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Abstract

Automatic analysis of facial expressions is a complex area
of pattern recognition and computer vision with many un-
resolved problems, one of which is the distinction between
posed and spontaneous expressions of emotions. Previous
psychology research indicates that the temporal dynamics in
the face are essential for distinguishing between posed and
spontaneous smiles. There are six temporal characteristics
which are important: morphology, apex overlap, symmetry,
total duration, speed of onset and speed of offset. In this
work, we propose to distinguish between posed and spon-
taneous expressions by using Dynamic Bayesian networks
(DBN) to model the temporal dynamics. The DBN provides
a suitable framework to represent probabilistic relationships
between and within the various types of temporal dynamics.
Based on the temporal phases of four different Action Units
(onset, apex offset and neutral of facial actions) and the six
temporal characteristics from the psychology research, we
build several DBN models to distinguish between posed and
spontaneous expressions. We present experimental results
from 50 videos displaying posed and spontaneous smiles.
When the DBNs trained on the temporal characteristics are
combined to provide a joint classification, we attain an AUC
of 0.97.

1 Introduction

Traditionally the field of human-computer interaction (HCI)
deals with the study of interaction between people and com-
puters. Currently, it is highly insensitive to the affective
state of a person, depending instead on passive instruments
such as mouse and keyboard. While this may be sufficient
for current applications and tasks with computers, the next-
generation of HCI designs must take a step further and be
able to detect, understand and respond to the various states
of a person. The interaction between humans and computers
should be as natural as the communication between humans
and other humans. Facial expressions are a key element of
non-verbal communication between humans, and the auto-
matic analysis of facial expressions is a challenging area in
computer vision and pattern recognition.

Many of the existing facial expression analyzers developed
so far attempt to recognize a set of six basic facial expres-

sions (anger, disgust, fear, happiness, sadness and surprise)
[12] and it is aimed at the analysis of posed data, with test
subjects deliberately producing an explicit emotional facial
expression. It is only recently that researchers have begun
concentrating on spontaneous facial expression data [1] [3],
and on the analysis of posed versus spontaneous facial ex-
pressions [15] [4].

Research within the psychology field into the differentia-
tion between posed and spontaneous facial expressions in-
dicates that the temporal dynamics of certain facial mus-
cles are very important [7] [6]. For instance, it has been
shown that for posed and spontaneous smiles temporal and
dynamic characteristics, like duration, co-occurrence and
speed, are essential in distinguishing between the two classes
[5]. Some of the past work in the field have used temporal
dynamics of facial expression in combination with support
vector machines [15] and linear discriminant classifiers [4].

A Dynamic Bayesian network (DBN) is a probabilis-
tic graphical model consisting of probabilistic relationships
among sets of variables. It is capable of representing the
relationships between and within the temporal dynamics of
facial muscle movements, and it provides known inference
and parameter learning techniques. As such, the various
temporal dynamics of facial expressions can be well mod-
elled with a DBN.

This paper reports on our method for posed and spon-
taneous facial expression recognition by using Dynamic
Bayesian networks (DBN) to model the temporal cues. We
focus on several temporal dynamics suggested by Ekman
in [7]: morphology, apex overlap, symmetry, total duration,
speed of onset and speed of offset. Based on these character-
istics we build several DBN models to distinguish between
posed and spontaneous expressions. The aim of this study is
not to evaluate the performance of a fully automated system
to distinguish between posed and spontaneous facial expres-
sions, but to investigate whether the temporal dynamics are,
as psychologists claim, to be important to posed versus spon-
taneous recognition and whether they can be modelled in a
DBN. For that reason, we use the ground truth manually
annotated data as input for our DBN model.

The rest of this paper is outlined as follows. Section 2
explains the Dynamic Bayesian network theory. Section 3
describes the facial expression features used based on the
temporal characteristics from the psychology research. Sec-
tion 4 presents the DBN models. Section 5 describes the
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dataset used. Section 6 provides the experimental results.
Finally, section 7 analyzes the conclusions drawn from the
study.

2 Dynamic Bayesian Networks

A Dynamic Bayesian Network (DBN) is a probabilistic
graphical model that can encode the full joint probability
distribution for a set of variables [14]. It is a directed acyclic
graph (DAG), where each node represents a random vari-
able, and where each arc (also called edges or links) repre-
sents the conditional dependency among the variables. Arcs
exist between nodes that are dependent on each other; nodes
which are not connected indicate that those variables are
conditionally independent of each other. The DBN can be
seen as a series of time slices; each time slice contains nodes
and arcs that describe the domain at a specific moment, and
between each time slice arcs exist between nodes to describe
the relationship of time.

To be exact, a Dynamic Bayesian Network B is defined by
D = (G,Θ) with the following elements:

1. the directed acyclic graph G = (V,A), where

• V is a non-empty and finite set of nodes V =
{X1, ...,Xt} with X = {X1, ..., Xn}. Xt is used
to denote the set of variables {X1, ..., Xn} at time
slice t, while Xi represents a single random vari-
able.

• A ⊆ V × V is the set of directed arcs between
nodes. The intra-slice arcs define the relationships
between nodes within a time slice, while the inter-
slice arcs define the relationships between nodes
between time slices.

• if there is a directed arc from node Xi to node Xj ,
Xi is called a parent of Xj , while Xj is called a
descendent or child of Xi. Par(Xi) denotes the
set of all parents for Xi, while Par(Xt) denotes
the set of all parents within Xt.

2. the set of conditional probability distributions Θ, that
indicate the dependency between nodes:

• P(X0): the prior distribution over the state
variables

• P(Xt|Xt−1): the transition model, which spec-
ifies the conditional probabilities of the inter-slice
relationships.

• P(Xt|Par(Xt)): the sensor model, which spec-
ifies the conditional probabilities of the intra-slice
relationships.

The three distributions give us a specification of the com-
plete joint distribution over all the variables. For any finite

t, the complete joint distribution for a first-order Markov
process is:

P (X0, ...,Xt) = P(X0)

t∏
i=1

P(Xi|Xi−1)P (Xi|Par(Xi)) (1)

The transition and sensor models are assumed to be sta-
tionary; although the variables change over time, the param-
eters G and Θ governing these variables do not. Because of
this, only the models for the first slice need to be specified.
By copying the first slice, the complete DBN can be con-
structed.

Since the DBN provides the complete joint distribution,
each entry in the joint distribution can be calculated from
the information in the network.

3 Facial Expression Features

In 1976 Ekman and Friesen developed the Facial Action Cod-
ing System (FACS), a comprehensive method to describe all
possible visually distinguishable facial movements. The sys-
tem defines a collection of rules for 32 Action Units (AUs),
each indicative of the smallest visually discernible indepen-
dent facial muscle movement. An AU has 4 temporal phases:
the neutral phase, the onset phase, the apex phase, and the
offset phase. In figure 1 the flow of these phases is depicted:
a facial muscle movement can turn from an onset phase into
an apex phase or an offset phase, but can never directly move
into a neutral phase. Typically a basic expression holds to
the pattern neutral to onset to apex to offset and back to
neutral, but more complex expressions can have multiple on-
sets, apexes or offset (for instance, neutral to onset to apex
to onset to apex to offset to neutral).

Figure 1: Flow of the temporal phases of an action unit

There are several temporal dynamics based on AUs and
their temporal phases that can help distinguish spontaneous
facial expressions from posed facial expressions. We turn
each temporal characteristic into boolean features to be used
in the DBN models.

Morphology: The morphology refers to the occurrence of
an AU and its temporal phases. Named after the 19th cen-
tury physician Duchenne de Boulogne, who discovered it, a
Duchenne smile occurs when there are contractions of both
the zygomatic major (AU12 - which raises the corners of the
mouth) and the orbicularis oculi (AU 6/7 - which raises the
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cheek and tightens the upper and lower eye lid). A non-
Duchenne smile only involves the zygomatic major, and no
involvement of the orbicularis oculi. Ekman reported that
the absence of the orbicularis oculi is a strong indicator of
a posed smile; however, the presence of the orbicularis oculi
does not necessarily mean a spontaneous smile [7].

We define four features for each of the temporal phases:

AUonset = {0, 1} (2)

AUapex = {0, 1} (3)

AUoffset = {0, 1} (4)

AUneutral = {0, 1} (5)

These four phases are mutually and collectively exclusive;
at any given time, only one of these phases must be active.

Apex Overlap: Ekman reported in [5] that in spontaneous
expressions in which there are multiple independent facial
actions, it is likely that the apexes of these actions will over-
lap.

For an AU combination, an apex overlap occurs in a frame
when both AUs are in the apex phase:

ApexOverlap(AUX , AUY )

=

{
1 if (AUX

apex = 1) ∩ (AUY
apex = 1)

0 otherwise
(6)

Asymmetry: Ekman, Hager and Friesen reported that
asymmetries were more frequent in posed smiles than in
spontaneous smiles [8]. When asymmetries occurred in
posed smiles, they were usually stronger on the left side of
the face. In the cases that asymmetries did occur during
spontaneous smiles, the asymmetries were equally divided
between those stronger on the left and right sides of the
face.

For the right mouth corner R, we define Rx,t and Ry,t as
the coordinates of the x- and y- directions at time t. Simi-
larly, for the the left mouth corner L we define Lx,t and Ly,t

as the coordinates of the x- and y- directions at time t. For
each frame, asymmetry is determined by first calculating the
difference of displacement d of the left and right mouth cor-
ners. This is normalized by the overall displacement of the
left and right mouth corners.

dright =
√

(Rx,t −Rx,t−1)− (Ry,t −Ry,t−1) (7)

dleft =
√

(Lx,t − Lx,t−1)− (Ly,t − Ly,t−1) (8)

a =
abs(dright − dleft)
abs(dright + dleft)/2

(9)

We define a threshold α to distinguish between symme-
try and asymmetry. For each video, we obtain a symmetry
feature:

Symmetry =

{
1 if a > α
0 otherwise

(10)

Total duration: Ekman and Friesen observed in [7] that
most spontaneous smiles (using AU 12 as an indicator to a
smile) were between 2/3s of a second and 4 seconds, while
posed false smiles were likely to last longer. Hess and Kleck
[9] confirm that posed expressions are longer than sponta-
neous expressions, experimenting with facial expressions of
happiness and disgust.

For an AU, we define the total duration as the number of
seconds an AU is active, i.e. whether an AU is in the onset,
apex or offset phase. As the temporal phases are mutually
and collectively exclusive, this can also be defined as when
an AU is not in the neutral phase:

td = length(AUneutral = 0) (11)

We define a threshold β to distinguish between ”short”
and ”long” durations. For each video, we obtain a total
duration feature:

TotalDuration =

{
1 if td > β
0 otherwise

(12)

Speed: Ekman suggested in [5] that the onset of a posed
expression will be often more abrupt than that of a spon-
taneous expression. Hess and Kleck confirmed this and
reported that in comparison to spontaneous smiles, posed
smiles are quicker in onset and offset time [9].

For each video, the speed of onset of a smile is defined
by the displacement of the mouth corners divided by the
duration of the smile. We only look here at the right mouth
corner, using the definition of R from above.

so =

√
(Rx,t −Rx,1)− (Ry,t −Ry,1)

length(AUonset = 1)
(13)

We define a threshold γ to distinguish between ”quick”
and ”long” speed of onset. For each video, we obtain a
speed of onset feature:

SpeedOnset =

{
1 if so > γ
0 otherwise

(14)

We define a similar equations for the speed of offset, but
with a threshold δ:

sf =

√
(Rx,t −Rx,1)− (Ry,t −Ry,1)

length(AUoffset = 1)
(15)

SpeedOffset =

{
1 if sf > δ
0 otherwise

(16)
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4 The DBN Models

In this study, several DBN models were made based on the
temporal characteristics from the psychology research. One
of the goals of this paper was to investigate how each tempo-
ral characteristic could be modelled in a DBN, and whether
it would contribute to a better classification.

All DBN models were created with the Bayes Net Toolbox
for Matlab [10], which supports different types of probability
distributions, exact and approximate inference, parameter
and structure learning, and static and dynamic models. The
models created here all use a dynamic structure, boolean
nodes and the Junction tree algorithm for inference [11].

4.1 Temporal Phases and Morphology

This DBN models the temporal phases of Action Units and
can be seen in figure 2. We use the graphical notation of
plates from Bishop [2] to indicate duplicate sets of nodes.
Depending on the number of AUs we want to model, the
DBN consists of 1 + (4 ∗N) nodes. For each time slice, we
define the set Xt:

Xt = {Class, n ∗ (AUonset, AUapex, AUoffset, AUneutral)} (17)

The first node represents the class of the video: whether
or not the facial expression is posed or spontaneous. That
is followed by N sets of four nodes, representing the four
temporal phases of the AUs. The inter-slice relationships
are defined by following the onset-apex-offset rules: only
nodes that can logically follow each other are connected.
The intra-slice relationships are defined by connecting the
Posed/Spontaneous node to the temporal phases nodes, al-
lowing the morphology to also be extrapolated within the
network.

4.2 Apex Overlap and Symmetry

For Apex Overlap the DBN model consists of two boolean
nodes per time slice: one node representing the class (posed
or spontaneous), and one node to represent the apex overlap.
For each time slice, we define the set Xt:

Xt = {Class,ApexOverlap} (18)

An image of it can be seen in figure 3. For Symmetry the
DBN model is exactly the same, only with the apex overlap
node replaced with a symmetry node. For each time slice,
we define the set Xt:

Xt = {Class, Symmetry} (19)

Figure 2: Dynamic Baysian Network for Temporal Phases

Figure 3: Dynamic Baysian Network for Apex Overlap

4.3 Total Duration and Speed

For Total Duration and Speed, the DBN model again con-
sists of two boolean nodes per time slice: one node repre-
senting posed or spontaneous, and one node to represent the
total duration/speed. For each time slice, we define the set
Xt:

Xt = {Class, TotalDuration} (20)

An image of it can be seen in figure 4. For Speed the
DBN model is exactly the same, only with the total duration
node replaced with a symmetry node. For each time slice,
we define the set Xt:

Xt = {Class, SpeedOnset} (21)
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Figure 4: Dynamic Bayesian Network for Total Duration

5 The Dataset

To be able to evaluate the DBN models that we propose
in this paper, we need a suitable set of data. The MMI
Facial Expression Database is an online collection of video
and audio recordings of subjects displaying facial expressions
[16]. This continually growing database currently holds over
2900 videos and high-resolution still images of 75 subjects.

For our dataset we selected 50 videos from the MMI Facial
Expression Database, half of which are of posed displays of
happy and half of which are spontaneous displays of happy.
The 25 posed displays are of 18 different subjects, who were
all asked to express happiness. The 25 spontaneous dis-
plays are of 11 different subjects, who were each shown funny
clips to induce happiness. Three subjects appear in both the
posed and spontaneous sets. All videos were recorded with
a frontal view, and under controlled lighting conditions. In
figure 5 screen shots of two of the videos used can be seen.

Figure 5: Screen shots of posed (left) and spontaneous
(right) smiles from the MMI Facial Expression Database

The MMI Facial Expression Database provides the an-
notations of the event-coding for all videos in the dataset,
but for our dataset we need the frame-by-frame level (onset-
apex-offset) coding, indicating the temporal phase of an AU.
For all missing oao-codings the videos were manually an-
notated using the ActionUnitCoding tool. Only AUs that
occurred in more than 10% of the videos were considered
(AU6, AU 7, AU 10 and AU 12).

In addition, we use the Patras-Pantic Particle Filtering
with Factorized Likelihoods (PFFL) to track the necessary
facial points [13]. In figure 6 the points can be seen, which
are tracked with PFFL. We track two points on the mouth:
R, the right mouth corner, and L, the left mouth corner.
Additionally, we track the points on the inner eye corners
and on the nose, to allow us to normalize the data. This
is first done with intra-registration, removing all rigid head
movements within the video, which is then followed by inter-
registration, where the face is warped onto a predefined ”nor-
mal” face, eliminating the inter-person variation of the face
shape.

Figure 6: Facial points tracked with PFFL

6 Experiments

To evaluate the proposed method for distinguishing between
posed and spontaneous facial expressions, we used the afore-
mentioned dataset. For the Temporal Phases and Apex
Overlap DBN models, all four available AUs were used (AU6,
AU 7, AU 10 and AU 12). For the other facial features, only
AU 12 is examined, but the internal threshold is varied to
see which value performs best. The range of values of the
thresholds β, γ and δ (eq. 12, 14 and 16) were chosen based
off the density plots and ROC curves in figures 7 - 9.

Table 1 shows the average mean and standard deviation
of the area under ROC curve performance, using five times
10-fold cross validation for the DBN models. For each video,
a classification is made by first having the DBN calculate per
frame the probability whether or not it is posed or sponta-
neous, and then averaging over the entire video for a final
classification. The best performance for each facial feature
is highlighted in bold. The DBN trained on the tempo-
ral phases of AU 6 and AU 12 combined performs the best
classification. This confirms the psychology research: the
zygomatic major (AU12) and the orbicularis oculi (AU 6)
occurring in the same video is a likely indicator of a spon-
taneous smile, while the absence of the orbicularis oculi is a
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Figure 7: Density plot and ROC curve of the total duration
for Posed and Spontaneous videos

Figure 8: Density plot and ROC curve of the speed of onset
for Posed and Spontaneous videos

Figure 9: Density plot and ROC curve of the speed of offset
for Posed and Spontaneous videos

strong indicator of a posed smile.

Overall the proposed temporal characteristics perform as
desired, most being able to distinguish between posed and
spontaneous facial expressions with fairly good accuracy.
This confirms that the temporal dynamics of facial actions
are important for the classification of posed and spontaneous
emotions.

Finally, to investigate the combined effect of the DBN
models, we merge the results of various combinations of
DBNS, averaging the DBN results for each video. Table 2
shows the classification results using five times 10-fold cross
validation for these combined classification. The combined

DBN Model AUC

T1: Temporal Phases AU 6 0.80 (0.02)

T2: Temporal Phases AU 7 0.36 (0.04)

T3: Temporal Phases AU 10 0.50 (0.03)

T4: Temporal Phases AU 12 0.77 (0.02)

T5: Temporal Phases AU 6 & AU 10 0.74 (0.02)

T6: Temporal Phases AU 6 & AU 12 0.85 (0.02)

T7: Temporal Phases AU 10 & AU 12 0.73 (0.02)

T8: Temporal Phases AU 6 & AU 7 0.72 (0.01)

T9: Temporal Phases AU 7 & AU 10 0.55 (0.01)

T10: Temporal Phases AU 7 & AU 12 0.70 (0.02)

A1: Apex Overlap AU 6 & AU 10 0.57 (0.03)

A2: Apex Overlap AU 6 & AU 12 0.54 (0.02)

A3: Apex Overlap AU 10 & AU 12 0.51 (0.01)

A4: Apex Overlap AU 6 & AU 7 0.34 (0.04)

A5: Apex Overlap AU 7 & AU 10 0.34 (0.03)

A6: Apex Overlap AU 7 & AU 12 0.37 (0.03)

S1: Symmetry AU 12, α = 0.5 0.55 (0.04)

S2: Symmetry AU 12, α = 0.6 0.62 (0.03)

S3: Symmetry AU 12, α = 0.7 0.65 (0.02)

S4: Symmetry AU 12, α = 0.8 0.58 (0.03)

S5: Symmetry AU 12, α = 0.9 0.62 (0.01)

D1: Total Duration AU 12, β = 2.6 0.76 (0.02)

D2: Total Duration AU 12, β = 2.8 0.78 (0.01)

D3: Total Duration AU 12, β = 3.0 0.79 (0.01)

D4: Total Duration AU 12, β = 3.2 0.75 (0.01)

D5: Total Duration AU 12, β = 3.4 0.72 (0.04)

O1: Speed of Onset AU 12, γ = 25 0.69 (0.01)

O2: Speed of Onset AU 12, γ = 26 0.70 (0.01)

O3: Speed of Onset AU 12, γ = 27 0.70 (0.01)

O4: Speed of Onset AU 12, γ = 28 0.69 (0.01)

O5: Speed of Onset AU 12, γ = 29 0.67 (0.01)

F1: Speed of Offset AU 12, δ = 8 0.68 (0.02)

F2: Speed of Offset AU 12, δ = 9 0.72 (0.02)

F3: Speed of Offset AU 12, δ = 10 0.70 (0.02)

F4: Speed of Offset AU 12, δ = 11 0.70 (0.02)

F5: Speed of Offset AU 12, δ = 12 0.69 (0.02)

Table 1: Average AUC performances of the DBNs, using five
times 10-fold cross validation, with the standard deviation
over the five runs shown between brackets.
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DBN C1 using all facial features achieves a much higher
classification rate than the DBNs alone. This not only re-
confirms that the temporal dynamics are essential to distin-
guishing between posed and spontaneous facial expressions,
but that together they provide a more robust and precise
classification. In classifiers C2 - C7 we examine what hap-
pens when one of the temporal characteristics is left out. The
combined DBNs without Speed of Offset (C2) and without
Symmetry (C5) performs just as well, indicating that these
two features provide little extra contribution. Finally, in C8
we examine the combined DBN without both Speed of Off-
set and Symmetry and again attain the same performance
rate as with them.

DBN Model AUC

T567 : T5 + T6 + T7 0.94 (0.01)

A123 : A1 +A2 +A3 0.58 (0.02)

C1 : T567 +A123 + S3 +D3 +O2 + F2 0.97 (0.00)

C2 : T567 +A123 + S3 +D3 +O2 0.97 (0.00)

C3 : T567 +A123 + S3 +D3 + F2 0.97 (0.01)

C4 : T567 +A123 + S3 +O2 + F2 0.96 (0.01)

C5 : T567 +A123 +D3 +O2 + F2 0.97 (0.00)

C6 : T567 + S3 +D3 +O2 + F2 0.96 (0.00)

C7 : A123 + S3 +D3 +O2 + F2 0.95 (0.00)

C8 : T567 +A123 +D3 +O2 0.97 (0.00)

Table 2: Average AUC performances of the DBNs, using five
times 10-fold cross validation.

7 Conclusions

In this paper we proposed using Dynamic Bayesian networks
for distinguishing between posed and spontaneous facial ex-
pressions. Following the research in psychology, we built our
system based on characteristics of the temporal dynamics in
the face, and defined several facial features: morphology,
apex overlap, symmetry, total duration, speed of onset and
speed of offset. Based on these characteristics we built sev-
eral DBN models to classify posed and spontaneous facial ex-
pressions. We attained a 97% performance rate when testing
the system on 50 videos taken from the MMI database. The
results confirmed research findings in psychology that tem-
poral dynamics are essential for the classification of posed
and spontaneous facial expressions.

From our study, it is made clear that the facial features
of morphology, apex overlap, total duration and speed of
onset are important for distinguishing between posed and
spontaneous. Symmetry and the speed of offset, however,
although both reported to be good indicators for posed and
spontaneous facial recognition, did not appear to contribute
to the DBN classification.

The DBN framework provides a suitable framework to rep-
resent the temporal dynamics of facial actions, allowing us
to specify the relationships between and within the facial
expression features. However, certain design choices for the
DBNs were made in this study, and more research is needed
to better understand what the most effective DBN model is.
Firstly, the DBN models used only boolean, discrete nodes.
Although they produced an adequate classification, it would
be interesting to see how the DBNs perform with continuous
nodes, representing certain facial features with probability
density functions. Secondly, nodes were only connected from
time slice t to time slice t − 1. Nodes could take any num-
ber of nodes from past time slices into account, providing an
internal memory to each time slice. Thirdly, when combin-
ing the facial features, we only examined high-level fusion,
combining the DBNs based on those facial features. Further
investigation and experimentation into how to fuse those fa-
cial features at a lower-level within a single DBN is strongly
recommended. Modelling the facial features within a single
DBN would allow relationships between features and estab-
lish dependencies that our model inherently disregarded.

In summary, DBNs are capable of distinguishing between
posed and spontaneous facial expressions, and the temporal
dynamics are shown to be key in the classification. More
extensive experiments are needed though to fully investi-
gate what the best DBN model is. Future research should
also examine the effect of a larger dataset and automatically
labelled temporal phases data. Finally it needs to be re-
searched whether other facial expressions beyond smiles also
benefit from the same temporal dynamics for posed versus
spontaneous facial expression recognition.
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