

Delft University of Technology

CSI NN
Reverse engineering of neural network architectures through electromagnetic side
channel
Batina, Lejla; Jap, Dirmanto; Bhasin, Shivam; Picek, Stjepan

Publication date
2019
Document Version
Final published version
Published in
Proceedings of the 28th USENIX Security Symposium

Citation (APA)
Batina, L., Jap, D., Bhasin, S., & Picek, S. (2019). CSI NN: Reverse engineering of neural network
architectures through electromagnetic side channel. In Proceedings of the 28th USENIX Security
Symposium (pp. 515-532). USENIX Association.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

CSI NN: Reverse Engineering of
Neural Network Architectures Through

Electromagnetic Side Channel
Lejla Batina, Radboud University, The Netherlands; Shivam Bhasin and

Dirmanto Jap, Nanyang Technological University, Singapore; Stjepan Picek,
Delft University of Technology, The Netherlands

https://www.usenix.org/conference/usenixsecurity19/presentation/batina

https://www.usenix.org/conference/usenixsecurity19/presentation/batina

CSI NN: Reverse Engineering of Neural Network Architectures Through
Electromagnetic Side Channel

Lejla Batina
Radboud University, The Netherlands

Shivam Bhasin
Nanyang Technological University, Singapore

Dirmanto Jap
Nanyang Technological University, Singapore

Stjepan Picek
Delft University of Technology, The Netherlands

Abstract

Machine learning has become mainstream across industries.
Numerous examples prove the validity of it for security ap-
plications. In this work, we investigate how to reverse en-
gineer a neural network by using side-channel information
such as timing and electromagnetic (EM) emanations. To
this end, we consider multilayer perceptron and convolu-
tional neural networks as the machine learning architectures
of choice and assume a non-invasive and passive attacker ca-
pable of measuring those kinds of leakages.

We conduct all experiments on real data and commonly
used neural network architectures in order to properly assess
the applicability and extendability of those attacks. Practical
results are shown on an ARM Cortex-M3 microcontroller,
which is a platform often used in pervasive applications us-
ing neural networks such as wearables, surveillance cameras,
etc. Our experiments show that a side-channel attacker is
capable of obtaining the following information: the activa-
tion functions used in the architecture, the number of lay-
ers and neurons in the layers, the number of output classes,
and weights in the neural network. Thus, the attacker can
effectively reverse engineer the network using merely side-
channel information such as timing or EM.

1 Introduction

Machine learning, and more recently deep learning, have be-
come hard to ignore for research in distinct areas, such as im-
age recognition [25], robotics [21], natural language process-
ing [47], and also security [53, 26] mainly due to its unques-
tionable practicality and effectiveness. Ever increasing com-
putational capabilities of the computers of today and huge
amounts of data available are resulting in much more com-
plex machine learning architectures than it was envisioned
before. As an example, AlexNet architecture consisting of 8
layers was the best performing algorithm in image classifi-
cation task ILSVRC2012 (http://www.image-net.org/
challenges/LSVRC/2012/). In 2015, the best performing

architecture for the same task was ResNet consisting of 152
layers [15]. This trend is not expected to stagnate any time
soon, so it is prime time to consider machine/deep learning
from a novel perspective and in new use cases. Also, deep
learning algorithms are gaining popularity in IoT edge de-
vices such as sensors or actuators, as they are indispensable
in many tasks, like image classification or speech recogni-
tion. As a consequence, there is an increasing interest in de-
ploying neural networks on low-power processors found in
always-on systems, e.g., ARM Cortex-M microcontrollers.

In this work, we focus on two neural network algorithms:
multilayer perceptron (MLP) and convolutional neural net-
works (CNNs). We consider feed-forward neural networks
and consequently, our analysis is conducted on such net-
works only.

With the increasing number of design strategies and el-
ements to use, fine-tuning of hyper-parameters of those al-
gorithms is emerging as one of the main challenges. When
considering distinct industries, we are witnessing an increase
in intellectual property (IP) models strategies. Basically, in
cases when optimized networks are of commercial interest,
their details are kept undisclosed. For example, EMVCo
(formed by MasterCard and Visa to manage specifications
for payment systems and to facilitate worldwide interoper-
ability) nowadays requires deep learning techniques for se-
curity evaluations [43]. This has an obvious consequence in:
1) security labs generating (and using) neural networks for
evaluation of security products and 2) they treat them as IP,
exclusively for their customers.

There are also other reasons for keeping the neural net-
work architectures secret. Often, these pre-trained models
might provide additional information regarding the training
data, which can be very sensitive. For example, if the model
is trained based on a medical record of a patient [9], confi-
dential information could be encoded into the network dur-
ing the training phase. Also, machine learning models that
are used for guiding medical treatments are often based on a
patient’s genotype making this extremely sensitive from the
privacy perspective [10]. Even if we disregard privacy issues,

USENIX Association 28th USENIX Security Symposium 515

http://www.image-net.org/challenges/LSVRC/2012/
http://www.image-net.org/challenges/LSVRC/2012/

obtaining useful information from neural network architec-
tures can help acquiring trade secrets from the competition,
which could lead to competitive products without violating
intellectual property rights [3]. Hence, determining the lay-
out of the network with trained weights is a desirable target
for the attacker. One could ask the following question: Why
would an attacker want to reverse engineer the neural net-
work architecture instead of just training the same network
on its own? There are several reasons that are complicating
this approach. First, the attacker might not have access to the
same training set in order to train his own neural network.
Although this is admittedly a valid point, recent work shows
how to solve those limitations [49]. Second, as the architec-
tures have become more complex, there are more and more
parameters to tune and it could be extremely difficult for the
attacker to pinpoint the same values for the parameters as in
the architecture of interest.

After motivating our use case, the main question that re-
mains is on the feasibility of reverse engineering such archi-
tectures. Physical access to a device could allow readily re-
verse engineering based on the binary analysis. However, in
a confidential IP setting, standard protections like blocking
binary readback, blocking JTAG access [20], code obfusca-
tion, etc. are expected to be in place and preventing such
attacks. Nevertheless, even when this is the case, a viable
alternative is to exploit side-channel leakages.

Side-channel analysis attacks have been widely studied
in the community of information security and cryptography,
due to its potentially devastating impact on otherwise (the-
oretically) secure algorithms. Practically, the observation
that various physical leakages such as timing delay, power
consumption, and electromagnetic emanation (EM) become
available during the computation with the (secret) data has
led to a whole new research area. By statistically combin-
ing this physical observation of a specific internal state and
hypothesis on the data being manipulated, it is possible to
recover the intermediate state processed by the device.

In this study, our aim is to highlight the potential vulnera-
bilities of standard (perhaps still naive from the security per-
spective) implementations of neural networks. At the same
time, we are unaware of any neural network implementation
in the public domain that includes side-channel protection.
For this reason, we do not just pinpoint to the problem but
also suggest some protection measures for neural networks
against side-channel attacks. Here, we start by considering
some of the basic building blocks of neural networks: the
number of hidden layers, the basic multiplication operation,
and the activation functions.

For instance, the complex structure of the activation func-
tion often leads to conditional branching due to the necessary
exponentiation and division operations. Conditional branch-
ing typically introduces input-dependent timing differences
resulting in different timing behavior for different activation
function, thus allowing the function identification. Also, we

notice that by observing side-channel leakage, it is possible
to deduce the number of nodes and the number of layers in
the networks.

In this work, we show it is possible to recover the layout of
unknown networks by exploiting the side-channel informa-
tion. Our approach does not need access to training data and
allows for network recovery by feeding known random in-
puts to the network. By using the known divide-and-conquer
approach for side-channel analysis, (i.e., the attacker’s abil-
ity to work with a feasible number of hypotheses due to,
e.g., the architectural specifics), the information at each layer
could be recovered. Consequently, the recovered informa-
tion can be used as input for recovering the subsequent lay-
ers.

We note that there exists somewhat parallel research to
ours also on reverse engineering by “simply” observing the
outputs of the network and training a substitute model. Yet,
this task is not so simple since one needs to know what kind
of architecture is used (e.g., convolutional neural network or
multilayer perceptron, the number of layers, the activation
functions, access to training data, etc.) while limiting the
number of queries to ensure the approach is realistic [39].
Some more recent works have tried to overcome a few of the
highlighted limitations [49, 18].

To our best knowledge, this kind of observation has never
been used before in this context, at least not for leveraging on
(power/EM) side-channel leakages with reverse engineering
the neural networks architecture as the main goal. We posi-
tion our results in the following sections in more detail. To
summarize, our main motivation comes from the ever more
pervasive use of neural networks in security-critical applica-
tions and the fact that the architectures are becoming propri-
etary knowledge for the security evaluation industry. Hence,
reverse engineering a neural network has become a new tar-
get for the adversaries and we need a better understanding of
the vulnerabilities to side-channel leakages in those cases to
be able to protect the users’ rights and data.

1.1 Related Work

There are many papers considering machine learning and
more recently, deep learning for improving the effectiveness
of side-channel attacks. For instance, a number of works
have compared the effectiveness of classical profiled side-
channel attacks, so-called template attacks, against various
machine learning techniques [30, 19]. Lately, several works
explored the power of deep learning in the context of side-
channel analysis [32]. However, this line of work is using
machine learning to derive a new side-channel distinguisher,
i.e., the selection function leading to the key recovery.

On the other hand, using side-channel analysis to attack
machine learning architectures has been much less investi-
gated. Shokri et al. investigate the leakage of sensitive in-
formation from machine learning models about individual

516 28th USENIX Security Symposium USENIX Association

data records on which they were trained [44]. They show
that such models are vulnerable to membership inference at-
tacks and they also evaluate some mitigation strategies. Song
et al. show how a machine learning model from a mali-
cious machine learning provider can be used to obtain in-
formation about the training set of a model [45]. Hua et
al. were first to reverse engineer two convolutional neural
networks, namely AlexNet and SqueezeNet through mem-
ory and timing side-channel leaks [17]. The authors measure
side-channel through an artificially introduced hardware tro-
jan. They also need access to the original training data set
for the attack, which might not always be available. Lastly,
in order to obtain the weights of neural networks, they attack
a very specific operation, i.e., zero pruning [40]. Wei et al.
have also performed an attack on an FPGA-based convolu-
tional neural network accelerator [52]. They recovered the
input image from the collected power consumption traces.
The proposed attack exploits a specific design choice, i.e.,
the line buffer in a convolution layer of a CNN.

In a nutshell, both previous reverse engineering efforts us-
ing side-channel information were performed on very special
designs of neural networks and the attacks had very specific
and different goals. Our work is more generic than those two
as it assumes just a passive adversary able to measure phys-
ical leakages and our strategy remains valid for a range of
architectures and devices. Although we show the results on
the chips that were depackaged prior to experiments in or-
der to demonstrate the leakage available to powerful adver-
saries, our findings remain valid even without depackaging.
Basically, having EM as an available source of side-channel
leakage, it comes down to using properly designed antennas
and more advanced setups, which is beyond the scope of this
work.

Several other works doing somewhat related research are
given as follows. Ohrimenko et al. used a secure implemen-
tation of MapReduce jobs and analyzed intermediate traffic
between reducers and mappers [37]. They showed how an
adversary observing the runs of typical jobs can infer pre-
cise information about the inputs. In a follow-up work they
discuss how machine learning algorithms can be exploited
by various side-channels [38]. Consequently, they propose
data-oblivious machine learning algorithms that prevent ex-
ploitation of side channels induced by memory, disk, and
network accesses. They note that side-channel attacks based
on power and timing leakages are out of the scope of their
work. Xu et al. introduced controlled-channel attacks, which
is a type of side-channel attack allowing an untrusted oper-
ating system to extract large amounts of sensitive informa-
tion from protected applications [54]. Wang and Gong in-
vestigated both theoretically and experimentally how to steal
hyper-parameters of machine learning algorithms [51]. In
order to mount the attack in practice, they estimate the error
between the true hyper-parameter and the estimated one.

In this work, we further explore the problem of reverse en-

gineering of neural networks from a more generic perspec-
tive. The closest previous works to ours have reverse engi-
neered neural networks by using cache attacks that work on
distinct CPUs and are basically micro-architectural attacks
(albeit using timing side-channel). Our approach utilizes EM
side-channel on small embedded devices and it is supported
by practical results obtained on a real-world architecture. Fi-
nally, our attack is able to recover both the hyper-parameters
(parameter external to the model, e.g., the number of lay-
ers) and parameters (parameter internal to the model, like
weights) of neural networks.

1.2 Contribution and Organization

The main contributions of this paper are:
1. We describe full reverse engineering of neural network

parameters based on side-channel analysis. We are able
to recover the key parameters such as activation func-
tion, pre-trained weights, number of hidden layers and
neurons in each layer. The proposed technique does not
need any information on the (sensitive) training data as
that information is often not even available to the at-
tacker. We emphasize that, for our attack to work, we
require the knowledge of some inputs/outputs and side-
channel measurements, which is a standard assumption
for side-channel attacks.

2. All the proposed attacks are practically implemented
and demonstrated on two distinct microcontrollers (i.e.,
8-bit AVR and 32-bit ARM).

3. We highlight some interesting aspects of side-channel
attacks when dealing with real numbers, unlike in ev-
eryday cryptography. For example, we show that even
a side-channel attack that failed can provide sensitive
information about the target due to the precision error.

4. Finally, we propose a number of mitigation techniques
rendering the attacks more difficult.

We emphasize that the simplicity of our attack is its strongest
point, as it minimizes the assumption on the adversary (no
pre-processing, chosen-plaintext messages, etc.)

2 Background

In this section, we give details about artificial neural net-
works we consider in this paper and their building blocks.
Next, we discuss the concepts of side-channel analysis and
several types of attacks we use in this paper.

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) is an umbrella notion for
all computer systems loosely inspired by biological neural
networks. Such systems are able to “learn” from examples,
which makes them a strong (and very popular) paradigm in

USENIX Association 28th USENIX Security Symposium 517

the machine learning domain. Any ANN is built from a num-
ber of nodes called artificial neurons. The nodes are con-
nected in order to transmit a signal. Usually, in an ANN,
the signal at the connection between artificial neurons is a
real number and the output of each neuron is calculated as
a nonlinear function of the sum of its inputs. Neurons and
connections have weights that are adjusted as the learning
progresses. Those weights are used to increase or decrease
the strength of a signal at a connection. In the rest of this pa-
per, we use the notions of an artificial neural network, neural
network, and network interchangeably.

2.1.1 Multilayer Perceptron

A very simple type of a neural network is called perceptron.
A perceptron is a linear binary classifier applied to the fea-
ture vector as a function that decides whether or not an input
belongs to some specific class. Each vector component has
an associated weight wi and each perceptron has a threshold
value θ . The output of a perceptron equals “1” if the di-
rect sum between the feature vector and the weight vector is
larger than zero and “-1” otherwise. A perceptron classifier
works only for data that are linearly separable, i.e., if there
is some hyperplane that separates all the positive points from
all the negative points [34].

By adding more layers to a perceptron, we obtain a multi-
layer perceptron algorithm. Multilayer perceptron (MLP) is
a feed-forward neural network that maps sets of inputs onto
sets of appropriate outputs. It consists of multiple layers of
nodes in a directed graph, where each layer is fully connected
to the next one. Consequently, each node in one layer con-
nects with a certain weight w to every node in the following
layer. Multilayer perceptron algorithm consists of at least
three layers: one input layer, one output layer, and one hid-
den layer. Those layers must consist of nonlinearly activating
nodes [7]. We depict a model of a multilayer perceptron in
Figure 1. Note, if there is more than one hidden layer, then
it can be considered a deep learning architecture. Differing
from linear perceptron, MLP can distinguish data that are not
linearly separable. To train the network, the backpropagation
algorithm is used, which is a generalization of the least mean
squares algorithm in the linear perceptron. Backpropagation
is used by the gradient descent optimization algorithm to ad-
just the weight of neurons by calculating the gradient of the
loss function [34].

2.1.2 Convolutional Neural Network

CNNs represent a type of neural networks which were first
designed for 2-dimensional convolutions as it was inspired
by the biological processes of animals’ visual cortex [28].
From the operational perspective, CNNs are similar to ordi-
nary neural networks (e.g., multilayer perceptron): they con-
sist of a number of layers where each layer is made up of

Figure 1: Multilayer perceptron.

neurons. CNNs use three main types of layers: convolutional
layers, pooling layers, and fully-connected layers. Convolu-
tional layers are linear layers that share weights across space.
Pooling layers are non-linear layers that reduce the spatial
size in order to limit the number of neurons. Fully-connected
layers are layers where every neuron is connected with all the
neurons in the neighborhood layer. For additional informa-
tion about CNNs, we refer interested readers to [12].

2.1.3 Activation Functions

An activation function of a node is a function f defining the
output of a node given an input or set of inputs, see Eq. (1).
To enable calculations of nontrivial functions for ANN us-
ing a small number of nodes, one needs nonlinear activation
functions as follows.

y = Activation(∑(weight · input)+bias). (1)

In this paper, we consider the logistic (sigmoid) func-
tion, tanh function, softmax function, and Rectified Linear
Unit (ReLU) function. The logistic function is a nonlinear
function giving smooth and continuously differentiable re-
sults [14]. The range of a logistic function is [0,1], which
means that all the values going to the next neuron will have
the same sign.

f (x) =
1

1+ e−x . (2)

The tanh function is a scaled version of the logistic func-
tion where the main difference is that it is symmetric over
the origin. The tanh function ranges in [−1,1].

f (x) = tanh(x) =
2

1+ e−2x −1. (3)

The softmax function is a type of sigmoid function able to
map values into multiple outputs (e.g., classes). The softmax
function is ideally used in the output layer of the classifier
in order to obtain the probabilities defining a class for each
input [5]. To denote a vector, we represent it in bold style.

f (x) j =
ex j

∑
K
k=1 exk

, f or j = 1, . . . ,K. (4)

518 28th USENIX Security Symposium USENIX Association

The Rectified Linear Unit (ReLU) is a nonlinear function
that is differing from the previous two activation functions
as it does not activate all the neurons at the same time [35].
By activating only a subset of neurons at any time, we make
the network sparse and easier to compute [2]. Consequently,
such properties make ReLU probably the most widely used
activation function in ANNs today.

f (x) = max(0,x). (5)

2.2 Side-channel Analysis

Side-channel Analysis (SCA) exploits weaknesses on the im-
plementation level [33]. More specifically, all computations
running on a certain platform result in unintentional physical
leakages as a sort of physical signatures from the reaction
time, power consumption, and Electromagnetic (EM) ema-
nations released while the device is manipulating data. SCA
exploits those physical signatures aiming at the key (secret
data) recovery. In its basic form, SCA was proposed to per-
form key recovery attacks on the implementation of cryp-
tography [23, 22]. One advantage of SCA over traditional
cryptanalysis is that SCA can apply a divide-and-conquer ap-
proach. This means that SCA is typically recovering small
parts of the key (sub-keys) one by one, which is reducing the
attack complexity.

Based on the analysis technique used, different variants of
SCA are known. In the following, we recall a few techniques
used later in the paper. Although the original terms suggest
power consumption as the source of leakage, the techniques
apply to other side channels as well. In particular, in this
work, we are using the EM side channel and the correspond-
ing terms are adapted to reflect this.

Simple Power (or Electromagnetic) Analysis (SPA or
SEMA). Simple power (or EM) analysis, as the name sug-
gests, is the most basic form of SCA [22]. It targets infor-
mation from the sensitive computation that can be recovered
from a single or a few traces. As a common example, SPA
can be used against a straightforward implementation of the
RSA algorithm to distinguish square from multiply opera-
tion, leading to the key recovery. In this work, we apply
SPA, or actually SEMA to reverse engineer the architecture
of the neural network.

Differential Power (or Electromagnetic) Analysis (DPA
or DEMA). DPA or DEMA is an advanced form of SCA,
which applies statistical techniques to recover secret infor-
mation from physical signatures. The attack normally tests
for dependencies between actual physical signature (or mea-
surements) and hypothetical physical signature, i.e., predic-
tions on intermediate data. The hypothetical signature is
based on a leakage model and key hypothesis. Small parts
of the secret key (e.g., one byte) can be tested independently.
The knowledge of the leakage model comes from the adver-
sary’s intuition and expertise. Some commonly used leakage

models for representative devices are the Hamming weight
for microcontrollers and the Hamming distance in FPGA,
ASIC, and GPU [4, 31] platforms. As the measurements
can be noisy, the adversary often needs many measurements,
sometimes millions. Next, statistical tests like correlation [6]
are applied to distinguish the correct key hypothesis from
other wrong guesses. In the following, DPA (DEMA) is used
to recover secret weights from a pre-trained network.

3 Side-channel Based Reverse Engineering of
Neural Networks

In this section, we discuss the threat model we use, the ex-
perimental setup and reverse engineering of various elements
of neural networks.

3.1 Threat Model

The main goal of this work is to recover the neural network
architecture using only side-channel information.
Scenario. We select to work with MLP and CNNs since:
1) they are commonly used machine learning algorithms in
modern applications, see e.g., [16, 11, 36, 48, 25, 21]; 2) they
consist of different types of layers that are also occurring in
other architectures like recurrent neural networks; and 3) in
the case of MLP, the layers are all identical, which makes it
more difficult for SCA and could be consequently considered
as the worst-case scenario.

We choose our attack to be as generic as possible. For in-
stance, we have no assumption on the type of inputs or its
source, as we work with real numbers. If the inputs are in
the form of integers (like the MNIST database), the attack
becomes easier, since we would not need to recover man-
tissa bytes and deal with precision. We also assume that the
implementation of the machine learning algorithm does not
include any side-channel countermeasures.

Attacker’s capability. The attacker in consideration is a
passive one. This implies him/her acquiring measurements
of the device while operating “normally” and not interfering
with its internal operations by evoking faulty computations
and behavior by e.g., glitching the device, etc. More in de-
tails, we consider the following setting:

1. Attacker does not know the architecture of the used
network but can feed random (and hence known) in-
puts to the architecture. We note that the attacks
and analysis presented in our work do not rely on
any assumptions on the distributions of the inputs,
although a common assumption in SCA is that they
are chosen uniformly at random. Basically, we as-
sume that the attacker has physical access to the device
(can be remote, via EM signals) and he/she knows that
the device runs some neural net. The attacker only con-
trols the execution of it through selecting the inputs, but

USENIX Association 28th USENIX Security Symposium 519

(a) Target 8-bit microcontroller me-
chanically decapsulated

(b) Langer RF-U 5-2 Near Field
Electromagnetic passive Probe

(c) The complete measurement setup

Figure 2: Experimental Setup

he/she can observe the outputs and side-channel infor-
mation (but not individual intermediate values). The
attack scenario is often referred to as known-plaintext
attack. An adequate use case would be when the at-
tacker legally acquires a copy of the network with API
access to it and aims at recovering its internal details
e.g. for IP theft.

2. Attacker is capable of measuring side-channel infor-
mation leaked from the implementation of the tar-
geted architecture. The attacker can collect multiple
side-channel measurements while processing the data
and use different side-channel techniques for her anal-
ysis. In this work, we focus on timing and EM side
channels.

3.2 Experimental Setup

Here we describe the attack methodology, which is first vali-
dated on Atmel ATmega328P. Later, we also demonstrate the
proposed methodology on ARM Cortex-M3.

The side-channel activity is captured using the Lecroy Wa-
veRunner 610zi oscilloscope. For each known input, the
attacker gets one measurement (or trace) from the oscillo-
scope. In the following, nr. of inputs or nr. of traces are
used interchangeably. Each measurement is composed of

many samples (or points). The number of samples (or length
of the trace) depends on sampling frequency and execution
time. As shown later, depending on the target, nr. of sam-
ples can vary from thousands (for multiplication) to millions
(for a whole CNN network). The measurements are synchro-
nized with the operations by common handshaking signals
like start and stop of computation. To further improve the
quality of measurements, we opened the chip package me-
chanically (see Figure 2a). An RF-U 5-2 near-field electro-
magnetic (EM) probe from Langer is used to collect the EM
measurements (see Figure 2b). The setup is depicted in Fig-
ure 2c. We use the probe as an antenna for spying on the EM
side-channel leakage from the underlying processor running
ML. Note that EM measurements also allow to observe the
timing of all the operations and thus the setup allows for tim-
ing side-channels analysis as well. Our choice of the target
platform is motivated by the following considerations:

• Atmel ATmega328P: This processor typically allows
for high quality measurements. We are able to achieve a
high signal-to-noise ratio (SNR) measurements, making
this a perfect tuning phase to develop the methodology
of our attacks.
• ARM Cortex-M3: This is a modern 32-bit micro-

controller architecture featuring multiple stages of the
pipeline, on-chip co-processors, low SNR measure-
ments, and wide application. We show that the de-
veloped methodology is indeed versatile across targets
with a relevant update of measurement capability.

In addition, real-world use cases also justify our platforms of
choice. Similar micro-controllers are often used in wearables
like Fitbit (ARM Cortex-M4), several hardware crypto wal-
lets, smart home devices, etc. Additionally, SCA on a GPU
or an FPGA platform is practically demonstrated in sev-
eral instances, thus our methodology can be directly adapted
for those cases as well. For different platforms, the leak-
age model could change, but this would not limit our ap-
proach and methodology. In fact, adequate leakage models
are known for platforms like FPGA [4] and GPU [31]. More-
over, as for ARM Cortex-M3, low SNR of the measurement
might force the adversary to increase the number of mea-
surements and apply signal pre-processing techniques, but
the main principles behind the analysis remain valid.

As already stated above, the exploited leakage model of
the target device is the Hamming weight (HW) model. A
microcontroller loads sensitive data to a data bus to perform
indicated instructions. This data bus is pre-charged to all
’0’s’ before every instruction. Note that data bus being pre-
charged is a natural behavior of microcontrollers and not a
vulnerability introduced by the attacker. Thus, the power
consumption (or EM radiation) assigned to the value of the
data being loaded is modeled as the number of bits equal to
’1’. In other words, the power consumption of loading data

520 28th USENIX Security Symposium USENIX Association

8.5 9 9.5 10 10.5 11
Time samples 105

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Am
pl

itu
de

Multiplications Activation function

Figure 3: Observing pattern and timing of multiplication and
activation function

x is:

HW (x) =
n

∑
i=1

xi , (6)

where xi represents the ith bit of x. In our case, it is the secret
pre-trained weight which is regularly loaded from memory
for processing and results in the HW leakage. To conduct the
side-channel analysis, we perform the divide-and-conquer
approach, where we target each operation separately. The
full recovery process is described in Section 3.6.

Several pre-trained networks are implemented on the
board. The training phase is conducted offline, and the
trained network is then implemented in C language and com-
piled on the microcontroller. In these experiments, we con-
sider multilayer perceptron architectures consisting of a dif-
ferent number of layers and nodes in those layers. Note that,
with our approach, there is no limit in the number of layers or
nodes we can attack, as the attack scales linearly with the size
of the network. The methodology is developed to demon-
strate that the key parameters of the network, namely the
weights and activation functions can be reverse engineered.
Further experiments are conducted on deep neural networks
with three hidden layers but the method remains valid for
larger networks as well.

3.3 Reverse Engineering the Activation Func-
tion

We remind the reader that nonlinear activation functions are
necessary in order to represent nonlinear functions with a
small number of nodes in a network. As such, they are el-
ements used in virtually any neural network architecture to-
day [25, 15]. If the attacker is able to deduce the information
on the type of used activation functions, he/she can use that
knowledge together with information about input values to
deduce the behavior of the whole network.

(a) ReLU

(b) Sigmoid

(c) Tanh

(d) Softmax

Figure 4: Timing behavior for different activation functions

USENIX Association 28th USENIX Security Symposium 521

Table 1: Minimum, Maximum, and Mean computation time
(in ns) for different activation functions

Activation Function Minimum Maximum Mean
ReLU 5 879 6 069 5 975

Sigmoid 152 155 222 102 189 144
Tanh 51 909 210 663 184 864

Softmax 724 366 877 194 813 712

We analyze the side-channel leakage from different acti-
vation functions. We consider the most commonly used ac-
tivation functions, namely ReLU, sigmoid, tanh, and soft-
max [14, 35]. The timing behavior can be observed directly
on the EM trace. For instance, as shown later in Figure 8a, a
multiplication is followed by activation with individual sig-
natures. For a similar architecture, we test different vari-
ants with each activation function. We collect EM traces and
measure the timing of the activation function computation
from the measurements. The measurements are taken when
the network is processing random inputs in the range, i.e.,
x ∈ {−2,2}. A total of 2000 EM measurements are cap-
tured for each activation function. As shown in Figure 3, the
timing behavior of the four tested activation functions have
distinct signatures allowing easy characterization.

Different inputs result in different processing times.
Moreover, the timing behavior for the same inputs largely
varies depending on the activation function. For example,
we can observe that ReLU will require the shortest amount of
time, due to its simplicity (see Figure 4a). On the other hand,
tanh and sigmoid might have similar timing delays, but with
different pattern considering the input (see Figure 4b and
Figure 4b), where tanh is more symmetric in pattern com-
pared to sigmoid, for both positive and negative inputs. We
can observe that softmax function will require most of the
processing time, since it requires the exponentiation opera-
tion which also depends on the number of neurons in the out-
put layer. As neural network algorithms are often optimized
for performance, the presence of such timing side-channels
is often ignored. A function such as tanh or sigmoid requires
computation of ex and division and it is known that such
functions are difficult to implement in constant time. In addi-
tion, constant time implementations might lead to substantial
performance degradation. Other activation functions can be
characterized similarly. Table 1 presents the minimum, max-
imum, and mean computation time for each activation func-
tion over 2000 captured measurements. While ReLU is the
fastest one, the timing difference for other functions stands
out sufficiently, to allow for a straightforward recovery. To
distinguish them, one can also do some pattern matching
to determine which type of function is used, if necessary.
Note, although Sigmoid and Tanh have similar Maximum
and mean values, the Minimum value differs significantly.
Moreover, the attacker can sometimes pre-characterize (or

profile) the timing behavior of the target activation function
independently for better precision, especially when common
libraries are used for standard functions like multiplication,
activation function, etc.

3.4 Reverse Engineering the Multiplication
Operation

A well-trained network can be of significant value. Main
distinguishing factors for a well trained network against a
poorly trained one, for a given architecture, are the weights.
With fine-tuned weights, we can improve the accuracy of the
network. In the following, we demonstrate a way to recover
those weights by using SCA.

For the recovery of the weights, we use the Correlation
Power Analysis (CPA) i.e., a variant of DPA using the Pear-
son’s correlation as a statistical test.1 CPA targets the multi-
plication m = x ·w of a known input x with a secret weight
w. Using the HW model, the adversary correlates the activ-
ity of the predicted output m for all hypothesis of the weight.
Thus, the attack computes ρ(t,w), for all hypothesis of the
weight w, where ρ is the Pearson correlation coefficient and
t is the side-channel measurement. The correct value of the
weight w will result in a higher correlation standing out from
all other wrong hypotheses w∗, given enough measurements.
Although the attack concept is the same as when attacking
cryptographic algorithms, the actual attack used here is quite
different. Namely, while cryptographic operations are al-
ways performed on fixed length integers, in ANN we are
dealing with real numbers.

We start by analyzing the way the compiler is handling
floating-point operations for our target. The generated as-
sembly is shown in Table 2, which confirms the usage of
IEEE 754 compatible representation as stated above. The
knowledge of the representation allows one to better esti-
mate the leakage behavior. Since the target device is an 8-bit
microcontroller, the representation follows a 32-bit pattern
(b31...b0), being stored in 4 registers. The 32-bit consist of:
1 sign bit (b31), 8 biased exponent bits (b30...b23) and 23
mantissa (fractional) bits (b22...b0). It can be formulated as:

(−1)b31 ×2(b30...b23)2−127× (1.b22...b0)2.

For example, the value 2.43 can be expressed as (−1)0 ×
2(1000000)2−127 × (1.00110111000010100011111)2. The
measurement t is considered when the computed result m
is stored back to the memory, leaking in the HW model i.e.,
HW (m). Since 32-bit m is split into individual 8-bits, each
byte of m is recovered individually. Hence, by recovering
this representation, it is enough to recover the estimation of
the real number value.

To implement the attack two different approaches can be
considered. The first approach is to build the hypothesis on

1It is called CEMA in case of EM side channel.

522 28th USENIX Security Symposium USENIX Association

(a) First byte mantissa for weight = 2.43 (b) Second byte mantissa for weight = 2.43 (c) Third byte mantissa for weight = 2.43

Figure 5: Correlation of different weights candidate on multiplication operation

Table 2: Code snippet of the returned assembly for multipli-
cation: x = x ·w(= 2.36 or 0x3D0A1740 in IEEE 754 rep-
resentation). The multiplication itself is not shown here, but
from the registers assignment, our leakage model assumption
holds.

Instruction Comment

11a ldd r22, Y+1 0x01

11c ldd r23, Y+2 0x02

11e ldd r24, Y+3 0x03

120 ldd r25, Y+4 0x04

122 ldi r18, 0x3D 61

124 ldi r19, 0x0A 10

126 ldi r20, 0x17 23

128 ldi r21, 0x40 64

12a call 0xa0a multiplication

12e std Y+1, r22 0x01

130 std Y+2, r23 0x02

132 std Y+3, r24 0x03

134 std Y+4, r25 0x04

the weight directly. For this experiment, we target the result
of the multiplication m of known input values x and unknown
weight w. For every input, we assume different possibilities
for weight values. We then perform the multiplication and
estimate the IEEE 754 binary representation of the output.
To deal with the growing number of possible candidates for
the unknown weight w, we assume that the weight will be
bounded in a range [−N,N], where N is a parameter chosen
by the adversary, and the size of possible candidates is de-
noted as s = 2N/p, where p is the precision when dealing
with floating-point numbers.

Then, we perform the recovery of the 23-bit mantissa of
the weight. The sign and exponent could be recovered sepa-
rately. Thus, we are observing the leakage of 3 registers, and
based on the best CPA results for each register, we can recon-
struct the mantissa. Note that the recovered mantissa does
not directly relate to the weight, but with the recovery of the

sign and exponent, we could obtain the unique weight value.
The traces are measured when the microcontroller performs
secret weight multiplication with uniformly random values
between -1 and 1 (x ∈ {−1,1}) to emulate normalized in-
put values. We set N = 5 and to reduce the number of pos-
sible candidates, we assume that each floating-point value
will have a precision of 2 decimal points, p = 0.01. Since
we are dealing with mantissa only, we can then only check
the weight candidates in the range [0,N], thus reducing the
number of possible candidates. We note here that this range
[−5,5] is based on the previous experiments with MLP. Al-
though, in the later phase of the experiment, we targeted the
floating point and fixed-point representation (232 in the worst
case scenario on a 32-bit microcontroller, but could be less
if the value is for example normalized), instead of the real
value, which could in principle cover all possible floating
values.

In Figure 5, we show the result of the correlation for each
byte with the measured traces. The horizontal axis shows
the time of execution and vertical axis correlation. The ex-
periments were conducted on 1 000 traces for each case. In
the figure, the black plot denotes the correlation of the “cor-
rect” mantissa weight (|m(ŵ)−m(w)| < 0.01), whereas the
red plots are from all other weight candidates in the range
described earlier. Since we are only attacking mantissa in
this phase, several weight candidates might have similar cor-
relation peaks. After the recovery of the mantissa, the sign
bit and exponent can be recovered similarly, which narrows
down the list candidate to a unique weight. Another ob-
servation is that the correlation value is not very high and
scattered across different clock cycles. This is due to the
reason that the measurements are noisy and since the oper-
ation is not constant-time, the interesting time samples are
distributed across multiple clock cycles. Nevertheless, it is
shown that the side-channel leakage can be exploited to re-
cover the weight up to certain precision. Multivariate side
channel analysis [42] can be considered if distributed sam-
ples hinder recovery.

USENIX Association 28th USENIX Security Symposium 523

200 400 600 800 1000
number of traces

0

0.2

0.4

0.6

0.8

1
co

rre
la

tio
n

Targeted value
Incorrect values

(a) weight = 1.635

200 400 600 800 1000
number of traces

0

0.2

0.4

0.6

0.8

1

co
rre

la
tio

n

Targeted value
Incorrect values

(b) weight = 0.890

Figure 6: Correlation comparison between the correct and
incorrect mantissa of the weights. (a) Correct mantissa can
be recovered (correct values/black line has a higher value
compared to max incorrect values/red line). (b) A special
case where the incorrect value of mantissa has a higher cor-
relation, recovering 0.896025 (1100100000..00) instead of
0.89 (1100011110...10), still within precision error limits re-
sulting in attack success

We emphasize that attacking real numbers as in the case of
weights of ANN can be easier than attacking cryptographic
implementations. This is because cryptography typically
works on fixed-length integers and exact values must be re-
covered. When attacking real numbers, small precision er-
rors due to rounding off the intermediate values still result in
useful information.

To deal with more precise values, we can target the man-
tissa multiplication operation directly. In this case, the search
space can either be [0,223− 1] to cover all possible values
for the mantissa (hence, more computational resources will
be required) or we can focus only on the most significant
bits of the mantissa (lesser candidates but also with lesser
precision). Since the 7 most significant bits of the man-
tissa are processed in the same register, we can aim to tar-

200 800 1000400 600
Number of traces

0.75

0.8

0.85

0.9

0.95

1

C
or

re
la

tio
n

Targeted value
Incorrect values

(a) First byte recovery (sign and 7-bit exponent)

200 800 1000400 600
Number of traces

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

Targeted value
Incorrect values

(b) Second byte recovery (lsb exponent and mantissa)

Figure 7: Recovery of the weight

get only those bits, assigning the rest to 0. Thus, our search
space is now [0,27−1]. The mantissa multiplication can be
performed as 1.mantissax×1.mantissaw, then taking the 23
most significant bits after the leading 1, and normalization
(updating the exponent if the result overflows) if necessary.

In Figure 6, we show the result of the correlation between
the HW of the first 7-bit mantissa of the weight with the
traces. Except for Figure 6b, the other results show that the
correct mantissa can be recovered. Although the correlation
is not increasing, it is important that the difference becomes
stable after a sufficient amount of traces is used and even-
tually distinguishing correct weight from wrong weight hy-
potheses. The most interesting result is shown in Figure 6b,
which at first glance looks like a failure of the attack. Here,
the target value of the mantissa is 1100011110...10, while
the attack recovers 1100100000..00. Considering the sign
and exponents, the attack recovers 0.890625 instead of 0.89,
i.e., a precision error at 4th place after decimal point. Thus,
in both cases, we have shown that we can recover the weights
from the SCA leakage.

In Figure 7, we show the composite recovery of 2 bytes of
the weight representation i.e., a low precision setting where

524 28th USENIX Security Symposium USENIX Association

we recover sign, exponent, and most significant part of man-
tissa. Again, the targeted (correct) weight can be easily dis-
tinguished from the other candidates. Hence, once all the
necessary information has been recovered, the weight can be
reconstructed accordingly.

3.5 Reverse Engineering the Number of Neu-
rons and Layers

After the recovery of the weights and the activation func-
tions, now we use SCA to determine the structure of the net-
work. Mainly, we are interested to see if we can recover the
number of hidden layers and the number of neurons for each
layer. To perform the reverse engineering of the network
structure, we first use SPA (SEMA). SPA is the simplest form
of SCA which allows information recovery in a single (or a
few) traces with methods as simple as a visual inspection.
The analysis is performed on three networks with different
layouts.

The first analyzed network is an MLP with one hidden
layer with 6 neurons. The EM trace corresponding to the
processing of a randomly chosen input is shown in Figure 8a.
By looking at the EM trace, the number of neurons can be
easily counted. The observability arises from the fact that
multiplication operation and the activation function (in this
case, it is the Sigmoid function) have completely different
leakage signatures. Similarly, the structures of deeper net-
works are also shown in Figure 8b and Figure 8c. The recov-
ery of output layer then provides information on the number
of output classes. However, distinguishing different layers
might be difficult, since the leakage pattern is only dependent
on multiplication and activation function, which are usually
present in most of the layers. We observe minor features al-
lowing identification of layer boundaries but only with low
confidence. Hence, we develop a different approach based
on CPA to identify layer boundaries.

The experiments follow a similar methodology as in the
previous experiments. To determine if the targeted neuron is
in the same layer as previously attacked neurons, or in the
next layer, we perform a weight recovery using two sets of
data.

Let us assume that we are targeting the first hidden layer
(the same approach can be done on different layers as well).
Assume that the input is a vector of length N0, so the in-
put x can be represented x = {x1, ...,xN0}. For the targeted
neuron yn in the hidden layer, perform the weight recovery
on 2 different hypotheses. For the first hypothesis, assume
that the yn is in the first hidden layer. Perform weight re-
covery individually using xi, for 1 ≤ i ≤ N0. For the second
hypothesis, assume that yn is in the next hidden layer (the
second hidden layer). Perform weight recovery individually
using yi, for 1≤ i≤ (n− i). For each hypothesis, record the
maximum (absolute) correlation value, and compare both.
Since the correlation depends on both inputs to the multi-

plication operation, the incorrect hypothesis will result in a
lower correlation value. Thus, this can be used to identify
layer boundaries.

3.6 Recovery of the Full Network Layout

The combination of previously developed individual tech-
niques can thereafter result in full reverse engineering of the
network. The full network recovery is performed layer by
layer, and for each layer, the weights for each neuron have to
be recovered one at a time. Let us consider a network con-
sisting of N layers, L0,L1, ...,LN−1, with L0 being the input
layer and LN−1 being the output layer. Reverse engineering
is performed with the following steps:

1. The first step is to recover the weight wL0 of each con-
nection from the input layer (L0) and the first hidden
layer (L1). Since the dimension of the input layer is
known, the CPA/CEMA can be performed nL0 times
(the size of L0). The correlation is computed for 2d

hypotheses (d is the number of bits in IEEE 754 rep-
resentation, normally it is 32 bits, but to simplify, 16
bits can be used with lesser precision for the mantissa).
After the weights have been recovered, the output of the
sum of multiplication can be calculated. This informa-
tion provides us with input to the activation function.

2. In order to determine the output of the sum of the mul-
tiplications, the number of neurons in the layer must
be known. This can be recovered by the combination
of SPA/SEMA and DPA/DEMA technique described in
the previous subsection (2 times CPA for each weight
candidate w, so in total 2nL02d CPA required), in par-
allel with the weight recovery. When all the weights of
the first hidden layer are recovered, the following steps
are executed.

3. Using the same set of traces, timing patterns for differ-
ent inputs to the activation function can be built, similar
to Figure 4. Timing patterns or average timing can then
be compared with the profile of each function to deter-
mine the activation function (a comparison can be based
on simple statistical tools like correlation, distance met-
ric, etc). Afterward, the output of the activation func-
tion can be computed, which provides the input to the
next layer.

4. The same steps are repeated in the subsequent layers
(L1, ...,LN−1, so in total at most 2NnL2d , where nL is
max(nL0 , ...,nLN−1)) until the structure of the full net-
work is recovered.

The whole procedure is depicted in Figure 9. In general,
it can be seen that the attack scales linearly with the size of
the network. Moreover, the same set of traces can be reused
for various steps of the attack and attacking different layers,
thus reducing measurement effort.

USENIX Association 28th USENIX Security Symposium 525

0.5 1 1.5 2
Time samples 106

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Am
pl

itu
de

(a) One hidden layer with 6 neurons

0.5 1 1.5 2 2.5 3 3.5
Time samples 106

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Am
pl

itu
de

(b) 2 hidden layers (6 and 5 neurons each)

1 2 3 4
Time samples 106

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Am
pl

itu
de

(c) 3 hidden layers (6,5,5 neurons each)

Figure 8: SEMA on hidden layers

Figure 9: Methodology to reverse engineer the target neural network

4 Experiments with ARM Cortex-M3

In the previous section, we propose a methodology to re-
verse engineer sensitive parameters of a neural network,
which we practically validated on an 8-bit AVR (Atmel AT-
mega328P). In this section, we extend the presented attack
on a 32-bit ARM microcontroller. ARM microcontrollers
form a fair share of the current market with huge domi-
nance in mobile applications, but also seeing rapid adoption
in markets like IoT, automotive, virtual and augmented real-
ity, etc. Our target platform is the widely available Arduino
due development board which contains an Atmel SAM3X8E
ARM Cortex-M3 CPU with a 3-stage pipeline, operating at
84 MHz. The measurement setup is similar to previous ex-
periments (Lecroy WaveRunner 610zi oscilloscope and RF-
U 5-2 near-field EM probe from Langer). The point of mea-
surements was determined by a benchmarking code running
AES encryption. After capturing the measurements for the
target neural network, one can perform reverse engineering.
Note that ARM Cortex-M3 (as well as M4 and M7) have
support for deep learning in the form of CMSIS-NN imple-
mentation [27].

The timing behavior of various activation functions is
shown in Figure 10. The results, though different from pre-
vious experiments on AVR, have unique timing signatures,
allowing identification of each activation function. Here,
sigmoid and tanh activation functions have similar minimal

computation time but the average and maximum values are
higher for tanh function. To distinguish, one can obtain mul-
tiple inputs to the function, build patterns and do pattern
matching to determine which type of function is used. The
activity of a single neuron is shown in Figure 11a, which uses
sigmoid as an activation function (the multiplication opera-
tion is shown separated by a vertical red line).

A known input attack is mounted on the multiplication to
recover the secret weight. One practical consideration in at-
tacking multiplication is that different compilers will com-
pile it differently for different targets. Modern microcon-
trollers also have dedicated floating point units for handling
operations like multiplication of real numbers. To avoid the
discrepancy of the difference of multiplication operation, we
target the output of multiplication. In other words, we target
the point when multiplication operation with secret weight
is completed and the resultant product is updated in general
purpose registers or memory. Figure 11b shows the success
of attack recovering secret weight of 2.453, with a known
input. As stated before, side-channel measurements on mod-
ern 32-bit ARM Cortex-M3 may have lower SNR thus mak-
ing attack slightly harder. Still, the attack is shown to be
practical even on ARM with 2× more measurements. In
our setup, getting 200 extra measurements takes less than
a minute. Similarly, the setup and number of measurements
can be updated for other targets like FPGA, GPU, etc.

Finally, the full network layout is recovered. The activity

526 28th USENIX Security Symposium USENIX Association

(a) ReLU (b) Sigmoid (c) Tanh

Figure 10: Timing behavior for different activation functions

(a) Observing pattern and timing of multiplication
and activation function

(b) Correlation comparison between correct and in-
correct mantissa for weight=2.453

(c) SEMA on hidden layers with 3 hidden layers
(6,5,5 neurons each)

Figure 11: Analysis of an (6,5,5,) neural network

of a full network with 3 hidden layers composed of 6, 5, and
5 neurons each is shown in Figure 11c. All the neurons are
observable by visual inspection. The determination of layer
boundaries (shown by a solid red line) can be determined
by attacking the multiplication operation and following the
approach discussed in Section 3.6.

4.1 Reverse Engineering MLP

The migration of our testbed to ARM Cortex-M3 allowed
us to test bigger networks, which are used in some relevant
case-studies. First, we consider an MLP that is used in profil-
ing side-channel analysis [41]. Our network of choice comes
from the domain of side-channel analysis which has seen the
adoption of deep learning methods in the past. With this net-
work, a state-of-the-art profiled SCA was conducted when
considering several datasets where some even contain im-
plemented countermeasures. Since the certification labs use
machine learning to evaluate the resilience of cryptographic
implementations to profiled attacks, an attacker being able to
reverse engineer that machine learning would be able to use
it to attack implementations on his own. The MLP we inves-

tigate has 4 hidden layers with dimensions (50,30,20,50), it
uses ReLU activation function and has Softmax at the output.
The whole measurement trace is shown in Figure 12(a) with
a zoom on 1 neurons in the third layer in Figure 12(b). When
measuring at 500 MSamples/s, each trace had∼ 4.6 million
samples. The dataset is DPAcontest v4 with 50 samples and
75 000 measurements [46]. The first 50 000 measurements
are used for training and the rest for testing. We experiment
with the Hamming weight model (meaning there are 9 output
classes). The original accuracy equals 60.9% and the accu-
racy of the reverse engineered network is 60.87%. While the
previously developed techniques are directly available, there
are a few practical issues.

• As the average run time is 9.8ms, each measurement
would take long considering the measurement and data
saving time. To boost up the SNR, averaging is recom-
mended. We could use the oscilloscope in-built feature
for averaging. Overall, the measurement time per trace
was slightly over one second after averaging 10 times.
• The measurement period was too big to measure the

whole period easily at a reasonable resolution. This was
resolved by measuring two consecutive layers at a time

USENIX Association 28th USENIX Security Symposium 527

(a)

(b)

Figure 12: (a) Full EM trace of the MLP network from [41],
(b) zoom on one neuron in the third hidden layer showing
20 multiplications, followed by a ReLU activation function.
50 such patterns can be seen in (a) identifying third layer in
(50,30,20,50) MLP

in independent measurements. It is important to always
measure two consecutive layers and not individual layer
to determine layer boundaries. This issue otherwise can
be solved with a high-end oscilloscope.
• We had to resynchronize traces each time according to

the target neuron which is a standard pre-processing in
side-channel attacks.

Next, we experiment with an MLP consisting of 4 hidden
layers, where each layer has 200 nodes. We use the MNIST
database as input to the MLP [29]. The MNIST database
contains 60 000 training images and 10 000 testing images
where each image has 28× 28 pixel size. The number of
classes equals 10. The accuracy of the original network is
equal to 98.16% while the accuracy of the reverse engineered
network equals 98.15%, with an average weight error con-
verging to 0.0025.

We emphasize that both attacks (on DPAcontest v4 and
MNIST) were performed following exactly the same proce-
dure as in previous sections leading to a successful recovery
of the network parameters. Finally, in accordance with the

conclusions that our attack scales linearly with the size of the
network, we did not experience additional difficulties when
compared to attacking smaller networks.

4.2 Reverse Engineering CNN

When considering CNN, the target is the CMSIS-NN imple-
mentation [27] on ARM Cortex-M3 with measurement setup
same as in previous experiments. Here, as input, we target
the CIFAR-10 dataset [24]. This dataset consists of 60 000
32×32 color images in 10 classes. Each class has 6 000 im-
ages and there are in total 50 000 training images and 10 000
test images. The CNN we investigate is the same as in [27]
and it consists of 3 convolutional layers, 3 max pooling lay-
ers, and one fully-connected layer (in total 7 layers).

We choose as target the multiplication operation from the
input with the weight, similar as in previous experiments.
Differing from previous experiments, the operations on real
values are here performed using fixed-point arithmetic. Nev-
ertheless, the idea of the attack remains the same. In this
example, numbers are stored using 8-bit data type – int8

(q7). The resulting multiplication is stored in temporary int

variable. This can also be easily extended to int16 or int32
for more precision. Since we are working with integer val-
ues, we use the Hamming weight model of the hypothetical
outputs (since the Hamming weight model is more straight-
forward in this case).

If the storing of temporary variable is targeted, as can be
seen from Figure 13(a), around 50 000 traces will be re-
quired before the correct weight can be distinguished from
the wrong weights. This is based on 0.01 precision (the ab-
solute difference from the actual weight in floating number).
However, in this case, it can be observed that the correlation
value is quite low (∼ 0.1). In the case that the conversion to
int8 is performed after the multiplication, this can be also
targeted. In Figure 13(b), it can be seen that after 10 000
traces, the correct weight candidate can be distinguished, and
the correlation is slightly higher (∼ 0.34).

Next, for pooling layer, once the weights in the convolu-
tion part are recovered, the output can be calculated. Most
CNNs use max pooling layers, which makes it also possible
to simply guess the pooling layer type. Still, because the max
pooling layer is based on the following conditional instruc-
tion, conditional(i f (a > max)max = a), it is straightforward
to differentiate it from the average pooling that has summa-
tion and division operations. This technique is then repeated
to reverse engineer any number of convolutional and pooling
layers. Finally, the CNN considered here uses ReLU activa-
tion function and has one fully-connected layer, which are
reverse engineered as discussed in previous sections. In our
experiment, the original accuracy of the CNN equals 78.47%
and the accuracy of the recovered CNN is 78.11%. As it can
be seen, by using sufficient measurements (e.g., ∼ 50000),
we are able to reverse engineer CNN architecture as well.

528 28th USENIX Security Symposium USENIX Association

(a) int scenario

(b) int8 scenario

Figure 13: The correlation of correct and wrong weight hy-
potheses on different number of traces targeting the result of
multiplication operation stored as different variable type: (a)
int, (b) int8

5 Mitigation

As demonstrated, various side-channel attacks can be ap-
plied to reverse engineer certain components of a pre-trained
network. To mitigate such a recovery, several countermea-
sures can be deployed:

1. Hidden layers of an MLP must be executed in sequence
but the multiplication operation in individual neurons
within a layer can be executed independently. An ex-
ample is shuffling [50] as a well-studied side-channel
countermeasure. It involves shuffling/permuting the or-
der of execution of independent sub-operations. For
example, given N sub-operations (1, . . . ,N) and a ran-
dom permutation σ , the order of execution becomes
(σ(1), . . . ,σ(N)) instead. We propose to shuffle the
order of multiplications of individual neurons within a
hidden layer during every classification step. Shuffling
modifies the time window of operations from one ex-
ecution to another, mitigating a classical DPA/DEMA
attack.

2. Weight recovery can benefit from the application of
masking countermeasures [8, 42]. Masking is an-
other widely studied side-channel countermeasure that
is even accompanied by a formal proof of security. It
involves assuring that sensitive computations are with
random values to remove the dependencies between ac-
tual data and side-channel signatures, thus preventing
the attack. Every computation of f (x,w) is transformed
into fm(x⊕m1,w⊕m2)= f (x,w)⊕m, where m1,m2 are
uniformly drawn random masks, and fm is the masked
function which applies mask m at the output of f , given
masked inputs x⊕m1 and w⊕m2. If each neuron is
individually masked with an independently drawn uni-
formly random mask for every iteration and every neu-
ron, the proposed attacks can be prevented. However,
this might result in a substantial performance penalty.

3. The proposed attack on activation functions is possible
due to the non-constant timing behavior. Mostly con-
sidered activation functions perform exponentiation op-
eration. Implementation of constant time exponentia-
tion has been widely studied in the domain of public
key cryptography [13]. Such ideas can be adjusted to
implement constant time activation function processing.

Note, the techniques we discuss here represent well-explored
methods of protecting against side-channel attacks. As such,
they are generic and can be applied to any implementation.
Unfortunately, all those countermeasures also come with an
area and performance cost. Shuffling and masking require a
true random number generator that is typically very expen-
sive in terms of area and performance. Constant time imple-
mentations of exponentiation [1] also come at performance
efficiency degradation. Thus, the optimal choice of protec-
tion mechanism should be done after a systematic resource
and performance evaluation study.

6 Further Discussions and Conclusions

Neural networks are widely used machine learning family
of algorithms due to its versatility across domains. Their
effectiveness depends on the chosen architecture and fine-
tuned parameters along with the trained weights, which can
be proprietary information. In this work, we practically
demonstrate reverse engineering of neural networks using
side-channel analysis techniques. Concrete attacks are per-
formed on measured data corresponding to implementations
of chosen networks. To make our setting even more general,
we do not assume any specific form of the input data (except
that inputs are real values).

We conclude that using an appropriate combination of
SEMA and DEMA techniques, all sensitive parameters of
the network can be recovered. The proposed methodology is
demonstrated on two different modern controllers, a classic
8-bit AVR and a 32-bit ARM Cortex-M3 microcontroller. As
also shown in this work, the attacks on modern devices are

USENIX Association 28th USENIX Security Symposium 529

typically somewhat harder to mount, due to lower SNR for
side-channel attacks, but remain practical. In the presented
experiments, the attack took twice as many measurements,
requiring roughly 20 seconds extra time. Overall, the attack
methodology scales linearly with the size of the network.
The attack might be easier in some setting where a new
network is derived from well known network like VGG-16,
Alexnet, etc. by tuning hyper-parameters or transfer learn-
ing. In such cases, the side-channel based approach can re-
veal the remaining secrets. However, analysis of such partial
cases is currently out of scope.

The proposed attacks are both generic in nature and more
powerful than the previous works in this direction. Finally,
suggestions on countermeasures are provided to help the de-
signer mitigate such threats. The proposed countermeasures
are borrowed mainly from side-channel literature and can in-
cur huge overheads. Still, we believe that they could moti-
vate further research on optimized and effective countermea-
sures for neural networks. Besides continuing working on
countermeasures, as the main future research goal, we plan
to look into more complex CNNs. Naturally, this will require
stepping aside from low power ARM devices and using for
instance, FPGAs. Additionally, in this work, we considered
only feed-forward networks. It would be interesting to ex-
tend our work to other types of networks like recurrent neu-
ral networks. Since such architectures have many same ele-
ments like MLP and CNNs, we believe our attack should be
(relatively) easily extendable to such neural networks.

References

[1] AL HASIB, A., AND HAQUE, A. A. M. M. A com-
parative study of the performance and security issues
of AES and RSA cryptography. In Convergence and
Hybrid Information Technology, 2008. ICCIT’08. Third
International Conference on (2008), vol. 2, IEEE,
pp. 505–510.

[2] ALBERICIO, J., JUDD, P., HETHERINGTON, T.,
AAMODT, T., JERGER, N. E., AND MOSHOVOS,
A. Cnvlutin: Ineffectual-Neuron-Free Deep Neural
Network Computing. In 2016 ACM/IEEE 43rd An-
nual International Symposium on Computer Architec-
ture (ISCA) (June 2016), pp. 1–13.

[3] ATENIESE, G., MANCINI, L. V., SPOGNARDI, A.,
VILLANI, A., VITALI, D., AND FELICI, G. Hacking
Smart Machines with Smarter Ones: How to Extract
Meaningful Data from Machine Learning Classifiers.
Int. J. Secur. Netw. 10, 3 (Sept. 2015), 137–150.

[4] BHASIN, S., GUILLEY, S., HEUSER, A., AND DAN-
GER, J.-L. From cryptography to hardware: analyz-
ing and protecting embedded Xilinx BRAM for cryp-
tographic applications. Journal of Cryptographic En-
gineering 3, 4 (2013), 213–225.

[5] BISHOP, C. M. Pattern Recognition and Ma-
chine Learning (Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg, 2006.

[6] BRIER, E., CLAVIER, C., AND OLIVIER, F. Correla-
tion power analysis with a leakage model. In Interna-
tional Workshop on Cryptographic Hardware and Em-
bedded Systems (2004), Springer, pp. 16–29.

[7] COLLOBERT, R., AND BENGIO, S. Links Between
Perceptrons, MLPs and SVMs. In Proceedings of
the Twenty-first International Conference on Machine
Learning (New York, NY, USA, 2004), ICML ’04,
ACM, pp. 23–.

[8] CORON, J.-S., AND GOUBIN, L. On boolean and
arithmetic masking against differential power analysis.
In International Workshop on Cryptographic Hardware
and Embedded Systems (2000), Springer, pp. 231–237.

[9] DOWLIN, N., GILAD-BACHRACH, R., LAINE, K.,
LAUTER, K., NAEHRIG, M., AND WERNSING, J.
CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy. In Proceed-
ings of the 33rd International Conference on Interna-
tional Conference on Machine Learning - Volume 48
(2016), ICML’16, JMLR.org, pp. 201–210.

[10] FREDRIKSON, M., LANTZ, E., JHA, S., LIN, S.,
PAGE, D., AND RISTENPART., T. Privacy in Pharma-
cogenetics: An End-to-End Case Study of Personalized
Warfarin Dosing. In USENIX Security (2014), pp. 17–
32.

[11] GILMORE, R., HANLEY, N., AND O’NEILL, M. Neu-
ral network based attack on a masked implementation
of AES. In 2015 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST) (May
2015), pp. 106–111.

[12] GOODFELLOW, I., BENGIO, Y., AND COURVILLE,
A. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

[13] HACHEZ, G., AND QUISQUATER, J.-J. Montgomery
exponentiation with no final subtractions: Improved
results. In International Workshop on Cryptographic
Hardware and Embedded Systems (2000), Springer,
pp. 293–301.

[14] HAYKIN, S. Neural Networks: A Comprehensive
Foundation, 2nd ed. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1998.

[15] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep
Residual Learning for Image Recognition. CoRR
abs/1512.03385 (2015).

530 28th USENIX Security Symposium USENIX Association

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[16] HEUSER, A., PICEK, S., GUILLEY, S., AND
MENTENS, N. Lightweight Ciphers and their Side-
channel Resilience. IEEE Transactions on Computers
(2017), 1–1.

[17] HUA, W., ZHANG, Z., AND SUH, G. E. Reverse
Engineering Convolutional Neural Networks Through
Side-channel Information Leaks. In Proceedings of
the 55th Annual Design Automation Conference (New
York, NY, USA, 2018), DAC ’18, ACM, pp. 4:1–4:6.

[18] ILYAS, A., ENGSTROM, L., ATHALYE, A., AND LIN,
J. Black-box Adversarial Attacks with Limited Queries
and Information. CoRR abs/1804.08598 (2018).

[19] JAP, D., STÖTTINGER, M., AND BHASIN, S. Support
vector regression: exploiting machine learning tech-
niques for leakage modeling. In Proceedings of the
Fourth Workshop on Hardware and Architectural Sup-
port for Security and Privacy (2015), ACM, p. 2.

[20] KHAN, A., GOODHUE, G., SHRIVASTAVA, P., VAN
DER VEER, B., VARNEY, R., AND NAGARAJ, P. Em-
bedded memory protection, Nov. 22 2011. US Patent
8,065,512.

[21] KOBER, J., AND PETERS, J. Reinforcement Learning
in Robotics: A Survey, vol. 12. Springer, Berlin, Ger-
many, 2012, pp. 579–610.

[22] KOCHER, P., JAFFE, J., AND JUN, B. Differential
power analysis. In Annual International Cryptology
Conference (1999), Springer, pp. 388–397.

[23] KOCHER, P. C. Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems. In
Annual International Cryptology Conference (1996),
Springer, pp. 104–113.

[24] KRIZHEVSKY, A., NAIR, V., AND HINTON, G.
CIFAR-10 (Canadian Institute for Advanced Re-
search).

[25] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON,
G. E. ImageNet Classification with Deep Convolu-
tional Neural Networks. In Proceedings of the 25th
International Conference on Neural Information Pro-
cessing Systems - Volume 1 (USA, 2012), NIPS’12,
Curran Associates Inc., pp. 1097–1105.

[26] KUČERA, M., TSANKOV, P., GEHR, T., GUARNIERI,
M., AND VECHEV, M. Synthesis of Probabilistic Pri-
vacy Enforcement. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communica-
tions Security (New York, NY, USA, 2017), CCS ’17,
ACM, pp. 391–408.

[27] LAI, L., SUDA, N., AND CHANDRA, V. CMSIS-NN:
Efficient Neural Network Kernels for Arm Cortex-M
CPUs. CoRR abs/1801.06601 (2018).

[28] LECUN, Y., BENGIO, Y., ET AL. Convolutional net-
works for images, speech, and time series. The hand-
book of brain theory and neural networks 3361, 10
(1995).

[29] LECUN, Y., AND CORTES, C. MNIST handwritten
digit database.

[30] LERMAN, L., POUSSIER, R., BONTEMPI, G.,
MARKOWITCH, O., AND STANDAERT, F.-X. Tem-
plate attacks vs. machine learning revisited (and the
curse of dimensionality in side-channel analysis). In
International Workshop on Constructive Side-Channel
Analysis and Secure Design (2015), Springer, pp. 20–
33.

[31] LUO, C., FEI, Y., LUO, P., MUKHERJEE, S., AND
KAELI, D. Side-channel power analysis of a GPU AES
implementation. In Computer Design (ICCD), 2015
33rd IEEE International Conference on (2015), IEEE,
pp. 281–288.

[32] MAGHREBI, H., PORTIGLIATTI, T., AND PROUFF,
E. Breaking cryptographic implementations using deep
learning techniques. In International Conference on
Security, Privacy, and Applied Cryptography Engineer-
ing (2016), Springer, pp. 3–26.

[33] MANGARD, S., OSWALD, E., AND POPP, T. Power
Analysis Attacks: Revealing the Secrets of Smart
Cards. Springer, December 2006. ISBN 0-387-30857-
1, http://www.dpabook.org/.

[34] MITCHELL, T. M. Machine Learning, 1 ed. McGraw-
Hill, Inc., New York, NY, USA, 1997.

[35] NAIR, V., AND HINTON, G. E. Rectified Linear Units
Improve Restricted Boltzmann Machines. In Proceed-
ings of the 27th International Conference on Interna-
tional Conference on Machine Learning (USA, 2010),
ICML’10, Omnipress, pp. 807–814.

[36] NARAEI, P., ABHARI, A., AND SADEGHIAN, A. Ap-
plication of multilayer perceptron neural networks and
support vector machines in classification of healthcare
data. In 2016 Future Technologies Conference (FTC)
(Dec 2016), pp. 848–852.

[37] OHRIMENKO, O., COSTA, M., FOURNET, C.,
GKANTSIDIS, C., KOHLWEISS, M., AND SHARMA,
D. Observing and Preventing Leakage in MapReduce.
In Proceedings of the 22Nd ACM SIGSAC Confer-
ence on Computer and Communications Security (New
York, NY, USA, 2015), CCS ’15, ACM, pp. 1570–
1581.

USENIX Association 28th USENIX Security Symposium 531

http://www.springer.com/
http://www.dpabook.org/

[38] OHRIMENKO, O., SCHUSTER, F., FOURNET, C.,
MEHTA, A., NOWOZIN, S., VASWANI, K., AND
COSTA, M. Oblivious Multi-party Machine Learn-
ing on Trusted Processors. In Proceedings of the 25th
USENIX Conference on Security Symposium (Berke-
ley, CA, USA, 2016), SEC’16, USENIX Association,
pp. 619–636.

[39] PAPERNOT, N., MCDANIEL, P., GOODFELLOW, I.,
JHA, S., CELIK, Z. B., AND SWAMI, A. Practical
Black-Box Attacks Against Machine Learning. In Pro-
ceedings of the 2017 ACM on Asia Conference on Com-
puter and Communications Security (New York, NY,
USA, 2017), ASIA CCS ’17, ACM, pp. 506–519.

[40] PARASHAR, A., RHU, M., MUKKARA, A.,
PUGLIELLI, A., VENKATESAN, R., KHAILANY,
B., EMER, J., KECKLER, S. W., AND DALLY,
W. J. SCNN: An accelerator for compressed-sparse
convolutional neural networks. In 2017 ACM/IEEE
44th Annual International Symposium on Computer
Architecture (ISCA) (June 2017), pp. 27–40.

[41] PICEK, S., HEUSER, A., JOVIC, A., BHASIN, S.,
AND REGAZZONI, F. The Curse of Class Imbalance
and Conflicting Metrics with Machine Learning for
Side-channel Evaluations. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2019, 1
(Nov. 2018), 209–237.

[42] PROUFF, E., AND RIVAIN, M. Masking against side-
channel attacks: A formal security proof. In Annual
International Conference on the Theory and Applica-
tions of Cryptographic Techniques (2013), Springer,
pp. 142–159.

[43] RISCURE. https://www.riscure.com/blog/automated-
neural-network-construction-genetic-algorithm/, 2018.

[44] SHOKRI, R., STRONATI, M., SONG, C., AND
SHMATIKOV, V. Membership Inference Attacks
Against Machine Learning Models. In 2017 IEEE
Symposium on Security and Privacy (SP) (May 2017),
pp. 3–18.

[45] SONG, C., RISTENPART, T., AND SHMATIKOV, V.
Machine Learning Models That Remember Too Much.
In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security (New
York, NY, USA, 2017), CCS ’17, ACM, pp. 587–601.

[46] TELECOM PARISTECH SEN RESEARCH GROUP.
DPA Contest (4th edition), 2013–2014. http://www.

DPAcontest.org/v4/.

[47] TEUFL, P., PAYER, U., AND LACKNER, G. From
NLP (Natural Language Processing) to MLP (Machine
Language Processing). In Computer Network Security
(Berlin, Heidelberg, 2010), I. Kotenko and V. Skormin,
Eds., Springer Berlin Heidelberg, pp. 256–269.

[48] THOMAS, P., AND SUHNER, M.-C. A New Multi-
layer Perceptron Pruning Algorithm for Classification
and Regression Applications. Neural Processing Let-
ters 42, 2 (Oct 2015), 437–458.

[49] TRAMÈR, F., ZHANG, F., JUELS, A., REITER, M. K.,
AND RISTENPART, T. Stealing Machine Learning
Models via Prediction APIs. CoRR abs/1609.02943
(2016).

[50] VEYRAT-CHARVILLON, N., MEDWED, M., KERCK-
HOF, S., AND STANDAERT, F.-X. Shuffling against
side-channel attacks: A comprehensive study with cau-
tionary note. In International Conference on the Theory
and Application of Cryptology and Information Secu-
rity (2012), Springer, pp. 740–757.

[51] WANG, B., AND GONG, N. Z. Stealing Hyperpa-
rameters in Machine Learning. CoRR abs/1802.05351
(2018).

[52] WEI, L., LIU, Y., LUO, B., LI, Y., AND XU, Q.
I Know What You See: Power Side-Channel Attack
on Convolutional Neural Network Accelerators. CoRR
abs/1803.05847 (2018).

[53] XU, X., LIU, C., FENG, Q., YIN, H., SONG, L.,
AND SONG, D. Neural Network-based Graph Embed-
ding for Cross-Platform Binary Code Similarity Detec-
tion. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security (New
York, NY, USA, 2017), CCS ’17, ACM, pp. 363–376.

[54] XU, Y., CUI, W., AND PEINADO, M. Controlled-
Channel Attacks: Deterministic Side Channels for Un-
trusted Operating Systems. In Proceedings of the 2015
IEEE Symposium on Security and Privacy (Washing-
ton, DC, USA, 2015), SP ’15, IEEE Computer Society,
pp. 640–656.

532 28th USENIX Security Symposium USENIX Association

http://www.DPAcontest.org/v4/
http://www.DPAcontest.org/v4/

	Introduction
	Related Work
	Contribution and Organization

	Background
	Artificial Neural Networks
	Multilayer Perceptron
	Convolutional Neural Network
	Activation Functions

	Side-channel Analysis

	Side-channel Based Reverse Engineering of Neural Networks
	Threat Model
	Experimental Setup
	Reverse Engineering the Activation Function
	Reverse Engineering the Multiplication Operation
	Reverse Engineering the Number of Neurons and Layers
	Recovery of the Full Network Layout

	Experiments with ARM Cortex-M3
	Reverse Engineering MLP
	Reverse Engineering CNN

	Mitigation
	Further Discussions and Conclusions

