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Green’s function representations for seismic interferometry

Kees Wapenaar' and Jacob Fokkema'

ABSTRACT

The term seismic interferometry refers to the principle of
generating new seismic responses by crosscorrelating seis-
mic observations at different receiver locations. The first ver-
sion of this principle was derived by Claerbout (1968), who
showed that the reflection response of a horizontally layered
medium can be synthesized from the autocorrelation of its
transmission response. For an arbitrary 3D inhomogeneous
lossless medium it follows from Rayleigh’s reciprocity theo-
rem and the principle of time-reversal invariance that the
acoustic Green’s function between any two points in the me-
dium can be represented by an integral of crosscorrelations of
wavefield observations at those two points. The integral is
along sources on an arbitrarily shaped surface enclosing
these points. No assumptions are made with respect to the dif-
fusivity of the wavefield. The Rayleigh-Betti reciprocity the-
orem leads to a similar representation of the elastodynamic
Green'’s function. When a part of the enclosing surface is the
earth’s free surface, the integral needs only to be evaluated
over the remaining part of the closed surface. In practice, not
all sources are equally important: The main contributions to
the reconstructed Green’s function come from sources at sta-
tionary points. When the sources emit transient signals, a
shaping filter can be applied to correct for the differences in
source wavelets. When the sources are uncorrelated noise
sources, the representation simplifies to a direct crosscorrela-
tion of wavefield observations at two points, similar as in
methods that retrieve Green’s functions from diffuse wave-
fields in disordered media or in finite media with an irregular
bounding surface.

INTRODUCTION

It has been shown by many authors that the crosscorrelation of
two recordings of a diffuse wavefield at two receiver positions leads

to the Green’s function that would be observed at one of these receiv-
er positions if there were an impulsive source at the other. The diffu-
sivity of the wavefield can be due to a random distribution of uncor-
related noise sources (Weaver and Lobkis, 2001, 2002; Wapenaar et
al., 2002, 2004b; Shapiro and Campillo, 2004; Shapiro et al., 2005;
Roux et al., 2005), reverberations in an enclosure with an irregular
bounding surface (Lobkis and Weaver, 2001), multiple scattering
between heterogeneities in a disordered medium (Campillo and
Paul, 2003; Derode et al., 2003a; van Tiggelen, 2003; Malcolm et al.,
2004; Snieder, 2004), or any combination of these causes.

Diffusivity of the wavefield is not a necessary condition for the re-
trieval of the Green’s function by means of correlation. Claerbout
(1968) showed that the autocorrelation of the transmission response
of an arbitrary horizontally layered lossless earth yields its reflection
response. This result has been generalized for three-dimensional in-
homogeneous media by the authors (Wapenaar et al., 2002, 2004b).
It appeared that the reflection response between a source and receiv-
er at two positions at the earth’s free surface can be expressed as an
integral of crosscorrelations of transmission responses observed at
the same two surface positions; the integral is along sources at some
subsurface level. Since the reflection response of a medium relates
downgoing to upgoing waves, it can be seen as the Green’s function
of the coupled one-way wave equations for downgoing and upgoing
waves. In the above mentioned papers the relation between the re-
flection response and the correlation of the transmission responses
was derived from a reciprocity theorem for the one-way wave equa-
tions. For this derivation it was not necessary to make any assump-
tions about the diffusivity of the wavefield. In the same papers we
also derived a variant of the relation for the situation of uncorrelated
noise sources in the subsurface (hence, for a specific type of diffuse
wavefield). This led to a direct relation between the reflection re-
sponse and the crosscorrelation of the transmission responses, with-
out the integral along the sources. With the latter relation we con-
firmed a conjecture of Claerbout for the 3D situation. Following
Schuster (2001), we use the term seismic interferometry for the pro-
cess of generating new seismic responses by crosscorrelating seis-
mic observations at different receiver locations.

Since a reflection response is the Green’s function of the one-way
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wave equations, it is quite natural to employ one-way wave theory
for the derivation of interferometric relations. In one of the above-
mentioned papers (Wapenaar et al., 2004b), we presented an exten-
sive overview of relations between reflection and transmission re-
sponses of 3D inhomogeneous media, based on reciprocity theorems
for the one-way wave equations. However, these theorems also in-
volve some restrictions with respect to the configuration. The main
underlying assumption is that the boundary of the considered do-
main consists of two parallel horizontal surfaces, one of them usual-
ly coinciding with the earth’s surface and the other being some arbi-
trary horizontal subsurface level (in general, not coinciding with a
physical boundary). Although in practice this assumption can be
somewhat relaxed, it implies a restriction with respect to the applica-
tions in seismic interferometry. Another complication of the one-
way interferometric relations is that they apply to downgoing and
upgoing wavefields. Hence, wavefield decomposition is required
prior to employing one-way interferometry.

In the current paper we give an overview of representations of
Green'’s functions in terms of crosscorrelations of full wavefields in
arbitrary configurations (Wapenaar, 2004; Weaver and Lobkis,
2004; van Manen et al., 2005) and discuss modifications for their ap-
plication in seismic interferometry. Note that the term Green’s func-
tion is often associated with a solution of the wave equation for an
impulsive point source in a background medium. Throughout this
paper, however, we mean by Green’s function the response of an im-
pulsive point source in the actual medium. Similar to our derivations
of the relations between the reflection and transmission responses
we make no assumptions with respect to the diffusivity of the wave-
field; the situation with uncorrelated noise sources is handled as a
special case. We consider the acoustic as well as the elastodynamic
situation. The paper is set up in such a way that the sections on the
elastodynamic representations can be read independently from those
on the acoustic representations.

ACOUSTIC RECIPROCITY THEOREMS

A reciprocity theorem relates two independent acoustic states in
one and the same domain (de Hoop, 1988; Fokkema and van den
Berg, 1993). Consider an acoustic wavefield, characterized by the
acoustic pressure p(x,1) and the particle velocity v,(x,). Lower-case
Latin subscripts take on the values 1, 2 and 3; furthermore, x
= (x,x,,x3) denotes the Cartesian coordinate vector (as usual the
Xx3-axis is pointing downward) and 7 denotes time. We define the tem-
poral Fourier transform of a space- and time-dependent quantity
p(x,1) as

px.0) = f exp(- jor)p(x,0)dt, (1)

where j is the imaginary unit and o the angular frequency. In the
space-frequency domain, the acoustic pressure and particle velocity
in a lossless arbitrary inhomogeneous fluid medium obey the equa-
tion of motion

Jjwpt; + 9p = f; ()

and the stress-strain relation

ijﬁ + (?iﬁi = qA (3)

Here d; denotes the partial derivative in the x,-direction (Einstein’s
summation convention applies for repeated subscripts), p(x) is the
mass density of the medium, «(x) its compressibility, f:(x, ) the ex-
ternal volume force density, and G(x,w) a source distribution in
terms of volume injection rate density. We consider the interaction
quantity (de Hoop, 1988)

ai{ﬁAlji,B — 0;APg}s (4)
where subscripts A and B are used to distinguish two independent
acoustic states. Rayleigh’s reciprocity theorem is obtained by substi-
tuting the equation of motion (equation 2) and the stress-strain rela-
tion (equation 3) for states A and B into the interaction quantity
(equation 4), integrating the result over an arbitrary spatial domain D
enclosed by boundary D) with outward pointing normal vector n
= (ny,n,,n3), and applying the theorem of Gauss. This gives

PA P Ao 2 oA 3
f {Padp — Viafip — GaPp + fia0; ptd X
D

= {Pabip - ﬁi,AﬁB}nidzx (5)
aD
(Rayleigh, 1878; de Hoop, 1988; Fokkema and van den Berg, 1993).
We call this a reciprocity theorem of the convolution type since the
products in the frequency domain (5,0, 3, etc.) correspond to convo-
lutions in the time domain.

Because the medium is assumed to be lossless, we can apply the
principle of time-reversal invariance (Bojarski, 1983; Fink, 1997).
In the frequency domain, time-reversal is replaced by complex con-
jugation. Hence, when p and 0; are a solution of the equation of mo-
tion and the stress-strain relation with source terms f, and g, then p*
and —0; obey the same equations with source terms f; and —§" (the
asterisk denotes complex conjugation). Making these substitutions
for state A we obtain

PEIA A A¥ A 2 A 3
{Pads + U;afip + 4alp + fi,Avi,B}d X
D

= {ﬁ:lji,B + ljzAﬁB}nidzx . (6)
aD
We call this a reciprocity theorem of the correlation type because the
products in the frequency domain (59; 5, etc.) correspond to correla-
tions in the time domain.

Note that for both theorems we assumed that the medium parame-
ters in states A and B are identical. de Hoop (1988) and Fokkema and
van den Berg (1993) discuss more general reciprocity theorems that
account also for different medium parameters in the two states.

ACOUSTIC GREEN’S
FUNCTION REPRESENTATIONS

Open configuration

In this section, we substitute Green’s functions for the wavefields
in both acoustic reciprocity theorems. We show that the reciprocity
theorem of the convolution type (equation 5) thus leads to the well-
known acoustic source-receiver reciprocity relation, whereas the
reciprocity theorem of the correlation type (equation 6) yields acous-
tic Green’s function representations, which are the basis for seismic
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interferometry. We consider an open configuration. The domain D
with boundary J) is a subdomain of this open configuration; the
boundary JD does in general not coincide with a physical boundary.

We choose impulsive point sources of volume injection rate in
both states, according to

qa(x,1) = 8(x = x,4) 1), (7

qp(x,1) = 8(x = xp) 1), (8)
or, in the frequency domain,

da(x, ) = 3(x = x4), ©)

dp(x, ) = 3(x - xp), (10)

with x, and x both in [D; the external forces are chosen equal to zero
in both states. The wavefields in states A and B can thus be expressed
in terms of acoustic Green’s functions, according to

Pax,0) 2 G(x,x,,0), (11)
B;(x,0) = = (jop(x) ™ 4,G(x.x4,0), (12)
Pax.0) £ G(x.xp,0), (13)
0, 5(%,0) = = (jop(x)) ' G,G(x,X, ). (14)

The Green’s function é(x,xA, w) is the Fourier transform of the caus-
al time-domain Green’s function G(X,X,4,7), which represents an im-
pulse response observed at x, due to a source at x,. According to
equation 11, the observed wavefield quantity at x is acoustic pres-
sure; according to equation 9, the source at X, is a volume injection
rate source. Similar remarks hold for é(X,XB, w). Other choices for
the observed quantity at x and the source type at x, and X are possi-
ble but will not be considered here because we prefer to keep the no-
tation for the acoustic Green'’s functions simple. In the sections on
the elastodynamic Green’s function representations, we employ a
modified notation that accounts for different observed wavefield
quantities and different source types. Acoustic representations for
Green'’s functions in terms of observed particle velocities and force
sources can be obtained as a special case of the elastodynamic repre-
sentations.

By substituting equations 9, 11, and 12 into equation 3, it follows
that é(X,XA, ) obeys the wave equation

a(p'3,G) + (0?IpcH)G = — jodx - x,),  (15)

with propagation velocity ¢(x) = {«(x)p(x)}"!/2. A similar wave
equation holds for G(x,xB, ).

Substituting equations 9—14 into the acoustic reciprocity theorem
of the convolution type (equation 5) gives

é(XB9 XA» (l)) - é(xA’XB’ (l))

-1 4 R
= % .—(G(X’XA7(U)[?[G(X7XB’(D)
an Jwp(X)

— (8,G(x,X4,0)) G(X, X, ))n,dX. (16)

Recall that the Green’s functions G(x,x,, ) and G(x,Xp, ») are the
Fourier transforms of causal time-domain Green’s functions. Hence,
when @D is a spherical surface with infinite radius, then the right-

hand side of equation 16 vanishes on account of the radiation condi-
tions of the Green’s functions (e.g., Bleistein, 1984). Moreover,
since the right-hand side of equation 16 is independent of how dD is
chosen (as long as it encloses x, and X;), it vanishes for any .
Equation 16 thus yields

é(XB’XA’w) = é(XA9XBs (1)) (17)

This is the well-known source-receiver reciprocity relation for the
acoustic Green’s function.

Substituting equations 9—14 into the acoustic reciprocity theorem
of the correlation type (equation 6) gives

é*(XB,XA,w) + G(XA,XB, (,U)

-1 ., A
= § .—(GI(X,XA,Q))(%G(X,XB,Q))
an Jop(x)

— (8,67 (x,X4, 0)) G(X, X, ))n,dx. (18)

Again, the right-hand side is independent of the choice of d1), as long
as it encloses x, and x. Note, however, that since é*(x,xA, w) is the
Fourier transform of the anticausal time-domain Green’s function
G(x,x,4,—1), the radiation conditions are not fulfilled and hence the
right-hand side of equation 18 does not vanish. Using source-receiv-
er reciprocity of the Green’s functions gives

. 1 ., .
2R{G(xy,Xp, )} = —(G (XA,X,w)aiG(XB,X,w)
an Jop(X)

— (9,G"(x4,%, ) G(xp,X, 0))n,dx,
(19)

where R denotes the real part. Equation 19 is the basis for acoustic
seismic interferometry, as will be discussed in a later section; van
Manen et al. (2005) propose an efficient modeling scheme, based on
an expression similar to equation 19.

The terms G and ﬂiéni under the integral in the right-hand side of
equation 19 represent responses of monopole and dipole sources at x
on d1). The products é*ﬁiéni, etc., correspond to crosscorrelations in
the time domain. Hence, the right-hand side can be interpreted as the
integral of the Fourier transform of crosscorrelations of observations
of wavefields at x, and x, respectively, because of impulsive sourc-
es atx on dD; the integration takes place along the source coordinate
x (see Figure 1). The left-hand side of equation 19 is the Fourier
transform of G(x4,Xp,1) + G(X,,X3,—1), which is the superposition
of the response at x, due to an impulsive source at Xz and its time-re-
versed version. Because the Green’s function G(X4, Xy, 1) is causal, it
can be obtained by taking the causal part of this superposition (or,
more precisely, by multiplying this superposition with the Heaviside
step function). Alternatively, in the frequency domain the imaginary
part of G(XA,XB, ) can be obtained from the Hilbert transform of the
real part.

Note that equation 19 is exact and applies to any lossless arbitrary
inhomogeneous fluid medium. The choice of the integration bound-
ary dD) is arbitrary (as long as it encloses x, and x;) and the medium
may be inhomogeneous inside as well as outside d1). The recon-
structed Green’s function G(XA,XB, w) contains, apart from the direct

Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



SI36 Wapenaar and Fokkema

wave between Xz and X, all scattering contributions (primaries and
multiples) from inhomogeneities inside as well as outside dD.

Modified Green’s function

In many papers on Green’s function retrieval, the imaginary part,
instead of the real part of the function, is obtained. Here, we show
that with a slight modification of the Green’s function, we obtain a
representation for the imaginary part of the Green’s function instead
of equation 19.

The Green’s function f}(x,xA, w) represents the acoustic pressure
due to a point source of volume injection rate (see equations 9 and
11). This Green’s function obeys equation 15, with the source term in
the right-hand side defined as —jwd&(x — x,4). Let us define a new
Green’s function Q(X,XA,w) representing the acoustic pressure due
to a point source of volume injection (instead of volume injection
rate). This Green’s function obeys the same wave equation, but with
the source in the right-hand side replaced by — 8(x — x,), according
to

a(p10G) + (0 1pcHG = — 8(x — x,). (20)

A similar wave equation holds for é(x,xB, ). Note that G and G are
mutually related via G = (1/j®)G. Following the same derivation as
above, we obtain instead of equation 19

1
D P(X)

- (&ié*(XA’X’ w))Q(XBs X, w))nidzx 5
(21)

2jHG (x4, X, @)} = (G (%X4,%, ) 3G(X,X, )

where J denotes the imaginary part. The left-hand side of equation
21 is the Fourier transform of G(x4,Xg,7) — G(X4,X5,—1), which is the
difference of the response at x, due to an impulsive source at Xz and
its time-reversed version. Since the Green’s function G(X,,Xg,?) is
causal, it can be obtained by taking the causal part of this difference.
Alternatively, in the frequency domain the real part of Q(XA,XB, )
can be obtained from the Hilbert transform of the imaginary part.
Because 2 jj{é} = ]%29%{6}, equation 21 does not provide new
information in comparison with equation 19; it only serves as a link

Figure 1. According to equation 19, the Green’s function G(x,,
Xz, w) can be obtained by crosscorrelating observations at x, and X
and integrating along the source coordinate x at JD. Note that the
rays in this figure represent the full responses between the source and
receiver points, including primary and multiple scattering due to in-
homogeneities inside as well as outside 1.

with other literature on Green’s function retrieval (see the remarks
below equation 32).

Configuration with a free surface

We consider a modified configuration for which we define the
closed surface as D) = gDy, U dD,, where gD, is a part of the earth’s
free surface and D, an arbitrarily shaped surface, in general not co-
inciding with a physical boundary. We consider the situation for
which x, and x; are located inside )y U dD; (see Figure 2). For
this configuration, we can use the results of the previous sections.
Because the acoustic pressure p vanishes on dl),, the integral on the
right-hand side of equations 6, 18, 19, and 21 needs only be evaluat-
ed over dD,. Hence, the Green’s function G(XA,XB, w) or G(X4,Xp )
can be recovered by crosscorrelating and integrating the responses
of sources on 4D, only.

MODIFICATIONS FOR ACOUSTIC
SEISMIC INTERFEROMETRY

Equation 19 is an exact representation of the acoustic Green’s
function, but in its present form it is not very well suited for applica-
tion in seismic interferometry. The main complication is that the in-
tegrand consists of a superposition of two correlation products that
need to be evaluated separately. Moreover, monopole as well as di-
pole responses are assumed to be available for all source positions x
on JD. Finally, the sources are assumed to be impulsive point sourc-
es, which does not comply with reality. In this section, we first dis-
cuss a number of simplifications of the integrand of equation 19.
Next we discuss the modifications of equation 19 for realistic sourc-
es (transient as well as noise sources).

Simplification of the integrand

In the following, we first investigate the effect of scatterers out-
side the integration boundary JID. Next we discuss the approxima-
tions that are needed so that the integrand of equation 19 reduces to a
single correlation product. Finally we discuss the approximation that
is required when only monopole responses are available.

The starting point for the analysis in this section is equation 19,
with integration boundary JD) (see Figure 1). However, everything
that is discussed below also applies to the free surface configuration
of Figure 2, with integration boundary d1),. Moreover, all results be-
low can be easily adapted for the modified Green’s function G, sim-
ply by substituting G= J G.

We temporarily denote é(xA,x,w) and é(XB,x,w) by éA and GB,
respectively. Furthermore, we write

Figure 2. Modified configuration, with a free surface d1),. The rays
represent the full responses, including primary and multiple scatter-
ing due to inhomogeneities inside as well as outside JID, as well as
reflections from the free surface 1.
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G, =GM+ G, (22)

éB = GA};] + é()llt’ (23)

where the superscripts in and out refer to waves propagating inward
and outward from the sources at x on dD (see Figure 3). Substituting
these expressions into equation 19 gives

zm{é(XAs XBs (,U)}

— § ((G out*)(o—’ Gm + & Gout
an J wP(X)

- (3G™ + 3GV GD + GM)ndx.  (24)
Assuming the medium is smooth in a small region around JD, the
normal derivatives of the Green’s functions can be approximated in
the high frequency regime by multiplying each constituent (direct
wave, scattered wave etc.) by ¥ j == ( , where ¢(x) is the lo-
cal propagation velocity at J1) and «(x) the local angle between the
pertinent ray and the normal on D). The minus-sign applies to in-
ward propagating waves and the plus-sign to outward propagating
waves. The main contributions to the integral in equation 24 come
from stationary points on JD (Schuster et al., 2004; Wapenaar et al.,
2004a; Snieder, 2004; Snieder et al., 2006). At those points the abso-
lute cosines of the ray angles for éA and éB are identical. This im-
plies, for example, that the terms G"‘* G"‘n and —(J; G‘“*) }?n,- give
equal contributions to the integral, whereas the contributions of
G 9,G"n; and —(8@2‘*)6%“%,» cancel each other. Hence, we can re-
write equation 24 as

2£R{G(XA s XB’ (1))}

2 *. %
=3£ jwp(x)( GGy + (GG nd>.  (25)
D

Of course, the inward and outward propagating waves at x on dD
cannot be separately measured at x, and xz. We use equations 22 and
23 torewrite the integrand of equation 25 as

Figure 3. When the medium outside dD is inhomogeneous, then the
Green’s function G(x,4,X,w) consists of a term G™(x,,X,w) that
propagates inward from the source at x on JdD to x, and a term

é““‘(xA,x, w) that propagates outward from the source at x on dD and
reaches x, after having been scattered at inhomogeneities outside

dD. In the text these terms are abbreviated as (A;i{‘ and G, respective-
ly.

(& Gm*)G‘ + ((5' Gout*)Goul
= (8,G,)Gp — (3.GT)GY - (3,GLHGE. (26)

Substituting this into the right-hand side of equation 25 yields

2R{G(X,,Xp, @)} + ‘ghost’

2 A A
= § . (aiG.(XA’X7 w))G(XB’X’ w)nidzxa
an Jop(x)

(27)

where

2 E3 *
‘ghost’ = § jwp(x)((a GG + (3,65 GMnd?x.
D

(28)

The right-hand side of equation 27 contains only one correlation
product and therefore has a more manageable form than equation 19.
However, the left-hand side of equation 27 contains a ghost term that
adds spurious events to the reconstructed Green’s function
é(xA,xB, w). According to equation 28, this ghost term contains cor-
relation products of waves that propagate inward in one state and
outward in the other. Note that when JD is an irregular surface
(which is the case when the sources are randomly distributed), these
correlation products are not integrated coherently in equation 28,
and therefore their contribution can be ignored in equation 27.
Hence, the Green’s function é( X4, Xp, @) can be accurately retrieved
from the right-hand side of equation 27 as long as J is sufficiently
irregular. The resulting reconstructed Green'’s function contains all
scattering effects from inhomogeneities inside as well as outside JD.
This interesting phenomenon was first observed with numerical ex-
periments by Draganov et al. (2003, 2006).

Recall that G"“I stands for é"“‘(xA,x, w), i.e., a Green’s wavefield
that propagates outward from the source at x on 91, gets scattered at
inhomogeneities outside ¢1) and propagates to the observation point
x, inside dD (see Figure 3). A similar remark applies to é%‘“. From
here onward, we assume that the medium at and outside JID is homo-
geneous, with propagatlon veloc1ty ¢ and mass density p, and that
the Green’s functions Gﬁ”‘ and Goul are zero. This implies that the
ghost term defined by equation 28 vanishes, hence

Zm{é(XA’ Xp, w)}

J WP Jgp

(&G (x4,X, w))G(xB,X w)nd*x. (29)

Despite the simple form of equation 29 in comparison with the origi-
nal equation 19 (i.e., one correlation product instead of two), this
equation still requires the availability of monopole- and dipole-
source responses. When only monopole responses are available, we
have to express the dipole response ﬁié(xA,x,w)nf in terms of the
monopole response é(XA, X, ®). As explained before, to this end each
constituent of the monopole response should be multiplied by

, where a(x) is the local angle between the pertinent
ray and the normal on dD. However, since a(x) may have multiple
values, and because these values are generally unknown (unless the
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inhomogeneous medium and source positions are known), we ap-
proximate the dipole response by

3G (X0 X, 0)n; = — j2G(X4,X, ), (30)

hence

é*(xA,x, w)é(xB,x, w)d’x.

A 2
zm{G(XA5XB’ (.L))} =
pcJgp

(31

The approximation in equation 30 is quite accurate when JD is a
sphere with a very large radius, because in this case all rays are nor-
mal to dD (i.e., @ = 0). In general, however, this approximation in-
volves an amplitude error that can be significant. Moreover, spurious
events may occur due to incomplete cancellation of contributions
from different stationary points. However, since the approximation
in equation 30 does not affect the phase of equation 31, it is consid-
ered acceptable for seismic interferometry. Apart from the propor-
tionality factor 2/pc, equation 31 was also obtained by Derode et al.
(2003a,b) purely by physical reasoning.

Using the modified Green’s function G= ]Lwé we obtain instead
of equation 31

. 2j . .
2j3{G(x4,Xp, )} =~ — ﬂﬂg G (x4,%, 0)G(xp,X, w)d*X.
PC Jap
(32)

The left-hand side is the Fourier transform of G(X,,Xg,7) — G(X4, X,
—1); the factor jw in the right-hand side corresponds to a differentia-
tion in the time domain. Hence, equation 32 resembles the results of
Weaver and Lobkis (2004) and Snieder (2004), who retrieve the anti-
symmetric two-sided Green’s function from the time-derivative of
crosscorrelations.

We summarize the assumptions and approximations that we have
made in deriving equation 31 (or 32) from equation 19 (or 21). We
made a high frequency approximation to reduce the integrand to a
single correlation product (equation 27), we assumed that the medi-
um at and outside JI) is homogeneous to remove the ghost term
(equation 29), and we assumed « = 0 to replace the dipole response
by a monopole response (equation 31 or 32).

, 180°

Figure 4. Single diffractor (C) in a homogeneous medium below a
free surface. The receivers are at A and B. The numerical integration
is carried out along the sources on the surface dD,. The causal contri-
butions come from the indicated stationary points between ¢ = 0°
and 45°, the anticausal contributions from the indicated points be-
tween ¢ = 135° and 180°. The contributions from the indicated sta-
tionary points around ¢ = 90° cancel each other.

Numerical example

We illustrate equation 29 with a 2D example for a configuration
with a free surface at x; = 0. We consider a single diffractor at
(x1,x3) = (0,600)m in a homogeneous medium with propagation
velocity ¢ = 2000 m/s (see Figure 4), in which C denotes the dif-
fractor. Further, we define x, = (-=500,100)m and xj = (500,
100)m, denoted by A and B in Figure 4. The surface dD, is a
semicircle with its center at the origin and aradius of 800 m. The sol-
id arrows in Figure 4 denote the Green’s function G(X4,X,1). For the
Green’s functions in equation 29, we use analytical expressions
based on the Born approximation (hence, the contrast at the point
diffractor is assumed to be small). To be consistent with the Born ap-
proximation, in the crosscorrelations we consider only the zeroth
and first order terms. Figure 5a shows the time-domain representa-
tion of the integrand of equation 29 (convolved with a wavelet with a
central frequency of 50 Hz). Each trace corresponds to a fixed
source position x on JID,; the source position in polar coordinates is
(¢,r = 800). The sum of all these traces (multiplied by rd¢) is
shown in Figure 5b. This result accurately matches the time-domain
version of the left-hand side of equation 29, i.e., G(X4,Xp,1)
+ G(x4,X5,—1), convolved with a wavelet (see Figure 6). Figure 5
clearly shows that the main contributions come from Fresnel zones
around the stationary points of the integrand. The causal contribu-
tions come from the indicated stationary points in Figure 4 between
¢ =0° and 45°, the anticausal contributions from the indicated
points between ¢ = 135° and 180°. The contributions from the indi-
cated stationary points around ¢ = 90° cancel each other.

Transient sources

Until now we assumed that the sources on ¢ are impulsive point
sources. When the sources are transient sources with wavelet s(x,)
and corresponding spectrum §(x,w), we write for the observed
wavefields at x, and x

ﬁObS(XAvxa (J)) = é(XA9X’ (l))§(x, (J)), (33)

ﬁObs(XB7X’ (J)) = é(X39X, (l))§(x, (J)) (34)
We define the power spectrum of the sources as
S(x, ) = §"(x,0)§(x, ). (35)

Using these equations, we can modify equation 31 as follows

a) b)

-1.0

I
il

mﬁii::::;
it

-0.5 -0.5

mllllllgllllllllllll m

lo.5 :

t(s) t(s) | —=—
1.0 1.0

Figure 5. (a) Time domain representation of the integrand of equa-
tion 29. (b) The sum of all traces in (a).
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2R{G (x4, X5, 0) 1S (@)

2 ~ * .
= _§ ]_‘(X,w)ﬁObS“ (XAvxsw)ﬁObs(XB,Xvw)dZXs (36)
pcJ an

where S‘O(a)) is some average (arbitrarily chosen) power spectrum
and F(x, w) is a shaping filter defined as

Flx,w) = M.

" (37)
S(x, w)

Equation 36 is well suited for seismic interferometry. It can be ap-
plied when a number of natural transient sources with different
wavelets on dD radiate wavefields to x,, and X, that are measured in-
dependently for each source at x on d1). The shaping filter corrects
for the differences in the power spectra of the different sources on d1D
(this requires that these power spectra are known). Not all sources
are equally important; the main contributions to the reconstructed
Green’s function come from stationary points on Jl), as was illus-
trated with the numerical example. For a careful stationary phase
analysis of seismic interferometry, see Snieder et al. (2006).

Uncorrelated noise sources

For the transient sources discussed above, we had to assume that
the response of each source at x on dD could be measured separately.
Here we show that this need is obviated when the sources are mutu-
ally uncorrelated noise sources (Weaver and Lobkis, 2001, 2002;
Wapenaar et al., 2002, 2004b; Derode et al., 2003a; Weaver and
Lobkis, 2004; Snieder, 2004; Roux et al., 2005; Shapiro et al., 2005).
We define the noise signal at x on JI) as N(x,7) and its corresponding
spectrum as N(x, ). When all noise sources act simultaneously, we
may write for the observed wavefields at x, and x;

ﬁObS(XAﬁw) = % é(XA’X> (I))N(X, w)d2X7 (38)
dD

ﬁObs(XB’ w) = % GA(XB,X',w)N(X,,w)dZX,' (39)
aD

We assume that two noise sources N(x, ) and N(x', w) are mutually
uncorrelated for any x # x’ at JID, and that their power spectrum is
the same for all x. Hence, we assume that these noise sources obey
the relation

(N'(x, N, 0)) = 8(x - x")S(w), (40)
where (-) denotes a spatial ensemble average and S (w) the power
spectrum of the noise. Evaluating the crosscorrelation of the ob-

served wavefields p°>(x,, w) and p°*(x;, w), using equations 38-40,
yields

@Obs*(XA, w)ﬁObs(XB, w))

:35 G (x4,%, 0)G(xp.x, 0)S(w)d’x.  (41)
D

Combining this with equation 31, we obtain

A A 2 .
2R{G (x4, x5, )}S(w) = ;(ﬁ(’bs (X4, )P (X, ).
(42)

Equation 42 is well suited for application in seismic interferometry.
The advantage of equation 42 over equation 36 is that no separate
measurements of the responses of all sources at Jl) are required;
these responses can be measured simultaneously, according to equa-
tions 38 and 39. The disadvantage is that no corrections can be made
for different power spectra of different sources, like with the shaping
filter F (x,w) in equation 36.
Finally, note that in the time domain equation 42 becomes

J {G(xp,xp.1") + G(x4,Xp,— 1')}S(t — ¢')dt’

—0

0

2
~ — JPObS(XA,I,)pObS(XB,l + l")dl‘, ) (43)
pc

—oo

According to this equation, the crosscorrelation of the observed
pressures at x, and X yields the Green’s function for a receiver at x,
and a source at X, convolved with the autocorrelation of the noise
sources. Note the striking resemblance with the retrieval of the
Green’s function in diffuse wavefields in finite media with an irregu-
lar bounding surface or in disordered media, as discussed by Lobkis
and Weaver (2001), van Tiggelen (2003), Malcolm et al. (2004), and
Snieder (2004).

ELASTODYNAMIC RECIPROCITY THEOREMS

Consider an elastodynamic wavefield, characterized by the stress
tensor 7;;(x,7) and the particle velocity v,(x,). In the space-frequen-
cy domain, the stress tensor and particle velocity in a lossless arbi-
trary inhomogeneous anisotropic solid medium obey the equation of
motion

0.85 0.7 0.75 0.8 0.85 0.9

Figure 6. Zoomed-in version of the causal scattered events in Figure
5b. The solid line is the time-domain version of the left-hand side of
equation 29. The plus-signs (+) represent the numerical integration
result of the right-hand side of equation 29 (i.e., the sum of the traces
in Figure 5a).
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Jjwpt; - &j%ij = fi (44)

and the stress-strain relation

— josiy + (9,0, + 60,)12 = h,. (45)

ijs
where p(x) is the mass density of the medium, s;;,(x) its compliance,

f‘,-(x, o) the external volume force density, and ﬁij(x,w) the external
deformation rate density. We consider the interaction quantity

aj{ﬁi,A Tijp — Aij,Aﬁi,B}s (46)
where subscripts A and B are used to distinguish two independent
elastodynamic states. The Rayleigh-Betti reciprocity theorem is ob-
tained by substituting the equation of motion (equation 44) and the
stress-strain relation (equation 45) for states A and B into the interac-
tion quantity (equation 46), using the symmetry relations 7; = 7;
and s;;; = sy, integrating the result over an arbitrary spatial domain

D enclosed by boundary JID with outward pointing normal vector n
= (ny,n,,n3), and applying the theorem of Gauss. This gives

{- Tijahijp = 0, A.le + hz,A i.B +szUzB}d X

D

{UIA Tij,B — szvtB}n d X (47)
aD
(Knopoff and Gangi, 1959; de Hoop, 1966; Aki and Richards, 1980).
This is the elastodynamic reciprocity theorem of the convolution
type.
Because the medium is assumed to be lossless, we can apply the
principle of time-reversal invariance (Bojarski, 1983). Hence, when
7,;and 0, are a solution of the equatlon of motion and the stress-strain
relatlon with source terms fL and hl ;» then 7;; and —0; obey the same
equations with source terms f and — h Making these substitutions
for state A, we obtain

f{ UAhuB"'vtAle le ]B+flAle}dX

§ { va ij,B — szvtB}ndX (48)

This is the elastodynamic reciprocity theorem of the correlation
type.

Note that for both theorems we assumed that the medium parame-
ters in states A and B are identical. de Hoop (1995) discusses more
general reciprocity theorems that account also for different medium
parameters in the two states.

ELASTODYNAMIC GREEN’S
FUNCTION REPRESENTATIONS

Open configuration

In this section, we substitute Green’s functions for the wavefields
in both elastodynamic reciprocity theorems. Thus, we show that the
reciprocity theorem of the convolution type (equation 47) leads to
the well-known elastodynamic source-receiver reciprocity relation,
whereas the reciprocity theorem of the correlation type (equation 48)
yields elastodynamic Green’s function representations, which are
the basis for seismic interferometry. We consider an open configura-

tion. The domain D) with boundary D is a subdomain of this open
configuration; the boundary J) in general does not coincide with a
physical boundary.

We choose impulsive point sources of force in both states, accord-
ing to

fia(x.1) = 8(x = x,)8(1) 3. (49)

fip(x.0) = 8(x = x5)3(1) 8. (50)
or, in the frequency domain,

fiax.0) = 8x - x,)8,, (51)

Jip(x.0) = 8(x = X5) 3, (52)

with x, and x both in D; the deformation sources are chosen equal to
zero in both states. The wavefields in states A and B can thus be ex-
pressed in terms of elastodynamic Green'’s functions, according to

l;i,A(Xv (D) é éz"p(X’XAvw)’ (53)

7A'ij,A(X7 (D) = (j(l))_lcijkl(x)ﬁ]GZ:‘;(X’XA5w)

2 G (x.x40), (54)
0, 5(x,0) = éi{;(x,xB,w), (55)

75, 0) = (o) ejj(x) 31GZ,’£(X,XB, )

G (X,X5,0), (56)

g

[I>

where the stiffness c;j, is the inverse of the compliance s, accord-
ing to

CijttSkimn = SijiChimn = = (OO + G Oi) . (57)

N | =

We explain the notation convention for the elastodynamic Green’s
functions at the hand of éﬁ;,f (x,x,4, ). This Green’s function is the
Fourier transform of the causal time-domain Green’s function
GY(x,x,,1), which represents an impulse response observed at x,
due to a source at x,,. The superscripts (here v and f) represent the ob-
served quantity (particle velocity) and the source quantity (force),
respectively; the subscripts (here i and p) represent the components
of the observed quantity and the source quantity, respectively.

Substituting equations 51, 53, and 54 into equation 44, it follows
that Gﬁ;{ (x,X4, w) obeys the wave equation

aj(cijklale,i) + szG?fpf = - jwdx = x4)5;,. (58)
A similar wave equation holds for éﬁ;[ (X,Xp, w).
Substituting equations 51-56 into the elastodynamic reciprocity

theorem of the convolution type (equation 47) gives

- GZ:£(XB9XA’w) + G;:{I(XA’XB’ (U)
= é (G (X XA’(D)GU q(X XBsw)
JD

-G (X,XA,w)éﬁ’qf(x,xg,w))njdzx. (59)

t.p
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Recall that the Green’s functions are the Fourier transforms of causal
time-domain Green’s functions. Hence, when JD is a spherical sur-
face with infinite radius, then the right-hand side of equation 59 van-
ishes on account of the radiation conditions of the Green’s functions
(e.g., Pao and Varatharajulu, 1976). Moreover, since the right-hand
side of equation 59 is independent of how JI is chosen (as long as it
encloses x, and x;), it vanishes for any dD. Equation 59 thus yields

GoI(xp. %4, 0) = Go(x4.Xp.0). (60)

This is the well-known source-receiver reciprocity relation for the
elastodynamic Green’s function.

If we replace the source in equation 52 by a point source of the de-
formation type, according to h;;5(X,w) = 8(x — X5) 5,6, then a
similar derivation as above yields the following source-receiver rec-
iprocity relation

UN;
qrp(XB7XA9w) - p;r(XA»XB’ (1)) (61)

Substituting equations 51-56 into the elastodynamic reciprocity

theorem of the correlation type (equation 48) gives

{GZ:ﬁ(XB, XA7 ("))}>< + G;:{I(XA9XBv (l))

= § (G nn o) G
aD

+{G} (x. x4, 0)} G (x.xp.0))n,dx.  (62)

Again, the right-hand side is independent of the choice of ¢1), as long
as it encloses x, and x;. Note, however, that since {G"xf(x,xA,w)}*
and {G,»,,I,(X,XA,w)} are the Fourier transforms of the anticausal
time-domain Green'’s functions G¥y(x,X,,—1) and G7,(x,x,,—1), the
radiation conditions are not fulfilled and hence the right-hand side of
equation 62 does not vanish. Using source-receiver reciprocity of

the Green’s functions gives

9.t

2R{GV (X4 X, 0)} = — 35 ({Go(x0.x,0)} Gl (x5.%, )
abD

+ {G; Z(XA’X w)} Guf (xp,X, w))n,d*x
(63)

(Wapenaar, 2004). Equation 63 is the basis for elastodynamic seis-
mic interferometry, as will be discussed in a later section.

The terms G4 and G2, under the integral in the right-hand side of
equation 63, represent responses of force and deformation sources at
x on dD. The products {G 1} Gg " etc., correspond to crosscorrela-
tions in the time domain. Hence, the right-hand side can be interpret-
ed as the integral of the Fourier transform of crosscorrelations of ob-
servations of wavefields at x, and x, respectively, due to impulsive
sources at x on dD; the integration takes place along the source coor-
dinate x (see Figure 7). The left-hand side of equation 63 is the Fouri-
er transform of G44(X,,Xp, 1) + G54 (X4,Xp,—1), which is the superpo-
sition of the response at x, due to an impulsive source at xz and its
time-reversed version. Since the Green’s function G34(X4,Xp,?) is
causal, it can be obtained by taking the causal part of this superposi-
tion (or, more precisely, by multiplying this superposition with the
Heaviside step function). Alternatively, in the frequency domain the
imaginary part of é;;g(xA, Xz, w) can be obtained from the Hilbert
transform of the real part.

Note that equation 63 is exact and applies to any lossless arbitrary
inhomogeneous anisotropic solid medium. The choice of the inte-
gration boundary Jl) is arbitrary (as long as it encloses x, and x5) and
the medium may be inhomogeneous and anisotropic inside as well as
outside D). The reconstructed Green’s function é,”,jf;(XA,XB, ) con-
tains, apart from the direct wave between X and X,, all scattering
contributions (primaries, multiples and mode conversions) from in-
homogeneities inside as well as outside d1D.

Modified Green’s function

The Green’s function é}’[ (x,x,4,w) represents the particle velocity
due to a point source of force (see equations 51 and 53). This Green’s
function obeys equation 58, with the source term in the right-hand
side defined as —jwd(x — x,) 5. Let us define a new Green’s func-
tion é;{;{ (x,X,,w), representing the particle displacement due to a
point source of force. This Green’s function obeys the same wave
equation, but with the source in the right-hand side replaced by
- d(x — x,4) 8, according to

IciudGel) + pw®Gll = - 8(x - x)8,.  (64)

A similar wave equation holds for G J(X,Xp, w). Note that G“\f and
GYy/ are mutually related via G“f = ]—G,UI{ Following the same deri-
vation as above, we obtain instead of equation 63

2jHGyd (%, xp, )} = jw§ (Gl (xa,x, )Y Gl (xp %, )
D

+{Gul (x4, %, )} G2 (x5, %, ) ) d%x. (65)

pstj

The left-hand side of equation 65 is the Fourier transform of
G (X4,Xp,1) — G4 (X4,Xp,—1), which is the difference of the re-
sponse at X, due to an impulsive source at Xz and its time-reversed
version. Because the Green’s function G4/, (X4, Xz, 1) is causal, it can
be obtained by taking the causal part of this difference. Alternatively,
in the frequency domain the real part of G“ 4 (X4, Xp, w) can be ob-
tained from the Hilbert transform of the imaginary part.

wh

v,k
" G (Xg, X, )

Figure 7. According to equation 63, the Green’s function G54(xX,,
Xp, w) can be obtained by crosscorrelating observations at x, and X
and integrating along the source coordinate x at JID. Note that the
rays in this figure represent the full responses between the source and
receiver points, including primary and multiple scattering as well as
mode conversion due to inhomogeneities inside as well as outside
aD.
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Configuration with a free surface

We consider a modified configuration for which we define the
closed surface as dD) = 9Dy U dD,, where dDD, is a part of the earth’s
free surface and 9D, an arbitrarily shaped surface, in general not co-
inciding with a physical boundary. First, we consider the situation
for which x, and x; are located inside D)y U d1);, similar as in Fig-
ure 2. For this configuration, we can use the results of the previous
sections. Because the elastodynamic traction 7;;7; vanishes on gD,
the integral on the right-hand side of equations 48, 62, 63, and 65
needs only be evaluated over dD);. Hence, the Green’s function
é;:/;(XA,XB, ) or é;j{;(XA, Xz, ) can be recovered by crosscorrelating
and integrating the responses of sources on d1); only.

Next, we consider the situation for which x, and x; are located at
the free surface d1), (see Figure 8). For this situation, we reconsider
the elastodynamic reciprocity theorem of the correlation type (equa-
tion 48), in which we set the sourcesﬁA,ﬂB, fo,A, and l;,»,-,B in D equal
to zero. Hence, the domain integral on the left-hand side of equation
48 vanishes. For the right-hand side of equation 48, we separately
consider the boundary integrals along d1), and dDD,, hence

A A 2
f {0:aTij5 + Tij,Avi,B}njd X
Dy

A% A Ak A
=- J {0478 + Tij,AUi,B}njd2X~ (66)
D,

We introduce sources in terms of boundary conditions at the free sur-
face d1Dy. This is possible because at a free surface the traction is zero
everywhere, except at those positions where a source traction is ap-
plied. Hence, forx e dD),, the tractions in both states read

Tia(X, 0)n; = 8(X = X,4) 5, (67)

F (X o)) = 8(X — Xp) 8, (68)

with x, and x both at d1),. For the particle velocities at the free sur-
face we write

61',A(X’ (1)) é (A;[D!yp (X7XAaw)’ (69)
ﬁi,B(X’ w) é éﬁ;{T(X9XBa 0)) 5 (70)

where the second superscript 7refers to the traction sources at X, and
X. Substituting equations 67-70 into the left-hand side of equation
66, and using the source-receiver reciprocity relation G4:7(Xy, X, ®)
= G%7(X4,Xp, w) gives

Xp

A
Avr
\ Gp.z/(XA’XB’a))

Gyl o) Gyl (xg.x,@)
G\'.h

S
VX ex0)  Gi(xg.X,0)

4.if

Figure 8. Modified configuration, with x, and X at the free surface
dD,. The rays represent again the full responses.

A¥ A Ak ~ jal
f {Ui,A Tijp t Tij,Avi,B}njdzx = zm{G;:;(XA,XB,w)}-
D,

(71)

In order to evaluate the right-hand side of equation 66, we express
the wavefields at ¢, analogous to equations 53-56, but with the
second superscript f of all Green’s functions replaced by 7. Substi-
tuting these wavefields into the right-hand side of equation 66, ap-
plying the appropriate source-receiver relations, and combining the
result with equation 71 for the left-hand side of equation 66, we ob-
tain

Zm{éZZ;(XA, Xp, )}
=- f (G (x4 x, @)} G (XX, )
b

+{Go1 (x4 %, 0)} Gl (xp.x, 0))n;dx. (72)

Note the similarity with equation 63. The various Green’s functions
in this representation are indicated in Figure 8. Using the modified
Green’s function éﬁfg = jLwCA;ﬁ',;', etc., we obtain an expression similar
to equation 65.

MODIFICATIONS FOR ELASTODYNAMIC
SEISMIC INTERFEROMETRY

Equation 63 (as well as equation 72) is an exact representation of
the elastodynamic Green’s function, but in its present form it is not
very well suited for application in seismic interferometry. The main
complication is that the integrand consists of a superposition of two
correlation products that need to be evaluated separately. Moreover,
force- as well as deformation-source responses are assumed to be
available for all source positions x on dD. Finally, the sources are as-
sumed to be impulsive point sources, which does not comply with re-
ality. In this section, we first discuss a simplification of the integrand
of equation 63. Next, we discuss the modifications of equation 63 for
realistic sources (transient as well as noise sources).

Simplification of the integrand

Unlike in the stepwise analysis of the integrand of the acoustic
Green’s function representation (equation 19), we straightaway as-
sume that the medium at and outside ) is homogeneous and isotro-
pic, with P- and S-wave propagation velocities cp and c;, respective-
ly, and mass density p. In the Appendix, we show that for this situa-
tion equation 63 can be rewritten as

2%{6;}715(XA7 XpB» (.0)}

P {0.G(x4.%,0)} G e(xp X, 0. (73)
ab

Upper-case Latin subscripts take on the values 0, 1, 2, and 3; the re-
peated subscript K represents a summation from O to 3. The Green’s
functions in the right-hand side, which are defined in equations A-17
and A-18, represent the observed particle velocities at X, and x; due
to sources at x on dD. The superscript ¢ denotes that these sources
are P-wave sources (for K = 0) and S-wave sources with different
polarizations (for K = 1,2,3). Hence, the summation over the re-
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peated subscript K represents a summation over P- and S-wave
source responses. Note that equation 73 is slightly different from
equation 5 in Wapenaar (2004), where the sources of the Green’s
functions were power-flux normalized. Here we follow a different
approach in order to maintain the analogy between the acoustic and
elastodynamic expressions (compare equation 73 with equation 29).
We postpone power normalization until we introduce noise sources
in equation 84.

Despite the simple form of equation 73 in comparison with the
original equation 63, this equation still requires the availability of
monopole and dipole P- and S-wave source responses. When only
monopole responses are available, we have to express the dipole
response &ié,”,;?(xA,x,w)n,» in terms of the monopole response
é;;j?(xA,x, w). Note that like the acoustic case, this Green’s function
obeys Helmholtz equations for x at and outside d1) (see the remark at
the end of the Appendix ). Hence, to obtain the dipole responses,
each P-wave constituent of the monopole response should be multi-
plied by —j[cosa(x)| and each S-wave constituent by

.
~Jerleos B(x)

, where a(x) and B(x) are the local angles between
the pertinent P- and S-rays and the normal on d1). However, because
a(x) and B(x) may have multiple values that are generally un-
known, we approximate the dipole response by

A . W A
GG xp X, 0 = — j7Gri(x,x.0),  (74)
C

with

© cp forK=0,
= (75)
cg for K=1,2,3.

Since K is not a subscript in cX, no summation takes place over K in
the right-hand side of equation 74. Using equation 74, equation 73
becomes

2R{GY Y (x4, X, )}
2 ) .
~ FSB {G;:;?(XA,X, o)} GZ:I‘?(XB,X,w)dzx.
D

(76)

The approximation in equation 74 is quite accurate when Jl) is a
sphere with very large radius, since in this case all rays are normal to
dD (i.e., a = B = 0). In general, however, this approximation in-
volves an amplitude error that can be significant. Moreover, spurious
events may occur due to incomplete cancellation of contributions
from different stationary points. However, because the approxima-
tion in equation 74 does not affect the phase of equation 76, it is con-
sidered acceptable for seismic interferometry.

Note that when x, and x; are chosen at the free surface d1, (Fig-
ure 8), the left-hand sides of equations 73 and 76 should be replaced
by 2R{ é;;;(xA,xB, )} and the right-hand sides need to be evaluated
over ¢, only, analogous to equation 72.

Transient sources

Until now we assumed that the sources on 1) are impulsive point
sources. When the sources are transient sources with wavelet s¥(x, )
and corresponding spectrum §¥(x,w), we write for the observed
wavefields at x, and x,

00X X, 0) = GUx4.%, 0)5K(x, 0), (77)
00 (Xp.X, ) = GUrE(xp,X, 0)§5(x, ). (78)

Note that §¥(x, w) is the source spectrum of the P-wave source (for
K = 0) and of the S-wave sources with different polarizations (for
K = 1,2,3). We define the power spectrum of the sources as

SK(x,0) = §5(x, )55 (x, ). (79)
Using these equations, we can modify equation 76 as follows:

2%{GZ:'£(XA’XB’ w)}go(w)

2 A
~ —Kjg ]:K(x,w)ﬁ;f’;*(xmx,w)ﬁEE’,ﬁ(xB,x,w)d2x,
PCJap

(80)

where 3‘0((») is some average (arbitrarily chosen) power spectrum
and F¥(x, w) is a shaping filter defined as

§O(w)
SK(x, )

F(x,0) = (81)

Equation 80 is well suited for seismic interferometry. It can be ap-
plied when a number of natural transient P- and S-wave sources with
different wavelets on dD radiate wavefields to x, and X, that are
measured independently for each source and each source-type at x
on JD. The shaping filter corrects for the differences in the power
spectra of the different sources on dD (this requires that these power
spectra are known). Not all sources are equally important: the main
contributions to the reconstructed Green’s function come from sta-
tionary points on dD.

Uncorrelated noise sources

For the transient sources discussed above, we had to assume that
the response of each source and each source-type at x on JID could be
measured separately. Here we show that this need is obviated when
the sources are mutually uncorrelated noise sources. We define the
noise signal for the Kth source type at x on dD) as Ng(x,7) and its cor-
responding spectrum as NK(X, ). When all noise sources act simul-
taneously, we may write for the observed wavefields at x, and x

007 (x4, 0) = fﬁ G R(x4.%, @) Ng(x, 0)d*x, (82)
abD

ﬁzbs(xl%w) = % G::f(XB’X,sw)NL(XI’w)dZX,' (83)
aD

We assume that two noise sources Nx(x, ) and N, (x’, @) are mutu-
ally uncorrelated for any K # L and x # x’ at dD), and that their
power spectrum is the same for all x, apart from a power normaliza-
tion factor pcp/pck. Hence, we assume that these noise sources obey
the relation

WM@M&W=%%&—H%L@@

where (-) denotes a spatial ensemble average and §(w) the power
spectrum of the noise. Evaluating the crosscorrelation of the ob-
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served wavefields §5%(x,, ) and 63 (X5, w), using equations 8284,
yields

~obs*

<Up (XA’ w)ﬁgbs(XB’ (1))>

c A . .
= p—;ﬂg {G[”;,‘?(XA,X,w)} GZ’}’?(XB,X,w)S(w)dZX.
pcJap T '

(85)

Combining this with equation 76 we obtain
~v.f 3 — 2 Aobs* ~obs
2£R{Gp,q(XA’XB’ w)}S(w) -~ ;<Up (XA9w)Uq (XB9 (X))>
P

(86)

Equation 86 is well suited for application in seismic interferometry.
The advantage of equation 86 over equation 80 is that no separate
measurements of the responses of all sources at J) are required;
these responses can be measured simultaneously, according to equa-
tions 82 and 83. The disadvantage is that no corrections can be made
for different power spectra of different sources, like with the shaping
filter ¥ (%, w) in equation 80.
Finally, note that in the time domain, equation 86 becomes

o0

f{G;:j;(XA,XBJJ) + GZ:J;(XAaXB3_ t,)}S(t - t,)dt,

—o0

o0

2
~ =\ | v (%0t W (xp.1 + 1)dt ). (87)
pcp
—00

According to this equation, the crosscorrelation of the observed par-
ticle velocities in the x,- and x,-directions at x, and X, yields the
Green’s function for a receiver in the x,-direction at x, and a source
in the x,-direction at Xz, convolved with the autocorrelation of the
noise sources. Note the striking resemblance with the retrieval of the
Green’s tensor in diffuse wavefields in disordered media, as dis-
cussed by Campillo and Paul (2003) and Shapiro and Campillo
(2004).

CONCLUSIONS

We have given an overview of acoustic and elastodynamic repre-
sentations of Green’s functions in terms of crosscorrelations of
wavefields at two observation points in lossless arbitrary inhomoge-
neous media. Unlike in many other papers on Green’s function re-
trieval, we have made no assumptions with respect to the diffusivity
of the wavefield. We have considered open configurations as well as
configurations with a free surface. For the open configurations it is
assumed that the wavefields are radiated by sources on an arbitrarily
shaped surface that encloses the two observation points. For the situ-
ation with a free surface it suffices that sources are available on an
open surface that, together with the free surface, forms a surface that
encloses the two observation points.

The acoustic and elastodynamic Green’s function representations
are exact, but not directly suited for application in seismic interfer-
ometry. The integrand in both representations consists of a superpo-
sition of two correlation products that need to be evaluated separate-
ly; moreover, different types of sources are assumed to be available

for all source positions on the enclosing surface (scalar monopole
and dipole sources in the acoustic case; vectorial force and deforma-
tion sources in the elastodynamic case). Last, but not least, the sourc-
es are assumed to be impulsive point sources, which does not comply
with reality. With a number of approximations, we have simplified
the integrand to a single correlation product for a reduced number of
source types (monopole sources for both states in the acoustic case;
monopole P- and S-wave sources for both states in the elastodynam-
ic case). In practice, not all sources are equally important because the
main contributions to the reconstructed Green’s functions come
from stationary points on the enclosing surface. Finally, we have dis-
cussed modifications for the situation of transient sources as well as
for uncorrelated noise sources. For the situation of transient sources,
we have introduced a shaping filter in the representation integral that
corrects for the differences in the power spectra of the different
sources (assuming these spectra are known). For the situation of un-
correlated noise sources, the representation integral reduced to a di-
rect crosscorrelation of the recorded wavefields at two observation
points, analogous to the methods that retrieve Green’s functions
from diffuse wavefields in disordered media, or in finite media with
an irregular bounding surface.
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APPENDIX

DERIVATION OF EQUATION 73

We start our derivation of equation 73 by considering the boundary
integral in the right-hand side of equation 48, which we rewrite as

A¥ A Ak A
- 36 {0 alip + 1 40; g}, (A-1)
D

where 7,4, = 7, 4n; and 7, 3 = 7, gn; are the tractions at JD in states A
and B. Everything we discuss below also applies to the free-surface
configuration of Figure 8, with integration boundary J),. We as-
sume that the medium at and outside dD) is homogeneous, isotropic
and source-free, with P- and S-wave propagation velocities ¢ and
cs, respectively, and mass density p. At and outside JID we express
the particle velocities in terms of potentials & and ¥, for P- and
S-waves, according to

A - 1 F Y) 1 J
U;= ——{g;P + eyd; ¥y, with ¥, =0, (A-2)

Jwp
for states A and B. Here g is the alternating tensor (or Levi-Civita
tensor), with 153 = €310 = €231 = —&313 = —€32; = —&13, = 1 and the

other elements equal to zero. Note that & and ¥, obey Helmholtz
equations, according to

30, D + (*1c3) D =0 (A-3)
and
00V, + (@)W, =0 (A-4)

for states A and B (Aki and Richards, 1980). Moreover, note that &
and ¥, can be explicitly expressed in terms of 9;, according to
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2
A C
b =- Q&ll/}\l (A_S)
Jw
and
2
A C
1I/k - & Sskjté’ Vi (A'6)
](1)

for states A and B (Wapenaar and Haimé, 1990). Using the stress-
strain relation together with equation A-2, the traction 7; can also be
expressed in terms of the potentials dand ¥, Substituting the result
together with equation A-2 for states A and B into equation A-1, we
get terms containing {liﬁj;, @B}, {ij, fP,,B}, {@;A, @B}, and
{@Z,A’ ,@\LB}. Wapenaar and Haimé (1990) analyze this substitution
for the situation of a horizontal boundary S, with a downward point-
ing normal vector n = (0,0, 1). When all wavefields at S; are propa-
gating downward, this substitution leads to

N AR 2
{0ialip + 140, phdx
N

2 PR Ak o
=— | {(6;D) Py + (3,¥ ) ¥, p}d’x. (A-7)

JopJs,

Note that the right-hand side of this equation does not contain prod-
ucts of P-waves in one state and S-waves in the other and vice versa.
Equation A-7 was derived under the assumption that evanescent
waves may be neglected. This implies that it does not account for
horizontally propagating wave modes like surface waves. We will
now discuss how equation A-7 can be modified for the closed sur-
face dD and argue that this modified result does account for surface
waves.

In the high frequency regime, the main contributions to the inte-
gral in equation A-1 come from points on dD) where the integrand is
stationary. Upon substitution of the P- and S-wave potentials for
states A and B, different types of stationary points occur. For the term
containing { @3, (f)B}, the integrand is stationary at those points on d1D
where the ray angles a,, and a3 of the P-waves in both states are iden-
tical. Similarly, for the term containing {@,A, ‘if[,B} the stationary
points occur where the ray angles 8, and B; of the S-waves in both
states are identical. The stationary points for the term containing
{<1A52, 1if,'g} are determined by the condition (sin a,)/cp = (sin Bg)/cs.
Finally, the term containing { ¥} ,, @} is stationary at those points on
dD where (sin B,4)/cs = (sin ag)/cp. At each stationary point we
choose a local coordinate system, with the x;-axis parallel to the lo-
cal outward pointing normal on JD. Note that the inner products
;a3 and 7 40; 5 of the integrand in equation A-1 remain inner prod-
ucts in the local coordinate system. Hence, it is justified to substitute
equation A-2 in the local coordinate system into equation A-1 and
apply a similar analysis as in Wapenaar and Haimé (1990) in the lo-
cal coordinate system, assuming all waves are propagating outward
at JD. Depending on the type of stationary point this leads to contri-
butions of the form (d; @7,’;) 433 or (s @’}QA) Ii’w in the local coordinate
system; at those stationary points where (sin a,)/cp = (sinBs)/cg or
where ( sm BA)/cs = (sin aj)/cp the terms cancel. The inner prod-
ucts (33 ¥ia) 1I’L 5 in the local coordinate system remain inner prod-
ucts in the absolute coordinate system; only the derivative J; in the
local system has to be replaced by n,d; in the absolute system. Hence,
when we apply the outlined procedure for all stationary points on
dD, we finally obtain (in the absolute coordinate system)

A% A PUEN b
- SE {0, alip + 1;40; prd°x
D

2
= Zop {(a DDy + (0,7 ) Wy phnidx. (A-8)

In equation A-7, horizontally propagating wave modes, like surface
waves, were excluded, which was a consequence of choosing a hori-
zontal integration boundary. Another way of explaining this is that
the horizontal integration boundary does not contain the stationary
points that would contribute to the surface waves. For the closed
boundary integral of equation A-8, horizontally propagating modes
are no more exclusive than any other wave type propagating in any
direction. Hence, equation A-8 accounts for surface waves; the main
stationary points for these waves are located somewhere at the sides
of gD.

Substituting equation A-8 into the right-hand side of equation 48
gives

PO P A A 3
- Tij,Ahij,B + 0;afip — hij,ATij,B + fi,Avi,B}d X
D

] WP Jap

{(o; (DA) Dy + (4 lpkA) lI’k and’x. (A-9)

We choose point sources of force at x, and x; (equations 51 and 52),
whereas the deformation sources are chosen equal to zero. For x in
D, the velocities and stresses in states A and B are again expressed in
terms of elastodynamic Green’s functions, according to equations
53-56. For x at and outside JD, the P- and S-wave potentials in states
A and B are expressed in terms of Green’s functions, according to

A

Dy(x,0) £ GPI(x,%4,0), (A-10)
Vax,0) 2 GHl(x.x,,0), (A-11)
By(x,0) 2 GY(x.xp,0), (A-12)
W p(x.0) £ GPI(x.xp.0). (A-13)

The superscript ¢ denotes that the observed wavefield quantity at x
is a P- or S-wave potential. To describe both wave types with one
Green'’s function, we introduce an upper-case Latin subscript K that
takes on the values 0, 1, 2, and 3. Hence, in CA?%(X,XA,(») the ob-
served wavefield at x is a P-wave (for K = 0) or an S-wave compo-
nent (for K =k =1,2,3), respectively. Substituting equations
51-53, 55, and A-10-A-13 into equation A-9 gives

{G(l;i(xl% X4, (1))}* + G;:{I(XA »Xp, w)

{aG (%X, )} GL (X, X, 0)n,d°x.
~ jwp '

(A-14)

The repeated subscript K represents a summation from 0 to 3 and
thus accounts for the summation of the different wave types in equa-
tion A-9.
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Note that éféjg(x,xA,w) can be expressed in terms of éﬁ;f(x,
X4, w). Using equations 53, A-5, A-6, A-10, and A-11, we obtain

2
A~ C A~
Gl (x,x40) = - %a,»Gﬁz‘(x,xA,w) (A-15)
and
A pc2 ~
Gll(x,x,,0) = j—afgkﬁajG;{;{(x,xA,w) (A-16)

(and similar expressions for state B). We define reciprocal Green’s
functions, analogous to equations A-15 and A-16, as

R Cp A g
Griteane) £ = CEaGx ) (A1)
and
R pc2 U
GU:ZS(XA,X, w) £ ._SskjiﬂjGD:{(XA,X, w) (A-18)
p jw P

(and similar definitions for state B). Note that the differentiation op-
erators at the right-hand sides of these equations act on the source co-
ordinate x. The superscript ¢ now denotes that the source at X is a
source for P- or S-waves. Hence, in é,”,;jé(xA,x, w) the source is a
source for P-waves (for K = 0) or for S-waves with different polar-
izations (for K = k = 1,2,3), respectively.

On account of equations 60 and A-15 and A-18 the following rec-
iprocity relation is obtained

GAI‘?:];(X7XA90)) = é;i[q?(XA9X3 (U) (A_19)

Similarly,

GPl(x.xp5,0) = G (xp.X, 0). (A-20)

Using reciprocity relations 60, A-19, and A-20 in equation A-14 we
obtain equation 73.

Finally, note that according to equations A-3, A-4, A-10-A-13,
A-19, and A-20, the Green’s functions in the right-hand side of equa-
tion 73 obey Helmholtz equations for x at and outside ¢, similar as
the acoustic Green'’s functions in the right-hand side of equation 29.
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