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Task centric cache management for an
on-chip multiprocessor

Anca M. MOLNOŞ

Abstract
In this dissertation we propose a cache memory management method for

embedded chip multiprocessors executing multimedia applications with soft-
real time constraints. We consider a CAKE multiprocessor platform with 4
TriMedia cores and an on-chip memory hierarchy including a shared level two
(L2) cache; we assume a multimedia workload. The interference of concur-
rent accesses to the shared L2 is typically unpredictable. Hence the system
has to be compositional to offer real-time guarantees, i.e. the performance of
each individual sequential task must be preserved when different tasks execute
in parallel or when tasks are added. To ensure compositional cache access we
propose to exclusively allocate L2 parts to each task. We compare set and asso-
ciativity based L2 partitioning for applications with independent tasks and find
that both induce compositionality to a large extent: the number of inter-task L2
interference misses is within 1% of the application’s number of misses. How-
ever, the former increases, and the latter decreases the system performance.
Thus, we propose set-based partitioning as the foundation for the task cen-
tric cache management. For applications with dependent tasks, we introduce a
mixed partitioning that allocates cache set-based to each task and each shared
data/code region, and associativity-based inside a shared data/code region, for
each task accessing it. Subsequently, we propose two methods for partitioning
ratio optimization, one to minimize the number of misses and one to maximize
the throughput. Experiments indicate that mixed partitioning ensures less than
1% inter-task L2 interference, (i.e. high compositionality) and improves per-
formance. Finally, for multiple execution scenarios when the application tasks
may start or stop we propose a dynamic cache repartitioning method that: (1) at
design-time finds the cache place of each task in every scenario, such that crit-
ical tasks are undisturbed, and the repartitioning overhead is minimized, and
(2) at run-time switches among partitions and further decreases the repartition-
ing penalty. Experiments show that this method induces high compositionality,
safeguards critical tasks, and increases performance. The results obtained indi-
cate that task centric cache management is a promising approach for embedded
multiprocessor systems executing static or dynamic multimedia applications.
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Chapter 1

Introduction

raditionally, computing is intended to automate mathematical calcu-
lations, for solving large engineering problems or predicting nature’s
behavior. However, due to a dramatic decrease in the cost of computing

power, data processing is nowadays embedded in virtually every electronic de-
vice. Even though such a device is not generally considered to be a computer, it
encapsulates a processing unit, called an embedded system. Unlike a general-
purpose processing unit, such as the one found inside a personal computer, an
embedded system performs one or a few pre-defined tasks, usually with very
specific requirements. While no unique definition exists for ”embedded sys-
tems”, it is widely accepted that such a system represents a combination of
computer hardware, software, and perhaps additional parts (e.g. mechanical,
electrical, etc. subsystems), designed to perform a dedicated function. Ex-
amples of embedded systems range from the ”traditional” ones, like industrial
robots, household devices, etc., to the novel ones like automobile driving as-
sistants, personal digital assistants, mobile phones, video recorders, electronic
toys, etc.

Because of the environment in which they are used, embedded systems
have functional and performance requirements, as well as specific technical
and economical constraints. First, embedded systems often implement func-
tionality that has to be performed in real-time, i.e. the output has to be de-
livered within fixed and (sometimes) critical time deadlines. Some typical
examples are video, audio applications and automotive systems. As missing
a deadline can cause severe quality degradations and may have critical con-
sequences, an application’s timing has to be guaranteed by construction. To
enforce this guarantee, the behavior of the system has to be predictable in
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each context the application might execute. Furthermore, a system may be
composed by a number of parts which execute concurrently, and which might
be developed by independent teams. If the interference among these parts is
random, their integration is difficult, and the predictability of the system is
endangered. Therefore, the performance of each individual part must be pre-
served even if the parts are executed concurrently, in arbitrary combinations,
or if new parts are added to the system. A system satisfying this property
is addressed as being compositional. Second, many embedded systems are
portable, e.g., mobile phones, digital assistants, pacemakers, etc. Hence, heat
dissipation, weight, and size matter, imposing severe low resource constraints
(e.g., for memory, energy, etc.). Third, it is desirable that an embedded sys-
tem is dependable, meaning that it continuously delivers an acceptable level
of service, regardless of any internal or external disturbance. Moreover, no
possible system state should be able to provoke catastrophic consequences on
the users or/and the environment; also the system should have the ability to
undergo modifications and repairs. Last but not least, the number of players
on the embedded system markets has increased in the last decade, resulting in
growing pressure for shorter time to market and low cost.

Concomitantly with their rapid proliferation, the embedded devices feature
more and more functionality and options. For example, multimedia features,
like video decoders or sound players are integrated nowadays in most portable
devices. Moreover, a user might regard it as a normal technology evolution to
enjoy high quality video images on a device like a mobile phone or a personal
digital assistant. However, the designers of such systems are facing serious
design challenges to cope with the constraints and requirements imposed by
these explosions of features.

Besides the general embedded systems constraints, multimedia applica-
tions are typically demanding a huge amount of computation power. Consider,
for instance, the H.264 video standard of the International Telecommunication
Union [46]. To process in real time a high definition video stream, an H.264
video decoder requires at least 50 Giga Operations Per Second (GOPS) [4].
This is quite a design challenge knowing that a modern, high performance,
processor like IBM PowerPC 970 delivers only 12.5 GOPS, four times less
than the demand of H.264 decoding.

As for every processor, the performance of a multimedia processor is dic-
tated by two factors: the ability to execute fast computation (processor speed)
and the immediate availability of the operands (memory latency). On the com-
putation side, considering that the operands are always available, a processor’s
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absolute performance is given by the product of two factors: (1) the number
of operations that it can execute in a basic unit of time (an interval known
as ”clock cycle”), and (2) the length of this time unit. Consequently, when a
platform cannot provide the required performance, there are two options for
speedup: increase the number of operations executed in a cycle, or shorten
the cycle time (increase the processor’s clock frequency). However, the en-
ergy dissipated by a processor varies quadratically with its frequency, thus
a frequency increase results in an power consumption increase [45]. In the
aforementioned example, the IBM PowerPC 970 operating at a frequency of
1.2 GHz consumes at least 40 watts [40], while delivering only a quarter of
the required computation performance. In contrast, allowing the user to watch
one-hour of video on a single mobile phone battery, a processor should utilize
just few watts, or even less. Thus, increasing the frequency of a IBM Pow-
erPC processor to cope with the computation requirements is an unacceptable
solution in terms of power consumption.

As a result of these specific low power constraints, speeding up embedded
workloads is achieved mostly by concomitantly executing more instructions
every cycle. In turn, this is possible only if the application exhibits paral-
lelism. Fortunately, multimedia applications (or shortly media applications)
intrinsically have a large degree of parallelism [94]. Therefore, such an ap-
plication is split into groups of instructions, further called ”tasks”, and these
tasks are executed in parallel on multiple processing units. These processing
units might have various complexities (from simple functional units to fully
fledged processors). Due to the large amount of transistors that can be nowa-
days integrated on-chip [45] multiple such units can be embedded on a single
chip.

In the above processor speed discussion, we abstract from the data
operands availability. However, in practice, it is rare that the all operands
are available in each processor cycle, as technological restrictions limit the
capacity of the storage units accessible in one cycle. In fact many media appli-
cations process data amounts so large that they can entirely fit only in the off-
chip main-memory. In any case, the data access time plays an important role
in an application execution time. In general, the latency of accessing a mem-
ory block is inversely dependent on its storage capacity [45] and its distance
from the processor. Nevertheless, the processor speed increases with 60% per
year, whereas the memory speed increases only with 10% per year [38]. This
leads to a growing speed gap of 50% per annum between processor and mem-
ory speeds. To mitigate this gap, a common practice is to buffer a part of the
data on the chip where the processing units reside, thus reducing the data ac-
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cess latency. These buffer levels, together with the main-memory are known
as ”memory hierarchy”. Such a hierarchy can ameliorate the memory speed
deficit if applications exhibit the so-called locality of reference: data and in-
structions are accessed multiple times within a short interval [88]. Therefore, a
good memory allocation strategy is to keep the often accessed items in a small
but fast buffer close to the processor (commonly denoted as ”high level” or
”level one” memory). The items that are needed less often are stored on lower
hierarchy levels that are larger and slower. In this dissertation we focus on
the memory hierarchy organization of a multimedia embedded system and we
target parallel platforms with multiple processor cores.

As mentioned before, for embedded media processing, the system perfor-
mance has to be predictable. For the memory hierarchy, predictability requires
the latency of each data access to be known. To determine the latency of an
access one has to know on which hierarchy level the data reside, and how
much time it takes to access that level. Hence, the location of each data item
should be known in every clock cycle. As a consequence, the designers would
like to explicitly regulate the traffic through the memory hierarchy (so called
scratch-pad memory organization). Because we consider applications consist-
ing of concurrent tasks, enforcing a strict data traffic control, each instruction
inside a task has to be analyzed for each possible combination of tasks. If
some instructions change (standards updates and the addition of new features,
or tasks occur often in the multimedia domain), the instruction level as well
as the task level analysis have to be reiterated. Moreover an application may
have many utilization scenarios, which have to be all detailed and separately
investigated. Such a large design effort clashes with the short time to market
demand specific to the embedded applications area. In order to build profitable
devices, application parts have to be reused, and updates have to be performed
during the lifetime of the device (on the fly). In other words, the design it-
self, as well as the design procedure have to be flexible. This is difficult in
an environment where every small change implies the redesign of the entire
system. Ideally, in a flexible system the memory traffic should be implicitly
controlled by the hardware (cache organization), and completely transparent
to the applications which are using it, such that the application can be updated
independently of the memory system. Although the conventional cache orga-
nizations are flexible, they are known to be unpredictable [13, 95], which bans
their straightforward utilization in embedded systems.

Summing up the technical and economical considerations mentioned thus
far we can conclude that, besides the ”classical” constraints like (high perfor-
mance, predictability, low resource consumption, low cost, fast time to market,

17



and dependability), flexibility (in terms of potential parts reuse on the fly up-
dates) is equally important. In fact. flexibility versus predictability is a critical
trade-off in embedded processing. On one side, fully predictable systems are
rigid and take a lot of effort to be designed, and on the other side, fully flexible
systems are highly unpredictable.

In this context, this thesis focuses on the memory hierarchy organization
of an embedded system consisting of a set of processors residing on a single
chip. As a suitable workload, we study state-of-the-art multimedia applica-
tions consisting of multiple tasks. For such applications, our main concern
is to bridge the processor-memory gap while realizing a good predictability-
flexibility trade-off.

1.1 Related work and problem statement

The increasing speed gap between the processing units and the off-chip stor-
age resource has been forecasted decades ago [74]. Therefore, a significant
amount of research has been carried out in the domain of memory hierarchy
organizations. With respect to the on/off-chip memory traffic control there are
two major options: (1) it can be explicitly controlled by the programmer or the
compiler (a so-called scratch-pad memory organization) or (2) it can be im-
plicitly controlled at run-time (cache). In the following we present advantages
and shortcomings of both these options:

(1) Scratch-pad. As already mentioned, due to the predictability require-
ments of the embedded systems, a desired execution scenario is to explicitly
control the data traffic through the memory hierarchy. In the case of scratch-
pad memories, the overall data residing on-chip is under tight in control every
clock cycle [6], [8], [27], [44], [49], [54], [83], [112]. When data have to
be processed, they are loaded on the chip by explicit instructions inserted in
the application code. This implies that at each and every small change of the
software, the entire application and its utilization scenarios should be reana-
lyzed and the memory traffic redesigned. This analysis is especially difficult
in the case of a multi-processor executing a multi-tasking application because
task scheduling and mapping have to be taken into account when determining
which data reside on-chip at a given moment in time [53]. Besides the time and
effort needed for the analysis, this inflexibility results in poor portability across
multiple hardware platforms. Moreover, common programming techniques
like dynamic memory allocation and data address manipulation may not be
supported because all data sizes have to be known at design-time. We conclude
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that, by its very nature, the scratch-pad organization does not fulfill the flex-
ibility requirement. Therefore, it is not suitable as starting point in our quest
for a memory organization that can provide opportunities for predictability-
flexibility trade-offs.

(2) Cache. Implicitly controlled memories (caches) do provide flexibility
to the memory hierarchy. In a cache organization, a hardware controller per-
forms run-time data lookups in the on-chip buffers and it is responsible for the
data traffic. The overall data traffic through the memory hierarchy is transpar-
ent to the software, therefore when the applications are updated, no redesigning
or limitations are present. Under these conditions, a larger variety of applica-
tions can be easily used, with little porting effort. However, caches hinder the
software predictability. For instance, when a task needs its data on-chip, the
implicit control mechanism may decide to swap other task’s data off-chip to
create enough free space. If the second task requires its swapped data, the
previous replacement decision may cause a future, expensive, off-chip access.
This cache flushing may depend on the exact timing details of each task, on
tasks memory access pattern, and on tasks input data. Such information is not
easily available at design-time, making the prediction of the inter-task cache
interference practically impossible. This kind of unpredictable conflict misses
constitutes a major problem for real-time applications for which the comple-
tions of tasks before their deadlines is of crucial importance.

Different approaches that attempt to make caches usable in real-time envi-
ronments already exist in the literature. These approaches fall into two cate-
gories: (1) attempts to estimate the software tasks’ cache behavior, and (2) at-
tempts to partition the caches among tasks such that they become predictable.
In the following we comment on both these directions.

Most of the existing work in estimating the cache behavior of multiple
tasks running on an embedded platform [62, 81, 48, 107, 111] is applicable
only to single processors, because they can only cope with time multiplexed
tasks execution and not with truly concurrent tasks execution. All these studies
assess the cache interference penalty due to task switching; for multi-processor
systems (our target platforms), we consider them of very limited relevance. To
the best of our knowledge, few articles focus on the in-depth quantitative inves-
tigation of cache sharing in a multiprocessor architecture [11], [17], [19], [30],
and [100].

In [11], the authors compare the cache performance for the same compu-
tation load in two cases: sequential execution and parallel execution. Due to
cache contention among parallel units, the off-chip data traffic is larger in the
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parallel execution than in the sequential execution of the same computation.
Intuitively, to reach the same amount of off-chip traffic, the parallel execution
has to benefit from a larger cache than the sequential one. This paper further
provides an analytical framework to calculate the size of this extra cache. This
method is based on a restricted computation model. The authors assume that
a computation is represented as a Directed Acyclic Graph (DAG) of tasks syn-
chronized with barriers and scheduled in a depth-first manner. In [1] and [30]
the authors propose a similar technique for analyzing the cache complexity
but for the case of distributed caches. Their techniques also assume appli-
cations described as series-parallel DAGs, but this time scheduled according
to a Clik work-stealing scheduler [12]. The authors of [19] extend the work
of [11] to cover the case of larger cache sizes, and experimentally investigate
the effects of both work stealing and parallel depth first scheduling algorithms
on cache performance, for different tasks granularity. Their study suggests
that parallel depth first scheduling is cache friendly, delivering better perfor-
mance than work stealing, for a sorting workload. Nevertheless, real life me-
dia applications are difficult to express or implement using DAGs scheduled in
such specific ways (depth-first or Clik work-stealing). Furthermore these ap-
proaches do not directly target compositionality and take into account only an
ideal cache model, making their method difficult to apply to the applications
we target.

The work in [17] predicts the inter-task cache contention based on the
cache profile of each task. The main conclusion of this article is that cache
contention can cause a significant performance penalty to the concurrently
executed tasks. In turn, this suggests that, even with a method to estimate
the penalty of cache sharing, the parallel cache access is still problematic
as its effects go beyond predictability, negatively affecting memory perfor-
mance. Therefore the research in [17] makes the point of the present thesis
even stronger, as it highlights the need for methods to manage caches in a
multiprocessor environment.

A method to reduce the inter-processor cache conflicts and improve cache
performance is introduced in [100]. Here data are locked in the cache parts
that suffer the most inter-processor cache flushes. In order to determine at run-
time which are those ”hot” cache parts, the authors introduce an accounting
scheme for the ownership of cache parts. Whereas this method increases the
cache performance, the compositionality is not its target.

The second manner to deal with cache unpredictability, cache partitioning,
was investigated by several research groups. In general, cache partitioning
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has been proposed to: (1) improve performance [20], [78], [90], (2) achieve
predictability [47], [58], [63], [43], and (3) obtain fair cache sharing [57]. In
the following we briefly comment the currently available cache partitioning
schemes, highlighting the reasons why they are unsuitable or insufficient for
our targeted context. We first discuss the methods that establish the cache
partitions at design-time (static partitioning methods) and then the ones that
change the partitions at run-time (dynamic partitioning methods).

In [20] the authors consider the case when a system consists of two types
of tasks: with and without real-time characteristics. In the proposed scheme,
every real-time task has an exclusive cache part that works as a scratch-pad
memory while all non-real-time tasks shared a single cache part. Furthermore,
in [103] the same authors tackle the problem of optimal cache allocation be-
tween two competing processes such that the overall miss rate is minimized.
Their method is based on a cache partitioning scheme with a small number
of available resources, therefore only a limited number of tasks can be ac-
commodated. The processor speed up due to this type of cache partitioning
is explained in detail in [86], for different workloads. The authors introduce
application metrics that allow the designer to decide if this cache partition-
ing has potential in improving the application performance. However, the fact
that current media applications have a much larger number of tasks makes this
partitioning scheme unsuitable for them.

The authors of [43] and [78] propose a compositional data (and instruc-
tions, respectively) cache organization. After the application is analyzed in
detail, a specific partitioning is decided at design-time and imposed at run-
time by specific cache instructions. The main drawbacks of this approach are
very similar to the ones of scratch-pad memories. The analysis that can be
performed at design-time is limited, and difficult for the multiprocessor case.

In [90] the authors propose to vary the associativity of a cache on a per-set
basis in response to the demands of the program. Although this is principially
similar with cache partitioning, the cache cannot distinguish among different
tasks, thus compositionality is not supported.

In [77] the cache is partitioned among tasks at compile and link time.
In [58] the authors propose to divide for the real-time tasks. For non-real-
time tasks a shared cache pool is provided. The authors of [63] propose the
cache partitioning to be controlled by the operating system. In [47] the authors
discuss a quality of service like cache management strategy for multiple mem-
ory access streams. In [57] the authors introduce a cache partitioning strategy
to improve fairness (defined as how uniform tasks are slowed down due to
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cache sharing). All these solutions bring interesting ideas to the field, but they
all assume that the tasks are independent. This assumption does not hold true
for media applications where sharing of large data structures (like video frame
buffers, for instance) is very common. Therefore, none of the available cache
partitioning approaches are suitable for real-life media applications running on
multiprocessor platforms.

As the challenges of slow background memory and limited off-chip band-
width become more acute with the increased number of processors inte-
grated on a chip, the topic of dynamic cache management receives more and
more attention. The state-of-the-art dynamic cache repartitioning solutions
have two major targets: power reduction and performance improvement. In
the following we first discuss the dynamic cache partitioning methods ori-
ented toward single processors, like [3], [7], [15], [51], [56], [79], [87],
[92], [106], [118] and then continue with the methods tailored for multipro-
cessors like [28], [39], [84], [89], [97].

In [51] the authors study the benefits of a hardware-software co-adaptation
scheme where the cache configuration and the optimization strategy are modi-
fied at run-time. The cache configurations and optimizations for each loop nest
are determined at compile-time; further the right re-configuration instructions
are inserted in the code.

In [15] Cai et al. estimate the impact of cache size selection for reducing
energy consumption and enhancing reliability for time constrained systems.
The conclusion of this work is that different programs have different cache
sizes that give the best performance-energy-reliability trade-off, advocating
dynamic cache reconfiguration as a beneficial technique.

Zhang et al. [118] propose way-concatenation, a technique called that can
change four cache parameters: cache line size,cache size, associativity, and
cache way prediction. The cache reconfiguration is performed at run-time,
and it is based on a tuning heuristic that can automatically adjust the cache to
an executing program aiming at performance improvement and energy saving.
Their approach is extended in [36] to also support the management of a second
level of unified cache for which the ways can be specified as a unified way
(instruction and data), an instruction-only way, a data-only way, or the way
can be shut down entirely.

The authors of [106] introduce a prioritized cache for real-time systems
in which tasks considered critical may temporarily utilize a larger number of
cache ways than other tasks. Using the prioritized cache, the worst case exe-
cution time of a task can be estimated more precisely. Moreover, the miss rate

22



of the tasks that have priority in the cache decreases.

In [87] the authors propose to modify the structure of a configurable cache
to offer embedded compilers the opportunity to reconfigure it according to a
program’s dynamic phase. They use the way-concatenation scheme introduced
by [118] but the reconfiguration is at the granularity of program phases.

Balasubramonian et al. [7] propose a cache configuration management al-
gorithm that dynamically detects program phase changes and reacts to the
number of hits and misses in order to improve the memory hierarchy perfor-
mance, while still taking energy consumption into consideration.

Nacul et al. [79] propose a dynamic on-line scheme that combines proces-
sor voltage scaling and dynamic cache reconfiguration. Two cache configu-
rations are different form one another by at least one of the following config-
urable parameters: cache size, line size or cache associativity. The algorithm
operates at run-time, in two phases. The first phase (the Pareto-discovery
phase) is designed to discover the performance of each task under different
cache configurations. The second phase is the cache configuration selector.

In [56], the authors investigate means for splitting an instruction cache into
several smaller units, each of which is a cache in itself (called a subcache).
The proposed subcache architecture employs a page-based placement strategy,
a dynamic page remapping policy, and a subcache prediction policy in order to
improve the energy behavior of the memory system.

Ranganathan et al. propose in [92] a reconfigurable cache strategy for me-
dia applications. Different parts of the cache are used for different processor
activities (the partitions could be used as hardware look-up tables, for instruc-
tion reuse, or as storage area for prefetched information). Their experimental
results suggest that instruction reuse coupled with reconfigurable caches leads
to computation performance improvement.

Albonesi presents in [3] a possibility to disable a subset of the ways for
program regions with modest cache activity, in order to reduce the energy con-
sumption. The program regions with modest cache activity are detected at
run-time, and energy can be saved while having a small performance degra-
dation. The energy-performance trade-off is flexible as it can be dynamically
tailored.

All these methods provide some degree of performance improvement
and/or power saving. However they do not address the multiprocessor domain,
or the application compositionality.

In the multiprocessor domain, Hsu et al. [39] investigate three types of
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cache management policies that can be applied to a shared cache of a chip
multiprocessor (CMP). The utilized workload consists of multithreaded, gen-
eral purpose programs from the SPEC suite. The first policy targets equal
performance for each thread (labeled as ”Communist”), the second one tar-
gets the improvement of overall system performance (labeled as ”Utilitarian”),
and the last is the conventional, free-for-all, shared cache model (labeled as
”Capitalist”). The paper investigates different performance criteria (miss rate,
instructions per cycle, etc.), and concludes that there are large performance
variations among the different policies for different workloads; based on these
results, the authors, suggest that thread aware cache allocation is required for
getting good performance from a CMP.

Petoumenos et al. [84] propose a statistical model to estimate the cache
performance and a partitioning mechanism to improve the performance of a
shared cache accessed by a CMP. The model estimates at run-time the be-
haviour of each thread, while the control mechanism dynamically assigns
poorly used cache parts to threads that are likely to benefit the most from
them. A cache partitioning method targeting a similar CMP platform is pre-
sented in [89]. In this paper Qureshi and Patt categorize applications as having
low, high, and saturated cache utility, and utilize run-time utility monitoring
hardware as the input for a look-ahead cache partitioning algorithm. This al-
gorithm evaluates every possible partitioning decision and decides which one
can potentially deliver a performance improvement.

Chang and Sohi [18] propose a CMP cache partitioning method in which
each thread does not use only a single partition, but shares several partitions
with other threads. In this manner, a fair cache balancing among threads can
be achieved, while improving the system throughput.

In [28], the authors propose a non-uniform cache architecture in which
the amount of cache space that can be shared among the processors is set dy-
namically. The purpose of this partitioning scheme is to increase the overall
multiprocessor throughput, and the paper reports significant speedups when
compared with the existing, conventional schemes.

In [97] the authors propose a dynamic hardware cache management for
programs consisting of multiple threads. Hardware counters are employed to
measure the reuse of each cache line. Using this information and information
regarding the amount of cache each task has, the paper presents a method to
compute the effect of removing a thread from a cache way. Based on the
gain vs. loss estimation the cache partitioning is dynamically changed. This
technique balances cache demand of each task and improve the overall system
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throughput.

However, none of these approaches targets compositionality and critical
tasks performance protection, as these solutions are positioned mostly in the
general purpose computation area.

In the view of the previous discussion, this thesis addresses the problem of
finding an on chip memory organization which can ”feed” data to a multipro-
cessor such that:� The system is flexible in the sense that it supports parts reuse and update

without requiring the redesign of the entire application.� The task’s predictability is preserved. Multimedia applications may
comprise of both tasks with and without real-time constraints. The per-
formance of the real-time tasks has to be predictable and should not be
disturbed by the behavior of other tasks in the system. From the mem-
ory perspective, the traffic parameters of each real-time task should be
guaranteed, and protected against the interference with other tasks that
might be executed concurrently, thus the memory access has to be com-
positional.

For this purpose we assume a multiprocessor platform containing an on-
chip cache hierarchy. On such a platform each and every processor core may
have its own cache memory (called L1 cache in this dissertation). As these
L1 caches cannot provide the required application bandwidth [102], a shared
level two (L2) cache is also provided [80], [114]. To ensure flexibility and
compositional memory access we propose a novel task centric cache manage-
ment. We apply this management technique to the L2 cache, as this level is
accessed in parallel by multiple processors, hence it is the most affected by
inter-task conflict misses. Our cache management strategy falls in the cate-
gory of cache partitioning and the detailed research questions that we answer
are the following:� Which are the possible options for cache partitioning and which one

of them is the most suitable to media applications? Starting from
a conventional cache organization, the possibilities to partition a cache
have to be identified. Any partitioning method can potentially ensure
compositionality, but the performance of different cache splitting meth-
ods might be different. Therefore, we have to investigate which of the
potential partitioning options is more appropriate for media applications.
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� How to achieve cache compositionality in a typical media applica-
tion consisting of parallel tasks that may exchange data and/or share
instructions? For achieving compositionality tasks should interfere as
little as possible with each-other. Task based cache partitioning could
solve this problem. However, in typical media applications, multiple
tasks share data and/or instructions. For example, data sharing in me-
dia applications occurs when multiple tasks perform different process-
ing steps on the same video frame. In this case, keeping separate copies
of the frame is highly inefficient. Similarly, code sharing is common in
media applications where the same processing is done by several tasks
on different input data, e.g., different frames.

The interference inside such a shared data or instructions region is in-
trinsic, posing an extra challenge to the cache management system.� How much cache should be allocated to each task such that the exe-
cution time, and/or throughput are optimized? The compositionality
problem is solved in principle by cache partitioning. Therefore, the sys-
tem has an extra optimization parameter, the cache partitioning ratio.
This ratio has to be determined such that a relevant criterion for the mul-
timedia domain is optimized.� Is the cache management method robust to application’s variations?
After predictability, robustness is another desired property of an embed-
ded system, directly related with dependability. The lack of robustness
is an important issue in media applications where the tasks completion
before a deadline has to be guaranteed. In this context two types of ro-
bustness are relevant: internal (performance deviations are caused by the
application tasks comprising) and external (performance variations are
caused by external stimuli). Whereas predictability is improved by com-
positionality, the question whether the resulted system is robust requires
a separate answer.� How to ensure cache compositionality for the case when the system
is dynamic, in the sense that tasks are started and stopped at run-
time? Typically, state-of-the-art embedded media devices require the
starting and suspending of tasks. Allocating a part of the cache to each
task, even when it is suspended, might not be beneficial from a perfor-
mance point of view, as it leads to low resource utilization. Thus, there
is a need for a cache reconfiguration strategy that implies a low reconfig-
uration penalty. Moreover it is interesting to know how the performance
of the cache varies with the application’s reconfiguration frequency.
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1.2 Thesis overview

This section introduces the organization of the remainder of this dissertation
which consist of the following chapters:� In Chapter 2 we present the background and the terminology used in this

thesis, followed by a description of the targeted multiprocessor platform
(the CAKE multiprocessor [114]), its memory hierarchy, and program-
ming model. Furthermore, we present the utilized benchmark applica-
tions that embody memory intensive programs from MediaBench [22]
as well as state-of-the-art media workloads relevant for the industry. We
utilize applications consisting of (1) non-communicating and (2) com-
municating tasks. The applications consisting of non-communicating
tasks are formed by running several MediaBench programs in paral-
lel. For the applications consisting of communicating tasks, we use
two industry-relevant media applications, a picture-in-picture mpeg2 de-
coder and a H.264 decoder. These applications are used for the experi-
ments presented throughout the thesis.� In Chapter 3 we identify two options for cache partitioning (namely set-
based and associativity-based) that can potentially lead to system com-
positionality. We propose a new implementation method for the set-
based partitioning that does not require compiler modifications, and it
is not dependent of the memory addressing model. We assess the com-
positionality and the performance of these schemes on a practical im-
plementation of a CAKE multiprocessor, utilizing non-communicating
tasks applications. We find that both partitioning schemes can ensure
compositionality within 1% bounds. Moreover, the experimental results
reveal that the L2 misses per instruction delivered by set-based partition-
ing is 55% smaller, on average, than those generated by associativity-
based partitioning, and 29%, on average, smaller than the L2 misses per
instruction of the conventional shared cache. This leads to an average ap-
plication speedup of 27% and 8%, when compared to associativity based
partitioning and to a conventional shared cache, respectively. These re-
sults recommend task centric set-based partitioning as the best candidate
for a cache management scheme.� Chapter 4 introduces a novel, task centric cache management method
tailored for typical media applications. This method consists of a static
cache partitioning scheme and an optimization strategy. The partitioning
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scheme is responsible for achieving a high compositionality in a media
application consisting of tasks that share data and/or instructions. Subse-
quently, the optimization strategy determines the cache partitioning ratio
that minimizes the number of misses or maximizes the throughput for a
partitioned cache. Applying the proposed method to the communicating
tasks applications, we observed that the amount of inter-task interference
is under 1%, suggesting that the proposed cache partitioning ensures
compositionality to a large extent. When the platform was equipped with
a relatively small cache size, our simulations indicate that the smallest
number of misses achievable by a partitioned cache is larger than the
one of a shared cache of the same dimensions. Concretely, the misses
per instruction of a partitioned cache are 17% larger (resulting in a 6%
cycles per instruction increase) than the ones of a conventional cache.
The reason for the increase in the number of misses is that the experi-
mented applications have a large number of tasks and common regions,
hence the static partitioning induces a high cache fragmentation, lead-
ing to performance degradations in the case of small caches. When the
throughput maximization method is applied, the throughput is improved
with 7% at the cost of 14% misses growth. The reason for this growth
is the fact that the throughput optimization strategy tends to give more
cache to the tasks that are on the application critical path, and that does
not necessarily minimizes the application’s number of misses. Thus, for
these applications, for small caches, the price of compositionality is a
degradation in performance. For average cache sizes the partition that
minimizes the number of misses has, on average, 5% less cycles per in-
struction and 28% less misses per instruction than the shared cache. The
partition that maximizes the throughput has more or less the same per-
formance as the one minimizing the misses. For large cache sizes the
performance of the partitioned and shared caches are very close. Sum-
ming it all up, for average size and large caches, the compositionality
comes with a performance increase too.� To evaluate the robustness of a system that is using our cache manage-
ment we introduce in Chapter 5 two new metrics to assess: (1) the per-
formance variations caused by the application tasks (internal robustness)
and (2) performance variations caused by external stimuli (external ro-
bustness). According to our experiments, the performance variations
due to internal interferences are below 8% and the variations due to ex-
ternal factors are below 10%. These numbers prove that the system is
robust in the presence of cache partitioning.
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� In Chapter 6 we extend the task centric cache management with a dy-
namic method for applications with multiple execution scenarios, and
critical tasks. In particular, we propose a method to solve the compo-
sitional caching problem for the case when the tasks of the application
may start and/or stop at run-time. In this case static exclusive cache
partitioning would ensure compositionality, but the cache utilization is
likely to decrease, because during a scenario only a part of the applica-
tion’s tasks are active, i.e. only a part of the cache is accessed. Thus
we introduce a run-time repartitioning method that utilizes information
gathered at design-time. Furthermore this method minimizes the penalty
involved in cache repartitioning. In our experiments we found that, for
realistic scenario switching frequencies, relative to the application num-
ber of misses, the inter-task cache flushes are below 4% for the reparti-
tioned cache, whereas for the shared cache it reaches 81%. Moreover,
when the L2 is repartitioned according to our method, the relative vari-
ations of critical tasks execution time are less than 0.1%, over the entire
scenario switching frequency range studied. Regarding the performance,
the dynamic repartitioning reduces the number of cache misses per in-
struction with 33% on average, when compared with the shared cache,
resulting in a 10% decrease of the average number of cycles per instruc-
tion. Furthermore, when compared with a statically partitioned cache,
the dynamic repartitioned one reduces the number of cache misses per
instruction with 19% on average, and decreases the number of cycles per
instruction with 3% on average.� Finally, Chapter 7 wraps up the dissertation, by presenting our conclu-
sions and indicating significant and promising follow-up research direc-
tions.
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Chapter 2

Background

s mentioned in the introduction our work focuses primarily on mul-
timedia applications executing on multi-processors with cache hierar-
chies. In this chapter we first define what we consider as being a mul-

timedia application, and the features the such application should have (namely
predictability, flexibility, and compositionality), as argued in the introduction.
Second we introduce the targeted hardware platform, i.e., the CAKE (Com-
puter Architecture for Killer Experience) template. Then we briefly present
the benchmark software programs used in the rest of this thesis, and finally we
sumarize this chapter.

2.1 Preliminaries

From the entire range of embedded systems, we target only the multimedia
embedded systems, i.e., embedded systems that combine processing of text,
graphics, video, and sound. We consider that a multimedia system consists of
a collection of software tasks addressed here as the application, that execute
on a hardware platform constituted by a set of processing resources and a set
of memory elements. As tasks do not execute all the time, due to cost reasons,
the number of resources is smaller than the number of tasks of the application,
i.e., tasks share resources.

Multimedia systems have to process a certain amount of data before a time
deadline. Thus a correct execution, implies not only a non-faulty functional
execution, but also that the application timing is according to the specifica-
tions, implying that the application behavior has to be predictable. A system
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is considered to be fully predictable if its exact performance can be foretold in
every possible situation the systems might encounter. The systems that require
full predictability are systems with hard deadlines, i.e., hard real-time systems.
Example of hard real time systems are breaking system of cars, safety sys-
tems, etc. While designing such systems, every possible utilization scenario
and environment situation should be analyzed in detail. The platform has to be
dimensioned in such a way that it can deliver the performance needed for the
worst case scenario.

When looking at the memory hierarchy, full predictability implies that the
latency of each data access should have a known bound. In general, to deter-
mine the latency of an access one has to know on which hierarchy level the data
reside. Hence, the location of each datum should be known in every clock cy-
cle, thus explicit, detailed traffic regulation is required. As already mentioned,
we consider applications consisting of concurrent tasks. To be able to enforce
a strict data traffic control, each instruction inside of a task has to be analyzed
for each possible combination of tasks. The resulting system is rather rigid,
in the sense that all this analysis has to be performed again if one of the tasks
is slightly changing its memory demands, or it is updated to accommodate for
extra functionality.

As already explained in the introduction, flexibility is another very impor-
tant property of embedded systems. We define flexibility as the ability of a sys-
tem to accommodate changes and to reuse already designed modules. When a
design reuses modules of other existing systems the total engineering cost and
effort decreases, leading to a faster time to market. Moreover, the costs can
further diminish when a system supports on the fly updates to new emerging
features or standards. Thus flexibility offers premises for a successful product
as it enables faster time to market, and lowers production costs.

Ideally, flexibility should be present in both the computation and the mem-
ory parts of a platform. For the memory this means that data traffic should
be automatically routed through the hierarchy levels, such that application
changes do not trigger an entire memory hierarchy redesign. Caches represent
such a flexible memory organization, nevertheless notorious for their unpre-
dictability [13], [95]. As we can see, in the case of memories, the flexibil-
ity clashes with the predictability, as unlike caches, fully predictable memory
organizations are rigid. In the following we discuss in detail the caches pre-
dictability problem.

In [5], [16], [34], [91], [119] the authors propose methods to enable the
prediction of caches behaviour such that they can be utilized for isolated soft
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real-time tasks. Thus in the single task context the predictability of the memory
hierarchy issue can be considered as solved. However, predicting the perfor-
mance of a parallel multimedia system involves predicting the performance of
the sequential tasks as well as the amount of interference among them. The
inter-task interference is caused by resource sharing. Each platform’s resource
has a certain capacity, e.g., size for memories. A resource can be shared in two
manners: (1) multiple tasks use the entire resource one by one, in a time mul-
tiplexed fashion (the typical case for processors, busses), or (2) each task uses
a fraction of the resource capacity, for the entire task execution time (the typ-
ical case for memories). Hence predicting the inter-task interference requires
detailed knowledge about all possible task’s execution order, timing, and frac-
tions of used resources. In the systems build today such detailed knowledge
is practically impossible to acquire, because the number of tasks is large and
the resources are complex. Hence, ideally, the performance of each individual
sequential part must be preserved if the parts are executed concurrently in ar-
bitrary combinations or if additional parts are added. A system satisfying this
property is addressed as being compositional.

Subsequently to the two ways in which tasks can share a resource, the com-
positionality can be spatial or temporal (i.e., the meaning of the word ”per-
formance” in the above definition is capacity or time related) [35]. When a
resource is shared in a time multiplexed fashion, compositionality reflects the
fact that the time quantum a task is served by the resource should be indepen-
dent of other tasks (temporal compositionality). For example, for a processor,
compositionality implies an un-disrupted task execution time (performance is
given by the execution time). When a task utilizes a fraction from a resource,
the compositionality implies that the size of that fraction should be indepen-
dent of other tasks (spacial compositionality). For example, for a memory,
compositionality implies each task can un-disruptively utilize an guaranteed
part of the memory (performance is given by utilized bandwidth). Because in
this thesis we concentrate on the memory hierarchy, we focus on the spatial
compositionality shortly addressed in the rest of this dissertation as composi-
tionality, unless explicitly specified otherwise. In the end the most important
for real-time systems is that the time in which an application produces an out-
put datum is guaranteed. However, the size of the fraction a task uses from
a resource has a large influence on its timing, thus spacial compositionality is
crucial. Consequently, we believe that in future parallel systems acceptable
levels of flexibility and predictability would be very difficult to achieve simul-
taneously in the absence of compositionality.

Nevertheless, full predictability is not required for many media applica-
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tions for which the users can accommodate some degree of variation in the
output quality (for instance, a human eye barely notices if on a video screen
sometimes, instead of 30 frames per second, we display only 29 of the original
frames, and one is displayed twice). Often for these applications the average
case resource demands is significantly lower than the worst case [52]. More-
over, the worst case may rarely occur, hence many resources may be waisted
for most of the time if the platform is provisioned for the worst. Addition-
ally, media algorithms are complex and data dependent, therefore sometimes it
is even impossible to prognosticate every conceivable situation they might be
confronted to. Hence, full predictability might be too restrictive and expensive
for some multimedia platforms. In view of this, for the case of multimedia
applications, it might be economically viable to equip the platform for the av-
erage case, and to provide a fall-back mechanism for the situations when the
resources do not suffice. Such a system is referred in the literature as ”soft
real-time”, and its performance can be foretold only for a limited number of
(preferably relevant) average case input data streams, thus it has a limited pre-
dictability. In this thesis we target soft real-time system, and for ease of read-
ing, in we simply use ”predictable” for systems with limited predictability,
unless explicitly mentioned otherwise.

In the following section we introduce the targeted hardware platform and
its memory hierarchy organization.

2.2 The CAKE multi-processor architecture

A media platform, like every computation platform, consists of a set of pro-
cessing units (for performing calculations among operands) and of a memory
subsystem (for operand storing and retrieving). As mentioned in the previous
section, we concentrate on applications consisting of a set of software tasks.
Our approach does not decline the use of dedicated hardware for some parts
of the platform. The proposed method is applicable to them as well, if those
parts access the main memory subsystem, together with the software tasks.
Otherwise, if the dedicated hardware has its own exclusive memory part, its
management is outside of our concern.

In this section we detail the targeted hardware platform, first discussing
issues related to the processing part and then to the memory part.
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2.2.1 Parallel processing on CAKE

Typically multimedia applications exhibit various levels of parallelism. With-
out claiming to make an exhaustive study, for clarity purposes, we categorize
these parallelism levels as follows. First level, the coarsest, is the application
level. In our view, an application consists of a collection of tasks implementing
the functionality of a separate part of a system or of an entire system. Appli-
cations are independent of each-other, or they communicate very little, every
one of them providing the functionality of an entire system. For example, we
can consider that, in an automotive electronic system, the navigation system
and the traction control system are different applications. Large systems may
consist of multiple applications executed in parallel. At its turn, an application
can be split into parts, called tasks. Thus, the second parallelism level is the
task level. Such tasks might communicate data and/or share instructions with
other tasks For instance, the mentioned car navigation system may consists of
the wireless communication task that sends the positioning data to the map
rendering task. A tasks is composed by a set of instructions, thus the third, and
the finest granularity level, is the instruction level (for example on a pipelined
processor, multiple instructions may execute simultaneously). In the context of
this research we do not quantitatively define the size of the applications, tasks,
and instructions, nor the amount of communication involved among them. It is
very likely that these sizes vary from one system to another, depending on the
functionality and the complexity of the involved algorithms. For example, in a
simple music player device the audio decoding might represent an application
whereas, in a complex TV system the audio decoding is just a task, next to
other video an text processing tasks. The purpose of the present categorization
is to have a structural view of a potential system. In summary, an applica-
tion might expose various levels of parallelism: from application to instruction
level.

The envisaged architecture supports parallel execution at all previously
mentioned levels. On a top view, the platform consists of a homogeneous
network of computing tiles on a single chip [114], as graphically depicted
in Figure 2.1. Tiles are connected by a network, for example a torus one, as
Figure 2.1 suggests. Each tile may comprise several CPUs (cores like: Tri-
Media [82], MIPS [65], etc.), hardware accelerators (image enhancement IPs,
dedicated video decoders, etc.), a router (for out-tile communication), I/O in-
terfaces, and memory banks, as described in Figure 2.2. The tiled organization
enables the exploitation of a coarse grain parallelism. Because inter-tile com-
munication is expensive in terms of time, tiles are useful when the ”entities”
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that have to be executed simultaneously do not exchange too much data or
do not synchronize very often. According to our prior categorization, these
entities are the applications.

On a lower level, each tile contains several CPUs that can execute several
tasks in the same time, therefore offering the premises for exploiting task level
parallelism. Moreover, each processor core may have a number of functional
units that can execute in parallel multiple instructions of the same task. For
instance TriMedia is a Very Long Instruction Word (VLIW) processor [82],
comprising several issue slots that can execute up to 5 instructions in parallel.
In conclusion, the CAKE platform is a very flexible one, offering parallelism
at every possible level, from application to instruction.

Figure 2.1: CAKE multi-tile architecture (overview).

2.2.2 Memory organization

On every computation platform the latency of a memory access is crucial for
the system performance. Ideally, in order to allow a processor to perform the
maximum possible number of operations, the operands should be immediately
available in each cycle. If the operands are not available, the processor has to
stall, waiting for the memory to provide the desired data.

Typically in the CAKE organization, each CPU core inside a tile may have
a level one (L1) cache. This cache level is the first to be accessed when the pro-
cessor needs new instructions or operands that are not present in its registers.
Therefore, to achieve the maximum possible theoretical performance, an L1
cache should be as fast as the processor and should always contain the desired
data. For nowadays technologies, the latency of accessing a memory location
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varies inversely with the memory size [45]. Hence, to achieve the desired per-
formance, cache designers have to mitigate two conflicting trends: (1) as appli-
cations include more and more functionality, the amount of accessed data tends
to increase thus a cache that can store all data should be large, and (2) large
caches have a larger access latency than small caches. As a result of this trade-
off, in current technologies the L1 caches that are typically used are relatively
small. Few examples of the total (data and instructions) cache size for current
multimedia processors may be: the ADRES processor from IMEC has 160 KB
cache [41], the TriMedia processor from NXP has up to 96KB [82], and the
Texas Instrument TMS320D - 112KB cache [110]. However, unfortunately,
such a small cache might not be able to store all the operands required when
executing an application. For example, one single frame of a high definition
video stream might have up to 2 MBytes, which obviously does not entirely fit
in a state-of-the-art L1 cache. In addition, one can observe an increasing trend
in the amount of data that have to be processed in a time unit, therefore it is
likely that the number of L1 misses of future applications will experience a se-
vere growth. For every miss that occurs, a slow access to the main memory has
to be initiated. Thus, to ”capture” as much data as possible close to the proces-
sor, media platforms employ more levels of cache memory [102], [29], [110]
organized in a hierarchical structure. In our situation, besides the L1 caches, a
tile is featured with a shared L2 cache that serve the local tile accesses, such
that the off-chip and/or the inter-tile long latency accesses are seldom.

Given that a CAKE tile embeds multiple CPUs, each having its own L1
cache, the problem of cache coherency [38] has to be solved. Coherency trou-
bles arise when multiple processors have to access the same memory location,
X, hence X might end up by being present in several L1 caches. If the value
stored at X by a processor is not somehow synchronized with the values of X
that the other processors see in their L1, some processors may use an out-dated
value of X. If the software programmer does not take this effect into account,
her/his programs may contain unexpected errors. Avoiding such errors is dif-
ficult, as conventional caches are hardware controlled, therefore unaccessible
for higher software levels.

Typically, in multiprocessors that comprise multiple caches the synchro-
nization when accessing a shared location is done via a coherence protocol.
The CAKE platform offers a hardware coherence protocol that ease the soft-
ware designer from the burden of keeping the content of the caches up to date.
The implemented coherence protocol is an MSI one [101], with a snooping
strategy. This implies that every L1 line is marked with a flag indicating if
the data cached there have the latest value. The coherence protocol utilizes a
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shadow tag directory [109] that is stored close to the L2. If a processor re-
quests a data item that is not present in its L1, or it does not have the latest
value, the coherence protocol initiates a so-called snoop operation. This oper-
ation is actually an inquiry of all the other (on-tile) L1s and of the shared L2, to
detect the location of the up-to-date value and to set the cache coherency flags
accordingly. In the case of an L2 miss, the cache is refilled with a new data
block from the off-chip memory, thus the shadow tags have to be synchronized
with the tag of the data newly brought in the L2. the data refill from the off-
chip memory. The result is that, transparent to the application, coherent data
sharing among processors is enabled. Moreover, because the storage space on
a CAKE tile is provided by a hardware controlled cache, the application pro-
grammer does not have to be concerned with the underlying cache coherency
model. Thus, assuming an application described in a high-level programming
language, one may very easily exercise it on a CAKE instance (given, off-
course, that a compiler is available to transform the high-level description in
executable code for the processors embedded on the platform). This flexibility
exhibited by the CAKE platform allows for early stage performance investiga-
tion and design exploration. These are very important features when having to
achieve a fast time to market.

In general, tasks executing on multiprocessors share the available platform
resources, in order to utilize the hardware as much as possible. When several
tasks need the same resource simultaneously, inter-task contentions might oc-
cur. These contentions are unpredictable and they are causing dependencies
among tasks performance, therefore the system is not compositional. Every
shared resource on the platform, like caches, busses, memory interface, etc., is
subject to contention, and, it has to be managed for compositionality. In this
context, in the last years NXP invested a lot of research effort into multiproces-
sor platform management at different levels [2] [115]. From the large topic of
multiprocessor platform management this dissertation deals with multiproces-
sor caches hierarchy management. The following section present details about
the CAKE platform instance that we utilize to experiment our ideas.

2.2.3 The experimental CAKE instance

We consider that an application is running on an instance of the CAKE proces-
sor consisting of a single tile detailed in Figure 2.2. This practical tile instance
contains a collection of ���
	 P ���� ������� ��� homogeneous media processor cores
(in our case TriMedia cores [82]), and one control processor core (in our case
MIPS cores [65]). The media cores are used for data processing, whereas the
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control processor is used for platform management activities (like for example,
as we propose in this thesis, for the cache management). Each of the tile’s core
has its own instruction and data L1 caches, and we assume the existence of a
cache coherence protocol as described in the previous section.

Figure 2.2: Multi-processor target architecture

The L1 instruction cache of each Trimedia core has 32 Kilo Bytes (KB),
it is 8 ways associative and has a line size of 64 Bytes. The data cache of a
Trimedia core has 16 KB, it is 8 ways associative, and has a line size of 64
Bytes. The latency of accessing the L1 cache is 2 cycles. The MIPS core
has an instruction L1 of 16 KB, 8 ways associative, and with a line size of 64
bytes. The data cache of the MIPS is 8 ways associative, has a size of 16KB
and its lines contain 64 bytes each. The L2 cache has a line size of 512 Bytes
and the latency of accessing such a line is 10 processor cycles (note that this
an approximate figure, as it also contain the interconnection network latency,
which may vary if not explicitly managed). In our experiments we investigate
the behavior of such an L2 for different sizes and associativities. Further we
consider 256 Mega Bytes (MB) off-chip memory, that is accessible per blocks
of 256 or 512 Bytes. The access latency to off-chip memory is up to 100
processor cycles for the first word of a block and 1 cycle for each subsequent
word in the same block (here the same considerations as for the L2’s latency
are valid, namely that variations may exist when not explicitly managed).
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2.3 Application model

The set of all applications exercised on a CAKE platform is denoted with ���	 A ��� � ������� ��� . We assume that an application A � consist of a set of N � software
tasks, � �!�"	 T #$� � # ����� %'&(� . As we do not discuss more than an application at
once, in the rest of this dissertation the index ) is skipped, thus an application
is denoted just with A, its task set with � .

In the first part of this thesis we consider applications as being static in the
sense that tasks do not stop or resume. However, in Chapter 6 we discuss appli-
cations that have multiple utilization scenarios, meaning that not all the tasks
are continuously active. For instance, in a personal digital assistant device the
audio decoding task is active only when the user listens to music. Thus, tasks
may start and stop, depending on the user requests. In this case an application
has a set S ��	 S *+� � * ����� ,-�/./././� 01� of possible scenarios. In each scenario S * only a
subset of tasks � *32 � is active. Note that a static application can be assim-
ilated with an application with a single execution scenario in with all � tasks
are active.

Four types of parallelism are possible among the tasks of an application:
(1) no-dependency parallelism (tasks are perfectly independent and they actu-
ally implement separated functionality), (2) functional parallelism (tasks per-
form different operations in a pipeline manner, one task producing the input of
another), (3) data parallelism (tasks perform the same operation on different
parts of the input data), and (4) a mix of the previous three types.

In case the application exhibits data parallelism, multiple tasks execute the
same instructions on different parts of the input data, so they share instructions.
When functional parallelism exists, the tasks can exchange data (a classical
example of shared data are the reference frames of video decoder or/and en-
coders). Thus, in media applications tasks may share instructions and/or data.
As there is no principle difference between sharing data and instructions, for
simplicity we use in the remainder of this thesis the term ”common regions”
for both inter-task shared data and instructions. We consider that an applica-
tion A has M common regions, denoted with ��45�
	 CR 67��� 6 ����� 89� . In case the
tasks comprising the application are independent, no common region exists.

Various application programming models are proposed in the literature.
Among the ones that are appropriate for media processing we mention: stream-
ing models, series-parallel models, finite state machine models, etc. The
CAKE platform supports among others the following models: Pthreads [14],
Y-chart Application Programming Interface (YAPI) [25], and Task Transac-
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tion Level (TTL) [113]. As one can see, the application model we describe in
this chapter is general enough to support each programming model that has a
task as the basic organization unit, like most of the programming models on
CAKE. For the practical experiments we use applications that exhibit all of the
mentioned parallelism types. These applications are mainly described in YAPI
(the last part of this section details the circumstances when that’s not the case).

The computation model in YAPI is based on Kahn Process Networks. Such
a network consists of parallel tasks that communicate through (theoretically
unbounded) FIFOs. YAPI offers primitives for creating tasks and for linking
them using FIFO channels, forming the so-called networks (applications). In
practical implementations the FIFOs are bounded and blocking. A task blocks
if it reads from an empty FIFO or if it writes in a full FIFO. The advantage of
this operation mode is that the application programmer does not have to worry
about task synchronization at data access.

However, YAPI communication model is not efficient when tasks have to
exchange large amounts of data through FIFOs. This is because every data
exchange implies two memory copying operations: one when the producer
writes into the FIFO, and another one when the consumer reads the data. For
large data items, like video frame buffers, copying the data twice incurs a large
penalty. In such cases only one data copy is stored, and all the tasks are ac-
cessing it. The synchronization at data access has to be explicit and may be
performed by every classic primitive like barriers, semaphores, etc. In this
case, we use blocking FIFOs to send synchronization tokens that indicate data
availability.

In general, there are multiple possible ways to exchange data among tasks
when necessary. We take into consideration only the ones that are based on
memory buffer sharing, such that tasks communicate through the memory hi-
erarchy, thus through the shared L2. When memory parts are shared by mul-
tiple tasks, synchronization is necessary to ensure that data are not read be-
fore written (data correctness). There are two types of relations among data
exchange and data synchronization: (1) data synchronization is directly com-
bined with data exchange; blocking FIFOs, for example, fall in this category; in
this case, inter-task synchronization is transparent to the application program-
mer. (2) synchronization is separate from data exchange. In this case, inter-
task synchronization has to be explicitly taken into account by the application
programmer. Both ways are supported by the CAKE platform as the CAKE
platform has a light weighted Operating System (OS) that besides scheduling
and mapping offers synchronization primitives (critical regions, semaphores,
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barriers [108]), and dynamic memory allocation/deallocation functions.

In the following section we present the manner in which the application’s
software tasks are mapped on a CAKE multiprocessor.

2.4 Tasks allocation and scheduling

As specified in the previous section, the cache management method deals with
software tasks which are executed on hardware programmable processors. On
a multiprocessor platform, an OS is typically the one determining when a task
starts and/or stops and on which processor it runs (scheduling and allocation).
In the literature multiple operating system scheduling and mapping policies
have been reported. For an overview of the real-time related ones we refer
the reader to [64]. In our case, because media applications are data intensive,
we regard a task generically, as a process consuming input data and produc-
ing output data. Tasks are (naturally) synchronized based on data availability.
Therefore, in the considered setup a task temporarily stops its execution (it is
swapped out) in two cases: (1) when task’s input data buffers are empty or its
output buffers are full (data availability), (2) when the OS decides that other
tasks has to restart its execution. Between two executions of the same task, a
processor can execute other tasks. In any case, in order to support a natural
load balancing, the tasks may freely migrate from one processor to another,
depending on the processors availability.

In the following section we briefly introduce the benchmark applications
used for the experimental part of our work.

2.5 Benchmark applications

As previously mentioned, we investigate two main types of applications:
static and dynamic. Furthermore, we exercise two subtypes of static appli-
cations, the first consisting of communicating tasks and the second consist-
ing of non-communicating tasks. The dynamic applications consist of non-
communicating tasks, and we build several experimental scenarios as pre-
sented in Subsection 2.5.2. The applications consisting of communicating
tasks that are available for the experiments cannot be exercised for dynamic
repartitioning, because all the tasks of such an application are working together
for the same purpose (video decoding) and they are not prone to scenarios that
start and stop.
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2.5.1 Applications with communicating tasks

We use two large, industrial relevant applications composed out of communi-
cating tasks: a picture in picture TV (PiPTV) based on the work in [25], and
an H.264 decoder [26], [50].

The PiPTV consists of two main decoding streams, each of them compris-
ing a scaling task, a video multiplexing task, an mpeg2 decoder and a video
demultiplexing, as depicted in Figure 2.3. The mpeg2 decoder is actually a
set of several tasks (omitted from Figure 2.3 for clarity reasons): idct, quan-
tization, and motion estimation. The PiPTV application exhibits functional
parallelism and the data are exchanged through FIFOs (represented as edges
in the graphs in Figure 2.3). The tasks actually come in pairs corresponding to
the two different picture streams, therefore they share instructions.

Figure 2.3: PiPTV parallel decoder

The H.264 decoder application is formed by several tasks, and it is
schematically presented in Figure 2.4 (due to clarity reasons not all FIFOs are
depicted). First an entropy decoder task processes the input stream and passes
the data via a scheduler to a set of transform decoder and loop filter tasks. The
transform decoders and loop filters execute inverse quantization, transforma-
tion, prediction, and deblocking, respectively. The H.264 exhibits functional
parallelism among the entropy encoder, the scheduler, the transform decoders,
and the loopfilters. Moreover among each transform decoder and loop filter,
respectively, there is data parallelism as these tasks process different parts of
the image. Thus these two types of tasks share their instructions. The video
frames are also shared and the synchronization is performed through FIFOs.
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Figure 2.4: H.264 parallel decoder

2.5.2 Applications with non-communicating tasks

In order to enlarge our experimental spectrum we also map on CAKE several
applications consisting of non-communicating tasks. We use various multi-
media programs from the MediaBench benchmark [22]. From this collection
of programs we pruned out the ones that are relatively small and not memory
intensive. Moreover, in order to make the benchmark more representative for
emerging technologies, we augmented the MediaBench suite with an H.264
video processing program. In the experimental framework, an application is
formed by a collection of four such programs, each of them representing now
a task. Table 2.1 presents the set of 10 programs, each of them becoming a
task in an exercised application. All of these are reasonably memory intensive
workloads. Table 2.2 presents the tasks that compose each of the 6 applica-
tions.

Furthermore, to exercise the dynamic cache management we build 7 exe-
cution scenarios (chosen at random from the total set of possible tasks combi-
nations) for each of the 6 applications, as presented in Table 2.3. As some tasks
are more sensitive to scenario switching perturbations than others, we denote
the sensitive ones as critical and we present them in bold in Table 2.3. These
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H.264 encoder A very low bit-rate video encoder (h264enc) based on the
H.264 standard.

H.264 decoder A very low bit-rate video decoder (h264dec) based on the
H.264 standard.

MPEG2 encoder A motion video compression encoder (mpeg2enc) for high-
quality video transmission, based on the MPEG-2 stan-
dard.

MPEG2 decoder A motion video compression decoder (mpeg2dec) for high-
quality video transmission, based on the MPEG-2 stan-
dard.

EPIC encoder An image compression coder (epic) based on wavelets and
including run-length/Huffman entropy coding.

EPIC decoder An image compression decoder (unepic) based on wavelets
and including run-length/Huffman entropy coding.

Audio encoder MPEG-1 Layer III (MP3) audio encoder.
Audio decoder MPEG-1 Layer III (MP3) audio decoder.
JPEG encoder A lossy image compression encoder for color and gray-

scale images, based on the JPEG standard.
JPEG decoder A lossy image compression decoder for color and gray-

scale images, based on the JPEG standard.

Table 2.1: Used media tasks

A � JPEG encoder (JPEGe); JPEG decoder (JPEGd);
H.264 encoder (H264e); Audio encoder (AUDe);

A , H.264 decoder (H264d); MPEG2 decoder (MPG2d);
EPIC decoder (EPICd); Audio decoder (AUDd);

A : JPEG encoder (JPEGe; Audio encoder (AUDe);
Audio decoder (AUDd); MPEG2 encoder (MPG2e);

A ; H.264 encoder (H264e); MPEG2 encoder (MPG2e);
EPIC decoder; JPEG decoder (JPEGd);

A < MPEG2 decoder (MPG2d); Audio encoder (AUDe);
JPEG decoder (JPEGd); EPIC decoder (EPICd);

A = H.264 decoder (H264d); Audio decoder (AUDd);
JPEG encoder (JPEGe); MPEG2 encoder (MPG2e);

Table 2.2: Applications and their tasks
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S > S ? S @ S A S B S C S D
A > JPEGe JPEGe JPEGe JPEGe JPEGd H264e H264e

JPEGd JPEGd JPEGd H264e H264e AUDe -
H264e H264e AUDe AUDe AUDe - -
AUDe - - - - - -

A ? H264d H264d EPICd H264d EPICd H264d H264d
MPG2d MPG2d MPG2d EPICd MPG2d EPICd MPG2d
EPICd EPICd AUDd AUDd - - -
AUDd - - - - - -

A @ MPG2e MPG2e MPG2e MPG2e MPG2e MPG2e MPG2e
AUDe AUDe AUDd JPEGe AUDe AUDd -
AUDd AUDd 32/8 JPEGe AUDe - - -
JPEGe - - - - - -

A A H264e H264e MPG2e H264e H264e JPEGd H264e
MPG2e EPICd EPICd EPICd EPICd EPICd -
EPICd JPEGd JPEGd MPG2e - - -
JPEGd - - - - - -

A B EPICd EPICd EPICd EPICd EPICd MPG2d AUDd
MPG2d AUDd MPG2d JPEGd AUDd AUDd JPEGd
AUDd MPG2d JPEGd AUDd - - -
JPEGd - - - - - -

A C H264d H264d H264d H264d MPG2e 128/u H264d JPEGe
AUDe AUDe AUDe AUDe AUDe MPG2e -
JPEGe JPEGe MPG2e JPEGe - - -
MPG2e - - - - - -

Table 2.3: Applications and execution scenarios

critical tasks should not be disturbed at scenario switch, when other tasks start
and stop.

2.6 Summary

This chapter first presented the necessary terminology and definitions related
to multimedia embedded systems desired properties, namely predictability,
flexibility, and compositionality. Then we described the targeted platform
(the CAKE multiprocessor) and applications (multimedia, multitasking). The
CAKE platform contains multiple processor core, each of which typically hav-
ing an own level of cache. Moreover the platform contains a large shared
level two cache. On this platform one can run application consisting of mul-
tiple tasks that may share instructions and/or data. These applications may
be static, in the sense that tasks do not start and/or stop at run-time, or dy-
namic if different execution scenarios (i.e., tasks’ start and stop) may occur at
run-time. Moreover, we introduced the benchmark application suite utilized
in the experiments in the rest of this thesis. These applications may consist of
independent tasks from MediaBench augmented with and H264 codec, or of
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communicating tasks (H.264 and PiPTV).

The next chapter introduces two potential compositional cache organiza-
tions and investigates their performance.
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Chapter 3

Cache partitioning

E
n Chapter 1 we briefly reviewed the options for on-chip memory orga-
nization. We identified two major types of data traffic control thorough
the memory hierarchy. The on/off chip traffic can be explicitly controlled

by the programmer or the compiler (scratch-pad) or implicitly controlled at
run-time (cache). Both these options have their advantages and shortcomings,
scratch-pad is predictable but not flexible, whereas the cache is flexible but
unpredictable. In view of the discussion in Chapter 1, we propose to use an
implicitly controlled scheme (for flexibility reasons), but to manage it in such a
way that its predictability increases. The management consists in restricting a
task’s access to the cache memory such that the task can only utilize an exclu-
sive region of it. This means that if a task T # needs its data on chip, the traffic
control mechanism cannot swap another’s task T 6 data, but it has to swap some
other part of T # ’s data. In this way the amount of data swapping depends on
the memory size allocated to a task, and doesn’t depend on other tasks be-
havior. This task separation induces a compositional cache access. Because
tasks don’t influence each other memory performance, no detailed analysis of
the entire application is needed when a software task is updated. Instead, a
local analysis of the changed task can be performed to determine its new cache
requirements. As we see, our proposal slightly restricts the full flexibility of
caches, but improves predictability (due to compositional tasks performance).
In this chapter we analyze the possibilities for enforcing such a task centric
management on an implicitly controlled memory.

The remainder of this chapter is organized as follows. In Section 3.1
we discuss the conventional organization of the implicit controlled memory
(cache) and in Section 3.2 we investigate the cache partitioning options avail-
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able for the envisaged task centric management scheme. The software support
needed for cache partitioning is presented in Section 3.3. Then Section 3.4 de-
scribes a method to determine the partitioning ratio such that the total applica-
tion number of misses is minimized. This is followed by Section 3.5 where we
introduce a metric to quantitatively evaluate the compositionality property. In
the final part of this chapter, Section 3.6 presents an experimental comparison
of compositionality and performance, among the possible cache partitioning
schemes and the conventional shared cache. Finally, in Section 3.7 we draw
the conclusions of this chapter.

3.1 Conventional cache organization

We consider a cache memory as being logically organized as a rectangular ar-
ray of memory elements arranged in ”sets” (rows) and ”ways” (columns) [38],
like in Figure 3.1. The number of ways in a set is denoted as the cache’s ”as-
sociativity”. The information stored in each way consists of: (1) a few control
bits (C), (2) tag bits which are part of the address of the cached data (TAG), and
(3) the actual data bits (DATA), also called ”cache line”, containing more data
words. The associativity of a cache is a design option and the cache organiza-
tion can vary from the scenario in which every set has one single way (direct
mapped cache), to the scenario in which there is only one set in the cache, each
line representing a way (fully associative cache).

Subsequently to the cache organization, an accessed address is logically
split in three fields: tag, index, and offset. The offset part of the address iden-
tifies the required data word inside a cache line. The set where a data item
can be placed is uniquely identified by the index part of the address (i.e., the
mapping between an address and a cache set is done via a modulo function).
Inside that set, the data may reside in one of the ways. In case some data item
is required, all the ways are searched to determine if and in which way it is
cached. The data look-up is done by comparing the tag address part with the
tag bits stored in each way of the cache in the corresponding set. If the re-
quested data item is present in the cache we have a so called ”cache hit”. If
the data item is not found in cache (so called ”cache miss”), it is loaded by
the cache controller. Loading of new data in a cache set implies that, if the set
is full, some of the data already located there have to be swapped out of the
cache (action also known in the literature as ”cache line victimizing”). The
way flushed out of the cache is decided by the replacement policy. Multiple
options for replacement policies exist: last recently used (LRU), first in first

50



Figure 3.1: Conventional cache organization.

out (FIFO), random, etc, [38]. In the rest of this thesis we refer to caches as
having the logical organization presented in this section, while the replacement
policy may be any of the mentioned one.

The presented cache organization is meant to exploit two types of program
locality: spacial and temporal. The spacial locality refers to the fact that pro-
grams tend to access multiple consecutive addresses. This is the reason why
bringing new data in cache is performed per cache line, so if consecutive words
are accessed only the first in the block causes a miss. The temporal locality
refers to the fact that the same address might be accessed multiple times by the
program. In this case, if data are not swapped out among the two consecutive
accesses at the same address, the second accesses will surely result in a cache
hit.

The cache misses that might occur in a cache are classified in three types:
(1) compulsory misses (they occur at the first reference of a datum), capacity
misses (are the misses that occur in a cache of a certain size, regardless of its
associativity or line dimension), and conflict misses (the reasons of their exis-
tence is the fact that the associativity of the cache is not large enough, therefore
many addresses are mapped on the same cache line, causing conflicts).

In a traditional cache, neither the index addressing, nor the replacement
policy are aware of the internal, task-based, structure of the executed appli-
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cation. This unawareness may cause unpredictable inter-task misses which
should be avoided in order to ensure compositionality. Our work targets this
cache contention, therefore we focus on isolating tasks (assign a cache part to
each one of them), such that their number of misses are independent of each
other. For this we utilize a cache partitioning scheme. Based on the conven-
tional cache organization, there are two natural partitioning manners: (1) based
on associativity and (2) based on sets. In the following section we describe in
detail these two options and their potential implementation in the context of
the CAKE multiprocessor architecture.

3.2 Cache partitioning options

3.2.1 Associativity based partitioning

The associativity based partitioning scheme is depicted in Figure 3.2. As one
can observe, each and every task gets a number of ways from every set of the
cache. In case the required data item is present in the cache, it is accessed, just
like in a conventional cache. However, in case of a miss, when a cache line has
to be replaced, one task can flush out only its own cache ways. In this manner,
different tasks do not interfere unpredictably.

This type of partitioning is implemented by changing the cache replace-
ment policy as suggested in [21]. This require a small table that specifies
which task owns which cache ways, and some extra logic to restrict the victim
lines that are to be flushed. This logic is not on the critical path, as the line to be
victimize does not have to be known before the data are actually loaded from
a lower memory level. On our CAKE platform, loading an L2 line from the
main memory takes at least 100 cycles, thus we can consider that there is no
time penalty involved in associativity based partitioning. From the area point
of view, all the necessary hardware represents a negligible fraction of the size
of a L2 cache. This negligible penalty, together with the fact that the imple-
mentation doesn’t require modifications in the structure of the cache or in the
addressing mode [21], leads to a common use of variations of this partitioning
type [92], [104], [103] for the purpose of reducing the number of misses and
speeding up the application.

In the context of compositionality, the main shortcoming of associativity
based partitioning is that the number of allocable resources is restricted to the
number of ways in a set (cache organization). A state-of-the art L2 cache
typically has only up to 16 ways. Every extra way present in a cache requires
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Figure 3.2: Associativity based cache partitioning (logic organization).

and extra comparator [38]. Thus the reason for supporting just few ways is that
the extra circuitry involved in implementing associativity increase the cache
access time and the power consumption at each lookup. In media applications
there is a trend in adding new features, so in increasing the number of tasks.
Consequently, for such an application there might not be enough ways for
every task, therefore multiple tasks would have to share the same way, leading
to unforeseeable cache interference.

3.2.2 Set based partitioning

The set based partitioning scheme is illustrated in Figure 3.3. In this case, each
and every task gets a different amount of sets from the cache. As already men-
tioned, in a conventional set associative cache organization the address splits
into three parts: tag, index, and offset. Set based partitioning implies that the
addresses a task may access can have only some restricted indexes, pointing
to the task’s cache sets. This is equivalent with an address space partitioning.
To the best of our knowledge, there are two previous approaches to implement
this address space partitioning. One implements the partitioning at compiler
and linker level [77] and the other at operating system level [63]. In the scheme
proposed in [77] the compiler and the linker allocate variables and instructions
addresses such that the cache partitioning is achieved. The platforms we con-
sider may contain standard processor cores, thus the compilers are developed
by external parties. A platform specific change of the compiler would be costly
and/or time consuming, therefore we do not follow this path.
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The cache partitioning method controlled by the operating system pro-
posed in [63] has also drawbacks as it is limited to physically indexed caches
and requires a virtual memory model. Nevertheless, we would like to sup-
port all types of caches on platforms with or without memory paging. Con-
sequently, none of the existing method is suitable for our purpose, thus in the
following we propose a new technique to implement the set based cache parti-
tioning.

We achieve the cache partitioning through a level of indirection, without
interfering with the memory space. This is somewhat similar with the mech-
anism in [63], but the address translation is not performed at memory page
level, but directly at cache level. In this manner there is no restriction in the
type of supported cache, nor in the underlying memory model. Our scheme
modifies the index bits of an address into new index bits, before cache lookup,
as depicted in Figure 3.4, by taking into account who initiates the access. The
purpose of the index translation is to send all the access of a task T # , and only
the accesses of task T # , in a cache region decided at design-time.

To avoid expensive index calculation, the partition sizes are limited to
power of two number of sets. We propose to use a table (indexed by the task
id) to maintain the information needed for the index translation (MASK and
BASE bits). To clarify the mechanism, let us assume the simple example of an
access to data A, having the index idx F in a conventional cache, and belonging
to task T # . We denote by 2 � the size of the partition for T # and by 2 G the size of
the total cache (both size values are measured in sets). The MASK # bits actu-
ally select the k least representative bits of idx F (i.e., instead of doing modulo
with the cache size, 2 G , the modulo is done with the partition size 2 � ). BASE#
fills the rest of the C-k index bits such that different tasks accesses are routed
in disjoint parts of the cache.

After index translation, two addresses that did not have the same original
index might end up having the same new index. In this case the system is not
able to distinguish among such two addresses, leading to data corruption. To
prevent data corruption, the index bits changed by the translation process still
have to identify somehow the associated memory access. The easiest way to
achieve this is to augment the tag part of the address with those changed index
bits. For our example, task T # has 2 � cache sets thus the C-k most representa-
tive index bits are changed, and have to be included in the tag. Because it is not
beneficial to have a tag with variable length (k varies with the task’s allocated
cache size) we choose to augment the tag with all index bits, even though only
a fraction of them is actually changed by the index translation procedure. If,
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Figure 3.3: Set based cache partitioning (logic organization).

for instance, a 2 MBytes L2, 8 ways associative, 512 Bytes block size is uti-
lized, the tag has 9 extra bits. This overhead represents less that 0.5% of the
total L2 area, so the implied area penalty can be considered negligible.

As described in Chapter 2, in this work we assume a multiprocessor plat-
form with cache coherence among the L1 caches of each processor core. In
case a task does not find its data in the corresponding L1, a coherence pro-
tocol is executed to determine if the data are located in another processor L1
cache. The coherence protocol utilizes a shadow tag directory [109] that is
stored close to the L2 and indexed by the original address’ index (as the L1s).
Consequently, the index translation for the L2 accesses can be performed in
parallel with the search in the shadow tags directory, resulting in no additional
delay penalty associated to the extra index translation.

As one could see, the implementation of the set base partitioning is more
”intrusive” into the cache organization than the implementation of the asso-
ciativity based partitioning, in the sense that it requires the alteration of the
addressing scheme. However, the advantage of this partitioning type comes
form the fact that typically, a cache like the L2 we target, may have thousands
of sets and only few ways. The number of resources (cache sets in this case) is
large, thus set based partitioning permits every task to have its own exclusive
part, hence it is the best candidate for achieving compositionality.
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Figure 3.4: Set based cache partitioning (implementation).

3.3 Software support for cache partitioning

In the previous section we described the hardware support needed for cache
partitioning. However, this hardware has to be programmed to permit appli-
cations to benefit from it. In this section we present the necessary software to
control the hardware involved in cache partitioning.

As mentioned in Chapter 2, we assume that our platform has at least a
light-weighted operating system responsible for task scheduling. The cache
management tables can be programmed via memory mapped I/O. We augment
this existing OS with primitives for loading and modifying the necessary cache
management tables. Calls to these primitives have to be inserted in the appli-
cation’s initialization code. We mention that the OS task is regarded as a task
like any other, therefore it has its own allocated cache part. The cache size that
can be allocated to a task is parameterizable. In this manner the application
designer has the opportunity to experiment different cache partitioning ratio
without having to recompile the entire application.

In the following we discuss the address assignment mechanism and its
relation with our task centric cache management. Two issues are of interest:
address alignment and dynamic memory allocation.

The basic allocable unit to a task is a cache line, therefore it is not possible
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for more than one task to have data in the same line. This implies that, if vari-
ables belonging to different tasks have consecutive addresses, these addresses
have to be aligned at L2 cache line size. We consider that both the stack and the
static data regions of each task are contiguous. As they are known at compile
time, it is easy to impose that they are aligned at L2 block size. The dynamic
allocated data regions are more interesting, as they cannot be known at com-
pile time, so we discuss them in the next paragraph. We do not comment here
the case of shared data among multiple tasks, as we elaborate on this subject
in the next chapter.

In some multiprocessor implementations it is possible that the tasks uti-
lize the same contiguous dynamic memory pool (heap), allocating consecutive
memory pieces. In this way, a variable allocated and deallocated by a task may
get various addresses, depending on how much memory has been allocated by
other tasks (memory allocation history). This allocation interleaving can lead
to task’s variables having diverse addresses in different runs. The cache set
where a variable maps is given by a part of the address (index), as mentioned in
the beginning of this chapter. As a result, a variable may have different places
in cache in different application runs. This is undesirable, because different
amount of cache conflicts may occur among a task’s variables, depending on
the memory amount that other tasks allocate, and the order in which these al-
locations take place. Thus, the number of misses of a task is not independent
of the behavior of other tasks, therefore the system is not compositional.

An option to solve this problem is to impose that the indexes of a task vari-
ables do not differ from a run to another. The hierarchical dynamic memory
allocation scheme proposed in [98] appears to be a good starting point to im-
plement such a strategy. This scheme is proposed for embedded systems con-
sisting of multiple processing elements and it is implemented in hardware. The
original purpose of this scheme is to dynamically allocate memory in a short,
deterministic time. We adapt this scheme for our purpose, i.e., to achieve an
amount of cache conflicts among a task’s variables that is independent of other
tasks behavior. Therefore, instead of processing elements, the entities that may
allocate memory are task. Similar to [98], when a task allocates memory for
the first time, it has to acquire a large, fixed size, memory chunk from the first
level of the allocation hierarchy. On a second level of the allocation hierar-
chy, the task can acquire contiguous memory of desired size from that large
memory piece. The addresses of two large memory pieces differ in their most
significant bits, therefore it is possible to keep the index part unaltered (the
most significant bits of an address belong to the tag part, as described in Sec-
tion 3.1). The size of such a large memory chunk should be at least equal to

57



the largest cache size allocated to a task. The advantage of this scheme comes
from the fact that the part of the address that differs among these large memory
pieces is not used for determining the place inside of the cache part assigned
to the task. Therefore, even if some task’s variables get different addresses
depending on other tasks’ allocation history, this does not translate anymore
into various places in cache. In this manner the unpredictability is eliminated.
Moreover, if the cache line alignment is imposed when allocating the large
memory slices, different tasks cannot have data in the same cache line. In the
remainder of this thesis we consider that the dynamic memory allocation is
performed as described above. Moreover, the fact that the dynamic allocation
is performed in hardware or in software is not relevant for our purpose, so any
of the two options can be implemented and utilized.

3.4 Cache partitioning ratio

As previously indicated in this chapter, cache partitioning is designed to isolate
the tasks in cache therefore to enable compositionality. Orthogonal with the
compositionality, cache partitioning offers a degree of freedom in optimizing
the application performance (number of misses, throughput, etc.). Given a
set of tasks � and the available cache size C, we identify two optimization
problems, formulated as follows:

1. the The Cache Allocation Problem, ����� - determines the cache size
(c # ) assigned to each task, such that a certain criterion is optimized. This
problem is also denoted as the cache partitioning ratio problem.

2. the The Cache Mapping Problem, �1HI� - determines the cache line
where a task’s part begins (b # ), such that a certain criterion is optimized.

Static partitioning methods consider the cache space as being uniform, in
the sense that the application performance is influenced only by the tasks cache
sizes c # and not by the beginning cache units b # . Thus for static partitioning
the interesting problem is the cache allocation. Therefore in order to exercise
the two cache partitioning types, we have to solve the �1�J� . We revisit �'HI�
in Chapter 6 where we study the case of applications composed by tasks that
might start and stop and we propose a suitable dynamic cache partitioning
method.

As mentioned in Chapter 2, in this thesis we assume that an application
A is composed out of N tasks, �K�L	 T #M�+# ����� ,-�/./././� % . Each task has assigned a
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cache size c # . We denote the set of possible cache sizes with 	ON'�P�O������� ,-�/./././� Q ,
thus c #!R5	ONS�P� . For the set based cache partitioning, N'� can be limited to
powers of two number of cache sets, due to implementation reasons, whereas
for associativity based partitioning no such restriction may apply. Regardless
the restriction on N�� , several optimization criteria can be formulated in relation
with ����� , but given that traditionally, the performance of a cache is often
measured in number of misses, we formulate the �1�J� for finding the size
of cache c # for every task T # such that the overall number of cache misses is
minimized: TVUXWZY %[ # ��� miss \ T #M] c #_^�^M`a] (3.1)

where, miss \ T #b] c #_^ is the number of T # misses when it has c # amount of cache.

In the following subsections we first prove that the �1�J� that minimizes the
number of misses is NP-complete, then we present a Dynamic Programming
formulation that optimally solves this problem.

3.4.1 Hardness of the cache allocation problem

In this subsection we prove that the cache allocation problem is similar to
the Multiple Choice Knapsack Problem ( Hc�'de� ), that is known to be NP-
complete [55].

In order to make this proof we first recall the multiple choice knapsack
problem, with the notations from [85]. Given a set of items j (1 f j f M),
each of which being of K classes, their profits 	 p #g6 � and their weights 	 w #g6 � for
each class i (1 f i f K), and a knapsack of capacity c, choose one item from
each class such that the total profit is maximized and the total weight does not
exceed the knapsack capacity c.

The cache allocation problem is actually a multiple choice knapsack prob-
lem, but with different notations, as follows: (1) each class i in Hc�1de� cor-
responds to a task T # in ����� , (2) the knapsack capacity c is the total cache
size C, (3) a task may get assigned cache of L possible different sizes which
translates in Hc�'de� in the fact that different items j may be of class i, (4)
the weight associated to an item in a class is designated in ����� by the cache
sizes c # Rh	ONS�P� of a task T # , (5) the profit associated to an item in a class
in HL�'de� has as correspondent in �1�J� the number of misses for each task
miss \ T #M] c #_^ . The problem is to pick a single item (cache size) from each class
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(task) such that the profit (number of misses) is optimized. The only difference
between the two problem formulations is that in �1�J� the number of misses is
minimized, not maximized as in the case of the profit in Hc�'de� . As this dif-
ference is irrelevant for the hardness of the problem, and as Hc�'de� is known
to be NP-hard [55] we can conclude that ����� is also NP-hard.

A typical manner to solve Knapsack Problems is by utilizing Dynamic
Programming. Thus in the following we present a Dynamic Programming
formulation that solves the cache allocation problem.

3.4.2 ikjml optimal solution via dynamic programming

From the theory of combinatorial optimization it is known that a problem that
satisfies the Bellman’s optimality principle can be solved by Dynamic Pro-
gramming [10]. The optimality principle states that for a problem consisting
of making a set of decisions (or choices), in an optimal sequence of deci-
sions/choices, each subsection must also be optimal. For the aforementioned�1�J� this would mean that, if a cache to tasks allocation 	 c � ] c , ]�nonono] c %qp'� ] c % � ,
with

Nr# ��� c # f C is optimal, then a subsequence 	 c � ] c , ]�nonono] c %sp'� � , with

N-1r# ��� c #tf C u c % would also be optimal. The reason why this holds true

can be explained as follows. Let us assume that the cost (number of misses)

of the optimal solution 	 c � ] c , ]�nonono] c %sp'� ] c % � is M % � Nr# ��� m #v� N-1r# ��� m #xw
m % � M %qp'� w m % , where m # is the optimal cost for task T # . If the subse-
quence 	 c � ] c , ]�nonono] c %qp'� � is not optimal, then there exists another allocation	 c y � ] c y , ]�nonono] c y %sp'� � that is optimal for

N-1r# ��� c #zfc{|u c % , therefore the cost of

the new allocation M y %sp'� is smaller then the cost of the original subsequence
M %qp'� . As a consequence, there exists an allocation 	 c y � ] c y , ]�nonono] c y %sp'� ] c % � that
has a cost M y %qp'� w m %�} M %sp'� w m % , but this contradicts with the hypoth-
esis that 	 c � ] c , ]�nonono] c %qp'� ] c % � is an optimal solution. Thus ����� satisfies the
optimality principle. This principle is the foundation of the ����� Dynamic
Programming formulation, as it is presented in the rest of this subsection.

Dynamic Programming is a bottom-up approach. The solution is build
iteratively by adding a task to the solution from the previous step. The Dy-
namic Programming formulation of ����� is described in Algorithm 1. As
one can notice Algorithm 1 has N main steps. At the ith step of the algo-
rithm a cache allocation for the first i tasks is found, for every possible cache
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size c f C-(N-i), such that each task has at least one cache set (c ~ i). Be-
cause we are primarily interested in compositionality, we assume that there
are enough cache elements for each task, for the entire application (C ~ N),
as well as for each optimization step (c ~ i). Moreover, at step i we do not
have to compute the cache allocation for caches larger than C-(N-i), because
we know for sure that the rest of N-i tasks should also have at least one cache
unit. For simplicity reasons we shortly denote the task T # number of misses
when having k allocated cache size, miss(T # ] k ^ , with m �# . We designate with
OPR �# �h	 c6�� � 6 �����/./././� # � the optimal cache partitioning ratio for the first i tasks

of the application, having in total
#r6 ��� c6�� c cache. In this situation, the min-

imum number of misses is denoted with M �# . At the i+1 iteration the solution
OPR �#o� � is build using the OPR �# solution from the previous step. Given a cache
size c (i+1 f c f C-(N-i-1)), the task T #(� � has k cache units and the previous
tasks 	 T6���� 6 ����� ,-�/./././� # � have in total c-k cache units. Then the total number of
misses of the i+1 tasks is M �#(� � � M � pS�# w m �#o� � . To determine the value of
k that give the minimum value of M �#(� � we perform an extensive search. The
solution to �1�J� is obtained at step N and it is OPR G% .

In practice each task T # might have a minimum cache limit under which T #
does not fulfill its deadlines anymore, denoted here with �S# . As ��# is dependent
on the final product in which the application A is embedded, we consider that
it is specified by the application designer. To express the minimum cache limit
in the dynamic programming formulation, the following constraint applies:

c #�~a��#Mn (3.2)

Algorithm 1: Optimal cache partitioning ratio determination
foreach i=1, 2, ..., N do

foreach c=i, i+1, ..., C-(N-i) do
Find k for which M ��x�t�e���

k ¡ c � M �$���� � �q� m ���� ;
OPR ��x�a� OPR �$���� � ��� k � ;end

end

For clarity reasons we present in the following a simple example of how
Algorithm 1 builds the solution. In this example we consider the case of set
based cache partitioning when the cache sizes are limited to a power of two.
The number of tasks is N=3 and the maximum allocable cache size is C=8,
and no minimum cache limit. The number of misses as function of the cache
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1 2 4 8
T � 16 13 7 3
T , 20 10 2 1
T : 12 8 4 3

Table 3.1: Example: Tasks number of misses function of cache size.

1 2 3 4 5 6 7 8
Step 1 misses M >> = 16 M ? > = 13 M @ > = 13 M A > = 7 M B > = 7 M C > = 7 n.a. n.a.
T > OPR (1) (2) (2) (4) (4) (4) n.a. n.a.
Step 2 misses n.a M ?? = 36 M @ ? = 26 M A ? = 23 M B? = 18 M C ? = 15 M D? = 15 n.a.
T > � T ? OPR n.a. (1, 1) (1, 2) (2, 2) (1, 4) (2, 4 (2, 4) n.a.
Step 3 misses n.a. n.a. M @@ = 48 M A@ = 38 M B@ = 34 M C@ = 31 M D@ = 26 M �@ = 23
T > � T ? � T @ OPR n.a. n.a. (1, 1, 1) (1,2,1) (1,2,2) (2,2,2) (1,4,2) (2, 4, 2)

Table 3.2: Example: dynamic programming steps.

size for each of the three task is presented in Table 3.1. Table 3.2 depicts
the optimal misses M �# at each step of the Algorithm 1 and the corresponding
partitioning ratio. At Step 1 of the algorithm the first task is considered. The
cache size of task T � can not be larger than 6, because we know that T , and
T : should also have available at least one cache set each. In Step 2, the case
when the cache size is � is not applicable because there is not enough cache
for both tasks. Moreover, the cache size cannot be � because then T : would
not have any cache available. Let us take a closer look on how to calculate a
OPR �, value. For instance, for OPR :, there are two options: T , has ����� cache
sets (thus T � has � cache sets) or T , has �v��� cache sets (thus T � has � cache
set). However, the minimum number of misses for the \ T � ] T , ^ combination
with c=3 cache sets is achieved when k=2, therefore OPR :, � (1,2). At Step 3
the same type of calculation applies and the final solution for a cache of 8 lines
is OPR  : � (2, 4, 2).

3.5 Compositionality investigation metric

In order to verify that a system is compositional, we introduce the number of
inter-task conflict misses ( ¡ TVU$¢7¢

) metric. In the remainder of this thesis, unless
explicitly specified, we address the inter-task conflict misses simply as conflict
misses. Let us consider the case of a task T # . The number of conflict misses of
a task cmiss \ T #�^ is the total number of misses caused to T # by other tasks T6 ,
with T # and T6 belonging to the same application A. To exactly detect which
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T6 cache miss is causing a flush of a data item that T # needs in the future, all
the data items of the application have to be individually tracked. These data
items are identified by their address. The address space of a CAKE platform
is huge (a processor can access up to few giga bytes) and the number of L2
accesses that we are dealing with are very large (e.g. up to ��£   for decoding
10 frames of mpeg2 video). Thus in practice such tracing is not possible in
a reasonable amount of time. However, there is an easy method to obtain
an upper bound (CM \ T #_^ ) of the inter-task conflict misses number cmiss \ T #�^ .
CM \ T #�^ represents the number of times a task T 6 flushes some T # data out of
the cache. This represents an upper bound of the conflict misses number, as in
some cases the flushed data might not be needed in the future, so no miss is
actually encountered. The number of times a task T 6 flushes some T # data out
of the cache requires just a simple counting, and no individual address tracing,
therefore it is easily obtainable in practical situations.

We extend the number of conflict misses definition to application level as
follows. The number of conflict misses CM(A) of an application A represents
the sum of the conflict misses experienced by each task T # of the application
A. In order to have an idea about how much these conflicts impact the entire
system, the values presented on the experimental results section are actually
relative to the A number of misses:

CM(A) �
Y r

T ¤X¥ F CM \ T #X^ `
miss(A)

] (3.3)

where

TVU$¢¦¢
(A) is the total number of misses experienced by A.

3.6 Experimental results

The experiments presented in this section have two goals: (1) to check the
compositionality of the system and (2) to illustrate the cache partitioning im-
plications in the system performance. The workload consists of six applica-
tions composed out of various media tasks, running on a CAKE platform with
four TriMedia cores, as introduced in Chapter 2. The partitioning ratio is de-
termined with the method presented in Section 3.4, that minimizes the overall
application number of misses. For each of the two goals, we compare the
behavior of a conventional cache, a set-based partitioned cache, and an asso-
ciativity based partitioned cache. In the case of the performance investigation,
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we compare also with the case of an infinite cache. The comparison with the
performance of an infinite cache is interesting because it gives an idea about
the maximum improvement that one can theoretically achieve by tuning the L2
cache. In our case it was enough to approximate an infinite L2 with a cache
of 4 Mega Bytes (MB) size and 16 ways associativity, as the experienced the
number of misses of such a large cache is very low, no significant misses differ-
ence is observed between a cache of 2 MB and one of 4 MB and no substantial
misses variation occurs for caches larger than 4 MB. Moreover we also in-
vestigate the performance implication of the memory alignment and allocation
needed for cache partitioning, as explained in Section 3.3.

We experiment various L2 cache configurations representative for the state
of the art L2 caches. These configurations consist of all the combinations
among L2 sizes from 256 Kilo Bytes (KB) to 2 Mega Bytes (MB) and associa-
tivity of 4, 8, and 16 and an infinite L2 cache. We fixed the largest investigated
associativity (16 ways), to be a step ahead of the state-of-the art L2 associativ-
ity (for instance the L2 cache of an Intel Extreme Quad-Core Processor Q6000
produced in 2007 is 8 way associative [42]). The reader should note that for
the L2 caches having only 4 ways, a compositional associativity based parti-
tioning is not possible, because an applications consists of 4 data processing
tasks and an operating system task, thus there are not enough ways such that
each task has at least an exclusive one.

In the remainder of this section we first present the system compositional-
ity evaluation and then the performance investigation.

3.6.1 Compositionality

In order to investigate the compositionality of the system we use the number
of conflict misses metric CM(A) as defined in Section 3.5. The CM(A) are re-
ported for three L2 cases: conventional shared (shared), set-based partitioned
(set part), and associativity based partitioned (assoc part), when possible. In
Table 3.3 and Figure 3.5 we present the relative CM(A) for each of the 6 appli-
cations and their average relative CM(A), respectively. The values presented
in this subsection are relative to the corresponding application total number of
misses. The last row in Table 3.3 represents the average over all applications
number of conflict misses. In Figure 3.5 we graphically present the average
CM(A) from the last row in Table 3.3, function of the cache size and associa-
tivity.

In Table 3.3 as well as in Figure 3.5 one can observe that both set based and
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256K/4 256K/8 256K/16 512K/4 512K/8 512K/16 1M/4 1M/8 1M/16 2M/4 2M/8 2M/16 4M/16§�¨ shared 79.8% 77.7% 76.0% 61.8% 59.5% 57.7% 48.0% 40.3% 38.0% 37.4% 34.2% 30.9% 31.1%
set part 0.70% 0.62% 0.22% 0.81% 0.75% 0.46% 0.97% 0.14% 0.48% 0.97% 0.09% 0.09%
assoc part 0.04% 0.05% 0.02% 0.02% 0.03% 0.05% 0.04% 0.05%§�© shared 84.0% 82.2% 83.6% 77.1% 73.6% 72.5% 69.9% 66.3% 65.3% 62.6% 61.2% 60.2% 56.4%
set part 0.70% 0.6% 0.2% 0.8% 0.7% 0.4% 0.9% 0.1% 0.4% 0.9% 0.1% 0.2%
assoc part 0.04% 0.05% 0.02% 0.02% 0.03% 0.05% 0.04% 0.05%§�ª shared 79.7% 76.4% 75.4% 87.3% 84.9% 83.2% 84.2% 78.8% 77.3% 69.6% 65.7% 63.1% 58.5%
set part 0.78% 0.62% 0.22% 0.81% 0.75% 0.46% 0.97% 0.14% 0.48% 0.97% 0.09% 0.09%
assoc part 0.03% 0.02% 0.02% 0.03% 0.01% 0.06% 0.05% 0.02%§�« shared 71.9% 70.8% 70.3% 70.9% 67.1% 68.4% 64.5% 63.8% 63.4% 60.9% 60.1% 58.5% 55.2%
set part 0.11% 0.12% 0.10% 0.10% 0.08% 0.10% 0.07% 0.10% 0.10% 0.09% 0.09% 0.09%
assoc part 0.13% 0.12% 0.13% 0.15% 0.10% 0.10% 0.09% 0.07%§¬ shared 81.0% 79.2% 82.1% 77.2% 73.6% 73.4% 77.4% 70.6% 69.9% 64.7% 63.0% 64.1% 59.0%
set part 0.22% 0.33% 0.27% 0.20% 0.22% 0.20% 0.28% 0.11% 0.22% 0.30% 0.28% 0.30%
assoc part 0.12% 0.11% 0.08% 0.07% 0.09% 0.06% 0.07% 0.05%§® shared 72.6% 71.9% 73.2% 78.4% 75.7% 73.2% 66.8% 67.7% 65.1% 50.3% 46.4% 47.7% 43.3%
set part 0.07% 0.07% 0.06% 0.07% 0.08% 0.06% 0.07% 0.08% 0.06% 0.05% 0.04% 0.04%
assoc part 0.06% 0.07% 0.05% 0.05% 0.03% 0.04% 0.04% 0.04%§¯°±²³ ° shared 77.8% 75.9% 76.5% 75.1% 71.9% 71.1% 68.0% 64.0% 62.8% 57.1% 54.9% 53.8% 50.4%
set part 0.37% 0.36% 0.18% 0.44% 0.35% 0.27% 0.54% 0.11% 0.25% 0.47% 0.16% 0.17%
assoc part 0.11% 0.12% 0.05% 0.19% 0.05% 0.30% 0.05% 0.04%

Table 3.3: Relative inter-task conflict misses function of cache dimensions.
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Figure 3.5: Average relative, inter-task conflict misses: shared vs. set parti-
tioning vs. associativity partitioning.

associativity based partitioning techniques induce an extremely small inter-
task conflict misses fraction (under 1% for each application in every cache
combination). Nevertheless a small inter-task L2 interference can be observed
even for the partitioned cache. This interference is due to the fact that the op-
erating system has some shared data structures accessed by all tasks. Thus the
OS’s L2 partition is shared and exposed to the inter-task L2 interference. How-
ever these data structures are small (under 2KB) and typically fit in entirely in
the OS’s L2 partition, therefore the L2 interference is also small (more details
about data sharing combined with cache partitioning are presented in the next
chapter).

Unlike in a partitioned L2, in a shared L2 a large fraction of the misses
represent actually inter-task conflict misses. We can see in Table 3.3 that the
inter-task conflict misses range between a peak value of 87% (for ´ : with a 4
ways associtive L2 of 512KB) and a bottom value of 30% (for ´ � with 4MB
of L2 cache). The average over all applications and all cache configuration
is 66%. In general, the percentage of inter-task conflict misses decrease once
the cache size is increased. This effect appears as a result of the fact that, the
larger the cache, the more data fit in it and the total misses number decreases.
One can also observe that the inter-task conflict misses number diminish when
the L2 associativity is larger, for the same cache size. The explanation lies in
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the fact that, in general, the number of conflict misses is reduced due to the
availability of more ways, therefore the inter-task conflict misses follow the
same trend. As visible in Figure 3.5 these trends are valid also on average
over all the applications experimented. Nevertheless, in some cases (e.g. ´3: ),
we notice an increase in inter-task conflict misses when increasing the cache
(from 256KB to 512KB in the case of ´ : ). Moreover, ´ < deviates from the
general trend because when having a 16 ways L2 of 256KB it experiences
more inter-task conflict misses then with an 8 ways cache of the same size. The
reasons for these deviations are not immediate, as the cache behavior is history
based, and the shared cache is subject to unpredictable inter-task interference,
However, what we can surely conclude from the compositionality investigation
is that both set based and associativity based partitioning techniques can induce
compositionality to the system, within 1% bounds.

3.6.2 Performance

As the experiments presented in the previous subsection suggest, both parti-
tioning methods can induce compositionality. In our previous work [70] we
present a brief quantitative comparison among the static set and associative
cache partitioning, and here we extend this analysis. The purpose of the exper-
iments presented in this subsection is to quantify the impact of the two types
of cache partitioning on the system performance. As mentioned in Section 3.3,
the prerequisites to cache partitioning are memory alignment and hierarchical
dynamic memory allocation. Thus in this subsection we first investigate the
impact on performance of those two memory related techniques. Second, we
study the cache partitioning impact on performance. In the presented inves-
tigations we use two performance metrics, (1) the number of L2 misses per
instruction (Misses Per Instruction, MPI), expressing the cache performance
and (2) the average number of cycles required to execute an instruction (Cy-
cles Per Instruction, CPI), expressing the total processing speed.

Memory allocation and alignment impact on performance

In order to gain inside in the impact on performance of the memory allocation
and alignment (MAA) in general, for a conventional shared cache, we compare
two cases: (1) the case with a common heap for all tasks, thus no special
memory alignment and allocation implemented (No MAA) and (2) the case
with the memory aligned and allocated according to the techniques described
in Section 3.3 (MAA). For the last case we implement an hierarchical memory
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256K/4 256K/8 256K/16 512K/4 512K/8 512K/16 1M/4 1M/8 1M/16 2M/4 2M/8 2M/16 4M/16µ ¶ No MAA 0.077 0.059 0.037 0.025 0.020 0.018 0.012 0.012 0.012 0.009 0.009 0.009 0.000
MAA 0.048 0.039 0.037 0.020 0.017 0.014 0.012 0.011 0.010 0.009 0.009 0.009 0.000µ · No MAA 0.132 0.120 0.126 0.064 0.058 0.057 0.032 0.030 0.029 0.024 0.022 0.018 0.000
MAA 0.164 0.135 0.132 0.071 0.059 0.058 0.032 0.030 0.029 0.022 0.021 0.020 0.000µ ¸ No MAA 0.095 0.090 0.096 0.029 0.027 0.026 0.011 0.010 0.009 0.006 0.005 0.005 0.000
MAA 0.118 0.100 0.099 0.040 0.028 0.027 0.015 0.011 0.010 0.006 0.005 0.005 0.000µ ¹ No MAA 0.310 0.241 0.236 0.148 0.090 0.084 0.038 0.038 0.042 0.030 0.027 0.025 0.000
MAA 0.153 0.182 0.184 0.090 0.085 0.082 0.051 0.049 0.049 0.037 0.036 0.034 0.000µ º No MAA 0.126 0.100 0.101 0.078 0.047 0.047 0.027 0.026 0.024 0.011 0.010 0.007 0.000
MAA 0.117 0.102 0.111 0.062 0.049 0.048 0.035 0.026 0.025 0.010 0.009 0.007 0.000µ » No MAA 0.083 0.083 0.086 0.027 0.023 0.023 0.013 0.012 0.012 0.016 0.012 0.015 0.000
MAA 0.088 0.084 0.089 0.027 0.024 0.022 0.013 0.014 0.013 0.016 0.012 0.014 0.000µ ¼½¾¿ À½ No MAA 0.137 0.116 0.114 0.062 0.044 0.043 0.022 0.021 0.021 0.016 0.014 0.013 0.000
MAA 0.115 0.107 0.109 0.052 0.044 0.042 0.026 0.023 0.023 0.016 0.015 0.014 0.000

Table 3.4: 100xMPI: no special memory alignment & allocation vs. proposed memory alignment & allocation
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256K/4 256K/8 256K/16 512K/4 512K/8 512K/16 1M/4 1M/8 1M/16 2M/4 2M/8 2M/16 4M/16§¨ No MAA 1.52 1.47 1.40 1.32 1.30 1.30 1.27 1.27 1.27 1.27 1.27 1.27 1.27
MAA 1.42 1.40 1.40 1.32 1.30 1.30 1.27 1.27 1.27 1.27 1.27 1.27 1.27§© No MAA 1.80 1.70 1.75 1.35 1.35 1.32 1.22 1.22 1.22 1.17 1.12 1.12 1.12
MAA 1.95 1.77 1.82 1.4 1.35 1.32 1.22 1.22 1.22 1.12 1.12 1.12 1.12§ª No MAA 1.52 1.5 1.57 1.2 1.17 1.17 1.1 1.1 1.1 1.07 1.07 1.07 1.07
MAA 1.67 1.57 1.55 1.2 1.17 1.20 1.12 1.10 1.10 1.07 1.07 1.07 1.07§« No MAA 3.67 2.85 2.80 2.00 1.65 1.65 1.40 1.37 1.40 1.32 1.32 1.32 1.32
MAA 2.42 2.40 2.30 1.65 1.65 1.62 1.45 1.45 1.32 1.32 1.32 1.32 1.32§¬ No MAA 1.75 1.65 1.63 1.42 1.40 1.27 1.17 1.17 1.12 1.12 1.12 1.10 1.10
MAA 1.70 1.70 1.55 1.32 1.27 1.27 1.22 1.17 1.15 1.20 1.12 1.10 1.10§® No MAA 1.50 1.47 1.47 1.20 1.17 1.17 1.10 1.10 1.10 1.10 1.10 1.10 1.10
MAA 1.55 1.47 1.47 1.17 1.17 1.17 1.10 1.10 1.10 1.10 1.10 1.10 1.10§ ¯° ±² ³ ° No MAA 1.96 1.77 1.78 1.42 1.34 1.31 1.21 1.21 1.20 1.18 1.17 1.16 1.16
MAA 1.79 1.69 1.64 1.34 1.32 1.32 1.23 1.22 1.19 1.18 1.17 1.16 1.16

Table 3.5: CPI: no special memory alignment & allocation vs. proposed memory alignment & allocation.
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allocation strategy and we enforce a static memory alignment, as proposed.
These mechanisms ensure that the cache misses experienced by a task do not
depend on other task’s memory allocation history. The complete results are
presented in Table 3.4 and 3.5 for the L2 MPI and CPI, respectively. The
average MPI and CPI over the six applications are presented in Figure 3.6 and
3.7, respectively.

By applying a special MAA, the addresses of tasks’ variables change. Thus
tasks access the cache following a different pattern than in the case no special
MAA is employed. When looking to multitasking application, this access pat-
tern change has implications in (1) the misses intrinsic to each task and (2)
the inter-task cache interference. The performance difference among the MAA
and the No MAA case is given by the summation of these two effects and it is
application dependent.

When looking at cache sizes one can observe that, on average, for small
caches the utilization of memory alignment and allocation is beneficial for per-
formance. For an L2 of 256KB the average MPI reduction (over all presented
associativities) is 0.00012, representing 10% from the average No MAA MPI.
This causes a CPI decrease of 0.11 representing 6% from the No MAA’s CPI,
averaged over all associativities. Over all targeted L2 sizes and associativities,
the maximum performance improvement caused by MAA is encountered in
the case of 265KB, 4 ways associative L2. For this L2 configuration the appli-
cations experience a reduction of 0.000023 MPI (20% from the corresponding
No MAA’s MPI) and 0.18 CPI (10% from the No MAA’s CPI). For a 512KB L2
the average MPI reduction is 0.00003, representing 7% from the No MAA MPI.
This cause an CPI decrease of 0.03 representing 2% from the No MAA’ CPI.
For an 1MB L2 the MAA induces a slight performance loss. On average over
all investigated associativities the No MAA case exhibits a 0.00004 increase in
MPI when compared with the corresponding MAA case. This decrease repre-
sents 7% from the average No MAA MPI. This causes an average CPI decrease
of 0.03, representing 2% from the No MAA’ CPI. For caches larger than 1MB
the difference between the two cases is under 0.01 CPI because most of the
application’s data fit in the cache regardless the alignment.

When looking at associativity we can notice that the MAA impacts more
the low associativity caches. For a 4 ways associative L2 on average (over all
investigated size) the MPI reduces with 0.0001 when applying MAA, causing
a 0.8 CPI decrease. Relative to the corresponding average No MAA values,
these reductions translate in 13% and 5% for MPI and CPI, respectively. For
a 8 ways associative L2 on average the performance of the MAA scheme is
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Figure 3.6: Average MPI: no special memory alignment & allocation vs. pro-
posed memory alignment & allocation.
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Figure 3.7: Average CPI: no special memory alignment & allocation vs. pro-
posed memory alignment & allocation.
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still better than the one of without MAA, however the differences are smaller
than the ones encountered for a 4 ways associative L2. On average the MPI
reduces with 0.00002 when applying MAA, causing a 0.2 CPI decrease. Rel-
ative to the corresponding average No MAA values, these reductions translate
in 4% and 1% for MPI and CPI, respectively. For a 16 ways associative L2
the performance implications of the MAA scheme are negligible (under 0.01
CPI).

When looking at each application, one can see in Tables 3.4 and 3.5 that´ � and ´ ; are always positively impacted by the MAA, regardless the L2
dimensions. On average over all L2 sizes and associativities, the ´ � ’s MAA
MPI represents 21% from the MPI of the ´ � ’s without MAA. In terms of CPI,
this corresponds with a 2% reduction. In the case of ´ ; the relative average
MPI and CPI reduce with 24% and 14%, respectively. The applications ´ , ,´Á: , ´Á< , and ´Á= are marginally influenced by the MAA scheme. Their summed
MPI and CPI increases slightly, with 5% and 1%, respectively, relative to the
MPI/CPI sum for the No MAA case.

An important observation is that for small caches and for reduced asso-
ciativity caches the impact (either positive or negative) of MAA is larger than
for large size and/or associativity caches. The reason behind this is that in
small and/or low associativity caches a large fraction of the misses are conflict
misses. Here the term ”conflict miss” is used in the sense defined in [38], and
such a miss is not necessarily an inter-task conflict miss, but it is in general a
miss occurring due to multiple addresses mapping in the same cache line. The
application’s accessing pattern has a great influence on the number of conflict
misses. Thus by employing an MAA scheme, the accessing pattern is largely
impacted therefore so is also the number of conflict misses.

Cache partitioning impact on performance

In this subsection we determine which type of cache partitioning performs
better for the media domain.

The results corresponding to each of the 6 applications are detailed in Ta-
ble 3.6 and Table 3.7, for MPI and the CPI, respectively. Figures 3.8 and 3.9
illustrate the average over the 6 applications for the MPI and CPI, respectively.
We compare the performance of a shared cache (shared) with the one of a set
based partitioned cache (set part), and the one of an associativity based parti-
tioned cache (assoc part). In all the above mentioned cases the used memory
allocation and alignment are the ones presented in Section 3.3.
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Two phenomena are behind the difference in misses number between a
shared and a partitioned cache. If the cache is partitioned, the inter-task con-
flict misses are eliminated (which means in total less misses) but every task
can use less cache space than in the shared case (which means more misses).
As one can notice in Tables 3.6 and 3.7, and Figures 3.8 and 3.9, the set based
partitioned cache performs usually better than both the shared and associativ-
ity based partitioned L2. The performance difference is larger for small L2
situations (256KB to 1MB) and tends to flatten for large caches (from 2MB to
the infinite cache). This is an expected behavior, as larger caches may encom-
pass more of the applications data, which causes fewer misses for all cache
configurations, therefore the performance differences among them are smaller.

When compared with a conventional L2, we found that the set based parti-
tioned L2 usually performs better, achieving up to 62% MPI reduction corre-
sponding to an up to 31% CPI decrease (relative to the corresponding shared
cache MPI and CPI values). In absolute values, these maximum improvements
are 0.0008 for MPI and 0.75 for CPI.

On average over all the applications, the set based partitioned cache has
less misses than the shared cache. When L2 is larger or equal to 2 MB the
difference in CPI among the partitioned and the shared cache is less than 1%.
For caches smaller than 2 MB, the set based partitioning brings the following
MPI reductions, absolute and relative to the corresponding shared MPI values:
(1) 0.00045 and 41%, respectively, for an L2 of 256 KB, (2) 0.00009 and 17%,
respectively, for an L2 of 512 KB, and (3) 0.00008 and 29%, respectively, for
an 1 MB L2. All these values are an average over all the inquired L2 asso-
ciativities. In terms of CPI this translates into the following average decreases
(again in absolute and relative values): (1) 0.32 and 18%, respectively, for an
L2 of 256 KB, (2) 0.06 and 4%, respectively, for an L2 of 512 KB, and (3)
0.03 and 2%, respectively, for an 1 MB L2. On average for caches smaller
than 2MB, when the L2 is set-based partitioned it experiences 29% less misses
per instructions and 8% less cycles per instructions.

Moreover, some applications are more sensitive to cache partitioning than
others. From all the 72 studied combinations of applications, L2 sizes and
all associativities, only in 8 cases the MPI and the CPI of the set based parti-
tioned L2 is larger than the one of the shared L2. The maximum MPI increase
when using a partitioned L2 compared with the shared L2 is 0.00011. This
represents 13% from the maximum possible MPI reduction presented in the
previous paragraph. The corresponding maximum CPI increase is 0.03, repre-
senting 4% maximum possible CPI decrease induced by set based partitioning.

73



���

�������

�������

�������

�������

������	

�����
�

�����
�

�����
�

�����
�

�����
	

�������

��
��
�

��
��
	

��
��


�

�

��
�

�

��
	

�

��


�


�
�


�
	


�


�

��
�

��
	

��


�

��


�

�����������������������

���������� ������������

��������������

Figure 3.8: Average MPI: shared vs. set partitioning vs. associativity parti-
tioning

On average over the 8 cases, these performance reductions are 19% and 4% for
MPI and CPI, respectively. These numbers suggest that the number of cases
when set-based brings a significant performance benefits are way more fre-
quent that the cases when it brings performance degradation. Moreover, the
encountered degradations can be considered not significant.

Furthermore, we assess the fraction from the maximum possible perfor-
mance boost that is brought by splitting the cache, to give an idea about the
relative performance impact of partitioning. For this we define the maximum
CPI improvement achievable by tuning the L2 cache as the difference between
the CPI obtained with a conventional shared L2 and the one obtained with an
infinite L2: Âv{ÄÃzÅ�ÆÈÇÊÉË�5{ÄÃzÅ+Ì_Í ÇÏÎ�Ð$Ñ uÒ{ÄÃ�Å #ÔÓ�ÕÖ#ÔÓ¦#Ô×(Ð . The CPI improvement
caused by set based partitioning is the difference among the CPI in the shared
L2 case an the one in the partitioned case: Âv{�Ã�Å Ì Ð$×ÊØ+ÇÏÎM× �Ù{�Ã�Å+Ì_Í ÇÊÎ�Ð$Ñ u{�Ã�Å Ì Ð$×ÊØ+ÇÏÎM× . Figure 3.10 presents the percentage of CPI improvement due to
set based partitioning from the maximum achievable ( Ú G1Û'Ü_ÝßÞáà�âMã�äXàÚ G1Û'ÜXå ã�æ ), depend-
ing on the cache size. We do not present the results for caches larger than 1
MB, as for those the CPIs are the same for a shared, partitioned, and infinite
caches. When averaging the percentages from Figure 3.10 we found that set
based partitioning brings on average 48% of the possible CPI improvement,
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256K/4 256K/8 256K/16 512K/4 512K/8 512K/16 1M/4 1M/8 1M/16 2M/4 2M/8 2M/16 4M/16§�¨ shared 0.048 0.039 0.037 0.020 0.017 0.014 0.012 0.011 0.010 0.009 0.009 0.009 0.000
set part 0.030 0.027 0.025 0.014 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008
assoc part 0.050 0.038 0.032 0.013 0.011 0.011 0.010 0.010§�© shared 0.164 0.135 0.132 0.071 0.059 0.058 0.032 0.030 0.029 0.022 0.021 0.020 0.000
set part 0.091 0.060 0.053 0.037 0.038 0.037 0.026 0.027 0.027 0.019 0.016 0.016
assoc part 0.204 0.137 0.123 0.073 0.066 0.029 0.026 0.021§�ª shared 0.118 0.100 0.099 0.040 0.028 0.027 0.015 0.011 0.010 0.006 0.005 0.005 0.000
set part 0.061 0.069 0.065 0.036 0.035 0.034 0.011 0.008 0.008 0.005 0.003 0.002
assoc part 0.155 0.076 0.100 0.056 0.074 0.010 0.011 0.005§ç« shared 0.153 0.182 0.184 0.090 0.085 0.082 0.051 0.049 0.049 0.037 0.036 0.034 0.000
set part 0.110 0.108 0.107 0.073 0.071 0.069 0.036 0.033 0.035 0.026 0.025 0.024
assoc part 0.296 0.123 0.152 0.101 0.100 0.042 0.000 0.028§�¬ shared 0.117 0.102 0.111 0.062 0.049 0.048 0.035 0.026 0.025 0.010 0.009 0.007 0.000
set part 0.062 0.046 0.041 0.043 0.032 0.031 0.026 0.024 0.022 0.013 0.012 0.007
assoc part 0.237 0.137 0.140 0.032 0.039 0.037 0.019 0.014§�® shared 0.088 0.084 0.089 0.027 0.024 0.022 0.013 0.014 0.013 0.016 0.012 0.014 0.000
set part 0.071 0.073 0.066 0.037 0.035 0.034 0.015 0.012 0.012 0.012 0.012 0.012
assoc part 0.239 0.134 0.118 0.059 0.025 0.014 0.015 0.017§¯° ±²³ ° shared 0.115 0.107 0.109 0.052 0.044 0.042 0.026 0.023 0.023 0.017 0.015 0.015 0.000
set part 0.071 0.064 0.060 0.040 0.037 0.036 0.020 0.019 0.019 0.014 0.013 0.012
assoc part 0.197 0.107 0.111 0.056 0.053 0.024 0.014 0.016

Table 3.6: 100xMPI: shared vs. set partitioning vs. associativity partitioning (6 applications).
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256K/4 256K/8 256K/16 512K/4 512K/8 512K/16 1M/4 1M/8 1M/16 2M/4 2M/8 2M/16 4M/16µ ¶ shared 1.42 1.40 1.40 1.32 1.30 1.30 1.27 1.27 1.27 1.27 1.27 1.27 1.27
set part 1.37 1.32 1.32 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27
assoc part 1.45 1.35 1.37 1.27 1.27 1.27 1.27 1.27µ · shared 1.95 1.77 1.82 1.40 1.35 1.32 1.22 1.22 1.22 1.12 1.12 1.12 1.12
set part 1.42 1.27 1.35 1.20 1.22 1.20 1.15 1.17 1.17 1.12 1.12 1.12
assoc part 2.40 1.85 1.65 1.37 1.37 1.17 1.12 1.12µ ¸ shared 1.67 1.57 1.55 1.20 1.17 1.20 1.12 1.10 1.10 1.07 1.07 1.07 1.07
set part 1.30 1.30 1.30 1.17 1.17 1.17 1.07 1.07 1.07 1.07 1.07 1.07
assoc part 2.25 1.37 1.55 1.25 1.37 1.1 1.07 1.07µ ¹ shared 2.42 2.40 2.30 1.65 1.65 1.62 1.45 1.45 1.32 1.32 1.32 1.32 1.32
set part 1.67 1.65 1.65 1.57 1.47 1.45 1.37 1.32 1.32 1.32 1.32 1.32
assoc part 6.35 1.8 2.4 1.7 1.82 1.37 1.32 1.32µ º shared 1.70 1.70 1.55 1.32 1.27 1.27 1.22 1.17 1.15 1.20 1.12 1.10 1.10
set part 1.35 1.30 1.25 1.27 1.27 1.22 1.22 1.20 1.17 1.20 1.12 1.10
assoc part 3.30 1.77 2.15 1.22 1.27 1.25 1.20 1.12µ » shared 1.55 1.47 1.47 1.17 1.17 1.17 1.10 1.10 1.10 1.10 1.10 1.10 1.10
set part 1.40 1.37 1.30 1.20 1.20 1.20 1.10 1.10 1.10 1.10 1.10 1.10
assoc part 3.92 1.47 1.77 1.30 1.20 1.12 1.10 1.10µ ¼½¾¿ À½ shared 1.79 1.69 1.64 1.34 1.32 1.32 1.23 1.22 1.19 1.18 1.17 1.16 1.16
set part 1.42 1.37 1.36 1.28 1.27 1.25 1.20 1.19 1.18 1.18 1.17 1.16
assoc part 3.28 1.60 1.82 1.35 1.38 1.21 1.18 1.17

Table 3.7: CPI: shared vs. set partitioning vs. associativity partitioning (6 applications).
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Figure 3.9: Average CPI: shared vs. set partitioning vs. associativity partition-
ing

while keeping the same cache size.

In the case of associativity based partitioning, we found that the partitioned
cache performs in general worse than a conventional shared cache. Concretely,
associativity based partitioning leads to up to 187% MPI increase correspond-
ing to up to 229% CPI degradation, when compared to a shared cache of the
same size. In absolute values, this maximum performance loss are 0.00135
MPI and 3.95 CPI.

As it also is the case for set-based partitioning, here the performance differ-
ences tend to be smaller when the cache is larger as well. For a cache larger or
equal to 2 MB the performance difference among an associativity partitioned
cache and a shared cache is under few percent. For a cache smaller than 2 MB,
on average over all applications, the associativity based partitioning leads to
0.00033 more misses per instruction than the shared cache, which results in
a 0.37 larger CPI. Relative to the average shared cache MPI and CPI, these
values represent 52% and 25%, respectively. Compared with a set based parti-
tioned cache, on average the associativity based one experiences 0.0005 more
misses per instruction and 0.49 larger CPI. Relative to the numbers for the as-
sociativity based partitioned cache, these increases represent 55% and 27% for
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Figure 3.10: Set based partitioning CPI improvement: fraction from the maxi-
mum possible

the MPI and CPI, respectively.

As expected, for a fixed cache size, the performance of the associativity
based partitioned cache increases when the associativity of the cache is larger.
The reason for this tendency is that in a cache with larger associativity the
granularity of the partitioning can be finer, therefore the partitioning ratio can
be better tuned to the cache requirements of each task. Only in few cases (five)
when the cache is 16 way associative (the largest investigated associativity),
the partitioned cache performs better than the shared cache. At most these im-
provements reach a value of 0.00061 for the MPI (33% from the MPI of the
shared L2) and 0.5 for the CPI (21% from the CPI of the the shared L2), respec-
tively. On average, these improvements represent 18% and 7% from the MPI,
respectively, the CPI of the corresponding average shared L2. These results in-
dicate that, in general for associativity based partitioning the compositionality
comes with a large performance price.

These results for associativity based partitioning might seem surprising
when compared with previous work using the same type of cache partition-
ing [43],[20], [103]. All these articles report performance improvements
caused by this type of cache partitioning. The reason for this opposite per-
formance trend observed in our experiments relates to the fact that in the men-
tioned methods cache line sharing is allowed in a certain degree, in order to
utilize the cache space at maximum. However, cache sharing (in whatever
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degree) is exactly what we want to avoid because it perturbs the system com-
positionality. In our case each and every task has to have its own exclusive
cache ways. We remind that in the exclusive partitioned situation every task
can use less cache space than when some lines are shared, which might result
in more misses. The fundamental difference with previous work in this field is
that they target performance whereas we target compositionality.

Overall, for the considered applications we found that the set based cache
partitioning is always performing better than the associativity based cache par-
titioning. This is explained by the fact that associativity based cache partition-
ing is decreasing the number of ways a task can use. It is known that, having
a fixed cache size, a cache organization with a larger associativity (and a small
number of sets) performs most of the times better than one with less associativ-
ity (but more sets) [37], [38]. For a clear understanding of this phenomenon,
let us look at the two extremes of cache organization, namely the fully asso-
ciative cache and the direct mapped cache. The fully associative cache has the
potential to perform at least as good as a direct mapped cache of the same size.
When data have to be flushed from the cache in a fully associative organiza-
tion the cache controller can replace any line, usually one that is not likely to be
needed in the near future. In a direct mapped cache there is no freedom to pick
the replaced line, so data that were accessed in the past and it is likely to be
required in the near future might be swapped out, causing more misses. This
effect can be also observed in Tables 3.6 and 3.7, where for a given cache size,
when the associativity increases the performance increases. In a set based par-
titioning scheme the number of cache sets that each task may use is reduced,
but the associativity is kept the same, so this scheme is likely to have a better
performance than the associativity-based one.

3.7 Conclusion

In this chapter we introduced the idea of task centric memory management for
an embedded multiprocessor and we presented the options for enforcing such
a management scheme. In our scheme we use caches (hardware controlled
memories) for flexibility reasons. To ensure performance compositionality the
cache is exclusively partitioned among the application tasks. Starting from the
conventional cache organization, we identified two options for cache partition-
ing, namely set based and associativity based partitioning. For the set based
partitioning we proposed a new implementation method tailored to a shared
L2, consisting of the following: (1) a hardware address translation mecha-
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nism that redirects the accesses of each task in a part of the cache exclusively
assigned to it, (2) a set of cache reservation software application programmer
interfaces that can be used at initialization time to allocated cache for each task
(3) a memory alignment and allocation scheme to ensure that, even if tasks dy-
namically allocate memory in an interleaved fashion, without a fixed allocation
order (i.e. a task may get different addresses for its variables, from a run to the
another, depending on other tasks speeds and the moments when they perform
memory allocation), the cache remains compositional. Subsequently to cache
partitioning, we proposed a technique to find the cache partitioning ratio that
minimizes the overall number of misses (based on a Dynamic Programming
formulation).

To practically investigate the capabilities of these partitioning methods we
used a CAKE platform with L2 sizes ranging from 256 Bytes to 2MBytes.
For this investigation we utilized a benchmark consisting of six application,
each of which composed by four media tasks. We measured and compared the
application compositionality and performance in three cases: a shared conven-
tional cache, a set based partitioning, and an associativity based partitioning.
Moreover, we also discussed the impact of the memory alignment and alloca-
tion required for partitioning, on the L2 performance. To quantify the com-
positionality we utilized the number of inter-task conflict misses metric. As
performance metrics we utilized the number of misses per instruction and the
processors’ average cycles per instruction.

The experiments suggest that both cache partitioning methods are poten-
tial candidates to separate the tasks in cache and induce compositionality, as
their conflict misses represent less than 1% from the total application misses.
However, the set based method offers, for the same cache dimensions, more
allocable cache units than the associativity based one, as in a state-of-the-art
cache the number of sets is few orders of magnitude larger than the number
of ways. This is a property of major importance, as the number of tasks com-
prised by a system has a clear tendency to increase. As expected, we observed
that the conventional cache’s compositionality is very poor (i.e., on average
66% of an application misses are actually conflict misses).

With respect to performance we found that, when compared to a shared L2,
the set based cache partitioning improves the performance of the systems in
89% of the cases studied (64 out of 72). In this cases we found that, compared
with a shared L2, the set-based partitioned one provides up to 62% less L2
misses per instruction and 31% faster computation, with an average of 29% and
8%, respectively. Moreover, in the few (8 out of 72) cases when the set-based
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partitioning degrades the L2 performance the average of these degradations is
not large, 19% for the MPI and 4% for CPI.

Moreover we found that associativity based partitioning degrades the
memory hierarchy performance, in most of the cache configurations. When
compared with the conventional cache organization, associativity based parti-
tioning increases the number of misses per instruction with up to 187% slowing
down the computation with 229%, with an average penalty of 52% more MPI
and 25% less CPI.

Furthermore, the experiments indicate that when the required memory
alignment and allocation is applied to a shared L2, its performance improves,
on average. For an L2 under 1MB the average relative MPI reduction is 8.5%,
leading to a 4% smaller CPI. For an L2 of 1MB the memory alignment and
allocation induces a small performance loss of 7% in MPI and 2% in CPI.
For caches larger than 1MB the difference between the two cases in negligi-
ble (under 0.01 CPI). In general we observed that for a small size or small
associativity of the L2, the impact (either positive or negative) of the memory
alignment and allocation is larger than for a large size and/or associativity L2.

As a result of this study, we conclude that the superiority of set based
cache partitioning over associativity based partitioning is two fold: the avail-
able number of allocable cache parts is larger, and it does not reduce the asso-
ciativity of a task’s cache part. Subsequently, the performance of a set based
partitioned L2 is better than the one of an associativity based partitioned L2.
Therefore, in the next chapter we utilize set based partitioning at the base of
the envisaged task centric cache management strategy.
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Chapter 4

Task centric cache management

E
n previous chapter we introduced the idea of task centric cache manage-
ment for the purpose of achieving compositionality. We identified two
types of cache partitioning (namely associativity and set based partition-

ing), that can be utilized as a foundation for task centric management. These
methods are directly applicable when tasks do not shared data and/or instruc-
tions. In media application, however, sharing of data and/or instructions is of-
ten present (for example: frame buffers in video applications, communication
buffers in streaming applications, etc.). When tasks have common regions, i.e.,
shared data and/or instructions, ensuring compositionality poses extra chal-
lenges. Tasks ”decoupling” via cache partitioning is difficult, because their
interdependence is inherent when some data or instructions are common to
multiple tasks.

At the first glance, we identify two straightforward possibilities to sup-
port common regions when having task centric cache management. The first
possibility is that a common region resides in a shared cache part. The short-
comings of this possibility is a loss of compositionality because when multiple
tasks access this cache part, they can unpredictably flush each others data. Al-
ternatively, the second possibility is that a common region resides in the cache
part of each task using it. This certainly provides compositionality, however,
coherence problems and poor cache utilization occur because of data replica-
tion in cache. For example, when the instructions of the H.264 parallel tasks
are multiplied in cache, our experiments indicate a 50% number of misses
increase, resulting in 10% execution time penalty, when compared with the
case when only one copy of that code is cached (a conventional shared cache).
Because both these possibilities have unacceptable shortcomings in terms of
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compositionality or performance, there is a need for a new cache management
method that effectively supports sharing.

In this chapter we propose a tasks centric cache management method
that supports sharing, and achieves compositionality within reasonable
bounds [71], [72]. Our method mainly uses set-based partitioning, as rec-
ommended by the results in the previous chapter. However, inside the shared
cache regions another level of inter-task separation is imposed (by means of
associativity based cache partitioning) to limit the intrinsic inter-task conflicts.
We use a novel, set and associativity based partitioning scheme (denoted in the
rest of this thesis as ”mixed” partitioning).

Subsequent to the compositionality issue is the performance optimization
issue. After the cache is split among tasks, the natural question that arises is
how much cache each task should have. In media applications both execution
time and throughput are of major importance. In this line of reasoning we
propose two methods for tuning the cache partitioning ratio accordingly to
these two criteria. First, we extend the method to minimize the number of
misses presented in Chapter 3 such that it supports common regions. Second,
we introduce an optimization method based on simulated annealing to find the
cache partitioning ratio that maximizes the throughput [69].

The outline of this chapter is as follows. In Section 4.1 we introduce a
mixed set and associativity based cache partitioning targeted for tasks that
have common regions, followed by a detailed description of the compositional
caching for these regions in Section 4.2. In Section 4.3 we discuss the imple-
mentation of the mixed cache partitioning technique. Then in Section 4.4, we
tackle the problem of finding the best cache partitioning ratio. We first present
an extension of the algorithm for optimizing the number of misses (already
described in Chapter 3) such that it supports also sharing and then we intro-
duce a new algorithm for maximizing the throughput. Section 4.5 describes
the experimental results and finally in Section 4.6 we draw the conclusions of
this chapter.

4.1 Mixed cache partitioning

This section details the primal part of the task centric management scheme:
the mixed cache partitioning. The first step toward achieving an appropriate
cache partition is to ensure that the instances of private tasks data and common
regions don’t trash each other in cache. For that we restrict the cache parts used
by every task and by every common region. We chose the set based partitioning
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to isolate different tasks and common regions footprints in the cache, because
this partitioning type proved (1) to be the best performance-wise and (2) to
provide enough means for its utilization in real life multimedia applications
(see Chapter 3).

After the separation of tasks and common regions in cache, we create the
premises such that tasks don’t trash each other data/instructions in the cache
sets of the common regions. To avoid trashing in the shared cache sets we
present two possible approaches:

- The cache allocated to the common region is as large as the region itself.
In this case no misses occur, hence no unpredictable trashing can be present.

- Inside the cache sets of a common region, tasks may use the
data/instructions if they are already there (share) but on a miss they are not
allowed to flush other tasks data/instructions (don’t interfere).

Figure 4.1: Mixed cache partitioning

The first solution depends on the application and on the available cache, so
it may be not always applicable. For instance, state of the art video reference
frame buffers typically do not fit in the cache. The second solution is more
general and can be applied regardless of the relation between the sizes of the
available cache and the size of the common data. This general solution can be
implemented by allocating to each task sharing a region a number of ways in
the sets allocated to that common region.

Summarizing, to achieve compositionality we use mixed cache partitioning
as illustrated for a simple example in Figure 4.1. In the shared T � and T , cache
region tasks can query all the four ways of the corresponding cache set for a
possible hit. However, if for example a T , access misses in cache, the data
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replacement may take place only in the ways which are T , ’s private, i.e., way ,
and way : .

In the next section we detail on the common region caching and we explain
the relation between mixed cache partitioning and cache locality.

4.2 Compositional sharing of data/instructions in
cache

This subsection gives inside in the cache mechanism that we devise to sup-
port inter-task data/instructions sharing. For this purpose, we first introduce
a simple example, to illustrate the common region cache isolation induced by
associativity based partitioning. Subsequently, we show that cache partitioning
enables a full exploitation of spatial locality and potentially increases the ben-
efits brought by prefetching techniques. Finally, we present the requirements
of our method in terms of cache organization.
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Figure 4.2: Example: buffer ”b” and its allocated cache set

Let us assume that the data in the buffer b (Figure 4.2) are produced by
a task T Û and consumed by another task T G , in a ”First In First Out” (FIFO)
manner. We furthermore assume that b has allocated one set of cache (set # in
Figure 4.2) and the cache is two ways associative. Moreover, in this example
we consider that a cache line can contain two consecutive elements of b. As no
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conventional cache line replacement policy is aware of the application’s task
structure, the inter-task cache flushing problem is independent of the replace-
ment policy utilized. For the sake of the example, we assume a ”last recently
used” replacement policy.

The sequences (A), (B), (C), and (D) in Figures 4.3 and 4.4 present the
cache activity inside the set associated to the buffer b, as the result of the
accesses of tasks T Û and T G . Figure 4.3 corresponds to the case when the
cache ways of b are shared among its producer and its consumer, and Figure
4.4 corresponds to the case when the cache is partitioned, therefore T Û and T G
use just one cache way each. In all the (A), (B), (C), or (D) cache images, the
elements of buffer b that miss in the cache at the last access are encircled and
the ones already produced/consumed are depicted in bold. Let us assume that
initially the producer T Û produces b[0] to b[4]. This results in three misses
corresponding to b[0], b[2], and b[4] (b[1], b[3], and b[5] being loaded in the
cache as result of spatial locality). After these T Û accesses the cache contains
the elements b[2] to b[5], as visible in Figure 4.3(A). Then the consumer T G
accesses b[0] to b[3] and will flush all the elements of b cached for T Û . The
b[5] data item was not yet produced, so when T Û continues its execution it has
a miss and b[4] and b[5] are reloaded in cache. However, if T Û would have
produced the element b[5] before the consumption of b[2] and b[3], there
would have been no cache miss for b[5]. As one can see, in the case of a
shared cache, the number of cache misses is dependent on the tasks speeds and
task scheduling. This number of misses cannot be predicted without a very
detailed knowledge about task scheduling and tasks’ execution times. Such
knowledge is difficult to acquire especially in a multi-processor systems with
natural load balancing, like the one we consider, thus in the system we consider
the number of misses in the shared buffer is practically unpredictable.

4 0 2
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Figure 4.3: Example: access to common region - shared ways

In an associativity based partitioned cache, for the same execution sce-

87



4 0 2

3

2

3 5

4

only Conly P only Conly Ponly Conly P only Conly P

set i set i set i set i

way0 way1 way0 way1 way0 way1 way0 way1

Producing (P), in order: b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7].

Consuming (C), in order: b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7].

(A) (B) (C) (D)

x

x 1

4

5

P: b[0]..b[4] C: b[0],b[1] C: b[2],b[3] P: b[5]

5

4

5

Figure 4.4: Example: access to common region - partitioned ways

nario, the consumer is not flushing the producers cache (as depicted in Figure
4.4), so when T Û accesses b[5] it does not miss. In conclusion, the partitioned
cache ensures a hit for the accesses that exhibit spatial locality, regardless of
the tasks speeds and task scheduling.

The presented example was chosen to be simple for clarity reasons. In
many real situations the FIFO buffers are small enough to fully fit in the cache,
but the frame buffers, for example, are not. For instance, a state-of-the art
high definition image is è 2MBytes. Common video algorithms might need
to access few such image buffers [76], [60] in the same time. In this case
the required picture buffers are too large to fit in a modern cache, even if the
cache is fully reserved for this purpose. Fortunately, media applications exhibit
high spacial locality because they process data on a block based fashion [24],
[32], [99]. The typical manner to manage the access to large data instances is
to exploit the spacial locality and to prefetch the blocks likely to be accessed in
the near future [24], [31], [75], [116]. However, prefetching has a drawback:
useful data might be kicked out of the cache to make space for the prefetched
data (the so called ”cache pollution” phenomenon). For large data instances,
our scheme ensures full exploitation of the spatial locality and offers support
for prefetching without the cost of polluting other tasks’ cache. The cache
partition allocated to one task acts as an ”active window” over the common
region. Depending on the life-time of the stored data, different cache allocated
size might give result in different performance. Hence, when determining the
cache size, the life-time of the data is important.

When we talk about inter-tasks shared data, their life-time is related with
tasks scheduling. Thus from the temporal locality point of view, the inter-task
data reuse is dependent on the scheduling and tasks speeds (i.e. execution
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times). In the example in Figure 4.3 the consumer would have a cache hit
if it would access a cached b element before the producer write another ele-
ment in the same cache location (and swaps out the old b element). A tasks
schedule in which the consumption of a cache b element occurs before it is
flushed out of the cache by the production of another b element (only hits)
is in principle possible because the cache of b is reserved only for the pro-
ducer and the consumer. The problem of determining this schedule and the
corresponding cache window size (or determine this schedule under window
size constraints) resembles a scheduling with memory constraints problem,
formulated in general as follows: determine the tasks start times and the stor-
age element sizes such that some performance criterion (throughput, latency,
etc.) is optimized or guaranteed. This problem type is mostly solved for ap-
plications represented by different variants of Synchronous Data Flow (SDF)
graphs (finding the buffers’ sizes problem) [117], [9], [61], [96]. In order
to solve this problem the detailed task timing and synchronization has to be
known at design-time, which is the case for SDF representations. However, in
this dissertation we concentrate on achieving spatial compositionality, thus the
tasks scheduling policy is not our subject. Moreover, on the platform we con-
sider the exact timing of each tasks it is even not known at design-time when
the static cache partitioning is decided. In our approach we take advantage of
the fact that due to cache separation task analysis (thus also the one that might
be required for prefetching) becomes local to every task, therefore knowledge
about run-time inter-task scheduling is not needed. Based on this property, in
Section 4.4 we present an off-line method of determining the cache size for the
common regions via simulation.

For our desired purpose, i.e., compositionality, all the tasks that access a
common region should have each at least one way of the shared cache sets as-
signed to the common region. Thus for this scheme to be implementable, the
cache associativity should be greater or equal with the number of tasks shar-
ing the common region. In our example, the cache set shared by the producer
and the consumer should have at least two ways, one for every task. We note
here however that in our case this is in principle not an issue as for multime-
dia applications the maximum number of tasks that share a common region
is typically smaller than the number of tasks forming an application. In the
extreme case when the number of task sharing a common region is larger than
the associativity, there are not enough ways to exclusively allocate at least one
to each task. Thus, some tasks might have to share the same way. In general,
the interference among tasks that share a piece of cache can be of two types:

- caused by task switching. On a processor task execute one by one (i.e.,
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in a time multiplexed fashion). The cache content of a task that is swapped
out can be flushed out by the task that is swapped in. This interference is also
present for a single processor executing multiple tasks, so we call it ”single
processor cache trashing”.

- caused by tasks running concomitantly. This interference is present only
in multi-processor systems, so we call it ”multi-processor cache trashing”.
Note that in a multi-processor both types of cache trashing occur in an or-
thogonal manner.

There are two ways to predict the application behavior in a system poten-
tially exposed to cache interference: (1) predict an upper bound on the cache
interference effects on performance, and (2) completely ban the interference
(e.g., by partitioning). The first method is available for predicting the single
processor cache trashing, also known in the literature as Cache Related Pre-
emption Delay (CRPD). Multiple solutions for determining the performance
effects of CRPD already exist [81], [48], [107], [111]. In [81] and [111] CRPD
is estimated for instruction caches. In [48] and [107] the case of data caches
is also tackled. Hence in single processor systems, even though the tasks may
interfere in cache, the performance can be predicted because the interference
overhead can be calculated.

In the case of multi-processors, for tasks that share a processor, single pro-
cessor cache trashing occurs, and CRPD methods can be applied. Thus in order
to predict the performance of the multi-processor we only have to take care of
the interference among tasks that run on different processors. The maximum
number of tasks that can simultaneously run on different processors is equal to
the number of processors in the system. In order to ban the cache interference
by partitioning, thus compute the system performance, the cache associativity
should be greater or equal with the number of processors. In particular for a
common region, the number of processors that access that region should be
smaller than or equal to the cache the associativity.

4.3 Mixed cache partitioning implementation

In Section 3.2 implementation schemes for cache partitioned per task basis
are presented. In this chapter we propose to allocate exclusive cache sets also
to common regions. Therefore each memory access should be labeled with
a task id or a comm reg id. The task id for every processor is stored in a
register and updated at every task switch, therefore it can be used directly. In
the following we present the options to obtain a comm reg id first for data and

90



then for code.

There are several ways to obtain an id for the common task data. The first
option is to use a comm reg id register, and to change the compiler such that
it becomes aware of which variables are shared, in order insert in the code the
instructions that keep this register up to date. This options restricts the way
an application can use memory and pointers to memory, in the sense that all
shared variables and their data size should be known at compile time. Alter-
natively, a part of the address can be used to encode the comm reg id. This
approach requires a cache aware memory allocator, reduces the usable address
space (fragmentation), and also requires adapting the compiler for handling
shared static data structures. Nevertheless, for dynamic memory allocation the
partitioning can be implemented relatively straightforward by providing a ded-
icated allocation primitive for shared buffers. A third approach is to provide
the applications with primitives to register a shared memory region and to keep
a table with intervals of shared memory. Moreover, for every access the cache
can lookup if the address has an valid associated comm reg id. The index
translation is dictated by the comm reg id if valid, or otherwise by the task id,
as the access is private to the task’s data. In practice, this third approach is
more expensive in terms of area and power. However, for our experiments
we choose this last alternative because we are mainly interested in the system
level aspects (e.g., inducing the compositionality, implication in miss rate).
The third approach is more generic than the others because any address range
can be placed in any cache region. This easily allows for other experiments,
like for example separating tasks’ instructions and static variables in the cache
or sharing some cache partitions.

Similar to the manner we get a comm reg id for data, we could also obtain
such an id for instructions. However this would require the compiler to regis-
ter the shared code regions (functions), thus to do extra analysis to determine
which function is called by more than one task. Moreover, such an approach
requires that the called functions three of a task to be completely specified at
design-time. Instead of this rather intricate and restrictive method we consider
as shared all the instructions of tasks with the same functionality. For example,
for the PiPTV introduced in Chapter 2, both idct tasks are considered to share
all their instructions. The tasks with the same functionality instantiated by an
application are known at compile time, thus this approach requires no extra
analysis. We extend the list of task id with task code id, that is used for the
code of each task. For a set of tasks that share instructions, the é�´Äêxë andì ´Äêxí are the same, leading to a shared instruction partition for those tasks.
Having a set of task code id requires to distinguishes between the access to
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code or to data. We realize this by using an extra bit to label the L2 accesses
coming from the L1 instruction cache as ’code’. This method does not guar-
antee that in some cases, some code is not duplicated in cache, but as the code
is read only, this does not represent a problem for the correct execution of the
applications.

In this chapter we provide an extension mechanism such that the partition-
ing methods described in Chapter 3 works not only for tasks, but also for com-
mon regions. Moreover, we realize the mixed partitioning by implementing
set and associativity based partitioning according to the guidelines presented
in the previous chapter. In the following we present two methods to com-
pute the cache partitioning ratio such that (1) the number of misses or (2) the
throughput of an application is enhanced.

4.4 Cache partitioning ratio

As already mentioned, we assume that an application A is composed out
of N tasks, � � 	 T #$��� # ����� %È� and M common regions instances �14 �	 CR67� � 6 ����� 89� . We extend the sets 	 c #_� � # ����� %È� and 	 m �# � � # ����� %qî ������� G � rep-
resenting task’s T # assigned cache size and number of misses function of cache
size � , with values corresponding to the common regions. Thus, we now
have 	 c #_��� # ����� % � 89� and 	 m �# ��� # ����� % � 8ïî ������� G � where the values 	 c #$��� # ����� %ð�
and 	 m �# � � # ����� %sî ������� G � correspond to the tasks and 	 c # � � # �'% � ��� % � 89� and	 m �# ��� # �'% � ��� % � 8ïî ������� G � to the common region CR6 ’s with ñò�ó��]Ï��]�nonono]Êé .
Furthermore, we denote with sh 6 the set of tasks that access the common re-
gion CR6 (sh 6Á��	 T #Êô T # accesses CR67� ). Moreover, w #6 represents the number
of ways the task T #�R sh6 has allocated in the CR6 cache sets.

The objective is to find the number of cache sets c # for every task T # and
every common region CR6 and the number of ways w #6 for every CR6 and
T # R sh6 such that a certain criterion is optimized. In the following subsections
we present two methods to find the cache partitioning ratio. The first method
minimizes the total application’s number of misses. This is an extension to
the method in Section 3.4, such that common regions are also supported. The
second method maximizes the application’s throughput.
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4.4.1 Misses minimization

When the cache is exclusively partitioned among tasks and common regions,
the number of times a task accesses a common region is dictated by the task’s
code and its input data, and it is independent on the cache allocated for the pri-
vate task’s data. The misses experienced in a common region’s cache depend
on the number of accesses to that region and their pattern. As these accesses
are not influenced by the private task’s cache sizes, the misses in a common re-
gion’s cache can be optimized independently of the misses in the private tasks’
cache. In other words, finding c # and w #6 are two independent problems, un-
der the assumption of compositionality and exclusive cache partitioning. The
mixed partitioning method proposed in Section 4.2 has two steps: (1) set based
partitioning among tasks and common regions, and (2) associativity based par-
titioning inside common region cache. For both steps the fundamental opti-
mization problem is the same: how to partition a group of resources among
a set of entities, such that the combined performance of all the entities is en-
hanced. In Section 3.4, this problem was instantiated and solved for the case of
assigning cache sets to tasks. We separate the problem of cache allocation in
this section into two: first inside each common region (finding w #6 ) and second
among tasks and common regions (finding c # ). We solve both these allocation
problems utilizing an algorithm similar to Algorithm 1 introduced in Section
3.4.

To compute the associativity based partitioning ratio inside a common re-
gion (i.e. the set of 	 w #6 � � 6 ����� 8ïî T ¤á¥ shõ � ) we utilize an algorithm like Algorithm
1 in Section 3.4 but with the following substitutions: (1) instead of a set, the
basic allocable cache unit of a task is a way. Unlike with sets, a task may have
a number of ways w #6 that is not a power of two. (2) only the set of tasks ac-
cessing the common region (T #öR sh6 ) participate in the optimization process
for that region and (3) instead of the total cache size C, the cache limit is the
number of cache sets c % ��6 , allocated to region CR6 . Hence for each common
region we have to solve such an optimization problem. An instance of this
problem has to be solved for every possible value of c % ��6 . Because of imple-
mentation reasons presented in Chapter 2, the c % ��6 sizes are actually limited
to power of two, therefore the number of possible c % ��6 is not large.

Further, to determine the ratio for the set based partitioning, not only tasks,
but also common regions have to be taken into account. The objective of the
Cache Allocation Problem is to find the size of cache c # for each task T # and
each common regions CR6 , such that the overall number of cache misses is
minimized. The number of misses inside a common region, m �6 is actually the

93



smaller number of misses obtained from the optimization process, as described
in the previous paragraph. As a consequence the algorithm for set based parti-
tion has N+M main steps, iteratively adding to the solution all the tasks as well
as all the common regions.

Given that we presented two methods to find both set and associativity
based partitioning ratio and taking into account the fact that the corresponding
optimization problems are independent, we can conclude that we offered a
method to find the partitioning ratio that optimizes the application number of
misses, for the task centric cache management.

4.4.2 Throughput maximization

Media applications typically have to be process a certain amount of data be-
fore a time deadline. For such an application, the throughput is defined as
being the amount of data units processed in a time unit (for example, real time
video decoding may require 30 frames per second). As we consider applica-
tions consisting of a graph of communicating tasks the throughput of such an
application is bounded by the longest path in the task graph that has to be ex-
ecuted sequentially due to data dependencies (the critical path). Minimizing
the overall number of misses, does not necessarily minimize the critical path
length (improve the application throughput).

We denote with E F the time needed by the application A to process a given
number of data units that is relevant for A’s utilization. Then, the throughput
of the application (Th F ) is the inverse of the execution time needed to process
a given number of data units: Th Ft� �

E ÷ .

For clarity reasons, in the section we make the following notation: the
cache sizes allocated to tasks T # and common regions CR6 (representing the
cache partitioning ratio) are shortly denoted with CPR �h	 c #$� � # ����� % � 89� . As
mentioned already, due to implementation efficiency reasons, the cache sizes
have to be a power of two number of cache sets.

In this section we tackle the problem of finding the partitioning ratio CPR
that gives the best throughput. This problem is a Cache Allocation Problem,
as defined in the previous chapter in Section 3.4. In Section 3.4 we proved that
the ����� for minimizing the application’s number of misses is an NP-hard
problem. Intuitively, the �1�J� for maximizing the application’s throughput
is also a partitioning problem, as the ����� for minimizing the application’s
number of misses, thus they are similar in hardness ( �1�J� for minimizing the
application’s number of misses is an NP-hard problem). In addition, a formula

94



that computes the application’s throughput from the tasks’ throughput is more
complex than the summation that relates an application’s number of misses to
the tasks’ number of misses. Because the tasks that compose an application can
have complex interdependencies, and some of them are executed in parallel,

we cannot write something like: Th FZ� %r# ���PøÁù # , where Th # is the throughput

of task T # . Thus the Dynamic Programming solution presented in Chapter 3
is not applicable for the �1��� that has as objective throughput maximization.
Therefore in the following we present an heuristic for solving this problem.

Such a problem has a large solution space therefore the searching process
is time consuming. Simulated Annealing (SA) [59] is a well-known, powerful
technique for combinatorial optimization problems, like for instance resource
partitioning. The advantages of this method is that falling into a local opti-
mum is less probable than with Greedy-like solution space searching methods.
A Greedy method has as intermediate solutions only points that are ”better”
than the solutions already founded, therefore when the solution space is not
monotonic, the method might converge toward a local optimum. As SA accepts
some intermediate solutions that are not necessarily better than the solutions
already found, that might guide the solution out of a local optimum, thus there
is a larger possibility to find the global optimum. Because of this property,
we use simulated annealing (as formulated in the next subsection) to solve the
throughput optimization problem.

At each and every step of the SA optimization, the throughput of the sys-
tem has to be estimated in order to decide if the current partitioning ratio is
a potential optimum candidate. An analytical formula that combines the ex-
ecution time of every task to determine the throughput is available for very
restricted, systems. As we have chosen for flexibility and natural load bal-
ancing (therefore the scheduling policy is dynamic), the throughput cannot be
analytically formulated. Therefore a simulation is required in order to obtain
the throughput value needed for the SA evaluation stage.

An usual simulation of the multiprocessor platform is accurate, but slow.
In order to find the best throughput, the SA process has to performs many steps,
so if we would use the regular multiprocessor simulation the problem would
be unsolvable in a reasonable time. Instead of a regular simulation, we use a
fast, ”light” simulation of the system. This means that only the FIFO reads and
writes are simulated to ensure inter-task synchronization, whereas the rest of
the instructions are only accounted for their execution time.

In the following we present in detail the proposed SA optimization method.
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Simulated annealing

The simulated annealing optimization process used in this section has the fol-
lowings stages:� Initialization. During this phase the temperature is set to a high value,úeû

. The current partitioning ratio CPR ��ü ÎbÎ is initially set to a random
value, CPR

û
. The throughput of the application Th ��ü ÎbÎ corresponding to

CPR
û

is determined using the light simulation method introduced next,
in Subsection 4.4.2.� Cooling. This stage together with the next one (evaluation) are at the
core of the optimization process and they are iteratively performed. At
every cooling iteration a new solution candidate CPR Ó7Ð$ý is proposed.
This candidate partitioning ratio is generated by making a change in the
current partitioning ratio CPR �Xü ÎbÎ . The CPR ��ü ÎbÎ change is realized by
halving or doubling the cache sets of a random task or common region.
We allow only halving or doubling because the cache sizes should be
a power of two number of sets due to implementation efficiency rea-
sons. The available cache can be exceeded in the case of doubling the
cache sets of a task. In order to increase the chance of finding a global
optimum, for a cooling step we tolerate Âv{ more cache sets over the
available value C.

At the iteration k of the cooling stage the temperature T � decreases ac-
cording to the formula:

ú �þ�cÿ�� ú �¦p'� , where ÿ is a given constant,
smaller than � .� Evaluation. In this SA stage it is decided if the current partitioning ratio
CPR ��ü ÎbÎ is updated to CPR Ó�Ð_ý . For this, the throughput of the sys-
tem Th Ó�Ð_ý is determined using the already mentioned light simulation
method. If the difference in throughput is Â Th � Th ��ü ÎbÎ u Th Ó7Ð$ý , the
new ratio becomes the current ratio according to the following probabil-
ity function:

p \�Â Th ^ � �
e \ p�� Th� ^ \�Â Th �a£P^
1 \�Â Th f 0 ^ (4.1)

This means that if the new throughput is larger than the current through-
put, the current ratio is updated to the candidate ratio. Otherwise, if the
new throughput is smaller than the current throughput, there is still a non
zero probability that the new candidate solution is accepted in order to
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increase the chance of finding a global optimum and not ”falling” into a
local one. However, as Equation (4.1) suggests, if the temperature cools
down, the chance of accepting a worse candidate is diminishing.� Termination. The SA optimization terminates if the temperature is zero
or if the optimum is not changed for I iterations. The final solution is
the partitioning ratio CPR corresponding to the largest throughput Th,
that respects the constraint that the total allocated cache is smaller than
or equal to the available cache C.

Light simulation

At each SA evaluation step, the application throughput has to be estimated. As
a regular simulation is unacceptable due to its low speed, and a throughput
formula is not available for flexible systems like ours, in this subsection we
propose a fast, light simulation strategy.

The main idea of the light simulation strategy is that only the inter-task
synchronization is simulated, whereas the rest of the instructions are only ac-
counted for their execution time. In our case the synchronization operations
consist of reads/writes from/into a blocking FIFO, thus in the following we
discuss only this synchronization type. We note however, that the light sim-
ulation is not restricted to FIFO-based synchronization. Other types of syn-
chronization can be easily supported, in a similar manner as the FIFO-based
one. The execution times are obtained via an initial limited set of regular sim-
ulations (i.e. each task is simulated once with every possible cache size it can
have allocated). The process is detailed at the end of this subsection, as first
we introduce the light simulation method.

To explain how light simulation works we first discuss a simple example
with two communicating tasks as depicted in Figure 4.5(A) and then we detail
this method for the general case. The task T Û is the producer of data in FIFO
F
û

and the task T G is the consumer of these data. Figure 4.5(B) depicts the
code for the two tasks in a C-like language. On one hand the producer T Û is
computing data x and then writing it in the FIFO F

û
, with the granularity of one

unit. On the other hand the consumer T G is reading the data y from the FIFO
F
û
, with a granularity of 3 units, and then T G is using y for some computation

(the exact detail of this computations are not relevant for the light simulation
strategy). For both tasks these operations are performed multiple times, in a
loop.

In order to perform the light simulation one has to derive the execution
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Figure 4.5: Light simulation example: producer-consumer

times and the FIFO read/write sequences of the two tasks out of the tasks’
code. A task trace is the timed list of ”execute” (e), ”read from FIFO” (r),
”write to FIFO” (w), and ”access to common region” (a) actions. The tasks
code presented in Figure 4.5(B) has the corresponding traces described in Fig-
ure 4.5(C). The task T Û trace starts with an execute action corresponding to
the computation of data � . This e action has associated the time spend by T Û
in the computation of x (12096 cycles in our case). This computation is not
simulated, but its execution time is added on behalf of T Û . Then T Û performs
a write action that has associated the FIFO id 0, and the number of send tokens
equals � . This w action is simulated to ensure proper inter-task synchroniza-
tion. Then the task T Û accesses the shared data region corresponding with the
FIFO F

û
. To represent this we use an a action that has associated the time

spend in accessing these shared data (694 cycles in our case). Again, just like
for the e action, this time is not simulated, but only accounted for T Û . Then
this sequence of actions repeats, the trace being actually an unrolling of the for
loop. Similarity, the trace of the consumer task T G , has a sequence of e actions,
this time read, not write actions and a actions. The r action has associated the
FIFO id 0 and the number of tokens received ( � in this case). Like for the
task T Û , the synchronization actions (r in this case) are the only one simulated,
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while the e and a actions being just accounted for their time on behalf of T G .

In the general case, the light simulator interprets the traces of N tasks run-
ning on P processors. The simulator has a notion of ”processors”, in the sense
that the number of task that can be simultaneously active is smaller or equal
than the number of available processors, P. In the following we describe how
the simulator interprets each possible type of action a trace may contain.

The first action that we detail is the e action. An e action is behaviorally
similar with a System C ”wait” statement [105], therefore the simulator just
counts the time, and immediately jumps to the next action (the time associated
to an e action depends on the size of the cache part allocated to the task). This
time counting strategy applies also to the other actions. For them the time is
first counted, and then the operation is executed.

Another action type that can be encountered for an active task is the syn-
chronization action type. The r/w actions have associated the FIFO id involved
in the read or write operation, the number of tokens consumed or produced, re-
spectively, and the time spend to execute this operation. This information are
used to actually execute the FIFO reads and writes when encountered in an
active task trace. The execution of an r or w action might result in blocking
the task, if the requested tokens are not available yet. When a task blocks
(becomes inactive), a processor becomes free, so other tasks may get active
(its traces may be interpreted). In this manner, the light simulator imposes the
same inter-task schedule as the one in the regular simulation.

The last possible type of action, the access of common region action, is
treated separately than the e action, because its access time depends on the
cache allocated to the common region, not on the task itself. However, from
the point of view of the simulator an a action is similar to an e action and its
associated time is just added to time of the task executing it.

To gather the traces and the execution times corresponding to each action,
each and every task T # is accurately simulated with the list of T # ’s possible
cache sizes. The cache sizes have to be a power of two number of cache
sets, therefore, the following are the possible cache sizes corresponding to task
T # : 2

û ] 2 � ] 2 , ]�nonono] 2k(i), where k(i) R N and 2 � � # � gives the maximum cache
value for task T # . This 2 � � # � is chosen such that if the tasks has 2 � � # � � � cache
sets, no changes in its performance can be observed. The trace of a task T #
contains the execution time information of that task having a certain amount
of cache, or in other words, the execution time for a \ T #$] c #X^ pair. In the case of
common regions access, for each task T # that accesses a common buffer CR6
we collect the access times corresponding to the \ T # ] CR6 ] c6 ^ tuples, where
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c6 is the cache allocated to buffer CR6 . As implied by the compositionality
property, the tasks don’t influence each other, therefore the execution time
for a \ T #M] c #X^ pair (or \ T #$] CR6�] c67^ tuple) can be used in every combination
with the rest of the tasks. Hence, the throughput of a potential cache portion
candidate 	 c û ] c � ]�nonono] c % � 8ïp'� � can be determined by a light simulation of the
corresponding \ T # ] c # ^ and \ T # ] CR6 ] c6 ^ traces.

As we already mentioned, the traces are gathered by means of regular sim-
ulation. These traces are dumped not by the applications, but directly by the
hardware simulator, such that the time involved in trace file writing does not
count in the times spend for e or a actions. In detail, the manner in which the
regular simulator gathers each of the e, w, r or a parameters is as follows. The
read and write software calls are profiled to dump their parameters for the cor-
responding r/w actions on a special memory location. The penalty involved in
tracing reads and writes equals the time to access this memory location (which
on a CAKE platform is 10 cycles), therefore is negligible when compared with
the rest of the computation time. The a actions are easy to identify (and their
access time measured) because the common regions accesses are automatically
detected by the hardware as the cache partitioning implementation actually re-
quires (see Section 4.3). The rest of the time between two consecutive reads
and/or writes, which is not spend in an access to a common region, simply rep-
resents the time spend in e action. The light simulator is implemented using
the CASSE tool chain [93], which is a System C [105] based tool.

4.5 Experimental results

In this section we present the results of applying the proposed cache partition-
ing technique on a CAKE multi-processor platform, with 4 Trimedia processor
cores and various L2 cache sizes. We use the cache partitioning described in
this chapter. The experimental workload consists of two video multi-tasking
applications: an H.264 decoder and a picture-in-picture-TV (PiPTV) decoder.
In these experiments the L2 is four ways associative, as none of the common
regions is shared by more than four tasks, thus four ways suffice for the mixed
partitioning inside the common regions cache (and for the proof of concept for
our methods). Both applications, being research vehicles, are not optimized
for low tasks switching, thus they have a large number of tasks (and common
regions). Concretely, the PiPTV application has 49 tasks and 328 common
regions, and the H.264 application has 20 tasks and 111 common regions. In
order to ensure compositionality, the number of available sets in the L2 should
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512K/4 1M/4 2M/4 4M/4 8M/4

PiPTV
shared n.a 85% 83% 83% 79%
mixed part n.a 0.34% 0.08% 0.27% 0.20%

H.264
shared 78% 81% 77% 70% 68%
mixed part 0.12% 0.06% 0.07% 0.04% 0.08%F
	ÏÐ$ÎbÇ��ÏÐ shared 78% 83% 80% 77% 74%
mixed part 0.12% 0.20% 0.08% 0.16% 0.14%

Table 4.1: Relative inter-task conflict misses function of cache dimensions.

be larger than the sum of the number of tasks and the number of common re-
gions of an application. As a result, for a 4 ways associative L2 with a 512
KB line size, the minimum possible L2 size for the PiPTV is 1MB and for the
H.264 is 512KB.

Both applications exhibit mixed data and functional parallelism and are
separately simulated on the CAKE platform. For these applications the max-
imum amount of tasks that share a common region is two. Therefore our 4
ways associative L2 is enough to ensure compositionality. The only exception
are the data structures of the OS that are shared by all tasks. As mentioned in
the previous chapter the size of these data is small so they can be fully cached
in an L2 partition.

4.5.1 Compositionality

To evaluate system’s compositionality we use the number of conflict misses
metric CM(A) defined in the previous chapter, in Section 3.5. We simulate on
the CAKE platform each of the two applications with each considered L2 size,
with an L2 partitioning ratio corresponding to the minimum application’s num-
ber of misses obtained with the method in Subsection 4.4.1 and we record the
number of conflict misses. The number of conflict misses of each of the two
applications are reported in Tables 4.1 and Figure 4.6. The conflict misses val-
ues of an application are presented in this subsection as a relative percentage
from the application’s number of misses. The last row represents the average
over the two applications number of conflict misses. As the amount of cache
allocated to a task has no influence on compositionality, we chose the L2 par-
titioning ratio such that the application’s number of misses is minimized.

The experiments point out that in the case of the partitioned L2 the relative
number of conflict misses is under 1% for each application in every cache
combination. The existing conflict misses are due to the fact that the L2 sets of
the OS’s data structures are shared among tasks and not partitioned based on
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Figure 4.6: Average conflict misses: shared vs. partitioned cache

associativity (under the conditions mentioned in the beginning of this section).
In the case of the shared L2 cache, a large fraction of the misses represent
actually inter-task conflict misses. The peak value for these misses is 85% and
the average over the two applications and all cache configuration is 78%. As
also observed in Chapter 3, the number of conflict misses tends to decrease
with the increase of the L2 size. This tendency is explained by the decrease of
all the misses when the cache size is increased.

4.5.2 Performance

Misses minimization

In this subsection we investigate the performance implications of mixed parti-
tioning in combination with the strategy for minimizing the number of misses.
For this we simulate each of the two applications on the CAKE platform with
each considered L2 size, with the following cache configurations: (1) the
shared cache, and (2) the partitioned cache as proposed in this chapter, with
the partitioning ratio optimized for overall least number of misses and (3) an
infinite cache, in order to give an idea about the maximum possible improve-
ment. For these cases we compare the average (over the four processors) for
the number of L2 misses per instruction and the average number of cycles per
instruction. As in the previous chapter, we approximate an infinite L2 with
a cache of 8 Mega Bytes (MB), as the number of misses in this case is very
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low and by making it larger we do not observe any substantial reduction of
them. The average MPI and CPI can be viewed in the Tables 4.2 and 4.3 and
in Figures 4.7 and 4.8 for the PiPTV application. For the H.264 application the
average MPI and CPI are presented in Tables 4.5 and 4.4 and in Figures 4.9
and 4.10.

1MB 2MB 4MB 8MB
shared 1.33 1.20 1.12 1.11

partitioned 1.40 1.15 1.12 1.11

Table 4.2: PiPTV’s CPI: shared vs. partitioned L2.

For both applications one can observe that, for the smallest exercised L2
size the mixed partitioning degrades the application’s performance. Compared
with a 512KB shared cache, when having a partitioned cache of the same size,
the H.264 application exhibits 10% larger MPI leading to a 6% CPI increase.
In the case of PiPTV executing with its smallest cache (1MB), the experienced
increase in MPI is 24% and in CPI is 5% (when compared with an shared L2
of the same size).

For the rest of the considered L2 sizes, the partitioned cache outperforms
or it is at least as good as the shared cache. For the H.264, when the employed
L2 has 1MB the MPI decreases with 19% resulting in a 4% CPI improve-
ment. This CPI improvement represents 47% from the maximum improve-
ment achievable when the L2 has an infinite size. When the H.264 uses a
cache larger than 1MB the H.264’s performance differences among the shared
and the partitioned cases are very little (the CPI is the same and the MPI’s

1MB 2MB 4MB 8MB
shared 0.00046 0.00021 0.00010 0.00001

partitioned 0.00061 0.00013 0.00009 0.00001

Table 4.3: PiPTV’s MPI: shared vs. partitioned L2.

512KB 1MB 2MB 4MB 8MB
shared 2.34 2.01 1.88 1.88 1.84

partitioned 2.47 1.93 1.87 1.87 1.84

Table 4.4: H.264’s CPI: shared vs. partitioned L2.
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512KB 1MB 2MB 4MB 8MB
shared 0.00776 0.00464 0.00154 0.00096 0.00001

partitioned 0.00861 0.00389 0.00153 0.00098 0.00001

Table 4.5: H.264’s MPI: shared vs. partitioned L2.

variations are under 2%). In the PiPTV case, when the employed L2 has 2MB
the MPI decreases with 38% resulting in a 5% CPI improvement. This CPI
improvement represents 55% from the maximum improvement possible with
an infinite size L2. When using a cache larger than 2MB the performance dif-
ferences among the shared and the partitioned cases are very little (the CPI
remains the same and the MPI’s variations are under 6%).

As already mentioned in Chapter 3, there are two phenomena that deter-
mine the difference in misses’ number between a shared and a partitioned
cache. If the cache is partitioned, the inter-task cache interference is elimi-
nated (therefore the number of misses may decrease) but each task can use
less cache space than in the shared case (therefore the number of misses may
increase). In our examples one can observe that for a small L2 size the second
effect is dominant, whereas for larger L2s the elimination of inter-task flushing
via partitioning leads to performance improvement. This behavior is intuitively
explained by the fact that, in general, sharing can be beneficial when having
scarce resources (e.g., a small L2). Furthermore, the number of processors is
small compared with the number of tasks, and at a given moment the utilized
cache fraction is the one allocated to the tasks that execute in that moment.
In our static partitioning scheme the task allocated to the rest of the tasks is
left unutilized. Both applications have a large number of tasks and communi-
cation buffers so the cache fragmentation induced by partitioning is relatively
high. This means that each task may have a relatively small cache part, thus
the cache space a task might utilize is significantly smaller in the partitioned
case when compared with the shared case.

Throughput maximization

In this subsection we first present the results of applying the throughput opti-
mization method on a CAKE platform, and then we evaluate and discuss the
accuracy of the light-weighted simulation used in the SA optimization. Like
in the previous section, we simulate each of the applications on the platform
with each of the considered cache sizes, using the partitioning ratio calculated
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Figure 4.7: PiPTV CPI: shared vs. partitioned cache
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Figure 4.8: PiPTV MPI: shared vs. partitioned cache

as proposed in Section 4.4.2. The used parameter values of the SA optimiza-
tion process are: initial temperature

ú û � 10 ; , the maximum cache excessÂ C = 512KB, and the limit number of iterations without an optimum change
I=100. The temperature decreases at every step with a parameter ÿ � £�n� .

In the case of throughput we use two metrics to asses the system perfor-
mance. The first one is the throughput as defined in Section 4.4.2 (for a given
number of frames equal with 25). The second metric is the average MPI and
this is important because it indicates the price to pay for a larger throughput.
We compare four cache configurations: (1) the cache fully shared, (2) the cache
partitioned such that the number of misses is minimized (CPR 8 ), (3) the cache
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Figure 4.9: H.264 CPI: shared vs. partitioned cache
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Figure 4.10: H.264 MPI: shared vs. partitioned cache

partitioned such that the throughput is maximized (CPR � ), and (4) the cache
shared, but having an infinite size (approximated with an L2 of 8MB, as al-
ready specified). Table 4.8 and 4.9 and Figures 4.13 and 4.14 present the MPI
and the throughput (for 25 frames) for the H.264 decoder in the four studied
cache configurations, corresponding to different L2 cache sizes.

Looking at the CPR 8 and the CPR� cases, one can observe that the
throughput is, as expected, larger for the CPR � case at the expense of in-
creased MPI. The largest difference appears in the case of the smallest in-
vestigated cache (1MB and 512KB for PiPTV and H.264, respectively), so
we comment first on the results obtained with this L2 size case. On average
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1MB 2MB 4MB 8MB
shared 0.00046 0.00021 0.0001 0.00001
CPR 8 0.00061 0.00013 0.00009 0.00001
CPR � 0.00070 0.00018 0.00011 0.00001

Table 4.6: PiPTV’s MPI: shared vs. CPR 8 vs. CPR �
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Figure 4.11: PiPTV’s MPI: shared vs. CPR 8 vs. CPR �
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Figure 4.12: PiPTV’s throughput: shared vs. CPR 8 vs. CPR �
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Figure 4.13: H.264’s MPI: shared vs. CPR 8 vs. CPR �
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Figure 4.14: H.264’s throughput: shared vs. CPR 8 vs. CPR �
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1MB 2MB 4MB 8MB
shared 6.3 7 7.5 7.5
CPR 8 6.1 7.3 7.5 7.5
CPR � 6.4 7.4 7.5 7.5

Table 4.7: PiPTV’s throughput: shared vs. CPR 8 vs. CPR�
512KB 1MB 2MB 4MB 8MB

shared 0.00776 0.00464 0.00154 0.00096 0.00001
CPR 8 0.00861 0.00389 0.00153 0.00098 0.00001
CPR� 0.01000 0.00542 0.00157 0.00103 0.00001

Table 4.8: H.264’s MPI: shared vs. CPR 8 vs. CPR �
across the two applications, the CPR � cache configuration has an MPI with
14% larger than the CPR 8 configuration, but it delivers a 7% throughput in-
crease. Detailed, the MPI of the CPR � partitioned L2 is 15% and 13% higher
than the one of CPR 8 , leading to a 6% and 9% increase in throughput for
PiPTV and H.264, respectively. This throughput improvement of the CPR �
configuration corresponds to the completion of approximately 1 extra frame
per second for the H.264 decoder, and to approximately 0.3 extra frame per
second for the PiPTV. When using an infinite L2 cache it can be observed that,
the PiPTV has 20% throughput gain and H.264 application a 30% one, when
compared with 512KB and 1MB, CPR 8 . These speedups represent the maxi-
mum speedup achievable by tuning the L2 cache, and requires at least 4 times
larger L2. One can observe that the proposed throughput maximization strat-
egy brings 30% and 33% (for PiPTV and H.264) of the possible throughput
improvement, while keeping a cache size that is least 4 times smaller.

For the same cache sizes as in the paragraph above, when compared to a

512KB 1MB 2MB 4MB 8MB
shared 9.8 11.4 12.2 12.2 12.4
CPR 8 9.5 11.8 12.2 12.2 12.4
CPR � 10.4 11.9 12.2 12.2 12.4

Table 4.9: H.264’s throughput: shared vs. CPR 8 vs. CPR �
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shared cache case the CPR � cache configuration improves the throughput with
6% for the H.264, but, in return, has an MPI with 22% higher. For the PiPTV
the comparison between CPR � and a shared cache reveals that the throughput
of CPR� is close to the one of the shared cache, and the MPI is 34% larger.
However, unlike the shared cache the CPR � configuration is compositional.

As expected, the performance difference among the four cases decreases
with the increase of the cache size. When the L2 is large (more than 1MB and
2MB for H.264 and PiPTV, respectively), most of the application’s footprint
fits in the cache, thus L2 is not a performance bottleneck, hence optimizing it
does not deliver further gains.

Light simulation’s accuracy

As mentioned in the Section 4.4.2, during the SA a light simulation of the
system is performed to evaluate the throughput corresponding to a given par-
titioning ratio. Whereas this is certainly faster than the normal simulation, the
question that remains is if the light simulation is accurate enough. Thus in this
subsection we investigate the light simulation’s accuracy. Figure 4.15 depicts
the average completion time for the H.264 decoding of 25 frames in two cases:
regular simulation and light simulation. The comparison between these two
cases is presented for multiple cache partitioning ratios. The maximum dif-
ference between the completion time reported by the regular simulation and
the one of the light simulation is 3%. The 3% difference is actually caused
by the fact that the system is not 100% compositional. Some tasks’ timings
are slightly different from a configuration to another because the L1 cache is
not partitioned. The L1 is considered private to each task during its execution.
However, there are variations in the cache access pattern due to L1 behavior.
A very important fact is that the light simulation is at least 30 times faster than
the regular simulation, while being only 3% away from the precise result.

We would like to mention that the experimental results presented in this
section are obtained using a rather old version of the Trimedia cores embed-
ded on the CAKE platform. As one could notice, in our setup the H.264 and
PiPTV decoding cannot be done in real time (25 or 30 decoded frames per sec-
ond). However, the results in this section suggest that the proposed optimiza-
tion methods can bring performance improvement. We believe that these im-
provements can be achieved also with newer Trimedia cores. Presently H.264
decoding of a simple definition video stream can be realized in real time on a
single Trimedia 3270, whereas decoding a high definition stream would require
multiple such cores. As an optimized mapping of the H.264 on the new Tri-
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Figure 4.15: Light simulation accuracy

media core was not available at the date of this research, it is subject to future
research to determine the exact potential of cache partitioning in improving the
performance of such cores.

4.6 Conclusion

In this chapter we propose a method that contributes to the use of a multi-
processor with shared caches in real-time systems. We developed a set and
associativity based cache partitioning technique that ensure performance com-
positionality within reasonable bounds and allows cache sharing for common
tasks data and/or instructions.

Our method removed the inter-task cache interference by using two cache
partitioning types. First, each task and each inter-task common data had al-
located an exclusive part of the cache sets. Second, inside the cache sets of
common data region each task accessing it had allocated a number of ways.

Subsequently, to the mixed partitioning method we propose two techniques
to find the cache partitioning ratio. The first one has as purpose to minimize the
overall number of misses (based on a Dynamic Programming formulation) and
the second one has as purpose to optimize the throughput of the applications
(based on Simulating Annealing).

The mixed partitioning method was applied to the shared L2 cache of a
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CAKE multiprocessor. Two multi-tasking applications were used for the ex-
periments: H.264 decoding and picture-in-picture-TV (PiPTV). The tasks of
both applications share instructions and data. The experimental results indicate
that the proposed cache partitioning ensures compositionality to a large extent.
For both applications the number conflict misses represent less than 1% from
the total misses.

From the performance point of view we compared the following four cases:
(1) the cache fully shared, (2) the cache partitioned such that the number of
misses is minimized (CPR 8 ), (3) the cache partitioned such that the through-
put is maximized (CPR � ), and (4) the cache shared, but having a virtually
infinite L2 size (a size that contain the entire application’s footprint - 8MB in
the present case). We measured the L2’s performance (in number of L2 misses
per instruction) and the application’s performance (in number of cycles per in-
struction and throughput). As expected, the performance differences among
the four cases are dependent on the L2 cache size. For small caches the frag-
mentation of the cache entailed by partitioning caused a performance decrease
of the CPR 8 when compared with the shared cache. On average over the two
applications the MPI increases with 17% and the CPI with 6%. However, for
these sizes the CPR � case improves the throughput at the expense of extra
misses. When compared with CPR 8 , the CPR � increases the throughput with
7% on average, under the circumstances that a maximum of 25% is actually
possible by having an infinite L2 cache. Thus, while having less than a quarter
of the ”infinite size” L2, the proposed method achieves more than a third from
the maximum throughput improvement that is possible with an L2 cache of
8MB. This throughput increase corresponds to an increase in number of L2
misses per instruction with 14%.

For average cache sizes the elimination of inter-task misses caused by par-
titioning supersedes the effect of cache fragmentation. The CPR 8 partitioned
L2 has 5% better CPI and 28% better MPI than the shared cache, on average.
The CPR� has more or less the same performance as the CPR 8 . Therefore, as
both CPR methods deliver compositionality, when a speedup is desired, for the
exercised applications, in the case of small L2 sizes the CPR � optimization is
preferable, whereas for larger L2 sizes the CPR 8 one should be applied.

In the case of throughput optimization, at every step of the annealing, the
throughput of the system has to be estimated very fast, so we utilized a light
simulation strategy. Compared with a regular simulation, the light simulation
is 30 times faster and its accuracy is within 3%.

In the previous and current chapters we presented the advantages of a static
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partitioned L2 cache, from compositionality and performance points of view.
In the embedded domain context a subsequent question is weather the robust-
ness of the system is affected by cache partitioning. In order to be able to
guarantee performance, the designer should be able to estimate the deviations
due to internal variations caused by task switching, and also due to external
variations caused by different input data. Hence in the following chapter we
investigate the internal and external robustness of the system in the presence
of cache partitioning.
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Chapter 5

Cache partitioning robustness

E
n this chapter, we propose a method to assess the robustness of the cache
management scheme introduced in Chapters 3 and 4 , which utilizes static
L2 cache partitioning to induce compositionality to the system. However,

the compositionality is not 100% ensured because the L1 cache is assumed
to be private to each and every task during its execution and only the L2 is
partitioned. When the task switching rate is high, this is might not be a very
realistic assumption. Thus, in order to guarantee performance, one should be
able to estimate the variations induced by the L1 inter-task sharing. Moreover,
the partitioning of the cache is a static one, thus the application may use only
one partitioning ratio during its entire execution. This cache partitioning ratio
is computed utilizing the application’s statistics for a given input data set, as
described in Section 3.4. However, during the application execution different
other input data might have to be processed. It is quite probable that for these
new data sets the partitioning ratio for which the application has its best per-
formance is different than the one which is in use. In order to guarantee that a
certain performance is delivered by the system, the designer should be able to
estimate these deviations too.

In the view of previously mentioned phenomena two robustness aspects
are relevant in our context: (1) the variations introduced by the inter-task L1
interference (2) the variations induced in the L2 behavior corresponding to var-
ious input data sets. The first robustness type is addressed as ”intern” because
the instabilities are caused by the tasks comprising the application. The second
robustness type is addressed as ”extern” because the variations in performance
are caused by the extern input stimuli. In the following we propose an ap-
proach to assess the robustness of an application running on a multi-processor
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system with statically partitioned L2 [66], [67]. As mentioned, for this type
of systems the internal robustness is determined by inter-task interference in
the L1 cache. This interference strongly depends on the task switching rate.
To estimate the internal robustness we introduce a sensitivity metric, which re-
flects the variation in L2 misses number for different task switching rates. To
assess the external robustness, we introduce the stability metric, which mea-
sures the performance deviations for the case when the application processes
another input data set than the one utilized to determine the static partitioning
ratio. For a given cache partitiong, an application is considered to be stable
if its number of misses obtained with a certain input data is close to the least
number of misses possible for that input data.

The outline of this chapter is as follows. In Section 5.1 we present a
method to investigate the internal robustness of the proposed cache manage-
ment method. In Section 5.2 we present a method to investigate the external
robustness, in Section 5.3 we present the experimental results, and in Section
5.4 we draw the conclusions.

5.1 Internal robustness

In a memory organization like the one we consider, the internal variations in
task performance are due to the fact that task switching pollutes the L1 caches.
When, on a processor P � , a task T # is swapped out by a task T6 , T # ’s data are
gradually flushed out of P � ’s L1 by T6 memory accesses. The amount of data
that T # might still find in the cache on its next execution on P � depends on how
long T6 was executed and on whether other tasks were executed in the mean
time on P � . High task switch rates are likely to pollute L1 caches less at a
time, but for many times. Low task switch rates are likely to pollute the L1
cache more at a time, but rarely. The exact amount of L1 pollution depends
on the application. For a picture-in-picture video decoder our experiments
indicate that when the average task switching rate almost doubles (from 24K
times/second to 41K times/second) the number of accesses to the L2 cache
increase with 60%. Under these conditions, if a certain off-chip bandwidth has
to be guaranteed to tasks or applications, the robustness of the system to task
switching rate has to be investigated.

For the internal robustness analysis we propose to use the L2 sensitivity
function. In order to define it, let us assume that the application is composed
out of N tasks, �L� 	 T # � � # ����� %ð� and that SWR � 	 swr Î � � Î ����� � � is the set of
investigated task switching rates. The number of L2 misses of task T # depends
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on T # ’s allocated cache size c # , and on the task switching rate swr Î . We denote
these T # ’s L2 misses with miss #�\ c #M] swr Î+^ . The L2 sensitivity corresponding
to a task T # is defined as being the maximum difference in the number of L2
misses among the investigated task switching rates, when a given L2 cache size
c # is allocated to T # . To give an idea about the impact of this variation on the
application performance, we define the task sensitivity relative to the number
of misses obtained when the tasks switch at a reference rate, swr:

sens #b\ c #X^ ��������������� � 	 miss #Ê\ c #b] swr Î�^Ï�!u �
������ � 	 miss #b\ c #M] swr Î+^Ï� ����%r# ��� miss # \ c # ] ¢! #" ^ $ 100 % n (5.1)

For a relevant estimation, the reference task switching rate swr should be
the most probable, real-life, task switching rate. If this value is not known or
it is variable, the application designer might choose to relate to the application
misses obtained for one of the swr Î , or to an average over them.

In the same way as the task’s sensitivity, we define the application’s sen-
sitivity sens F as being the relative maximum difference in overall number of
misses over the investigated task switching rates, when a certain L2 partition-
ing ratio is applied:

sens F � �����T ¤�¥ � 	 sens # \ c # ^Ï�n (5.2)

The smaller sens F the more robust is the application. Ideally, we would
like to get sens F � £ , but this cannot be achieved for the case when only L2 is
partitioned. The platform we consider has also a level of L1 caches, which in
this thesis are not considered subject to inter-task interference. In reality this is
not the case, but, due to typical small sizes, L1 is unsuited for static partition-
ing. In a multi-processor system, if L1 is statically partitioned the application’s
tasks should be statically assigned to processors (it makes no sense to allocate
cache for a task on a processor where that task might never run). This is not
a preferred option because it restricts the run-time processors’ load balancing
options. For example in a video decoder where all tasks concur for process-
ing frames at a certain rate, restricting run-time load balancing can diminish
the performance. Even, in the case that L1 is dynamically partitioned, the ap-
plication’s sensitivity sens F still cannot be zero because the repartitioning is
dictated at run-time, therefore variations may occur.
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5.2 External robustness

This subsection presents a method to determine the performance deviations
for the case when the application processes another input data set than the one
utilized to determine the static cache partitioning ratio. First we illustrate the
analysis of external robustness by using a small example, and after that we
present the general formulation of this analysis.

Let us assume that the investigated application has three tasks (N �&�^
and two relevant sets of input data in � and in , are considered in the cache
partitioning process. Let us assume that when the application uses in � (in , )
as input data its best performance is achieved if tasks have as (optimal) par-
titioning ratio OPR � � 	 c �� ] c �, ] c �: � (OPR , � 	 c , � ] c ,, ] c ,: � ), as illustrated in
Figure 5.1. OPR � and OPR , are calculated using the Algorithm 1 introduced
in Section 3.4, such that the application’s L2 misses is minimum, under the
constraint that the allocated cache is smaller that the available cache (14 units
in our case).

Figure 5.1: Example: Partitioning ratios corresponding to two input data

It can be observed that the best partitioning ratios OPR � and OPR , are
different. When using static cache partitioning the application may use just
one single partitioning ratio, OPR � 	 c � ] c , ] c :¦� . This ratio can be OPR � ,
OPR , , or any compromise between those two. For instance any partition with
c � R(' �

��� \ c �� ] c , � ^ ] ����� \ c �� ] c , � ^*) , c , R+' �
�,� \ c �, ] c ,, ^ ] ����� \ c �, ] c ,, ^*) , and c : �

c �: � c ,: can be utilized.

If, for example, OPR � is not used as the partitioning ratio, in case the ap-
plication is processing in � as input data, its performance is deviating from
the best achievable one. In this case it is of interest to estimate an upper
bound of the potential performance degradation. For this purpose, we cal-
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culate the worst partitioning ratio, OPR � � 	 c �� ] c �, ] c �: � , with c �� ] c �, , and c �:
bounded by OPR � and OPR , . OPR � is determined utilizing the same Dy-
namic Programming algorithm, as for OPR � , like in Chapter 3, Section 3.4
(if needed with its extension from Chapter 4 Section 4.4), but with the con-
straints that c �� R-' � ��� \ c �� ] c , � ^ ] �.��� \ c �� ] c , � ^*) , c �, R-' � ��� \ c �, ] c ,, ^ ] �.��� \ c �, ] c ,, ^*) ,and c �: � c �: � c ,: . Because we want to estimate the worst performance, the
number of misses is maximized instead of minimized.

Let us assume that, for example, for the input data in � the application min-
imum number of misses is denoted by M � and it is given by the following:

M � � miss � \ c �� ] in � ^�w miss , \ c �, ] in � ^'w miss : \ c �: ] in � ^ n (5.3)

where miss ��� ,-� : are the number of misses experienced by the three tasks of
the application, when processing data in � . Thus for input in � and any valid
partition OPR the largest number of misses is given by the following:

M � � miss � \ c �� ] in � ^�w miss , \ c �, ] in � ^'w miss :�\ c �: ] in � ^ n (5.4)

The same type of investigation can be done for in , also and the values
M �
M � and

M ,
M , reflect the robustness of the system to input data.

In media applications, time deadlines are imposed for processing a number
of data units, for example a video decoder might have to decode 25 frames
in a second. Therefore, it is also interesting to evaluate the variations in L2
behavior caused by different data units belonging to the same input stream.
This means that, for instance, input data in � may be the first frame of a video
stream and in , may be the next frame of the same video stream. Such a stability
evaluation is useful because it gives a bound of the dynamic behavior that the
application exhibits as a reaction of the input stream variations.

For a general application having N tasks ����	 T #_��� # ����� %ð� and é common
regions ��4 � 	 CR6�� 6 ����� 8 , let IN � 	 in �á� � ������ Q�� be the set of relevant input
data sets. To express the allocated cache size ¡ , we use the same index

U
to

refer to tasks as well as to common regions. For the sake of simplicity we can
consider that the first N values of c # correspond to the application tasks and the
next M (from N w � to N wté ) correspond to the application common regions.
A task T # ’s or a common region CR # ’s number of misses miss #�\ c #M] in � ^ depends
on task’s allocated L2 size c # and on the input data in � . When the application
processes the input data in � , its number of misses, is denoted with M � and it is
given by the following:
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M � � %[ # ��� miss #b\ c �# ] in �ß^ n (5.5)

For every input data in ��R IN the best partitioning ratio OPR � is the set
of tasks’ allocated cache sizes 	 c � � ] c �, ]�nonono] c � % � . As previously mentioned, it is
possible that the best partitioning ratio OPR � differ among each other. The final
partitioning ratio, /�Ã10
��	 c � ] c , ]�nonono] c % � can be OPR � , OPR , , ... , OPR Q or
any compromise among them, that respects the following condition:

c # R32 � ���Ü % 	 c �# �] �����Ü % 	 c �# �54Än (5.6)

and has the total cache allocated to tasks smaller than the available cache size

C,
%r# ��� c #�f C.

In order to estimate an upper bound of the potential performance degra-
dation in the case of in � we calculate the worst partitioning ratio that respects
the previous condition. We denote this ratio as being OPR ��� \ ¡ � � ] c �, ]�nonono] c � % ^ .
To determine OPR � we use the same calculation method as for OPR � , with

the constraints that c �# R 2 �
���Ü % 	 c �# �] �����Ü % 	 c �# � 4 and instead of minimizing the

number of misses, we maximize it (we are looking for the worst behavior).
The application largest number of L2 misses under the previous conditions is
denoted with M � , and it is given by the following formula:

M � � %[ # ��� miss #Ê\ ¡ �# ] in �ß^ n (5.7)

We define the application’s stability stab � to in � as being the relative varia-
tion between M � and M � :

stab � � M �
M � $ ��£�£�%mn (5.8)

The overall application stability is defined as the worst stability over the
set of input data IN:

stab F � � �,�Ü % 	 ¢7698;: �á� .
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If the stability is close to 100 % the application behaves good for all its
representative input data, so it is externally robust. If the difference between
M � and M � is large, the static cache partitioning is not robust to input data
variations and for better performance a dynamic repartitioning should be con-
sidered.

5.3 Experimental results

5.3.1 Internal Robustness

As aforementioned, we experiment on two types of applications, some con-
sisting of communicating tasks and some consisting of independent tasks. The
applications consisting of communicating tasks are described in YAPI, thus the
data exchange and synchronization among the tasks is done through blocking
FIFOs. A task is blocked (and consequently its processor switches to other
task) when it has no available input data or output buffer space. On our exper-
imental platform, for the purpose of the investigations, we induce higher task
switching rate by shrinking the FIFOs sizes. For FIFOs larger than a certain
size the task switching rate does not decrease anymore because a value intrin-
sic to the application is reached. We consider this lowest value as the reference
task switching rate, as defined in the Section 5.1. In our case, both the PiPTV
and the H.264 applications have the least number of misses for the lowest task
switching rate. The internal robustness is relative to this number of misses,
therefore the presented results reflect the largest deviations.

For the communicating tasks, the investigated average task switching rate
values start at 41K and 24K times per second, corresponding to 4KB FIFOs
and 2KB FIFOs for the H.264 and PiPTV, respectively. The task switching rate
range ends at 74K and 41K times per second, corresponding to 0.5KB FIFOs
and 0.4KB FIFOs for the H.264 and PiPTV, respectively. For FIFOs larger
than 4KB and 2KB, for the H.264 and PiPTV respectively, the average task
switching rate does not decrease anymore because the value intrinsic to the
application is reached. For FIFOs smaller than 0.5KB for H.264 and 0.4KB
for PiPTV, the applications deadlock, so the average task switching rate cannot
be increased anymore. The measurements indicate that these task switching
variation account for 30% and 66% difference in the number of L2 accesses
for the H.264 and PiPTV, respectively.

In the case of applications composed from independent tasks, the task
switching rate depends on the task scheduler policy. We enforced a policy that
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preempts tasks with a rate ranging from 40K times per second to 400 times
per second. This range is chosen to cover a large variety of possibilities. We
consider the reference task switching rate as being the lowest one, therefore
the internal robustness is relative to the number of misses encountered on that
case.
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Figure 5.2: Tasks sensitivity: shared vs. partitioned cache.

For both application types, the L2 sensitivity of tasks is compared for the
partitioned and the shared cache case (Figure 5.2). Due to space reasons (the
sum of the number of tasks of PiPTV and H.264 is 69), in Figure 5.2 are de-
picted only the tasks that have the sensitivity larger than 2% in the partitioned
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Figure 5.3: Application sensitivity: shared vs. partitioned cache.
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application H.264 PiPTV A � A , A : A ; A < A =
max L2 variation 2% 7% 16% 9% 16% 12% 20% 12%

Table 5.1: Maximum variation in the L2 size allocated to a task.

cache case or larger than 20% in the shared cache case. In this figure it can be
observed that, in general, the shared L2 is more sensitive than the partitioned
one or their sensitivities are pretty close. Among the tasks that are not depicted
in Figure 5.2, there are few ones for which the sensitivity of the partitioned L2
cache is larger than the one of the shared cache. However, for those few tasks,
the sensitivity is smaller than 0.5%, so they do not influence the general ob-
served trend, i.e., the shared cache is more sensitive that the partitioned one.
Figure 5.3 presents the application sensitivity for all the eight applications.
Over all the applications, the shared cache is on average 6 times more sen-
sitive to task switching than the partitioned one. The largest sensitivity was
observed at the applications H.264, PiPTV and A ; for the case of partitioned
and shared cache, respectively. For a partitioned cache, over the investigated
task switching range, the application sensitivity as defined in Section 5.1 is at
most 8%, with an average of 4%. For a shared cache, over the investigated
task switching range, the application sensitivity as defined in Section 5.1 is at
most 50%, with an average of 33%. These results reinforce the conclusions of
Chapters 3 and 4 that suggest that, for the analyzed applications, partitioning
the L2 is enough to achieve compositionality to a large extent.

5.3.2 External Robustness

As detailed in Section 5.2, the best cache partitioning ratio of an application
varies with its tasks input data. In order to quantify the differences among the
best cache partitioning ratios, we use the maximum variation of the L2 size
allocated to a task, across different input streams. We calculate the partition-
ing ratios for each task, for each input stream, and we present in Table 5.1 the
maximum variation in the allocated L2 size over all tasks, per application. The
values in Table 5.1 are relative to the total cache size available to each appli-
cation. In general we found that the differences among the best partitioned
ratio corresponding to different input data are relatively small. As one can ob-
serve in Table 5.1, over the 8 applications that we exercised, the cache of a task
varies at maximum with 20% from the total cache size.

For some input data, the partitioning ratio is non-optimal and this induces
a performance degradation. To quantify this degradation, in Section 5.2 we
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input data in � in , in : in ;
H.264 96% 96% 100% 98%
PiPTV 92% 100% 93% 98%´ � 100% 93% 93% 96%´ , 90% 100% 91% 97%´Á: 97% 93% 100% 90%´ ; 95% 91% 100% 95%´ < 100% 95% 98% 96%´Á= 92% 91% 93% 100%

Table 5.2: Application stability for different input data.

introduced the stability metric. In Table 5.3.2 the stabilities corresponding to
each application are illustrated. For all the eight applications we investigated
four different input data streams. For the six application consisting of non-
communicating tasks, each task needs its own input data. In all cases, we
would like to mention that the set of input data corresponding to an application
has the same size and the same ”quality” level for each experiment. In this
section we do not investigate the effects of things like enlarging the resolution
or the scaling factor of a video stream, or changing the encoding quality of
an image. The reason behind is that an application that produces different
resolution/quality/etc. output, has actually some different tasks, and the quality
change can be regarded as a scenario change, case tackled by the next chapter.
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Figure 5.4: Minimum application stability.

Figure 5.4 presents, for each of the eight applications, the minimum stabil-
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ity over the set of four input streams. We observe that the minimum stability
of each application is pretty high, ranging over the eight applications from
90% to 96%, with an average of 92%. Taking these facts into account, we
can conclude that all the eight applications are quite robust to input stimuli in
the presence of static cache partitioning. A stability comparison between the
shared and the partitioned cache is not possible because the stability, as defined
in Section 5.2, is linked to the partitioned ratio, thus it cannot be computed for
the shared cache scenario.

5.4 Conclusion

In this chapter we proposed a method to analyze the static cache partitioning
robustness. We define and discuss two types of robustness: internal (deter-
mined by inter-task interference in the L1 cache) and external (determined by
the variations of the L2 behavior due to various input data sets). For both types
of robustness we introduced quantification metrics. For internal robustness we
defined the sensitivity function, which measures the variation of L2 misses
caused by the L1 variations over a range of task switching rates. For external
robustness we defined the stability function, which measures the performance
deviation for the case the application processes another input data set than the
one utilized to determine the static L2 partitioning ratio.

To demonstrate our approach we analyzed both types of parallel applica-
tions introduced in Chapter 2: (1) applications consisting of communicating
tasks and (2) applications consisting of independent tasks. Concerning the in-
ternal robustness, if the cache is partitioned, the application sensitivity is at
most 8%, with an average of 4%. This small sensitivity reinforces the conclu-
sion that partitioning the L2 is enough to achieve compositionality in a large
degree, for these applications. Comparing the internal robustness of the shared
and partitioned cache cases, we found that the shared cache is on average 6
times more sensitive than the partitioned one. Moreover, the large difference
among the shared cache and the partitioned cache sensitivity is an interesting
fact on itself. It suggests that the optimizations processes for L1 and L2 caches
can be decoupled if the L2 is managed on a task centric manner. Concerning
the external robustness, the variations induced in the L2 behavior by various
input data sets are at most 10% over all the applications we experimented. This
accounts for an average stability of 92%, therefore, for the investigated appli-
cations, we can conclude that the static cache partitioning is quite robust with
respect to input stimuli variations.
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Chapter 6

Dynamic task centric cache
management

E
n the previous chapters we presented a task centric approach for static
cache management, in order to ensure compositionality for media applica-
tions. In this chapter we extend this static cache partitioning method with

a dynamic task centric cache management strategy. For example, a multime-
dia application may have multiple execution scenario, in the sense that some
tasks may start and/or stop. Let us consider the example of a mobile device
with video and sound facilities. The video decoding task should be active only
when a video stream is on display, and not when the user just listens to mu-
sic, for instance. If the cache is statically allocated, the part corresponding to
the video decoder would be reserved all the time, thus also when the task is
stopped. In this manner the cache resource is waisted and the system perfor-
mance may be penalized.

In this chapter we propose a strategy to dynamically repartition the cache
at a scenario change, such that the compositionality is enhanced and the entire
cache is efficiently utilized [73], [68]. This strategy is based on determin-
ing the best static partition for each scenario, and dynamically changing the
partitions on a scenario switch. In order to keep data correctness, our cache
repartitioning implies flushing, therefore a time penalty. This is especially
critical for task that have a low tolerance to perturbations. To cope with this
problem we first propose a design-time method, to determine each task’s cache
footprint in each scenario, such that (1) in particular the critical tasks are pro-
tected against cache perturbation, and (2) in general the number of necessary
flushes are minimized. Furthermore, we propose a partial cache flush policy
that ensures that the statically calculated footprints are respected and further
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decreases the penalty by flushing only what it is necessary, as late as possible,
in the eventuality the data flush is actually not needed anymore.

The overview of this chapter is as follows. Section 6.1 introduces the cache
performance problems encountered at set-based cache repartitioning. In Sec-
tion 6.2 we present the off-line part of the cache repartitioning method. Section
6.3 presents the on-line part of the cache repartitioning. The experimental re-
sults are presented in Section 6.4 and finally Section 6.5 concludes the chapter.

6.1 Cache repartitioning

We start this section by first reminding some useful notations and then we
detail the implications of set-based cache repartitioning. We consider that in
each scenario S * only a subset of tasks � *Á2 � is active and that in a scenario
S * the cache size of a task T #zR � * is denoted with c # � * . Naturally, if a task
T # is stopped in a scenario S * , then c # � * �ó£ . The allocable cache units of
an L2 cache are numbered from 1 to C. We define the cache footprint of
a task T # (T # R5��* ) as the contiguous cache interval where T # data reside,
cf # � * �<' b # � * ] b # � * w c # � * ^ , where the b # � * R�'Ô��] { u c # � * ) represents the cache unit
where T # ’s footprint begins. The cache footprint of an entire application in the
scenario S * , is the collection of each task cache footprints 	 cf # � * � , with T #�Rþ� * .
Moreover we consider that some tasks are more sensitive to scenario switching
perturbations than others, in the sense that the output quality severely degrades
if such a sensitive task is even lightly disturbed. We denote such tasks as
critical. The critical tasks definition is the job of the application designer and
it does not represent the subject of this thesis.

In Chapter 3 we present an in depth quantitative comparison among the
static set and associative cache partitioning. The conclusion of this compari-
son, for the class of applications that we are interested on, is that the associa-
tivity based partitioning achieves compositionality, but severely degrades the
cache performance. As our method dynamically switches among static par-
titions, with a coarse time quantum (we primarily target scenario switching
frequencies above 10Hz) it is legitimate to extrapolate that the trend observed
for static partitioning holds true also for the dynamic partitioning. Thus, in
this chapter we build our dynamic cache management method starting from a
set-based partitioned cache.

Now, let us take a closer look at what is happening when the cache is
repartitioned. We consider a transition from the current scenario S * to the new
scenario S ý (S *�= S ý ). We remind that, due to implementation reasons the
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number of sets a task can get allocated is a power of two. We consider that
the data are mapped to cache sets using a conventional modulo function [38].
Thus an address X accessed by task T # is cached on the current scenario S *
in the set set > � * � b # � * w@?A% c # � * . On the next, new, scenario S ý , the same
address is cached on set > � ý�� b # � ý w X % c # � ý . In such situations the cache
location of X might change at the S * = S ý transition, therefore precautions
should be taken such that later on T # ’s sees the most recent value at X. If
cf # � *CB cf # � ý � 	�DJ� , after the scenario transition eventually all T # data have to
move into the new T # ’s cache part. We would like to mention that in this thesis
we do not assume the existence of a possibility to directly transfer data from
one L2 set to the other, nor the existence of a mechanism (similar to a cache
coherence protocol) that can look in multiple L2 sets to determine where is
the most recent data value requested. For now, our option is to flush the T # ’s
footprint corresponding to the old scenario S * . Later on when a data item is
needed it is loaded from the main memory. This strategy implicitly moves a
data item from one cache set to the other, via the main memory.

In the following we investigate the cases when the cache content can be
reused, at scenario change. For simplicity sake, let us assume that for a sce-
nario switch both cache footprints begin on the same cache set (b # � * � b # � ý )
and the cache sizes vary with a factor of 2. Thus there are two possibilities at
a scenario change:

(1) The cache doubles (cf # � *FE cf # � ý , c # � ý�� � $ c # � * ). This example is
illustrated in Figure 6.1. Let us assume that in S * an address X maps in the
cache in set > � b # � * w X % c # � * . Moreover, for the same scenario S * , the data
at address X w c # � * also maps in set > . When the cache doubles at S *G= S ý ,
the data at address X still maps in set > , but the data at address X w c # � * maps
in set >
w c # � * . As one can see, not all data in the cf # � * cache footprint stay
in the same location in the double sized footprint cf # � ý . Therefore, to keep
data correctness, one has to flush only the T # ’s data that does not map anymore
in cf # � ý in S ý . As already mentioned, we do not assume the existence of a
mechanism to keep such cache lines coherent between scenarios, thus for the
present work the entire cf # � * is flushed.

(2) The cache halves (cf # � ý E cf # � * , c # � *�� � $ c # � ý ). As visible in Figure
6.2, each data item present in S * in the first c # � ý sets of cf # � * is mapped in the
same place in the scenario S ý . For those data items X % c # � * � X % c # � ý , because
c # � * � 2 $ c # � ý . However, the other data for which in S * X % c # � * � c # � ý (for
instance X w c # � ý , as illustrated in Figure 6.2) are relocated in cf # � ý , when the
scenario becomes S ý . In conclusion, in order to keep data correctness, only
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Figure 6.2: Cache repartitioning - halving the size

the second half of cf # � * has to be flushed.

A similar rationale applies when a task’s cache size increases or decreases
with more than a factor of 2 between consecutive scenarios. In conclusion,
on an S *Z= S ý transition, there are two cases when the cache content of a
task T # can be reused: (1) if T # ’s cache footprint stays the same, and (2) if
T # ’s number of cache sets decreases, and if the starting set of the new cache
footprint b # � *s� b # � ý w\[]� c # � ý with [ÒRZ^ , [ } c ¤`_ a

c ¤�_ b .

As mentioned, unrelated to the compositionality, cache partitioning offers
a optimization freedom. In Chapter 3, we identify two optimization problems
as being of interest: (1) the Cache Allocation Problem �1�J� (finding c # ), and
(2) the Cache Mapping Problem �'Hc� (finding b # ). As we could see, for
static cache partitioning only �1�J� is of interest, the footprints being unrelated
to the cache performance. However, for dynamic cache partitioning this does
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not hold true anymore.

In the case of set based repartitioning, the repartitioning costs may depend
on b # � * and b # � ý . For a good understanding of this phenomenon, we present
in the following a simple example, involving an application A with four tasks:
T � , T , , T : , and T ; . We consider three scenarios, S � , S , , and S : . For these
scenarios, the cache footprints are illustrated in Figure 6.3. Let us assume that
the application switches through the three scenarios in order, S � = S , = S : .
In this case the following happens. At S � = S , the cache of T , is flushed as
its size increases. The T : cache is not flushed as T : stays in the same place
in cache in both scenarios. At S , = S : the cache of T , is flushed, as T , is
relocated in the cache. T � restarts, and so the flushing its previous footprint is
considered now (more details about the flushing strategy will follow in Section
6.3). However, in this example T � has the same footprint in S � and S : , therefore
no flushing is required for its cache part. Moreover, T : ’s cache shrinks, but as
this task still owns set ; , only set : has to be flushed.
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Figure 6.3: Cache flush example

The amount of cache flushing depends on the scenario order and on the
lines where a task cache footprint begins. For instance in the previous exam-
ple, in the scenario S : , the tasks footprints in cache might have had the order
T � , T , , T ; , T : (b � � � , b , �c� , b :m�ed , b ; �I� ) instead of T � , T ; , T , , T :
(b � � � , b , �ó� , b : �fd , b ; �g� ), i.e. the positions of T ; and T , might
have been inverted. In this case only a partial flush of

¢ih76 � would have been
necessary to ensure T , correctness and T , would have reused half of its foot-
print. Moreover, if for instance T , is critical, its execution is unacceptably
interrupted by cache flushes. In conclusion, in dynamic repartitioning the per-
formance of the systems relies heavily on b # � * and b # � ý , therefore the cache
mapping problem becomes interesting.

In the next sections we first discuss and solve the cache mapping problem,
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and then we present the run-time cache management strategy.

6.2 Cache content reuse via footprint management

In this section we consider that the cache allocation problem is solved for each
application scenario. For this purpose one can use the methods proposed in
Chapters 3 and 4 that minimize the total application number of misses or the
throughput. Moreover, we assume that the application designer takes care that
the allocated cache sizes of the critical tasks are constrained to have the same
size in each scenario. We define the CCR # of a task T # as being its cache content
reuse, during an execution:

CCR #'� [
S akj S b

c ¤�_ aml c ¤�_ b
b ¤�_ a �on b ¤`_ b c # � ýp�kq * j ý (6.1)

where p * j ý is the probability that S ý immediately succeeds S * in that execu-
tion.

The cache content reuse of an entire application CCR is the sum of the
cache reuse exhibited by its tasks:

CCR � %[ # ��� CCR # n (6.2)

The cache mapping problem that we investigate in this section is formu-
lated as follows. Given: (1) an application A consisting of a task set � and
having r scenarios, (2) the transition probability (or the relative frequency)
among each scenario pair p * j ý , and (3) the tasks cache sizes in each scenario
c # � * , the objective is to find the beginning cache line b # � * of each task footprint
in each scenario (cf # � * B cf6 � * � 	�D��]ts T # R � * ]ts T63R � * ] i u� j) such that the
cache content reuse is: (1) complete for the critical tasks and (2) maximized
for the other tasks.

A ”complete reuse” is achieved when a task has the same cache footprint in
all the consecutive scenarios in which it is active. Critical tasks may also stop,
as some utilization scenarios do not require their execution. The important
thing is that a critical task should not be disrupted as long as it is active. When
it becomes inactive, its cache may be used by other tasks.
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In the next subsections we first prove the NP-completeness of the cache
mapping problem, then we formulate it as an Mixed Integer Linear Problem
for an optimal solution, and after that we propose a fast heuristic to solve this
problem.

6.2.1 Hardness of the cache mapping problem

In this subsection we prove that the cache mapping problem is equivalent with
the Dynamic Storage Allocation Problem vwrÈ�J� (addressed as SR2 in [33]),
that is known to be NP-hard.

In order to prove this we first recall the dynamic storage allocation prob-
lem, with the notations from [33]. Note that these notations may clash with
the ones used for �'Hc� . To avoid confusion, we explicitly specify to which
problem we refer. In vGr ��� given are: (1) a set of items to be stored a R A
of size s(a) R]x � , arrival time r(a) Ryx �û , and departure time d(a) Ryx � and
(2) a storage size D R@x � . The question is if there exists a feasible storage
allocation N{z A = 	 1, 2, ...,D � such that for every a R A the allocated storage
interval I(a) �<' N (a) ]ÊN (a) w s(a)-1 ) is contained in [1,D] and such that, for all
a, a’ R A, if I(a) B I(a’) u�
	�DJ� , then either d(a) f r(a’) or d(a’) f r(a).

To prove the equivalence of the two problems ( �'HI� and vwrÈ�J� ) we
make the following notations and �1HI� reductions:

1. for simplicity reasons we can assume that a scenario takes one time unit,
as no task may start or stop during a scenario (hence the cache allocation
events occur between scenarios),

2. we restrict the generality of the �1HI� by considering that a task T # has
the same cache size c # in each scenario in which it is active (c # � * �
c # � ý � c #M]ts S * ] S ý ] T #xRþ� * ] T #xRË��ý ), as if all the tasks are critical,

3. we consider a given scenario sequence of length U, 	 s �P� � ������� ,-�/././� 01� ] s �JRr , therefore all the p * j ý are known, and

4. for each task T # we address the longest subsequence of consecutive sce-
narios set in which T # is active with 	 ss # � ÆÄ� � Æ ����� ,-�/./././� 0 ¤ � , 	 ss # � ÆÄ� E 	 s ��� .
There is no reasons to assume that some of T # ’s data might still be in the
cache when T # is restarted, after a time it was inactive (in the scenarios
between two consecutive subsequences, ss # � Æ and ss # � Æð� � other tasks
execute, possibly using T # ’s cache). Thus, from the cache’s point of
view, it is like T # is replaced by U # tasks, each of them having the same
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functionality as T # and a c # cache size, but the U � executes only in all
scenarios from subsequence ss # �/� , the U , executes only in all scenarios
from subsequence ss # � , , etc. Consequently, we replicate each task T # of
the application in U # tasks. As a result A is described by a set �3y of N’
tasks and each T y# RÒ� y has, by construction, only one scenario subse-
quence in which it is active. For this case we define the arrival scenario

" \ T y# ^ and the departure scenario | \ T y# ^ as the first and the last scenario
in which T y# is active. Moreover we denote with b y# the cache units where
T y# footprint begins its active scenario subsequence.

Let us present a simple example with a sequence of 4 scenarios, to give an
intuitive idea about this task replication. May T # be active in both S � and S ,
then inactive in S : and later back active in S ; . For maximum reuse, T # has the
same footprint in S � and S , (if T # is critical, it must have the same footprint in
both scenarios). However, in S : T # is stopped, therefore another task may use
T # former cache (this is possible regardless of whether T # is critical or not, as
we consider that critical tasks should not be disrupted as long as they are active
and may be flushed out of the cache when they are inactive). Later on, in S ;
the task T # is active again, but its cache may be flushed during S : , therefore the
situation is like T # restarted with a cold cache. In this case, the cache behaves
like we would have two tasks T y# and T y y# (with c y# � c y y# � c # ), the first one being
active in S � and S , and inactive in the rest of the scenarios, and the second one
being active only in S ; .

With these simplifications, the cache mapping problem can directly trans-
form into the dynamic storage allocation problem, because the following relate
to each other in a one-to-one fashion (first we mention the �1HI� variables and
then the vGr ��� ones):

1. the tasks T y# and the items a;

2. the cache size c y# and the item size s(a)

3. the total cache size C and the storage size D;

4. the arrival and departure scenarios r(T y# ) and d(T y# ) of T y# and the arrival
and departure time of a r(a) and d(a), respectively;

5. the function of the cache units where a footprint begins b y# and the feasi-
ble storage function N ;

6. the T # cache footprint and the allocated storage interval I(a);
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7. the fact that two tasks may share a cache part only when they are not
active in the same time and the condition that two items a, a’ R A, if
I(a) B I(a’) u��	�DJ� , then either d(a) f r(a’) or d(a’) f r(a).

Taking into account these presented facts, we can conclude that �1HI� is equiv-
alent with vGr ��� , and therefore that �1HI� is NP-hard.

6.2.2 Optimal solution for the cache mapping problem

In this section we present a Mixed Integer Linear Problem (MILP) formu-
lation for the cache mapping problem. We use a set of 0/1 variables 	 l �# � * � ,
(i=1,2,...,N, q=1,2,...,U, k=1,2,...,C) to indicate if the cache footprint of a task
T # in scenario S * starts at the cache line k (l �# � * ��� ) or not (l �# � * � £ ). Naturally,
a task footprint may start only at one cache line, therefore for each 1 f i f N
and 1 f q f U ] T #�Rþ� * : G[����� l �# � * � 1 n (6.3)

Within a scenario, a cache line k may not be allocated to more than one
task. A case for which this is simple to express, is the one of the first cache
line (k=1), where a single footprint may begin:%[ # ��� l �# � * f 1 n (6.4)

The second line (k=2) may be the start of a footprint or, it may belong to
the footprint started in line 1, if this last one has a size larger than 2. This can
be express in MILP as follows:%[ # ��� l ,# � * w %[ # ���

c ¤`_ a~} , l �# � * f 1 n (6.5)

These constraints are generalized for an arbitrary cache line k as follows:%[ # ��� �[ 	 ���
c ¤`_ a~} 	 l �¦p 	 � �# � * f 1 n (6.6)
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The cache line where a footprint starts is given by the formula:

b # � * � G[����� k � l �# � * n (6.7)

In order to indicate the situations in which the cache of T # is reused in
scenarios S * and S ý , namely: (1) b # � * � b # � ý , or (2) b # � * � b # � ý�wy[Z� c # � ý , with
1 } [ } c ¤`_ a

c ¤�_ b ]m[�RA^ we introduce a 0/1 variable, y # * � ý . In this case Equation
(6.2) of the cache content reuse for an application becomes:

CCR � %[ # ��� [
S akj S b

c ¤`_ a�} c ¤`_ b y # * � ý � c # � ý � p * j ý (6.8)

In the following we present the MILP definition for the 0/1 variable y # * � ý ,
that specifies whether b # � * � b # � ý . In the case c # � * � c # � ý , a similar equality
have to be checked for each [ (1 } [ } c ¤`_ a

c ¤`_ b ]m[ R�^ ) for which b # � * �
b # � ýmw-[y� c # � ý , but in principle the formulation is no different.

To give a formula for y # * � ý , we use two intermediary 0/1 variables g # * � ý and
h # * � ý that express if b # � *�f b # � ý and b # � *9~ b # � ý , respectively. If both are 1 in
the same time, then b # � * � b # � ý , thus y # * � ý should be 1, otherwise it should be
0. For clarity reasons, in the following we omit the i, q, w indexes of the y, g, h
variables. The next two equations represent the constraints for g.

C � g f b # � * u b # � ý w C � (6.9)

(C+1) � g ~ b # � * u b # � ýmw 1 � (6.10)

As h expresses the same type of relation among two integers (namely in-
equality), the constraints for h are similar than the ones for g, except that in
place of b # � * is b # � ý and vice versa. Having defined g and h, y is given by the
following two equations:

y ~ g + h - 1 n (6.11)

2 � y f g + h (6.12)

In summary, in this subsection we introduced a Mixed Integer Linear Prob-
lem formulation that solves the cache mapping problem such that the amount
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of cache reuse is optimized. As one can notice this formulation involves as
many as (C+3 $ U+1) $ N $ U variables. For a concrete case of 4 tasks, 7
scenarios and a 512 KB L2 the number of variables required reaches 7784. It
is a known fact that the time needed by an MILP solver to provide a solution is
in direct relation with the number of variables in the formulation [23]. As one
can see, the MILP formulation of �'Hc� easily becomes too large to be solved
in reasonable time, hence in the next subsection we propose a heuristic.

6.2.3 Heuristic for the cache mapping problem

In the heuristic approach to �'Hc� , as a first step, the cache mapping problem
for the entire application is split into several smaller instances of the same
problem.

If a task subset � E � has its cache size sum constant over all scenarios� 0r* ��� r
T ¤X¥�� c # � * ����� , then � and ���y� are two disjoint task subsets that be-

have as if each one of them is an independent application having the cache size� , and C u�� , respectively. In this manner the problem can be further recur-

sively split, obtaining a set of task subsets 	��JÆÄ� � Æ ����� ,-�/./././� 01� , 0�Æ ��� �ÁÆ �h� ,� Æ B �Ä� � 	�DJ�] T u�"� . In order to build the 	�� Æ � subsets we have to
generate all possible tasks subsets and test if they respect the condition that
the sum of their cache sizes is constant over all scenarios. Thus the number

of iterations that are executed is { �% wa{ ,% w nonon�{{� ��� >��?% , where C � % � N!
k! � (N-k)! .

Even though the complexity of building the 	��JÆ�� subsets is not polynomial,
this does not constitute a problem in practice, as the number of tasks is in the
order of O(10).

In this paragraph we give an example meant to illustrate the separation
of tasks � into subsets 	��ÄÆz� and to highlight the mechanisms behind the�'HI� heuristic. This example uses 4 tasks and 3 scenarios, with the following
characteristics: T � is active all the time and has the same cache size in all 3
scenarios, T , is active only in S � and S , , and has different cache sizes in the
two scenarios, and T : is active in S � and S : and has different cache sizes in the
2 scenarios and T ; is active in S , and S : . Figure 6.4 presents the cache of the
4 tasks in the 3 scenarios, for a possible cache map. As also visible in Figure
6.4, the 4 tasks can be separated in two subsets, such that the first subset � �
contains only the task T � (that has the same cache size in all scenarios), and
the second subset � , contains 	 T , ] T : ] T ;7� (the sum of T , , T : and T ; cache
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Figure 6.4: Example: L2 cache footprints

parts are always the same). As a result we now have two similar instances
of the �'Hc� problem: (1) find the cache map for � � �ó	 T � � when having{c� c ��� * ]O\,s�^ q= 	 1, 2, 3 � and, (2) find the cache map for � , �c	 T , ] T :�] T ; �
when having {I� c ,-� * w c : � * w c ; � * ]O\,s'^ q= 	 1, 2, 3 � . Solving �'Hc� for � �
is straightforward, as � � contains only one task. Note that splitting the tasks
set in subsets guarantees that, for the subsets containing only one task have a
complete cache reuse. In the case of � , it can be observed that, for instance if
in S , T ; is placed in cache immediately after T � , thus before T , , at a scenario
switch S � = S , none of the T , data is reused, whereas maximum possible
reuse of T , data is achieved when its place it is not changed. If T , is always
the first task after at the top of the cache of � , ), its reuse is maximum. Same
observation is valid also for the reuse of T : , that reaches its maximum if T :
is always place at the bottom of � , . This fact represents the main idea of the�'HI� heuristic, as described in the remainder of this section.

For the general case in which ��Æ contains N Æ tasks, our mapping heuris-
tic is described by Algorithm 2. As a general rule, the heuristic successively
places task footprints in the cache in a decreasing order of their reuse CCR # ,
starting from the extremities of the cache toward the middle, giving priority
to critical tasks. At one mapping step we fix the footprint of a task T # in each
scenario in which T # is active. This means that, if in scenario S * a task T # is
mapped before a task T6 (T #M] T6�R � * ), also in a scenario S ý T # is mapped be-
fore a task T6 (T #M] T6JRt��ý ). This strategy is based on the observation that the
reuse tends to increase when the task have the same order in the cache in each
scenario (see the example in the Figure 6.4). The reuse CCR # is dependent on
the task position in the cache and it is recalculated at each mapping step, taking
in consideration the current values for b # � * and b # � ý . Given that a number of
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tasks are already mapped in the cache, for the remaining tasks we define CCR ×#
and CCR �# as the the reuse if T # is placed at the top (respectively at the bottom)
of the free cache extremity. We denote CCR × �# � CCR ×#
� CCR �# . Furthermore,	 T � Î���� �Æ � E �ÁÆ is the subset of critical tasks with sane footprint if placed at
the top or at the bottom of the free cache space.

Algorithm 2: Finding the cache footprint for all tasks

foreach � Æ R 	�� Æ � do
while �eÆ�u�
	�D�� do

for T #�R��ÁÆ do calculate CCR × �# and and form 	 T � ÎÊ��� �Æ � ;
foreach 	 top, bottom � cache extremities do

if 	 T � ÎÊ��� �Æ �.u�
	�DJ� then place the T #�R 	 T � ÎÊ��� �Æ � with the
largest {J{�0 × �# ;
else place the T # RF� Æ with the largest CCR × �# ;�ÁÆ ���ÁÆ�� T # ;

end
end

end

If Algorithm 2 cannot sanely place all ��Æ ’s critical tasks, we rerun it, but
at step 5 and/or 6, instead of picking the task with the largest reuse we make
it select the task with second, third, etc. largest reuse. In the case that after
all possible backtracking in � Æ no sane solution is found, we merge � Æ with
the �e� subset that has the minimum number of critical tasks, and restart the
entire optimization process. If no sane critical tasks placement is found even
after merging all �ÄÆ ’s, one of the following should be revised: (1) the cache
sizes c # � * allocated to each tasks or (2) the total cache size or (3) the selection
of the critical tasks. The first case actually means that the cache mapping
influences cache allocation (i.e., they are performed simultaneously). This is
an interesting problem by itself, and it can be subject for future research.

In practical situations the scenario transition frequency (or probability)
may not be known at design-time. An extension that copes with run-time
cache remapping, depending on the experienced q�* j ý is possible. Anyway,
the 	��ÁÆz� set does not depend on the scenario switch frequency, therefore it
can be already determined off-line. Then a CCR × �# formula with p * j ý � 1

U
(all transitions have equal probability) can be utilized to guide the initial foot-
print calculation. After that, at run-time, the system can learn the scenario
transition frequencies, and adjust the footprints accordingly. If all the critical
tasks can be placed on the first run of the Algorithm 2 the complexity of find-
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ing the footprints is polynomial, thus it is suitable for run-time execution (this
certainly holds true if, for example, every �zÆ has at most two critical tasks).
Nevertheless, a run-time solution independent of the number of critical tasks
is another interesting follow up of the present work.

6.3 Run-time cache management

In order to control the cache repartitioning, we employ a software Run-Time
Cache Manager (RTCM) executing on the control processor. At S *F= S ý ,
the RTCM jobs are, in order: (1) to stop the tasks that are not active in the
new scenario (T #ïR�� * ] T #A�R���ý ) and the tasks that change their footprints
(T # R ��*O] T # R � ý ] cf # � * u� cf # � ý ); this strategy allows tasks that do not change
their cache footprint to continue executing, reducing the flush impact, (2) to
initiate a partial cache flush according to the reuse rules in Section 6.1, and to
wait until the flush is performed, (3) to update the cache partitioning tables to
the new cache footprint, and (4) to start the new tasks (T #ðRt��ýÈ] T #��R � * ) and
to resume the tasks that changed their footprints (T # R
��*O] T # R�� ý ] cf # � * u�
cf # � ý ). In addition, we propose a cache controller that provides partial flush, as
introduced in the rest of this section.

In general, cache flushing implies a penalty that has two components. First
it is the extra time required to write the content of the flushed lines in the
main memory. Second, after the flush, extra (cold) misses may occur when the
flushed data are needed again in the cache. To minimize these overheads we
propose to flush only what it is necessary to ensure data correctness at each
scenario change, and to delay the flush as long as possible, in the eventuality
that it might not be needed anymore. The cache flushing policy consists of the
following rules:

(1) Flush no code. On the CAKE platform the code cannot be modified
during execution (it is read-only). Thus the main memory contains a valid
copy of all the application instructions. As a results, correctness is preserved
without having to flush the code.

(2) Late flush. This rule applies in the case a task T # stops at a scenario
change. Only at the moment when T # resumes its execution, its data are flushed
out of the cache (if, of course, T # ’s cache location is changed). In the mean
time some of the data might have been already swapped out by other tasks.
In this manner some cold misses still occur, but a part of the flushing over-
head is avoided. Moreover, if the task restarts and has the same cache part, it
potentially benefits from some remaining cached data.
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(3) Flush only the valid, ”owned”, cache lines. If the cache coherence
mechanism marks a cache line as invalid, the memory hierarchy contains a
more recent copy of the corresponding data, therefore the data correctness
is not influenced by the content of that line. A cache line is considered as
”owned” by a task T # , if that line stores some of T # data. Let us assume a
scenario transition S * = S ý when all T # cache lines are relocated. In order
to ensure the correctness of T # ’s data, only the cache lines owned by T # have
to be flushed out of cf # � * (data belonging to another tasks may still be cached
in some of cf # � * lines, from a previous execution, as allowed by the late flush
strategy).

Besides the implementation of set based partitioning, the dynamic cache
management requires that each cache line has a task id, in order to be able to
check the line’s ownership, as required by the third cache flushing rule. More-
over the lines caching code should be distinguished from the lines that cache
data (in general L2s are unified), to support the first cache flushing rule. How-
ever, the storage involved in these two issues (task id plus 1 bit for code/data)
is minor when compared to the total cache size (under 1% for an L2 having
512 Bytes cache lines).

6.4 Experimental results

In this section we investigate two issues related to cache repartitioning: the
compositionality and the performance.

The experimental setup is the one presented in Chapter 2, Section 2.5.2
consisting of a CAKE platform with four TriMedia processor cores executing
the applications A � ]�nonono] A = . We investigate the compositionality and the perfor-
mance of this system for L2 cache sizes varying from 256 KB to 2 MB, for
different scenario switching rates ranging from from 100Hz (one switch every
0.01 second) to 1Hz (one switch every second). In the remainder of this sec-
tion we first present the compositionality evaluation and then the performance
figures.

6.4.1 Compositionality

To evaluate compositionality, we look at the critical task execution time varia-
tions in particular and at the number of inter-task conflicts in general.

To check the critical task execution time (

h76 � Î ) variation we simulate the
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same application with random scenarios order, and different scenario switching
rates, (1Hz to 100Hz). The critical task execution time variation, is defined,
for a given execution, as the relative difference between the current execution
time and the minimum execution time the critical task experienced, over all
simulations: ÂË\ et � Î ^ � et � Î u �

���Ç �ç� execs. # \
h76 � Î# ^

�
�,�Ç ��� execs. # \ et � Î# ^ (6.13)

100Hz 50Hz 20Hz 10Hz 5Hz 1Hz max. variation

A > Critical tasks prio 0.4% 1.3% 1.6% 1.7% 1.9% 0.0% 1.9%
No critical tasks prio 1.5% 2.8% 1.8% 1.0% 0.2% 0.0% 2.8%
Shared 1.7% 1.4% 1.7% 0.6% 0.0% 0.6% 1.7%

A ? Critical tasks prio 1.1% 1.3% 2.2% 1.4% 1.4% 0.0% 2.2%
No critical tasks prio 4.6% 4.6% 5.0% 5.1% 4.1% 0.0% 5.1%
Shared 11.8% 11.1% 15.6% 7.4% 18.6% 0.0% 18.6%

A @ Critical tasks prio 2.0% 1.5% 1.2% 0.8% 0.3% 0.0% 2.0%
No critical tasks prio 3.8% 3.8% 0.2% 0.0% 0.2% 0.1% 3.8%
Shared 5.2% 4.0% 3.4% 3.3% 0.0% 7.5% 7.5%

A A Critical tasks prio 0.7% 0.7% 1.0% 2.3% 0.4% 0.0% 2.3%
No critical tasks prio 7.7% 16.2% 0.4% 0.8% 0.4% 0.0% 16.2%
Shared 1.8% 1.3% 0.0% 0.9% 4.7% 3.5% 4.7%

A B Critical tasks prio 1.4% 2.1% 0.0% 1.8% 0.4% 1.9% 2.1%
No critical tasks prio 3.7% 3.8% 3.3% 7.4% 4.0% 0.0% 7.4%
Shared 4.2% 2.7% 3.5% 1.7% 0.0% 7.3% 7.3%

A C Critical tasks prio 1.4% 1.8% 0.0% 0.3% 2.0% 1.3% 2.0%
No critical tasks prio 0.4% 13.3% 0.7% 0.0% 0.5% 2.8% 4.6%
Shared 3.8% 1.0% 0.0% 1.1% 4.6% 2.4% 13.3%Çk	k� Critical tasks prio 1.1% 1.2% 0.7% 1.1% 0.8% 0.5% 1.2%
No critical tasks prio 3.4% 6.9% 1.6% 2.2% 1.5% 0.5% 6.9%
Shared 4.5% 3.4% 3.7% 2.4% 4.7% 3.5% 4.7%

Table 6.1: Critical tasks execution time and their variations (L2 size 256 KB).

In the Tables 6.1, 6.2, 6.3, and 6.4 we present the variation in critical tasks
execution time corresponding to the 4 investigated L2 sizes (256 KB, 512 KB,
1MB and 2MB, respectively). We investigate three cases: (1) the cache foot-
prints determined with the method in Section 6.2 (Critical task prio), (2) the
cache footprints determined with the method in Section 6.2, but giving no pri-
ority to critical task (No critical task prio), and (3) the conventional shared
cache (Shared). The graph in Figure 6.5 presents the maximum

h76 � Î variations
for all the investigated cache sizes, over all the experimented scenario switch-
ing rates. Concretely, from the Tables 6.1, 6.2, 6.3, and 6.4, we observed the
following:

- for a cache size of 256 KB, in the case of Critical task prio, the maximum

h76 � Î variation is 2.3%, for a switching frequency of 10 Hz, for the application
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100Hz 50Hz 20Hz 10Hz 5Hz 1Hz max. variation

A > Critical tasks prio 1.8% 0.5% 0.4% 0.0% 0.1% 1.4% 1.8%
No critical tasks prio 4.4% 2.3% 1.9% 1.1% 0.0% 0.3% 4.4%
Shared 1.9% 3.0% 0.1% 0.0% 8.9% 13.8% 8.9%

A ? Critical tasks prio 1.0% 0.0% 2.0% 0.4% 1.2% 1.6% 2.0%
No critical tasks prio 0.9% 0.0% 1.1% 0.0% 0.2% 6.8% 6.8%
Shared 4.2% 1.9% 2.5% 0.0% 4.1% 3.5% 4.2%

A @ Critical tasks prio 0.7% 0.7% 0.1% 0.0% 0.2% 0.4% 0.7%
No critical tasks prio 0.4% 0.4% 0.4% 0.3% 0.2% 0.0% 0.4%
Shared 1.3% 1.9% 0.9% 0.5% 0.0% 0.0% 1.9%

A A Critical tasks prio 0.2% 0.0% 0.1% 0.0% 0.1% 0.0% 0.2%
No critical tasks prio 0.3% 0.0% 0.0% 6.6% 0.1% 0.2% 6.6%
Shared 1.4% 0.9% 1.2% 1.7% 0.0% 1.5% 1.7%

A B Critical tasks prio 0.7% 0.0% 1.2% 0.5% 1.7% 0.4% 1.7%
No critical tasks prio 0.6% 0.6% 0.1% 8.2% 0.0% 0.1% 8.2%
Shared 4.4% 4.5% 2.6% 3.2% 0.0% 10.3% 10.3%

A C Critical tasks prio 0.0% 0.2% 0.3% 0.2% 0.2% 0.1% 0.3%
No critical tasks prio 0.3% 0.0% 0.4% 2.0% 0.2% 0.2% 2.0%
Shared 1.4% 1.3% 1.8% 0.6% 0.7% 0.0% 1.8%Çk	�� Critical tasks prio 0.7% 0.2% 0.7% 0.2% 0.6% 0.4% 0.7%
No critical tasks prio 1.1% 0.5% 0.6% 3.0% 0.1% 1.2% 3.0%
Shared 2.4% 2.3% 1.5% 1.0% 2.3% 4.9% 4.9%

Table 6.2: Critical tasks execution time and their variations (L2 size 512 KB).

A ; , (with an average over all the applications, of maximum 1.2% at 5 Hz).
In the case of No critical task prio the maximum variation reaches a value of
16.2%, for a switching frequency of 50 Hz, for the same A ; (that, averaged
over all the applications, has a maximum of 4.7% at 20 Hz). In the Shared
cache case the maximum variation reaches a value of 18.6%, for a switching
frequency of 5 Hz, for the application A , (with an average over all the applica-
tions, of maximum 6.9% at 5 Hz switching frequency).

- for a cache size of 512 KB, in the case of Critical task prio, the maximum

h76 � Î variation is 2%, for a switching frequency of 20 Hz, for the application A , ,
with an average over all the applications, of maximum 0.7% at two scenario
switching frequencies of 1 and 10 Hz. In the case of No critical task prio
the maximum variation reaches a value of 8.2%, for a switching frequency
of 10 Hz, for the application A < , with an average over all the applications,
of maximum 3.0% at 10 Hz switching frequency. In the Shared cache case
the maximum variation reaches a value of 10.3%, for a switching frequency
of 1 Hz, for the application A < , that, averaged over all the applications, has a
maximum of 4.9% at 100 Hz.

- for a cache size of 1 MB, in the case of Critical task prio, the maximum

h76 � Î variation is 2.2%, for a switching frequency of 10 Hz, for the applica-
tion A , , with an average over all the applications, of maximum 1.2% at 1 Hz

143



100Hz 50Hz 20Hz 10Hz 5Hz 1Hz max. variation

A > Critical tasks prio 1.9% 1.9% 1.4% 0.4% 1.2% 0.0% 1.9%
No critical tasks prio 0.0% 4.0% 3.9% 4.0% 3.9% 2.4% 4.0%
Shared 0.4% 1.3% 0.0% 0.6% 0.3% 4.0% 4.0%

A ? Critical tasks prio 1.7% 2.0% 2.1% 2.2% 1.4% 0.0% 2.2%
No critical tasks prio 4.8% 4.8% 5.2% 5.4% 4.3% 0.0% 5.4%
Shared 7.7% 7.6% 8.3% 6.9% 7.1% 0.0% 8.3%

A @ Critical tasks prio 1.1% 0.6% 0.0% 0.0% 0.3% 0.2% 1.1%
No critical tasks prio 1.1% 1.4% 0.8% 0.3% 0.0% 0.7% 1.4%
Shared 2.6% 2.2% 0.0% 0.4% 0.0% 1.3% 2.6%

A A Critical tasks prio 1.1% 0.0% 0.0% 0.5% 0.3% 1.7% 1.7%
No critical tasks prio 5.9% 6.9% 6.8% 0.0% 6.2% 7.3% 7.3%
Shared 0.7% 0.4% 0.1% 0.2% 0.0% 4.2% 4.2%

A B Critical tasks prio 0.1% 0.7% 0.9% 1.0% 0.0% 1.9% 1.9%
No critical tasks prio 3.0% 3.8% 4.0% 4.0% 4.2% 0.0% 4.2%
Shared 2.3% 1.8% 2.2% 0.6% 0.0% 0.6% 2.3%

A C Critical tasks prio 1.2% 0.0% 0.7% 0.7% 0.2% 0.5% 1.2%
No critical tasks prio 1.4% 0.7% 0.8% 1.1% 0.4% 0.0% 1.4%
Shared 1.9% 1.1% 0.0% 0.6% 0.7% 0.4% 1.9%Ç�	k� Critical tasks prio 1.2% 0.9% 0.9% 0.8% 0.6% 0.7% 1.2%
No critical tasks prio 2.7% 3.6% 3.6% 2.5% 3.2% 1.7% 3.6%
Shared 2.6% 2.4% 1.8% 1.6% 1.3% 1.7% 2.6%

Table 6.3: Critical tasks execution time and their variations (L2 size 1 MB).

switching frequency. In the case of No critical task prio the maximum vari-
ation reaches a value of 7.3%, for a switching frequency of 1HZ Hz, for the
application A ; , and, averaged over all the applications, it has a maximum of
3.6% at two scenario switching frequencies of 5 and 10 Hz. In the Shared
cache case the maximum variation reaches a value of 8.3%, for a switching
frequency of 20 Hz, for the application A , , and, averaged over all the applica-
tions, it has a maximum of 2.6% at 1 Hz.

- for a cache size of 2 MB, in the case of Critical task prio, the maximum

h76 � Î variation is 2.1%, for a switching frequency of 50 Hz, for the applica-
tion A : . In the case of No critical task prio the maximum variation reaches a
value of 4.3%, for a switching frequency of 100 Hz, for the application A = . In
the Shared cache case the maximum variation reaches a value of 4.8%, for a
switching frequency of 5 Hz, for the application A < .

When comparing the Critical task prio case and the No critical task prio
one we can see that, if critical tasks cannot tolerate variations larger than 3%,
priority must be given to them at cache mapping stage. In all the presented
experiments the variations in

h76 � Î are very small for the Critical task prio case
(representing at maximum only 2.3% from the critical tasks execution time).
This is definitely not the case for No critical task prio and Shared. If no pri-
ority is given to the mapping of the critical tasks the

h76 � Î variations increase,
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100Hz 50Hz 20Hz 10Hz 5Hz 1Hz max. variation

A > Critical tasks prio 0.4% 1.5% 1.7% 0.0% 1.1% 2.1% 2.1%
No critical tasks prio 2.4% 2.2% 3.1% 2.8% 0.0% 1.6% 3.1%
Shared 1.6% 3.5% 3.2% 0.0% 2.3% 2.9% 3.5%

A ? Critical tasks prio 1.6% 0.8% 0.5% 0.0% 1.6% 1.3% 1.6%
No critical tasks prio 1.9% 1.7% 1.3% 2.0% 0.5% 1.7% 2.0%
Shared 3.0% 4.1% 1.2% 0.0% 2.8% 1.7% 4.1%

A @ Critical tasks prio 2.0% 2.1% 0.9% 0.8% 1.7% 0.0% 2.1%
No critical tasks prio 1.5% 1.9% 2.5% 3.3% 1.2% 0.0% 3.3%
Shared 2.2% 1.0% 2.5% 2.4% 0.0% 3.0% 3.0%

A A Critical tasks prio 0.7% 0.3% 0.0% 0.6% 1.6% 1.7% 1.7%
No critical tasks prio 2.2% 3.4% 0.0% 1.5% 1.8% 2.6% 3.4%
Shared 3.0% 2.8% 4.0% 3.5% 3.3% 0.0% 3.5%

A B Critical tasks prio 0.0% 1.7% 0.6% 0.3% 1.5% 1.9% 1.9%
No critical tasks prio 1.1% 2.9% 0.5% 0.3% 0.0% 1.6% 2.9%
Shared 3.5% 2.0% 2.3% 1.9% 4.8% 2.7% 4.8%

A C Critical tasks prio 0.3% 1.4% 0.0% 1.8% 1.5% 0.6% 1.8%
No critical tasks prio 4.3% 2.1% 3.2% 0.0% 2.9% 1.4% 4.3%
Shared 2.7% 0.0% 3.6% 4.2% 3.1% 2.5% 4.2%Ç�	k� Critical tasks prio 1.2% 0.9% 0.9% 0.8% 0.6% 0.7% 1.2%
No critical tasks prio 2.7% 3.6% 3.6% 2.5% 3.2% 1.7% 3.6%
Shared 2.6% 2.4% 1.8% 1.6% 1.3% 1.7% 2.6%

Table 6.4: Critical tasks execution time and their variations (L2 size 2 MB).

reaching a relative value of 16.2%, with an overall average of 3.5%. For the
shared cache the relative

h56 � Î variations represent 18.6% from the minimum
Shared

h56 � Î , with an overall average of 3.3%. When comparing the No crit-
ical task prio case and the Shared one can see that, in general, our method,
even with no priority given to the critical tasks, induced with up to 5% less
maximum

h56 � Î variation than the shared L2.

When looking at the maximum critical tasks execution time variations de-
pending on scenario switching frequency we notice no clear correlation, as
visible in Figure 6.5. This is somehow counter-intuitive, as one would expect
that the critical tasks have their minimum execution time for small switching
frequencies (visible as a 0% variation in the Table 6.1, 6.2, 6.3, and 6.4), and
that the execution time increases (thus the variations to grow) with the switch-
ing frequency. The reason why the system is not behaving as the intuition tells
is that the execution time is not dependent only on the number of flushes, but
also on the moment when those happen. If, for example, the tasks execution
is on a point between the processing of two frames when the flush occurs, the
flushing penalty is dependent on the amount of data reuse (the dependencies)
among the two frames.

In general we can observe that the critical tasks execution time variations
decrease with the increase of the cache size, as directly visible in Figure 6.6.
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Figure 6.5: Maximum critical tasks execution time variations depending on the
scenario switching frequency.
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Figure 6.6: Maximum critical tasks execution time variations depending on the
L2 size.

This is an expected effect because as the cache increases, more of the tasks’
footprint fit in it (if the L2 is large enough the complete footprints will re-
side there). Therefore less data is swapped out at scenario switch, thus tasks’
execution time variations decrease accordingly.

Apart from critical tasks execution time variations, the other metric used
for evaluating the compositionality is the number of inter-task conflicts, as
defined in Chapter 3, Section 3.5. These conflicts occur as a results of the
late cache flush policy presented in the previous section. The Tables 6.5 and
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256 KB 512 KB
100Hz 50Hz 20Hz 10Hz 5Hz 1Hz 100Hz 50Hz 20Hz 10Hz 5Hz 1Hz

A > Shared 71% 73% 69% 66% 63% 66% 70% 62% 66% 53% 64% 56%
St. part. 0% 0% 1% 0% 0% 0% 1% 0% 0% 0% 0% 0%
Dyn. part. 8% 2% 1% 1% 1% 0% 3% 2% 0% 0% 0% 0%

A ? Shared 81% 76% 73% 77% 75% 85% 75% 74% 73% 72% 76% 74%
St. part. 0% 1% 0% 0% 0% 0% 0% 1% 0% 0% 1% 0%
Dyn. part. 12% 7% 5% 0% 1% 0% 9% 8% 4% 4% 1% 0%

A @ Shared 70% 71% 68% 68% 70% 73% 69% 69% 71% 63% 62% 59%
St. part. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Dyn. part. 4% 6% 3% 2% 1% 0% 4% 1% 2% 1% 0% 0%

A A Shared 76% 75% 73% 74% 72% 79% 77% 72% 73% 78% 77% 75%
St. part. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Dyn. part. 6% 1% 0% 0% 0% 0% 11% 3% 1% 0% 0% 0%

A B Shared 76% 77% 78% 78% 79% 78% 76% 78% 75% 74% 72% 70%
St. part. 1% 0% 0% 1% 0% 0% 1% 0% 0% 0% 0% 0%
Dyn. part. 5% 3% 2% 2% 1% 0% 6% 1% 0% 0% 0% 0%

A C Shared 79% 77% 69% 68% 73% 70% 77% 74% 72% 73% 72% 75%
St. part. 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Dyn. part. 9% 7% 2% 0% 0% 0% 7% 5% 2% 1% 0% 0%Ç�	k� Shared 76% 75% 72% 72% 72% 75% 74% 71% 71% 69% 71% 69%
St. part. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Dyn. part. 7% 4% 2% 1% 1% 0% 7% 3% 2% 1% 0% 0%

Table 6.5: Inter-task conflict misses per scenario change frequency (L2 sizes:
256 KB and 512 KB).

6.6 illustrate the relative number of conflicts for the 4 investigated L2 sizes,
for each of the 6 applications, depending on the scenario switching frequency.
These conflict misses are depicted for three cases: conventional shared L2
(Shared), static set based partitioned cache (St. part) and dynamic set based
repartitioned L2 (Dyn. part). These values are relative to the corresponding
application total number of misses. The last row represents an average value
of all the applications inter-task conflicts. These experimental data lead to the
following observations:

- For a cache size of 256 KB, in the case of Shared cache, the average
number of conflicts reaches 74%, with a maximum of 81%, in the case of
a switching frequency of 100 Hz, for A , . In the Dyn. part cache case the
maximum number of conflicts has a value of 12% (with an average of 3%), for
a switching frequency of 100 Hz, for the application A , .

- For a cache size of 512 KB, in the case of Shared cache, the average
number of conflicts reaches 71%. In this case the maximum number of con-
flicts represents 77% from the total misses and it is observed for a switching
frequencies of 100 Hz, for A ; , A < and A = . In the Dyn. part cache case the
number of conflicts peaks at a value of 11% (with an average of 2%), for a
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1 MB 2 MB
100Hz 50Hz 20Hz 10Hz 5Hz 1Hz 100Hz 50Hz 20Hz 10Hz 5Hz 1Hz

A > Shared 71% 69% 62% 65% 60% 61% 68% 65% 62% 62% 69% 62%
St. part. 1% 1% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0%
Dyn. part. 9% 7% 2% 0% 0% 0% 2% 1% 0% 0% 0% 0%

A ? Shared 67% 66% 66% 67% 66% 68% 63% 62% 61% 61% 59% 62%
St. part. 1% 0% 1% 0% 0% 0% 1% 0% 0% 0% 0% 0%
Dyn. part. 3% 2% 2% 0% 0% 0% 9% 2% 0% 0% 0% 0%

A @ Shared 80% 80% 78% 74% 78% 78% 72% 68% 68% 75% 75% 69%
St. part. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Dyn. part. 8% 7% 1% 0% 1% 0% 3% 3% 1% 2% 1% 0%

A A Shared 76% 66% 65% 60% 62% 66% 58% 56% 55% 53% 52% 56%
St. part. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Dyn. part. 1% 1% 1% 0% 0% 0% 4% 1% 1% 0% 0% 0%

A B Shared 75% 73% 74% 72% 72% 74% 66% 65% 65% 63% 62% 64%
St. part. 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0%
Dyn. part. 1% 1% 1% 1% 0% 0% 8% 2% 0% 0% 0% 0%

A C Shared 71% 71% 72% 70% 71% 72% 66% 65% 63% 57% 61% 60%
St. part. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Dyn. part. 5% 1% 1% 1% 1% 0% 7% 6% 2% 0% 0% 0%Ç�	k� Shared 73% 71% 70% 68% 68% 70% 66% 64% 62% 62% 63% 62%
St. part. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Dyn. part. 5% 3% 1% 0% 0% 0% 5% 2% 1% 0% 0% 0%

Table 6.6: Inter-task conflict misses per scenario change frequency (L2 sizes:
1MB and 2MB).

switching frequency of 100 Hz, for the application A ; .
- For a cache size of 1 MB, in the case of Shared cache, the average number

of conflicts is 70%, with a maximum of 80%, in the case of the application A : ,
for switching frequencies of 50 and 100 Hz. In the Dyn. part cache case the
maximum number of conflicts has a value of 9% (with an average of 2%), for
a switching frequency of 100 Hz, for the application A � .

- for a cache size of 2 MB, in the case of Shared cache, the average number
of conflicts reaches 63%, with a maximum of 72%, in the case of the applica-
tion A : , for a switching frequency of 100 Hz. In the Dyn. part cache case the
maximum number of conflicts has a value of 9% (with an average of 1%), for
a switching frequency of 100 Hz, for the application A , .

Regardless of the cache size and the switching frequency, in the case of
St. part the maximum number of conflicts has a value of 1%, as expected
having in mind the results obtained in Chapter 3, Subsection 3.6.1 where we
investigate the static cache partitioning compositionality.

As visible in Tables 6.5 and 6.6 and more concise in Figure 6.7, when
the L2 is repartitioned and the scenarios are switched at a high frequency (20
Hz to 100 Hz), the average (over all applications and cache sizes) relative
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Figure 6.7: Number of conflict misses depending on the scenario switching
frequency.

��������	�
��	�
�������

����

�����

�����

�����

�����

�����

	����


����

�����

��	� ���� � �

���
�
������

������

��������

��������

Figure 6.8: Number of conflict misses depending on the L2 size.

number of conflicts reaches a value of 3%. The maximum number of conflict
misses encountered in these experiments is 12% for application A , , for a 100
Hz scenario change frequency. For scenario switching rates under 10Hz the
percentage of inter-task conflicts is at most 4% over all applications (with an
average of 1%). As expected, the percentage of conflict misses decreases with
the decrease of the scenario switch frequency, as the cache flushes occur less
often.

When the cache size increases, for both the repartitioned and the shared
cache, the number of conflicts tend to decrease, as visible in Figure 6.7. The
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reason behind this phenomenon is that, in general, the number of cache misses
is smaller for a larger cache, thus also the number of inter-task conflict misses
decreases.

Unlike the partitioned cache, in a shared cache a large fraction of the
misses represent actually inter-task conflict misses. The peak value for these
misses is 81% and the average for all applications and all frequencies is 69%.
Moreover, in this case there is no clear dependency among the scenarios
switching frequency and the number of conflicts. The reason behind is that,
unlike the repartitioned cache, the source of these conflict misses is not the
cache flush required at scenario change (in the case of a shared cache, flushing
is actually not needed). For a shared L2 the conflict misses occur not only at
scenario switch, but during the entire execution and are caused by tasks freely
swapping each other data (depending of input data, the moment of scenario
switch, the execution history, etc.).

These results clearly suggest that the proposed dynamic repartitioning
method results in a large improvement of the system compositionality, when
compared with a conventional cache. When scenario switching happens less
than 10 time per second the amount of inter-task conflicts is negligible ( } d�% ),
therefore we can consider that compositionality is achieved. Moreover, the
critical tasks are practically undisturbed. Static cache partitioning scores close
to ideal at compositionality, but, as one can see in the following subsection,
this comes with a performance penalty.

6.4.2 Performance

We measure the performance using two metrics: (1) the number of misses per
instruction (MPI), and (2) the processor’s average cycles per instruction (CPI).
We compare the performance in the following cases: (1) a set based repar-
titioned L2 with the cache footprints determined with Algorithm 2 presented
in the previous section (Alg2 footprints), (2) a set based repartitioned L2 with
optimally cache footprints, as determined in Section 6.2.2 (Opt. footprints),
(3) a conventional shared L2 (Shared), (4) a statically set based partitioned L2
(Static), and (5) an infinite L2 cache (Infinite). The comparison with the per-
formance of an infinite cache is interesting because it gives an idea about the
maximum improvement that can be achieved by tuning the L2 cache. In our
case it was enough to approximate an infinite L2 with a cache of 4 MBytes.

Tables 6.7, 6.8, 6.9, and 6.10 present the MPI and the CPI values for the
6 applications as functions of the scenario switching frequency, in the case of
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an L2 of 256 KB, 512 KB, 1 MB, and 2 MB, respectively. The values in the
Figures 6.9 and 6.10 represent the average over the 6 applications, for the 4
different L2 sizes. The MPI for the infinite cache is not presented as it is very
close to £ . Figures 6.11 and 6.12 present the average MPI and CPI for the 6
applications as functions of the scenario switching frequency.

MPI CPI
1Hz 5Hz 10Hz 20Hz 50Hz 100Hz 1Hz 5Hz 10Hz 20Hz 50Hz 100Hz

A > dyn. part. Alg. 2 0.030 0.038 0.042 0.043 0.053 0.070 1.28 1.29 1.28 1.29 1.35 1.35
dyn. part. Opt. 0.039 0.041 0.043 0.048 0.066 0.079 1.28 1.29 1.28 1.29 1.35 1.35
st. part. 0.039 0.041 0.043 0.048 0.066 0.079 1.31 1.31 1.31 1.31 1.32 1.36
shared 0.079 0.098 0.113 0.111 0.137 0.139 1.53 1.70 1.71 1.70 1.75 1.77

A ? dyn. part. Alg. 2 0.072 0.079 0.092 0.092 0.102 0.147 1.32 1.37 1.42 1.42 1.45 1.55
dyn. part. Opt. 0.077 0.079 0.092 0.092 0.122 0.166 1.32 1.37 1.42 1.42 1.45 1.55
st. part. 0.095 0.097 0.099 0.102 0.108 0.128 1.41 1.48 1.47 1.50 1.50 1.53
shared 0.109 0.128 0.134 0.139 0.146 0.160 1.61 1.81 1.82 1.82 1.84 1.86

A @ dyn. part. Alg. 2 0.074 0.072 0.072 0.079 0.096 0.113 1.33 1.32 1.32 1.33 1.37 1.41
dyn. part. Opt. 0.070 0.072 0.071 0.079 0.099 0.115 1.34 1.31 1.32 1.33 1.38 1.41
st. part. 0.089 0.091 0.089 0.091 0.093 0.140 1.38 1.37 1.36 1.38 1.40 1.41
shared 0.129 0.134 0.137 0.141 0.161 0.170 1.72 1.69 1.68 1.67 1.68 1.70

A A dyn. part. Alg. 2 0.019 0.020 0.021 0.023 0.021 0.024 1.19 1.19 1.19 1.20 1.25 1.24
dyn. part. Opt. 0.019 0.019 0.021 0.023 0.021 0.022 1.19 1.19 1.19 1.21 1.25 1.23
st. part. 0.036 0.041 0.039 0.038 0.038 0.038 1.28 1.34 1.31 1.28 1.28 1.30
shared 0.047 0.046 0.045 0.050 0.049 0.052 1.52 1.50 1.54 1.57 1.54 1.54

A B dyn. part. Alg. 2 0.035 0.036 0.039 0.044 0.044 0.052 1.37 1.36 1.37 1.39 1.40 1.40
dyn. part. Opt. 0.033 0.036 0.039 0.045 0.042 0.055 1.36 1.36 1.37 1.39 1.40 1.41
st. part. 0.039 0.035 0.037 0.038 0.038 0.039 1.39 1.39 1.38 1.39 1.40 1.41
shared 0.066 0.056 0.059 0.063 0.060 0.061 1.49 1.43 1.44 1.46 1.44 1.47

A C dyn. part. Alg. 2 0.094 0.103 0.107 0.110 0.111 0.129 1.34 1.37 1.40 1.39 1.41 1.45
dyn. part. Opt. 0.092 0.101 0.108 0.109 0.107 0.127 1.34 1.36 1.40 1.39 1.40 1.45
st. part. 0.131 0.142 0.143 0.151 0.151 0.166 1.47 1.53 1.53 1.56 1.58 1.61
shared 0.158 0.175 0.162 0.209 0.227 0.257 1.58 1.59 1.67 1.69 1.76 1.78Ç�	k� dyn. part. Alg. 2 0.054 0.058 0.062 0.065 0.071 0.089 1.31 1.32 1.33 1.34 1.37 1.40
dyn. part. Opt. 0.055 0.058 0.062 0.066 0.076 0.094 1.31 1.31 1.33 1.34 1.37 1.40
st. part. 0.072 0.075 0.075 0.078 0.082 0.098 1.37 1.40 1.39 1.40 1.41 1.44
shared 0.098 0.106 0.108 0.119 0.130 0.140 1.58 1.62 1.64 1.65 1.67 1.69

Table 6.7: L2 size 256 KB: 100xMPI and CPI, per scenario change frequency.

Despite the flushing penalty, the MPI and CPI for the dynamic cache repar-
titioning using the proposed mapping solution is smaller than the case when
the L2 is shared. On average over the 6 applications, and the scenario switch-
ing frequencies, these MPI and CPI reduction are as follows (per L2 size): (1)
47% and 18% for a 256 KB L2, (2) 37% and 12% for a 512 KB L2, (3) 26%
and 6% for a 1 MB L2, and (4) 23% and 2% for a 2 MB L2. The above men-
tioned CPI improvements represent the following fractions from the possible
improvements when having an ideal, infinite L2 (again per L2 size): (1) 35%
for a 256 KB L2, (2) 60% for a 512 KB L2, (3) 51% for a 1 MB L2, and (4)
52% for a 2 MB L2. We would like to underline that these improvements occur
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MPI CPI
1Hz 5Hz 10Hz 20Hz 50Hz 100Hz 1Hz 5Hz 10Hz 20Hz 50Hz 100Hz

A > dyn. part. Alg. 2 0.040 0.040 0.036 0.039 0.051 0.046 1.16 1.19 1.19 1.18 1.24 1.25
dyn. part. Opt. 0.036 0.040 0.032 0.047 0.056 0.043 1.13 1.18 1.19 1.17 1.25 1.25
st. part. 0.071 0.082 0.085 0.097 0.129 0.103 1.19 1.21 1.23 1.25 1.26 1.29
shared 0.050 0.049 0.053 0.053 0.062 0.066 1.30 1.30 1.30 1.33 1.33 1.35

A ? dyn. part. Alg. 2 0.015 0.029 0.028 0.037 0.047 0.064 1.24 1.18 1.25 1.24 1.28 1.25
dyn. part. Opt. 0.013 0.026 0.031 0.037 0.047 0.061 1.24 1.18 1.25 1.23 1.27 1.24
st. part. 0.017 0.032 0.038 0.040 0.038 0.046 1.25 1.18 1.25 1.25 1.26 1.24
shared 0.065 0.063 0.058 0.063 0.062 0.064 1.38 1.38 1.39 1.40 1.41 1.41

A @ dyn. part. Alg. 2 0.007 0.010 0.010 0.008 0.009 0.012 1.18 1.17 1.20 1.18 1.23 1.22
dyn. part. Opt. 0.006 0.009 0.009 0.008 0.008 0.011 1.17 1.17 1.20 1.18 1.23 1.22
st. part. 0.010 0.015 0.014 0.012 0.011 0.011 1.24 1.25 1.25 1.27 1.27 1.26
shared 0.015 0.021 0.024 0.024 0.024 0.026 1.24 1.27 1.28 1.29 1.28 1.28

A A dyn. part. Alg. 2 0.008 0.008 0.007 0.009 0.008 0.008 1.26 1.26 1.32 1.31 1.30 1.29
dyn. part. Opt. 0.007 0.007 0.007 0.009 0.008 0.008 1.27 1.26 1.32 1.31 1.30 1.30
st. part. 0.008 0.008 0.007 0.010 0.009 0.009 1.32 1.32 1.36 1.32 1.29 1.29
shared 0.009 0.010 0.011 0.011 0.010 0.011 1.49 1.41 1.40 1.43 1.41 1.41

A B dyn. part. Alg. 2 0.014 0.018 0.020 0.022 0.025 0.031 1.35 1.28 1.29 1.30 1.35 1.34
dyn. part. Opt. 0.014 0.018 0.019 0.021 0.025 0.031 1.34 1.29 1.28 1.30 1.35 1.34
st. part. 0.029 0.026 0.032 0.032 0.037 0.050 1.41 1.33 1.36 1.35 1.38 1.37
shared 0.067 0.057 0.058 0.060 0.060 0.062 1.49 1.43 1.44 1.44 1.46 1.45

A C dyn. part. Alg. 2 0.042 0.043 0.035 0.039 0.039 0.040 1.10 1.12 1.16 1.18 1.28 1.31
dyn. part. Opt. 0.042 0.041 0.035 0.040 0.043 0.050 1.10 1.12 1.16 1.19 1.28 1.32
st. part. 0.078 0.058 0.046 0.047 0.045 0.052 1.17 1.18 1.23 1.22 1.30 1.31
shared 0.101 0.097 0.097 0.105 0.101 0.101 1.36 1.39 1.37 1.37 1.38 1.39Ç�	k� dyn. part. Alg. 2 0.021 0.019 0.023 0.026 0.030 0.033 1.22 1.19 1.23 1.23 1.27 1.27
dyn. part. Opt. 0.020 0.018 0.022 0.027 0.031 0.034 1.21 1.20 1.23 1.23 1.28 1.28
st. part. 0.036 0.025 0.037 0.040 0.045 0.045 1.06 1.24 1.28 1.27 1.29 1.29
shared 0.051 0.050 0.050 0.052 0.053 0.055 1.38 1.36 1.36 1.37 1.38 1.38

Table 6.8: L2 size 512 KB: 100xMPI and CPI, per scenario change frequency.

when partitioning the L2 cache, while preserving its size. On average over all
cache sizes, the improvement brought by the dynamic cache repartitioning is
33% in MPI and 10% in CPI, when compared to a shared L2.

In general the advantage of dynamic cache partitioning vs. the static one is
that the dynamic partitioning scheme leads to a better utilization of the cache.
The static scheme leaves a cache fraction not utilized, as not all task execute all
the time, but they have a cache partition always allocated. However, the pitfall
of dynamic set based repartitioning is that it requires cache flushing, which
often comes with an overhead. The performance difference among the two
partitioning schemes is given by the combination of these two factors, and is
dependent of the application’s cache access pattern and the scenario switching
frequency. We experimentally observed that when comparing with a statically
partitioned cache the dynamically partitioned one exhibits, on average over the
6 applications and the scenario switching frequencies, the following MPI and
CPI reductions (per L2 size): (1) 27% and 4% for a 256 KB L2, (2) 26% and
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4% for a 512 KB L2, (3) 17% and 2% for a 1 MB L2, and (4) 9% and 1%
for a 2 MB L2. On average, the superiority of the dynamic over the static
cache partitioning is represented by a 19% and 3% reduction in MPI and CPI,
respectively.

MPI CPI
1Hz 5Hz 10Hz 20Hz 50Hz 100Hz 1Hz 5Hz 10Hz 20Hz 50Hz 100Hz

A > dyn. part. Alg. 2 0.008 0.008 0.009 0.010 0.010 0.011 1.25 1.27 1.28 1.27 1.31 1.32
dyn. part. Opt. 0.008 0.007 0.008 0.010 0.009 0.010 1.25 1.27 1.28 1.27 1.31 1.32
st. part. 0.014 0.016 0.021 0.024 0.025 0.025 1.28 1.29 1.32 1.32 1.33 1.36
shared 0.010 0.009 0.013 0.013 0.012 0.016 1.26 1.26 1.27 1.30 1.30 1.33

A ? dyn. part. Alg. 2 0.035 0.038 0.041 0.039 0.038 0.038 1.16 1.22 1.23 1.23 1.23 1.18
dyn. part. Opt. 0.035 0.053 0.041 0.035 0.052 0.033 1.16 1.22 1.23 1.23 1.23 1.18
st. part. 0.050 0.050 0.045 0.043 0.040 0.040 1.23 1.23 1.24 1.23 1.24 1.24
shared 0.051 0.053 0.051 0.050 0.044 0.045 1.28 1.34 1.33 1.33 1.34 1.38

A @ dyn. part. Alg. 2 0.007 0.004 0.004 0.004 0.004 0.004 1.18 1.17 1.17 1.18 1.19 1.18
dyn. part. Opt. 0.007 0.004 0.004 0.004 0.004 0.004 1.18 1.17 1.17 1.18 1.19 1.18
st. part. 0.006 0.004 0.005 0.005 0.005 0.005 1.18 1.17 1.18 1.18 1.19 1.19
shared 0.007 0.006 0.005 0.005 0.007 0.006 1.20 1.19 1.18 1.19 1.20 1.19

A A dyn. part. Alg. 2 0.001 0.001 0.001 0.001 0.001 0.001 1.19 1.16 1.16 1.16 1.17 1.18
dyn. part. Opt. 0.001 0.001 0.001 0.001 0.001 0.001 1.19 1.16 1.16 1.16 1.16 1.16
shared 0.001 0.001 0.001 0.001 0.001 0.001 1.21 1.16 1.16 1.16 1.19 1.19
shared 0.003 0.003 0.003 0.003 0.002 0.002 1.25 1.17 1.18 1.17 1.20 1.21

A B dyn. part. Alg. 2 0.023 0.022 0.022 0.023 0.027 0.023 1.16 1.16 1.16 1.16 1.16 1.16
dyn. part. Opt. 0.022 0.020 0.021 0.020 0.024 0.021 1.16 1.15 1.15 1.16 1.16 1.15
st. part. 0.024 0.021 0.023 0.023 0.027 0.025 1.16 1.17 1.16 1.17 1.17 1.17
shared 0.034 0.031 0.032 0.034 0.032 0.034 1.31 1.28 1.28 1.29 1.29 1.29

A C dyn. part. Alg. 2 0.014 0.014 0.014 0.014 0.014 0.016 1.10 1.11 1.11 1.10 1.12 1.10
dyn. part. Opt. 0.013 0.015 0.013 0.014 0.014 0.015 1.11 1.10 1.10 1.10 1.11 1.10
st. part. 0.014 0.012 0.014 0.013 0.014 0.014 1.10 1.11 1.11 1.10 1.12 1.11
shared 0.011 0.010 0.010 0.010 0.012 0.011 1.22 1.21 1.21 1.23 1.23 1.24Ç�	k� dyn. part. Alg. 2 0.015 0.015 0.015 0.015 0.016 0.016 1.17 1.18 1.19 1.18 1.20 1.19
dyn. part. Opt. 0.014 0.017 0.015 0.014 0.018 0.014 1.18 1.18 1.18 1.18 1.19 1.18
st. part. 00.018 0.017 0.018 0.018 0.019 0.019 1.19 1.19 1.20 1.19 1.21 1.21
shared 0.020 0.019 0.019 0.019 0.018 0.019 1.25 1.24 1.24 1.25 1.26 1.28

Table 6.9: L2 size 1 MB: 100xMPI and CPI, per scenario change frequency.

The performance differences in MPI and CPI among the static and dynamic
partitioned cache decrease with the increase of scenario switching frequency.
Let us look at the smallest L2 size used for the experiments (i.e.256 and 512
KB). For a scenario switching rate of 100Hz the dynamically partitioned L2
outperforms the statically partitioned one on average with 2% (with a maxi-
mum of 5%) for the CPI metric and with an average of 17% (with a maximum
of 36%) for the MPI metric, whereas for a scenario switching rate of 1Hz the
improvement reaches on average 5% (with a maximum of 7%) and 35% (with
a maximum of 44%), respectively. For a cache size of 512 KB, for a scenario
switching rate of 100Hz the dynamically partitioned L2 outperforms the stati-
cally partitioned one on average with 1% (with a maximum of 5%) for the CPI
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MPI CPI
1Hz 5Hz 10Hz 20Hz 50Hz 100Hz 1Hz 5Hz 10Hz 20Hz 50Hz 100Hz

A > dyn. part. Alg. 2 0.005 0.005 0.006 0.007 0.007 0.007 1.24 1.26 1.26 1.27 1.27 1.27
dyn. part. Opt. 0.005 0.005 0.005 0.007 0.006 0.007 1.25 1.25 1.26 1.26 1.26 1.27
st. part. 0.009 0.011 0.014 0.016 0.017 0.017 1.25 1.26 1.26 1.25 1.26 1.27
shared 0.007 0.006 0.009 0.009 0.008 0.011 1.26 1.26 1.27 1.26 1.26 1.26

A ? dyn. part. Alg. 2 0.024 0.026 0.028 0.027 0.027 0.026 1.14 1.15 1.15 1.16 1.16 1.15
dyn. part. Opt. 0.024 0.038 0.030 0.024 0.036 0.024 1.16 1.16 1.15 1.16 1.16 1.16
st. part. 0.036 0.034 0.032 0.031 0.028 0.028 1.15 1.15 1.16 1.16 1.16 1.16
shared 0.035 0.036 0.035 0.035 0.030 0.031 1.16 1.15 1.15 1.16 1.16 1.16

A @ dyn. part. Alg. 2 0.003 0.002 0.002 0.002 0.002 0.002 1.18 1.17 1.17 1.17 1.19 1.18
dyn. part. Opt. 0.003 0.002 0.002 0.002 0.002 0.002 1.17 1.17 1.17 1.18 1.19 1.18
st. part. 0.003 0.002 0.002 0.002 0.002 0.002 1.19 1.18 1.19 1.19 1.19 1.19
shared 0.017 0.014 0.009 0.009 0.011 0.011 1.19 1.18 1.19 1.19 1.19 1.19

A A dyn. part. Alg. 2 0.001 0.001 0.001 0.001 0.001 0.001 1.16 1.16 1.16 1.16 1.17 1.18
dyn. part. Opt. 0.000 0.001 0.001 0.000 0.001 0.001 1.17 1.16 1.16 1.16 1.16 1.16
st. part. 0.001 0.001 0.001 0.001 0.001 0.001 1.16 1.17 1.17 1.17 1.19 1.19
shared 0.002 0.002 0.002 0.002 0.001 0.001 1.16 1.16 1.16 1.17 1.18 1.16

A B dyn. part. Alg. 2 0.015 0.014 0.014 0.015 0.017 0.015 1.15 1.15 1.15 1.16 1.15 1.16
dyn. part. Opt. 0.015 0.014 0.014 0.013 0.014 0.013 1.16 1.16 1.16 1.15 1.16 1.16
st. part. 0.016 0.015 0.015 0.014 0.019 0.017 1.16 1.16 1.16 1.16 1.16 1.16
shared 0.022 0.030 0.021 0.020 0.021 0.022 1.16 1.14 1.15 1.15 1.15 1.15

A C dyn. part. Alg. 2 0.004 0.004 0.004 0.004 0.005 0.005 1.10 1.10 1.10 1.10 1.10 1.11
dyn. part. Opt. 0.004 0.004 0.004 0.004 0.005 0.004 1.10 1.10 1.10 1.10 1.10 1.11
st. part. 0.004 0.003 0.004 0.004 0.004 0.004 1.10 1.10 1.11 1.10 1.10 1.10
shared 0.003 0.003 0.003 0.003 0.004 0.003 1.10 1.10 1.10 1.10 1.10 1.10Ç�	k� dyn. part. Alg. 2 0.008 0.008 0.009 0.009 0.009 0.009 1.16 1.17 1.17 1.17 1.17 1.18
dyn. part. Opt. 0.008 0.010 0.009 0.008 0.010 0.008 1.17 1.17 1.17 1.17 1.17 1.17
st. part. 0.011 0.011 0.011 0.011 0.012 0.022 1.17 1.17 1.18 1.17 1.18 1.18
shared 0.014 0.015 0.013 0.013 0.012 0.013 1.17 1.17 1.17 1.17 1.17 1.17

Table 6.10: L2 size 2 MB: 100xMPI and CPI, per scenario change frequency.

metric and with an average of 23% (with a maximum of 56%) for the metric
MPI, whereas for a a scenario switching rate of 1Hz the improvement reaches
on average 7% (with a maximum of 10%) and 47% (with a maximum of 56%),
respectively. The performance differences among the static and dynamic par-
titioning scheme become smaller for larger cache sizes. This is an expected
effect, as a large cache can contain most of the application’s footprint, thus the
L2 behaves close to ideal. As a result, in whatever manner one would tune the
L2, it can have a little influence on the application’s performance.

The only four cases when the dynamic partitioning performs worse than
the static one is when the scenarios switch with a 100Hz rate for A , and A :
with a cache of 512KB and for A , and A < with a cache of 256KB. Concretely,
when compared to an dynamically partitioned cache, for an L2 of 256KB the
statically partitioned cache causes a 14% better MPI, and 1% CPI for A , , and
30% better MPI, and 1% CPI for A < , respectively. For an L2 of 512KB the
performance difference are 39% in MPI, and 1% CPI in for A , , and 3% in MPI,
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and no CPI difference for A : , respectively. The reason behind this performance
loss is that for these applications when scenarios are switched very fast the
cache flushing penalty exceeds the benefits of using a larger part of the cache.
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Figure 6.9: Performance: MPI depending on the L2 size.
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Figure 6.10: Performance: CPI depending on the L2 size.

When comparing the Alg2 footprints case with the optimally cache foot-
prints, we can notice that the performance difference among the two is not
large. At maximum, for a cache size of 256KB, Opt. footprints has 8% better
MPI, resulting in 1% CPI improvement. Overall, on average the Opt. foot-
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prints delivers 4% MPI improvement and very small CPI reduction, while, due
to the large number of ILP variables required, its optimization time can be up
to few days. Contrarily, the Alg2 footprints optimization time is in the order of
magnitude of minutes. Therefore we believe that the small extra performance
that Opt. footprints brings does not justify the large amount of time spend in
optimization, and we conclude that the method in Alg2 is more suitable for our
case.
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Figure 6.11: Performance: MPI depending on the scenario switching fre-
quency.

The above mentioned figures clearly indicate that the use of the dynamic
partitioning method in applications with multiple utilization scenarios, espe-
cially for low scenario switching rates (this rate is likely to be even lower than
one switch every second), can be beneficial.

When looking solely at the dynamic partitioning involving Algorithm 2,
we can notice that the average MPI and CPI increase when the scenario switch-
ing frequency is varied from 1Hz to 100Hz. For a cache of 256KB, the MPI
increase when the scenario switching frequency is 1Hz is 34% larger than the
one when switching the scenarios at 100Hz, resulting in a 4% CPI variation.
The corresponding values for the other investigated cache sizes: 27% and 19%
for 512KB, 5% and 1% for 1MB and for 2MB 3% and 0%. However, for real-
istic scenario switching ranges (over 10Hz) the difference is at maximum 20%
in MPI and 2% in CPI. This suggests that in such a case the cache flushing
penalty is not significant.
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Figure 6.12: Performance: CPI depending on the scenario switching fre-
quency.

6.5 Conclusion

In this chapter we proposed a dynamic cache management method that en-
hances compositionality for multimedia applications with multiple utilization
scenarios. At run-time, when the scenario changes, tasks might start or stop,
thus the cache is repartitioned. As the partitioning is set-based, the dynamic
repartitioning requires L2 cache flushing in order to keep the data consistency.
This involves an overhead that, in principle, negatively affects the system per-
formance in general and the critical tasks behavior in particular. In this context
we propose a method which: (1) at design-time determines the cache footprint
of each tasks, such that the critical tasks are guaranteed to be undisturbed,
and the flushing overhead is minimized in general, and (2) at run-time ensures
that the cache footprints are enforced and further decreases the flush penalty.
On a CAKE multiprocessor with 4 cores we investigated the compositionality
and the performance induced by the proposed cache repartitioning over a wide
range of scenario switching frequency (100Hz to 1Hz).

With respect to compositionality, for realistic scenario switching frequen-
cies, we found that, relative to the application number of misses, the inter-task
cache flushes are under 4% for the repartitioned cache, whereas for the shared
cache they reach 81%. Moreover, the relative variations of critical tasks ex-
ecution time are less than 0.1%, over the entire scenario switching frequency
range studied, when the L2 is repartitioned according to our method. The
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relative variations of critical tasks execution time reach a value of 18% for a
shared cache, and 16% for a repartitioned cache that does not give priority to
critical task when placing them in cache. Thus if critical tasks cannot tolerate
variations larger than 3%, priority must be given to them at cache mapping
stage.

Concerning the performance, the dynamic repartitioning reduces the num-
ber of L2 misses per instruction on average with 33% (and a peak of 47%),
when compared with the shared cache. As a consequence, the average number
of cycles needed to execute an instruction is decreased with as much as 18%
(on average with 10%), when compared with the shared cache, under the cir-
cumstances that a maximum of 35% reduction is potentially achievable when
using an infinite L2 cache. Thus 56% of the possible maximum improvement
is achieved by repartitioning, while preserving the same L2 size. As expected,
the performance of the shared and the repartitioned cache come closer and
closer with the increase of the cache size (large caches can contain more of the
application footprint, thus the total application performance is not that sensi-
tive to cache optimizations of any kind, as it is for a small cache). Furthermore,
when comparing with a statically partitioned cache, the dynamic repartitioning
reduces the number of L2 misses per instruction on average with 19% (and a
peak of 56%). The average number of cycles needed to execute an instruction
is decreased with maximum 10% (on average with 3%), when compared with
the same statically partitioned cache. Moreover, the misses per instruction dif-
ference among an optimal dynamic partition and the heuristic we propose is at
maximum 4%. As the time to find the optimal partitioning may be up to sev-
eral days, whereas the heuristics takes minutes, the small gained performance
does not justify the large amount of time spend in optimization.

In conclusion, despite the involved cache flushing, the repartitioned L2
enables high compositionality and delivers better performance than the shared
and the statically partitioned cache.
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Chapter 7

Conclusions and future work

In this thesis we proposed a cache memory management method suited for
embedded chip multiprocessors executing multimedia applications. Typical
requirements in this domain are high performance, predictability, low resource
usage, low cost, fast time to market, and dependability. In this context, flexi-
bility is a key design requirement that facilitates the update to new standards
and the addition of new features. Moreover, parts of the system can be easily
reused, providing better premises for a fast time to market and a low produc-
tion cost. On the other hand, accurate performance prediction for a flexible
memory hierarchy requires a large analysis effort, which obstructs the time to
market. The purpose of this dissertation was to obtain a suitable flexibility-
predictability trade-off for media applications running on embedded multipro-
cessors. Predicting the performance of a parallel multimedia system involves
predicting the performance of its sequential parts (called tasks), as well as their
degree of interaction. As this interaction is typically unpredictable, especially
in systems with caches, the performance of each sequential task should be
(ideally) preserved if the tasks are executed concurrently in arbitrary combi-
nations, or if additional tasks are added. A system satisfying this property is
called compositional. In our scheme, we use hardware controlled memories
(caches) for flexibility reasons and we proposed to use a task centric cache
management scheme to ensure compositionality, thus preserving predictabil-
ity. In this chapter, we first present the summary of this dissertation, then dis-
cuss the main contributions of this work, and finally suggest future promising
research directions.
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7.1 Summary

In Chapter 2, we first introduced the necessary terminology and definitions
related to the desired properties of multimedia embedded systems, namely
predictability, flexibility, and compositionality. We have also described the
targeted platform (the CAKE multiprocessor) and the benchmark application
suite (multimedia, multitasking) utilized in all the experiments presented in the
rest of this thesis. The CAKE platform contains four media processor cores
(TriMedia) and one control processor (MIPS), each one having its local first
level of cache (L1 cache). Moreover, the platform contains a large, shared, sec-
ond cache level (L2 cache). The applications executed on this platform consist
of multiple tasks that may share instructions and/or data. More precisely, such
an application may consist of independent tasks (from MediaBench augmented
with an H.264 codec), or of communicating tasks (H.264 and PiPTV). These
applications may be static, in the sense that tasks do not start and/or stop at
run-time, or dynamic, if different execution scenarios (i.e., tasks do start and
stop at run-time) may occur.

In Chapter 3 we introduced the task centric memory management concept.
The main idea is to partition the shared L2 cache among the application tasks,
such that these tasks do not conflict in the cache, and the system is compo-
sitional. Starting from a conventional cache organization, we identified two
options for cache partitioning, namely set-based and associativity-based parti-
tioning. Further, we proposed a technique to find the cache partitioning ratio
that minimizes the overall number of misses (based on a Dynamic Program-
ming formulation). We investigated the compositionality and the performance
for these two options, as well as for the conventional shared cache, for var-
ious cache sizes of the CAKE platform. We proposed to use the number of
inter-task conflicts misses as a metric for compositionality. The experiments
indicated that both cache partitioning methods are potential candidates to keep
the cache accesses of each task isolated and to induce compositionality, as the
conflict misses for the partitioned cache represent less than 1% from the total
application misses.

As expected, the conventional shared cache has poor compositionality: we
found that, on average, inter-task conflict misses reach 66% of the applica-
tion misses. Regarding the performance, we found that for 89% of the cache
configurations (64 of the 72 size/associativity combinations we experimented
with, the set-based cache management led to an improvement in cache per-
formance (measured in misses per instruction, MPI) and to faster computation
(measured in cycles per instruction, CPI), when compared with a shared cache.

160



More precisely, when compared to a shared cache, the set-based partitioned
cache provides up to 62% less MPI and 31% less CPI (note that less MPI and
CPI translate to better performance), with an average decrease of 29% and 8%,
respectively. In only 8 cases out of the 72 investigated, we found that set-based
partitioning degraded the cache performance. On average over these 8 cases,
the performance degradation was 19% and 4% for MPI and CPI, respectively.
We also found that most of the time (67 from the 72 cases), associativity-based
partitioning degrades the memory hierarchy performance. When compared
with the conventional cache organization, associativity-based partitioning in-
creases the MPI with up to 187%, slowing down the computation with 229%,
with an average penalty of 52% more MPI and 25% more CPI. Summarizing,
the superiority of set-based cache partitioning over associativity-based parti-
tioning is caused by two reasons: (1) the available number of allocable cache
parts is larger, and (2) it does not reduce the associativity of a task’s cache
part. As set-based cache partitioning leads to far better performance, we have
considered it the foundation for our task centric cache management.

In Chapter 4 we proposed a mixed, set and associativity-based cache par-
titioning method that ensures performance compositionality and also allows
cache sharing for common tasks data and/or instructions (shortly named ”com-
mon regions”). This method removes the inter-task cache interference by using
two static cache partitioning types. First, each task and each inter-task com-
mon region gets allocated an exclusive part of the cache sets. Second, inside
the cache sets of a common region, each task accessing it receives a number of
ways. Furthermore, we add to the mixed partitioning method two techniques
to determine the cache partitioning ratio. The first aproach is an extension of
the method introduced in Chapter 3 (the method used to minimize the overall
number of misses) that also supports sharing cache parts for data and instruc-
tions. The second method aims to optimize the application throughput and it
is based on simulated annealing. In the case of throughput optimization, at ev-
ery step of the annealing, the throughput of the system has to be estimated very
fast. Therefore, we design and use a light simulation strategy. When compared
with a cycle-true simulation, our novel, light simulation is 30 times faster and
its accuracy is within 3%.

We have applied these techniques to two multi-tasking applications that
share data and instructions (H.264 and PiPTV). On the CAKE platform, the
experimental results indicated that the proposed cache partitioning ensures
compositionality to a large extent, as for both applications the conflict misses
represent less than 1% of the total misses. Moreover, we compared the perfor-
mance of the following four cases: (1) the cache is fully shared, (2) the cache
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is partitioned such that the number of misses is minimized ( {�Ã10 8 ), (3) the
cache is partitioned such that the throughput is maximized ( {ÄÃ10w� ), and (4)
the cache is shared, but has a virtually infinite L2 (enough to contain the entire
application’s footprint - 8MB in the present case). We measured the L2 perfor-
mance (in number of L2 misses per instruction - L2 MPI) and the application
performance (in number of cycles per instruction - CPI, and throughput). As
expected, the performance differences among the four cases are dependent on
the L2 cache size. When the platform was equipped with a relatively small L2
cache size, our simulations indicate that the smallest number of misses achiev-
able by a partitioned cache is larger than the one of a shared cache of the same
dimensions. As both the PiPTV and H.264 applications have a large number
of tasks and common regions, for small caches, the fragmentation of the cache
entailed by partitioning caused a performance decrease of the {ÄÃ10 8 when
compared with the shared cache. More precisely, on average over the two
applications, the MPI increases with 17%, and the CPI with 6%. However,
for the same sizes, the {ÄÃ10�� case improves the throughput at the expense of
extra misses. When compared with {ÄÃ10 8 , the {�Ã10�� increases the through-
put with 7% on average, under the circumstances that a maximum throughput
increase of 25% is potentially achievable with an infinite L2 cache. Thus,
with less than a quarter of the L2, our method achieves more than a third of
the maximum throughput improvement reachable with an L2 cache of 8MB.
This throughput increase corresponds to an L2 MPI increase with 14%. For
medium cache sizes, the elimination of inter-task misses caused by partition-
ing supersedes the effect of cache fragmentation. The {ÄÃ10 8 partitioned L2
has 5% better CPI and 28% better MPI than the shared cache, on average.
The {ÄÃ�0�� has more or less the same performance as the {ÄÃ10 8 . Finally,
our experiments indicate that, for our applications, both {�Ã10 methods de-
liver compositionality, but speedup is achieved by the {ÄÃ10�� optimization for
small-size L2 caches, and by the {ÄÃ�0 8 optimization for larger L2 caches.

In Chapter 5 we proposed a method to analyze the static cache partition-
ing robustness. Two types of robustness were discussed: internal (determined
by inter-task interference in the L1 cache) and external (determined by the
variations of the L2 behavior due to various input data sets). We have in-
troduced quantification metrics for both robustness types. To assess internal
robustness, we defined the sensitivity function, which measures the deviation
of L2 misses caused by the L1 misses variations over a range of task switching
rates. To assess the external robustness, we introduced the stability function,
which measures the performance deviation for the case the application pro-
cesses another input data set than the one utilized to determine the static L2
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partitioning ratio. To demonstrate our approach, we analyzed both types of
parallel applications introduced in Chapter 2 (i.e., consisting of independent
tasks or of communicating tasks). Concerning the internal robustness, if the
cache is partitioned, the application sensitivity is at most 8%, with an average
of 4%. This small sensitivity reinforces the conclusion that partitioning the
L2 is enough to achieve compositionality in a large degree, for these applica-
tions. Comparing the internal robustness of the shared and partitioned cache
cases, we found that the shared cache is on average 6 times more sensitive than
the partitioned one. Moreover, the large difference between the sensitivity of
the shared and the partitioned caches is an interesting fact in itself, as it sug-
gests that the optimization processes for L1 and L2 caches can be decoupled
if the L2 is managed in a task centric manner. For the external robustness, the
variations induced in the L2 behavior by various input data sets are at most
10% over the entire range of applications we have tried. This accounts for an
average stability of 92%, therefore, for the investigated applications, we can
conclude that the static cache partitioning is quite robust with respect to input
stimuli variations.

In Chapter 6 we proposed a dynamic task centric cache management strat-
egy. This strategy is tailored to multimedia application with multiple execution
scenarios. In this case, during the transition between consecutive execution
scenarios, some tasks may start and/or stop. If the cache is statically allocated,
the part corresponding to a task would be reserved all the time for it, even when
the task is not executing. In this manner, the cache is wasted and the system
performance may be penalized. To avoid this waste, we propose a strategy to
dynamically repartition the cache at a scenario change, such that we enhance
compositionality and we efficiently utilize the entire cache. Due to composi-
tionality, once the performance of each task is known, the cache partitioning
ratio can be easily computed off-line for each scenario. At run-time, when the
scenario changes, the cache is repartitioned to a new ratio. As the partitioning
is set-based, preserving data correctness requires some cache flushing. This
involves an overhead that, in principle, decreases the system performance in
general and the critical tasks behavior in particular. In this context, we pro-
posed a method which: (1) determines at design-time the cache footprint of
each task, such that the critical tasks are guaranteed to be undisturbed and
the flushing overhead is minimized, and (2) ensures at run-time that the cache
footprints are enforced, while further decreasing the flush penalty. On the
same CAKE multiprocessor, we investigated the compositionality and the per-
formance induced by the proposed dynamic cache repartitioning over a wide
range of scenario switching frequency (100Hz to 1Hz).
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To assess compositionality, we have measured the number of inter-task
cache misses relative to an application’s total number of misses, for realistic
scenario switching frequencies. We found that the inter-task cache misses are
below 4% for the repartitioned cache, while they can reach 81% for the shared
cache. Moreover, when the L2 is repartitioned according to our method, the
relative variations of the critical tasks execution times are less than 0.1% for
the entire scenario switching frequency range we have studied.

Regarding performance, our dynamic repartitioning reduces the L2 MPI
with 33% on average (with a peak of 47%), when compared with the shared
cache. As a consequence, for the dynamically repartitioned cache, the average
number of cycles per instruction is 10% lower on average (with a peak of
18%) than for the shared cache; note that a maximum of 35% CPI reduction
is potentially achievable when using an infinite L2 cache. Thus, using our
dynamic repartitioning, we reach 56% of the maximum improvement, while
preserving the L2 size. As expected, the performance difference between the
shared and the dynamically repartitioned cache reduces with the increase of
the cache size.

7.2 Main contributions

In the context of compositional memory hierarchies for embedded multipro-
cessors, the main contributions of this work can be listed as follows:� We compared the two natural manners of partitioning a cache, namely

set and associativity-based, and we found that both partitioning schemes
can ensure compositionality within 1% bounds.� We proposed a new set-based partitioning implementation method
which does not require compiler modifications, and is not dependent
of the memory addressing model.� We proposed a technique to find the cache partitioning ratio that has
the minimum number of application cache misses (based on a Dynamic
Programming formulation).� For media applications consisting of independent tasks from the Medi-
aBench suite augmented with an industrially relevant H.264 codec, on
a CAKE platform with 4 TriMedia processors, we found that the L2
misses per instruction resulting from set-based partitioning are on av-
erage 55% smaller than the ones corresponding to associativity-based
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partitioning, and 29% smaller than the L2 misses per instruction of the
conventional shared cache. This leads to an average application speedup
of 27% and 8%, when compared to associativity-based partitioning and
to a conventional shared cache, respectively. These facts recommend
set-based partitioning as the best candidate for a task centric cache man-
agement scheme for multimedia applications on a multiprocessor.� We introduced a new task centric cache management method tailored for
media applications that share data and/or instructions. This method con-
sists of a mixed (set- and associativity-based) cache partitioning scheme
and two cache partitioning ratio optimization strategies: (1) minimize
the number of misses and (2) maximize the throughput.� By applying the our new method to the benchmark applications consist-
ing of communicating tasks, we observed that the amount of inter-task
interference is under 1%, indicating that the proposed cache partitioning
ensures compositionality to a large extent.� For applications consisting of communicating tasks, when the platform
was equipped with a relatively small cache, our simulations indicated
that the smallest number of misses achievable by a partitioned cache is
larger than the one of a shared cache of the same dimensions. For the
same (small) cache sizes, we observed that, when the throughput maxi-
mization method is applied, the throughput improves (with 7% on aver-
age) at the expense of misses growth (with 14% on average). Thus, for
our applications, when using small caches, the price of compositionality
is a degradation in performance. For average cache sizes, the partition
that minimizes the number of misses also decreases both the CPI (with
5% on average) and MPI (with 28% on average) when compared with
the shared cache. The partition that maximizes the throughput has more
or less the same performance as the one minimizing the misses. For
large cache sizes, the performance of the partitioned and shared cache
are very close. Thus, for average size and large caches, mixed partition-
ing induces compositionality and always preserves or improves cache
performance.� To investigate the robustness of a system that is using our cache manage-
ment we introduce two metrics to assess: (1) the performance deviations
caused by the tasks comprising the application (internal robustness) and
(2) performance variations caused by external stimuli (external robust-
ness). According to our simulations, the system variations due to inter-

165



nal interferences are below 8% and the variations due to external factors
are below 10%. Thus, the system is robust in the presence of cache
partitioning.� We extended the task centric cache management with a dynamic method
for applications with multiple execution scenarios, and critical tasks.
The dynamic partitioning ensures high cache utilization, exhibits high
compositionality, and safeguards critical tasks against performance dis-
ruptions.� We found that, for realistic scenario switching frequencies, relative to
the application number of misses, the inter-task cache misses are below
4% for the repartitioned cache, while reaching 81% for the shared cache.
Moreover, when the L2 is repartitioned according to our method, the rel-
ative variations of critical tasks execution times are less than 0.1% for
the entire scenario switching frequency range we studied. We conclude
that our dynamic cache repartitioning ensures reasonably high composi-
tionality.� We proved that our dynamic repartitioning increases application perfor-
mance. In numbers, our scheme reduces the MPI of a shared cache with
33% on average, resulting in a 10% decrease of the average CPI. When
compared with the static cache partitioning, on average, the superiority
of the dynamic repartitioning is proven by the reduction in both MPI
(19% on average, with a peak at 56%) and CPI (3% on average, with a
peak at 10%).

In conclusion, we found that task centric cache management proved to be
a potential approach for inducing compositionality for embedded multiproces-
sors systems with shared caches. In this dissertation we showed that both static
and dynamic multimedia applications with soft real-time constraints may ben-
efit from such a management scheme. The experimental results confirmed the
idea that partitioning the cache per task basis induces cache compositionality.
Moreover, they indicated that when assigning the cache parts according to the
algorithms proposed in this thesis, the system performance is increased in most
of the cases. In a nutshell, while preserving its flexibility, the shared cache ac-
quired compositionality. In this manner the predictability of each application
task is left undisturbed, and the analysis required to dimension the system can
be performed in isolation for each task. Therefore the cost and effort involved
in designing a system is reduced and reuse is facilitated, as detailed analysis
of tasks in every possible combination is not required anymore. Ultimately,
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these improvements lead to potentially cheaper platforms and shorter time to
the market.

7.3 Future research directions

Our research may be continued in the following directions:� In this dissertation we considered tasks as basic entities for cache man-
agement. But as a task may access large internal data arrays, further
performance optimization may be possible by allocating parts of cache
to the internal task’s arrays (inside task compiler analysis may be com-
bined with cache partitioning). In this case, a task would be able to al-
locate non-contiguous cache parts, resulting in new formulations for the
cache allocation and cache mapping problems, and potential for more
performance gain via cache partitioning.� Minimizing energy consumption is important for a multiprocessor on
chip in general, and for embedded multiprocessors that operate on bat-
tery power in particular. Thus, the trend in state of the art caches is to
provide features for energy management. For example, cache lines that
are not used may be turned to modes that save power in various degrees.
Therefore, an interesting opportunity for both static and dynamic appli-
cations would be to use cache partitioning for power management.� In this thesis, our main focus is on ensuring compositionality. When
computing the partitioning ratio, our performance optimization methods
do not take into account the task scheduling and mapping. Instead they
target flexible systems, with natural load balancing of tasks to proces-
sors. Another option to compute the cache partitioning ratio is to take
into account the scheduling policy, potentially leading to a higher cache
utilization, hence better application performance, or cheaper platforms
(if same application performance may be achieved with less L2 cache,
the amount of cache on the platform can be decreased).� Cache partitioning is a method that invalidates the potential benefits of
cache sharing (namely more cache available per task), for the purpose
of achieving compositionality. As we can notice, for applications with
a large number of tasks, and platforms with small caches, partitioning
the cache can cause performance degradation due to high cache frag-
mentation. For systems in which performance is an serious issue, and
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having a small cache is a strong cost constraint, one can think of low-
ering the compositionality bounds for increasing performance. To do
so, an idea is to share a cache partition among several tasks for which
the maximum interference can be predicted. Another idea is to dynam-
ically repartition the cache, even if the applications are static. In short,
the compositionality-performance trade-off is a design parameter not yet
explored.� In the proposed dynamic repartitioning scheme we utilized a rather inac-
curate estimate of the cache content reuse. The cache content reuse esti-
mation can be refined, most likely leading to an increase in performance.
Moreover, a fully dynamic repartitioning method that detects on-line the
application’s pattern of scenario switching and the cache content reuse,
is likely to deliver further performance gain.

Overall, task centric cache management proved to bring interesting compo-
sitionality and performance advantages for multiprocessor platforms executing
multimedia workload, and to open new exiting research directions.
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Samenvatting

E
n deze dissertatie stellen wij een cache geheugen management methode
voor die toegepast kan worden in embedded chips met meerdere proces-
soren die multimedia applicaties uitvoeren met soft-real time eisen. Hier-

bij nemen wij een CAKE multiprocessor platform met 4 TriMedia processoren
en een interne geheugenhiërarchie met een gedeelde level twee (L2) cache als
uitgangspunt. Omdat de interferentie normaal gesproken onvoorspelbaar is in-
dien er gezamenlijke toegang is naar de gedeelde L2 cache, dient het systeem
compositioneel te zijn om aan zijn real-time eisen te kunnen voldoen. Met an-
dere woorden, de prestaties van elk individueel deel (of taak) dienen behouden
te blijven wanneer meerdere verschillende taken tegelijkertijd uitgevoerd wor-
den of indien er taken worden toegevoegd. Om compositionele cache toegang
te garanderen stellen wij voor om delen van de L2 exclusief toe te wijzen
aan elke taak. Wij vergelijken vervolgens set- en associativiteits-gebaseerde
partitionering van de L2 voor applicaties bestaande uit onafhankelijke taken.
We gebruiken het aantal cache misses dat veroorzaakt wordt door inter-taak
cache interferentie als een maat van compositionaliteit. We zien dat beide par-
titioneringen een grote mate van compositionaliteit opleveren (het aantal cache
misses dat veroorzaakt wordt door inter-taak cache interferentie is kleiner dan
1% van het aantal cache misses voor de gehele applicatie). Set-gebaseerde
partitionering verhoogt, en associativiteits-gebaseerde partitionering verlaagt
de prestaties van het systeem. Dit is de reden waarom we set-gebaseerde par-
titionering hebben gekozen als basis voor onze taak-centrische cache manage-
ment methode. Voor applicaties met afhankelijke taken introduceren wij een
gemengde partitioneringsmethode. Deze methode wijst de cache set-gebaseerd
toe aan elke taak en elk gedeeld data/code bereik, en wijst de cache vervolgens
associativiteits-gebaseerd toe binnen elk gedeeld data/code bereik aan iedere
taak die dit bereik addresseert. Vervolgens stelden wij optimalisatie strategieën
van de cache partitionerings verhouding voor om het aantal cache misses te
minimaliseren en om de doorstroom te maximaliseren. Experimenten tonen
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aan dat deze gemengde partitioneringsmethode resulteert in minder dan 1%
L2 interferentie tussen de taken, en dus een hoge compositionaliteit tot gevolg
heeft, en tevens de prestaties verbetert. Tenslotte stellen wij, voor scenario’s
waarin applicatie taken kunnen starten of stoppen, een dynamische cache her-
partitioneringsmethode voor die: (1) in de ontwerpfase de locatie in de cache
voor iedere taak in ieder scenario bepaalt, waarbij de kritieke taken niet ver-
stoord worden en de herpartitioneringskosten minimaal zijn, en (2) tijdens de
uitvoering schakelt tussen de verschillende partitioneringen en de repartitioner-
ingskosten nog verder verlaagt. Simulaties suggereren dat deze de herparti-
tioneringsmethode een hoge mate van compositionaliteit oplevert, dat kritieke
taken gewaarborgd blijven, en dat de prestatie wordt verhoogd. De verkregen
resultaten geven aan dat taak-centrisch cache management een veelbelovende
aanpak is voor embedded multiprocessor systemen die statische of dynamische
multimedia applicaties uitvoeren.
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