ certification, demo-
graphic information (e.g. gender, age, or academic degree), geographic in-
formation, and click activities which are collected from 597,692 users in 17
MOOCs. To understand learner interactions with different course compo-
nents (e.g. quiz question, lab, video lecture, tutorial, book, discussion, or
wiki), Breslow et al. [12] dig into the first MOOC “Circuits and Electron-
ics" on edX based on large-scale data with 230 million learner interactions
from about 155,000 learners. To motivate learners, Davis et al. [27] build a
feedback system for MOOC learners based on learning analytics technology

Shttps://www.edx.org/
“https://www.udacity.com/
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employed on their trace-data. Their system compares the learning progress
of MOOC learners with previous learners who completed the course in the
past and provides weekly feedback for learners. In this thesis, we also make
use of learning analytics technology employed on data generated by learners
to specifically consider learner engagement in MOOC learning.

1.1 Learner Engagement

In this thesis, we focus on learner engagement in MOOC learning, since it
is commonly presumed to be essential to the success of learning [20, 1, 33,
52, 35, 41]. However, regarding the definition of learner engagement, there
is little consensus among researchers in previous studies [52, 35]. In this
section, we first clarify which kind of learner engagement in MOOC learning
we investigate in our study.

As pointed out by Fredrick et al. [35], the attempt to conceptualize and
examine portions of the literature under the label "engagement” is poten-
tially problematic; it can result in a proliferation of constructs, definitions,
and measures of concepts that differ slightly, thereby doing little to improve
conceptual clarity. Therefore, three dimensions are usually used for un-
derstanding learner multidimensional engagement in both traditional class-
rooms [52, 35] and in MOOCs [48]:

Behavioral engagement: refers to the participation of learners in learning.
Previous studies in traditional classrooms investigate behavioral engagement
based on learner attendance in the course [121, 20, 33|, learner performance
of course assignments [20, 1, 33], or learner attention to the course [121].
Most studies about learner engagement in MOOCs are about behavioral en-
gagement; learning analytics technology with learner trace data is used in
these studies [56, 41, 19, 95, 90, 142]

Emotional engagement: refers to the feeling learners have about learning.
Previous studies in traditional classrooms investigate learner emotional en-
gagement based on learners’ reports about their boredom, happiness, anxiety,
or anger in the classroom and in the school [121, 20]. In MOOCsSs, previous
studies investigate emotional engagement based on learners’ facial expression
during learning [93], their posts on forums [138] or in-person interviews after
learning [24]

Cognitive engagement: refers to cognitive strategies that learners employ
in learning. Previous studies in traditional classrooms investigate learner
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cognitive engagement based on learners’ memorization of course content [134],
strategies used for regulating themselves during learning (e.g. monitoring
and regulating cognition) [70, 106, 47], or the task-specific thinking during
learning [47]. In MOOCs, cognitive engagement of learners is studied based
on the content of their posts on forums [139, 136].

In this thesis, we focus on behavioral engagement of MOOC learners
based on learning analytics technology. Many activities related to emotional
engagement and cognitive engagement of learners (e.g. hesitating to study
course content, or making plans for their learning) happen outside of MOOC
platforms, while most activities related to their behavioral engagement are
recorded by the technology of MOOC platforms in the form of a large amount
of trace data which can be studied comprehensively and at different scales.

Behavioral engagement can be studied on different time scales in MOOC:s.
For example, Kizilcec et al. [56] study learner persistence in a complete course
and group learners based on their engagement in each assessment period,
while Guo et al. [41] investigate learner engagement in a video lecture based
on learners’ video watching time and whether they attempted follow-up prob-
lems in the same learning session. As mentioned by Fredrick et al. [35],
Engagement can vary in intensity and duration; it can be short-term and
sttuation specific or long-term and stable. However, Fredrick et al. do not
clearly evaluate learner engagement on different time scales. In this thesis,
we evaluate behavioral engagement of MOOC learners on three different time
scales:

Long-term behavioral engagement: refers to learner behavioral engage-
ment throughout a course. The large-scale trace data collected from a large
number of learners provides an opportunity to measure behavioral engage-
ment of learners based on their long-term interactions with course materials.
Therefore, how to explore the engagement of MOOC' learners throughout a
course based on learning analytics technology with large-scale trace data is
the main challenge.

Mid-term behavioral engagement: refers to learner behavioral engage-
ment in a learning session. A learning session usually lasts from several
minutes to several hours in which learners have continuous interactions with
course materials. Studies on behavioral engagement of learners in a learn-
ing session can be more fine-grained and controllable than across a course.
Regarding that learner behavioral engagement might be affected by differ-
ent factors (e.g. prior knowledge to course contents, their preference to course
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contents, or environments where they study), our main challenge to mid-term
behavioral engagement is how to measure the impact of different factors on
behavioral engagement of MOOC' learners in a learning session.

Short-term behavioral engagement: refers to learner behavioral engage-
ment in a short period of time (< 30 seconds in our studies). If behavioral
engagement of MOOC learners can be measured on a large scale and in real-
time, interventions can be provided once learners are disengaged. To measure
short-term behavioral engagement of learners, the main challenge is how to
track learner behavioral engagement in a real-time and scalable way.

1.2 Research Questions

In this section, we present our research questions about behavioral engage-
ment of MOOC learners with different time scales.

1.2.1 Long-Term Behavioral Engagement

To study long-term behavioral engagement of MOOC learners, previous stud-
ies [56, 19, 95| mainly focus on high dropout rates of learners and cluster
learners into different engagement patterns based on analyzing their activi-
ties on videos and questions in each week. In our investigations, we are inter-
ested in the change of long-term behavioral engagement of learners across a
course. Previous studies in traditional classroom contexts reveal that learn-
ers are strategic and tend to spend most of their efforts on course content
that (they believe) is being assessed [105, 38]. Based on the current MOOC
assessment setting, in many MOOCs learners can pass the course when their
scores reach the threshold (50 — 70% typically) and before accessing the last
part of course contents. Since the remaining contents after passing have no
contribution to the certification, this “passing” event gives an opportunity
to observe the change of long-term behavioral engagement of learners before
and after passing the course. If learners show different behavior patterns
before and after passing, educators and course providers should consider this
change in the course design and the grading schema of MOOCs. Otherwise,
the course contents in the last part of a MOOC might be in vain for learners.
Therefore, our Research Questions to investigate long-term behavioral en-
gagement of MOOC learners are:
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RQ 1.1: Do MOOC learners behave differently after clinching a passing
grade?

RQ 1.2: What are the core behavior patterns of MOOC learners before and
after passing, and how can learners be classified?

1.2.2 Mid-Term Behavioral Engagement

To investigate mid-term behavioral engagement of MOOC learners, we specif-
ically focus on their participation in a learning session with mobile devices.
With the increasing popularity of mobile technology, smartphone ownership
has already surpassed the ownership of desktop and laptop computers. In
2015, about 86% of Americans in ages 18-29 owned smartphones while 78%
of adults under 30 owned a laptop or desktop computer (which was 88%
in 2010) [3]. MOOC learning can be conducted on mobile devices on many
well-known MOOC platforms (e.g. edX, Coursera, and Udacity) by 2015 [66].

Mobile learning provides a scenario in which learners study MOOCs on-
the-go and cannot be fully engaged in a learning session. MOOC learners
usually study course materials while being stationary in a comfortable en-
vironment (e.g., sitting in the office or at home) where they can be fully
engaged in learning (stationary learning). However, when learners learn on-
the-go with mobile devices, they have to use smaller screens in various and
possibly changing environments (learning on-the-go). It leads to an increase
of interruptions and distractions [117], cognitive load [129, 16, 29], and frus-
tration [23]

Existing studies on mobile learning in MOOCs mainly focus on the design
and delivery of course content for mobile devices [97, 66] and the learning
experience on mobile devices [90, 142, 23] which is typically studied in the
lab, rather than real-world environments. Thus, little is known by educators
and researchers about how divided engagement and real-world environments
affect MOOC learning on-the-go compared to stationary learning. To observe
the impact of mobile learning on learner engagement in a learning session,
learning analytics technology on trace data can be used to measure behav-
ioral engagement based on learner performance and interactions. Therefore,
our Research Questions for mid-term behavioral engagement of MOOC
learners in mobile learning are:

RQ 2.1: To what extent does learning on-the-go (compared to stationary
learning on a mobile device) affect MOOC learners’ learning gain, learning
efficiency and interactions with the course content?
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RQ 2.2: How do learners perceive their workload (physical as well as men-
tal) in the stationary and learning on-the-go conditions and how does it relate
to their learning performance and interactions?

1.2.3 Short-Term Behavioral Engagement

To study behavioral engagement of MOOC learners in a short time, we specif-
ically focus on learners’ attention during video watching. Many of today’s
MOOC s are centered around video lectures, and learners lose their attention
frequently during video watching without realizing it [98, 128, 63]. Due to
the use of digital display devices, there are a significant group of learners
with “heavy media multitasking" behaviors. It is hard for them to focus on
video watching while learning [63].

If the loss of attention within video watching can be detected automati-
cally and in real-time, interventions can be provided to MOOC learners once
they are being disengaged. To detect MOOC learners’ inattention during
video watching, we require an approach that is scalable (it can be deployed
to thousands of learners), near real-time (inattention is detected as soon as it
occurs), unobtrusive (learners are not distracted by the detection procedure)
and autonomous. An ideal method is to track learners’ inattention with an
ordinary webcam. Therefore, in our study, our Research Questions for
short-term behavioral engagement of MOOC learners are:

RQ 3.1: How often do MOOC learners experience inattention within video
watching?

RQ 3.2: How well do our webcam-based inattention detection methods per-
form?

RQ 3.3: To what extent is MOOC learners’ hardware capable to enable the
webcam-based inattention detection?

RQ 3.4: To what extent do MOOC learners accept our inattention detection
technology that is designed to aid their learning but at the same time is likely
to be perceived as privacy-invading (even though it is not)?

RQ 3.5: What impact does the webcam-based inattention detection have on
learners’ behaviors and to what extent does it affect learners’ video watching
behaviors?
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1.3 Contributions

To answer RQ 1.1 and RQ 1.2, in Chapter 2 we present a data-driven
approach for understanding long-term behavior patterns of MOOC learners
based on large-scale trace data. We analyze trace data from 4,000 MOOC
passers in four different MOOCs. A number of pre-passing and post-passing
behavior patterns are defined in our study and we find the majority of learn-
ers to fall into a narrow band of behaviors independent of the specific MOOC
under investigation. We also find that a certain subset of learners heavily re-
duced their engagement in question answering after clinching a passing grade.
These findings suggest course designers and educators to refine their course
structure and grading schema which require learners to display mastery of
an entire course subject before earning a certificate. To our knowledge, this
analysis has been the first to focus on the event of passing and the impact
of this event on behavioral engagement of MOOC learners. This study is
published in the ACM Conference on User Modeling, Adaptation and Per-
sonalization [145].

To answer RQ 2.1 and RQ 2.2, in Chapter 3 we analyze learners’ trace
data and their data collected from questionnaires. A study is conducted with
36 learners based on their 30-minute mobile MOOC learning while sitting in
the lab and walking in the real-world environment (not in the lab). We find
that the necessity to multitask and divide attention while learning on-the-go
on mobile devices, as well as changing environmental conditions contributed
to lowered learning performance (7% less) from MOOC videos. We also find
that learners spent a different amount of time on video watching between
sitting in the lab and walking with learning. This study is published in
the Furopean Conference on Technology-Enhanced Learning and the ACM
Conference on User Modeling, Adaptation and Personalization [149, 148].

To answer RQ 3.1 and RQ 3.2, we first design a user study with eye
tracking (in Chapter 4). We conduct the lab study with 13 participants to
collect their inattention report and full set of gaze data from both the webcam
and the professional eye-tracker. This study is the first precursor study for
real-time webcam-based attention tracking in MOOCs, which indicates that a
large-scale application of the webcam-based inattention detection in MOOCs
is indeed possible. This study is published in the European Conference on
Technology-Enhanced Learning [147).

Since the methods with eye tracking tend to have a high detection lag, can
be inaccurate, and are complex to design and maintain, we propose another
method with face tracking to answer RQ 3.2 (in Chapter 5). We conduct an
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extensive study with 20 participants involving two open-source browser-based
software frameworks for gaze and face detection. As our second precursor
study for real-time webcam-based attention tracking in MOOCs, a bench-
mark suite of 50 typical MOOC learner activities related to their attention
and the loss of attention is compiled. Our evaluation on this benchmark suite
reveals that the face-tracking method shows significantly higher performance
for nearly all benchmark tasks than eye tracking. Moreover, the observed
detection delay of the face-tracking method is below 2 seconds, making it
manageable for the near real-time detection in MOOCs. This study is pub-
lished in the ACM Conference on Intelligent User Interfaces [100].

In Chapter 6, to answer RQ 3.3, RQ 3.4 and RQ 3.5, we implement
IntelliEye, a near real-time webcam-based attention tracking widget which is
privacy-aware® and scalable. IntelliEye was deployed in a real MOOC across
a period of 74 days. We find that most learners (78%) used hardware and
software setups which were capable to support such widgets, making the wide-
spread adoption of our approach realistic from a technological point of view.
Around 32% of learners with capable setups were willing to allow the use
of webcam-based attention tracking techniques. Among the learners using
IntelliEye, we observe (i) high levels of inattention and (ii) an adaptation of
learners’ behavior towards the attention tracking technology. This study is
published in the ACM Conference on Hypertext and Social Media [99].

SThere is no image/video from learners’ webcams transmitted over the network.



Chapter 2

The Change of Learner
Behavior after Certificate
Achieving

In this chapter, we introduce our study on long-term behavioral engagement
of MOOC learners across a course. In this study, long-term behavioral en-
gagement refers to the participation in a complete course from the first part
of course contents to the final part. This study is intended to serve as a
foundation for designing systems which allow tracking some aspects of long-
term behavioral engagement of MOOC learners in a scalable, unobtrusive,
and generalizable fashion. Based on the tracking of long-term behavioral
engagement of current learners, educators and course designers can adjust
course contents to maintain the engagement of subsequent learners. To this
end, we intend to make use of large-scale trace data of detailed learner ac-
tivities in real-world MOOCs. Such trace data is already recorded in daily
logs of MOOC platforms. To make the method scalable, unobtrusive, and
generalizable, we do not consider further data sources which incur additional
overheads like questionnaires (e.g. our study in Chapter 3), or extra sensing
technologies (e.g. our study in Chapter 6)

Due to the nature of trace data, we focus on aspects of long-term behav-
ioral engagement which are linked to the active participation and interactions
with course contents like video lectures and quiz questions. We are particu-
larly interested in changes of this participation over time for different learner
populations. In traditional classrooms, there is an observation that most
learners tend to selectively neglect course contents that (they think) are not

11
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being assessed. In many MOOCsSs, learners can pass the course when their
scores reach the course requirements and before the course ends based on the
current MOOC assessment setting. It means that the remaining course con-
tents have no contribution to the certification of learners who already passed
the course (named as passers). Therefore, we explore how “passing” impacts
MOOC learners: do learners alter their behavior after this point? And if
so how? While in traditional classroom contexts the role of assessment and
its influence on learning behavior has been well-established, we provide an-
swers to these questions in the context of MOOCs, providing valuable insights
which can be used to design better courses in the future.

This chapter is published as “Certificate Achievement Unlocked: How does MOOC
learners’ behavior change?” [145], by Yue Zhao, Dan Davis, Guanliang Chen, Christoph
Lofi, Claudia Hauff and Geert-Jan Houben, in Adjunct Publication of the 25th Conference
on User Modeling, Adaptation and Personalization, pp. 83-88. ACM, 2017.
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2.1 Introduction

For decades, researchers in the learning sciences have explored how the as-
sessment of learning shapes learning strategies and behaviors of learners in
the classroom [124, 71, 67]. One commonly encountered phenomenon, es-
pecially in higher education, is learners’ adaptation of their learning strate-
gies to the specific assessment tools: while some assessment choices such as
multiple-choice questions are driving learners towards surface learning strate-
gies (that is, learners aim to maximize recall of the material) other assessment
types including essay writing are more likely to lead to deep learning, mean-
ing learning that focuses on understanding [111]. Despite this knowledge,
many MOOCs today rely to a large extent on a continuously distributed set
of multiple choice questions for assessment, due to their inherent scalability
(through auto-grading) to very large groups of learners. To illustrate this is-
sue, we manually inspect all 46 university-level computer-science MOOCs? of-
fered on the edX platform in October 2016 according to their assessment type
as shown in Table 2.1: 73% rely on multiple-choice questions conjointly with
some other assessment technique, while 24% exclusively use only multiple-
choice assessment without additional evaluation techniques. Only one course
abstains from using any kind of multiple choice assessment.

Assessment is a concept closely related to learner effort as learners tend to
spend most of their learning efforts on course concepts that (they know) are
being assessed [105, 38]. Educational researchers have long advocated for the
even distribution of learner effort across topics and course weeks [37]. Once
again, MOOCs tend not to follow this basic guideline as shown in Table 2.1:
most MOOCs (31 out of 46 to be exact) can be passed after reaching less
than 60% of the total score before the end of courses.

Classroom-based learning bears only a passing resemblance to MOOC
learning for a variety of reasons including the scale, the heterogeneity of the
learner group [40] with respect to age, educational and cultural background
as well as the issues of isolation and remoteness that learners face [42]. It is
thus an open question, whether the classroom-based findings of assessment
and their influence on learning behaviors hold in MOOCs. In this chapter, we
answer this question by empirically exploring to what extent MOOC learners’
behaviors are impacted by one particular assessment event: the course pass-
ing event (i.e. the moment the learner accumulate sufficient scores to receive
a certificate), which—depending on a MOOC’s design—may potentially oc-
cur as early as half-way through the course. Furthermore, we generalize our

2We choose this category as it is popular on the edX platform.
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findings into core learner behavior patterns, and provide an effective tech-
nique for classifying learners with respect to those patterns. In summary, we
address two research questions in this chapter:

RQ 1.1: Do MOOC learners behave differently after clinching a passing
grade?

RQ 1.2: What are the core behavior patterns of MOOC learners before and
after passing, and how can learners be classified?

To this end, we analyze the log traces (our observable events from which
to infer learning behavior) of 4,000 MOOC learners in four different edX
MOOCs that earn a course certificate. Besides the scientific curiosity that
underlie these questions we also believe the outcomes of this study will sig-
nificantly further the discussion on MOOC course designs: Understanding
and modeling learner behaviors is a prerequisite for designing MOOCs with
adaptive features.

Table 2.1: Overview of the summative assessment type(s) and average passing threshold
Tpass Of all 46 computer science & programming MOOCs (in English, geared at undergrad-
uates) open for enrolment on the edX platform on October 15, 2016. Assessments types
include multiple choice (MC), fill-in-the-blank (FB), code submissions (CS), peer reviews
(PR) and discussions (D). The column Early Passing shows the number of courses learn-
ers can pass before the final assessment is released.

Assessment Type(s) #MOOCs #Early Passing AVE. Tpass
MC+FB 13 12 50.0%
MC 11 7 59.1%
MC+FB+CS 11 9 52.3%
MC+FB+PR 4 3 57.5%
MC+FB+CS+PR 3 3 63.3%
MC+PR 1 1 70.0%
CS 1 0 65.0%
MC+CS 1 1 50.0%
MC+FB+D 1 1 50.0%

2.2 Background

The impact of assessment on learners’ learning and behaviors has long been a
topic of research in the education literature [124, 71, 67]. Such studies empha-
size the role of assessment as an influence on the learning process, specifically
on the manner by which learners elect to engage with ensuing course con-
tent. As pointed by Gibbs and Simpson, assessment has “an overwhelming
influence on what, how and how much students study" [39].
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The impact of assessment on learning behavior manifests itself in a mul-
titude of ways. Newble and Jaeger [78] report that the changes in exam type
(rote memorization-based versus application of conceptual knowledge) in a
medical school led to changes of learners’ exam preparation. The most no-
table change was in their choice of study location; rote memorization-based
exams drove learners to spend a disproportionate amount of time in the li-
brary, whereas the concept application-focused exams led learners to prepare
and study in hands on environments such as laboratories. Natriello and Dorn-
busch [77] finds that assessments with higher standards for mastery lead to
learners exerting more effort towards the course. Sambell and McDowell [108]
report that learners build their own curriculum based on their experience and
the types of assessments. A case study by Cooks [21] shows that the change
from fixed assessment to flexible assessment (where learners could each pick
their own grading scheme for the course) affected not only learners’ behaviors
but also their emotions in the way they approached exams.

Other work has found that learners engage with assessed course content
differently than they do with unassessed content (e.g. the dreaded “Will this
be on the test?” question). For course content expected to be unassessed,
learners might be “selectively negligent” [38] or “do it in a perfunctory
way” [105]. Forbes and Spence [34] finds that learners stopped doing their
weekly problem sheets when the teachers were too busy to grade their work.
Peer-assessment was evaluated as a potential solution and led to increases in
learners’ engagement levels and higher final exam grades than teacher-graded
assessment.

Extrapolating these findings to MOOCs, we expect this behavior change
on assessed and unassessed content to manifest itself similarly with regard
to learner engagement before and after reaching a passing grade. Activity
that happens after learners have clinched a passing grade is not required and
therefore enables us to examine the learners’ motivation for the course.

Kovacs [59] studies how in-video quizzes affect learners’ behaviors in view-
ing lecture videos, but this study only focuses on short-term behaviors around
in-video quizzes. Whereas Kovacs [59] focuses specifically on behavior within
videos containing quiz questions, such as seeking behaviors or quiz-driven
video navigation strategies, the present research differs in that we chiefly
consider behavior on a course-long scale and how that is affected by the
attainment of a passing grade.

In our work, we develop a novel typology of MOOC learner behavior to
classify learners into different groups based on their behavior patterns before
and after “passing”, or clinching a passing grade in a given course.
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Once we are able to use proper learner stereotypes to represent MOOC
learners’ longitudinal behaviors, we can build adaptive applications that use
learner stereotypes in MOOCs, inspired by e-learning systems that did this
before. Kizilcec et al. [56] make a first contribution to learner stereotypes
in MOOCs, even though they do not consider the impact of assessment on
MOOC learners’ longitudinal behaviors. In our work, inspired by previous
studies on learners’ behaviors on assessed content and unassessed content,
we focus on the change of learners’ behavior before and after “passing” and
classify learners based on their pre-passing and post-passing behavior pat-
terns.

2.3 MOOC Datasets

We analyze the log trace data of 4,000 learners who successfully completed
one of four MOOCs offered on the edX platform—they are summarized in
Table 2.2. Each course is set up as an xMOOC [101] with weekly releases
of lecture videos and graded? quizzes. The quizzes are composed of auto-
matically assessed multiple choice and fill-the-blank questions, and none of
the MOOCs have a final exam. The assessment is exclusively based on the
scores learners reached in the graded quizzes. In each MOOC learners can
continuously check their scores by accessing their course “Progress” page.

For three of the MOOCs (FP, DA and SEW) the passing threshold is 7455 =
60%, for SE it is Tpess = 58%. Previous work [25] has shown that learners
who pass a MOOC do follow the designed learning path of the course much
closer than learners who do not pass. Thus, we can assume that the temporal
sequence of course activities passers follow is in line with the design of the
course.

As the distribution of possible scores shows in Figure 2.1 (and with 746 =
58% and Tpess = 60% in mind), all four MOOCs can be passed well before
the final unit.

In Figure 2.2 we plot the total number of learners who earned a certificate
by the end of each (weekly) unit*—starting at the first possible certificate-
earning unit. We make two key observations from this sample of courses: (1)
many learners earn the certificate at the earliest opportunity—for both FP

3 Although some ungraded quizzes exist as well, we ignore them in this analysis, as only
activities on graded quizzes bring learners closer to the passing threshold.

4To be precise shown in Figure 2.2 are the Unit-n passers as defined in the upcoming
sub-section Concept Definitions.
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Figure 2.1: Overview of the fraction of scores that learners can earn in each unit. The
passing threshold for SE is Tpess = 58%, while it is Tpess = 60% for the other three MOOCs.
Best viewed in color.
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Figure 2.2: Total number of certificate earners (i.e. “passers”) at the end of each unit.

and SEW this is true for approximately 60% of the learners, for DA and SE
it holds for 40% and 30% of the learners respectively; (2) only a very small
minority of learners pass in the final two units.
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2.4 Methodology

In this section, we first formally define the core concepts which we will use
throughout our work and then describe how we conduct the analyses to an-
swer our research questions.

2.4.1 Concept Definitions

MOOCs & MOOC units: A MOOC M consists of a sequence of m units,
ie. M = (Uy,Us,...,U,). Each unit contains videos and/or quizzes and is
typically designed to be completed over the course of one calendar week.

Unit-n quizzes & videos: According to [2, 56], there are two core compo-
nents of xMOOCs®: (1) lecture videos, and (2) quizzes. Quizzes and lecture
videos included in a weekly unit U; are represented as U; = {V;, Q;}.

Learner’s Activities: We consider quiz scores and time spent on videos as
the main measurements for learner activity on a MOOC platform, i.e. for
each learner [ and MOOC unit U; € M, the normalized quiz score is denoted
as Qé. A learner’s [ normalized time spent on watching the video of a given
unit U; is debited by Vil, where Vil = 1.0 represents watching the full length of
all videos of a unit at normal speed. Thus, watching all videos twice results
in V;l = 2.0, and skipping half of the videos and watching the remainder
at double speed results in V;l = 0.25. We compute these normalized video
watching times from analyzing all learner event log files from edX, extracting
and aggregating all interactions with the video player component.

Passers: Passers P are learners who are eligible to receive a MOOC certifi-
cate at the end of the MOOC as their assessment scores reach the defined
threshold 745 (independent of the unit they reach the threshold). In the
present research, only these learners are considered.

Unit-n passers: Given 7ps, unit-n passers P, are passers whose achieved
assessment scores reach at least 7p,4 only considering units up to U, and
whose scores up to unit U,_1 are not sufficient, i.e.

n—1 n
P, = {peP’ZQ?<Tpass/\ZQ€ETpass}

i=1 i=1

5xMOOCs are heavily relying on video lectures and quizzes to convey knowledge, in
contrast to cMOOCs which rely on learners’ self-formed communities and peer teaching.
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Note once more that the actual time the quizzes are completed by the passers
can vary (a quiz released in unit n may be completed a week or two after
its initial release). This, however, has little impact on our work as passers
usually follow the predefined sequences of MOOC units [25].

Pre-passing activities: The pre-passing activities Ab.. of a passer p € P,
include all quiz & video activities up to & including unit n.

P
post Of & passer p €

P, include all quiz and video activities starting in unit n + 1. A passer who
passes in the final unit has no post-passing activity.

Post-passing activities: The post-passing activities A

We denote the previously introduced concepts with the respective MOOC
label when appropriate, e.g. Ppy or Prp for referring to a specific passer group,
or Q?,DA for referring to the quiz score of learner p for unit Us of the course
DA.

2.4.2 From Concepts to Analyses

Recall that (in traditional classroom contexts) learners engage differently
with assessed course content than they do with unassessed content [38, 105,
34, 51]. Applying this same concept to the MOOC context, we expect to
observe a difference in the way learners behave before and after clinching a
passing grade.

To address RQ 1.1, we operationalize behavior in this case as a learner’s
engagement with course quizzes and video—the two most prominent activ-
ities in most MOOC settings [12, 112]. We then identify the unit in which
they clinched a passing grade and group them accordingly. Finally, we plot
the distribution of their quiz scores and video watching activity over time.

In the next step, we zoom in and explore the individual learner behav-
ior. In order to determine whether behavioral changes can be observed on
individual learners, we represent each passer p by a vector of her normalized
quiz scores. Then, we resort to k-means clustering (also employed in [4, 56]
for analyzing learners’ activities) of each unit-n passer group to cluster learn-
ers with similar feature vectors. We measure the distance between learner
feature vectors by their Euclidean distance. As we do not know in advance
how many different prototypical learner behaviors exist (i.e., the best num-
ber of clusters is unknown), we generate multiple k-means clusterings with

5We also explored Dynamic Time Warping [135], a specialized distance function for
time-series data—this did not yield a higher silhouette score.
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k=11,2,...,7]. For each of these seven clusterings, we assess the clustering
quality using silhouette coefficients [104], an effective technique for assessing
the quality of a clustering result. Our final clustering is the one with the
highest silhouette score.

2.4.3 Definition of Behavior Patterns

Whereas the prior work in modeling learner behavior considers learner ac-
tivity from the entire course duration [71, 131, 50, 56, 2, 137], we break the
sequence into two parts: pre- and post-passing. This segmentation allows us
to examine any effects or changes in behavior stemming from the attainment
of a passing grade.

In addressing RQ 1.2 we now conceptually define a number of behavior
patterns (based on the literature and our own findings) and then classify our
passers into their closest matching pattern. While the clustering just describe
provide us with meaningful insights (as will become evident in §2.5.1), these
clusters do not allow us to explicitly model learner behaviors.

Once more, we restrict ourselves to quiz-score based behavior patterns.
Concretely, we define five pre-passing behavior patterns and six post-passing
behavior patterns which we summarize in Table 2.3 and 2.4. We deliberately
make this split of behavior prior to and after passing as the clustering results
show (cf. §2.5.1) a divergent behavior almost exactly at the point of passing.

For pre-passing, we define: keeping high scores for learners who exhibit
high quiz scores for all units before passing (which might indicate highly
motivated or effective learners); keeping mid scores for learners analogously
keeping medium scores (which might indicate reduced but constant motiva-
tion, or problems with the complexity of the topic); raising scores for slow
starters who begin the MOOC with low scores, but then increase their scores
until they pass; reducing scores for learners who start with high quiz scores
which then steadily decline until the course is finally passed (this may be
indicate of slowly waning motivation); and unstable scores which represents
no clear behavior pattern (like achieving high scores in one unit, and then
skipping the next unit all-together).

Analogously, we also define six post-passing behaviors. The behavior
pattern we add over the pre-passing patterns is keeping low scores which is
consistent low to zero scoring behavior after the passing stage (an impossi-
bility in the pre-passing behavior pattern set, as we only consider learners
that eventually pass).
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Table 2.3: Overview of the five pre-passing behavior patterns for normalized quiz scores.

Pre-passing
Behaviors

Explanations

Definitions

Keeping high scores

Passers start with high scores
and keep high scores.

Stdgre S tstd A A'Ugg're Z thigh

Keeping mid scores

Passers start with middle scores
and keep middle scores.

Stdg'r'e <tsga N Avggre < thigh

Raising scores

Passers start with mid scores or
low scores but increase scores to
high scores.

Stdgm > tsta N (Slpgre >
tslopeV (Slpg,»e > OALRESW < tl're))

Reducing scores

Passers start with high scores
but reduce their scores to
middle or low scores.

Stdgre > tstd A (Slpgre < _tslope V

(Slpgre <O0A LREIIZTE < tlTe))

Unstable scores

Passers’ scores are not stable
and do not show clear trends.

learners who are not successfully
assigned to a previous pattern

Table 2.4: Overview of the six post-passing behavior patterns for normalized quiz scores.

Post-passing

Behaviors Explanations Definitions
Passers keep high s s to tl

Keeping high scores : Sgsers eep high scores to the Stdios ; S tsta A Avg,pmst > thigh

Keeping mid scores Passers keep middle scores to Stdgost <tsta A tmia < Avggus <
the end. thigh

Keeping low scores

Passers keep low scores or 0
scores to the end.

Stdposy < tota N Avghgy < tmid

Raising scores

Passer’ scores show increasing
trends to the end.

Stdy st > tota N (SIphs > tsiope V
(Siph, > OANLRE} . < tire))

Reducing scores

Passer’ scores show decreasing
trends to the end.

Std;ost > tata A (Slpposy < —tstope V
(Siph, <OALRE} . < tie))

Unstable scores

Passers’ scores are not stable
and do not show clear trends.

learners who are not successfully
assigned to a previous pattern

Having defined these patterns, we now manually classify all learners’ ex-

hibited pre- and post-passing behavior sequences into these patterns; this
classification is crisp: each learner exhibits exactly one of the defined pre-
passing patterns and one of the defined post-passing patterns. We manually
determined the rules and the best setting of the threshold values by sampling
a small number of to-be-classified quiz score series, hand-labeling them and
creating rules and thresholds accordingly. The rules and thresholds are the
same for all four MOOCs. The resulting rules are listed for each behavior
pattern in Table 2.3 and 2.4. Our rules are based on analyzing average val-
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ues, deviations, and linear regression of quiz scores. The rules contain the
following additional concepts:

Average/std. normalized quiz score: A passer’s p average and standard
deviation normalized quiz score for all pre-passing and post-passing scores
Avgh., Std% with X = {pre, post}.

Stability: Threshold ¢4y determines whether a given series of pre- or post-
activity scores are stable based on the respective standard deviation. When
Stds, < teq, we classify p as keeping scores.

Level: Thresholds 54, and t,,;4 to indicate high or medium normalized quiz
scores. If a learner’s behavior was classified as "keeping" based on Stdk,, these
thresholds are used on the average Avgh. to determine the correct "keeping'
class.

Score slope: A passer’s p score slope Slph with X = {pre, post} is the
slope of the linear regression of the pre-passing or post-passing normalized
quiz score series. LRE_Z;( with X = {pre, post} is the least squared error
of that linear regression. We consider linear regression if a behavior is not
"keeping scores" because of high standard deviation Std%..

Instability: Threshold #;.. determines, based on the standard error LREg(
of the linear regression, if a behavior can be fit close enough for being consid-
ered raising/reducing, or if it should be unstable instead. For example, the
score sequence (100%, 66%, 33%, 0%) has a very low regression error and is
"reducing", while (100%, 0%, 66%, 33%) has a high regression error and is
thus considered "unstable".

To classify a series of data points, we evaluate the patterns from top to
bottom and the first pattern whose corresponding rule evaluates to true is
considered as the pattern to classify the data points into. As visible in the
rule definitions, the final pattern (unstable) ensures that all data points are
classified into one of the patterns.

2.5 Results

2.5.1 Pre/Post-Passing Behaviors

Recall, that in RQ 1.1 we are concerned with the question whether or not
passers behave differently before and after having reached the passing thresh-
old.



24 Chapter 2. The Change of Learner Behavior after Certificate Achieving

Observation Analysis

The distribution of quiz scores and video consumption for our learners grouped
by passing unit are shown in Figure 2.3, Figure 2.4, Figure 2.5 and Figure 2.6.
Here, each row shows the behavior of one group of passers (e.g. the top row in
Figure 2.3(a) shows the quiz scoring activities of all unit-5 passers of FP) while
each column shows the behavior of all passers in a particular unit (e.g. the
last column of Figure 2.3(a) shows the behavior of all passers in unit 8).

Across all courses we find learners who pass in early units (top two rows
in each sub-figure of Figure 2.3 and Figure 2.4) to score in a narrow range of
high scores before passing—this is of course a prerequisite for passing early.
After the minimum passing threshold is reached, however, the variance of
scores increases drastically, with a number of learners starting to score very
low. For example, 6% of Pspp learners (i.e. learners who passed in week 5)
score less than 20% of the available points in Q¢ and 22% of Py gp learners
(who passed in week 6) score less than 20% of the available points in Q7. In
contrast to DA and SEW, in FP and SE we observe a larger number of learners
who maintain high scores after passing than learners who score low after
passing. Concretely for FP, in the final unit, more than two thirds of the
Ps p passers score 80% or higher on the remaining quizzes.

The video consumption behavior of passers across MOOCs is also note-
worthy: in every MOOC a small to medium fraction of passers does not watch
any’ of the unit’s videos —3.4% in FP, 3.0% in DA, 10.8% in SEW and 20.0%
in SE. In Figure 2.5 and Figure 2.6, we report on the video watching behavior
of all those passers with at least one video activity in our logs. Across the
four courses the trend over time is similar: the number of passers who do
not watch lecture videos increases in the final units. With respect to the
completeness of lecture video consumption we find a clear divide between DA
& SE and SEW & FP: in DA & SE learners’ normalized video consumption peaks
around 1.0 (indicating that many learners watch the whole video lecture at
normal speed), while in SEW & FP for most passers the normalized duration
is below 1.0 indicating that they skip at least parts of the videos.

We can conclude that learner behaviors on quizzes are distinctive be-
fore and after passing. We also find (not unexpectedly) marked differences
between the quizzing behavior of passers and not-yet-passers in the same
unit. At the same time, we fail to observe the same clear differences in the

"We note that an alternative explanation for the zero peak may be that learners down-
load videos for offline learning as suggested by [2], which is not captured in the edX logs.
While this may be true for some learners, this cannot explain the change in behavior after
the passing threshold is reached.
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Figure 2.4: Quiz score distribution of SE and SEW: passers are binned according to their
passing unit. Rows represent groups of passers, columns represent one particular unit. Red
plots show groups of passers that reached the passing threshold in a previous unit.
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video consumption. Based on this result, in our further analyses we focus
exclusively on passers quiz behaviors.

Clustering Analysis

Based on the clustering described in §2.4.2 we visualize the resulting normal-
ized quiz score clusters in Figure 2.7 for the four courses: each unit in each
cluster is represented by the average score learners in that cluster achieve in
that unit with their respective confidence bands. The key insights of Fig-
ure 2.7 with respect to RQ 1.1 are:

e For passers who pass MOOCs early (i.e. the first two unit-n passers
groups), the clusters share very similar activity levels before passing,
but begin to differ immediately at the passing unit.

e For nearly all unit-n passer groups and MOOCs, choosing k = 2 clusters
yields the best clustering fit. This strongly indicates that for early
passers, there are two dominant behavior patterns: “reducing scores”
(rapidly declining quiz scores for the units following the passing event)
and “keeping scores” (the averaged scores of passers in one cluster stay
more or less stable at a high level) after passing.

e There are exceptions to the two-cluster rule: P5gsg and Prgg split into
many small clusters the latter can be attributed to the overall low
number of learners to be clustered. The five clusters observed in Psgg
are explained by the special setup of SE with “exams” appearing in
units 3, 6 and 8 which not only cover the material of the current unit
but also of previous units. Passers of unit 5 fall into different clusters
depending on whether or not they “take the exams” in units 6 and 8.

e The MOOCs differ in the dominant post-passing behavior, while for
Pspp and Psge the dominant cluster is “keeping scores”, in DA across
all groups the “reducing scores” passers dominate over those that keep
participating in the assessment (not shown here). This may hint at dif-
ferent motivations for taking the course (gaining knowledge vs. gaining
a certificate).

e In P7py we also observe a behavior unique to DA: a group of learners
starting off slowly (low scores in units 1 and 2) and finishing strong
(high scores in starting in unit 3).
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Figure 2.7: K-means clustering of learners normalized quiz score feature vectors for the
first three unit-n passers groups (in SEW, learners’ scores can reach Tpqs already in Unit 4).
The cluster label in each graph shows the number of passers in each cluster. The vertical
red line indicates the unit in which passers reached the passing threshold. The shaded areas
around the lines show the upper (99%) and lower (70%) confidence bounds. Best viewed
in color.
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These results show that indeed, we find significant changes in learner
behavior after the passing event. We conducted a similar analysis for video
consumption, but as expected based on the observation analysis, we did not
observe meaningful clusters or behavioral changes after passing.

2.5.2 Learners’ Core Behavior Patterns

To answer RQ 1.2, based on rules we designed in §2.4.3, we now classify all
early passers, i.e. those that pass within the first two possible units, into their
pre- and post-behavior patterns. We restrict ourselves to early passers as (i)
the vast majority of passers fall into this category (cf. Figure 2.2), and (ii)
we have sufficient post-passing behavior data points for them. Based on our
five pre-passing and six-post passing behavior patterns, we have potentially
5 x 6 = 30 different “course patterns” the passers fall into. In Table 2.5 we
list for each of our four MOOCs what percentage of early passers fall into
each of those patterns. We make the following observations:

e Two course patterns (pre + post) dominate across all four MOOCs
which have already been hinted at in our previous analyses: (1) keeping-
high + reducing, and (2) keeping-high + keeping-high with more than
50% of passers in Py sew, Pspa, Psse and Pspp respectively falling into
one of those patterns.

e Similarly, as already indicated in the cluster analysis, in FP and SE
more learners keep high scores after passing (46% of Pspp passers and
38% of Ps g passers) than reducing them (24% of Ps pp passers vs. 27%
of Psgg passers), while the opposite is true for DA (among Pspa 60%
reduce and 27% keep scoring high) and SEW (among Py sgy 30% reduce
vs. 20% that keep scoring high).

e Interestingly, among those early passers very few stop submitting as-
sessments immediately after passing (indicated by the low percent-
ages in the post-passing behavior keeping low scores rows). This phe-
nomenon is most pronounced for the course pattern unstable + keeping-
low with more than 10% of passers in three MOOCs falling into this
category in FPspa, Psrp and Ps ggy.

e We find that learners whose pre-passing behavior was categorized as
keeping-high are less likely to drop to zero quizzing after the passing
threshold is reached than those learners in other pre-passing categories.
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e Among the thirty course patterns we find only one — raising-scores +
raising-scores — to have never occurred in any of our MOOCs. This is a
sensible outcome, as this pattern implies that learners put more effort
into the assessments after passing then before.

Summarizing this analysis, we find that although many different patterns
appear (for 29 out of 30 patterns we observe at least one passer exhibiting
it), the majority of passers fall into only two course patterns, a result that
holds across all four MOOC:s.

Table 2.5: Overview of the fraction of early passers falling into each course pattern
(combination of pre- and post-passing pattern). P, represents unit-n passers, shown in
brackets (table header) are the number of passers in each group. Marked in bold are all
values > 10%. Each column sums up to 100%; a — indicates 0%.

#Passers
FP DA SEW SE
Pre-passing Post-passing Ps Pg Ps Pg Py Ps Ps Pg
Behaviours Behaviours (690) (237) (448) (450) (216) (110) (379) (621)
Unstable Unstable 0.6% 6.3% - 4.7% 1.4%  10.9% - 5.5%
Raising 0.1% 0.4% - - - - - 0.2%
Reducing 3.9% 7.2% - 13.8% 4.6% 10.9% - 2.6%
Keeping high 3.9% 9.7% - 4.4% 1.9% 7.3% - 21.7%
Keeping mid 0.6% 2.5% - 4.4% 0.9% 21.8% - 2.1%
Keeping low 0.7%  11.8% - 11.3% 0.9%  10.0% - 5.8%
Raising Unstable - 0.4% - 0.7% 1.9% 0.9% - 1.0%
Raising - - - - - - - -
Reducing 1.3% 0.4% - 3.6% 4.6% 1.8% - 1.3%
Keeping high 20%  21%  02%  27%  4.6%  2.7% S 64%
Keeping mid - - - 1.3% 0.5% - - 0.2%
Keeping low 0.4% 0.8% - 2.0% 0.5% 2.7% - 1.1%
Reducing Unstable 0.1% 0.8% - 1.3% 0.9% 1.8% - 1.1%
Raising - 0.4% - 0.4% - 0.9% - 0.3%
Reducing 0.9% 2.5% - 3.6% 1.4% 0.9% - -
Keeping high - - - 0.9% 0.5% - - 5.3%
Keeping mid - 1.7% - 3.1% - 4.5% - 0.6%
Keeping low 0.7% 7.6% - 4.2% - 5.5% - 6.6%
Keeping high Unstable 8.4% 4.2% 6.0% 4.4%  14.8% - 5.8% 2.4%
Raising 0.4% - - - - - - -
Reducing 23.6% 101% 59.8% 10.9%  30.1% - 26.9% 2.3%
Keeping high 46.4% 15.6% 27.2% 5.6%  20.4% - 383% 26.1%
Keeping mid 1.6% 3.4% 2.5% 9.8% 4.2% 0.9% - 0.8%
Keeping low 3.3% 4.2% 4.2% 6.9% 6.0% - 29.0% 3.9%
Keeping mid Unstable - 2.1% - - - 2.7% - 0.2%
Raising - - - - - - - 0.2%
Reducing - 0.8% - - - 1.8% - -
Keeping high - 1.3% - - - 2.7% - 1.8%
Keeping mid - 1.7% - - - 4.5% - 0.3%

Keeping low - 1.7% - - - 4.5% - 0.3%
i
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2.6 Conclusions

In this chapter, we investigate long-term behavioral engagement of learners
based on their participation in video lectures and quizzes throughout courses.
Specifically, learning analytics technology is applied on trace data to evaluate
behavioral engagement of passers based on their behaviors on video watching
and quiz answering before and after clinching a passing grade.

We find that the vast majority of passers pass a course at the earliest
possible point, and after passing they exhibit a certain typology of post-
passing behavior patterns which indicate their motivation for the course.
Across the courses we explore, we find that the act of clinching a passing
grade heavily influence ensuing learner behavior. We also define a number
of pre-passing and post-passing behavior patterns and find the majority of
learners to fall into a narrow band of behaviors independent of the specific
MOOC under investigation.

We find that a certain subset of learners heavily reduce their engagement
with quiz questions after clinching a passing grade. Now consider this obser-
vation in the context of the value or significance of a course certificate; there
exist learners who attained a certificate (and can therefore claim mastery of
the course subject) who have been exposed to only 60% of the course mate-
rials. Now that universities are beginning to offer official college credits for
completing a MOOC [74], this highlights the need for course practitioners to
design assessment systems which require learners to display mastery of an
entire course subject before earning a certificate.

This is a first step towards gaining more detailed and fine-grained in-
sights into learners’ behaviors and motivation. Future work will expand this
exploratory research to a larger number of MOOCs (from different fields,
requiring different types of background knowledge) and take learners’ de-
mographic information, prior knowledge and motivations into account (do
learners of a certain demographic slow down after passing more than oth-
ers?). Using such insights, can we then exploit this knowledge to create
MOOCs that provide a more sustained learning experience?






Chapter 3

Mobile vs. Stationary
Learning

In this chapter, we focus on the impact of mobile learning on behavioral
engagement of MOOC learners in a learning session. Mobile technology has
become an ubiquitous part of our daily lives and enables us to learn on-
the-go. The use of mobile devices for learning on-the-go requires learners to
multitask and divide attention between several activities, at least one of which
(the learning activity) with high cognitive load. While most MOOC platforms
today offer responsive web pages and specific apps to learn via mobile devices,
the learning situation and its effect on learners while using mobile devices
on-the-go has not been studied in full. In contrast to most existing mobile
learning studies which were conducted in the lab, our user study focuses
on real-world situations commonly experienced by learners while they learn
on-the-go.

This chapter is published as “Stationary vs. Non-stationary Mobile Learning in
MOOCs” [149], by Yue Zhao, Tarmo Robal, Christoph Lofi and Claudia Hauff, in Adjunct
Publication of the 26th Conference on User Modeling, Adaptation and Personalization, pp.
299-303. ACM, 2018, and “Can I have a Mooc2Go, please? On the Viability of Mobile vs.
Stationary Learning” [148], by Yue Zhao, Tarmo Robal, Christoph Lofi and Claudia Haulff,
in European Conference on Technology Enhanced Learning, pp. 101-115. Springer, 2018.
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3.1 Introduction

With the rapid advancement of mobile technology, the use of mobile devices
has become ubiquitous around the world—about 98% of the population in
developed countries, and 50% of the population in developing countries had
mobile-broadband subscriptions in 2017 [109]. This development has affected
the way people exploit mobile technology to learn new skills—a significant
number of people use mobile devices for learning. A survey on lifelong learn-
ing by Tabuenca et al. [129] finds that 56% of learners used their smart-
phone on a daily basis, whilst a study on mobile language learning by Din-
gler et al. [29] reports that about 38% of learning sessions took place while in
transit. According to O’Malley et al. [81], mobile learning refers to “any sort
of learning that happens when the learner is not at a fixed, predetermined
location, or learning that happens when the learner takes advantage of the
learning opportunities offered by mobile technologies.”

The start of the MOOC movement in 2011 vastly widened the learning
opportunities for people across the world outside of a formal education set-
ting. While in the early years MOOC platforms lacked support for mobile
devices, by 2015, most well-known platforms (such as edX, Coursera and
Udacity) offered a mobile learning experience [66], either in the form of re-
sponsive web pages or native mobile apps (for Android and iOS), thus further
expanding the possibilities to learn anywhere and anytime.

Critical for mobile learning [118, 117, 94, 119] is the learning situation—a
set of environmental and intentional constraints [7]—in which learning occurs.
A learner’s available time, the employed device type(s), and the frequency
of interventions or distractions are only a few of those constraints that affect
learning. One common learning situation for MOOC learners is stationary
learning: here, learners use a device with a large screen to access course
materials whilst being stationary in a comfortable environment (e.g. at their
desk), enabling them to focus on the learning activity. In the mobile learning
situation?, the conditions are quite different—mobile devices have consid-
erably smaller screens and they are used in various and possibly changing
environments which require learners to multitask (e.g. learning whilst walk-
ing or transiting). In terms of learning, this situation results in an increase in
interruptions and distractions [117], an increase in cognitive load [129, 16, 29],
and increased frustration [23].

2In the remainder of this chapter, we refer to learning in a non-stationary situation
with a mobile device as learning on-the-go.
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Existing studies on mobile learning in MOOCs focus on the design and
delivery of course content for mobile devices [97, 66] as well as the learning
experience on mobile devices [90, 142, 23, 142]; the latter though is typi-
cally studied in the lab, instead of real-world environments. Thus, little is
known about how multitasking and a multitude of overlapping real-world
conditions affect MOOC learning on-the-go compared to stationary learning.
This knowledge gap serves as the core motivation for our work.

More specifically, we focus on the impact of the learning situation on
learners’ performance and interactions, the effect of different environmen-
tal variables on the learning on-the-go process, and the correlation between
learners’ perceived workload and their performance/interactions. We ana-
lyze both trace data and survey data collected from a user study with 36
participants, each of whom completed two mini-MOOCs (one in stationary
and one in the on-the-go condition? at specific times of the day to control for
daylight and crowdedness), guided by the following research questions:

RQ 2.1: To what extent does learning on-the-go (compared to stationary
learning on a mobile device) affect MOOC learners’ learning gain, learning
efficiency and interactions with the course content?

RQ 2.2: How do learners perceive their workload (physical as well as men-
tal) in the stationary and learning on-the-go conditions and how does it relate
to their learning performance and interactions?

3.2 Background

Our research addresses the following aspects of online learning: multitask-
ing and attention fragmentation, and the use of mobile devices in different
learning situations, with a focus towards learning in MOOCs.

3.2.1 Multitasking and Divided Attention

Interacting with a mobile device while on-the-go requires the ability to mul-
titask and divide one’s attention between several tasks efficiently at once.
Multitasking—the act of attempting to engage simultaneously in two or more
tasks that have independent goals [36]—is directly connected to our research
on mobile learning from MOOCs.

3In this condition our participants physically explored the university campus.
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Multitasking is tightly coupled with the attention level and situational
awareness. Studies on walking and mobile use have highlighted the increase
of cognitive load and a necessity to divide attention, thus forcing mobile
users to correct their gait and walk slower while performing tasks on mobile
devices [60, 61].

Multitasking also incurs a cost on performance and accuracy for other
tasks as our ability to effectively process two or more attention-demanding
tasks simultaneously is limited [36], and performance across two concurrent
tasks is optimized based on perceived priorities [31]. Thus, switching be-
tween activity contexts (e.g. in the on-the-go setting switching between read-
ing the slides, paying attention to the traffic, or listening to the video lec-
ture) lowers task effectiveness. Harvey and Pointon [45] investigate the effect
of fragmented attention on mobile web search tasks in three different con-
texts (walking on a treadmill, navigating through an obstacle course, and
sitting down) and find that the contextual situation affects user (search) task
performance—walking affected participants’ objective and perceived search
performance negatively. In addition, participants who performed searches
while on the move reported a higher difficulty and cognitive workload in
performing the tasks than those sitting. In MOOC learning, which requires
a high degree of attention and commitment, this indicates a potential for
less effective learning in the on-the-go condition compared to the stationary
one. Xiao and Wang [142] investigate the impact of divided attention on the
learning process and learning outcomes for mobile MOOCs, and propose to
detect divided attention via monitoring learners’ heart rate. In their study
with 18 participants under lab conditions, they observed divided attention
to hurt learners’ performance.

With respect to multitasking and fragmented attention, our study ex-
plores the effect and extent learning on-the-go has on learners’ ability to
comprehend course content, and on their cognitive learning performance.

3.2.2 Mobile Learning

Mobile learning (i.e. learning with a mobile device) stresses the possibility
to learn across time and space, and commonly assumes that learners are on
the move [118]. What mainly distinguishes mobile learning from traditional
classroom learning is the variety and unpredictability of the situations in
which learning can take place [117] which places different demands on learn-
ers’ attention level, body posture, environment, and social context whilst
learning.
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Mobile technology has enabled context-sensitive learning and the use of
sensor data of mobile devices to enrich the learning experience [119]. Din-
gler et al. [29] implement an Android app to collect sensor data (e.g. location,
ringer mode, or motion) in order to detect learners’ contexts and boredom
levels during learning sessions on mobile devices. Based on a user study, the
authors conclude that while on mobile and in transit people are more open
to engage in quick learning sessions, and context information retrieved from
phone sensors can be helpful for mobile learning.

Learning tasks that are cognitively demanding (e.g. reading and writing
scientific essays) seem to be incompatible with the use of mobile phones while
on-the-go, whereas activities that are less cognitively demanding (e.g. social
networking, texting, or taking pictures) are compatible with body move-
ment [16]. Music et al. [76] attempt to detect changes in user attention by
exploiting smartphone accelerometers to trace changes in user gait patterns
as a response of interaction with a mobile device. In a traditional study set-
ting (e.g. a library, classroom), the use of mobile phones whilst learning has
been found to be a distraction for most learners [6]; the same can be said
about the mobile MOOC setting as incoming notifications, messages, news,
etc. can take learners’ focus away from the actual learning task.

The mobile devices themselves also affect learner perceptions. Dalipi et al.
study learners’ experience by comparing desktop and mobile platforms of
three well-known MOOC environments (edX, Coursera, and Udacity) [23].
They find that learners were more satisfied with the respective desktop vari-
ants; mobile platforms with their small screens and a lack of external input
devices caused negative emotions as a number of tasks, which were easy on
the desktop variants, were rather difficult to execute on the mobile variants.
In a similar vein, Becking et al. [7] argue that learning situations for learning
on-the-go are uncomfortable because of the lack of space for taking notes,
and the potential for interruptions.

In our study, we explore learning with a mobile device in two different
settings: (i) on-the-go and (ii) in a seated and more convenient condition
close to traditional online learning, yet with a mobile device. In the former
condition, we do not confine our participants to the lab (e.g. by using a
treadmill or an obstacle course), but instead ask them to physically explore
the university campus whilst learning.
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3.3 Study Design

3.3.1 Learning Situations

Inspired by the mobile search study conducted by Harvey and Pointon [45]
(who find walking to impact participants workload perception and search
effectiveness), we investigate whether learning on-the-go has any measurable
impact on learning gain, effectiveness and perceived workload compared to
stationary learning in the MOOC setting. We consider the following two
learning situations (or scenarios) in our user study:

Stationary Scenario (StaSc): Learners study MOOCs while sitting in the
office with a mobile device. This scenario is used as the baseline in order to
measure the impact moving around has on learning.

Moving Scenario (MowvSc): Learners study MOOCs with a mobile device
while on-the-go. Participants are asked to learn whilst walking from one
building to another on campus at their normal walking speeds, while paying
attention to the traffic.

To eliminate the effects of learning behaviors unrelated to the use of
mobile devices (e.g. taking notes on a piece of paper) and of different types
of mobile devices, we instructed our study participants to perform all learning
tasks exclusively on the same mobile device? in both StaSc and MovSc. We
hypothesize—in line with the findings in [142]—that compared to StaSc,
the necessary multitasking and the possible interruptions and distractions in
MowvSc negatively affect MOOC learners’ learning gain. We also hypothesize
that participants in MovSc require more time to consume the course materials
(due to the divided attention) than those in StaSc. In line with the previous
hypothesis, we anticipate participants in MowvSc to revisit the video page
more often and rewind the video more often than those in StaSc to refresh
their memory (which is impaired due to the distractions on-the-go).

3.3.2 Learning Materials

We prepared four mini-MOOCs on different topics (Table 3.1) for our user
study and deployed them on edX Edge, a low-visibility clone of the edX
platform.

4A Samsung S5 smart-phone with 1,080 x 1,920 pixels, 5.1” display screen, 2GB RAM,
2.50 GHz CPU, Google Android 6.0.1 and the Chrome browser installed.
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All four mini-MOOCs had the same structure: one lecture video and 20
knowledge questions about the video content. To ensure similar difficulty
across the four mini-MOOCs, we selected them from a pool of introductory
MOOC video lectures produced by the Delft University of Technology for
the edX platform. We chose those four based on their similar amount of
unfamiliar terminology as labelled by three annotators with computer sci-
ence degrees. Each question was a multiple-choice question (almost all with
four answer options in addition to I don’t know). These questions were not
only used in the mini-MOOCs (right after the video lecture) but also in the
pre-study questionnaire, which enables us to compute the knowledge gain in
a straight-forward manner. This setup also means that the questions cov-
ered key knowledge concepts discussed in the respective lecture, instead of
specific video details (such as the number of instructors, or the color of the
background). Each question could be attempted once in the pre-study ques-
tionnaire and MOOC.

The pre-study questionnaire thus contained 4 x 20 = 80 questions about
the four topics; we used answers to those questions to select for each study
participant the two mini-MOOCs with the lowest prior knowledge levels.
This setup leads to large potential knowledge gains. Table 3.1 lists the pre-
study knowledge scores for the four mini-MOOCs across our 36 participants.
Note that the maximum obtainable score for the questionnaire was 20 for
each topic. The Qubit topic proved to be the most difficult, with more
than half of the participants answering 0 or 1 question correctly; in contrast,
water quality aspects proved to be the easiest topic with half the participants
answering between 7 and 11 questions correctly.

Table 3.1: Overview of our mini-MOOQOCs, the video length per MOOC and the mini-
mum,/median/maximum of participants’ prior knowledge test scores on the topics. The
highest possible score per topic is 20.

Pre-study Scores

Mini-MOOC Video Length Min. Median Max.
Radioactive decay 6mbH3s 0.0 3.0 9.0
Qubit 12m?24s 0.0 1.5 16.0
Water quality aspects 10m45s 1.0 7.0 11.0
Sedimentary rocks 5m03s 0.0 4.0 10.0

3.3.3 Environmental Conditions

In our study, next to stationary and on-the-go, we focus on the impact of two
additional environmental variables—the light condition and the crowdedness
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of the surrounding. It is known that daylight can affect the visibility of the
screen on mobile devices [143] and the visibility of the surroundings during
learning. The crowded learning situation may lead to intensive interruptions
and distractions in MovSc. We thus hypothesize daylight and crowdedness
to lead to reduced learning gains. Note that these environmental conditions
only apply to MowvSec.

Table 3.2: Number of participants under different experimental conditions.

MovSc
- Daylight & Daylight &  Dark & Dark &
Mini-MOOC Crowded Uncrowded Crowded Uncrowded StaSc
Radioactive decay 3 1 4 2 15
Qubit 3 5 3 4 13
Water quality aspects 0 2 0 0 2
Sedimentary rocks 2 0 3 4 6
Total 8 8 10 10 36

Study participants were randomly assigned to one of four groups based
on the time of the experiments for MovSc: (i) 8:45 am (crowded time with
daylight), (ii) 11:00 am (uncrowded, daylight), (iii) 5:45 pm (crowded, no
daylight®), and (iv) 8:00 pm (uncrowded, no daylight). Table 3.2 shows the
distribution of study participants across the four groups.

3.3.4 User Study Steps

In our experiments, each participant was guided through the following steps.

1. Pre-study questionnaire: 80 knowledge questions plus questions on
demographics, experience with mobile devices, mobile learning and
MOOCs;

2. Inrandom order, complete StaSc and MovSc with the two mini-MOOCs
that exhibited the lowest prior knowledge levels. During a mini-MOOC,
participants were allowed to switch between the video and questions.
Fach of the two scenarios was assigned a 30-minute time block.

3. Post-MOOC questionnaires: after each of the two scenarios a NASA
TLX workload assessment form® [43] had to be completed. It assessed

5We conducted this user study in December 2017 and January 2018 in Delft, the Nether-
lands.
Shttp://www.nasatlx.com/
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the workload during learning in each scenario on six aspects: mental
demand, physical demand, temporal demand, performance, effort, and
frustration.

3.3.5 Metrics

We now describe how we measure participants’ learning gain, learning effi-
ciency and interactions. To measure the statistical significance of the differ-
ence between groups of learners, we employ the Mann- Whitney U test.

In our study we use absolute learning gain (ALG) and realized potential
learning (RPL) to measure participants’ learning gain [127]. ALG refers
to the number of questions that were answered incorrectly in the pre-study
questionnaire and correctly in the mini-MOOC, normalized by the total num-
ber of questions (20). RPL refers to the absolute learning gain normalized

by the maximum possible learning gain”.

We measure learning efficiency through the efficiency of (i) course ma-
terial consumption and (ii) learning gain. For the former, the time partic-
ipants spent on watching videos (i.e., video duration and normalized video
duration) and answering questions (i.e., question duration) are calculated—
as we deployed our mini-MOOCs on edX Edge, we have access to all tracking
data logged by edX. As shown in Figure 3.1, video duration (VD) refers to
the minutes a participant spent watching the lecture video. Normalized video
duration (NVD) refers to VD normalized by the video length, which mea-
sures the proportion of the video consumed. Question duration (QD) refers
to the minutes a participant spent on the questions, including any time spent
on video rewinding. To compute the efficiency of the learning gain, we
divide RPL by VD and NVD.

As interactions metrics we consider those that lead the participant away
from the default mini-MOOC path (i.e. watch the video lecture and answer
the 20 quiz questions). Specifically, we use the times participants revisited the
video page during question answering (i.e. #video page revisiting, #V _revisit
in short) and the minutes participants spent on video rewinding for questions
(i.e. video rewinding duration, VRD in short) as metrics.

"For example, if in the pre-study questionnaire a learner answers 2 out of 20 questions

correctly, the maximum possible learning gain is 18. If in the MOOC quiz two more

questions are answered correctly, then ALG is % and RPL is 118.
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Activities

Video
Watching Vi V2 V3 V4

Question —Qle -Q2— =Q3—
Answering

—p
Time

Figure 3.1: An example of a participant’s learning progress. In this example, video
duration (VD) is Vi + Va + V3 + Vi, initial video watching duration is Vi + Va, video
rewinding duration (VRD) is Vs + Vi, question duration (QD)is Q1 + Vs + Q2 + Vi + Qs,
and question answering duration is Q1 + Q2 + @s.

3.3.6 Study Participants

We recruited study participants within the faculty of Electrical Engineering,
Mathematics and Computer Science, Delft University of Technology through
flyers and mailing lists. 36 learners participated in our study: 9 women and
27 men. Their average age was 24.4 (std.dev. 2.7; min. 19; max. 30).
Most participants were Master students, the highest educational degree (so
far) was: high school (5 participants), Bachelor’s degree (21) and Master’s
degree (10). On average, the participants had been using smart-phones for 7
years; all indicated to use them daily. 27 participants had used their mobile
device for a learning activity within the last seven days before the user study.
26 participants had registered to at least one MOOC, 13 had made use of
their mobile devices to learn in a MOOC and 11 participants had successfully
completed at least one MOOC.

On average, each participant took about two hours to complete the en-
tire experiment (recall, that each mini-MOOC was given a thirty minute time
limit, however additional time was required for the pre-study questionnaire,
switching scenarios, explanations by the experimenter, post-MOOC ques-
tionnaires and so on). Participants received a payment of €15. To motivate
participants to learn, we provided a bonus payment of €5 for the participant
achieving the highest learning gain overall.

3.4 Results

3.4.1 Learning Gain, Efficiency and Interactions

In Table 3.3 (rows 1 & 2) we report our learning gain metrics across the
two learning scenarios and the different environmental conditions, aggre-
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gated over all participants and topics. We find that, overall the learning
gain achieved in the MovSc setting (ALG = 0.47) is slightly lower than in
StaSc (ALG = 0.5). The difference is not significant though; similarly, the
environmental conditions exhibit no consistent tendency. More concretely, as
in our setup (20 questions per mini-MOOC), an ALG value of 0.05 represents
one question answered correctly in the mini-MOOC but not the pre-study
questionnaire, the recorded difference between StaSc and MovSc means that
on average not quite one more question is answered correctly in the stationary
learning scenario—this is in contrast to our hypotheses, where we expected
to find considerable differences in learning gain across the two learning sce-
narios. The findings also hold for RPL; here a value of 0.05 means that 5%
of those questions not answered correctly in the pre-study questionnaire are
answered correctly in the mini-MOOC.

In terms of learning efficiency, the results in Table 3.3 (rows 3 to 7)
show that in line with our hypotheses, participants in the MouvSc scenario
did take slightly more time to consume the lecture videos than those in the
StaSc scenario. Importantly, participants spent significantly more time on
questions in StaSc (on average 16 minutes) than in MovSe (13 minutes), a
finding that corresponds to the results in [45] where stationary and on-the-
go mobile web search tasks were compared. This result can be explained by
the fact that a comfortable and stationary environment allows participants
to engage with in-depth tasks requiring a lot of focus. Remember though,
that this additional time spent on questions did not result in significantly
higher learning gains as seen in our previous analyses. Once again, when
considering the impact of the environmental variables, we do not observe a
consistent trend, one way or another.

To determine the efficiency of learning gain, we measure how much
participants learn from video watching. We hypothesize that MovSc has a
negative impact on participants’ efficiency of learning gain. RPL/VD refers
to participants’ learning gain per minute of video watching. We find that
on average participants in StaSc reach a 40% higher efficiency (statistically
significant) than in MovSc. We again do not observe clear trends for the
different environmental variables.

When we consider learners’ interactions in Table 3.3 (rows 8 & 9) it
is evident that on average participants in StaSc spent nearly twice as much
time rewinding the videos than those in MovSc. The same trend holds for the
number of times participants revisited the video playing page during question
answering. Both of these findings indicate that in StaSc participants put
more effort on finding relevant information for question answering than in
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MowvSc. In order to understand participants’ interactions in more detail, in
Figure 3.2 we plot on a per-participant basis their (i) video watching duration
before they started question answering (i.e. initial video watching duration),
(ii) their video rewinding duration during question answering and (iii) their
time spent on question answering only (i.e. question answering duration).

Compared to StaSc, it is evident that participants in the MovSc scenario
tended to spend more time on video watching before they started question
answering and less time on question answering. During question answering,
most participants in MovSc revisited the video playing page fewer times and
spent less time on video rewinding than in StaSc. This finding shows that
participants in MowvSc tended to switch less between the video playing page
and the question page than those in StaSc. An explanation for the long
question answering duration in StaSc can be that question answering is an
activity with higher cognitive demand than video watching, which is not as
compatible as video watching with walking with a mobile device [16].

3.4.2 Learning and Perceived Workload

We now investigate the relationships between participants’ learning and their
workload perception. Concretely, we report the Pearson correlation coeffi-
cient between our learning & interaction metrics and the six aspects of work-
load participants self-reported via the NASA TLX form. The results are
shown in Figure 3.3; here, TLX score is the overall score of workload, and
MentDmd, PhysDmd, TempDmd, Perform, Effort, Frustr are participants’
workload scores on mental demand, physical demand, temporal demand, per-
formance, effort, and frustration respectively.

When comparing StaSc and MovSc we observe sensible results with re-
spect to mental demand and physical demands: in both scenarios the mental
demand was found to be the most important one, followed by the physical
demand in MovSc (in contrast to StaSc, where the physical demand received
the lowest average weighting).

In StaSc we find performance (How successful were you in accomplish-
ing what you were asked to do? with answer options ranging from Poor to
Good) to be negatively correlated with learning gain, i.e. our participants
were not able to estimate their own learning success very well. In contrast,
performance is positively correlated with normalized video duration, indicat-
ing that participants estimated their learning performance to at least some
extent based on how much of the video content they watched.
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Figure 3.3: Linear correlation coefficient between participants’ learning performance,
interactions and their perceived workload as measured through the NASA TLX form. The
x-axis label also shows the average score of each workload dimension across our participants.

In the MowvSc scenario, participants were also not able to self-estimate
their learning gains (we find a slight negative correlation between ALG/RPL
and performance); most interesting though is the positive correlation between
frustration and question duration, i.e. the longer participants in the on-the-go
condition spent answering questions, the more frustrated they felt (though
overall frustration was not a major workload dimension).

3.5 Conclusions

In this chapter, we investigate the impact of mobile learning on learner be-
havioral engagement in learning sessions. Due to the requirement for divided
attention and multitasking in learning on-the-go, learners cannot be fully en-
gaged in a learning session. With a controlled study, the impact of mobile
learning on learner engagement can be evaluated based on learners’ perfor-
mance and behaviors.

Concretely, our study focuses on to what extent learning on-the-go (com-
pared to stationary learning on a mobile device) affects MOOC learners’
learning gain, learning efficiency and interactions with course content. Our
investigation includes a foray into the influence environmental variables (light
conditions and crowdedness) have on mobile learning. A second research
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question we consider is the relationship between learners’ perceived work-
load and their learning.

In order to explore these questions, we designed a user study with 36
participants; each participant “followed” two mini-MOOCs deployed on the
edX Edge platform: one in the on-the-go condition (learning on a mobile
device while walking) and one in the stationary condition (learning on a
mobile device while being stationary). We measure participants’ learning
through a set of pre/post-study multiple choice question sets. Our analyses
result in the following key findings:

e On average, learning on-the-go (MowvSc) resulted in a lower (—6% in
ALG) learning gain than stationary learning (StaSc) with a mobile
device.

e Compared to MovSe, StaSc participants spent 29% more time on an-
swering questions and reached a 40% higher learning efficiency.

e When it comes to workload perception, participants in both condi-
tions were not able to estimate their performance (wrt. learning gain)
well; MovSc participants reported higher physical demands and slightly
higher frustration than participants in the Sta.Sc condition, though the
differences in learning gains were small (first key finding).

e The environmental variables we investigated (daylight and crowded-
ness) did not have a consistent impact on any of the metrics investi-
gated.

Our study has several limitations, among them the size of the user study
(36 participants in total) which provides us with trends but few significant
differences. A second limitation is the simplification of the on-the-go sce-
nario to a walk on the campus (which does improve though—in terms of
realism—on the lab conditions in prior studies). As pointed out by Beck-
ing et al. [7], the learning situation might be more complicated and unstable
in many situations. Learners may walk, wait or take a bus or train while
learning with a mobile device. Additionally, we only considered two environ-
mental variables—the light condition and the crowdedness; other variables
such as the weather and the temperature (recall that we conducted the exper-
iments during December/January, i.e. the winter season in Europe) were not
considered, although they are likely to also affect our participants’ behaviour.
For example, two participants who were assigned the 8 pm timeslots for the
study told us that they aimed to finish their learning sessions as quickly as
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possible due to the bad weather. In the future to measure learners’ interac-
tions in more complex learning situations, a dedicated mobile app may be
needed to record fine-grained details of learners’ contexts and actions whilst
on-the-go.






Chapter 4

Eye-Tracking Based
Inattention Detection

In this chapter, we focus on short-term behavioral engagement of MOOC
learners. If we were able to track short-term behavioral engagement of
MOOC learners in (near) real-time, intervention can be provided to learn-

ers once they are disengaged, which might improve learner engagement in
MOOC learning.

On some MOOC platforms (e.g. edX in our study), trace data gener-
ated by learner interactions (which is used in our studies in Chapter 2 and
Chapter 3) is not sufficient to track learner behavioral engagement in near
real-time by using learning analytics technology. For example, when a learner
is fully engaged in video watching, she may focus on following the lecturer
without having any operations on video playing. Consequently, her activities
for this video watching are only recorded as two events video start and video
end in the log trace data of edX. With these event records, the extent of
learner engagement in video watching cannot be accurately tracked in near
real-time by using learning analytics technology on their trace data on edX.

In particular, we investigate the webcam-based eye-tracking method for
tracking learners’ inattention in video watching. Since most MOOCs on pre-
mier MOOC platforms are centered around video lectures, in which learners
might become distracted and lose their attention frequently without realizing
it.

Inattention (also known as mind-wandering in psychology) is a frequently
occurring experience for many learners and negatively impacts learning out-
comes. While in traditional classroom contexts, a skilled teacher may be

53
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able to observe and react to learners’ loss of attention, no such intervention
is possible (yet) in MOOCs. Previous studies suggest a strong relationship
between learners’ inattention and their gaze, making it possible to detect
inattention in real-time using eye-tracking devices. Existing research in this
area though has made use of specialized (and expensive) hardware, and thus
cannot be employed in MOOC scenarios due to the inability to scale beyond
lab settings. In order to make a step towards scalable inattention detection
among MOOC learners, we propose the use of webcams. In our user study, we
compare the accuracy of inattention detection based on gaze data recorded
through a consumer grade webcam and a specialized and high-quality eye
tracker.

This chapter is published as “Scalable Mind-Wandering Detection for MOOCs: A
webcam-Based Approach” [147], by Yue Zhao, Christoph Lofi, and Claudia Hauff, in Eu-
ropean Conference on Technology Enhanced Learning, pp. 330-344. Springer, 2017.
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4.1 Introduction

Inattention (mind-wandering) is an essential part of human behavior consum-
ing up to 50% of everyday thoughts [55], and can be described as thoughts
and images that arise when attention drifts away from external tasks and per-
ceptual input toward a more private, internal stream of consciousness [69).
While inattention can also have positive effects (such as fostering creativ-
ity [132]), many educational tasks including following a lecture or solving an
assignment require active attention and focus on reaching the desired learn-
ing outcomes. For these tasks, excessive inattention has disastrous effects on
learning efficiency [123].

In traditional classroom contexts, attention lapses have been studied for a
long time, e.g. [14, 140]. Although researchers do not yet agree on the actual
attention span of learners, several past works have found attention among
students during lecture time to vary in a cyclic manner.

For online courses and MOQOCs, this problem is even more severe as they
are consumed using digital display devices. This mode of consumption is
particularly prone to inattention. Likely due to the ubiquity of smartphones
and digital content, a significant subgroup of online users adopt a “heavy
media multitasking" behavior [63], making it challenging for them to focus
on a single multimedia content unit. This finding is also supported by our
work, where learners frequently lose their attention even in short video clips
of around seven minutes.

In order to detect inattention among online learners during their con-
sumption of digital materials, we require an approach that is scalable (it can
be deployed to thousands of learners), near real-time (inattention is detected
as soon as it occurs), unobtrusive (learners are not distracted by the de-
tection procedure) and autonomous. In addition to providing insights into
learners’ behaviors, such a method would also enable real-time interventions
that lower the amount of inattention taking place. As a concrete example we
envision an intelligent MOOC video player: the player (via the webcam feed)
monitors a learner’s attention state and when a loss of focus is detected, the
player pauses the video automatically in order to avoid skipping over relevant
content. In order to ensure learners’ privacy, all necessary processing will be
client-side (i.e. executed within the browser).

To this end, previous research shows that by analyzing people’s gaze
data, inattention can be detected, e.g. whilst reading texts on screen [8],
or watching (non-educational) films [9]. These results can be attributed to
the eye-mind link effect [96], which states that there is no appreciable lag
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between what is fizated and what is processed. Existing works usually rely
on expensive and specialized eye-tracking hardware (e.g. a Tobii eye tracker)
to obtain gaze data, which is not available to the average MOOC learner.
It is therefore still an open question whether eye-tracking based inattention
detection can be performed in a scalable manner.

Our goal in this chapter is to develop a fully automatic method for de-
tecting loss of attention in near real-time using only low-end webcams ubiq-
uitously found on laptop computers. To this end, we conduct a lab study
with 13 participants, collecting a dataset of gaze features (i.e. features ex-
tracted from gaze data) and self-reported inattention. To motivate this ap-
proach, Figure 4.1 visualizes the gaze of two of our study participants through
heatmaps. The MOOC video shown has several relevant visual areas, includ-
ing the lecture slides, the subtitles, and the speaker’s face. In the depicted
scene, a changing set of examples is shown on the slides which are important
to grasp the lecture content. The participant who reported inattention in the
30-second interval intently gazed on a spot on the speaker’s face, ignoring the
slides and the shown examples, while the second participant who reported no
inattention focused on all relevant areas of the video. Our proposed approach
employs supervised machine learning to automatically learn such inattention
patterns based on gaze features.

Our contributions in this work are as follows:

1. We create an elaborate gold dataset to foster eye-tracking based inat-
tention research, featuring 13 participants watching two MOOC videos
each in a controlled lab setting, reporting feedback on inattention in
brief intervals. In addition to these inattention reports, we provide
video and gaze data as recorded and analyzed by a professional eye
tracker as well as gaze data recorded by a webcam and processed by an
open-source gaze library. We make this data available on our compan-
ion Web page [146].

2. We implement and evaluate an approach to automatically detect inat-
tention based on gaze data (i) collected with a specialized eye-tracking
device (Tobii X2-30?), relying on the results and best practices pub-
lished in [9], and (ii) collected with a standard webcam.

3. We extensively discuss and evaluate both approaches, and argue that
our webcam-based method is indeed suitable for large-scale deployment
outside a controlled lab setting.

2https:/ /www.tobiipro.com /product-listing /tobii- pro-x2-30/
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Figure 4.1: Gaze heatmaps of two study participants over a 30-second interval
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4.2 Background

Different data collection methods have been used to study inattention of stu-
dents in traditional classrooms since the 1960s, such as the observation of
inattention behaviors [53], the retention of course content [68], using direct
probes in class [126, 62|, or relying on self-reports from students [14]. A
common belief was that learners’ attention might decrease considerably af-
ter 10 — 15 minutes of the lecture, which was supported by [126]. However,
Wilson and Korn [140] challenge this claim and argue that more research is
needed. In a recent study, Bunce et al. [14] asked learners to report their
inattention voluntarily during 9 — 12 minute course segments. In their ex-
periments, three buttons were placed in front of each learner, representing
attention lapses of 1 minute or less, of 2 — 3 minutes and of 5 minutes or
more. During the lectures, learners were asked to report their inattention by
pressing one of three buttons once they noticed their inattention. This setup
leads Bunce et al. [14] to conclude that learners start losing their attention
early on in the lecture and may cycle through several attention states within
the 9 — 12 minute course segments.

In online learning environments, inattention may be even more frequent.
Risko et al. [98] used three 1-hour video lectures with different topics (i.e. psy-
chology, economics, and classics) in their experiments. While watching the
videos, participants were probed four times throughout each video. The inat-
tention frequency among the participants was found to be 43%. Additionally,
Risko et al. [98] find a significant negative correlation between test perfor-
mance and inattention. Szpunar et al. [128] investigate the impact of inter-
polated tests on learners’ inattention within online lectures. In their study,
participants were asked to watch a 21-minute video lecture (4 segments with
5.5 minutes per segment) and report their inattention in response to random
probes (one probe per segment). The inattention frequency found in their
experiments was about 40%. Loh et al. [63] also employ inattention probes to
measure learners’ inattention and find a positive correlation between media
multitasking activity and learners’ inattention (average frequency of 32%)
whilst watching video lectures. Based on these considerably high inattention
frequencies, we conclude that reducing inattention in online learning is an
important approach to improve learning outcomes.

Inspired by the eye-mind link effect [96], a number of previous stud-
ies [8, 9, 73] focus on the automatic detection of learners’ inattention by
means of gaze data. In [8, 9], Bixler and D’Mello investigate the detection of
learners’ inattention during computerized reading. To generate the ground
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truth, the study participants were asked to manually report their inattention
when an auditory probe (i.e. a beep) was triggered. Based on those reports,
the inattention frequency ranged from 24% to 30%. During the experiment,
gaze data was collected using a dedicated eye tracker. In contrast to [8, 9],
Mills et al. [73] mainly focus on the relationship between a participant’s gaze
and areas of interest (AOIs), specific areas in the video a participant should be
interested in. Mills et al. asked the study participants to watch a 32-minute,
non-educational movie and self-report their inattention throughout. In order
to detect inattention automatically, statistical features and the relationship
between gaze and video content were considered.

4.3 Methodology

In our study, we focus on the automatic detection of learners’ inattention
through webcam-based eye tracking. The scenario we consider is video lecture
watching, which is the most common manner of conveying lecture content in
MOOCs [98]. We collect data through a lab study with 13 participants who
were asked to watch two lecture videos and regularly report their inattention
during this time. We recorded their gaze data with a dedicated high-quality
eye tracker and a standard webcam. In this chapter, gaze data refers to both
gaze points (the points on the screen a participant is actively looking at)
and gaze events (i.e. fixations and saccades). Fixation refers to the action
that concentrates the gaze points on a single area, and saccade refers to the
quick and simultaneous movement of both eyes between two or more phases
of fixations.

Compared to previous works [98, 128, 63, 73|, the two MOOC lecture
videos in our study are considerably shorter—they are between six and eight
minutes in length, in line with standard MOOC practices today. To collect
the ground-truth (did inattention occur in the last n seconds?), we rely on
inattention probes which have proven to be effective in traditional classroom
contexts [15, 126, 62] and online learning [8, 9]. Probes (regularly and actively
seeking input from the study participants) are more reliable than self-caught
reports which require study participants to think about their loss of attention
and about reporting it [122]. In response to our probes (in the form of
an auditory signal—a bell) during video lecture playback, participants were
asked to press a key to indicate that they experienced inattention in the past
30 seconds. Participants who did not experience inattention were asked to
ignore the bell and continue watching.
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Having collected the ground truth data, we next turn to the extraction
of features from gaze data, following [73]. In line with previous works, we
extract features from gaze events. These gaze events are generated by gaze
points. Note that gaze points are not measured directly - they are esti-
mated from the recorded eye and iris movements; we use the existing soft-
ware libraries of our dedicated high-quality eye tracker and our open-source

webcam-based framework to turn eye and iris movements into gaze points.

Finally we employ the ground truth data and extract features in a super-
vised machine learning task to explore to what extent the automatic detection
of inattention in this setting is possible.

The overview of the processing pipeline is shown in Figure 4.2. In the
following sections, we first describe in more detail the experimental design of
our study, and then elaborate on the features we extract.

Saccades
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Figure 4.2: Overview of the processing pipeline

4.3.1 Study Setup

Our study is built around two introductory videos taken from two different
xMOOCs [101] professionally produced and offered by the Delft University of
Technology on the edX platform. One video, (taken from the Understanding
Nuclear Energy MOOC), covers the basics of the atomic model with a length
of 6 : 41 minutes; the second one (part of the Solar Energy MOOC and 7 : 49
minutes long) introduces the concept of energy conversion. We select those
videos specifically as they contain rich visual lectures slides overlayed with
the speaker (see Figure 4.1). They cover topics we consider interesting to
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a wider audience and do not require extensive prior knowledge due to their
introductory nature. All study participants watched both videos; their order
was randomized to avoid order effects.

We used two eye-tracking devices in the experiment, a high-quality one
as a reference and a low-quality webcam. Concretely, we made use of the
professional Tobii X2-30 eye tracker and its corresponding software Tobii
Studio to estimate participants’ gaze points. Our webcam was the built-in
camera of our experimental laptop, a Dell Inspiron 5759 with a 17-inch screen
and a 1,920 x 1,080 resolution. To estimate the gaze points based on a live
webcam feed, we relied on WebGazer.js® [83], an open-source eye-tracking
library written in JavaScript. We built a Web application closely resembling
existing MOOC lecture video players with additional logging capabilities.
In order to alert our participants to each inattention probe, we included a
medium-volume acoustic bell signal played by the Web application. After
the bell, participants reported their inattention in the past 30 seconds by
pressing a feedback button. The next bell signal occurred after another
30 — 60 seconds. The actual time was randomized within those boundaries,
as previous research [8, 63] suggests that participants perceive interruptions
which are not perfectly periodic as less interrupting. In order to further
limit the mental annoyance of this process, participants were only asked to
actively report in case they had indeed experienced inattention. This process
resulted in inattention reports for each participant, including the bell signals
and participant responses with respect to inattention as shown in Figure 4.3.

Report Report Report

Inattention l |Ammion Attention Inattention l|nnamlon Inattention J,

[ [ i i i

Bell Bell Bell Bell Bell Bell

Figure 4.3: An example inattention report

We recruited our study participants (six females, seven males, all with
a computer science background) through an internal mailing list and did
not pay them. After a pre-study briefing, we asked our participants, 6 of
whom wore glasses or contact lenses, to sit stable and comfortably in front
of the laptop (with a distance of 52 — 68 cm between eyes and screen). The
study consisted of pre- and post-study questionnaires, an instruction phase

3https://webgazer.cs.brown.edu
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by the experimenter, a calibration phase (to calibrate the eye trackers) and
the watching of the two lecture videos; overall, participants spent about 35
minutes in the experiment. We conducted all experiments during daylight
hours with both office lights and natural daylight contributing to our lighting.

The data generated by Tobii Studio during the study includes (among
others) the estimated 2D coordinates of gaze points for each eye, the duration
and coordinates of gaze events (i.e. fixations and saccades), the eye and pupil
positions of the participant as well as the distance between the participant
and the camera with a sample rate of 30 samples/second. In contrast, the
data extracted from our webcam-based eye-tracking solution only includes
the estimated 2D coordinates of gaze points of both eyes sampled at a rate
of 5 samples/second.

4.3.2 Inattention Detection with Gaze Features

To realize eye-tracking based inattention detection using the professional eye
tracker and our webcam-based solution, we turn the task into a standard
supervised machine learning task. Our classifiers are trained using the afore-
mentioned inattention reports as reference labels, and extracted gaze features
for each time span between two bell signals as collected by either technique
as input.

Given Tobii Studio’s gaze data and inspired by [8, 9] we extracted 58
features in total. These features can be classified into two groups, global
features and local features. The global features refer to features which are
independent of the current content of the MOOC video, and are as shown in
Table 4.1 based on fixations and saccades. The feature vector of a given bell
time span covers statistical aggregates of fixation and saccade data such as
maximum, minimum, mean, median, standard deviation, range, kurtosis and
skew of fixation durations, saccade durations, saccade distance and saccade
angles.

Local features are mainly based on the relationship between fixations/sac-
cades and the areas of interest (AOIs) in the MOOC video, i.e. local features
correlate gaze data with the current video content. There are certain areas
of a video where a focused learner should focus her attention (e.g. the slides)
in order to follow the content, while others are less interesting. While this
opens a complex design space for engineering features, we opt for a simple
implementation in which we manually define three fixed areas of interest: the
instructor’s face, subtitles, and the lecture slides. The resulting local features
include then the number and length of saccades and fixations which focus on
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different areas of interest for a given time span. Recall once more that all
saccade and fixation data are computed by Tobii Studio with high precision
for each bell time span based on a raw sample rate of 30 Hz.

Table 4.1: Features leveraged in the detection of participants’ inattention

Feature Name Explanation

Global Features

Fixation Duration the durations (ms) of fixations

Saccade Duration the durations (ms) of saccades

Saccade Distance the distances (pixel) of saccades

Saccade Angle the angles (degree) between saccades and the horizon
Number of Saccade total number of saccades

the proportion of the number of saccades which have saccade
angles less than 30 degree
Fixation Saccade Ration the ratio of the durations of fixations to the duration of saccades

Horizontal Saccade Ratio

Local Features

Saccade Landing the proportion of the number of saccades landing in different areas
Fixation Duration AOI the durations (ms) of fixations located in different areas

Due to limitations of the WebGazer framework?®, we only achieve a sample
rate of 5 Hz for our webcam-based experiments. As changes of fixations
and saccades usually happen within the range of 200 ms to 400 ms [107],
reliable gaze data comparable to the one provided by the high-speed Tobii
tracker is impossible to obtain using such a low sample rate and thus needs to
be estimated algorithmically. For this purpose we implement micro-saccade
detection as discussed in [30]: we first determine whether the movement
between two consecutive gaze points is a saccade based on the movements’
velocity. Then we treat gaze points between two saccades as a fixation.
If there is only a single gaze point between two saccades, we assume this
gaze point is a fixation with a duration between this gaze point and the
previous gaze point. After the detection of saccades and fixations, we can
generate the same 58 features as already shown in Table 4.1. Intuitively,
the feature vectors from the webcam-based solution are less precise (as the
sampling rate is much lower), however, we will show later that they still show
comparable classification performance as we aggregate features over the time
spans between consecutive bells, thus this imprecision carries little weight.

To train classifiers, we adopt leave-one-participant-out cross-validation [73].
In each run, the data of one participant is selected as test data and the data
of all other participants is used for training. Based on the results reported
in previous works [8, 9, 73], the collected data on learners’ inattention is
usually unbalanced with considerably less than 50% of probes resulting in
reported inattention. We counter the effects of this imbalance by apply-

Tt is based on an iterative algorithm that each detection runs after the previous de-
tection is finished.



64 Chapter 4. Eye-Tracking Based Inattention Detection

ing the oversampling method Synthetic Minority Over-sampling Technique
(SMOTE) [17].

We have two requirements for our choice of classifiers as follows:

1. The selected models trained with our data can be used effectively to
infer inattention in data of unseen participants.

2. The selected models trained with our data can be used in real-time
inattention detection.

For the first requirement, we consider the bias-variance trade-off of ma-
chine learning models and the data size in our experiments. We select Logis-
tic Regression, Linear SVM and Naive Bayes classifiers in our experiments
as they have a low variance on small datasets like ours. These classifiers are
also suitable for our second requirement.

Since the trained models are small and require few inference steps, they
can easily be integrated into Web applications within MOOC platforms.

In order to determine the effect of different feature types, we evaluate dif-
ferent subsets of features in our experiments: (i) global features only (G), (ii)
local features only (L) and (iii) the combination of global and local features
(G+L). Since we also include SMOTE as a pre-processing step to deal with
the unbalanced nature of our data, overall we report results on six different
setups.

4.3.3 Research Questions

We address two main research questions:

RQ 3.1: How often do MOOC learners experience inattention within video
watching?

RQ 3.2: How well do our webcam-based inattention detection methods per-
form?

For RQ 3.2, we first compare the overall effectiveness of our three selected
classifiers with different sets of gaze features. Then, we delve deeper into the
inattention detection results. Considering that the inattention reports are
not evenly distributed among participants nor across the entire length of the
lecture videos, we address two sub-questions RQ 3.2.1 and RQ 3.2.2. A
final sub-question is dedicated to the generalizability of our trained models.
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RQ 3.2.1: Does inattention detection perform equally well across all partic-
ipants?

RQ 3.2.2: Does inattention detection perform equally well across the entire
length of a lecture video?

RQ 3.2.3: Does a inattention detection model trained on one video perform
well to detect inattention on a different video?

4.4 Results

4.4.1 Exploratory Analysis of Inattention Reports

In order to answer RQ 3.1, we now analyze our participants’ inattention
behaviour while watching the two MOOC lecture videos.

In Figure 4.4, the distributions of participants’ reported inattention events
over the course of each of the two videos are shown. As discussed in the last
section, participants were shown both videos in a random order, which is
also reflected in the diagram. As the number of participants in each of the
experimental groups is very small, no statistically significant conclusions can
be drawn. However, it is visible that inattention is indeed a rather fre-
quent occurrence even for very short video lectures of roughly 7 minutes:
our measured inattention rate is 29%; i.e. in 71% of all bell time spans, our
subjects actually stayed focused. In addition, it appears that our partici-
pants tire considerably during the second video when the experiment draws
to its conclusion. This feedback was pro-actively provided by several of our
participants in a post-experiment questionnaire, and seems to be at least
anecdotally confirmed by the presented inattention reports.

4.4.2 Inattention Detection

In order to answer RQ 3.2, we investigate how accurately we can detect par-
ticipants’ inattention based on gaze data extracted by WebGazer.js compared
to Tobii X2-30. The results are shown in Table 4.2. The results are based
on the nested leave-one-participant-out cross-validation, which means that a
leave-one-participant-out cross-validation is used as the inner cross-validation
for model selection and a leave-one-participant-out cross-validation is used as
the outer cross-validation for measuring performance of the selected model.
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As a baseline method, we use a random classifier which includes the knowl-
edge that the inattention rate is 0.29 and thus each feature vector is labeled
as inattention with a probability of 0.29. Since accuracy is not a suitable
metric for unbalanced data, the average precision, the average recall, and the
average Fl-measure of the nested leave-one-participant-out cross-validation
are reported.

Based on our results in Table 4.2, all our methods are significantly better
than the random baseline according to all three metrics. We do not observe
a large impact of SMOTE: applying the SMOTE pre-processing method on
Tobii data slightly increases Precision, however it has no effect on the detec-
tion results on WebGazer data. The combination of local and global features
does not benefit the detection on Tobii data nor the detection on WebGazer
data.

The highest F1 scores of each group of features are slightly lower than F1
scores reported by previous research [9] which relies on similar features and
classifiers. We believe the difference (0.1 in F1 score) to be due to the slightly
different data collection setup: Bixler et al. [9] utilize a short movie instead
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Figure 4.4: Overview of the reported inattention reports across the MOOC videos. Due
to the randomized video order in the experiment, we partition the results according to
whether the video was shown first (“order 17) or last (“order 2”). The video time displays
the number of seconds since the start of the video.



67

Results

4.4.

sodeg oareN 8L€°0 v.9°0 9820 a T+D

sofeg oareN €0€°0 cr9°0 82T0 a T+D

uoissa18oy orysiSory 6620 GES'0 192°0 v T+D

sedeq oAleN  8LE'0 969°0 682°0 - T+D

sofeq oareN L12°0 6270 vS1°0 - T+D

uorssoI18oy 2138180 01€°0 €660 0Lz 0 - T+D
sofeq oAleN  €0%°0 169°0 02g°0 » 1 egeCl

INAS Te9UrT  0T2°0 005°0 SPT'0 » T

uorssea8oy o1st8or]  01€°0 STh 0 992°0 » 1

sodeg oareN v6€°0 0g9°0 €1€0 - T

INAS Teaur] 68170 ceeo €020 - T
UoISseISeY O1SIBOT  99€°0 vES0 7620 - 1 107D IR

sokeg oAreN Sov'0 ¥PL0 90€°0 » D

INAS Teaul 61€°0 L09°0 ceT0 a D

uorssoi8ey] 013818077 9%Z"0 ¥8¢€°0 6€C°0 v D

sokeg oATeN S6€°0 1.9°0 60€°0 - D

INAS Te0urT €600 80€°0 620°0 - D

uorss0I89Y 0131807 L8€°0 S6S°0 61€°0 - D

sofeq oATeN G6zeo 92S°0 982°0 N T+D

INAS Teaul 0ge’0 ¢0s'0 9¥Ee0 a 1+D

uorssei8ey] 013818077 01€0 L8T7°0 10€°0 N T+D

sofeg oAleN  Q€€°0 9870 Tve o - T+D

INAS Tesul] L91°0 69€°0 g11'0 - T+D

uorssea8oy o1st8or]  0€€°0 S09°0 20€°0 - T+D
sodeg oareN v9¢€°0 2890 7620 N T ereq

INAS Tedur] g9z 92490 T12°0 » T

UOISSaI89Y] 013180 8GZ'0 L9€°0 7820 > T

sofeg oATRN evE 0 8620 L6€°0 - T

INAS reaul] [aaaly) vy o 091°0 - !
uorssaSey o13sIS0T  60E°0 829°0 £92°0 - 1 nqoy,

sofeq oAlEN  $0€°0 014°0 S¥Z 0 » D

INAS d@our] 0620 are 0 202°0 » ]

uorsseI80Y 0131807 9€€'0 L8V°0 89€°0 S D

sofeq oareN ezeo 2970 €ve0 - D

INAS reaur] ceT0 L61°0 izqal) - D

uoIssaI8ay o13S1507T  0GE€0 SIS0 91€°0 - D
- 062°0 162°0 0620 — - oureseg
asyissern TA'8Ay [1eooy 3ay uoIsaI g SAYy ALOINS aangjesy elre

(seInyeey RDO] SURAWI 77 PUR S2INRIJ [RCO[S SURIWI £) ) RJeP 97T WO Paseq $)HNSOI UOI)I9Y9P UOTIUR))RU] g F S[qRL



68 Chapter 4. Eye-Tracking Based Inattention Detection

of MOOC lectures and free self-reporting instead of periodic self-reporting
to obtain inattention reports. With respect to the evaluated classification
methods, we find that the Gaussian Naive Bayes models outperform the
other approaches on WebGazer data in every feature set combination.

The most surprising finding in this experiment is that compared to the
Tobii data we achieve higher Recall and F'I scores based on the gaze features
extracted from WebGazer data. Based on our intuition, features extracted
from the data which is generated from the high-quality eye tracker Tobii
X2-30 should lead to a more accurate detection of inattention, than features
extracted from the data which is generated by a standard webcam. A possible
reason for this experimental artifact is the small number of participants in
our study; in future work we plan increase our participant pool to at least
100 participants.

Based on Table 4.2, we now delve deeper into our inattention detection
results. In order to answer RQ 3.2.1, we investigate the detection results
on each participant separately. For this step, we select the best-performing
models for each data source (based on F1 scores reported in Table 4.2).
For the detection on Tobii data, we use Gaussian Naive Bayes with local
features and the SMOTE method. For the detection on WebGazer data,
we use Gaussian Naive Bayes with global features and the SMOTE method.
The results are shown in Table 4.3. We observe that across all metrics, the
minimum observed accuracy is zero (for both Tobii and WebGazer data),
which implies that there are participants for whom our prediction is not
working at all. At the same time, we observe that at best a participant’s
inattention can be detected with high accuracy with an F1 of 0.7 (Tobii
data) and 0.8 (WebGazer data) respectively. The large standard deviations
across the three metrics - 0.2 to 0.35 - further show that the accuracy of our
detector varies widely between participants. Therefore, we conclude that the
detection does not work equally well for all participants in our experiments.

Table 4.3: Statistics of detection results on individual participants (Prighest shows the
detection results of the participant with highest Fl-measure, Powest with lowest)

Data Metrics Max Min Mean Std Phighest Plowest
Tobii Precision 0.714 0 0.294 0.198 0.600 0
Data Recall 1.000 0 0.682 0.357 0.857 0

F1 0.706 0 0.364 0.200 0.706 0
WebGazer Precision 0.700 0 0.306 0.209 0.700 0
Data Recall 1.000 0 0.744 0.354 1.000 0

F1 0.824 0 0.405 0.244 0.824 0

Based on the analysis in § 4.4.1, we find that inattention is not evenly
distributed throughout a video. This leads to our RQ 3.2.2. We split each
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Table 4.4: Detection across the entire length of the video (Part 1 means the first half
part of the video, and Part 2 means the second half part of the video)

Solar Energy Nuclear Energy
Data Metrics Part 1 Part 2 Part 1 Part 2
Tobii Precision 0.147 0.410 0.276 0.321
Data Recall 0.308 0.763 0.397 0.462
F1 0.195 0.474 0.285 0.369
WebGazer Precision 0.365 0.240 0.295 0.327
Data Recall 0.615 0.500 0.462 0.615
F1 0.438 0.285 0.344 0.416

video into two parts with the same length. Then, for each part of the video,
we use the data of the other part and the data of the other video to train the
model and to detect the inattention in this specific left-out part of the video.
The models, feature sets and the SMOTE method used in this experiments
are same as in RQ 3.2.1. The results are shown in Table 4.4.

We conclude that the detection of inattention cannot be made equally well
across the entire length of the lecture videos in our experiments. For Tobii
data, we find the results of the inattention detection in the second part of
the same video to be much better than the first part. For WebGazer data,
we observe no trend, the results vary depending on the lecture video. We
hypothesize this result to be connected to the fact that different participants
were shown the videos in different orders.

Our last experiment answers RQ 3.2.3. So far we have shown that our
method can detect a participant’s inattention based on a model trained on
the gaze data and inattention reports of other participants. To scale out, we
need to determine to what extent we can detect learners’ inattention in video
lectures of one course with a model trained in lecture videos of other courses.
If we were to obtain good detection results for such scenarios, there may be a
general model which can be used in different lecture videos at scale (i.e., “train
once, deploy everywhere"). In this experiment, the experimental settings for
classifiers, feature sets and the SMOTE method on different kinds of data are
same as in our previous experiments (RQ 3.2.1 and RQ 3.2.2). We evaluate
the cross-video performance by training our model on one video, and test the
performance of the model using the other video. The results of all video
combinations are shown in Table 4.5. For reference, this table also includes
training and testing using the same video, using leave-one-participant-out
cross-validation.

Based on results in Table 4.5, we find the model trained on WebGazer
data to be more robust to a change of video context than the model trained
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Table 4.5: Detection with model translation (i.e. using a model on a different video than
it was trained on)

Trained on Solar Trained on Nuclear

. Used in Used in Used in Used in

Data Metrics Solar Nuclear Nuclear Solar
Tobii Precision 0.267 0.171 0.294 0.149
Data Recall 0.705 0.372 0.410 0.205
F1 0.355 0.229 0.296 0.150

WebGazer Precision 0.240 0.298 0.346 0.344
Data Recall 0.679 0.692 0.596 0.667
F1 0.317 0.401 0.392 0.423

on Tobii data. We also observe that it does matter whether we train on video
A and test on B or vice versa as results are comparable. Overall, we believe
that a model trained on the WebGazer data collected on one video can lead to
good predictions in other videos, at least if the videos share similarities with
respect to style and type as in our scenario.

4.5 Conclusions

In our work, to evaluate short-term behavioral engagement of MOOC learn-
ers, we focus on tracking learners’ inattention in video watching. We compare
the effectiveness of a webcam plus the open-source library WebGazer.js to the
effectiveness of the specialized (and expensive) Tobii X2-30 for the task of
inattention detection in a lab study. In our experiments, we could show that
the accuracy of our webcam-based approach is on par with the specialized
eye-tracking device. This opens the way for large-scale experiments in real-
world MOOQOCs, allowing for both investigating learners’ inattention behavior
and investigating the effectiveness of interventions based on inattention de-
tection in future research under realistic conditions.

Our work has a number of limitations, including the small pool of partic-
ipants all sharing similar educational backgrounds. Similarly, the number of
evaluated MOOC videos is very limited and both videos have a comparable
(but very common) style. Thus, it is unclear how well our approach can be
applied to completely different types of videos or user groups. In addition, we
rely on a number of established and straightforward-to-implement features;
we expect a further boost in detection accuracy when more sophisticated
features are introduced.

A core contribution provided by our work is the published repository
of data collected during our controlled lab study. In addition to including
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the inattention reports of our experiment’s participants, we also provide the
full set of gaze data obtained by the Tobii X2-30 and our webcam on our

companion Web page [146].






Chapter 5

Face-Tracking Based
Inattention Detection

In this chapter, we follow Chapter 4 and investigate short-term behavioral
engagement of MOOC learners based on learner inattention in video watch-
ing. We propose a face-tracking approach to improve the accuracy and speed
of inattention detection in near real-time. In recent years, researchers have
begun to exploit eye-tracking and gaze data generated from webcams as part
of complex machine learning solutions to detect inattention or loss of focus.
Those approaches however tend to have a high detection lag (e.g. 30 seconds
usually), can be inaccurate (e.g. detection accuracies of 14% — 35% reported
in Chapter 4), or are complex to design and maintain (e.g. the processing
pipeline in Chapter 4). In contrast, we explore the possibility of a simple
alternative—the presence or absence of a face—to detect a loss of attention
in MOOC learning in this chapter.

This chapter is published as “Webcam-based Attention Tracking in Online Learning:
A Feasibility Study” [100], by Tarmo Robal, Yue Zhao, Christoph Lofi, and Claudia Hauff,
23rd International Conference on Intelligent User Interfaces, pp. 189-197. ACM, 2018.
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5.1 Introduction

In recent years, a number of works have investigated inattention prediction
based on various signals, including heart-rate data [142], EEG data [144],
skin conductance and temperature [10] as well as computer mouse pressure
data [141]. While insightful, none of these approaches can be applied at
scale in an online learning environment in the near future and thus, most
of the existing research on inattention detection relies on eye-tracking data,
including [5, 8, 9, 73, 22, 115, 147]. In our study in Chapter 4, inattention
detection with webcam-based eye tracking is investigated. Here, the eye-mind
link [96] is exploited as the eye gaze usually correlates well with a person’s
focus.

A major issue of existing eye-tracking based inattention detection ap-
proaches is the lack of real-time detection capabilities (30 — 60 second delays
are common) (e.g. our study in Chapter 4). An additional point of concern in
our setting are the privacy requirements of MOOC environments—to ensure
a learner’s privacy all necessary computations should be conducted within
the learner’s browser environment (the alternative approach of streaming a
learner’s webcam data to a high-performance server has severe privacy im-
plications, while requiring the installation of dedicated software packages
hampers usability).

In this chapter, we explore a significantly simpler alternative approach
towards detecting inattention whilst learning in a MOOC environment: we
use the departure of a user’s face from the webcam’s viewport as a proxy for
learner inattention—a user whose face is not aimed at the screen is unlikely to
pay attention to a video playing on it. It turns out, that even this deceptively
simple detection task is challenging in a MOOC environment where we have
to consider widely varying consumer-grade hardware and browser software.
In this chapter we conduct an extensive study involving two open-source
browser-based software frameworks for gaze and face detection, WebGazer.js
and tracking.js, as well as a third hardware-based solution (a Tobii X2-30
eye tracker) to determine an upper performance bound?. Both software-
based frameworks can be integrated into current MOOC environments, and
perform all their processing on the user’s computer without the need for
a server infrastructure or additional browser plugins. We benchmark the
ability of the three frameworks to reliably detect a user’s focus towards the
screen content (using the presence/absence of a face as proxy) across a variety

2Both WebGazer.js and Tobii X2-30 are used for eye-tracking based inattention detec-
tion in Chapter 4.
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of common MOOC user activities such as watching a MOOC video whilst
leaning on one’s hand, checking the weather report on a smart-phone or
drinking coffee. Specifically, we address the following research question in
our work:

RQ 3.2: How well do our webcam-based inattention detection methods per-
form?

To test inattention detection methods with different software frameworks,
we compile a benchmark suite of 50 typical MOOC learner activities, parti-
tioned into activities that are indicative of (i) focus, (ii) certain loss of focus
and (iii) likely loss of focus. We conduct an extensive lab study involving
tracking.js and WebGazer.js as well as a professional eye tracker (our upper
bound in terms of performance). A total of 20 study participants execute the
benchmark suite of activities in a controlled environment.

We find that in our setup, tracking.js performs significantly better than
WebGazer.js, achieving a median detection accuracy of 62% across all fifty
tasks (for the most difficult task detection accuracy was 17%), with the pro-
fessional hardware-based eye tracker achieving a median accuracy of 72.5%
(the most difficult task resulted in 27% accuracy). The observed detection
delay is below 2 seconds for tracking.js, making it a viable choice for webcam-
based attention detection (using face detection as a proxy). At the same time,
the reported accuracy numbers suggest that current software and hardware
solutions still struggle to provide a consistently high detection quality across
all tasks.

5.2 Background

Different data collection methods have been used to study the loss of attention
of learners in traditional classrooms since the 1960s, such as the observation of
inattention behaviors [53], the retention of course content [68], using direct
probes in class [126, 62], or relying on self-reports from learners [14]. A
common belief was that learners’ attention might decrease considerably after
10—15 minutes of the lecture, which was supported by [126]. However, Wilson
and Korn [140] challenge this claim and argue that more research is needed.
In a recent study, Bunce et al. [14] asked learners to report their attention
loss voluntarily during 9 — 12 minute course segments. Three buttons were
placed in front of each learner, representing attention lapses of 1 minute or
less, of 2 — 3 minutes and of 5 minutes or more. During the lectures, the
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learners were asked to report their loss of attention by pressing one of three
buttons once they noticed their attention loss. This leads Bunce et al. [14] to
conclude that learners start losing their attention early on in the lecture and
may cycle through several attention states within the 9 — 12 minute course
segments.

In online learning environments, attention loss may be even more fre-
quent. Risko et al. [98] used three 1-hour video lectures with different topics
(i.e. psychology, economics, and classics) in their experiments. While watch-
ing the videos, participants were probed four times throughout each video.
The attention-loss frequency among the participants was found to be 43%.
Additionally, Risko et al. [98] find a significant negative correlation between
test performance and loss of attention. Szpunar et al. [128] investigate the
impact of interpolated tests on learners’ loss of attention within online lec-
tures. The study participants were asked to watch a 21-minute video lecture
(4 segments with 5.5 minutes per segment) and report their loss of attention
in response to random probes (one probe per segment). The inattention fre-
quency reported in their experiments was about 40%. Loh et al. [63] also
employ probes to measure learners’ loss of attention and find a positive cor-
relation between media multitasking activity and learners’ loss of attention
(average frequency of 32%) whilst watching video lectures. Based on these
considerably high inattention frequencies, we conclude that reducing learner
inattention in online learning is an important approach to improve learning
outcomes.

In traditional classroom contexts, a teacher has the ability to detect and
regain learner attention through various pedagogical approaches. This is
not applicable in MOOC environments due to the nature of online learning.
Various technological approaches have been explored to detect and record
signals of user (in)attention in the past besides eye tracking, including heart-
rate tracking through mobile cameras [142], brain activities through EEG
analysis [144], skin conductance and temperature [10], posture and body
pressure sensing and pressure applied on a computer mouse [141]. As already
implied, most of the existing research though focus on either face or eye-gaze
detection [5, 8, 9, 73, 22, 115, 147].

Inspired by the eye-mind link effect [96], a number of previous stud-
ies [8, 9, 73] focus on the automatic detection of learners’ loss of attention by
means of gaze data. In [8, 9], Bixler and D’Mello investigate the detection
of learners’ loss of attention during computerized reading. To generate the
ground truth, the study participants were asked to manually report their loss
of attention when an auditory probe (i.e. a beep) was triggered. Based on
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those reports, the loss of attention frequency ranged from 24% to 30%. Dur-
ing the experiment, gaze data was collected using a dedicated eye tracker.
In [73], Mills et al. asked the study participants to watch a 32-minute, non-
educational movie and self-report their loss of attention. In order to detect
loss of attention automatically, statistical features and the relationship be-
tween gaze and video content were considered. In contrast to [8, 9], Mills et al.
mainly focus on the relationship between a participant’s gaze and areas of
interest, i.e. specific areas in the video a participant should be interested in.
In Chapter 4, we present our method for detecting learner inattention simi-
lar to the studies in [73], but our method is adapted and optimized for the
MOOC setting.

All mentioned approaches relying on the eye-mind link share two com-
mon issues: they are usually unable to provide real-time feedback as they
are trained on eye-gaze recordings with sparse manually provided labels
(e.g. most approaches have a label frequency of 30 —60 seconds, which directly
translates into a detection delay of similar length), and the reported accuracy
is too low for practical application (e.g. Chapter 4 reports that the detection
accuracy ranges from 14% to 35% depending on training and video). As a
result, we choose a different approach as discussed in the following sections.

5.3 Eye/Face-Tracking Frameworks

Recall that we employ face presence and absence as proxies of learner at-
tention and inattention respectively. Next to explicit face-tracking software
frameworks, eye-tracking frameworks are suitable for our work as well, as in
the absence of a face, no eye tracking is possible.

In order to determine an upper performance bound, we use the profes-
sional high-end hardware eye tracker Tobii X2-30. Tobii X2-30 uses its
own proprietary analytic software Tobii Studio to analyze the gathered eye-
tracking data.

Although there exist a number of different eye/face-tracking software so-
lutions, our choice is limited by the typical MOOC environment (which runs
within the browser, and thus we require browser-based software frameworks),
privacy aspects (all computations have to be performed on the user’s device)
and the variety of hardware capabilities we can expect MOOC learners’ de-
vices to have (the computations should not require too many resources). Ev-
idently, JavaScript-based solutions fit the task description. Libraries such as
CCV.js, headtrackr, ObjectDetect, tracking.js, and WebGazer.js (with clm-
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trackr for face detection) are thus potential candidates. After an initial
testing phase of all mentioned frameworks we settle on two suitable ones:
WebGazer.js [83] and tracking.js>.

5.3.1 WebGazer.js

WebGazer.js is an open-source eye-tracking library written in JavaScript that
is able to infer eye-gaze locations in real-time. Use-case specific extensions,
e.g. to track users’ web search behaviour [84] exist as well. WebGazer.js can
be configured with different components to track gaze, pupils, or faces. We
use the clmtrackr component?, a face fitting library (referred to as CLM
in the following), which has previously been used among others in works
on camera-based emotion detection [110], and intelligent public displays in
city environments [80]. CLM tracks a face and the coordinate positions of a
face model, as shown in Figure 5.1. Using this face model, WebGazer.js can
extrapolate the user’s gaze (i.e. the point of the screen on which a user’s gaze
focuses) by estimating the face’s distance and orientation from the screen. A
weakness of CLM is its “agressive” face-fitting algorithm that often attempts
to fit a model even when no face is present. This leads to many potential
problems where random background elements (like posters, plants, furniture)
are mistaken for faces, and sometimes even preferred over a real user’s face
clearly visible in the camera’s viewport.

5.3.2 Tracking.js

tracking.js is a JavaScript-based face-tracking library (7JS in the following),
which has been employed, among others, in security systems for identity
verification [46] and object recognition tasks [130]. With respect to eye/face-
tracking, this library offers a significantly less powerful feature set than both
Tobii X2-30 and CLM, as it can only detect the presence and location of
the boundary box of an object—in our case the face—in a video stream (see
Figure 5.2). While it can also be employed to track the eyes’ locations (but
not the gaze), we do not use that feature in this study. We hypothesize that
the simplicity of TJS leads to more reliable face presence and face absence
detection.

Shttps:/ /trackingjs.com
“https://github.com/auduno/clmtrackr
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Figure 5.1: Face fitting model generated by CLM. This example shows a common face
fitting error due to hand positioning.

5.3.3 Detecting Face-Miss Events

We define a face-miss event to be an event of a user’s face turning or mov-
ing away from the computer screen. The differences in the three evaluated
frameworks (Tobit, CLM, and TJS) leads to different heuristics for detecting
a face-miss:

Tobii: A face-miss event is detected if the proprietary Tobii Studio software
cannot determine gaze point coordinates. This usually represents a problem
with detecting the users’ eyes by the tracker hardware (e.g. they are not
within the camera viewport, they are closed, or obstructed by an object).
At times, while the eyes can be found by Tobii, no gaze coordinates can be
determined as the gaze direction is unclear. We cannot distinguish this case
from a case where there is no face at all. In our experience, the presence of
gaze coordinates is a very reliable proxy for the presence of a face (low false
positive rate), while the lack of coordinates does not necessarily imply the
absence of a face.
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Figure 5.2: Face Boundary Box detected by tracking.js

CLM: Similar to Tobii, we define a face-miss event as the software’s inability
to fix exact gaze coordinates, which also means a failure in reliable face
detection in case of CLM. In contrast to Tobii, due to the aggressiveness of
the face fitting algorithm, CLM is is quite prone to detect faces where in
reality there are none present (high false positive rate).

TJS: We define a face-miss event as the library’s inability to fix a face
boundary box in the webcam’s video stream. We do not try to track eyes or
gaze.

The video or eye tracker stream is continuously processed while it is
recorded. The Tobii system relies on dedicated hardware support for this
task (which partially contributes to its high retail price), and is thus able to
guarantee a sampling rate of 30 samples per second mostly independent of
the computer hardware. For the webcam-based solutions, image processing
of the video stream needs to be handled by the system’s CPU and within
the browser’s environment. As a result, only low sampling rates are possible
without overwhelming low-end computer systems. For this reason, we fix the
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sampling rate to 4 samples per second. However, due to the unreliability
of the JavaScript timer events under high system loads, the standard devi-
ation of the targeted sampling time of 250 ms is 48 ms in our experiments
(described further in §5.4). Furthermore, we have extreme cases where the
sampling times increased up to 1,157 ms, i.e. less than one sample per sec-
ond. Therefore, Tobii should be able to react with significantly lower delays
than the webcam-based frameworks.

5.4 Methodology

In order to evaluate the suitability of the chosen webcam toolkits for face
and gaze tracking, we develop a benchmark set of tasks, which we argue
represent common behaviours of online learners in front of their laptops. For
each of the tasks we define the desired behaviour: the eye-tracking devices
should either report the loss of the face/gaze (in the case of face-miss tasks)
or keep detecting the face/gaze (in the case of face-hit tasks). We exclude
mobile learners from these tasks as desktop learners are still the vast majority
of learners in today’s MOOC environments®.

We design a total of 50 tasks together with a small sample of regular
MOOC learners (graduate students in our research lab). These tasks are—
to some extent—abstract versions of the behaviour MOOC learners exhibit
when watching lecture videos, one of the most common activities in xMOOCs.
The task descriptions we developed are shown in Table 5.3. They fall under
three broad categories:

Face-miss tasks: describe those user behaviours that should result in the
loss of a detected face/gaze. 21 tasks belong to this category; examples
include Take a sip from the cup [next to you] while turning away from the
camera or Look straight up to the ceiling for 8 seconds.

Likely-face-miss tasks: should result in our frameworks reporting a mix
of face hit and face miss samples. Two examples among the 14 tasks in this
category are Lean back and put your hands behind your neck for 5 seconds
and Draw a square on the paper.

Face-hit tasks: describe user behaviours that should not influence our frame-
works’ ability to detect the face, though they may influence gaze detection.

5Concretely, based on a sample of twenty edX MOOCs offered at Delft University of
Technology, fewer than 20% of learners accessed the course content via mobile devices.
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15 tasks belong to this category, for example Reposition yourself in the chair
and Stare at the camera for 3 seconds.

We develop a dedicated Web application as testing ground. The 50 tasks
are presented as virtual “cue cards” to study participants and both TJS
and CLM are included as webcam-based eye/face-tracking solutions. The
design of the application is modular, additional frameworks can easily be
evaluated as well. We have open-sourced our application at https://github.
com/trx350/xMOOC__benchmark.

Welcome to the Intellieye Pilot Study #1

In the following you will be requested to perform different activities you could be engaged with while otherwise
normally watching a video. You will only be shown short instructions what to do and not the associated activity
itself. Please read the instructions in yellow and wait for the sound alert.

Act only and immediately after the bell ring sounds_ Test the sound here: O]

Resume focusing for the next task after a "ding’ sound. Test the sound here: ®

Thank you for your co-operation!

Prior to study, please select the values that best describe the study environment:

| am wearing: no glasses or lenses

The background behind me is: solid light colour

The light in the room is majorly: natural, sufficient

Calibrate the system beforehand: Mo, do not calibrate * as instructed

[Sncaded P101 Prediction rate: Click to START!

Figure 5.3: Opening screen of the user study

The opening screen of the application is shown in Figure 5.3; an example
task cue card is shown in Figure 5.4. The task order is randomized. The
procedure for each task (Q; is the same: the task description is shown and
five seconds later a bell sound indicates the start of the task at time tgﬁm:
at the sound of the bell the participant is expected to perform the task.
Another bell sound (different to the one indicating the start) indicates to the
participant when the task has been finished at time tg‘)ni 4> and this is followed
by the next task description. Task durations differ, depending on the specific
task, e.g. Q31 requires a participant to look at a certain angle for 5 seconds
while Q39 asks a participant to check his or her phone for 10 seconds.
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Intellieye Pilot Study #1
Task #1 [Q-02] 18:15:59

Look on the top right corner of the screen for 5
seconds.

Figure 5.4: Example task “cue card” of the user study.

5.4.1 Study Setup

We conducted all our experiments on a Dell Inspiron 5759 laptop (with built-
in webcam situated in the center of the top screen bezel) with a 17-inch screen
and a 1,920 x 1,080 resolution running Windows 10. The Tobii eye tracker
was placed on the lower screen bezel.

The study was conducted across a one week period: 20 participants were
recruited among graduate students and staff members of Delft University of
Technology via email lists. The participants did not receive compensation
and spent less than an hour on this study. Among 20 participants, 9 wore
glasses and 2 had contact lenses. In 10 of the sessions the background behind
the test subject had a uniform (light) color, in another 10 cases a poster or
photographic background was observed. We recorded these settings in our
study as we had conducted preliminary experiments which indicated that
eye trackers (especially the software-based ones) can be mislead by noisy
backgrounds.

As this is a controlled study, in order to facilitate the proper execution of
the tasks, the participants were provided with the necessary tools to perform
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all necessary behaviours, including a sheet of paper and a pen (required for

Q22, Q24&Q25), a cup (Q11&Q42) and a phone (Q39).

The Tobii requires a calibration step which participants concluded at the
start of the study. The CLM framework can also be calibrated in a light-
weight manner: five red dots were shown on the screen that have to be clicked
one after the other. To test the effect of the calibration we randomly switched
on the calibration step for 8 of the 20 learners.

To prepare the participants for the tasks, each participant was trained
on two tasks before the start of the actual study. The participants were
reminded repeatedly to only start executing a task’s required behaviour after
the sound of the bell and to keep executing the behaviour until the ending
sound occurred.

5.4.2 Detection Accuracy

For every task and participant, we determine the eye trackers’ face-hit/face-
Qi

star
tamps. As the eye trackers vary in their sampling rate they all produce a

differing amount of labels (face-hit, face-miss) for each sample interval. We
evaluate the accuracy of the produced labels by computing the percentage
of correct predictions (as defined by the type of task) in the task interval.
For example, in a 5-second task slot the webcam-based approach takes a
sample once every 250 ms (on average), and thus we collect approximately

miss predictions from the collected logs between the tg;,., and tgjd times-

20 predictions. For a face-miss task, if 14 of the 20 predictions are a miss,
the detection accuracy will be 70%. Lastly, we average the accuracy for each
task across all participants.

Table 5.1: Tobii’s delay between the start of a face-miss/likely-face-miss task and the first
face-miss event. The data is averaged across all participants of a single task.

Delay (Seconds) 1 2 3 4 5+
% of Tasks 53% 28% 6% 3% 9%

Table 5.2: Overview of the impact of the participants’ background on TJS’s and Tobii’s
accuracy.

Accuracy in %
Background #Participants TJS Tobii

Solid light 10 61.5 68.6
Poster/photo 10 55.7 67.8
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Table 5.3: Overview of all fifty benchmark tasks, and the accuracy (in %) of CLM, TJS
and Tobii averaged across the 20 participants in our user study. For “(Likely) Face-Miss“
tasks we report the percentage of detected face misses, i.e. the eye tracker flags frames
as not containing a face. For “Face-Hit” tasks we report the percentage of detected face
hits. A higher percentage indicate a better performance. The best performance per task
is shown in bold. ¥ Note that for tasks @1 and Q2 Tobii’s camera was not covered and
the detection reflects participants’ hand moving through Tobii’s camera viewport to cover
the webcam on the top bezel of the experimental laptop; for task Q43 there was no gaze to
detect for Tobii.

Accuracy in %
QID Task CLM TJS Tobii
Face-Miss Tasks

@1 Cover the camera for 2 seconds 12 45 7
@2 Cover the camera for 5 seconds 28 73 17
Q3 Cover your face with both hands for 5 seconds 17 67 75
Q4 Look what is under your table (3 sec) 3 64 81
@5 Stand up for 5 seconds 10 68 71
Q20 Tilt your head to the right for 3 seconds 15 59 38
Q21 Check if there is a HDMI port on the laptop 12 56 ks
Q26 Look straight up to the ceiling for 8 seconds 12 72 92
Q27 Tilt your head back for 5 seconds (face ceiling) 10 68 84
Q28 Tilt your head back for 2 seconds (face ceiling) 5 51 66
Q29 Look down for 3 seconds 4 35 78
Q32 Look left for 2 seconds 7 50 72
@33 Look left for 8 seconds 14 69 88
Q@35 Look over your right shoulder 13 50 72
Q36 Look right for 10 seconds 13 T 90
Q®37  Look right for 3 seconds 14 64 79
Q33  Look right for 5 seconds 7 63 83
Q@39 Check your phone for 10 seconds 7 42 89
Q10 Check your phone, return after the ding 13 37 87
Q42 Take a sip from the cup while turning away from the camera, return after the ding 5 40 51
Q47 Look up and return immediately 8 49 68
Likely Face-Miss Tasks
Qs Lean back and put your hands behind your neck for 5 seconds 2 67 63
Q7 Lean closer to the screen and immediately back 3 17 27
@13 Rapidly lean back and forth until the ding sounds 6 37 57
Q15 Tilt your body to the left and stay for 3 seconds 13 50 57
Q19 Tilt your body to the right and return immediately 6 41 55
@22 Draw a square on the paper 9 45 67
Q23  Write down 5 keys left from letter A, focus back to the screen only after the ding 4 19 61
Q24 Write down a sentence about weather 15 47 73
Q25  Write down [ love Intellieye! 10 45 78
Q30 Look half-left and return 7 36 64
@31 Look half-right and stay for about 5 seconds 7 42 4
@41 Face the camera and take a sip from the cup until you hear the ding 8 30 35
Q46 Cover the left side of your face with left hand over cheek and eye 8 38 43
Q43 Look around in the room to every direction 10 63 82
Face-Hit Tasks

Qs Open browser and navigate to www.weather.com. Return after the ding. (15 sec) 94 97 80
@9 Open new browser tab and return to this after the ding 95 89 87
Q10 Open some program window on top of study window and return after the ding 99 87 94
Q11 Feeling sleepy? Yawn and cover your mouth with a hand. (3 sec) 94 66 64
Q12 Grab the tip of your nose for 3 seconds 100 64 71
Q14 Reposition yourself in the chair 98 s 61
Q15 Scratch the top of your head (or nape) for 3 seconds 94 69 85
Q16 Scratch the lower part of your left leg for 2 seconds 93 79 64
Q17 Slowly lean back and stay for about 2 seconds 96 32 38
Q@34 Look on the top right corner of your screen for 5 seconds 95 86 96
Q43 Rest your eyes for 5 seconds (close them) 95 84 14*
Q44 Scratch your left cheek for 3 seconds 95 74 89
Q45 Sit still and face the camera for 5 seconds 94 87 90
Q19 Grab your ears with both of your hands for 3 seconds 95 76 85

Q50 Stare at the camera for 3 seconds 95 89 88
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5.5 Results

To answer RQ 3.2, in this section we report the outcomes of our user study
along three dimensions: (i) accuracy across tasks, (ii) reaction times and (iii)
the influence of the participants’ background on the accuracy levels.

5.5.1 Accuracy

The first question we consider is the accuracy of the three eye trackers under
investigation across the 50 tasks of our benchmark suite. Table 5.3 lists the
detection accuracy for each task, aggregated across the 20 study participants.
As expected, Tobii achieves the highest accuracy, with an average of 68.2%
across all tasks. Among the two software solutions, TJS clearly outperforms
CLM, achieving an average accuracy of 58.6% compared to CLM’s 35.4%. If
we were only to focus on the tasks where face misses and likely face misses
form the ground truth, CLM’s accuracy would drop to 9.6%. The reason for
this poor performance is CLM’s approach to face and gaze detection: it will
try to match anything in the video frame to a potential face area, a separate
face detection phase is not performed. This also explains its high accuracies
in the face hits tasks. Note that the calibration step performed by some of
our participants for CLM does not result in a different outcome.

The comparison between Tobii and T.JS shows a relatively small perfor-
mance gap between the webcam-based face tracker and the high-end device.
While Tobii outperforms TJS in 39 of the 50 tasks, in many instances the
difference in accuracies is rather small. Using Tobii as a reference point, TJS
is able to conform with 77.8% of Tobii’s detected labels.

Due to the clear performance differences between T.JS and CLM, in fur-
ther analyses we focus exclusively on 7JS and its performance compared to
Tobii.

5.5.2 Reaction Times

As one of the potential reasons for 7JS’s lag in performance compared to
Tobii we investigate the reaction times of both users and frameworks. More
specifically, we measure the delay between the instructed start time of the

Qi
start

face-miss. This time delta of course consists of both the user delay (i.e. the

task (i.e. the timestamp ¢35’ ,) and the first time a framework detects a

time it took for the study participant to finally start performing the task,
which for some tasks—e.g. Q23 & Qi6—show a considerable delay) and the
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actual detection delay imposed by the framework. We average the delays of
all participants for a task and report the percentage of tasks whose average
delay is up to 1 second, up to 2 seconds, etc. in Table 5.1. For the majority
of tasks, Tobii is able to detect the first face-miss within 1 second of the start
of the task.

The Tobii eye tracker runs with a very high fixed sampling rate of 30
samples per second, and is mostly unaffected by the current CPU load of
the host machine. Therefore, we make the assumption that the delays in
Table 5.1 represent the user delay. In contrast, TJS and CLM can have very
low sampling rates depending on the current system load (we aim at 4 samples
per second, but we also experienced significantly lower rates). By comparing
the times of detecting the first face-miss of both TJS and CLM with Tobii,
we can obtain an intuition of the delays imposed by those frameworks. For
TJS, this resulted in a delay of 0.6 + 1.1 seconds, and for CLM in 1.3+ 1.0
seconds. While these detection delays are not instantaneous, the delays are
short enough for practical applications.

5.5.3 Background as an Influencing Factor

As we conduct the user study in different rooms on different times of the
day, we also record our participants with various backgrounds. In Table 5.2
we partition our participants according to the background they sat in front
of during the study. All participants reported their background to be either
of a solid light color (as present in many offices) or contain a poster and/or
photo. This factor had an impact on the eye trackers’ accuracy: while To-
bii’s accuracy remained unaffected by the background, the TJS eye tracker
considerably degraded when the background was noisy.

5.6 Conclusions

In this chapter, to evaluate short-term behavioral engagement of MOOC
learners, we present a face-tracking method for the inattention detection. To
enable real-time attention tracking in a standard MOOC environment, we
introduce the presence or absence of a face in a learner’s webcam viewport
as a simple proxy of learner attention or inattention to improve the accuracy
and speed of the inattention detection method proposed in Chapter 4.

We compare three potential technical solutions for this task: using the
high-end professional eye tracker Tobii X2-30, and using two software-based
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solutions that analyze the video stream of a consumer-grade webcam. We
conduct a lab study with 20 participants, who had to perform a controlled
benchmark suite of 50 realistic tasks, which introduced several challenging
factors such as body movement, partially covering the face, noisy back-
grounds, and crooked body postures. This benchmark suite and the ac-
companying Web application allows for a standardized and fair comparison
of different approaches for face-hit and face-miss detection, and we provide
it under an open-source license to foster future research.

Our experiments show that the professional dedicated hardware solution
outperforms the open-source software-based solutions both in respect to de-
tection performance and processing speed, but is of course unsuitable for a
large-scale deployment outside of a controlled lab setting. For the software-
based solutions which can indeed run on typical hardware used by MOOC
learners, the complicated CLM gaze tracking as employed by WebGazer.js
introduces many complications, resulting in poor detection performance both
for the presence and absence of a user’s face. In contrast, the face-tracking
library TJS shows significantly higher performance for nearly all benchmark
tasks. Additionally, both software libraries incur an additional time delay
of around 1 — 2 seconds over the nearly instantaneous detection response
of the hardware solution. With careful design, this delay should be easily
manageable in a future MOOC learner attention detection component.

In our future work, we plan an implementation of an attention tracker
suitable for a large-scale MOOC deployment on the basis of the TJS frame-
work. Beyond purely technical or methodical challenges, this allows us to
tackle additional interesting research questions: Would MOOC learners be
willing to accept and use such an attention detection tool? What are the
reasons why they would like/or refuse to use such technology? And of course
finally, if learners accept the use of such tools, does this indeed positively
impact their learning outcomes?



Chapter 6

Near Real-Time Inattention
Detection Widget

In this chapter, to evaluate short-term behavioral engagement of MOOC
learners, we follow Chapter 4 and Chapter 5 and focus on learner inattention
in video watching. We design and deploy a webcam-based inattention de-
tection widget IntelliFye in a real-world MOOCs based on the face-tracking
method proposed in Chapter 5.

IntelliFye is a privacy-aware system that makes use of learners’ webcam
feeds to determine—in near real-time—when they no longer pay attention to
the lecture videos. IntelliEye makes learners aware of their attention loss via
visual and auditory cues. We deploy IntelliFye in a real-world MOOC and
explore to what extent MOOC learners accept it as part of their learning and
to what extent it influences learner behaviour.

This chapter is published as “IntelliEye: Enhancing MOOC Learners’ Video Watch-
ing Experience through Real-Time Attention Tracking” [99], by Tarmo Robal, Yue Zhao,
Christoph Lofi, and Claudia Hauff, in Proceedings of the 29th on Hypertext and Social
Media, pp. 106-114. ACM, 2018.
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6.1 Introduction

In this chapter, we present IntelliEye?, a system we design to directly tackle
the “loss of attention” issue during MOOC lecture video watching by detect-
ing it in real-time and alerting the learner to it.

How exactly can we detect learners’ loss of attention in real-time and at
scale? How can we alert the learner to her loss of focus? One answer to these
questions lies in the ubiquitous availability of webcams in today’s laptops: In-
telliEye employs the webcam feed to observe learners’ activities during their
time on the MOOC platform and intervenes (e.g. by delivering an auditory
signal) if it detects a loss of focus. All of these actions are performed by In-
telliFye in a privacy-aware manner: none of the data or computations leaves
a user’s machine. Prior studies [8, 9, 73, 147, 100] exploit eye/face tracking
to determine a user’s attention state, though these studies are either con-
ducted with commercial high-quality hardware eye-tracking devices and/or
well-settled experimental lab conditions (e.g. our studies in Chapter 4 and
Chapter 5). In contrast, in this chapter we make use of commonly available
webcams and deploy IntelliEye “in the wild”, to 2,612 MOOC learners in an
actual MOOC, instead of a controlled lab study.

We conduct our analyses of IntelliEye’s use along three dimensions: (1)
the technological capabilities of MOOC learners’ hardware, (2) the ac-
ceptance of IntelliEye by MOOC learners, and, (3) the effect of IntelliEye
on MOOQOC learners’ behaviour. Specifically, we investigate the following re-
search questions:

RQ 3.3: To what extent is MOOC learners’ hardware capable to enable the
usage of technologically advanced widgets such as IntelliFye?

RQ 3.4: To what extent do MOOC learners accept technology that is de-
signed to aid their learning but at the same time is likely to be perceived
as privacy-invading (even though it is not)? Are certain types of MOOC
learners (e.g. young learners, or highly educated ones) more likely to accept
this technology than others?

RQ 3.5: What impact does IntelliEye have on learners’ behaviours and ac-
tions? To what extent does IntelliEye affect learners’ video watching be-
haviour?

Our main findings can be summarized as follows:

2IntelliEye is open-sourced at https://github.com/Yue-ZHAO /IntelliEye.
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e We find that most learners (78%) use hardware and software setups
which are capable to support such widgets, making the wide-spread
adoption of our approach realistic from a technological point of view.

e The majority of learners (67%) with capable setups is reluctant to allow
the use of webcam-based attention tracking techniques, citing as main
reasons privacy concerns and the lack of perceived usefulness of such a
tool.

e Among the learners using IntelliEye we observe (i) high levels of inat-
tention (on average one inattention episode occurs every 36 seconds—a
significantly higher rate than reported in previous lab studies) and (ii)
an adaptation of learners’ behaviour towards the technology (learners
in conditions that disturb the learner when inattention occurs exhibit
fewer inattention episodes than learners in a condition that provides
less disturbance).

6.2 Related Work

6.2.1 Attention Loss in Learning

Identifying and tracking learners’ loss of attention in the classroom has been
explored in a myriad of ways since the 1960s, including the analysis of stu-
dents’ notes [44, 65|, the observation of inattention behaviors (by observers,
stationed at the back of the classroom) [53], the retention of course con-
tent [68], probes (requiring participants to record their attention at particu-
lar given points in time) [126, 62| and self-reports (requiring participants to
report when they become aware of their loss of attention) [14]. A common
belief was that learners’ attention might decrease considerably after 10 — 15
minutes into the lecture [126]. Wilson and Korn [140] challenge this claim
and argue that more research is needed, a call picked up by Bunce et al. [14]
who find that learners start losing their attention early on in higher-education
lectures and may cycle through several attention states within 9 — 12 minute
course segments.

With the advent of online learning, the issue of attention loss, how to mea-
sure it and how it compares to classroom attention lapses receive renewed
attention. Different studies show that in online learning environments (often
simulated in lab settings where participants watched lecture videos), atten-
tion lapses may be even more frequent than in traditional classroom contexts.
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Risko et al. [98] used three 1-hour video lectures with various topics (i.e. psy-
chology, economics, and classics) in their experiments, probing participants
four times throughout each video. The attention-loss frequency was found
to be 43%. In addition, Risko et al. report a significant negative correla-
tion between test performance and loss of attention. Szpunar et al. [128]
study the impact of interpolated tests on learners’ loss of attention within
online lectures, asking participants to watch a 21-minute video lecture (4
segments with 5.5 minutes per segment) and report their loss of attention
in response to random probes (one per segment). In their experiments, the
loss of attention frequency was about 40%. Loh et al. [63] also apply probes
to measure learners’ loss of attention, finding a positive correlation between
media multitasking activity and learners’ loss of attention (average frequency
of 32%) whilst watching video lectures. Based on these considerably high loss
of attention frequencies, we conclude that reducing loss of attention in online
learning is an important approach to improve learning outcomes.

6.2.2 Automatic Detection of Attention Loss

Inspired by the eye-mind link effect [96], a number of previous studies [8, 9, 73]
focus on the automatic detection of learners’ loss of attention by means of gaze
data. In [8, 9], Bixler and D’Mello investigate the detection of learners’ loss
of attention during computerized reading. To generate the ground truth, the
study participants were asked to manually report their loss of attention when
an auditory probe (i.e. a beep) was triggered. Based on those reports, the
loss of attention frequency ranged from 24% to 30%. During the experiment,
gaze data was collected using a dedicated eye-tracker. In contrast to [8, 9],
Mills et al. [73] mainly focus on the relationship between a participant’s gaze
and areas of interest (AOIs), specific areas in the video a participant should
be interested in. Mills et al. asked study participants to watch a 32-minute,
non-educational movie and self-report their loss of attention throughout. In
order to detect loss of attention automatically, statistical features and the
relationship between gaze and video content were considered.

In Chapter 4, we present a method to detect inattention similar to the
studies in [73], but optimized for a MOOC setting (including the use of
a webcam alongside a high-quality eye-tracker). All mentioned approaches
relying on the eye-mind link share two common issues: (i) they are usu-
ally unable to provide real-time feedback as they are trained on eye-gaze
recordings with sparse manually provided labels (e.g. most approaches have
a label frequency of 30 — 60 seconds, which directly translates into a detec-
tion delay of similar length), and (ii) the reported accuracy is too low for
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practical application (e.g. Chapter 4 reports that the detection accuracy is
14% — 35%). We note that besides the eye-mind link, another recent direc-
tion is the use of heart rate data (measured for instance by tracking fingertip
transparency changes [89]) to infer learners’ attention. Lastly, our study in
Chapter 5 presents a face-tracking approach to detection learner inattention
and designs a benchmark with a series of learner activities related to the
attention/inattention of MOOC learners.

6.2.3 MOOC Interventions

We now discuss MOOC interventions, especially those geared towards video
watching and towards improving self-regulated learning. Fxisting research on
MOOC videos is largely concerned with the question of what makes a MOOC
video engaging and attractive to learners; examples include the overlay of an
instructor’s face over the lecture slides [57], shorter video segments instead of
one long lecture video [41], and the overlay of an instructor’s gaze to enable
learners to more easily follow the video content [116].

Few studies consider the issue of self-regulated learning in MOOCs, largely
because this requires approaches that are personalized and reactive towards
each individual learner. Simply informing learners about the best strate-
gies for self-regulated learning at the beginning of a MOOC is not suffi-
cient [58]. Davis et al. [27] design a visual “personalized feedback system”
that enable learners to learn how well they were doing compared to success-
ful passers from a previous MOOC edition (in terms of time spent on the
platform, their summative assessment scores and so on). This comparison,
even though this feedback moment was rare (once a week), enabled learners
to self-regulate their learning better, leading to significantly higher comple-
tion rates for learners exposed to the feedback system. A prior study by
Davis et al. [26] indicate that non-compliance among learners is a difficult
obstacle in very simple interventions: the authors had included an extra
question in each week of a MOOC, asking learners to write about their study
plans (and thus make learners think about those plans). Few learners saw
the benefit of this question (it was ungraded) and thus very few complied.

Overall, we have shown that attention lapses are a regular occurrence
in the classroom and occur with even greater frequency in online learning,
where learners are prone to digital multitasking. We have also presented
some drawbacks of sophisticated eye-tracking based inattention detectors
(accuracy and timeliness of detection) and finally we have pointed out the
difficulty of bringing self-regulated learning into the MOOC scenario due to
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learners’ non-compliance. In response to these findings, we design IntelliEye,
a robust inattention (by using face detection based on our study in Chap-
ter 5) detector that requires no additional actions by the learners beyond
what they usually do on a MOOC platform, provides personalized feedback,
is privacy-aware and detects a loss of attention in near real-time (with at
most 2 seconds delay).

6.3 IntelliEye

6.3.1 Architecture

The goal of IntelliEye is to provide real-time feedback on learner’s attention,
and is based on a set of heuristics reliably implementable on a wide variety of
hardware setups: (1) if the browser tab/window containing the lecture video
is not visible to the learner, IntelliEye triggers an inattention event; (2) we
assume a learner is inattentive if her face cannot be detected for a period of
time, i.e. we employ face tracking as a robust proxy of attention tracking?; (3)
if the face-tracking module detects a loss of the face we consider the mouse
movements as a safety check: if no face is detected but the mouse is being
moved, no event is triggered.

The resulting high-level architecture is shown in Figure 6.1. IntelliEye
is implemented in JavaScript, as the edX platform allows custom JavaScript
to be embedded in course modules—thus providing us with an easy way to
“ship” IntelliFye to all learners in our MOOC. As visible in Figure 6.1, In-
telliFye resides exclusively on the client to ensure learners’ privacy; usage
logs are send to our dedicated IntelliFye log server for the purpose of eval-
uating IntelliEye, though this communication is not necessary for IntelliEye
to function. This setup requires IntelliFye to be light-weight and resource-
saving as all computations are carried out on the learner’s device and within
the resource limits of a common Web browser. We now describe the seven
architecture modules that IntelliEye consists off.

Profiling Module

In order to provide a smooth user experience for MOOC learners, we limit
the full usage of IntelliEye to devices that fulfill certain device setup re-

3We note that this is a lower-bound for inattention, as learners watching the video may
still not pay attention.
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Figure 6.1: IntelliEye’s high-level architecture. The profiling and logger modules are
always active; the attention tracking and alerting modules are only enabled if supported
setup is detected and learner has granted access to webcam feed.

quirements, a situation we call supported setup. We rely on the ClientJS*
library to determine the device type, operating system and browser version
of the learner’s device and activate the inattention tracking modules only if
a supported setup is detected. The requirements are as follows:

1. The device is not a mobile device and is not running iOS or Android,
due to their incompatibility with IntelliEye.

2. The browser used is either: Chrome 544 (i.e. version 54 or higher),
Firefox 45+ or Opera 41+ to ensure the availability of JavaScript de-
pendencies necessary for IntelliEye.

3. The device has at least one usable webcam as detected via the Media
Capture and Streams APIL.

If the profiling yields an unsupported setup, a log entry is sent to our
IntelliEye log server and no further modules are activated.

The profiling module is also responsible for extracting the learner’s edX
user ID, which in turn determines which alert type the learner receives in our

experiments.

Face-Tracking Module

In IntelliEye, we use face tracking to proxy inattention detection, thus aiming
at overcoming the reported shortcomings of gaze tracking with respect to

“https://github.com/jackspirou/clientjs
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response time and reliability: if a learner’s face is not visible in front of the
screen when a lecture video is playing, we argue that she is likely not paying
attention.

We choose the open-source library tracking.js [64] (or TJS for short) for
this purpose. The detection accuracy and the delay of tracking.js are eval-
uated in Chapter 5 based on a benchmark with 50 behaviours that learners
typically execute in front of their computer (e.g. Check your phone; Look right
for 10 seconds; or Reposition yourself in the chair). TJS has a competitive
accuracy: it is able to detect 77.8% of the face hit/face miss behaviours that
the Tobii X2-30 was identifying correctly. The delay of TJS in detecting
inattention is 0.6 & 1.1s.

The module performs face presence detection (via T'JS) from the webcam
feed every 250 ms and reports a boolean (face present or absent) to the
Inattention scoring module. We choose this time interval not to overburden
the computational resources of the learner’s device.

Mouse Tracking Module

This module acts as a sanity check for the face-tracking module: if the face-
tracking module reports loss of a face and the learner is still moving the
mouse in the active MOOC window, we assume that the face-tracking module
misclassified the situation and do not raise an inattention alert. This module
tracks the absence or presence of mouse movements every 250 ms and reports
it to the Inattention scoring module.

Page Tracking Module

This module tracks the visibility of the browser window or tab that contains
the edX page (and thus the lecture video) using the document.hidden() Web
API call. A value is produced every 250 ms and forwarded to the Inattention
scoring module.

Inattention Scoring Module

This module estimates inattention of a learner by aggregating the data ob-
tained from the tracking modules based on the heuristics already introduced
at the start of § 6.3.1: a learner is inattentive if her face is not trackable un-
less there is mouse movement and the video player browser window is visible.
The input from the three scoring modules is aggregated over a sliding time
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Algorithm 1 Inattention detection mechanism in IntelliEye

Require: F, M, V, L—threshold value, S—scores for F, M, V
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window of 5 seconds—we chose this time window based on our user study
with 50 typical activities during MOOC video watching, where we found the
longest activity to take approximately 5 seconds. Recall that each module
has a fixed sampling rate of 250 ms, and thus our sliding window takes into
account 20 measurement points from each tracking module.

More formally, the input to this module are the boolean values (i) for
face presence F = (..., fn—20, fn-19, ---» fn), (il) mouse movement M = (...,
Mp—20, Mp—19, ---, My ), and (iii) page visibility V = (..., v—20, Un—19, .-, Up)-
To conserve computational resources, the module computes the attention
state once a second. Algorithm 1 outlines the inattention decision process
employed by the Inattention Scoring module. In essence, a weighted score is
computed for the face presence and mouse movement values (lines 3 & 4),
giving higher weights to more recent values. The visibility score of the video
window is simply the last recorded value (line 5). Lines 6-9 compute face-
tracking trends over time. The role of the face-tracking trend computation
is to minimize the volume of false positives driven by learner behaviour, in
particular sudden movements, bad position in front of the webcam, or a
temporary short time failure of TJS in detecting the face in webcam video
feed. Lines 10-11 show the rules the module employs to determine inattention
based on the predefined threshold (which represents the minimum accepted
score that is considered as attention, in our case £ = 2.92), computed scores
and the trend. The threshold and rules are another outcome of our user
study—they led to the highest accuracy in distinguishing between attention
and inattention behaviours [100].
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Note that the level of thresholding (£) determines the sensitivity of In-
telliBye—lowering the value will make the system less rigorous, increasing
this value will on the other hand increase system responsiveness to learner
behaviour.

Alert Module

We explore three different mechanisms—with varying levels of disruption—
to raise learners’ awareness about their detected loss of attention; none of
these requiring an action from the user beyond returning their attention to
the video at hand. In our experiment each learner was assigned to a single
alert type, depending on their edX user ID detected by the Profiling module.

Pausing the video: When attention loss is detected IntelliEye will pause
the currently playing lecture video. Once IntelliEye detects re-gained atten-
tion on the video, playing is resumed. At what position playing is resumed
depends on how long the learner was not paying attention since pausing. The
video is rewound to between 0 and 10 seconds before the attention loss was
detected; we define three different configurations: (i) if the inattention period
is less than 1.5 seconds, the video continues from where it was paused as it
would be annoying for a learner to review content just seen and available in
her short-time memory, but also to avoid repetitive 'rewind-and-play’ situa-
tions; (ii) if the inattention lasts more than 10 seconds, the video is rewound
10 seconds which is the approximate lower level of human short-time memory
(reported in between 10 — 30 seconds [88, 72]); and (iii) in all other cases it
is rewound 3 seconds—rewind a little for rapid recall in case of distraction.
This scheme ensures that the video will restart at a familiar point for the
learner. The drawback of this mechanism is the severity of false alerts as the
video will pause and thus the learner is disturbed if inattention was falsely
determined.

Auditory alert: In this setup, the video keeps playing but an additional
sound effect (a bell ring) is played repeatedly as long as inattention is de-
tected. This setup is not as “annoying” as falsely pausing the video, but can
still substantially disturb the learner.

Visual alert: In this version, IntelliFye visually alerts the learner by re-
peatedly flashing a red border around the video as long as inattention is
detected. Figure 6.3 shows an example of this alert. This scenario is the
least intrusive in case IntelliFye falsely detects inattention. It may also be
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the least effective, as learners who look away from the screen or minimize the
browser tab/window will not be able to view the alert.

Logger Module

This module is responsible for logging IntelliFye’s usage. These logs are
sent to our dedicated log server. Specifically, the following actions lead to
logging (for log entries with categorical values we list all possible values within

{...}):

Loading: When IntelliEye is loaded due to a learner accessing a course
subsection® containing one or more video units we log (timestamp, alertType

{pause, visual, auditoryl}, userID, deviceSetup).

Video status change: Every change in the video’s status (e.g. from paused
to play) for a learner with supported setup leads to a log of the form (videoID,
timestamp, videoStatus {play, pause, seek, end}, videoTime, videoLength,
videoSpeed, subtitles {on, off}, fullScreen {on, off}). The videoTime
entry refers to the point in time within the video the status changed.

IntelliEye status change: When a learner with a supported setup changes
the status of IntelliEye (e.g. from disabled to enabled), we log (videoID,
timestamp, videoTime, videoLength, IntelliEyeStatus {allow, disallow,
start, pause, resume, end}). Information on the video is logged as most
interactions with IntelliEye occur within the edX video player (cf. § 6.3.2).

Inattention status change: This log event occurs when the attention sta-
tus of a learner with a supported setup changes: (videoID, timestamp,
videoTime, videolength, inattention {start, stop}). Here, start indicates
that inattention has been detected. The next event is generated when the
status changes back to attention again (stop). As long as the inattention
state is maintained, no further log events are generated.

Finally, we note that beyond the IntelliEye logs (cf. Figure 6.1), we also
have access to the official edX logs, which contain information on all common
actions learners perform within a MOOC on the edX platform such as quiz
submissions, forum entries, clicks, views, and so on—data we use in some of
our analyses.

A set of course elements semantically belonging together, cf. § 6.4.
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6.3.2 User Interface

Having described IntelliEye’s architecture, we now turn to its user interface.
Figure 6.2 shows IntelliEye’s welcome screen (potentially shown every time
a MOOC learner opens a course subsection with one or more video units),
describing its capabilities, and the positive impact it can have on learning.
The learner has four choices: (i) to enable IntelliEye for this particular video
only, (ii) to disable IntelliEye for this video only, (iii) to enable IntelliEye
for all videos, and, (iv) to disable IntelliEye for all videos. If a learner opts
for (iv), we ask her for the feedback on the decision (“You have disabled
IntelliEye. Please tell us why.").

Once a learner enables IntelliEye, the face-tracking module attempts to
access the webcam feed, which in all supported browsers triggers a dialogue
controlled by the browser ( Will you allow edx.org to use your camera?); once
the learner chooses Allow, IntelliEye is fully functioning.

Figure 6.3 shows how IntelliFye embeds itself in the edX video player.
Here the learner can return to the welcome screen and change her enable/dis-
able decisions (via the “eye” icon) and switch IntelliEye on or off on the fly.
IntelliEye’s status is visible at all times: either Active’ (IntelliEye is enabled,
the video is not playing at the moment), 'Playing’ (IntelliEye is enabled), or
'Not Active’ (IntelliEye is disabled). Note that this change in the video
player interface is only visible to learners with a supported setup. Learners
on non-supported setups will receive the original edX video player without
alterations.

6.4 MOOC Setting

We deployed IntelliEye in the MOOC Introduction to Aeronautical Engi-
neering (AE1110z) offered by Delft University of Technology on the edX
platform. The MOOC’s target population are learners who are looking for a
first introduction to this particular field of engineering. The MOOC requires
around 80 — 90 hours of work and consists of 104 videos and 332 automati-
cally graded summative assessment questions. The MOOC is self-paced, that
is, the MOOC is available for learners to enroll for up to 11 months. In
contrast to the more common six to ten week MOOCs, learners can set their
own schedule and their own pace. The MOOC was opened for enrollment on
May 1, 2017 and remained so until March 31, 2018. IntelliEye was deployed
for ten weeks (October 5, 2017 to December 17, 2017); it was available for
all videos within the MOOC. A total of 2,612 different learners visited the
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@ IntelliEye: an experimental add-on to improve your learning

Imagine someone looking over your shoulder while you learn in this MOOC, reminding you to pay
attention and alerting you when you become distracted. This would probably make you learn more
efficiently!

IntelliEye is a first step towards this vision: an intelligent video player add-on we have developed at
the Delft University of Technology. It will become active when you watch a lecture video: whenever
the add-on detects a loss of focus on your part it will visually alert you by repeatedly flashing a red
border around the video until it detects your focus again. IntelliEye makes use of your Webcam to
track your focus and attention. IntelliEye is privacy-aware: none of the Webcam data leaves your
computer, all computations are made on your device.
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Figure 6.2: IntelliEye welcome screen.

MOOC during the deployment period and were exposed to IntelliEye. We
deployed IntelliFye in three different variants according to the manner of
alerting learners to their lack of attention: video pause, auditory alert and
visual alert (§ 6.3.1). We conducted an inter-subject study: each learner was
randomly assigned (based on their learner ID) to one of the three conditions.
Once assigned, a learner remained in that condition throughout the experi-
ment. Table 6.1 shows the distribution of the 2,612 learners across the three
conditions.

Before turning to the analyses section, we introduce the relevant concepts
and definitions:
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Figure 6.3: IntelliEye’s video player interface (arrow) embedded in the edX video player
widget. The red hue around the video player is the visual alert we experiment with.

Course subsection: on the edX platform, a course subsection refers to a
sequence of course units (such as video units, quiz units and text units) that
are grouped together, most likely because they all relate to the same topic.
As an example, one of the subsections in our MOOC consists of the following
sequence: video —video —text —quiz —video —quiz —text.

Session: refers to a sequence of logs from a single learner (active on a single
device), with no more than 30 minutes time difference between consecutive
log entries. This means that after 30 minutes of inactivity in the MOOC, we
assume a new “learning” session starts (if the learner becomes active again).
We combine the logs we retrieved from our IntelliEye log server with those
collected by edX.

Supported session: refers to a session with a supported setup.
Unsupported session: refers to a session without a supported setup.

Video session: refers to a session in which at least one video was being
played by the learner, regardless of the length of video playing.

IntelliEye session: refers to a supported session which is also a video ses-
sion, and in which IntelliEye was running (which means that the learner did
accept the terms of use and played a video while IntelliEye was active).
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Non-IntelliEye session: refers to a supported session which is also a video
session, and in which IntelliEye was not active while the video was playing
(this either means that the learner did not accept the terms of use, or man-
ually disabled IntelliEye).

6.5 Empirical Evaluation

In this section, we answer three research questions RQ 3.3, RQ 3.4, and
RQ 3.5 respectively.

6.5.1 Technological Capabilities

The first question we consider is to what extent our MOOC learners (who,
according to their edX profiles, hail from 138 different countries) have a
supported device setup (RQ 3.3): according to Table 6.1, 78% of learners
(across all three alert types) logged in at least once with a device supported
in IntelliEye. Among those 563 learners (22%) who did not have a supported
session, 223 of them only accessed the course with a mobile device (that is
9% of the overall learner population). If we drill down on the 340 learners
with unsupported sessions on non-mobile devices, the most common reason
is an outdated browser we do not support (e.g. Chrome 52, IE 11, Safari 10
and Safari 11), followed by the lack of a webcam (in 118 cases). We do not
observe a particular skew towards certain countries or regions; learners from
India (104 learners) and learners from the US (93 learners) have the largest
number of unsupported setups, which are also the two countries where most
learners hailed from (484 learners from India and 334 from the US).

Table 6.1: Learners exposed to IntelliEye. Shown is the number of learners: (i) in each
alert type condition, (ii) with at least one session with supported setup, (iii) who used
IntelliEye at least once, and (iv) not accepting IntelliEye.

#Learners #Learners #Learners

#Exposed with 14+ with 14+ without

Alert Types Learners Supported IntelliEye IntelliEye
Sessions Session Session

Video pause 861 681 214 467
Auditory alert 902 703 208 495
Visual alert 849 665 236 429
Total 2,612 2,049 658 1,391

% of Total — 78% 25% 53%
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6.5.2 Acceptance of IntelliEye

Having established that our hardware requirements are reasonable, we now
turn to IntelliFye’s acceptance, i.e., are learners willing to enable a widget
which observes them via a webcam (RQ 3.4). As Table 6.1 shows, 32%
of learners (658 out of 2,049) with at least one supported session activated
IntelliEye at least once.

We had two hypotheses on who engages with our intervention: (1) younger
learners are more likely to engage than older ones, and (2) more active learn-
ers are more likely to engage than less active ones. To explore these hy-
potheses we compute various metrics for three different user groups (learners
that do not engage with IntelliEye, learners that have one or two IntelliEye
sessions and learners that have three or more IntelliEye sessions) as shown
in Table 6.2°. We observe significant differences across almost all metrics
(the exception being age) between those learners not (or hardly) using Intel-
liEye and those using IntelliEye three or more times. The number of learners
in each group though—highly skewed with more than 1,600 learners in the
not /hardly using IntelliEye groups and 35 learners in the remaining group—
has to serve here as a point of caution. Based on these results, IntelliEye
appears to be used most often by learners who are already engaged—a finding
which is inline with prior MOOC interventions, e.g. [26, 27].

Next, we consider the use of IntelliFye across time (Figure 6.4): for each
day of our experiment we plot the number of learners exposed to IntelliEye
and whether they had IntelliEye or non-IntelliEye sessions. The usage of
IntelliEye neither increases nor decreases significantly over time.

In Table 6.3, we take a look at learners’ decisions of enabling or disabling
IntelliEye in subsequent video sessions. Learners that enabled IntelliEye in a
video session, did so again with a probability of 0.35 (6% of learners chose to
enable IntelliEye for all sessions, 29% chose to enable IntelliEye for just the
next video session). After enabling IntelliEye in a video session, 21% decided
to permanently disable IntelliEye in the next session. We discuss the main
reasons for this decision at the end of this section. Learners that disabled
IntelliEye in their video session were very unlikely to change their decision in
the next video session with 97% of learners sticking to their disable decision.

Next, we consider for how long learners were using IntelliFye during their
video sessions: did they use IntelliEye continuously or did they disable it
after some time? For all the IntelliEye sessions in which IntelliEye was

5Note that all our analyses consider the 74 days of IntelliEye’s deployment only, i.e. the
number of sessions, the quiz scores, etc. are only computed for that time period.
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Table 6.2: Learner attributes partitioned according to the use of IntelliFye (choices made
on welcome page are not considered in grouping). Only learners with at least one supported
video session are considered. * indicates Student’s t-test significance at p < 0.05 level. t and
1 indicate Mann-Whitney U test significance at p < 0.05 and p < 0.01 levels respectively.

#IntelliEye Sessions

Statistics None 1-2 3+
#learners 1,030 623 35
Median age 23 *Noneg 22
*None :
Median prior education Assoclate High school ~ *N°"¢High school
degree

Me'dlan av. session length 97 77 97 44 tNone,1-235 17
(min)

Median #sessions 3 3 {None,1-219
Median quiz score 3.0 tNoneg iNone1-27
IVICdla.Il minutes video 9178 91 87 tNone, 1219 g9
watching

Median minutes on platform 94.56 90.83 iNone,1-2549 04

enabled initially (725 sessions from 557 distinct learners), we condense the
video session time (which includes video watching as well as other activities
on the platform) to video watching time only, based on the edX log data.
We then proceed to determine whether IntelliEye was consistently enabled
throughout, or whether it was disabled in the first, second or the last third
of the video. We find (as shown in Table 6.4) that mostly IntelliEye was
either switched off very early or employed throughout a session. Few learners
disabled it well into the video watching experience (beyond the first third of
the video). Learners that received the pause alert were more likely to disable
IntelliEye than learners in the other alert groups; learners in the visual alert
condition were most likely to keep IntelliFye enabled, reflecting the various
levels of disturbance the alerts cause.

Table 6.3: IntelliEye usage transition probabilities between subsequent video sessions;
E=Enabled, D=Disabled, EF=Enabled Forever, DF=Disabled Forever.

Decision v(i+ 1)

Decision v(i) E D EF DF
IntelliEye enabled 0.29 0.43 0.06 0.21
IntelliEye disabled 0.03 0.68 0.00 0.28

As a last analysis of this research question, we focus on the reasons learn-
ers provided when disabling IntelliEye. Of the 938 learners (248 of them
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have at least one IntelliEye session) who chose to disable IntelliEye forever,
379 provided us with reasons for their decision. With an open card sort, we
sort the provided reasons into eight categories shown in Table 6.5. As the
vast majority of learners reported a single reason, for the few (< 10) learners
who provided a number of reasons we select the one they were most vocal
about. Most commonly (35%) learners cited themselves as not needing help
to self-regulate their learning (I never lose my attention because the lecture
and the whole course are very interesting.).

22% of the learners mentioned a non-functioning webcam (e.g. Because
my camera doesn’t work well; webcam and audio are easily accessible with
WebRTC so I cover and disable it.), followed by 17% with privacy concerns
(e.g. I feel awkward being observed and controlled.; I don't like the idea of hav-
ing the webcam on.) and 9% with IntelliEye not performing as expected”.
Interestingly, conscious multitasking was mentioned several times (I'm multi-
tasking while doing this.), showing that at least some learners were very much
aware of their learning behaviour and what IntelliFye was supposed to do
for them. Among the 27 learners who reported being disturbed by the alerts,
12 learners received the pause and 12 learners the auditory alert. Overall,
this feedback shows that IntelliEye works reasonably well (only 34 out of 248
learners using IntelliFye at least once reported issues) and that the largest
issue facing future use of IntelliEye is learners’ perception of not requiring an
attention tracker during their learning, followed by privacy concerns.

Table 6.4: Number of sessions with IntelliEye initially enabled grouped by the time it is
switched off in the session.

Disabled during Pause Auditory Alert Visual Alert
1st third of a session 48% 44% 35%
2nd third of a session 6% 10% 7%
Last third of a session % 6% 6%
Enabled throughout 39% 39% 52%
Total #sessions 242 207 276

6.5.3 Impact of IntelliEye

We now investigate the impact of IntelliFye on learners over time and ex-
plore whether learners change their video watching behaviour over time (RQ

"We note that one possible reason is our lack of a calibration step: to make IntelliEye
easy to use and accessible we did not impose one; IntelliEye assumes the learner to be
facing the screen and the webcam.
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Table 6.5: Reasons provided for disabling IntelliFEye forever.

Reason #Learners [%)]
Attention tracking not perceived as useful /needed 131 35%
webcam not functioning 83 22%
Privacy concerns 64 17%
IntelliEye not working well 34 9%
Disturbed by alerts 27 %
Conscious facing away from the screen 14 1%
Hardware/Internet connection too slow 14 4%
Conscious multitasking 6 2%
Uncomfortable feeling 6 2%
> 379 40%
No reason provided 559 60%

3.5). Specifically, we consider all learners with at least two IntelliEye ses-
sions (the most active learner in our dataset has six IntelliEye sessions); for
each learner we bin her sessions into two bins (the first half and the second
half). We then proceed to compute for each bin (i) the average number of
minutes lecture videos were played, (ii) the average attention duration and
inattention duration detected by IntelliEye, and, (iii) the average number of
inattention alerts occurring per minute of video watching. The results are
shown in Table 6.6. Recall that according to the literature, inattention oc-
curs frequently in video watching, though the manner of investigating this
(through probes issued at certain times to study participants) [98, 128, 63]
does not allow us to draw minute-by-minute conclusions. In contrast, in our
work we can now make a statement to this effect: the average number of inat-
tention alerts varies between 0.84 and 2.86 per minute (the latter means that
on average a learner gets distracted every 21 seconds in the visual alert condi-
tion!). Across all conditions, on average 1.65 inattention alerts are triggered
per minute (i.e. one every 36 seconds on average). Interestingly, learners are
quickly able to adapt their behaviour towards the offered technology: while
the learners in the visual alert type are often alerted (in a manner that is
easy to ignore), the learners in the auditory alert conditions receive signifi-
cantly fewer alerts (cf. row Mean #inattention per min); similarly, learners
in the pause and auditory alert conditions have significantly shorter inat-
tention spans (cf. row Mean avg. inattention duration) than those in the
visual condition. As learners were assigned to the conditions randomly we
are confident that this behavioural adaptation is due to the different types
of alerts.

When comparing the statistics for the two session bins (to detect trends
over time), we do not observe a significant decrease over time in the number
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Table 6.6: Overview of the impact of IntelliEye on learners’ behaviors. There are 37
(pause), 27 (auditory) and 41 (visual) learners in each group. f indicates significance at
p < 0.05 level between the first half and the second half of the IntelliEye sessions (Mann-
Whitney U test). * indicates significance at p < 0.05 level between the marked group and
the visual alert group (Mann-Whitney U test).

First 50% IntelliEye Last 50% IntelliEye

Metrics Alert Type

Sessions Sessions
Mean avg. Pausing 11.93(9.46) 15.96(13.38)x
video playing Auditory alert 13.38(10.43) 16.16(13.17)
length (min) Visual alert 17.15(16.21) 24.68(20.38)
Mean avg. Pausing 6.71(7.09) 6.70(8.94)
attention Auditory alert 9.38(8.76) 9.04(12.13)
duration (min) Visual alert 9.33(9.40) 12.53(17.35)
Mean avg. Pausing 0.62(1.45)x 0.50(1.25)
inattention Auditory alert 0.45(1.94)x 1.07(4.93)=
duration (min) Visual alert 3.69(9.03) 3.46(5.29)
Mean avg. Pausing 1.30(1.96) 1.50(2.13)
#inattention Auditory alert 0.84(2.05)x 0.93(2.14)%
per min Visual alert 2.86(4.31) 2.13(3.24)

of inattention triggers per minute and the duration of inattention. There
are a number of reasons that can explain this outcome (e.g. as the material
becomes more difficult over time, maintaining the same attention levels may
already be a success), we will leave this investigation to future work.

6.6 Conclusions

In this chapter, we finalize our study of short-term behavioral engagement
of MOOC learners. In these three chapters, short-term behavioral engage-
ment is evaluated based on learner attention/inattention to video lectures
in a short time. The main challenge of these chapters is to track learners’
inattention within video watching on a large scale and in real-time. Based
on the face-tracking method proposed in Chapter 5, we design IntelliEye to
increase learner attention while watching MOOC lecture videos by alerting
learners to their loss of attention (approximated through face tracking via
webcam feeds) in real-time. To re-gain learner attention, we trial three types
of interventions—pausing the video with automatic resume once the learner
is focusing on the video again, an auditory alert to call learners to attention,
and a visual alert around the video widget.
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To explore the viability and acceptance of learners towards such an as-
sistive system, IntelliEye was deployed in an engineering MOOC across a
74-day period to 2,612 learners.

Our analyses explore three issues: (1) the technological capabilities of
our MOOC learners’ hardware, (2) the acceptance of IntelliEye by MOOC
learners, and, (3) the effect of IntelliEye on MOOC learners’ behaviour. We
find the vast majority of learners (78%) to possess hardware capable of run-
ning IntelliEye; we find fewer—though still a considerable number—learners
willing to try such an assistive tool (32% of all learners with supported se-
tups) and among those that did use IntelliEye we determine extremely high
levels of inattention, on average 1.65 inattention events per minute (i.e. on
avg. inattention arises every 36 seconds).

Learners learned to adapt their behaviour as needed: learners in the
pausing/auditory conditions had significantly fewer inattention events than
learners in the non-disruptive visual alert condition. This though, did not
yet translate into learning gains. Learners that opted not to use IntelliEye
often did not see a need for it and were concerned about their privacy.

Considering the facts that we observe high levels of inattention and that
learners once they make a decision on the tool’s usage do not change that
decision, we need to put more effort into the initial “sign-up” phase of such
a tool in future work.

With IntelliEye being the first of its kind to address the learner (in)attention
problem in MOOCsSs in real-time and by relying on non-calibrated common
webcams and open-source face tracking, we have shown that there is a po-
tential for such a system. In our future work, we will extend the deployment
of IntelliFye to a larger audience and a wider variety of MOOCs. We will
investigate learner incentives and compliance issues to increase the awareness
and acceptance of our approach.
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Conclusion

Learner engagement is commonly believed to be essential to the success of
learning in both traditional classroom contexts and MOOCs [20, 1, 33, 52,
35, 41]. In MOOCs, educators cannot observe how learners engage in their
courses as they usually do in traditional classroom contexts. To better un-
derstand learner engagement in MOOC learning, learning analytics technol-
ogy can be applied on large-scale trace data generated by learner interac-
tions with course materials on MOOC platforms [102]. As mentioned by
Fredrick et al. [35], learner engagement can vary in intensity and duration.
Therefore, learning analytics technology applied in this field should provide
a comprehensive understanding of learner engagement with diverse intensity
and duration. In this thesis, we focus on using learning analytics technology
to explore learner behavioral engagement—the participation of learners in
MOOC learning—at different time scales. We evaluate behavioral engage-
ment of MOOC learners on three time scales: long-term behavioral engage-
ment (i.e. behavioral engagement throughout a course), mid-term behavioral
engagement (e.g. behavioral engagement in learning sessions), and short-
term behavioral engagement (e.g. behavioral engagement in a short period
of time!). In this chapter, we first summarize our main contributions in this
thesis and then sketch some possible future research directions based on our
studies.

n our studies in Chapter 4, Chapter 5, and Chapter 6, the time period we focus is no
longer than 30 seconds.
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7.1 Summary of Contributions

7.1.1 Long-Term Behavioral Engagement

We explored behavioral engagement of passers—learners whose scores reached
the course requirements before the end of the course—throughout several
MOOCs. By investigating learner interactions with video lectures and quiz
questions before and after passing, our work contributes new understand-
ing to the impact of the "passing" event on learner behavioral engagement
in MOOC learning. Specifically, our study answers the following research
questions:

RQ 1.1: Do MOOC learners behave differently after clinching a passing
grade?

RQ 1.2: What are the core behavior patterns of MOOC learners before and
after passing, and how can learners be classified?

To answer RQ 1.1 and RQ 1.2, we used data-driven approaches to ex-
plore passer behaviors based on their trace data throughout several MOOC:s.
For RQ 1.1, our findings reveal that the “passing" event heavily influences
ensuing learner behavior, and there are a certain amount of learners whose
scores reduced heavily after passing. It means that educators may pass learn-
ers whose grasp on course contents is not complete. Moreover, if a large
number of learners are only exposed to parts of course contents, educators
and course designers may waste a lot of time creating content that actually
few learners care about. For RQ 1.2, we defined pre-/post-passing behav-
ior patterns and employed a rule-based method to classify learners based on
their behavior patterns. The results of our analyses show that most passers
fall into a narrow band of behavior patterns. However, the behavior patterns
with the majority of passers vary in different courses. For example, in the
course Introduction to Functional Programming the majority of learners still
kept high scores after passing while in Data Analysis: Take It to the MAX()
the majority of learners reduced their scores sharply. It indicates that the
motivation of the majority of passers varies in different courses.

Considering that MOOC learners may pass a course without accessing
entire course contents, our study suggests that educators and course design-
ers need to carefully design assessment systems and organize course contents
based on the requirements of the course certificate. For example, if all com-
pulsory course contents were arranged in the first few units of the MOOC,
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learners have to study all of them before passing. If there were thresholds of
assessments in each unit of the MOOC, learners cannot get certificates before
they show their mastery of knowledge in each unit.

Our data-driven approaches used in this study can serve as a foundation
for learning analytics systems for the observation of learner engagement in
MOOCs. With well-designed user interfaces for data visualization and algo-
rithms for handling constantly updated data, educators can observe learners
in a scalable way during course runnings. Moreover, they can group learners
based on their behavior patterns and explore specific group of learners with
different purposes.

7.1.2 Mid-Term Behavioral Engagement

As mobile learning is on the rise in MOOC learning, we explored behavioral
engagement of MOOC learners in learning sessions with a mobile device.
To evaluate learner behavioral engagement, we selected different metrics of
MOOC learners on their learning gain, learning efficiency, and learner inter-
actions in revising course content. Our study contributes to new findings
of how learning on-the-go impacts learner behavioral engagement in MOOC
learning. Particularly, our study answers the following two research ques-
tions:

RQ 2.1: To what extent does learning on-the-go (compared to stationary
learning on a mobile device) affect MOOC learners’ learning gain, learning
efficiency and interactions with the course content?

RQ 2.2: How do learners perceive their workload (physical as well as men-
tal) in the stationary and learning on-the-go conditions and how does it relate
to their learning performance and interactions?

To answer RQ 2.1 and RQ 2.2, we designed a user study which asked
learners to watch MOOC video lectures and answer follow-up questions on a
mobile device in both stationary learning and learning on-the-go.

For RQ 2.1, metrics reported in our study show that: 1) learning gain and
learning efficiency were both lowered in learning on-the-go, and 2) learners
in stationary learning tended to spend more time on question answering.
For RQ 2.2, we find that learners in learning on-the-go perceived higher
physical demands and more frustration than in stationary learning. The
positive correlation between the question answering duration and self-rated
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frustration in learning on-the-go shows that the more time learners spent on
questions while learning on-the-go, the more frustrated they felt.

The experimental design in this study can be extended with different
experimental factors and integrated with other types of data (e.g. sensor
data) in future studies on mobile MOOC learning.

7.1.3 Short-Term Behavioral Engagement

We investigated behavioral engagement of MOOC learners in a short period
of time (< 30 seconds in our studies), by using webcams to detect learner
inattention during video watching. In our studies, we presented new ap-
proaches which could track short-term behavioral engagement (e.g. learner
attention in our studies) of MOOC learners in near real-time and on a large
scale. More specifically, our studies mainly focus on the following research
questions:

RQ 3.1: How often do MOOC learners experience inattention within video
watching?

RQ 3.2: How well do our webcam-based inattention detection methods per-
form?

RQ 3.3: To what extent is MOOC learners’ hardware capable to enable the
webcam-based inattention detection?

RQ 3.4: To what extent do MOOC learners accept our inattention detection
technology that is designed to aid their learning but at the same time is likely
to be perceived as privacy-invading (even though it is not)?

RQ 3.5: What impact does the webcam-based inattention detection have on
learners’ behaviors and to what extent does it affect learners’ video watching
behaviors?

To answer the above five questions, we conducted a series of studies on
webcam-based attention tracking in video watching.

To answer RQ 3.1 and RQ 3.2, we first conducted a user study in which
learners were asked to watch a MOOC video lecture and report their inatten-
tion after hearing auditory probes. During video watching, both a webcam-
based eye-tracking approach and a professional eye-tracker were running to
collect learner gaze data. The user study is designed based on the eye-mind
link effect [96] that there is no appreciable lag between what is fixated and
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what is processed. Based on our analyses on data collected from the user
study, we find that inattention occurred frequently even for short video lec-
tures. For eye-tracking based inattention detection, our results show that the
accuracy of our webcam-based approach was on par with the approach with
a professional eye-tracker. Our study indicates that it is indeed possible to
use the webcam-based inattention detection in MOOCs on a large scale.

However, the above eye-tracking approach suffers a series of problems:
the relatively low accuracy, the long detection lag, and the complexity of the
detection process. These problems make the eye-tracking approach difficult
to use in the near real-time inattention detection. To better answer RQ 3.2,
we proposed an alternative approach with face tracking which could increase
the detection accuracy and reduce the detection lag. To test the approach
with face tracking, we designed a benchmark which contains a set of learner
activities related to the attention/inattention of MOOC learners. Our re-
sults of experiments on the benchmark show that the face-tracking approach
makes an improvement on both detection accuracy and speed, which makes
it feasible to track learner inattention in near real-time with webcams.

To answer RQ 3.3, RQ 3.4, and RQ 3.5, we designed IntelliEye, a near
real-time, scalable, privacy-aware widget which could track learner inatten-
tion within video watching only based on a webcam. We deployed IntelliEye
in a real-world MOOC. The feedback of MOOC learners shows that even
though the hardware and software of most learners were capable to run In-
telliFye, the majority of learners were reluctant to allow the use of IntelliEye
because of the lack of perceived usefulness and privacy concerns. Our analy-
sis of learner interactions with IntelliEye reveals that learners had high levels
of inattention and they did adapt their behaviors to our widget.

7.2 Future Work

In this thesis, we contribute new knowledge and novel technical approaches
to understanding learner behavioral engagement in MOOCs. In this section,
we outline potential future research directions—in which technical approaches
presented in our studies can be applied—in the broad area of MOOC learning.

7.2.1 Personal Analytics in MOOCs

Personal analytics, which can provide personalized feedback or guidance
to learners based on learning analytics, is an important research direction
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in MOOCs which can improve learner awareness in self-regulated learning.
Learner awareness is critical for the use of learning strategies in self-regulated
learning [150]. For example, learners can select effective learning strategies
if they are able to monitor the impact of these strategies on their perfor-
mance. However, we notice that learners on premier MOOC platforms can
only access a small amount of information (e.g. scores received in each part of
course content, and time required on different materials) about their learning
process.

In the 8th International Learning Analytics and Knowledge Conference
(LAK2018), personal analytics supporting self-directed learning is empha-
sized by organizers of the Hackathon workshop (Hack@LAK18) for user-
centred learning analytics. The main purpose of this topic in Hack@LAK18 is
to do learning analytics for the learner based on data collected from learner’s
broswer and social media account. LAK2018 also held the first international
workshop on personalizing feedback which aims to explore future directions
to improve the process and richness of personal feedback based on the appli-
cation of learning analytics.

We envision that an ideal personal analytics system in MOOCs should
help learners to not only clearly monitor their learning progress but also
fully understand their mastery of knowledge. Moreover, personalized guid-
ance can be generated by this ideal personal analytics system to motivate
learners and help them make better learning strategies. Some technologies
in previous studies can be applied to building this personal analytics system.
For example, Davis et al. [27] build a visual “personalized feedback system"
which provides weekly feedback to learners based on the comparison of the
learning progress of learners with that of successful passers from a previous
run of the same MOOC. Our studies in this thesis can be applied to mon-
itor learner engagement on different time scales in personal analytics. For
example, our study in Chapter 2 can be used to analyze the engagement of
each learner throughout a course while our work in Chapter 6 can be ap-
plied to monitor the engagement of each learner in near real-time. Research
on open learner models [11] can be used in MOOCs for the measurement of
learner mastery of knowledge. However, to implement the personal analyt-
ics system, it still lacks studies on the integration of those approaches and
models (e.g. personal analytics dashboard, comprehensive measurements on
learner performance and learning progress, or open learner models on learner
mastery of knowledge) and the generation of personal guidance in MOOCs.

Further research on personal analytics in MOOCs can be expanded for the
following questions. Among different measurements of the learning progress
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and the mastery of knowledge, which of them can be perceived by MOOC
learners efficiently and effectively? How to generate reasonable personal guid-
ance automatically and in near real-time based on learning analytics on a
large scale of MOOC learners? How does such a personal analytics system
change learner behaviors and learning outcomes in MOOCs?

7.2.2 Adaptive Learning in MOOCs

To enhance the learning gain and the learning efficiency of learners, adaptive
learning is a promising future research direction. Adaptive learning systems
refers to systems that attempt to be different for different students and groups
of students by taking into account information accumulated in the individual
or group student models [13]. In LAK2018, conference organizers called for
papers with topics about personalized and adaptive learning. Specifically,
they were interested in studies on the evaluation of the effectiveness and
impact of adaptive technologies. In the UNESCO report about smart learn-
ing environments for the 21th century [120], they envision a smart learning
environment as an adaptive learning system in which learning can occur any-
where, anytime and at any pace. In the 26th ACM Conference on User Mod-
eling, Adaptation, and Personalization (UMAP2018), technology-enhanced
adaptive learning was one of the main track topics, which focused on tech-
nological solutions for modeling learner and providing personalized adapted
support.

MOOC s are open to diverse learners on a massive scale and these learners
have different learning goals/motivations, prior knowledge, or the other back-
grounds. The engagement of learners is also diverse in MOOC learning (as
shown in our studies in this thesis). With adaptive learning systems, course
materials in MOOCs can be customized automatically based on the needs of
individual learners. However, adaptive learning has not been fully studied in
MOOCs. The possible reason is that there is no integrated adaptive learning
system on premier MOOC platforms. Educators and course designers who
want to design adaptive MOOCs have to have both an in-depth understand-
ing of the course content and sufficient programming skills to implement a
stand-alone adaptive MOOC platform or a plug-in that can be integrated into
the current MOOC platforms [86, 103]. Current adaptive MOOC platforms
in previous studies [125, 82, 113] require a significant workload from educa-
tors and course designers to design course contents which can be integrated
into different learning paths for learners with different profiles, while current
adaptive plug-ins are in the preliminary stages which only focus on a small
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part of the adaptation learning (e.g. the navigation recommendation [86] and
the adaptive assessment [103]) in MOOCs.

An adaptive learning system usually consists of two modules: one module
for assessing the current profile of each learner and another module which
decides what see next [103]. In future studies on assessing learner profile, our
studies in Chapter 6 can be applied to evaluate learner engagement as a part
of learner profile in near real-time. Further studies also can be expanded on
learning paths which decide what learners to see next. For example, how
to generate learning paths without much extra workload and adjust them
automatically for each individual MOOC learner based on her motivation,
learning pace, profile, or preference? How to accurately evaluate the quality
of learning paths generated by adaptive learning systems in MOOCs?

7.2.3 Multimodal Learning Analytics in MOOCs

Multimodal learning analytics is an interesting future direction for better un-
derstanding the learning progress of MOOC learners. Since learner trace data
on MOOC platforms cannot fully describe the learning progress of MOOC
learners.

Based on the definition in [79], multimodal learning analytics works to
leverage advances in multimodal data capture and signal processing to address
the challenges of studying a variety of complex learning-relevant constructs as
observed in complex learning environments. In the 11th Annual International
Educational Data Mining Conference (EDM2018), multimodal learning ana-
lytics was one of the main session topics. In this session, studies on motion
sensors and eye tracking were discussed. In LAK2018, researchers also held
a workshop named as Multimodal Learning Analytics Across (Physical and
Digital) Spaces (CrossMMLA). CrossMMLA mainly focused on learner mul-
timodal interactions in real-world learning contexts.

Multimodal learning analytics in MOOCs has not been fully researched.
Previous research on multimodal learning analytics in MOOC learning mainly
focus on mobile MOOC learning [91] in which learner heart rate data and
facial expression data are collected and analyzed. A possible reason is that
mobile devices have been ubiquitous in MOOC learning and have different
types of sensors to collect multimodal data from both learners and learning
environments.

Our study in Chapter 6 provides a direction to use webcams to obtain
multimodal data of MOOC learners on a large scale. Once cheap devices with
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different interaction technologies (e.g. intelligent personal assistants, activity
tracking, eye tracking, augmented reality, virtual reality, EEG or fNIRS) are
on the market, these technologies can be applied on a large scale in future
MOOCs. Consequently, learners can be modeled by using multimodal learn-
ing analytics on not only trace data and survey data but also physiological
data, gaze data and environmental data. For example, if a large number of
learners use eye-tracking devices and fNIRS devices during watching MOOC
videos, educators and researchers can track learners’ gaze movements and
brain activity on a large scale when different content delivered in videos.
Then, they may be able to distinguish between what most learners under-
stand and what they ignore during video watching by multimodal learning
analysis. After that, questions following videos in MOOCs can be designed
to specifically evaluate content that is important but easily ignored by most
learners when watching videos.

Both personal analytics and adaptive learning in MOOCs could also be
improved by multimodal learning analytics. For example, with personal an-
alytics based on learner trace data and physiological data, how to detect the
obstacles faced by learners and generate personal feedback and guidance? In
adaptive learning, how to model environments where learning occurs based
on multimodal learning analytics and to what extent course content can be
tailored automatically to different learning environments?
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Summary

Learning Analytics Technology to Understand Learner
Behavioral Engagement in MOOCs

As one of the most prominent examples of technology-enhanced learning,
massive open online courses (MOOCs) have attracted extensive attention of
learners, educators, and researchers since 2012. However, a low completion
rate is a ubiquitous and severe problem in MOOCs, which means that only
a small portion of learners got scores higher than or equal to the course
requirements in MOOCs. Learner engagement is commonly presumed to be
highly related to the completion rates of MOOCs.

In traditional classrooms, learner engagement can be observed by ex-
perienced educators. They can keep learner engagement by adjusting the
course content and the way they teach. However, educators cannot observe
learner engagement in MOOC learning the same way they usually do in tra-
ditional classrooms, while many learners lack skills to keep their engagement
by themselves, which leads to high dropout rates of MOOCs. To observe
learner engagement in MOOCs and provide learners feedback about their
learning progress, learning analytics technology has been used by educators
and researchers on MOOC platforms.

Learner engagement is usually investigated in three dimensions: behav-
ioral engagement, emotional engagement, and cognitive engagement. In this
thesis, we focus on using learning analytics technology to understand learner
behavioral engagement in MOOCs. While many activities related to learner
emotional engagement and cognitive engagement happen outside of MOOC
platforms, most activities related to learner behavioral engagement are cap-
tured by the technology of MOOC platforms. Specifically, we study learner
behavioral engagement on three time scales: throughout a course, in a learn-
ing session, and in a short period of time.
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First, we explore learner behavioral engagement throughout a course
based on learning analytics technology with large-scale trace data. To in-
vestigate the change of learner behavior after clinching a passing grade, we
define a set of pre-passing and post-passing behavior patterns in our study.
We present a data-driven approach which analyzes trace data from four thou-
sand learners whose scores met the course requirements and find a certain
subset of learners who heavily reduced their engagement in question answer-
ing after clinching a passing grade. Our study suggests that the course struc-
ture and grading schema of MOOCs should be designed to assign a certificate
to learners only when they display mastery of an entire course subject.

Second, to investigate learner behavioral engagement in mobile learning
sessions, we measure the impact of divided engagement and real-world en-
vironments on learner performance and interactions. We conducted a study
which requires learners to have mobile learning sessions while sitting in the
lab and walking on campus. To measure the impact of multitasking and
divide attention, the trace data of learners and their answers in the question-
naire are analyzed. We find that learning on-the-go contributed to lowered
learning performance and learners show different time arrangement in video
watching and question answering while walking with learning.

Third, we investigate learner behavioral engagement in a short period
of time. Specifically, we focus on tracking learner attention during video
watching. Many MOOCs are centered around video lectures and learners
can easily lose their attention while watching videos. If learner inattention
can be detected automatically and in real-time, interventions can be pro-
vided to MOOC learners once they are being disengaged. We first propose
an eye-tracking based method and our lab study indicates that it is possible
to deploy a large-scale application of the webcam-based inattention detection
in MOOCs. To avoid a high detection lag, low accuracy, and the complexity
of design and maintenance in the eye-tracking method, we propose another
method with face-tracking. We deploy our face-tracking based inattention
detection method as a widget IntelliEye in real MOOCs. Through the de-
ployment of IntelliEye, we find that most learners have capable setups to run
our widget and one-third of them were willing to use it. Based on analyzing
learner trace data, we observe high levels of learner inattention and their
adaption toward our attention tracking technology.



Samenvatting

Learning Analytics-technologie om de betrokkenheid
van leerlingen in MOOC’s te begrijpen

Als een van de meest prominente voorbeelden van door technologie onderste-
und leren, hebben massale open online cursussen (MOOC’s) sinds 2012 uitge-
breid de aandacht getrokken van studenten, docenten en onderzoekers. Een
lage ratio van voltooiing is echter een alomtegenwoordig en serieus probleem
bij MOOC’ s en dat betekent dat slechts een klein deel van de leerlingen een
score behaalt die ten minste gelijk is aan de cursusvereisten van de MOOC.
De betrokkenheid van de leerlingen wordt in het algemeen verondersteld sterk
gerelateerd te zijn aan de ratio van voltooiing van MOOC’s.

In traditionele klaslokalen kan de betrokkenheid van leerlingen worden
waargenomen door ervaren docenten. Ze kunnen de betrokkenheid van de
leerlingen behouden door de inhoud van de cursus aan te passen en de manier
waarop ze lesgeven. Docenten kunnen echter de betrokkenheid van leerlingen
bij MOOC’s niet zien zoals ze dat in traditionele klaslokalen doen, terwijl veel
leerlingen de vaardigheden missen om zelf hun betrokkenheid te behouden
en dat leidt tot hoge uitvalcijfers voor MOOC’s. Om de betrokkenheid van
leerlingen bij MOOC'’s te observeren en leerlingen feedback te geven over hun
leerproces, wordt "learning analytics"-technologie gebruikt door docenten en
onderzoekers op MOOC-platforms.

De betrokkenheid van de leerling wordt meestal onderzocht in drie di-
mensies: gedragsmatige betrokkenheid, emotionele betrokkenheid en cog-
nitieve betrokkenheid. In dit proefschrift richten we ons op het gebruik
van learning analytics-technologie om de betrokkenheid van leerlingen in
MOOC’s te begrijpen. Terwijl veel activiteiten met betrekking tot emo-
tionele betrokkenheid en cognitieve betrokkenheid van leerlingen plaatsvin-
den buiten MOOC-platforms, worden de meeste activiteiten met betrekking
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tot het gedrag van de leerlingen vastgelegd door de technologie van MOOC-
platforms. We bestuderen daarom met name de gedragsinteractie van de
leerlingen, op drie tijdschalen: gedurende een cursus, in een leersessie en in
een korte tijdsperiode.

Ten eerste onderzoeken we de betrokkenheid van leerlingen tijdens een
cursus op basis van learning analytics-technologie met grootschalige log-
gegevens. Om de verandering van het gedrag van de leerling te onderzoeken
na het behalen van een voldoende cijfer, definiéren we een reeks gedragspa-
tronen voorafgaand aan het passeren en na het passeren van onze studie. We
presenteren een gegevensgestuurde aanpak die log-gegevens van vierduizend
leerlingen analyseert waarvan de scores voldeden aan de cursusvereisten en
vinden een bepaalde subset van leerlingen die hun betrokkenheid bij het
beantwoorden van vragen sterk hebben verminderd na het behalen van een
voldoende cijfer. Onze studie suggereert dat de cursusstructuur en het beo-
ordelingsschema van MOOC’s zodanig moeten zijn ontworpen dat een cer-
tificaat alleen aan studenten wordt toegekend wanneer zij het volledige vak
beheersen.

Ten tweede, om de betrokkenheid van leerlingen in mobiele leersessies te
onderzoeken, meten we de impact van gedeelde betrokkenheid en realistis-
che omgevingen op leerprestaties en interacties. We hebben een onderzoek
uitgevoerd waarbij leerlingen verplicht zijn om mobiele leersessies te volgen
terwijl ze in het lab zitten en op de campus lopen. Om de impact van mul-
titasking te meten en de aandacht te verdelen, worden de log-gegevens van
leerlingen en hun antwoorden in de vragenlijst geanalyseerd. We merken dat
leren "on-the-go" heeft bijgedragen aan verlaagde leerprestaties en dat leer-
lingen verschillende tijdsbestedingen hebben bij het kijken naar video’s en
het beantwoorden van vragen tijdens het "lopende" leren.

Ten derde onderzoeken we het gedrag van leerlingen in een korte periode
van tijd. We concentreren ons met name op het volgen van de aandacht
van leerlingen tijdens het kijken naar video’s. Veel MOOC’s zijn gecentreerd
rond videocolleges en leerlingen kunnen gemakkelijk hun aandacht verliezen
tijdens het kijken naar video’s. Als de onoplettendheid van de leerlingen
automatisch en in actuele tijd kan worden gedetecteerd, kunnen interventies
aan MOOC-leerlingen worden gegeven zodra ze de betrokkenheid verliezen.
We stellen eerst een op eye-tracking gebaseerde methode voor en onze labo-
ratoriumstudie geeft aan dat het mogelijk is om een grootschalige toepassing
van de op webcams gebaseerde onoplettendheidsdetectie in MOOC’s te im-
plementeren. Om hoge detectie-vertraging, lage nauwkeurigheid en de com-
plexiteit van ontwerp en onderhoud in de eye-tracking methode te voorkomen,
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stellen we een andere methode voor met face-tracking. We gebruiken onze
face-tracking gebaseerde onoplettendheidsdetectiemethode als een widget In-
telliEye in echte MOOC’s. Door de inzet van IntelliEye ontdekken we dat de
meeste leerlingen in staat zijn om onze widget uit te voeren en dat een derde
van hen bereid is om het te gebruiken. Gebaseerd op het analyseren van de
log-data, zien we een hoge mate van onoplettendheid van de leerling en zien
we zijn aanpassing aan onze technologie voor het volgen van de aandacht.
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