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Introduction

In recent times research and development on Flapping Wing Micro Aerial Vehicles (FWMAV) has grown
immensely. FWMAVs are a subcategory of UAVs, and produce lift and thrust by means of their flapping
wings. FWMAVs are usually very small, light weight and agile. Compared to fixed-wing MAVs, FWMAVs
can take-off and land vertically demonstrating a higher maneuverability and higher performance at low
Reynolds numbers. Another subcategory of UAVs, called Rotary Wing MAVs, are also able to take-off
and land vertically but, at lower efficiency and lower performance at low Reynolds numbers. At this very
day the practical usage of Flapping Wing Micro Aerial Vehicles (FWMAVs) is limited. This is mainly due
to a combination between the high complexity of the flapping-wing flight mechanics and manufacturing
difficulties. The small scale of the on-board sensors, control mechanisms and other components cause
many obstacles in the manufacturing process. In addition, the small size and capacity of the batteries
used in FWMAVs limits the flight time. Still, a significant amount of research is already been done on
FWMAVs. Especially tailless flapping wing MAVs, such as the DelFly Nimble (Figures 1 -2), are an inter-
esting research topic. The fact that the DelFly Nimble is a tailless flapping wing MAV makes it inherently
unstable therefore, it is stabilized and controlled by means of active rate- and attitude control on its
wings actuation system. The DelFly Nimble weighs just under 29 grams and can maintain controlled
flight by using its two flapping wing mechanisms individually, the displacement of its dihedral and wing
root deflection. In order to maintain hover- or forward flight, the two flapping mechanisms utilize the
clap-and-fling effect in order to generate thrust. This configuration makes the DelFly Nimble very agile.

The goal of this thesis is to study models used in existing FWMAVs that can potentially be used for
modelling the flight dynamics of the DelFly Nimble. Based on the models of existing FWMAVs, the next
step is to apply system identification techniques in order to model the flight dynamics of the DelFly
Nimble. As for the DelFly Nimble, it is inherently unstable and therefore closed-loop system identifica-
tion and parameter estimation techniques are required in order to model its flight dynamics.

The added value of this thesis is to provide the reader insight on what techniques are available to model
FWMAVs and how the flight dynamics of the DelFly Nimble can effectively be modelled. The most ap-
propriate modelling approach will then be applied to the DelFly Nimble, with the goal that the models
must be well suited for stability analysis, simulation and controller design purposes. It is therefore
required that these models are accurate and relatively simple (low-order). Based on this process, we
were able to meet these demands by applying the system identification approach. Although the sys-
tem identification modelling approach is commonly used for conventional aircraft and tailed (inherently
stable) FWMAVs, it has not yet been applied to tailless FWMAV stabilized and controlled by a active
feedback control system. In this work, we will test whether or not a system identification approach can
be applied to an inherently unstable tailless FWMAV, in this case the DelFly Nimble, and additionally test
if this approach leads to accurate models predicting its longitudinal flight dynamics accurately. Based
on the results of this work, we can conclude that a system identification approach can effectively be
applied to tailless FWMAVs resulting in both computationally efficient and accurate models, in which
the models can be used for stability analysis and controller design.

This report is divided into two separate parts. Part I contains a scientific paper that includes all the
research results. Lastly, Part II contains the results of the preliminary studies on the DelFly Nimble and
other flapping wing MAVs. The estimated parameters of all models are presented in Appendix A, the
cycle of the system identification approach is described in Appendix B and additional validation data of
the forward flight models is provided in Appendix C.
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iv Introduction

Figure 1: The DelFly Nimble in forward flight

Figure 2: The DelFly Nimble in hover flight
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Abstract

Tailless flapping wing micro aerial vehicles (FMWAV) are known for their light weight and agility. However,
given the fact that these FWMAVs have been recently developed, their flight dynamics have not yet been fully
explained. In this paper we will develop local time-averaged longitudinal grey-box models based on closed-loop
system identification techniques, where free-flight experimental data, obtained from the DelFly Nimble, is used
to estimate and validate the local grey-box models. With these models we can take the first steps towards fully
understanding the flight dynamics of tailless FWMAVs. The consequence of the tailless configuration is inherent
instability and therefore tailless FWMAVs are generally more complex, compared to its tailed counterpart, and
require a active feedback control system. The active feedback control system introduces additional challenges
to the system identification process since it follows that feedback control works against the objectives of system
identification. Dynamic effects that play a major role when studying the dynamic behaviour of FWMAVs are the
sub-flap and the flap cycle-averaged effects. However, in this paper, we are only interested in modelling the flap
cycle-averaged (time-averaged) effects of the DelFly Nimble. Based on this approach, grey-box models were esti-
mated and validated for airspeeds near hover condition 0 m/s, up to 1.0 m/s forward flight. Despite the complexity
of the system, we were able to obtain low-order local models that are both efficient and accurate (R2 values up to
0.92) to predict the flight dynamic behaviour of the DelFly Nimble and can therefore be used for stability analysis,
simulation and control design.

I. INTRODUCTION

UNmanned aerial vehicles have proven to be very valuable for
both the civil- and military sectors. Their ever growing demand
also motivated designers to explore more unconventional im-

plementations [1, 2]. A good example of a unconventional unmanned
aerial vehicle is the, biologically inspired, Flapping Wing Micro Aerial
Vehicle (FWMAV). FWMAVs are typically very lightweight and ca-
pable of performing rapid manoeuvres, meaning that they are very
agile both at hover- and high speed conditions [3, 4, 5, 6]. Especially
tailless FMWAVs stand out for their high agility compared to tailed
FWMAVs. The cost of using a tailless FMWAV is inherent instability.
Tailless flapping wing MAVs are inherently unstable and require an
active feedback control system that will control the actuators of the
platform in order to stabilize the system [7, 8]. Examples of succesful
FWMAV are the Nano Hummingbird, the bio-inspired Colibri and the

∗MSc Graduate Student, Faculty of Aerospace Engineering, Department of Control &
Simulation, jorgen.nijboer@gmail.com
†Post-doctoral Researcher, Faculty of Aerospace Engineering, Department of Control

& Simulation, matejkarasek@gmail.com
‡Research Associate, Faculty of Engineering, Department of Aeronautics,

s.armanini@imperial.ac.uk
§Assistant Professor, Faculty of Aerospace Engineering, Department of Control &

Simulation, c.c.devisser@tudelft.nl

KUBeetle [5, 9, 10, 11]. Due to the fact that FWMAVs have very useful
properties, such as their small size, light weight and high agility, it is
expected that the demand for these particular vehicles will grow in the
near future. Given these properties, a useful application is surveillance
within buildings where high manoeuvrability is essential.
Attempts were made to study the flapping-wing aerodynamics in which
simplified aerodynamic models of flapping flight are used. Since FW-
MAVs operate in an region where the Reynolds numbers are low, they
are characterized by unsteady aerodynamics [12, 13, 14]. Computa-
tional Fluid Dynamics (CFD), used to model these unsteady aerody-
namics, are generally very complex and require a great amount of
computation power and are usually unsuitable for control system de-
sign applications and dynamics simulation [15].
Another popular modelling approach is the use of Quasi-steady models,
in combination with coefficients determined from analytical formulas
and/or experimental data [16, 17, 18].
An attractive modelling approach is the use of low-order dynamic
models which are based on the Equations of Motion (EOM) of a con-
ventional rigid body aircraft [8, 19, 20, 21, 22, 23]. The EOM are
then linearised around the trimmed condition and then used for the
modelling process. These simple low-order dynamic models are com-
putationally efficient and particularly useful for stability analyses and
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control system design and simulation. In addition, some models make
use of the cycle-averaged dynamics or flap cycle-averaged dynamics.
During this process one analyzes the average dynamics of one wing
beat, instead of analysing at a sub-flap cycle level [20].
In recent times aircraft system identification techniques have been ap-
plied to identify grey-box models based on flight-data obtained from
optical tracking devices. These models have proven to be sufficiently
accurate for control system design and simulation purposes [19]. Mod-
elling work performed on other tailless FWMAVs are scarce. Still
some work has been done on tailless FWMAVs, such as the work by A
Roshanbin et al which used a simple linear model that captures the lon-
gitudinal pitch dynamics, and the parameters in the model are estimated
using pendulum experiments [10]. In addition, a minimal longitudinal
dynamic model of a tailless FWMAV, the DelFly Nimble, has recently
been developed [24]. The DelFly Nimble is a bio-inspired tailless FW-
MAV developed at Delft University of Technology (Figure 1). In the
study by K.M. Kajak et al, developed a longitudinal model where the
unknown parameters (lengths and aerodynamic damping coefficients)
were identified based on optimization routines in order to minimize the
sum of the squares of the residuals between the simulation output and
free-flight OptiTrack-recorded data. The parameters of the non-linear
model were then optimized in order to achieve the best possible match
between the simulation and recorded free-flight data. However, this
paper still includes valuable information that can potentially be used to
better understand the flight dynamic behaviour of the DelFly Nimble
and help the development of new models.
Although the system identification approach is commonly used for
conventional aircraft and tailed (inherently stable) FWMAVs, it has
not yet been applied to tailless FWMAV stabilized and controlled by a
active feedback control system. In this work, we will test whether or
not a system identification technique can be applied to an inherently
unstable tailless FWMAV, in this case the DelFly Nimble, and addition-
ally test if this technique leads to accurate grey-box models predicting
its longitudinal flight dynamics accurately. Another goal is that these
models must be well suited for stability analysis, simulation and control
design purposes therefore, it is required that these models are accurate
and relatively simple. Relating to the latter point, computational effi-
ciency is escpecially important for models used onboard (due to the
low computational power of the on-board computer). It was found in
other studies that, applying system identification techniques meet these
demands within a specific flight region [19, 20].
Like other tailless FWMAVs, the DelFly Nimble is inherently unstable
and therefore, in order to maintain controlled flight, it is stabilized and
controlled by means of active rate- and attitude feedback control on
its wings actuation system. This inherent instability brings additional
challenges when applying system identification techniques in order to
model the flight dynamics of the system. First of all the possibility of
performing flight test experiments in open-loop is practically impossi-
ble when using the DelFly Nimble therefore, these experiments must be
performed in closed-loop (when the feedback control system is active).
In addition, repeatability of the flight experiments must be maintained
in order to make sure the same test conditions are reproduced every
flight experiment. Flight experiments of the DelFly Nimble were per-

formed in closed-loop free-flight condition where it was difficult to
maintain repeatability, especially when performing these flight exper-
iments manually. In order to improve repeatability we adopted the
use of automated manoeuvres. These automated manoeuvres were
activated at the moment the DelFly Nimble was situated in the desired
flight condition.
The second challenge lies in acquiring informative data during flight
experiments. In the context of this paper, informative data is defined
as free-flight data suitable for analysing and modelling FWMAVs.
Using OptiTrack sensors, sufficiently accurate and informative data
was obtained from the DelFly Nimble during free-flight experiments.
However, the challenge was to perform manoeuvres that excite the
natural motion of the Nimble as much as possible within the practical
boundaries of the flight tests. When performing flight tests for dynamic
modelling, the goal is to excite the natural motion of the system at
hand as much as possible. However, this natural motion is damped and
eliminated by the active feedback system of the DelFly Nimble and
negatively impacts the informativeness of the data. Therefore, when
flight tests are performed, the feedback control gains of the DelFly
Nimble were reduced as much as possible. In this paper we tested
whether reducing the control feedback gains, has the desired effect on
ensuring accurate and informative data for system identification can be
obtained.
As preciously mentioned, the dynamic- and aerodynamic characteris-
tics of FWMAV are very complex and challenging to model, especially
for tailless FWMAV. In this paper it is shown that simple, accurate and
computational efficient models are able to capture the complex flight
dynamics of the DelFly Nimble in the longitudinal plane.
Although models of the Nimble have been developed in a previous
study [24], this study focusses on identifying linear models using a
more structured aircraft system identification approach, where the esti-
mated parameters are longitudinal-directional derivatives (stability- and
control derivatives). These derivatives effectively provide information
regarding how much change occurs in the aerodynamic- forces and
moments acting on the DelFly Nimble when there is a small change in
states and control surfaces deflection. As a result, the stability of the
DelFly Nimble can be readily analysed using these estimated control-
and stability derivatives. However, the estimated parameters in the
previous study does not provide information regarding the stability of
the Nimble. Furthermore, the advantage of using linear models is that
they are computationally efficient and can therefore be used on-board.
In this work, we will introduce the use of cycle-averaged flapping dy-
namics in order to model the flight dynamic behaviour of the DelFly
Nimble. The result will be the development of low-order grey-box mod-
els that are able to accurately describe the FWMAVs time-averaged
behaviour in flight conditions varying from hover- (0.0 m/s) up to
forward flight (1.0 m/s) conditions. In addition, the chosen grey-box
models are computationally efficient, can be used for simulation and
stability analysis, provide insight into the flight dynamics of the DelFly
Nimble and serve as a tool for the development of new advanced con-
trollers. The models will be estimated and validated using free-flight
data obtained from optical tracking devices. Based on the results of
this work, we can conclude that system identification techniques can
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effectively be applied to tailless FWMAVs resulting in both computa-
tionally efficient and accurate models.
This paper is divided into five sections. In section II the working prin-
ciples of the DelFly Nimble will be briefly discussed together with
the experiment set-up. Section III explains the origin of the models
used for the modelling process. In section IV the applied estimation
techniques for estimating the unknown parameters in the chosen model
structure will be considered. Section V focusses on the modelling
results of the chosen model structure. And lastly, section VI will
include a discussion regarding the conclusions of this research and
recommendations will be provided for follow-up studies.

Figure 1: The DelFly Nimble

II. EXPERIMENT SET-UP

In this work, longitudinal grey-box model identification was performed
on the DelFly Nimble (Figure 2). The DelFy Nimble is a bio-inspired
tailless FWMAV developed at the faculty of Aerospace Engineering
of the Delft University of Technology [3]. With a wingspan of only
33 cm (from the left wing to the right wing), the DelFly Nimble is a
fairly small platform weighing just under 29 grams (Figure 2). The
left and right flapping mechanisms generate the thrust depending on
the flapping frequency and are indicated by the red arrows/vectors
in Figure 2. A. The higher the flapping frequency, the higher the
produced thrust. The platform includes two servos for yaw- and pitch
control. The first servo controls the yaw of the platform by changing
the vector of the two wings on opposite side (Figure 2. E, H). Pitch
control is accomplished by changing the dihedral of the flapping-wing
mechanisms, thereby changing the orientation of the thrust vectors
with respect to the center of mass (Figure 2. F, I). As a result, a
pitch torque will be produced which rotates the platform in order to
establish forward flight (Figure 2. C). Roll control is accomplished by
differential control of right wing-pair and left wing-pair (Figure 2. G,
J). Since the thrust is linearly proportional to the flapping frequency,
increasing the flapping frequency of one wing and reducing the flapping
frequency of the other will generate a differential thrust and therefore
causes the platform to roll enabling sideways flight (Figure 2. D).

The system (DeFly Nimble) will be identified using the most com-
monly used system identification approach, such as the one described
by Vladislav Klein & Eugene A. Morelli [25]. The complete system
identification cycle typically includes the set-up and automated ex-
ecution of the flight test experiments (manoeuvres), measuring the
system states and data composition, reconstruction of the aerodynamic-

forces and moments, the model structure selection and definition, the
parameter estimation routine and finally evaluation and validation of
the modelling results.
Performing system identification on a inherently unstable FWMAV,
that is stabilized by an automatic feedback control system, is difficult.
The objective of performing flight tests (manoeuvres) is to excite the
natural dynamics of the FWMAV as much as possible. However, when
performing these flight tests, the feedback system sees the executed
manoeuvres as a disturbance and will move the control surfaces/servos
in a way that mutes the natural dynamic response of the FWMAV [25].
Still system identification techniques can be applied to inherently un-
stable FWMAVs stabilized by an automatic feedback control system,
simply by reducing the feedback control gains as much as possible
[25]. There is only one requirement. In order for the system identifi-
cation process to work it is important that both the output y and the
input δ of the system in Block-diagram 1 can be measured [25]. If
measuring δ can not be realised, then one must use the techniques and
methods described by L.Ljung [26] which is considered to be a very
difficult process. During this research, both δ and y were measured,
therefore making it possible to apply a standard system identification
cycle, e.g. as described by Klein and Morelli [25]. Markers mounted
on the flapping-mechanisms of the DelFly Nimble, together with the
recorded on-board servo position, made it possible to measure the dihe-
dral angle which was used as input (δD). This section will additionally
explain how in-flight data was obtained (Subsection i), the controller
architecture of the Nimble (Subsection ii),, the coordinate frame sys-
tem used for system identification (Subsection iii), the flight tests that
are required and performed for exciting the natural dynamics of the
DelFly Nimble (Subsection iv), and how the in-flight data is processed
(Subsection v).

Controller Actuator Systemu δr e y
−

ym

Block-diagram 1: Basic closed-loop automatic feedback control
system.

i. In-Flight Data Acquisition

In order to obtain in-flight data for system identification, use was
made of the OptiTrack - Motion Capture System. The OptiTrack
system is installed in the 10m x 10m x 7m flight testing facility of the
Delft University of Technology, called the CyberZoo. The 12 Prime
17W OptiTrack cameras in the CyberZoo are able to measure both the
position and orientation of a body fitted with reflective markers very
accurately at a rate up to 360 Hz. During the in-flight data acquisition
phase of the DelFly Nimble data was captured at a rate of 200 FPS (Hz).
A total of six reflective markers, made from 20mm styrofoam balls
covered with reflective material, were mounted on the DelFly Nimble
in order to determine the position, orientation and dihedral deflection
(δD) of the DelFly Nimble’s body in the Opti-Track environment. In
addition to the Opti-Track measurements, on-board measurements were
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Figure 2: The DelFly Nimble is controlled by its two flapping mechanisms and control servos. Source: [3]

obtained from the 1.5 g Lisa MXS autopilot. Radio control set point,
controller outputs and servo positions were recorded on a micro-SD
card at a rate of approximately 100 Hz. Refer to Table 1 for an overview
of all the data obtained and by which data acquisition system they are
provided.

Type sensor Measurements obtained
OptiTrack Position (x,y,z)

Attitude quaternions (q0, q1, q2, q3)
Control deflections (δD)

IMU AHRS Angular velocities (p,q,r)
Linear accelerations (ax, ay, az)

On-board extra Flap frequency ( f f lap)
Set-point (θsp)

Dihedral command (cmdpitch)
Servo feedback (dihedral f eedback)

Table 1: Data provided by data acquisition systems during flight tests.

ii. Controller Architecture

The DelFly Nimble is stabilized by a fixed-gain parallel feedback
controller for attitude and rate feedback [3]. A Command filter, which
is a low-pass filter with a cut-off frequency of 15 (HZ), was added to the
controller in order to reduce noise that is generated by vibrations of the
fuselage (as a result of the un-synchronyzed flapping mechanisms) and
improves delays introduced to the control loop [3]. The pilot provides
an attitude set-point sent via the remote controller (RC). The reference
generator will then generate both the reference- attitude and rate. The
controller architecture can be found in Figure 3.

iii. Coordinate Frame Definition

The frame used for system identification is defined as follows: The
body x-axis is pointing forward, the body y-axis is pointing to the right
and the body z-axis is pointing downward (refer to Figure 2. H). In
addition, the positive inertial x-axis and z-axis are pointing forward
and downward, respectively (Figure 4). This coordinate frame is used
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Figure 3: Controller architecture. The setpoint is denoted by subscript sp,
reference by ref and measurement by m. Source: [24]

in order to prevent singularity issues when manoeuvres for system
identification in hover and forward flight are performed. Note that the
Xbody axis in Figure 4 coincides with the X-axis in Figure 2. H. The
same holds for the Z-axis.

Figure 4: Longitudinal free body diagram of the DelFly Nimble. Positive angles
for θ are defined by clockwise rotation.

iv. Flight Tests Required for System Identification

Important factors that affect the quality of the modelling- and system
identification process are data acquisition and data processing. How-
ever, the flight tests, which includes the input signal applied to the
system to be identified, are especially important since these signals
need to be applied such that the natural dynamics of the system are
excited. The goal is to obtain useful and informative data for modelling
and system identification purposes in the range of interest. The chosen
input design is based on existing theory on input design, the constraints
associated with the experiment set-up (the dimensions of the CyberZoo
for example), and partly based on the system used for the experiments.
For input design it is typical to use priori knowledge of the system
at hand to some extent. However, in the case of the DelFly Nimble,
little a priori knowledge of the system dynamics is available. Another

approach is to use a frequency sweep input, where as many frequencies
as possible are excited. The problem with using a frequency sweep
input is the duration of the manoeuvre. Frequency sweep inputs typi-
cally take a lot of time to perform when trying to cover a wide range of
frequencies. Due to the long duration time, the limited space available
in the CyberZoo will therefore hinder the flight-tests. In order to find a
compromise between execution time and frequency coverage a Dou-
blet multi-step input was applied. In this research we apply Doublet
multi-step inputs based on previous studies on FWMAVs. Although
Doublet inputs cover a less wider range of frequency than frequency
sweep inputs, it is advantageous to use doublets due to the limited space
required and the fact that it is more likely that FWMAV will remain in
its initial steady flight condition since the manoeuvre is symmetrical.
Especially when using linearised model structures it is important to
remain inside the trimmed condition. Previous studies on modelling the
dynamics of FWMAVs proved that using Doublets provided adequate
excitation [19, 27]. In an effort to model the longitudinal dynamics of
the Nimble we applied doublet inputs to the pitch command in closed-
loop. Since the feedback gains mute the natural dynamic response of
the vehicle we weakened the original feedback gains of the Nimble.
Based on previous studies on the DelFly Nimble [24] we were able to
gain insight into the dynamic response of the Nimble with changing
feedback gains and adjusted the gain settings accordingly (Table 2).

Original gains Adjusted gains
for system identification

KP = 1.6250 KP = 2.0833
KD = 0.20832 KD = 0.0500

Table 2: The adjust gain settings were used for system identification flight tests.

Automated manoeuvres were performed to ensure repeatability and
consistency during each flight test. These automated manoeuvres were
tuned in (a) input duration, (b) input amplitude and (c) input type
(selection of actuators) in order to improve the excitation of the natural
dynamic response of the system. When the automated manoeuvre is
activated it will send a Doublet attitude reference set-point (θsp) to the
reference generator as seen in Figure 3. As a result, the DeFly Nimble
will perform a Doublet manoeuvre in closed-loop. Figure 5 shows
an example of a typical automated manoeuvre performed for system
identification, where the Set-Point is θsp and the Measured Dihedral
δD is the input that goes directly into the FWMAV.

v. Data Acquisition and Processing

The OptiTrack system was selected as the primary data acquisition
system to derive all the states required for system identification, instead
of using data from the IMU. Other studies have proven that OptiTrack-
data based system identification will lead to sufficiently accurate models
[19, 28]. On the other hand, the main advantage of using IMU sensor
readings is the higher resolution (approximately 512 Hz) compared to
OptiTrack (360 Hz). This higher resolution is only important when
accurate analysis is required at a sub flap-cycle time scale. For the case
of the DelFly Nimble, on-board data, such as the motor speed, could
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Figure 5: Typical set-point θsp signal send to the reference generator, including
the corresponding measured dihedral δD used for model identification
of the DelFly Nimble.

be recorded on a sd-card with a rate of approximately 100 Hz [24] and
IMU data at a rate of 500 Hz. However, for the purpose of modelling
the flight dynamics of the DelFly Nimble, the refresh rate of 360 Hz of
the OptiTrack system is more than adequate for accurate analysis on a
flight dynamics time scale [19].
Based on previous studies, a third order zero-phase Butterworth filter
was used to filter the raw data [20]. First the data was filtered using
a cutoff frequency of 50 Hz to remove the noise. The reason for
this cutoff frequency is based on the fact that from free-flight data
it becomes more difficult to distinguish the fourth flapping harmonic
from the noise (Figure 6). Based on the assumption that the body
and flapping dynamics are unrelated, meaning they are decoupled, we
averaged out the data over a flap cycle in order to remove the time-
varying effect. There are some discussions ongoing suggesting that it
is not always justified to cancel out the time-varying effects however,
it is the most common and accepted approach when modelling the
dynamics of FWMAVs [19, 22]. The Power Spectrum Density (PSD)
plot of the raw acceleration measured in z-direction, referring to Figure
6, clearly displays four peaks. The first represents mainly the flapping
frequency, which is around 16 Hz, and the second peak is the second
flapping harmonic (32 Hz and thus twice the flapping frequency) both
of which contain the time-varying effects. Filtering the data below
these frequencies will remove the time-varying effects. In this research,
but also typically used in other researches [19, 24], a cut-off frequency
of 5 Hz was used to filter out the time-varying effects, and thereby
making sure only the body dynamics are preserved in the data.
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Figure 6: Power spectrum density (PSD) of the acceleration in z-direction az
derived from OptiTrack data.

The OptiTrack system only provides information regarding the posi-
tion and orientation of the FWMAV. However, in order to derive other
states essential for system identification, such as velocity and pitch rate,
we must use appropriate differentiation schemes to derive these states
as accurately as possible. Based on the study by J.V.A.V. Caetano et al
[28], who studied the effects of numerical differentiation on free-flight
data obtained for a FWMAV, we concluded that a three point central
difference (Equation 1) was best suited for numerical differentiation, as
it reduces error amplification significantly compared to other methods
and will not result into time lags or significant smoothing. All states
where then derived from the position- and orientation data by applying
Equation 1.

ẋt =
xt+1− xt−1

2∆t
(1)

III. MODEL STRUCTURE DETERMINATION AND
DEFINITION

At present there are few models and flight data available, both
physically- and non-physically derived, that describe the dynamics of
FWMAVs. In order to model the dynamics of the DelFly nimble a
grey-box system identification approach was used based on research
by S.F. Armanini et al [19]. Since little knowledge on the dynamics
of FWMAVs is available, grey-box identification allows for available
a priori knowledge of the system dynamics to be included in the
model structure, maintaining a connection to the physics of the system.
In combination with some a priori knowledge on the dynamics of
the system, measured data can then be fitted to the grey-box model
structure. The result will be an accurate model validated with real data,
and still maintaining a connection to the physics of the system being
modelled.
The time-averaged dynamics of the DelFly Nimble are based on the
equations of motion (EOM) of a conventional fixed-wing rigid-body
aircraft (Equations 2a-2c).
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Aerodynamic force equations:

X = m(u̇+gsin(θ)− rv+qw)

Y = m(v̇−gcos(θ)sin(φ)− pw+ ru)

Z = m(ẇ−gcos(θ)sin(φ)−qu+ pv)

(2a)

Aerodynamic moment equations:

L = ṗIxx +qr(Izz− Iyy)− (pq+ ṙ)Ixz

M = q̇Iyy + rp(Ixx− Izz)− (p2 + r2)Ixz

N = ṙIzz + pq(Iyy− Ixx)− (qr+ ṗ)Ixz

(2b)

Kinematic equations:

φ̇ = p+qsin(φ)tan(θ)+ rcos(φ)tan(θ)

θ̇ = qcos(φ)− rsin(φ)

ψ̇ = q
sin(φ)
cos(θ)

+ r
sin(φ)
cos(θ)

(2c)

Although the DelFly Nimble does not resemble an conventional
aircraft, previous studies have shown that these EOM can describe
the motion of some flapping-wing flyers [28, 29, 30, 31]. In addition,
we do not know the dynamics of the DelFly Nimble very well yet
therefore, the use of standard aircraft EOM is a logical first step. The
EOM (Equations 2a-2c) are then linearised around a certain trimmed
condition and decoupled only to include the longitudinal terms. The
non-linear fixed-wing rigid-body EOM of a conventional aircraft were
linearised around a forward flight condition of the Nimble. In the
derivation process the small perturbations assumptions were taken into
account along with the pitch attitude, forward body- and vertical body
velocity, which are assumed to be non-zero for large pitch attitudes.
The next step is to assume a linear model structure for the aerodynamic
forces and moments incorporated in the EOM. Model structures mostly
used in fixed wing aircraft are linear-in-the-parameter models and are
favoured since non-linear structures increase the complexity of the
estimation process [25, 32]. Several studies on different flapping-wing
flyers have shown shown that linear model structures represent the
time-averaged flight dynamics fairly accurately in slow forward flight
[19, 23, 28, 31]. For each longitudinal aerodynamic- force and moment
a linear model structure was defined consisting of only measurable and
physically plausible states (Equations 3-5), where ∆ denotes the devia-
tion from the trimmed condition. During all the system identification
manoeuvres it is assumed that the Nimble flies symmetrically, meaning
that the only terms affecting the aerodynamic- forces and moments in
trimmed condition is the weight of the Nimble. Therefore the weight
terms are included in Equation 3-4.

X = Xq∆q+Xu∆u+Xw∆w+XδD
∆δD +mgsin(θ0) (3)

Z = Zq∆q+Zu∆u+Zw∆w+ZδD
∆δD−mgcos(θ0) (4)

M = Mq∆q+Mu∆u+Mw∆w+MδD
∆δD (5)

Based on the assumption made earlier, all the states and aerodynamic-
forces and moments are cycle-averaged (time-averaged), including the
control surface deflection δD such that vibrations (due to the flapping

mechanism) in the measurements are not given as input into the model.
Cycle-averaged means that, for example, the thrust generated by the
flapping frequency is constant over one flapping cycle.

The linear models (Equations 3-5) were then substituted into the
linearised EOM (Equations 6-9) which resulted in the grey-box
model of the DelFly Nimble describing its longitudinal time-averaged
dynamics (Equation 10).

∆q̇ =
M
Iyy

(6)

∆u̇ =
X
m
−gsin(θ0)−gcos(θ0)∆θ −∆qw0 (7)

∆ẇ =
Z
m
+gcos(θ0)−gsin(θ0)∆θ +∆qu0 (8)

∆θ̇ = ∆q (9)


∆q̇
∆u̇
∆ẇ
∆θ̇

=


Mq
Iyy

Mu
Iyy

Mw
Iyy

0
Xq
m −w0

Xu
m

Xw
m −gcos(θ0)

Zq
m +u0

Zu
m

Zw
m −gsin(θ0)

1 0 0 0




∆q
∆u
∆w
∆θ

+


MδD
Iyy

XδD
m

ZδD
m
0

[∆δD
]

(10)

The next step is to estimate the unknown parameters in the grey-box
model. For example, the second equation consists of the unknown
parameters Xq, Xu, Xw and XδD

. Note that for the state-space matrix
we also included bias terms in the model. The purpose of these bias
terms is to simply receive anything that is not captured in the rest of
the model. In the next section we will look at the parameter estimation
techniques in order to estimate the unknown parameters of equations
3-5.

IV. PARAMETER ESTIMATION

In this paper an Ordinary Least Squares (OLS) estimator was used
to estimate the unknown parameters in the linear equations 3-5. The
working principle of an OLS estimator is minimising the difference
between the measurements (obtained from the OptiTrack system) and
the output determined by the model. In the case of an OLS estimator,
the assumption is made that at each time point the output measurements
z is a linear combination of regressor matrix X multiplied by the model
parameters θ , where X contains all the regressors, plus an unknown
equation error ε . So, in relation to equation (10), the measurements that
represent z are given in the vector [∆q̇ ∆u̇ ∆ẇ ∆θ̇ ]T . In equation
form this becomes (Equation 11):

z = Xθ + ε, (11)

where it is assumed that ε is zero-mean Guassian white noise. The
best estimator for θ is obtained by minimizing the sum of squared
difference between the measurements and model (Equation 12):

J(θ) =
1
2
(z−Xθ)T (z−Xθ) (12)

7
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The next step in finding the parameter estimate θ̂ is by minimizing
Equation 12:

∂J
∂θ

=−XT z+XT X θ̂ = 0 (13)

Rearranging Equation 13 gives the formula for the OLS estimator:

θ̂ = (XT X)−1XT z (14)

Based on the equations in the grey-box model (Eq. 10), we selected
the following states and inputs for estimating the longitudinal time-
averaged dynamics of the DelFly Nimble:

x =
[
∆q ∆u ∆w ∆θ

]
, u = ∆δD (15)

Taking Equation 5 as an example for the parameter estimation of the
aerodynamic moment M, with the regressor matrix X containing a total
number of n measurements;

θ̂ = (XT X)−1XT z =


M̂q
M̂u
M̂w
M̂δD

b̂q̇

 (16)

where b̂q̇ is the estimated bias parameter which receives all that is
not captured by the model, and the regressor matrix X is defined as;

X =


∆q(1) ∆u(1) ∆w(1) ∆θ(1) ∆δD(1)
∆q(2) ∆u(2) ∆w(2) ∆θ(2) ∆δD(2)

...
...

...
...

...
∆q(n) ∆u(n) ∆w(n) ∆θ(n) ∆δD(n)

 (17)

V. MODELLING RESULTS

The results of the modelling process will be presented in four sections.
In section i the results of the hover model will be covered. Further-
more, in section ii the performance of the estimated hover model will
be validated in closed-loop. Section iii will be dedicated to the results
of the models in forward flight conditions and in section iv adjusted
model structures were tested.
The prediction capability of an identified model must be validated on
data that is not used in the identification process. Therefore, for estima-
tion of the parameters in equations (3-5) and validation of the estimated
model, two different datasets were used. The estimation-datasets were
used for parameter estimation purposes and the validation-datasets were
used to validate the estimated models. The estimation manoeuvres used
for the system identification process consist of doublets in pitch, as
discussed in Experiment Set-Up section (Figure 5). For the validation
process a different manoeuvre was used, namely a single-input in pitch,
for the purpose of strengthening the validation of the estimated model.

Param. θ̂ |σ̂ | 100|σ̂/θ̂ |

Xq 0.0041 1.2033e-03 1.6045
Xu -0.1011 4.3542e-03 0.5698
Xw 0.0089 6.8437e-03 9.0203
XδD

0.7218 4.0767e-02 0.3727
Zq -0.0056 2.0858e-04 5.0846
Zu 0.0196 7.5479e-04 0.7459
Zw -0.0059 1.1863e-03 13.3852
ZδD

0.2982 7.0668e-03 0.9784
Mq -0.0019 9.8107e-06 6.8274
Mu 0.0194 3.5501e-05 7.1146
Mw -0.0019 5.5799e-05 37.3612
MδD

0.2782 3.3238e-04 4.3765

Table 3: Estimated parameters θ̂ , corresponding estimated standard deviation
σ̂ and the estimated standard deviation of each parameter in relation
to its magnitude 100|σ̂/θ̂ |.

i. Results of Modelling Process Hover Condition

A total of four datasets were used to identify the time-averaged longitu-
dinal hover model, where each datasets contained around six system
identification manoeuvres. Table 3 displays the estimated parameters
of the hover model including the corresponding standard deviations for
one of the datasets used in this example (dataset #1). The estimated
time-averaged longitudinal hover model was open-loop validated by
calculating the output of the equations in the state-space matrix (Eq.
10) using the measured states and measured dihedral as input.
The estimated standard deviation of each parameter in relation to its
magnitude (Table 3), show good results (below 10% except for Zw and
Mw), indicating a satisfactory estimation process. In addition, correla-
tion between all the estimated parameters also show show no issues,
suggesting that all are parameters are estimated separately. Figures
(7a-7b) display the estimated aerodynamic forces and moments and
outputs of the state-space model.
Both models estimating the aerodynamic- force X and moment M show
very good results in terms of goodness of fit (R2) and output correlation
(Table 4-5). However, the model estimating the aerodynamic force
Z was found to be ineffective. This inaccuracy is directly reflected
in the output ẇ which can be seen in Figure 7b. The reason for this
may be lack of excitation of the Z-dynamics or deficiencies in the
model structure (Equation 4). A analysis of the residuals for the aerody-
namic force Z also shows that some deterministic components remain
in the data (Figure 8), which might be due to a deficiency in the model
structure [25]. Attempts were made to improve the Z force model by
more aggressive excitation in the Z force, but this did not improved the
model. The validation plots (Figures 7c-7d) again show good results in
terms of the predictive capability of the longitudinal models in a similar
flight regime, except for the aerodynamic force Z and corresponding
state-space output ẇ.

Based on the discussion made earlier, additional excitation of the
Z did not result in a better model and it is most likely that some other
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(b) Estimation of the time-averaged longitudinal hover model. Measured- and model-
estimated output values of the state-space model.
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(c) Validation aerodynamic- forces and moment. Measured- and model-predicted output
values of the aerodynamic- forces and moment.
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(d) Validation of the time-averaged longitudinal hover model. Measured- and model-
predicted output values of the state-space model.

Figure 7: Open-loop Estimation (a-b) and Validation (c-d) results for the time-averaged longitidinal model
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Match estimation data with measured data
Output Output R2 RMSE
Variable Correlation (% of measurement range)
X 0.97 0.92 5.93%
Z 0.13 -0.95 20.49%
M 0.97 0.89 5.90%
q̇ 0.97 0.94 4.44%
u̇ 0.97 0.93 3.94%
ẇ 0.30 0.09 15.31%
θ̇ 0.99 0.99 0.63%

Table 4: Estimation metrics of the longitudinal model of Figure (7a-7b).

Match validation data with measured data
Output Output R2 RMSE
Variable Correlation (% of measurement range)
X 0.95 0.77 11.16%
Z 0.48 -0.40 14.29%
M 0.94 0.81 6.90%
q̇ 0.94 0.81 6.90%
u̇ 0.93 0.73 7.95%
ẇ -0.06 -0.19 13.75%
θ̇ 0.99 0.99 1.37%

Table 5: Validation metrics of the longitudinal model of Figure (7c-7d).

parameters must be included in the linear model structure of the Z
force. In section iv we will study the improvements that can be made
in relation to the original model (Equation 4).
For the linear hover model a total of four datasets were generated,
where each dataset contains at least five system identification manoeu-
vres all of which recorded in the same flight condition. In an ideal
situation the estimated linear models should be the same regardless of
the dataset used. However, in practice this is impossible to achieve due
to imperfections in the measurements and/or slight differences between
the system identification manoeuvres, and slight changes in the flight
conditions. Since the linear hover model is only valid in a particular
flight condition and differences in manoeuvres and measurement im-
perfections affect the estimated model, it is interesting to know if the
different datasets impact the estimated linear model. A comparison be-
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Figure 8: Residuals of the aerodynamic force Z model.
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Figure 9: Pole locations hover model using 4 datasets, where each dataset contains at
least 5 system identification manoeuvres. Dataset #1 (used in the examples),
Dataset #2, Dataset #3 and Dataset #4

Eigenvalues
-8.8875
1.4262 + 5.1659i
1.2668 − 5.1659i
-0.1343

Table 6: Eigenvalues of the estimated longitudinal hover model obtained from
dataset #1.

tween the models is displayed in Figure 9 from which we can conclude
that the differences between the estimated models is very small, and
will therefore not affect the estimated linear model in that particular
flight condition. All the estimated models are unstable which confirms
the inherently unstable nature of the DelFly Nimble. Table 6 displays
the eigenvalues of the estimated longitudinal model represented by
one unstable oscillatory mode and two stable aperiodic modes. This
model and its corresponding pole configuration corresponds with the
theoretical model from M. Karásek, and that the modes qualitatively
correspond to those found in many insect studies [7, 33].
Since the parameters have a physical meaning, it is possible to evaluate
their physical plausibility. For example, the value of the parameter
Mq (Table 3) is negative indicating the Nimble’s pitch rate damping
is stable which is also confirmed in the models from Karásek [7, 33].
Also the negative value for Xu matches the results of the models. The
estimated value of another important parameter Mu is positive. The
positive sign of the estimated parameter does not correspond to the sign
estimated by M. Karásek. However, in this study M. Karásek used a
non-airspace body-fixed frames. This means that a positive Mu in this
paper has the same effect as negative Mu in the study of M. Karásek
[7].
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ii. Results of Closed-Loop Modelling

Given the fact that the DelFly Nimble is inherently unstable, active sta-
bilization is necessary in order to guarantee stable and controlled flight.
Like other tailless FWMAVs, the DelFly Nimble relies on feedback
on the body rates and attitude [24]. In order to validate the estimated
time-averaged longitudinal hover model in closed-loop, an exact copy
of the controller architecture of the DelFly Nimble (Figure 3) was
implemented in Simulink. With this Simulink model we were able to
obtain both closed-loop estimation- and validation data.
In a previous study on the DelFly Nimble it was found that the dihedral
angle (used as input for the longitudinal hover model) was affected
by the velocity u [24] causing an error between the commanded and
measured dihedral angle. The cause of this error was probably due to
mechanical- play or elasticity of the dihedral actuator mechanism. In
order to obtain a good estimation of the ‘actual’ dihedral deflection, a
correction factor was introduced and added to the measured dihedral
position. The same correction factor was also used in the Simulink
model used in this study.
Figures (10a-10b) display the estimated output of the estimated longi-
tudinal model in closed-loop. Both the estimated and predicted outputs
match the measured data effectively, except for the state w. The esti-
mation and validation metrics, such as goodness of fit (R2) and output
correlation, are reported in Table 7 and Table 8, respectively. The
performance of the estimated hover model using the original gains (fast
gains; Kp = 1.6250 and Kd = 0.2083) is also accurately predicting the
flight dynamics of the DelFly Nimble, as show in Figure 11, except for
the state w.

Match estimation data with measured data
Output Output R2 RMSE
Variable Correlation (% of measurement range)
q 0.93 0.87 6.20%
u 0.97 0.90 7.09%
w 0.78 0.42 19.59%
θ 0.96 0.87 7.39%

Table 7: Closed-loop estimation metrics of the longitudinal model of Figure
10a.

Match validation data with measured data
Output Output R2 RMSE
Variable Correlation (% of measurement range)
q 0.93 0.88 5.51%
u 0.97 0.90 8.44%
w 0.42 0.08 23.11%
θ 0.97 0.78 11.23%

Table 8: Closed-loop validation metrics of the longitudinal model of Figure
10b.

iii. Results of the Modelling Process in Forward Flight Condition

The DelFly Nimble typically operates in both hover- and forward flight
conditions, depending on the desired mission. It is therefore essential
to know how the DelFly Nimble operates and behaves, not only in
hover condition, but also in forward flight conditions. In this section
the goal is to identify and analyse the behaviour of the estimated linear
time-averaged longitudinal models in forward flight condition ranging
from 0.5±0.05 m/s, to 0.75±0.05 m/s, up to 1.0±0.05 m/s. In order
to estimate the linear time-averaged longitudinal model in forward
flight conditions, and record informative data in that particular forward
flight condition, the DelFly Nimble was first stabilized in its particular
forward flight trimmed condition. At the instance when the DelFly
Nimble was in the planned forward flight trimmed condition, the sys-
tem identification manoeuvre was performed.
However, the process of achieving these steady trimmed conditions
proved to be very difficult when using slow feedback gains. This issue
was solved by using slightly faster gains which did not affect the infor-
mativeness of the data.
A total of 18 datasets were recorded containing over 90 system iden-
tification flight tests (manoeuvres) ranging from 0.5±0.05 m/s up to
1.0±0.05 m/s forward flight condition. The performance of the forward
flight condition models is reported in Table 9.

Output var. Output correlation RMSE (%)
q̇ 0.96 ± 0.010 4.11 ± 0.4%
u̇ 0.92 ± 0.015 6.12 ± 0.5%
ẇ 0.86 ± 0.220 7.01 ± 5.06%
θ̇ 0.99 ± 0.010 1.15 ± 0.2%

Table 9: Performance of the forward flight models, where the average output
correlation is displayed ± the standard deviation over all the datasets
(same as for the RMSE).

The performance metrics of the forward speed models indicate a
successful estimation process and are in the same order of magnitude
as obtained from the hover model. Also it is noticed that the values of
the output correlation of the output variable ẇ increased dramatically
from 0.78 in hover, to 0.92 in forward flight condition (1.0 m/s), and
the RMSE (%) decreased significantly. This is also clearly visible in
the plots displaying the estimated and measured output variable ẇ at
different flight speeds (Figure 12), where the top plot indicates the 0.0
m/s trimmed condition, the 1st plot below the top indicates the 0.5 m/s
condition, the 2nd plot below the top displays the 0.75 m/s condition,
and the bottom plot indicates the 1.0 m/s trimmed condition. Based on
this we can conclude that the original model is able to better capture
the ẇ-dynamics with increasing forward speed and that the Nimble
more resembles a conventional aircraft when in forward flight (only
when including the time-averaged effects). However, it is also possible
that the dynamics in Z-force are better excited with increasing forward
speed.

In order to provide an idea of how the system dynamics of the DelFly
Nimble change with respect to increasing forward speed (from 0.0- to
1.0 m/s), the pole locations of all the models obtained in over 90 flight
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Figure 10: Estimated and Predicted output of the estimated time-averaged longitudinal hover model in closed-loop.
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Figure 11: Measured and predicted states in closed-loop using fast gain set-
tings.

tests, were plotted in one pole-zero map (Figure 13), where the black
crosses (X) represent the pole locations of the hover model, and the
red crosses (X) the 1.0 m/s forward flight condition. As observed in
the pole-zero map, with increasing velocity, the one oscillatory pole
shifts to lower frequencies and the left most aperiodic pole (fast pole)
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Figure 12: Estimated and Measured ẇ. Top plot: 0.0 m/s, one below top plot:
0.5 , two below top plot: 0.75 m/s and bottom plot: 1.0 m/s flight
condition.

increases in stability by shifting to more negative values (approx. -8.5
to -11).
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Figure 13: Pole locations of model with increasing speed V . The hover model
trimmed at 0.0 m/s indicated by X, the model trimmed at 0.5 m/s
indicated by X, the model trimmed at 0.75 m/s indicated by X, and
the model trimmed at 1.0 m/s indicated by X of the linear time-
averaged longitudinal model.

iv. Improvements on the Linear Model Structure for the Aerody-
namic Force Z

Although the models of X and M show very accurate results, both in
hover and forward flight conditions, the model describing the dynamics
of the Z force can be greatly improved, especially in and near the hover
flight condition. Based on previous discussions on deficiencies in the
existing model structure (Equation 4), it was found that a considerable
amount of dynamics was insufficiently captured by the model, and it is
most likely that there are nonlinear dependencies present in and near the
hover flight condition. In order to test if this indeed the case, the model
structure of the aerodynamic force Z (Equation 4) was re-evaluated
and updated to include nonlinear terms in the regressors. As a result of
doing this, it is no longer possible to use the state-space representation
used of the original model because of the nonlinear terms used in the
updated models. In this particular example nonlinear regressor terms,
such as qu, w2 and u2, were selected from a pool of regressors and
included in the model, in which the regressor terms were selected based
on engineering judgement, and only low-order (< second order) terms
were considered to keep the model plausible and avoid over-fitting. In
this section we will analyse the model estimated output (Zestimated) of
three different models (Equations 18-20), compared to the measured
aerodynamic force (Zmeasured).
The three model structures, consisting of selected variables (and corre-
sponding regressors), are presented in the following equations (18-20):

Zmodel1 = Z0 +Zqu∆(qu)+ZδD
∆δD +Zw2 ∆w2 +Zu2 ∆u2

+ZδDw∆(δDw)+ZδDq∆(δDq)+Zq2 ∆q2
(18)

Zmodel2 = Z0 +Zqu∆(qu)+ZδD
∆δD +Zw2 ∆w2 +Zu2 ∆u2 (19)

Zmodel3 = Z0 +Zqu∆(qu) (20)

The results of the estimation routine are provided in Figure (14)
where the estimated output of the adjusted models are compared to the

original model. Model f (qu) (Equation 20) already captures some of
the dynamics. Yet great improvements are made when using a model
that is a function of f (qu,δD,w2,u2) (Equation 19), although it is not
completely confirmed if this model can be physically interpreted. Since
the w-dynamics are not accurately explained by the linear terms in the
original model, we used quadratic terms in the adjusted model, which
are still real states and sometimes used in aerodynamic models. The
randomly selected variables in model Zmodel3 (Equation 20) provides
the best results in terms of goodness of fit but, using too many linear and
nonlinear terms probably leads to over-fitting. The corresponding met-
rics of the adjusted models are provided in Figure (15) indicating that
the adjusted models, which include nonlinear terms, greatly improved
the effectiveness of the estimation. Validation data is provided in Ap-
pendix (D). Although the adjusted models are characterized by much
better RMSE (%)-, output correlation- and R2 values, compared to the
original model, it remains to be answered whether or not the estimated
parameters of the adjusted models are physically plausible. In addition,
by applying powerful model structure determination techniques, such
as Stepwise Regression, one is in a position to more effectively select
regressors (terms), from a pool of candidate regressors, that most influ-
ence aerodynamic- forces and moments [25, 32]. Such a study should
be considered in future work since it has the potential of providing a
better understanding of the Nimble’s dynamic behaviour.

VI. CONCLUSIONS AND RECOMMENDATIONS

In this paper we presented linear time-averaged longitudinal models
in hover- and forward flight (up to 1.0±0.05 m/s) conditions for a
tailless FWMAV, named the DelFly Nimble, obtained by means of a
data-driven system identification approach. Both models, describing
the aerodynamic- force X and moment M, in hover- and forward flight
conditions captured the actual dynamic behaviour of the DelFly Nimble
very accurately, with values of R2 up to 0.90 and 0.85, respectively
(Appendix C). These simple and accurate models can therefore be used
for dynamic simulation, advanced controller development and stability
analysis. In addition, we have shown that a closed-loop system identifi-
cation approach can be applied effectively to tailless FWMAVs which
leads to accurate models.
Initial results obtained from the model describing the aerodynamic
force Z were found to be inadequate in capturing the dynamic be-
haviour of the Nimble at, and near, hover flight conditions. In an
attempt to improve this model, we constructed new model structures
containing nonlinear terms. The results of this study showed a con-
siderable improvement, given that the adjusted model, for example
f (qu,δD,w2,u2) (Equation 19), increased the output correlation by
a factor of more than 6. Still some (nonlinear) dynamics were not
captured by the models used in this paper, probably due to deficiencies
in the model structures or a lack of excitation. However it was proven
that, when including nonlinear terms in the model, a larger fraction of
the dynamics could be modelled.
In section V.iv we have additionally shown that adjusting the model
structure can significantly improve the model accuracy, thereby suggest-
ing that the use of stepwise regression techniques could lead to more
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Figure 14: Adjusted models containing nonlinear parameters. The output of model f (qu,δD,w2,u2,δDw,δDq,q2) was estimated using Equation:18, model
f (qu,δD,w2,u2) using Equation:19, and model f (qu) using Equation: 20.

Orig
ina

l M
od

el

Z m
od

el 
1

Z m
od

el 
2

Z m
od

el 
3

0

5

10

15

20

25

R
M

S
E

 [%
]

Orig
ina

l M
od

el

Z m
od

el 
1

Z m
od

el 
2

Z m
od

el 
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
ut

pu
t C

or
re

la
tio

n

Orig
ina

l M
od

el

Z m
od

el 
1

Z m
od

el 
2

Z m
od

el 
3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

R
2

Figure 15: The metrics of the adjusted model and the three adjusted models.

effective models. Studies on applying stepwise regression techniques,
can be considered very valuable in helping us better understand the
dynamics of tailless FWMAVs and the DelFly Nimble.
The models estimated in this paper are all linear local models. These
local models are therefore only valid in a particular flight region. In
order to obtain a single model that is valid for the entire flight envelope

of the DelFly Nimble, future research should look into the use of global
modelling techniques in order to obtain a single model which is made
up from all the local models identified in this paper [19].
Although the developed models in this work achieved a high accuracy,
some dynamic effects remain to be modelled. For example, the time-
varying dynamics (flapping dynamics), longitudinal models valid in
fast forward flight conditions (> 1.0 m/s) and models describing the
lateral dynamics of the Nimble, are some of the subjects that should be
looked into in future research.
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1
Introduction

In this part of the report the results of the preliminary research are shown. Before the modelling process
of the flight dynamics of the DelFly Nimble took place, many studies on similar FWMAVs were reviewed.
This study included the analysis of different types of modelling process performed on FWMAVs such as
aerodynamic modelling and dynamic modelling (2). Given the fact that the goal is to model the flight
dynamics of the DelFly Nimble using a flight data-driven approach, system identification techniques
were reviewed and explained in chapter (3). The next step of the research was to perform a study on
models used on existing FWMAVs in chapter (4). Based on this research, information on how to best
model the flight dynamics of the DelFly Nimble would be obtained. Parameter estimation techniques
were applied to most of the papers studied on modelling FWMAVs and are described in chapter (5). The
tailless design of the DelFly Nimble is characterized by inherent instability. This means that the DelFly
Nimble must be stabilized by a closed-loop automatic feedback control system in order to maintain
controlled flight. In order to apply system identification techniques to inherently unstable systems, a
study on closed-loop system identification was conducted and explained in chapter (6). Lastly, chapter
(7) highlights the best suitable models and approaches, from previous studies, to model the flight
dynamics of the DelFly Nimble using data-driven system identification techniques.
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2
Aerodynamic- and Dynamic

Modelling of FWMAVs

A complete model of a flapping-wing platform consists of several components. The first step in creating
a complete model is performing aerodynamic modelling (2.1). Here, the aerodynamic forces- and
moments must be modelled. Secondly, a model of the system dynamics must be created. The system
dynamics model are also called the Equations of Motion (EOM) model where dynamic modelling
(2.2) takes place. The system dynamics model describes how the forces and moments act on the
body of the FWMAV. Lastly, the wing kinematics must be integrated. Note that this can be neglected
depending on the assumption one makes. For example, the assumption can be made to neglect the
effects of the kinematics of the wing on the body due to the fact the mass of the wings is much lower
than the mass of the body.

2.1. Aerodynamic Modelling
Aerodynamic modelling of FWMAVs is mostly done using quasi-steady modelling. In short, quasi-steady
modelling assumes that the instantaneous forces on a flapping wing are equal to the forces that would
act on the wing moving steadily at the same free-stream velocity and angle of attack The aerodynamics
of hovering insect flight. I. The quasi-steady analysis (1984). As seen in the paper by Sanjay P. Sane
Sane and Dickinson (2002) the aerodynamics of flapping wings are non-linear. These models are based
on blade element theory, whereby the forces on each section of the wing are integrated over the total
span of the wing in order to obtain the total forces acting on the wing. In many cases, quasi-steady
models provide useful approximations on the aerodynamic forces. On the other hand, models pro-
duced using the quasi-steady approach are usually developed and validated in a single flight condition,
usually hover Armanini (2018). Note that these quasi-steady models are physical derived models and
non-linear with a limitation in their validity. However, quasi-steady models offer good approximation
on aerodynamic forces with a low computational effort. More complex and advanced methods on aero-
dynamic modelling is using computational fluid dynamics (CFD). Note that these models are highly
non-linear and computational inefficient Armanini, de Visser and de Croon (2015), since it requires a
great deal of computational power.

2.2. Dynamic Modelling
As for the aerodynamics, the body dynamics of flapping-wing platforms are also complex, physically
derived and usually non-linear. The model of the dynamics are called the Equations of Motion (EOM)
of the flapping-wing platform. Several formulations in order to derive the EOM for flapping-wing ve-
hicles have been applied. Newtonian methods Gebert et al. (2002), Gibbs-Appel equations Sibilski
et al. (2004) and d’Alemberts principle of virtual work Caetano et al. (2015). In the formulations of
the EOM a difference can be made between single-body and multi-body models. When considering a
flapping-wing platform as a multi-body system, a distinction between the body- and the wings of the
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platform is made. This means that multi-body models consider the inertial effect of wings on the body,
and therefore it is important to involve the kinematic effects of the flapping on the body. Including
the kinematic effects of the wing in the model increases its complexity. To reduce the complexity of
the dynamic model one often uses a single-body model. When using a single-body approach, one as-
sumes that the wing mass is much smaller compared to the body mass, therefore the the wing inertia
effects can be neglected. Single-body models are also widely applied to flapping-wing platforms Dietl
and Garcia (2008) Taylor et al. (2006). The non-linear EOM are usually linearised around a certain
trim-point to improve calculation efficiency and maintaining accuracy. Linearising the EOM is common
when modelling the dynamics of flapping-wing platforms which will become more apparent further in
this study.



3
System Identification

A system identification approach differs from the two approaches in sections (2.1 and 2.2) described
above. Where the aerodynamic- and dynamic modelling approaches are physically derived, the system
identification approach is based on obtaining a model from experimental data, for example from flight
tests. Moreover the system identification cycle is explained in Appendix B. So, from the experimental
data (flight tests data) a model can be extracted. System identification offers a good comprise between
computational efficiency, accuracy and model complexity compared to both simplified physical derived
models and highly complex numerical models (CFD). This makes system identification an attractive
method for producing dynamic models Armanini (2018). For this reason the system identification
approach will be studied and applied to the model identification process of the DelFly Nimble. The
main working principle of system identification in general, is described by the following: Given are the
input u and output y, the objective of system identification is to find the system S (refer to Figure 3.1).
In order to obtain a mathematical model of a physical system, such as the flight dynamic model of an
aircraft or FWMAV in this case, one can apply aircraft system identification to model the dependence
of aerodynamic forces and moments on aircraft motion and control variables. This means that one
assumes a model structure based on a priori knowledge and hypotheses, and determining the model
parameters such that the obtained model represents the actual flight data as accurately as possible
Armanini (2018)Klein and Batterson (1983) Klein and Morelli (2006).

Figure 3.1: System Identification Applied to Aircraft. Source: Klein and Morelli (2006).

Klein Klein and Batterson (1983) Klein and Morelli (2006) describes that the aerodynamic forces and
moments can be determined using equation 3.1,

𝑦(𝑡) = 𝜃ኺ + 𝜃ኻ𝑥ኻ + ... + 𝜃፠ዅኻ𝑥፠ዅኻ (3.1)

where 𝑦(𝑡) is the aerodynamic force or aerodynamic coefficient measured, 𝑥ኻ to 𝑥፠ዅኻ are the measure
responses of the platform (regressors), for example velocity and rotational rates, and 𝜃ኻ to 𝜃፠ዅኻ are
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the parameters to be estimated using parameter estimation techniques. Note that the parameter terms
can be either linear or non-linear. If the parameters terms are linear, then we speak of a linear-in-the-
parameters model. If the parameter terms are non-linear, we speak of a non-linear-in-the-parameters
model. It could be the case that for some modelling problems, the relationship between the regressors
and the response variable is non-linear in the parameter. In this case, one can make use of a non-linear
in the parameter model structure. Mostly used model structures in fixed wing aircraft are linear-in-
the-parameter models and are favoured since non-linear parameters increase the complexity of the
estimation process Armanini (2018) Armanini, de Visser, de Croon and Mulder (2015) Klein and Morelli
(2006) Gim et al. (2016) Chand et al. (2015) Grauer et al. (2011) Caetano, De Visser, De Croon, Remes,
De Wagter, Verboom and Mulder (2013). The choice of model structure is usually based on experience
or, are selected from a pool of candidate regressors using statistical model structure determination
techniques Klein and Morelli (2006). Since this approach uses actual measured data of the platform,
the results from the model identification process will most likely closely resemble the actual platform
and are therefore more difficult to generalize, compared to the aerodynamic- and dynamic modelling
approach where the model was physically derived.
In order to obtain a model that has meaning, it is important that the data should be collected in con-
ditions that are as similar as possible to the real operating conditions.

Model structures used for system identification range from black-box models, where the model is non-
physical derived and no distinction can be made between the aerodynamics and the dynamics, to
white-box models where the model is completely physical derived and can give better insight into the
aerodynamic and dynamic behaviour. It is very common for FWMAVs that a combination between a
white-box and a black-box model are used Armanini (2018), called ’grey-box models’, due to the fact the
physical phenomenons of the flapping platform are very hard to derive. The grey-box model combines
the advantages of the black- and grey-box models by means of providing insight into the dynamic and
aerodynamic behaviour when little knowledge of the actual physics of the system at hand is available.
The parameters to be estimated in these grey-box models also have a physical meaning, for example
control- and stability derivatives Armanini (2018)Dietl et al. (2011) Armanini, de Visser and de Croon
(2015).
Grey-box models are typically used in order to have some physical connection to the physical behaviour
of the system at hand. This requires that the model includes a priori knowledge of the system at hand
Armanini (2018) Armanini, de Visser and de Croon (2015) Chand et al. (2015) Armanini, de Visser,
de Croon and Mulder (2015). The a priori knowledge of the system comes from the Equations of Mo-
tion (EOM) of a conventional rigid-body aircraft. It has been shown that the EOMs from a conventional
aircraft give an adequate description of the DelFly for most flight conditions. In order to model the
motion of a FWMAV around a certain steady state trimmed condition and simplify the equations, the
EOMs are typically linearized around this trim point J.A. Mulder (2013). Flapping-wing dynamics are
time-varying and typically non-linear, and therefore linear models are insufficient into fully capturing
them. Nonetheless, it can be shown that linearisation provide an acceptable initial approximation within
the limited regions of the flight envelope. Simplified models can be useful, for instance to develop basic
and computationally efficient simulation frameworks Armanini, de Visser and de Croon (2015).



4
Models of Existing FWMAVs

In the research field of flapping wing MAVs many researchers attempted to model the dynamics of
these flying machines. In this section we will provide an overview of the models used in several studies
in which researchers attempted to model the dynamics of FWMAVs . The goal is to obtain information
on the type of models used, the model structure and the regression model type used, in order to de-
termine the most suitable modelling techniques and model structures for the the DelFy Nimble.

Linear Aerodynamic Model Identification of a Flapping Wing MAV Based on Flight Test Data
Caetano, De Visser, De Croon, Remes, De Wagter, Verboom and Mulder (2013)
The paper by J.V. Caetano, C.C. de Visser, G.C.H.E. de Croon, B. Remes, describes a system identifica-
tion approach on the DelFly II, which is a passively stable tailed FWMAV, to construct a aerodynamic
model that can be used for simulations. Here, a motion capturing system was used to measure the
states of the platform. This model captures the flapping-averaged dynamics of the FWMAV and the
assumptions are made for a single rigid body (constant inertia properties). In addition, the model
structure, describing the aerodynamic- forces and moments, are all linear. Flapping-averaged means
that the mean force created by one flapping cycle is used for modelling.
For the dynamic model use was made of the EOM for aircraft obtained from Vladislav Klein, Eugene A.
Morelli Klein and Morelli (2006), given in the equations (4.1a-4.1c).

Force equations:
�̇� = 𝑎፱ − 𝑔𝑠𝑖𝑛(𝜃) + 𝑟𝑣 − 𝑞𝑤
�̇� = 𝑎፲ + 𝑔𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜙) + 𝑝𝑤 − 𝑟𝑢
�̇� = 𝑎፳ + 𝑔𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜙) + 𝑞𝑢 − 𝑝𝑣

(4.1a)

Moment equations:
𝑙 = �̇�𝐼፱፱ + 𝑞𝑟(𝐼፳፳ − 𝐼፲፲) − (𝑝𝑞 + �̇�)𝐼፱፳
𝑚 = �̇�𝐼፲፲ + 𝑟𝑝(𝐼፱፱ − 𝐼፳፳) − (𝑝ኼ + 𝑟ኼ)𝐼፱፳
𝑛 = �̇�𝐼፳፳ + 𝑝𝑞(𝐼፲፲ − 𝐼፱፱) − (𝑞𝑟 + �̇�)𝐼፱፳

(4.1b)

Kinematic equations:
�̇� = 𝑝 + 𝑞𝑠𝑖𝑛(𝜙)𝑡𝑎𝑛(𝜃) + 𝑟𝑐𝑜𝑠(𝜙)𝑡𝑎𝑛(𝜃)
�̇� = 𝑞𝑐𝑜𝑠(𝜙) − 𝑟𝑠𝑖𝑛(𝜙)

�̇� = 𝑞𝑠𝑖𝑛(𝜙)𝑐𝑜𝑠(𝜃) + 𝑟
𝑠𝑖𝑛(𝜙)
𝑐𝑜𝑠(𝜃)

(4.1c)

where the definitions of all the terms can be found in Klein and Morelli (2006). The measured
aerodynamic- forces and moments (Equations 4.1a-4.1c) were then calculated from the experimen-
tal data obtained from the flight tests.

For the aerodynamic model structure selection two linear models were used: (1) a full model that in-
corporates all the state variables reconstructed from the tracking system, and (2) a reduced model that
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only includes state variables that may be measured or calculated directly from the existing on-board
sensors. The structure of the model is given in equation 4.2 below.

𝐹። = 𝐶ፅᎲ +
፧

∑
፬ኻ
𝐶ፅᑊ ⋅ 𝑆 𝑤𝑖𝑡ℎ 𝑆 ∶ {𝜙, 𝜃, 𝜙, 𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟, 𝛼, 𝛽, 𝛿፟ , 𝛿፞ , 𝛿፫} (4.2)

where 𝛼 and 𝛽 are measured states and 𝐹 ∶ {𝑋, 𝑌, 𝑍, 𝐿,𝑀,𝑁} are the forces and moments calculated
using the EOM. 𝛿፟ , 𝛿፞ , 𝛿፫ are the flapping frequency, elevator input angle, and rudder input angle,
respectively. The term 𝐹። represents the input for the forces and moments obtained from the EOM. The
first term on the right-hand side, 𝐶ፅᎲ , is the affine coefficient; S represents a state and 𝐶ፅᑊ is the state’s
coefficient or parameter for a given force or moment 𝐹።. The full model structure is then defined such
that each of the aerodynamic forces and moments is a linear function of all the states.
The reduced model structure only uses states that are measurable using on-board sensors which include
much less states than the full model. The reduced model only includes the states: {𝜙, 𝜃, 𝜙, 𝛿፟ , 𝛿፞ , 𝛿፫}
and is represented in the equations (4.3-4.8) below.

𝑋 = 𝑋ኺ + 𝑋፪𝑞 + 𝑋᎕𝜃 + 𝑋᎑ᑖ𝛿፞ + 𝑋᎑ᑗ𝛿፟ (4.3)

𝑌 = 𝑌ኺ + 𝑌፩𝑝 + 𝑌Ꭻ𝜙 + 𝑌᎑ᑣ𝛿፫ + 𝑌᎑ᑗ𝛿፟ (4.4)

𝑍 = 𝑍ኺ + 𝑍፪𝑞 + 𝑍᎕𝜃 + 𝑍᎑ᑖ𝛿፞ + 𝑍᎑ᑗ𝛿፟ (4.5)

𝐿 = 𝐿ኺ + 𝐿᎕𝜃 + 𝐿᎑ᑣ𝛿፫ + 𝐿᎑ᑗ𝛿፟ (4.6)

𝑀 = 𝑀ኺ +𝑀᎕𝜃 +𝑀᎑ᑖ𝛿፞ +𝑀᎑ᑗ𝛿፟ (4.7)

𝑁 = 𝑁ኺ + 𝑁᎕𝜃 + 𝑁᎑ᑣ𝛿፫ + 𝑁᎑ᑗ𝛿፟ (4.8)

The next step in the modelling process is estimating the parameters in the full- and reduced model.
For this an ordinary least squares (OLS) estimator was used to estimate the parameters in the linear
models. Note that in the next section more information regarding parameter estimation techniques,
such as OLS estimation, will be presented. The process of parameters estimation is a fairly simple
process in finding the parameters of the full- and reduced linear models. For example, the estimation
of the parameters of the aerodynamic force in x-direction (X) is determined using the following matrix
operations:

�̂� =

⎡
⎢
⎢
⎢
⎢
⎣

�̂�ኺ
�̂�፪
�̂�᎕
�̂�᎑ᑖ
�̂�᎑ᑗ

⎤
⎥
⎥
⎥
⎥
⎦

= (𝑅ፓ𝑅)ዅኻ𝑅ፓ𝑋

with �̂� the column vector containing the estimated parameters and the regression matrix R;

𝑅 =
⎡
⎢
⎢
⎣

1 𝑞(1) 𝜃(1) 𝛿፞(1) 𝛿፟(1)
1 𝑞(2) 𝜃(2) 𝛿፞(2) 𝛿፟(2)
⋮ ⋮ ⋮ ⋮ ⋮
1 𝑞(𝑁) 𝜃(𝑁) 𝛿፞(𝑁) 𝛿፟(𝑁)

⎤
⎥
⎥
⎦

𝑛፩ፚ፫ፚ፦፞፭፞፫፬ × 𝑁

The estimated parameters of X are indicated by a hat �̂�, with the regression matrix R containing N
observations (or regressors) of the states. This means that the size of the R-matrix is determined by
the number of parameters 𝑛፩ፚ፫ፚ፦፞፭፞፫፬ and the number of data points 𝑁. Finally, by multiplying the
estimated parameters �̂� with the measured states X, the output of the model y is estimated.

The results of the system identification approach where promising. Good predictions from the aero-
dynamics forces and moments were obtained for both models. However, the reduced model was less
accurate in modelling the aerodynamic forces and moments. In addition, the models were also used
to predict the new states of the ornithopter in a non-linear dynamic simulator. This simulator used
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the real inputs sequence to predict the Delfly’s new states, based on a real initial condition. Here
the identification coefficients, estimated during the parameter estimation process, were used to cal-
culate the aerodynamic forces and moments that were input in the non-linear equations of motion
to compute the new state derivatives, which were then integrated resulting in the new states. The
results showed that it was possible to reconstruct its flight path and attitude with considerable accu-
racy for the initial parts of the simulation. However, the simulation quickly diverged after half a second.

Black-Box LTI Modelling of Flapping-Wing Micro Aerial Vehicle Dynamics
Armanini, de Visser and de Croon (2015)
The paper by Sophie F. Armanini, Coen C. de Visser and Guido C. H. E. de Croon present a development
of a black-box linear state-space model for flight dynamics of a FWMAV namely, the DelFly II. Since a
black-box model structure was selected, it was therefore impossible to distinguish the aerodynamics and
dynamics of the platform. A system identification technique was used in order to obtain a longitudinal-
and lateral dynamic models using data recorded from a motion tracking system. Ordinary least squares
and maximum likelihood-based estimation approaches were applied in the time domain. Note that
theory on maximum likelihood estimation (MLE) will be discussed in the next section. For now, MLE is
simply a estimation routine to estimate unknown parameters in a pre-defined model.
The black-box method does not make use of the EOM for describing the trajectory of the DelFly II
but uses the measured states only for modelling. Furthermore, the following states and inputs for
longitudinal- and lateral dynamic modelling were selected (Equations 4.9 - 4.10),

𝑥፥፨፧ = [𝑞 𝑢 𝑤 𝜃], 𝑢፥፨፧ = 𝛿፞ (4.9)
𝑥፥ፚ፭ = [𝑝 𝑟 𝑣 𝜙], 𝑢፥፨፧ = 𝛿፫ (4.10)

The states and inputs from equation (4.9 - 4.10) were used as regressors in the regression matrix. In
this particular case, the OLS estimator has the exact same structure as described in the previous paper,
namely;

Θ̂ = (𝑋ፓ𝑋)ዅኻ𝑋ፓ𝑧,
where X is the regression matrix and 𝑧 the output measurement vector written in vector form;

𝑧 = 𝑋Θ + 𝜖, (4.11)

where 𝜖 is the measurement error in vector form. A and B are defined as

A = [𝑎።።], B = [𝑏።፣], 𝑖 = 1, 2, ..., 𝑛፱ , 𝑗 = 1, 2, ..., 𝑛፮ , (4.12)

where 𝑛፱ is the number of states and 𝑛፮ the number of inputs. The regression matrix X is then
constructed from the combined states and inputs at all the N measurement points;

X =
⎡
⎢
⎢
⎣

𝑥ኻ,ኻ 𝑥ኼ,ኻ ⋯ 𝑥፧ᑩ ,ኻ 𝑢ኻ,ኻ 𝑢ኼ,ኻ ⋯ 𝑢፧ᑦ ,ኻ
𝑥ኻ,ኻ ⋱ ⋮ 𝑢ኻ,ኻ ⋱ ⋮
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑥ኻ,ፍ … 𝑥፧ᑩ ,ፍ 𝑢ኻ,ፍ … 𝑢፧ᑦ ,ፍ

⎤
⎥
⎥
⎦

,

The estimation process will then be performed per individual state 𝑛፱. So, for each output 𝑧። each row
in the original state-space system can be formulated as,

𝑧። =
⎡
⎢
⎢
⎣

�̇�።,ኻ
�̇�።,ኼ
⋮
�̇�።,ፍ

⎤
⎥
⎥
⎦
= 𝑋Θ +

⎡
⎢
⎢
⎣

𝜖።,ኻ
𝜖።,ኼ
⋮
𝜖።,ፍ

⎤
⎥
⎥
⎦
, Θ̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎።ኻ
𝑎።ኼ
⋮
𝑎።፧ᑩ
𝑏።ኻ
𝑏።ኼ
⋮
𝑏።፧ᑦ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This means that, when using the OLS, the parameters must be estimated for each individual state
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𝑖 = 1, 2, ..., 𝑛፱, so each row 𝑖 in the system matrices A and B are estimated consecutively. In addition,
state derivatives were obtained from numerical differentiation.
A disadvantage of using a OLS is that it assumes the measurements contain no noise. In practical
situations measurements always contain noise. In the paper another technique was used to estimate
the parameters of the dynamic model of the DelFly II, such as the Total Least Squares or Maximum
Likelihood-based estimation. Another method to decrease the amount of noise in the measurements
is to pre-process the estimation data by means of state-estimation techniques also known as the two-
step method Organization et al. (1994). Still, using the OLS estimator one is able to obtain reasonable
accurate results Armanini, de Visser and de Croon (2015).

Another estimation method used in the paper includes the Maximum likelihood (ML) estimation, also
known as the output error method (OEM), which deals with measurement errors but not with process
noise. The theory regarding the ML estimator will be discussed in the next section. This way of mod-
elling the dynamics of the DelFly II has shown good results. The output response of the estimated
dynamic model accurately resemble the measured output of the actual DelFly II. Although accurate re-
sults for both the longitudinal- and lateral model were obtained, the only problem is that the black-box
model cannot distinguish the aerodynamics- from the dynamic effects.

Insect Flight Dynamics and Control
Taylor et al. (2006)
The paper by Graham K. Taylor, Richard J. Bomphrey and Jochem ’t Hoen attempted to model the
insect flight dynamics. In addition, empirical data from real insects have been used, measurements
obtained from wind tunnel and rotary balance measurement units in order to create a model. Both
linear and non-linear EOMs were used during the modelling process.
First the linear dynamic model that is presented in the paper assumes a rigid body and used the lin-
earised equations of motion about a steady state of equilibrium (trim point). The longitudinal dynamics
are given by:

⎡
⎢
⎢
⎣

𝛿�̇�
𝛿�̇�
𝛿�̇�
𝛿�̇�

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝑋፮/𝑚 𝑋፰/𝑚 𝑋፪/𝑚 − 𝑤ኺ 𝑋᎕/𝑚 − 𝑔𝑐𝑜𝑠(𝜃ኺ)
𝑍፮/𝑚 𝑍፰/𝑚 𝑍፪/𝑚 + 𝑢ኺ 𝑍᎕/𝑚 − 𝑔𝑠𝑖𝑛(𝜃ኺ)
𝑀፮/𝐼 𝑀፰/𝐼 𝑀፪/𝐼 𝑀᎕/𝐼
0 0 1 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝛿፮
𝛿፰
𝛿፪
𝛿᎕

⎤
⎥
⎥
⎦

where 𝑋።, 𝑍። and 𝑊።, 𝑖 ∈ {𝑢, 𝑤, 𝑞, 𝜃} are the partial derivatives of the static forces and moments with
respect to the state variables, and 𝛿 represent the perturbation of the corresponding variable. Note
that this is a grey-box model structure.

For the non-linear analysis in the paper, a non-linear framework grey-box is used. The insect in the
model is still treated as a rigid body with constant mass distribution. The longitudinal dynamics are
then given by equations (4.13-4.16):

𝑚�̇� = −𝑚(𝑤𝑞 + 𝑔𝑠𝑖𝑛(𝜃)) + 𝑋ኺ + 𝑋፮𝑢 + 𝑋፰𝑤 + 𝑋፪𝑞 + 𝑋᎕𝜃 (4.13)
𝑚�̇� = 𝑚(𝑢𝑞 + 𝑔𝑐𝑜𝑠(𝜃)) + 𝑍ኺ + 𝑍፮𝑢 + 𝑍፰𝑤 + 𝑍፪𝑞 + 𝑍᎕𝜃 (4.14)
𝐼�̇� = 𝑀ኺ +𝑀፮𝑢 +𝑀፰𝑤 +𝑀፪𝑞 +𝑀᎕𝜃 (4.15)

�̇� = 𝑞 (4.16)

where, for example, the force X is approximated by the linear expansion (Equation 4.17);

𝑋 = 𝑋ኺ + 𝑋፮𝑢 + 𝑋፰𝑤 + 𝑋፪𝑞 + 𝑋᎕𝜃 (4.17)

and the other components Z and M are approximated in a similar fashion. Results from the models
show that the non-linear models show better results compared to the linear models.

Dipteran Insect Flight Dynamics. Part1 Longitudinal Motion About Hover
Faruque and Humbert (2010)
The paper of Imraan Faruque and J.SeanHumbert presents a model of the longitudinal hovering dy-
namics for an dipterous insect. It assumes a rigid body structure where the forces are approximated
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by wingstroke-averaged forces. In addition, frequency based system identification tools are used to
identify the unknown parameters of the model. The study also includes the identification of the aero-
dynamic effects of the flapping wing insect, where the aerodynamic effects are physically derived. The
system of ordinary differential equations, or the EOM, used in the study of the longitudinal portion are
(Equations 4.18);

𝑋 = 𝑚(�̇� + 𝑞𝑤 − 𝑟𝑣) + 𝑚𝑔𝑠𝑖𝑛(𝜃)
𝑍 = 𝑚(�̇� + 𝑝𝑣 − 𝑞𝑢) − 𝑚𝑔𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜙)
𝑀 = 𝐼፲፲�̇� − 𝐼፱፳(�̇� + 𝑝𝑔) − (𝐼፲፲ − 𝐼፳፳)𝑞𝑟

(4.18)

where X, Z and M are the aerodynamic forces and moment respectively. For example the linearised
equation in x is then (Equation 4.19);

Δ�̇� = Δ𝑋
𝑚 − 𝑔𝑐𝑜𝑠(𝜃ኺ)Δ𝜃 (4.19)

where Δ𝑋 has the physical interpretation of being the perturbation force due to state and/or control
perturbations from equilibrium (trim) values. For traditional linearised analysis, a linear control model
was developed which separates out the linear effect of each of the longitudinal variables 𝑢, 𝑣, 𝑤, 𝜃, 𝑞 as
(Equation 4.20);

Δ𝑋
𝑚 = 𝑋፮Δ𝑢 + 𝑋፰Δ𝑤 + 𝑋᎕Δ𝜃 + 𝑋፪Δ𝑞 +

Δ𝑋
𝑚 (4.20)

where 𝑋 is the term that include each of the control inputs (Equation 4.21);

Δ𝑋
𝑚 = 𝑋፟Δ𝑓 + 𝑋ᎏΔ𝛽 + 𝑋᎕ᑠᑗᑗΔ𝜃፨፟፟ (4.21)

where the flapping frequency f, 𝜙፨፟፟ is the mean position (center) of the wing oscillation (which is the
stroke offset of the wing), and the stroke plane angle 𝛽 are the control inputs which will affect the
aerodynamic force X. So, the formula for the state ̇Δ𝑢 then becomes (Equation 4.22);

Δ�̇� = 𝑋፮Δ𝑢 + 𝑋፰Δ𝑤 + 𝑋᎕Δ𝜃 + 𝑋፪Δ𝑞 + 𝑋፟Δ𝑓 + 𝑋ᎏΔ𝛽 + 𝑋᎕ᑠᑗᑗΔ𝜃፨፟፟ − 𝑔𝑐𝑜𝑠(𝜃ኺ)Δ𝜃 (4.22)

Equation 4.22 is considered to be of great importance when looking at the DelFly Nimble. This method
gives a direct link to how the perturbation of the aerodynamic forces change when, for example, the
pitch or deflection of a control surface changes or deviates from its trimmed position. So, if one is able
to measure, for example, the pitch and deflection of a certain control surface, then these measurements
can be used to model the aerodynamics of the DelFly Nimble. The linear model, equation 4.20, is then
substituted into equation 4.19 which forms the first term of the state equation �̇� = 𝐴𝑥 + 𝐵𝑢 where
𝑥 = [Δ𝑢, Δ𝑤, Δ𝑞, Δ𝜃]ፓ and the control inputs are; 𝑢 = [Δ𝑓, ΔΦ, Δ𝛽, Δ𝜙፨፟፟]ፓ. The matrices are defined
as;

𝐴 =
⎡
⎢
⎢
⎣

𝑋፮ 0 0 −𝑔
𝑍፮ 𝑍፰ 0 0
𝑀፮ 𝑀፰ 𝑀፪ 0
0 0 1 0

⎤
⎥
⎥
⎦

and

𝐵 =
⎡
⎢
⎢
⎣

0 0 𝑋ᎏ 𝑋Ꭻ,፨፟፟
𝑍፟ 𝑍Ꭵ 0 0
0 0 𝑀ᎏ 𝑀Ꭻ,፨፟፟
0 0 0 0

⎤
⎥
⎥
⎦

Note, that the partial derivative of 𝜃, w and q terms (𝑋᎕, 𝑋፰ and 𝑋፪) are not included in the A-matrix.
This due to the fact that the terms are zero for any flight configuration because the wings lift and
drag components are functions of the kinematics, the wing shape, the environment, and not the state
variables. Also the B-matrix does not include one term, namely 𝑋፟. This is due to the fact that the
magnitude of the lift vector does not affect the aerodynamic force X.
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The perturbation forces are expressed in a time-invariant linear system in state-space form. In addi-
tion to the A-matrix, the B-matrix (control matrix) also contains very useful information and provides a
direct insight into the physics of how control inputs affect the flight motion of the platform. Although
the configuration of the FWMAV in this paper is different compared to the DelFly Nimble, the process
of modelling its dynamics is considered to be very useful when applied to the DelFly Nimble given its
potential to gain insight in the dynamic behaviour of the platform.

Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle
Keennon et al. (2012)
Matthew Keennon, Karl Klingebiel, Henry Won and Alexander Andriukov describe the use of a simplified
aerodynamic model that is backed by extensive experimental data without going into any detail on how
the model is actually structured. Using the hummingbird as a biological model, the primary focus of
the development program was on designing the flapping wing propulsion system and the associated
control mechanisms required for tailless flapping wing flight with the capability of precision hover. The
paper does provides information that it has used helicopter performance models. However, one can
argue about the usefulness of this information when applied to the DelFly Nimble.

Controlled Flight of a Biologically Inspired, Insect-Scale Robot
Ma et al. (2013)
Kevin Y. Ma, Pakpong Chirarattananon, Sawyer B. Fuller and Robert J. Wood used a similar approach
as Imraan Farugues taken over by Cheng et al. (2011). The main difference is that this study includes
the use of feedback control derivatives in the state space system to determine the physical effects of
the flight motions. This approach does not fit the data driven system identification process that will be
applied to the DelFly Nimble due to the use of the feedback control derivatives in the model. The main
objective regarding the Nimble is to estimate the aerodynamic control derivatives and not the feedback
control derivatives.

A Biomimetic Robotic Platform to Study Flight Specializations of Bats
Ramezani et al. (2017)
The approach in the paper is used to model the dynamics of the platform (a bat) is based on the
Lagrange method using kinetic and potential energies. This approach is very different from most of
the other researchers studied so far.

COLIBRI: A Hovering Flapping Twin-Wing Robot
Roshanbin et al. (2017)
The work of A. Roshanbin, H. Altartouri, M. Karasek and A. Preumont uses a state-space model to
model the longitudinal pitch dynamics where the parameters in the state space model of the longitudi-
nal dynamics are evaluated (which are a function of a damping constant) using pendulum experiments.
The basis of the dynamic model is described by linearised Newton-Euler equations (also known as the
equations of motion).

Dynamic Flight Stability of a Hovering Bumblebee
Sun and Xiong (2005)
The study of Mao Sun and Yan Xiong focusses on the longitudinal dynamic flight stability of a hovering
bumblebee. The longitudinal dynamic flight stability of a hovering bumblebee was studied using the
method of computational fluid dynamics to compute the aerodynamic derivatives and the techniques
of eigenvalue and eigenvector analysis for solving the equations of motion. Like most of the work done
on Ornithopters, Mao Sun also make use of rigid body approximations meaning the body does not
change its shape or its size during translational- or rotational manoeuvres. The action of the flapping
wing is represented by the cycle-average forces and moments. This means that the average forces
and moments produced by the wing are averaged with respect to one complete cycle. Originally the
equations of motion are non-linear but are linearised, thereby approximating the motion of the platform
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only at small disturbances from its steady, or trimmed, state. The linearised equations used are;

Δ𝑋 = 𝑚Δ�̇� = 𝑋፮Δ𝑢 + 𝑋፰Δ𝑤 + 𝑋፪Δ𝑞 −𝑚𝑔Δ𝜃 (4.23)
Δ𝑍 = 𝑚Δ�̇� = 𝑍፮Δ𝑢 + 𝑍፰Δ𝑤 + 𝑍፪Δ𝑞 (4.24)
Δ𝑀 = 𝐼፲፲Δ�̇� = 𝑀፮Δ𝑢 +𝑀፰Δ𝑤 +𝑀፪Δ𝑞 (4.25)

Δ�̇� = Δ𝑞 (4.26)
Δ ̇𝑥ፄ = Δ𝑢 (4.27)
Δ ̇𝑧ፄ = Δ𝑤 (4.28)

where 𝑋፮ , 𝑋፰ , 𝑋፪ , 𝑍፮ , 𝑍፰ , 𝑍፪ , 𝑀፮ , 𝑀፰ and 𝑀፪ are the stability derivatives (aerodynamic derivatives) to be
estimated. X, Z are the well known aerodynamic forces and M is the aerodynamic pitching moment.
The mass is indicated by m and 𝐼፲፲ is the pitching moment of inertia around the y-axis. The Δ indicates
a small disturbance quantity from the steady-state or trimmed condition. Note that in trimmed hovering
flight 𝜃 is zero due to the fact the x-axis is aligned with the horizontal frame of reference. As a result
X = 0 , Z = -mg and M = 0. In deriving the equations of (4.23-4.28), the aerodynamic forces and
moments are described as functions of the disturbed motion variables as discussed earlier. For example
X is a function of several perturbations;

𝑋 = 𝑋፮Δ𝑢 + 𝑋፰Δ𝑤 + 𝑋፪Δ𝑞 (4.29)

Finally the EOM (with the substituted stability derivatives) are then represented in a matrix system. To
determine the stability derivatives, Mao Sun used CFD (Computational Fluid Dynamics) tools and tech-
niques. Using these techniques, Mao Sun was able to determine the parameters which were required
to be estimated in the A-matrix. As a result, from the A-matrix Sun was able to determine the stability
of the platform by analysing the eigenvalues at several natural modes of the system.

Longitudinal Flight Dynamics of Hovering MAVs/Insects
Taha et al. (2014)
During the analysis of the dynamic model it became clear that a rigid body assumption was made
which neglected the inertial effects of the wing on the body. The same assumptions were made in
many other studies and have led to good results. However, this particular study only addresses the
longitudinal model. Due to the flapping, a wing-fixed frame is used and is considered to coincide with
the body-fixed frame for zero wing kinematic angels. The equations of motion used are similar to those
used in a conventional aircraft, namely;

⎡
⎢
⎢
⎣

�̇�
�̇�
�̇�
�̇�

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

−𝑔𝑤 − 𝑔𝑠𝑖𝑛(𝜃)
𝑞𝑢 + 𝑞𝑐𝑜𝑠(𝜃)

0
𝑞

⎤
⎥
⎥
⎦
+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
𝑚𝑋1
𝑚𝑍1
𝐼፲፲
𝑀
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

where g is the gravitational acceleration, m the body mass and 𝐼፲፲ the moment of inertia around
the body y-axis 𝑦. The the state variables are; 𝑥 = [𝑢, 𝑤, 𝑞, 𝜃]ፓ where u and w the velocity of the
body center of mass in the 𝑥 and 𝑧 directions and 𝜃 and q are the pitching angle and the angular
velocity about the 𝑦 axis respectively. The X, Z and M variables are the well know aerodynamic forces
and moments in the 𝑥, 𝑧 directions and about the 𝑦 axis respectively. The aerodynamic modelling
process in the paper are physically derived and are considered to be complex, due to the complex
flow field that occurs during the flapping process such as the leading edge vortices and the rotational
effect of the wings. These processes are very hard to model analytically. However, as many others,
Haithem E. Taha also uses a analytical approach instead of an empirical approach that is more focused
on making models based on data from flight tests. As a result, the aerodynamic coefficients used
in the state space model are estimated analytically, describing the physical nature of the derivatives
mathematically. However, the state-space system remains similar to most of the work studied so far
and is displayed below;
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⎡
⎢
⎢
⎣

�̇�
�̇�
�̇�
�̇�

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

−𝑔𝑤 − 𝑔𝑠𝑖𝑛(𝜃)
𝑞𝑢 + 𝑞𝑐𝑜𝑠(𝜃)

0
𝑞

⎤
⎥
⎥
⎦
+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
𝑚𝑋1
𝑚𝑍1
𝐼፲፲
𝑀
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎣

𝑋፮(𝑡) 𝑋፰(𝑡) 𝑋፪(𝑡) 0
𝑍፮(𝑡) 𝑍፰(𝑡) 𝑍፪(𝑡) 0
𝑀፮(𝑡) 𝑀፰(𝑡) 𝑀፪(𝑡) 0
0 0 0 0

⎤
⎥
⎥
⎦

where 𝑋፮/፯/፰, 𝑍፮/፯/፰ and 𝑀፮/፯/፰ are the stability derivatives and are time-varying. In other words,
the time-varying stability derivatives (or aerodynamic derivatives) are written directly in terms of the
system parameters, where the parameters are the flapping angle (back and forth), wing pitch angle,
mass and other parameters of the platform. Since these stability derivatives are non-linear (the pa-
rameters vary non-linearly), the non-linear system is linearised to perform the stability analysis.

A Hovering Flapping-Wing Microrobot with Altitude Control and Passive Upright Stability
Teoh et al. (2012)
The study of Z. E. Teoh, S. B. Fuller, P. Chirarattananon, N. O. Pérez-Arancibia, J. D. Greenberg and R.
J. Wood focusses on the stability analysis of the Flapping-Wing Microrobot uses passive air dampers
for stabilisation. The aerodynamic damping coefficients are determined using wind tunnel tests and
measurements. From these wind tunnel measurements a simplified linear model was used. The study
also shows how the drag of the flapping wings is proportional to v (the free stream velocity) for a
constant w (the velocity of the wing relative to the body) using wing tunnel tests. Based on the wind
tunnel measurements the model that approximates the aerodynamic force can be written as (Equation
4.30);

𝑓 = −𝑏𝑣 (4.30)

where b is estimated using a least squares linear regression on the force data (force data obtained
from wind tunnel measurements 𝑓 ) and the airspeed v. The primary task goal of this particular study
is stabilization in pitch 𝜃. The aerodynamic dampers are placed below and under the center of mass
(COM) of the body. As the RoboBee flies, a drag force caused by the forward (lateral) movement
causes a torque around the COM. The sum of all lateral forces are then equated (see Figure 4.1a-4.1b)
in order to produce an equation that describes the non-linear lateral dynamics (Equation 4.31);

𝑚 ̇𝑣፱ = 𝐹ኻ + 𝐹ኼ + 𝐹፰ + 𝐹፭,፥
= −𝑏ኻ(𝑣፱ − 𝑑ኻ𝜔𝑐𝑜𝑠(𝜃)) − 𝑏ኼ(𝑣፱ + 𝑑ኼ𝜔𝑐𝑜𝑠(𝜃))

(4.31)

where 𝜔 is the angular velocity. Then the non-linear equation for the torque to rotational acceleration
is described (Equation 4.32);

𝐽�̇� = 𝑇ኻ + 𝑇፰ + 𝑇ኼ
= 𝑑ኻ𝑏ኻ(𝑣፱ − 𝑑ኻ𝜔𝑐𝑜𝑠(𝜃)) − 𝑑ኼ𝑏ኼ(𝑣፱ + 𝑑ኼ𝜔𝑐𝑜𝑠(𝜃)) + 𝑑፰𝑏፰(𝑣፱ − 𝑑፰𝜔𝑐𝑜𝑠(𝜃))

(4.32)

where further definitions of the parameters, indicated in the equations, can be found in the paper.
To simplify the equations and computations, the equations 4.31 and 4.32 are linearised around 𝜃 = 0
which is the steady state hover condition. Furthermore, when 𝑑ኻ = 𝑑ኼ = 𝑑 and linearising the equations
the states can be represented by the following linear dynamic equations;

̇𝑣፱ =
1
𝑚[(−2𝑏 − 𝑏፰)𝑣፱ − 𝐹፭𝜃 + 𝑏፰𝑑፰𝜔] (4.33)

�̇� = 𝜔 (4.34)

̇𝑣፱ =
1
𝐽 [𝑏፰𝑑፰𝑣፱ + (−2𝑏𝑑

ኼ − 𝑏፰𝑑ኼ፰)𝜔] (4.35)

where J is the total moment of inertia about the COM. These equations are then put into a state-
transition matrix (state-space system) where the state vector is defined as 𝑥 = [𝑣፱ , 𝜃, 𝜔]ፓ, where the
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assumption is made that 𝐹፭ = 𝑚𝑔;

𝐴 =
⎡
⎢
⎢
⎢
⎣

1
𝑚(−2𝑏 − 𝑏፰) −𝑔 1

𝑚𝑏፰𝑑፰
0 0 1

ኻ
ፉ 𝑏፰𝑑፰ 0 1

𝐽 (−2𝑏𝑑
ኼ − 𝑏፰𝑑ኼ፰)

⎤
⎥
⎥
⎥
⎦

The Routh-Hurwits criterion was then used to determine the stability of the system. Using this approach
the goal was to determine the parameters for which the platform was stable using the passive air
dampers.

(a) Free body diagram of the Robobee.

(b) Sketch of the Robobee

Figure 4.1: A hovering flapping-wing microrobot called the Robobee.

In addition to the scope of the model, it is clear that the study only includes the longitudinal model
which means that the platform only has control authority over the axis defined in the model.

A Minimal Longitudinal Dynamic Model of a Tailless Flapping Wing Robot
Kajak (2018)
Previous study performed on the DelFly Nibmle at the faculty of Aerospace Engineering in Delft also
gives valuable information regarding the selection of a dynamic model and the obtained data from flight
tests done by K.M. Kajak. The derivation of the model has a more analytic origin in combination with
some empirical experiments done in the wind tunnel and using optical tracking measurements. During
the research K.M. Kajak adopted formulas for calculating the velocity of the wings when flapping;

𝑈 = 2Φ𝑓𝑏4 (4.36)

where Φ is the flapping amplitude in radians, f the flapping frequency [Hz] and b the wingspan. In
order to determine the drag force of the wings during flapping, K.M. Kajak used an approach similar
to the one used by Z. E. Teoh Teoh et al. (2012), where the the average drag-force (during one cycle)
can be approximated using;

̄𝑓 = 1
2𝛽[(𝑈 − 𝑢)

ኼ − (𝑈 + 𝑢)ኼ] = −2𝛽𝑈𝑢 (4.37)
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where the assumption is made that the flapping velocity of the wings is much higher than the free
stream velocity (U >> u). Here 𝛽 is a forces coefficient. Also note that 𝑓 is the drag force for both
of the flapping wings. Due to the fact the drag force is linear with respect to the free stream velocity,
one can formulate a linear behaviour between the two;

̄𝑓 = −2𝛽𝑢 (4.38)

The dynamic model used to model the flight dynamics of the DelFly Nimble is based on the standard
equations of motions also used by previous work. Note that Karl only modelled the longitudinal dy-
namics and thus, a lateral dynamic model is not included in the thesis. The longitudinal equations
are;

𝑋 = 𝑚(�̇� + 𝑞𝑤) + 𝑚𝑔ኺ𝑠𝑖𝑛(𝜃ኺ) (4.39)
𝑍 = 𝑚(�̇� − 𝑞𝑢) − 𝑚𝑔ኺ𝑐𝑜𝑠(𝜃ኺ) (4.40)

𝑀 = �̈�𝐼፲፲ (4.41)

where X, Z and M are the aerodynamic forces in X, Z direction and M the aerodynamic moment (or
pitching moment) around the y-axis, respectively. Included in the model are the dihedral actuator
states, which can potentially be valuable in future research. The states of the dihedral actuator can
be used in the model to determine the effect on the aerodynamic forces during manoeuvres in flight.
Dihedral actuator states are indicated by 𝑙፝ and ̇𝑙፝. Referring to Figure 4.2, the derived equations in
the body axis are;

𝑢ፂፎፏ = 𝑢 − 𝑙፳�̇� − ̇𝑙፝ (4.42)

𝑤ፂፎፏ = 𝑤 + (𝑙፝ + 𝑙፱)�̇� (4.43)
𝑋 = −2𝑏፱𝑢ፂፎፏ (4.44)
𝑍 = −2𝑇 − 2𝑏፳𝑤ፂፎፏ (4.45)
𝑀 = −𝑋𝑙፳ + 𝑍(𝑙፝ + 𝑙፱) (4.46)

where in equations of X and Z the factor 2 is incorporated to model the two wings. The terms 𝑏፱ and
𝑏፳ in the equations of X and Z are the aerodynamic force coefficients with respect to the air velocity
component along the body axis x and z, respectively. The force coefficients are then obtained either
from damped pendulum tests Teoh et al. (2012) or a wind tunnel tests. In this particular case, wind
tunnel tests were performed to determine the coefficients 𝑏፱ and 𝑏፳. Assuming zero accelerations
in equations (4.39-4.40) and that in trimmed flight the term 𝑞𝑤 = 0, the value of X can be easily
calculated (Equation 4.47);

𝑋 = 𝑚𝑔ኺ𝑠𝑖𝑛(𝜃ኺ) (4.47)

where the trimmed value of 𝜃 is the measured pitch angle. By substituting the values of X and Z form
the equations of motion into equation 4.44 and 4.45, one can substitute the measured values of velocity
and pitch angle to obtain the force coefficients in trimmed flight (𝑏፱ and 𝑏፳). In addition to the dynamic
model of the body, further study includes models estimating the actuator dynamics, such as the flapping
dynamics and dihedral dynamics represented in transfer functions. These transfer functions can be seen
as individual tools to model the dynamics of the actuators of the DelFly Nimble. The models showed
reasonable accurate results during the simulation phase. The full non-linear longitudinal model can
be found in the thesis. In addition to K.M. Kajak’s work, M. Karakeseks work (currently under review)
Karasek (2018) gives a good overview on the performance of the DelFly Nimble based on aerodynamic
models.
Additionally, the non-linear state derivatives used for the non-linear simulation were presented in the
work of K.M. Kajak. By summing all the forces and moments (displayed in the free body diagram),
using;

+ ↙∑𝐹፱,፨፝፲ = 𝑚�̇� (4.48)

+ ↗∑𝐹፳,፨፝፲ = 𝑚�̇� (4.49)

+(𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒)∑𝑀፲,፨፝፲ = 𝐼፲፲�̈�. (4.50)
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Figure 4.2: DelFly Nimble longitudinal free body diagram

From the free body diagram and using equations (4.48-4.50), the non-linear state derivatives can be
derived (Equations 4.51-4.53);

�̇� = −𝑔𝑠𝑖𝑛(𝜃) − 2𝑏፱𝑢𝑚 + 2𝑙፳𝑏፱�̇�𝑚 +
2𝑏፱ ̇𝑙፩
𝑚 (4.51)

�̇� = 𝑔𝑐𝑜𝑠(𝜃) − 2𝑐ኻ𝑓𝑚 − 2𝑐ኼ𝑚 − 2𝑏፳𝑤𝑚 −
2𝑏፳(𝑙፩ + 𝑙፱)�̇�

𝑚 (4.52)

�̈� = [2𝑏፱𝑙፳𝑢 − 2𝑏፱𝑙ኼ፳ �̇� − 2𝑏፱𝑙፳ ̇𝑙፩ − 2𝑐ኻ𝑓(𝑙፩ + 𝑙፱) − 2𝑐ኼ(𝑙፩ + 𝑙፱) − 2𝑏፳𝑤(𝑙፩ + 𝑙፱) − 2𝑏፳(𝑙፩ + 𝑙፱)ኼ�̇�]/𝐼፲፲
(4.53)

Identification of Time-Varying Models for Flapping-Wing Micro Aerial Vehicles
Armanini (2018)
Sophie Armanini makes use of cycle-averaged dynamics to model the flight dynamics of the DelFly II.
Cycle-averaged means that, for example, the force produced by the flapping wings are averaged before
being used in the model. First the EOM from a standard aircraft were used (linearised around a trim
point). In addition to the EOM, a linear model structure was defined for each of the aerodynamic forces
and moments that, based on previous work, suggest that linear models describe a significant part of
the DelFly aerodynamics in slow forward flight Caetano, Remes, de Visser and Mulder (2013). In the
linear model only measurable and physically plausible states were included resulting in the following
equations (4.54-4.59);

𝑋 = 𝑋፪Δ𝑞 + 𝑋፮Δ𝑢 + 𝑋፰Δ𝑤 + 𝑋᎑ᑖΔ𝛿፞ +𝑚𝑔𝑠𝑖𝑛(𝜃ኺ) (4.54)
𝑌 = 𝑌፩Δ𝑝 + 𝑌፫Δ𝑟 + 𝑌፯Δ𝑣 + 𝑌᎑ᑣΔ𝛿፫ (4.55)
𝑍 = 𝑍፪Δ𝑞 + 𝑍፮Δ𝑢 + 𝑍፰Δ𝑤 + 𝑍᎑ᑖΔ𝛿፞ −𝑚𝑔𝑐𝑜𝑠(𝜃ኺ) (4.56)
𝐿 = 𝐿፩Δ𝑝 + 𝐿፫Δ𝑟 + 𝐿፯Δ𝑣 + 𝐿᎑ᑣΔ𝛿፫ (4.57)
𝑀 = 𝑀፪Δ𝑞 +𝑀፮Δ𝑢 +𝑀፰Δ𝑤 +𝑀᎑ᑖΔ𝛿፞ (4.58)
𝑁 = 𝑁፩Δ𝑝 + 𝑁፫Δ𝑟 + 𝑁፯Δ𝑣 + 𝑁᎑ᑣΔ𝛿፫ (4.59)

The equations (4.54-4.59) are then substituted into the linearised EOM. Note, the Δ𝛿፞ and Δ𝛿፫ terms
used indicates the use of an elevator and rudder for the DelFly II. However, the DelFly Nimble does
not have a tail, as discussed earlier. So, instead of using the parameters of the horizontal control
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surfaces, one could restructure the linear model such that it includes the dihedral deflections. This will
be studied during this project. Returning to the model in this paper. To produce a state-space model
structure, the EOM were linearised around a certain trim point followed by the substitution of equations
(4.54-4.59) into the linearised EOM. The result of this process is a grey-box state-space model structure
that describes the longitudinal and lateral cycle-averaged dynamics of the DelFly II. The longitudinal
dynamics are;
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and the lateral dynamics;
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where, 𝐼 = 𝐼፱፱𝐼𝑧𝑧 − 𝐼ኼ፱፳. Note that the model also included the bias terms b subscript, to increase the
precision of the model and filtering out dynamics not captured by the rest of the model. Measurements
were performed using an optical tracking system called the OptiTrack Motion Capture System. Now
the grey-box models are defined, the logical next step is to estimate the parameters, which are the
unknown parameters in the state-space model. In this particular case, a maximum likelihood estimator
(MLE) (using an output error approach) algorithm was used to estimate the unknown parameters in
both the longitudinal- and lateral dynamic models. A study on parameter estimation techniques, such
as the MLE, will be presented in the next section of this report.



5
Parameter Estimation Techniques

Another essential part of the system identification process is the estimation theory where the parame-
ters, used in the state-space models or other model structures, need to be estimated. Klein Klein and
Morelli (2006) and Ljung (1998) outline several theories that can be applied when dealing with pa-
rameter estimation problems. In this chapter we will discuss the most commonly applied optimization
algorithms for system identification. The filter-error optimization algorithm allows for process noise
(turbulence) to be present in the system. However, in this study, the assumption is made that the
system to be identified is not subjected to process noise, or turbulence during free-flight tests. In the
first four sections we will discuss output-errors methods such as the ordinary least squares (OLS) 5.1-,
the weighted least squares (WLS) 5.2-, the generalized least squares (GLS) 5.3-, and the non-linear
least squares (NLS) 5.3 methods. Finally, the working principles of the maximum likelihood estimation
routine will be explained in section 5.5.
In general the parameter estimation process consists of the following steps:

1. Obtain state and measurement data.

2. Formulate the linear model structure, for example the general expression for a linear model
structure (Equation 3.1).

3. By applying the theory on parameter estimation one is able to obtain the least squares estimator,
in which the unknown parameters are estimated.

4. Evaluate and validate the results by comparing the output of the model with the actual measure-
ments of the platform.

A model is linear in the parameter if the output 𝑦 is given by;

𝑦 = 𝐻𝜃 (5.1)

where H is the regression matrix which needs to be formulated during the process, 𝜃 the unknown
parameters to be estimated and y the output from the model. The regression matrix contains the pre-
assumed model structure defined in equation 3.1, is linear, has low computational complexity and is
easy to implement as already mentioned in the sections above. The measurement equation is defined
as (Equation 5.2);

𝑧 = 𝐻𝜃 + 𝑣 (5.2)

where 𝑧 are the measurements and 𝑣 the measurement noise or residual. Rearranging the the equation
of 𝑧 and solving for the residual 𝑣 leads to equation 5.3;

𝑣 = 𝑧 − 𝐻𝜃 (5.3)

In order to estimate the parameter one needs a cost function in order to optimize for various estimators.
Using the estimator for the Least-Squares Model the estimates for 𝜃 are realized by minimizing the
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weighted sum of squared differences between the measured outputs and the model outputs (Equation
5.4),

𝐽(𝜃) = 1
2(𝑧 − 𝐻𝜃)

ፓ𝑅ዅኻ(𝑧 − 𝐻𝜃) (5.4)

where 𝑅ዅኻ is a weighting matrix, chosen by judgment. This means that one is able to change the
weights in the matrix when one is under the assumption that certain measurements are unreliable
and must not carry much weight during calculations. Equation 5.4 is also know as the weighted least-
squares estimator (WLS) containing the matrix 𝑅. However, in the absence of the matrix 𝑅 one obtains
the ordinary least-squares (OLS) estimator (Equation 5.5), with cost function;

𝐽(𝜃) = 1
2(𝑧 − 𝐻𝜃)

ፓ(𝑧 − 𝐻𝜃) (5.5)

When considering a set of measured data 𝑧(𝑖), 𝑖 = 1, 2, ..., 𝑁, the OLS estimator for a scalar measurement
is obtained by minimizing equation 5.5 leading to;

𝐽 = 1
2

ፍ

∑
፧ኻ
[𝑧(𝑖) − 𝐻(𝑖)𝜃]ኼ (5.6)

which in matrix notation becomes (Equation 5.7);

𝐽 = 𝑣ፓ𝑣 = (𝑧 − 𝐻𝜃)ፓ(𝑧 − 𝐻𝜃) (5.7)

Applying this method will be discussed later. In addition to the least-squares model, there are additional
models available such as the Bayesian model and the Fisher model. However, since the least-squares
model is an adequate estimator, the other models are not considered to be valuable to be studied any
further.

Regression is a statistical technique for modelling and examining the relation between measured vari-
ables. An example for a linear in the parameter regression model is given here (Equation 5.8);

𝐶፦ = 𝐶፦Ꮂ + 𝐶፦ᒆ𝛼 + 𝐶፦ᑄ𝑀 + 𝐶፦ᒆᑄ𝛼𝑀 + 𝑣፦ (5.8)

In the equation 𝛼 and𝑀 are the variables (or independent variables) that are measured where for each
test point measurements of 𝛼, 𝑀 and 𝐶፦ are used as input into the linear model. In this particular
model, the moment coefficient 𝐶፦ depends on the variables 𝛼 and 𝑀, where 𝐶፦Ꮂ , 𝐶፦ᒆ , 𝐶፦ᑄ and 𝐶፦ᒆᑄ
are constant model parameters to be estimated. It is assumed that the measurement errors of 𝛼 and
𝑀 are zero. However, the dependent variable 𝐶፦ is subjected to random measurement error and thus
the 𝑣፦ term in the equation is included, which describes the random effects of measurement errors in
the depended variable. Measurements on the dependent variable 𝐶፦ can be obtained either by direct
measurements from wind-tunnel experiments, or from other measurements using equation 5.9;

𝐶፦ =
1

ኻ
ኼ𝜌𝑉

ኼ𝑆𝑏
[�̇�𝐼፱፱ + 𝑞𝑟(𝐼፳፳ − 𝐼፲፲) − (𝑝𝑞 + �̇�)𝐼፱፳] (5.9)

where the measured variables are 𝑉, �̇�, �̇�, 𝑝, 𝑞 and 𝑟 which are obtained from air-data sensors, IMU
sensor and/or other sensors. In addition to the linear parameter regression model, one can also
include control surface deflections in the model since the moment coefficient is affected by elevator
deflections. The general expression for the linear model structure (Equation 3.1) can be generalized
into the following model form for relating the independent variables (Equation 5.10);

𝑦 = 𝜃ኺ +
፧

∑
፣ኻ
𝜃፣𝜉፣ (5.10)

where y is the dependent variable, 𝜉፣ are linear or non-linear functions of the independent variables
𝑥ኻ, 𝑥ኼ,..., 𝑥፦, and the model parameters 𝜃ኺ, 𝜃ኻ, 𝜃ኼ,..., 𝜃፧ quantify the influence of each term on
the dependent variable y. Note that the terms 𝜉፣ are functions of the independent variables 𝜉፣ ≡
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𝜉፣(𝑥ኻ, 𝑥ኼ, ..., 𝑥፦), where the independent variables are state measurements of the aircraft, such as 𝛼
and the Mach number 𝑀 for example. Most of the time the parameter constant 𝜃ኺ can be assumed to
have a magnitude of 1, which will then model the bias in the dependent variable. Unfortunately the
measured values of the dependent variable include random measurement noise such that;

𝑧(𝑖) = 𝜃ኺ +
፧

∑
፣ኻ
𝜃፣𝜉፣(𝑖) + 𝑣(𝑖) 𝑖 = 1, 2, ..., 𝑁 (5.11)

where 𝑧(𝑖) are the output measurements and 𝑁 the number of data points obtained during flight, and
where 𝜉፣(𝑖) depends on the the m-number of independent variables 𝑥ኻ, 𝑥ኼ,..., 𝑥፦ at the 𝑖፭፡ data point.
Equation 5.11 is called the regression equation, similar to the one in equation 3.1. In equation 5.11
𝑣 is defined as the equation error. When applying the parameter estimation theory described above,
and using the least-squares model, one can obtain the unknown parameter model parameters 𝜃. The
objective is to find and estimate �̂� of the parameter vector 𝜃ፓ = [𝜃ኺ 𝜃ኻ ... 𝜃፧] using the parameter
estimation theory. However, choosing a appropriate or adequate model structure is a different problem
and will therefore be discussed later. In general an adequate model is not always know beforehand
and therefore must be identified from the measured data and applying a model structure determination
process.

5.1. Ordinary Least Squares
Moving on to the process of determining the vector 𝜃ፓ = [𝜃ኺ 𝜃ኻ ... 𝜃፧]. In matrix form the equation
from the section above (Equation 5.10), can be written as;

𝑦 = 𝑋𝜃 (5.12)

,and the equation of the measurements as;

𝑧 = 𝑋𝜃 + 𝑣 (5.13)

where

𝑧 = [𝑧(1) 𝑧(2) ... 𝑧(𝑁)]ፓ = 𝑁 × 1 𝑣𝑒𝑐𝑡𝑜𝑟 𝑁 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
𝜃 = [𝜃ኺ 𝜃ኻ ... 𝜃፧]ፓ = 𝑛፩ × 1 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑛፩ = 𝑛 + 1
𝑋 = [1 𝜉ኻ ... 𝜉፧] = 𝑁 × 𝑛፩ 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑜𝑓 𝑜𝑛𝑒𝑠 𝑎𝑛𝑑 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝑠
𝑣 = [𝑣(1) 𝑣(2) ... 𝑣(𝑁)]ፓ = 𝑁 × 1 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟𝑠

Note that in the equations (5.1-5.7) the H matrix contain the regressors. However, from now the
regression matrices will be denoted by 𝑋. The best estimator for 𝜃, using the least-squares principle,
is obtained by minimizing the sum of squared differences between the measurements and the model,
hence, Least-Squares Parameter Estimation. Here the best estimator can be obtained by minimizing
the well know cost function;

𝐽(𝜃) = 1
2(z− X𝜃)ፓ(z− X𝜃) (5.14)

wherein the function is subsequently minimized using the following equation;

𝜕𝐽
𝜕𝜃 = 0 (5.15)

The parameter estimate �̂� that minimizes the cost function must satisfy;

𝜕𝐽
𝜕𝜃 = −X

ፓz+ XፓX�̂� = 0 (5.16)

rewriting the equation leads to;
XፓX�̂� = Xፓz (5.17)
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Further rewriting the equation results in the least-squares estimator;

�̂� = (XፓX)ዅኻXፓz (5.18)

Not only the parameter estimation can be obtained using this equation, but the equation itself also
includes valuable information regarding the variances of the estimated parameters, which is called the
covariance matrix of the parameter estimate 𝜃.

𝐶𝑜𝑣(�̂�) = 𝜎ኼ(XፓX)ዅኻ (5.19)

where 𝜎ኼ is the constant variance, which basically is a scaling factor which scales the covariance matrix.
Due to the fact it is a scaling factor, excluding the constant 𝜎ኼ from the calculations will not affect the
information regarding the variance of the corresponding parameters in the covariance matrix.

5.2. Weighted Least Squares
If the information regarding the sensor noise is available then one is able to construct the Weighted
Least-Squares (WLS) Estimator, which takes the standard deviations of the sensor noise into account.
The main advantage of the WLS Estimator is that it is possible to assign a lower value to the mea-
surements which show less variance, meaning that the estimator will base the model more on the
measurements containing less variance then the measurements containing much variance. Focusing
on the matrix R in equation 5.4;

𝑅 = 𝑑𝑖𝑎𝑔(𝜎ኼኻ 𝜎ኼኼ ... 𝜎ኼፍ) (5.20)

which is a diagonal matrix. Applying the same procedure as with the OLS, then after some substitutions
and rearranging the Weighted Least-Squares Estimator can be formulated as;

�̂�ፖፋፒ = (XፓWዅኻX)ዅኻXፓz (5.21)

The WLS Estimator is very useful when the measurements of the real system output show high variance
and one is in the possession of the sensor noise.

5.3. Generalized Least Squares
For the OLS Estimator case the assumption is made that the measurements errors have zero mean,
and are uncorrelated with equal variance. If this does not hold one is forced to use the Generalized
Least-Squares (GLS) Estimator which takes the correlation among the measurements into account.

5.4. Non-Linear Least Squares
Note that the least squares estimator, described in the sections above, only is useful when the model
structure is linear. However, in some case it could be that the relationship between the regressors and
the response variable (for example the aerodynamic force X) is non-linear in the parameter Klein and
Morelli (2006). For this particular case the least squares model must be formulated as;

z = h(𝜃) + v (5.22)

which is equivalent to a non-linear regression model;

𝑧(𝑖) = 𝑓[x(i), 𝜃] + v(𝑖) 𝑖 = 1, 2, ...., 𝑁 (5.23)

where xፓ(𝑖) is a row vector of regressors computed from measured data at the 𝑖፭፡ data point, f is
a non-linear function of x(𝑖), and the parameters in the vector are denoted by 𝜃. Now in order to
to obtain the least squares estimator one must minimize the sum of squared errors by applying the
well-known cost function (Equation 5.24);

𝐽(𝜃) = 1
2

ፍ

∑
።ኻ
(z(𝑖) − 𝑓[x(𝑖), 𝜃])ኼ (5.24)
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The minimum of the cost function is then found by satisfying the normal equations (Equation 5.25);

𝜕𝐽
𝜕𝜃 |᎕᎕̂

= −
ፍ

∑
።ኻ
(z(𝑖) − 𝑓[x(𝑖), �̂�])𝜕𝑓[x(𝑖), �̂�]𝜕𝜃 |

᎕᎕̂
= 0 (5.25)

where 𝜕𝐽/𝜕𝜃 is a row vector containing the partial derivatives of the non-linear scalar function 𝐽(𝜃)
with respect to the elements of 𝜃, and Ꭷ፟[x(።),᎕̂]

Ꭷ᎕ is a row vector of output sensitivities to changes in the
model parameters. Note that �̂� can only be obtained by an iterative non-linear optimization technique
such as the maximum likelihood estimation technique Klein and Morelli (2006). This technique will be
discussed in greater detail in the next section.

5.5. Maximum Likelihood Estimation
From the study on existing FWMAVs it is clear that both the OLS estimator and the Maximum Likeli-
hood Estimator are good tools to determine the unknown parameters of a system. In the case where
the measurements are a non-linear function of the parameters, a maximum likelihood estimator is
typically used. In general, model parameter estimates are found by maximizing a likelihood function,
which involves minimizing the weighted least-squares difference between measured outputs and model
outputs. This non-linear estimator is required because of the non-linear connection between model
parameters and model outputs. The maximum likelihood usually includes the use of a state estimator,
or Kalman Filter, which purpose is to estimates the states as accurately as possible. The state estimator
is necessary because of the presence of process noise in the dynamic equations, which means that the
states are random variables. If however, measurements contain little to no process noise, a MLE can
be used without the use of a state estimator Klein and Morelli (2006).

Maximum Likelihood estimation is based on probabilistic principles. The cost function relating the
inputs and the outputs is an expression for the probability of an observation occurring given particular
values of the system parameters, and the aim is thus to determine the parameter values that maximize
the probability of the measured input having led to the measured output. This results in a non-
linear optimization problem involving an iterative adjustment of the model parameters to minimize the
difference between measured and model-predicted system outputs Armanini, de Visser and de Croon
(2015). The MLE used in the papers studied so far is also known as the output error method (OEM),
which takes the measurement errors into account but not the process noise. Therefore, if process
noise is present, the measured states must be pre-processed using a Kalman Filter to remove this
process noise first. When pre-processing is performed the first step of the estimation process is to
set-up the cost function. The cost function for this problem can be defined as the negative logarithm
of the likelihood function expressing the probability p of an observation z occurring at a particular time
point k, given the parameter vector Θ;

𝐽(Θ, 𝑅) = −𝑙𝑛p(z|Θ) = 1
2

፧ᑜ
∑
፤ኻ
[z(𝑘) − y(𝑘)]ፓRዅኻ[z(𝑘) − y(𝑘)] + 𝑛፤2 𝑙𝑛[𝑑𝑒𝑡(R)] +

𝑛፤𝑛፲
2 𝑙𝑛(2𝜋) (5.26)

where R is the measurement noise covariance matrix, 𝑛፤ the number of data samples, 𝑛፲ the number
of output variables measured, and z(𝑘) and y(𝑘) are the measured and model-predicted outputs, re-
spectively at time point k. The schematic of the output-error method is displayed in Figure 5.1.
The error covariance matrix R needs to estimated separately from the measurements and initial pa-
rameters guess at the start of each iteration step. After the first iteration step, the next iteration will
contain the parameters from the previous estimation step. R is obtained by partial differentiation of
equation (5.26) with respect to R and setting it equal to zero, where the calculated R is given by;

R̂ = 1
𝑁

ፍ

∑
፤ኻ
[z(𝑘) − y(𝑘)][z(𝑘) − y(𝑘)]ፓ (5.27)

The next step is to substitute equation (5.27) into equation (5.26) when having obtained a maximum
likelihood estimate of R;
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𝐽(Θ) = 1
2𝑛፲𝑁 +

𝑁
2 𝑙𝑛[𝑑𝑒𝑡(R)] +

𝑁𝑛፲
2 𝑙𝑛(2𝜋) (5.28)

Since the first and last term of equation (5.28) are constants, they can be neglected without affecting
the minimization result. Thus, the cost function is reduced to;

𝐽(Θ) = 𝑑𝑒𝑡(R) (5.29)

Figure 5.1: Schematic Parameter Estimation: Output-Error Approach. Source: Armanini (2018)

The last step is to to estimate a new set of parameters for the next iteration (iter = iter + 1) step. For
this step equation (5.26) must be considered again. Note that now the last two terms of this equation
are constants. When minimizing this equation with respect to the parameter vector (partial derivative
with respect to Θ) leads to the following cost function;

𝐽(Θ) = 1
2

ፍ

∑
፤ኻ
[z(𝑘) − y(𝑘)]ፓRዅኻ[z(𝑘) − y(𝑘)] (5.30)

In order to determine a new set of parameters, equation (5.30) is minimized by applying the Gauss-
Newton technique Jategaonkar (2015), where the parameter estimates for the new iteration is calcu-
lated by;

ΔΘ = −[( 𝜕
ኼ𝐽
𝜕Θኼ

)።]ዅኻ(
𝜕𝐽
𝜕Θ)። (5.31)

and then finally the parameter estimates for the new iteration becomes;

Θ።ዄኻ = Θ። + ΔΘ (5.32)



6
Close-Loop System Identification

Some platforms are designed to be open-loop unstable without using any form of feedback control, such
as the DelFly Nimble. These platforms are inherently unstable and are stabilized using automatic closed-
loop feedback control. Due to the automatic feedback control any input given to the system (reference
input) by the pilot, or directly at the control surface actuator by a computerized system, will be distorted
by the feedback control which greatly influences the possibility to perform system identification on the
platform. During dynamic modelling the objective is to excite the natural motions of the system at hand
as much as possible which is done by performing specially designed manoeuvres during the flight test.
If the platform is inherently stable, then the system does not require any automatic feedback control,
which means the state response of the system is not affected by any feedback control and, as a result,
outputs it natural motion. The problem with system identification on closed-loop automatic feedback
systems is that excitation of the platform is seen by the feedback system as a disturbance that should
be damped out. But the rejection of response of the system is undesirable, since it destroys, or damps
out, the natural motion of the system. Measurements of the natural motion are of great importance
during the identification phase, because the natural motion contain informative data. In order to still
obtain informative one can do two things:

1. Reduce the feedback gains of the control system as much as possible such that the natural
motions of the platform are excited as much as possible.

2. Perform aggressive manoeuvres on the platform that excite the system as much as possible. The
selection of the most effective manoeuvre will be the result of trail and error flight testing, or
based on theoretical analysis. Some aggressive manoeuvres are directly damped, while other
manoeuvres are not aggressively damped by the system.

As Vladislav Klein and Eugene A. Morelli explain, system identification and parameter estimation can
be perfectly performed using the theory described above (Parameter estimation- and Ordinary least-
squares method) Klein and Morelli (2006). This means that closed-loop system identification is perfectly
possible when applied to the DelFly Nimble. The main challenges are exciting the platform properly
enough, or aggressively, by manoeuvres in order to obtain informative data fit for system identifica-
tion. These manoeuvres will be selected based on flight tests performed during this project and other
projects.

Note that there are two ways to perform system identification on closed-loop systems:

• Using the theory and steps of Vladislav Klein and Eugene A. Morelli and include the actuator
deflections and other states, such as the pitch rate, in the linear regression model. Doing so,
the effects of the actuator deflections and pitch rate on the aerodynamic forces and moments
can be modelled. Vladislav Klein and Eugene A. Morelli use an example of an inherently unstable
fighter aircraft, which is made stable using automatic feedback control. The deflections from
the control surfaces were measured and are included in the linear regression model. However,
it is worthy to note that this approach only works when the control deflections of the control
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surfaces can be measured (in degrees or radians). Luckily this is possible since K.M. Kajak Kajak
(2018) was already successful in measuring the control deflections of the dihedral actuator. In
Block-Diagram 1 a system in closed-loop is indicated which resembles a simplified version of
the DelFly Nimble’s closed-loop automatic feedback control system. Using Vladislav Klein and
Eugene A. Morelli approach one is only interested in the output 𝑦 and the input 𝛿 of the system.
When these two are know, then it is possible to apply Vladislav Klein’s approach in order to
perform system identification.

• The problem will get a lot more complicated when the control surface deflections are not mea-
surable. If this is the case one is forced to consult the theory and methods of Lennart Ljung
Ljung (1998) which focusses on system identification when 𝛿 is unknown, but only 𝑢 and 𝑒 are
known, seen in diagram 1. Due to to the fact the actuator deflections of the DelFly Nimble are
considered to be measurable, it will be unnecessary to study Lennart Ljung methods any further.

Controller Actuator System
𝑢 𝛿𝑟 𝑒 𝑦

−

𝑦፦

Block-Diagram 1: Closed-loop automatic feedback system



7
Conclusions and Limitations

In this section the goal is to highlight the advantages and disadvantages of the models and approaches
used in previous studies when reflecting them to the DelFly Nimble.

In the paper by J.V. Caetano, C.C. de Visser Caetano, De Visser, De Croon, Remes, De Wagter, Ver-
boom and Mulder (2013), use was made of non-linear EOM in order to describe the dynamics of the
platform. From the EOM the aerodynamic forces and moments acting on the platform are then com-
puted. The computed aerodynamic- forces and moments are then used as input for the left side of
equations (4.3-4.8) together with the pre-processed states on the right side of the equation. Since the
aerodynamic model structure is linear, it is relatively easy to compute the unknown parameters using
an ordinary least squares (OLS) estimator. A major disadvantage of this modelling process, is that the
aerodynamic model of the moments is not accurately enough for non-linear simulation. This modelling
technique can be of great use when applied to the DelFly Nimble. However, problems may arise when
applying non-linear simulation to the estimated models. It should be noted that data was gathered
at 0.25 [m/s] forward speed, which could mean that the estimated models are only applicable for this
particular flight regime.

The paper by Sophie F. Armanini and Coen C. de Visser Armanini, de Visser and de Croon (2015) uses a
same approach as described in the previous paper. The ’black-box’ modelling process will not give any
insight into the physics of the platform. This particular modelling process however mainly differs in the
fact that no aerodynamic model structure (no a priori knowledge of the systems physics) is used, where
usually the parameters in the aerodynamic model are estimated. The ’black-box’ modelling process will
not give any insight into the physics of the platform. Since it is desirable to somehow retain a physical
connection in the model structure, this black-box modelling process is considered to be insufficient
when applied to the DelFly Nimble.

Other modelling approaches, like the ones from Z.E. Teoh Teoh et al. (2012) and K.M. Kajak Kajak
(2018) make use of theoretical derived models, also called ’white-box’, where the unknown parameter
are estimated using experimental data. Note that the parameters of these non-linear models are, in
general, difficult to estimate. Z.E. Teoh for example used the Routh-Hurwits criterion to determine the
region of the parameters for which the system is stable.

The modelling method described by Sophie Armanini Armanini (2018) is a so-called ’grey-box’ mod-
elling method. The grey-box model combines best of both worlds, which means that less knowledge
of the system dynamics is required compared to the white-box modelling method, which requires full
knowledge of the system dynamics, in order to produce accurate results. Sophie Armanini used a lin-
ear aerodynamic model structure containing states that are measurable and physically plausible. The
linear aerodynamic equations used are then substituted into the linearised EOM (linearised around a
particular trim point) and then represented in a state-space model. This model is linear, therefore
making it simple and computationally efficient for simulation, controller design and stability analysis.
All the unknown parameters in the state-space model are then estimated using a maximum likelihood
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estimator. The result is a local grey-box time-averaged model. Given the fact that this modelling pro-
cess produces accurate results, it is computational efficient, gives insight into the physical behaviour
of the platform and can be applied to inherently unstable platforms, it is considered to be one of the
best approaches to produce models of the DelFly Nimble that describe its flight dynamics, while still
maintaining a meaningful physical connection.

The unknown parameters in the models are estimated using several parameters estimation techniques.
If the models structure is linear, then an ordinary least squared (OLS) estimation procedure is usually
selected. A disadvantage of using a linear model structure is that in some cases the relationship be-
tween the regressors and the response variable is non-linear in the parameter. In that case a non-linear
model must be used. When the model structure is non-linear, a non-linear least squares algorithm must
be used in order to determine the parameters. The optimal estimate of the parameters can then be
only obtained using a maximum likelihood estimation (MLE) algorithm. This process is more computa-
tional complex compared to the OLS estimation technique Klein and Morelli (2006).

In addition, before starting the system identification process of the DelFly Nimble, it is important to
map out the limitations and challenges that could be encountered during this project. In the first place,
due to the small size of the DelFly Nimble the accommodation of sensors is very limited. Integration of
accurate GPS-receivers are Air-data sensors, that can measure the states of the platform, is difficult.
On the other hand, other sensors are available that are able to accurately measure the states required
for system identification. Examples of the available sensors are on-board IMU sensors and Opti-Track
sensors. However, there are some limitations when using these sensors:

1. When using the IMU in combination with the OptiTrack system the available measurement space
is very limited due to the measuring area of the OptiTrack system (around a maximum of 10 x
10 x 3 meters). This means that the limited space will probably cause some difficulties when
performing flights tests.

2. When using only the IMU, the measurements are subjected to drift errors which can influence
the accuracy of the measured states Armanini (2018).

3. Due to the fact the DelFly Nimble is a fragile platform, aggressive manoeuvres required for identifi-
cation could potentially damage the platform and/or decrease the accuracy of the measurements.
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A
Estimated Parameters

All the estimated parameter from the time-average linear longitudinal grey-box models are reported
in this section including the mean error of the markers from the OptiTrack system. The datasets are
organized in numbers and steady-state flight condition, ranging from 1 to 18, and are displayed in table
A.1.

Datasets #1-#4 0.0 m/s (hover condition)
Datasets #5-#9 0.5 ±0.05 m/s
Datasets #10-#13 0.75 ±0.05 m/s
Datasets #14-#18 1.0 ±0.05 m/s

Table A.1: Datasets with corresponding steady-state condition.

Table A.2: Dataset #1. Mean markers error: 1.1363e-03[m]
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Table A.3: Dataset #2. Mean markers error: 8.9819e-04[m]
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Table A.4: Dataset #3. Mean markers error: 1.1123e-03[m]
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Table A.5: Dataset #4. Mean markers error: 1.2645e-03[m]
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Table A.6: Dataset #5. Mean markers error: 8.3496e-04[m]
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Table A.7: Dataset #6. Mean markers error: 8.4546e-04[m]

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

𝑋፪
𝑋፮
𝑋፰
𝑋᎑ᐻ
𝑍፪
𝑍፮
𝑍፰
𝑍᎑ᐻ
𝑀፪
𝑀፮
𝑀፰
𝑀᎑ᐻ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0.01184
−0.08243
0.0303
0.6005
0.005465
0.02141
−0.003029
0.1055

−0.001883
0.02583
−0.002138
0.2277

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

Table A.8: Dataset #7. Mean markers error: 5.3589e-04[m]
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Table A.9: Dataset #8. Mean markers error: 5.8097e-04[m]
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Table A.10: Dataset #9. Mean markers error: 6.0081e-04[m]
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Table A.11: Dataset #10. Mean markers error: 5.7269e-04[m]
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Table A.12: Dataset #11. Mean markers error: 5.6801e-04[m]
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Table A.13: Dataset #12. Mean markers error: 6.1194e-04[m]
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Table A.14: Dataset #13. Mean markers error: 6.1194e-04[m]
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Table A.15: Dataset #14. Mean markers error: 7.6065e-04[m]
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Table A.16: Dataset #15. Mean markers error: 7.4305e-04[m]
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Table A.17: Dataset #16. Mean markers error: 7.7979e-04[m]
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Table A.18: Dataset #17. Mean markers error: 1.4777e-03[m]
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Table A.19: Dataset #18. Mean markers error: 7.9841e-04[m]
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B
The system identification cycle

The system identification process consists of several steps with the ultimate goal of producing data-
driven flight dynamic models. The steps that form the system identification process consists of seven
steps to be exact, which can be run through as many times as required. Hence the term system identifi-
cation ’cycle’. The system identification cycle is displayed in Figure B.1 below. Klein and Morelli (2006)

Figure B.1: The System Identification Cycle Klein and Morelli (2006)

Aircraft system identification includes model postulation, experiment design, data compatibility analy-
sis, model structure determination, parameter and state estimation, collinearity diagnostics, and model
validation. Performing each of the steps is required in order to identify a mathematical formulation
of the functional dependence of the applied aerodynamic forces and moments on aircraft motion and
control variables. Starting with the first step in the System Identification Cycle; model postulation.

1. Model postulation
Model postulation is based on a priori knowledge about the aircraft dynamics and aerodynamics. The
postulated model influences the type of flight-test manoeuvre used for system identification. It is com-
mon practice to express the aerodynamic forces and moments in terms of linear expansions, polynomi-
als, or polynomial spline functions in the states and controls, with time-invariant parameters quantifying
the contribution of each to the total aerodynamic force or moment. In recent years, this formulation
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has been extended to cases with unsteady aerodynamic effects modelled by indicial functions or addi-
tional state equations.Klein and Morelli (2006)

2. Experiment design
Experiment design includes selection of an instrumentation system, and specification of the aircraft
configuration, flight conditions, and manoeuvres for system identification. The instrumentation system
is primarily required to measure input and output variables at regular sampling intervals during the
manoeuvre. Input variables are throttle position and control surface deflections for open-loop or bare-
airframe modelling. The output variables include quantities specifying the magnitude and direction of
the air-relative velocity (airspeed, angle of attack, and sideslip angle), angular velocities, translational
and angular accelerations, and Euler attitude angles. In addition to these variables, quantities defining
flight conditions and configuration are also recorded. An important aspect of the experiment design
is the selection of input forms for the flight maneuvers. The input influences aircraft response, which
in turn influences the accuracy of the system identification from flight measurements. Attempts to
obtain parameter estimates with high accuracy in the most efficient manner has led researchers to the
development of optimized inputs for aircraft parameter estimation.Klein and Morelli (2006)

3. Data compatibility analysis
In practice, measured aircraft response data can contain systematic errors, even after careful instru-
mentation and experimental procedure. To verify data accuracy, data compatibility analysis can be
applied to measured aircraft responses. Data compatibility analysis includes aircraft state estimation
based on known rigid-body kinematics and available sensor measurements, estimation of systematic
instrumentation errors, and a comparison of reconstructed responses with measured responses. The
state equations for the data compatibility analysis are kinematic relationships among the measured
aircraft responses, and the model parameters are constant biases and scale factor errors for the sen-
sors.Klein and Morelli (2006)

4. Model structure determination
Model structure determination in aircraft system identification means selecting a specific form for the
model from a class of models, based on measured data. For example, this might involve choosing an
appropriate polynomial expansion in the aircraft motion and control variables to model a component of
aerodynamic force acting on the aircraft, from the class of all possible polynomial models of order two
or less. The model should be parsimonious to retain good prediction capability, while still adequately
representing the physical phenomena. An adequate model is a model that fits the data well, facilitates
the successful estimation of unknown parameters associated with model terms whose existence can
be substantiated, and has good prediction capabilities. One of the techniques, stepwise regression,
has been used extensively in practice. In this technique, the determination of a model proceeds in
three steps: postulation of terms that might enter the model, selection of an adequate model based
on statistical metrics, and validation of the selected model. The other technique generates multivariate
orthogonal modelling functions from the data to facilitate model structure determination. The orthog-
onality of the modelling functions make it possible to automate the first two of the three steps listed
earlier for model structure determination. Retained orthogonal functions can be decomposed without
error into ordinary polynomial terms for the final model form.Klein and Morelli (2006)

5. Parameter and state estimation
Four items are needed for implementation of aircraft system identification: an informative experiment,
measured input-output data, a mathematical model of the aircraft being tested, and an estimation
technique. Parameter and state estimation constitute a principal part of the aircraft system identifica-
tion procedure. Currently, two methodsঁequation-error and output-errorঁare used for most aircraft
parameter estimation. The equation-error method is based on linear regression using the ordinary
least-squares principle. The unknown aerodynamic parameters are estimated by minimizing the sum
of squared differences between measured and modelled aerodynamic forces and moments. Linear re-
gression constitutes a linear estimation problem, meaning that the model output is linearly dependent
on the model parameters. This simplifies the optimization required to find parameter estimates to the
solution of an overdetermined set of linear equations, which can be found using well-known techniques
from linear algebra. In the output-error method, the unknown parameters are obtained by minimizing
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the sum of weighted square differences between the measured aircraft outputs and model outputs.
The estimation problem is nonlinear because the unknown parameters appear in the equations of mo-
tion, which are integrated to compute the states. Outputs are computed from the states, controls,
and parameters, using the output equations. Iterative nonlinear optimization techniques are required
to solve this nonlinear estimation problem. Theoretically, either the equation-error or the output-error
method can be a maximum likelihood estimator, which means that the cost function optimization used
for computing the unknown parameters is equivalent to maximizing the probability density of the out-
come from the experiment.Klein and Morelli (2006)

6. Collinearity diagnostics
In almost all practical applications of linear regression, the model terms are correlated to some extent.
Usually, the levels of correlation are low, and therefore not problematic. However, in some situations,
the model terms are almost linearly related. When this happens, the problem of data collinearity exists,
and inferences about the model based on the data can be misleading, or completely wrong. The ability
to diagnose data collinearity is important to users of linear regression or other parameter estimation
techniques. Such a diagnostic consists of two basic steps: 1) detecting the presence of collinearity
among the model terms, and 2) assessing the extent to which these relationships have adversely af-
fected estimated parameters. Then, diagnostic information can aid in deciding what corrective actions
are necessary and worthwhile.Klein and Morelli (2006)

7. Model validation
Model validation is the last step in the identification process, and should be applied regardless of how
the model was found. The identified model must demonstrate that its parameters have physically
reasonable values and acceptable accuracy, and that the model has good prediction capability on com-
parable maneuvers. Flight-determined parameter estimates should be compared with any available
information about the aircraft aerodynamics, which can include theoretical predictions, wind-tunnel
measurements, or estimates from previous flight measurements using different maneuvers and/or dif-
ferent estimation techniques. During these comparisons, the limitations and accuracy of theoretical
calculations, wind-tunnel measurements, and the flight results must be taken into consideration. Pre-
diction capability of an identified model is checked on data not used in the identification process. The
measured input for the prediction data is applied to the identified model to compute predicted re-
sponses, which are then compared with measured values. The differences between predicted values
from the model and measured values should be random in nature, indicating that all deterministic com-
ponents in the measured output have been represented by the identified model.Klein and Morelli (2006)





C
Validation Forward Flight Models

In this section the validation results are presented for the forward speed models, from 0.5 m/s up to
1.0 m/s. As shown in the validation metrics and plots, we can see that the models are accurate. Except
for the model in 1.0 m/s forward flight condition. This offset is probably caused by a different trim
condition between the estimation dataset and the validation dataset.

Validation of the model in 0.5 m/s forward flight condition:

Match validation data with measured data
Output Output R2 RMSE
Variable Correlation (% of measurement range)
X 0.97 0.90 7.15%
Z 0.64 0.32 11.49%
M 0.95 0.85 7.38%
�̇� 0.96 0.85 7.38%
�̇� 0.94 0.84 7.21%
�̇� 0.90 0.68 8.54%
�̇� 0.99 0.99 0.66%

Table C.1: Validation metrics of the longitudinal model in 0.5 m/s forward flight condition (Figures C.1a-C.1b).
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Figure C.1: Predicted output of the estimated time-averaged longitudinal 0.5 m/s forward flight model.
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Validation of the model in 0.75 m/s forward flight condition:

Match validation data with measured data
Output Output R2 RMSE
Variable Correlation (% of measurement range)
X 0.93 0.70 11.01%
Z 0.41 0.10 8.44%
M 0.94 0.83 7.45%
�̇� 0.93 0.83 7.45%
�̇� 0.96 0.57 11.44%
�̇� 0.83 0.52 8.55%
�̇� 0.99 0.98 2.43%

Table C.2: Validation metrics of the longitudinal model in 0.75 m/s forward flight condition (Figures C.2a-C.2b).
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Figure C.2: Predicted output of the estimated time-averaged longitudinal 0.75 m/s forward flight model.
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Validation of the model in 1.0 m/s forward flight condition:

Match validation data with measured data
Output Output R2 RMSE
Variable Correlation (% of measurement range)
X 0.89 -0.23 24.46%
Z 0.56 -0.04 11.14%
M 0.96 0.35 17.24%
�̇� 0.96 0.35 17.24%
�̇� 0.96 -0.03 21.26%
�̇� 0.90 0.58 10.83%
�̇� 0.98 0.96 4.31%

Table C.3: Validation metrics of the longitudinal model in 1.0 m/s forward flight condition (Figures C.3a-C.3b).
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(b) Validation of the aerodynamic- forces and mo-
ment. Measured- and model predicted output of the
aerodynamic- forces and moment in 1.0 m/s forward
flight condition.

Figure C.3: Predicted output of the estimated time-averaged longitudinal 1.0 m/s forward flight model.





D
Validation of the Improved Linear

Models in Hover Condition

In this section validation results are provided of the improved/adjusted linear models for the aerody-
namic force 𝑍 in hover condition, including the corresponding metrics, such as the output correlation
and goodness of fit (𝑅ኼ) (Table D.1 and Figure D.1).

Match validation data with measured data
Output Output R2 RMSE
Variable Correlation (% of measurement range)
𝑍፦፨፝፞፥ኻ 0.88 0.78 6.94%
𝑍፦፨፝፞፥ኼ 0.84 0.71 7.87%
𝑍፦፨፝፞፥ኽ 0.56 0.32 12.14%

Table D.1: Validation metrics of the adjusted linear models in hover flight.
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Figure D.1: Validation of the aerodynamic force ፙ for all the adjusted linear models.
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