
Effects of task complexity and time pressure
on activity-travel choices: heteroscedastic logit
model and activity-travel simulator experiment

Chao Chen • Caspar Chorus • Eric Molin • Bert van Wee

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract This paper derives, estimates and applies a discrete choice model of activity-

travel behaviour that accommodates potential effects of task complexity and time pressure

on decision-making. To the best of our knowledge, this is the first time that both factors

(task complexity and time pressure) are jointly captured in a discrete choice model. More

specifically, our heteroscedastic logit model captures potential impacts of task complexity

and time pressure through the scale of the utility of activity-travel options. We collect data

using a novel activity-travel simulator experiment that has been specifically designed with

the aim of testing our model. Results are in line with expectations, in that higher levels of

task complexity and time pressure are found to result in a smaller scale of utility. In other

words, higher levels of task complexity and time pressure lead to more random choice

behaviour and as a consequence to less pronounced differences in choice probabilities

between alternatives. An empirical illustration suggests that choice probability-differences

between models that do and those that do not capture these effects, can be very substantial;

this in turn suggests that failing to capture the effects of task complexity and time pressure

in discrete choice models of activity travel decision-making might lead to serious bias in

forecasts of the effects of transport policies.

Keywords Task complexity � Time pressure � Activity-travel choice � Heteroscedastic

logit � Activity-travel simulator experiment

Introduction

Daily activity-travel choices are often highly complex, in the sense that there are many

alternatives to choose from and that these alternatives are multi-dimensional (i.e., consist
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of combinations of activities and associated travels) and sometimes difficult to compare

(i.e., resemble one another in terms of attractiveness). Although the complexity of daily

activity-travel decision making has been widely acknowledged since decades (e.g., Recker

et al. 1986; Kitamura 1988; Arentze and Timmermans 2004), a limited amount of attention

has been directed towards incorporating task complexity in discrete activity-travel choice

models—but see Arentze et al. (2003) and (Caussade 2005) for notable contributions. In

fields adjacent to transportation, more examples can be found where task complexity is

explicitly captured in discrete choice models (e.g., Swait and Adamowicz 2001; DeShazo

and Fermo 2002; Dellaert et al. 2011).

A similar but even more salient argument holds for the notion of time pressure. It is

obvious that in many activity-travel contexts, pre-, but especially en-route, time pressure1

is a potentially important factor influencing decision-making processes: consuming too

much decision-time comes with the risk of late arrival at the activity location due to, for

example, missing a bus or a highway-exit. However, we know of no attempts to explicitly

capture, in a discrete choice model, the influence of time pressure on the making of

operational activity-travel choices. Also in fields adjacent to transportation, we were un-

able to find studies that aim to capture time pressure in a discrete choice model.

This paper contributes to the travel behaviour modelling literature (i) by being the first

to explicitly and jointly model task complexity and time pressure in a discrete choice

model of activity-travel choices, and (ii) by estimating and testing the resulting model

using data from a novel activity-travel simulator experiment that has been specifically

designed for that purpose. Our modelling approach is inspired by previous studies (e.g.,

DeShazo and Fermo 2002; Caussade 2005; Dellaert et al. 2011) that have built and esti-

mated heteroscedastic logit models whose scale is conceived to be a function of task

complexity (and, in our study, time pressure). Our data collection approach builds on

previous studies that used dynamic, interactive simulator-experiments to study activity-

travel behaviour (e.g., Bonsall and Palmer 2004; Chorus et al. 2007; Sun et al. 2012).

‘‘Model development’’ section presents our discrete choice model of activity-travel

behaviour, incorporating task complexity and time pressure. ‘‘The activity based travel

simulator’’ section presents the activity-travel simulator used for data collection. ‘‘Model

estimation’’ section discusses model estimation and parameter interpretation, and ‘‘Re-

sults’’ section presents conclusions and potentially fruitful directions for further research.

Model development

Random utility maximization or RUM (McFadden 1973) is the dominant theoretical

paradigm underlying the modelling of discrete choices. The RUM decision rule assumes

that decision-makers choose that alternative from a set of choice alternatives from which

they derive the highest utility. The utility consists of a systematic part and a random part

reflecting the idiosyncrasies of the choice process and possibly unobserved attributes:

Ui = Vi ? ei. Here, Ui is the utility of alternative i; and Vi is the systematic component of

the utility; ei is a random component. Although other specifications are possible, the

structural utility Vi is typically modelled as linear in the parameters function. In case of K

distinctive attributes, Vi has the following form: Vi ¼
PK

k¼1 bk � xik; where bk is a

1 This paper does not focus on time pressure of the type that is experienced by someone who aims to fit an
overly ambitious activity-travel program in a day’s 24 h. Rather, we focus on the time pressure that is
experienced when there is less time than needed or wanted, to make an operational activity-travel decision.
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parameter which is to be estimated and which expresses the weight (taste) regarding

attribute k; and xik is the value of attribute k of alternative i. Depending on the assumptions

regarding the distribution of the random utility component, different choice probability

formulations arise. If it is assumed that the random component ei is independently iden-

tically distributed (IID) Extreme value type I, the well-known multinomial logit model

(MNL) model arises. In this model, utility is related to choice probability as follows:

PðiÞ ¼ el�ViP
j2C

el�Vj
.

Parameter l is the scale parameter, which is inversely related to the variance of the error

component: var(e) = p2/(6l). The scale parameter is not identifiable jointly with taste

parameters, and is therefore normalized. A typical normalization is to set the scale to 1,

implying that the variance of the random error equals p2�
6. The IID assumption underlying

the MNL model involves that the random error for alternative j is independent from that of

alternative i, and that the error term distributions of all alternatives have the same variance.

This latter assumption is called homoscedasticity. One approach that has been successfully

used in previous studies (see references in the introduction) is to handle the impacts of task

complexity on choice behaviour is to allow for the variance of the random component in

the utility function to be a function of task complexity, which is equivalent to the notion

that the scale of the utility is a function of task complexity.2

As each choice task may be associated with a different level of task complexity, the scale

is no longer identical for all choice tasks, which gives rise to a more flexible model, called

heteroscedastic logit (HL). The core feature of HL models is that the random component is

no longer identically (i.e., with equal variance) distributed across alternatives [e.g. (Da-

ganzo 1979), Bhat (1995)]. DeShazo and Fermo (2002) utilized a HL model to evaluate the

impacts of the complexity of choice sets on choice consistency. Arentze et al. (2003) took a

similar approach to demonstrate that the variance of the random component rises with the

increase of task complexity. Caussade (2005) and Dellaert et al. (2011) developed HL

models with the scale parameter being specified as a function of task complexity.

In this paper, we propose to model the impact of time pressure on a traveller’s choices

in a similar fashion as the impact of task complexity, and hence, we incorporate time

pressure in a heteroscedastic model. Thus, in the resulting HL model3 the scale parameter l
is no longer considered to be a constant but it is parameterized as a function of task

complexity and time pressure of the choice task s. This function takes the following form

to ensure non-negativity: ls ¼ exp a Ds; Ts; Int Ds; Tsð Þð Þð Þ, where a() is a linear function of

its arguments and associated parameters; Ds is the measurement of task complexity in

choice situation s; Ts is the measurement of time pressure in choice situation s; Int(Ds, Ts)

is the measurement of possible interaction effects involving both task complexity and time

pressure.

2 As a referee noted, another way to understand and model traveller response to increasing levels of task
complexity and time pressure would be to hypothesize that they switch from a linear-additive utility-
maximization decision rule, to a presumably less computationally demanding rule such as—for example—
elimination by aspects (Tversky 1972) or Satisficing (Simon 1955). We leave the exploration of such
alternative responses for further research. Note that we did check if choices under high levels of task
complexity and time pressure became Lexicographic (e.g. an individual always choosing the fastest mode,
irrespective of the performance on other attributes). We found that none of the individuals in our sample
exhibited Lexicographic behavior regarding either the time or cost attribute, which can be considered as
some support for our approach to model behavior using the linear-additive utility-maximization rule.
3 More specifically, to accommodate for task complexity and time pressure while allowing for unobserved
(i.e., random) heterogeneity in tastes, we use a Mixed Logit version of the HL model.
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We expect that if task complexity and/or time pressure increases, decision-makers will

have more trouble choosing the alternative from which they derive the highest utility.

Hence, task complexity and time pressure are expected to increase the randomness in the

choices made, resulting in a larger variance of the error component. Consequently, we

hypothesize that if the complexity of the choice task increases and/or time pressure in-

creases, the scale parameter ls will become smaller.

Measuring task complexity

We choose to measure task complexity in terms of the time used by the individual to make

a decision, under the condition that no time constraint is present. The idea is that if

someone takes a long time to reach a decision, this can be considered a proxy for, or a

signal of, the complexity of the choice task (see also Diederich 2003). Of course, many

other ways exist in which task complexity can be and has been operationalized, such as

counting the number of alternatives and attributes in a choice task (Arentze et al. 2003), or

computing the entropy of a choice task (Swait and Adamowicz 2001). One advantage of

using decision time as a measure of task complexity, is that it generates a substantial

amount of intra- and interpersonal variation; as such it allows for the efficient statistical

inference of potential relations with dependent variables (such as, in our case, the scale of

utility).

However, it should be noted that a longer decision time may—in addition to task

complexity effects—reflect other effects, such as for example relating to the similarity of

the alternatives on offer, or (the absence of) dominant alternatives. But note that choice set

composition was not varied systematically in our experiment, whereas task complexity in

terms of the number of alternatives was; as a consequence, we may assume that a sub-

stantial part of the systematic variation in decision time will be due to variation in task

complexity (if such an effect exists in reality). Furthermore, it is worth noting at this point

that decision time may also be related to the presence or absence of habitual behavior: if

someone (in real life) always chooses the car-option for her daily commute, this decision

will at some point not take a lot of time anymore. Note that our experiment—although

designed to be to some extent a realistic account of real life—will still differ substantially

from actual day-to-day travel choices made respondents. As such, we assume that habitual

behavior (and its effect on decision time) in real life will only transfer to a limited extent to

our experimental setting. Finally, it may be noted that we also estimated models where task

complexity was measured directly in terms of the number of alternatives on offer and other

observable characteristics of the choice situation, to avoid any potential confounding of the

decision time proxy with other factors such as choice set composition and habit (see

directly above). The fit of these alternative models with the data however, was substantially

worse than that of the models which used the decision time as a proxy for task complexity;

this made us decide to use the latter in the remainder of our analyses.

Measuring time pressure

Previous studies into time pressure have conceived time pressure in terms of how much

time a decision-maker is allowed when making his decision, i.e. the decision time budget.

This time-budget is usually a priori constrained and systematically varied by researchers

(e.g. Nowlis 1995; Ordóñez and Benson Iii 1997; Dhar and Nowlis 1999). It is subse-

quently hypothesized that the less decision time budget decision-makers have, the more

time pressure they experience, ceteris paribus. However, such a measure does not take into
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account the actual time that is used by a decision maker to make the decision. For example,

if the budget is 60 s, it may be argued that a decision-maker that took 59 s to make a

decision felt more pressured than a person that took only 30 s, as the former has almost

used up all his or her decision time budget. Therefore we propose a measure of time

pressure, which relates the actual decision time consumed to the decision time budget. It is

formulated as follows: DSs = DTs/DTBs, where DSs is the time pressure measure for

choice situation s; DTs is the actual decision time for choice situation s; and DTBs is the

decision time budget for choice situation s. For the same example above, the value of this

new measure DSs equals 0.98 for the first decision-maker and 0.50 for the second decision-

maker.

Note that since in our HL model an increase of time pressure is assumed to be asso-

ciated with an increase in the randomness of choice, one may be compelled to expect that

the scale would become smaller as DSs increases, and hence, that the scale monotonically

decreases as a function of DSs. However, when the value of DSs is close to 0, this indicates

that the decision maker only used a very small fraction of the available time budget, which

may also be interpreted as a signal that he or she did not care about choosing the best

alternative. In other words, a low value of DSs may indicate absence of engagement with

the choice task. Following this argument, (very) low values of DSs are expected to lead to

relatively low scale values. When this is indeed the case, an inverted U-shaped curve,

rather than a monotonic decreasing relation between time pressure and scale, is to be

expected. Of course, which of the two possibilities is correct is an empirical question. To

allow for both a time pressure and an engagement effect, our HL-models employ linear as

well as quadratic terms for the DSs variable. To the extent that an inverted U-shape is found

in the process of model estimation, DSs should be considered an engagement/time pressure

index rather than a time pressure index alone.

The activity based travel simulator

In order to estimate the model developed in the previous section, choices need to be

observed for different contexts of task complexity and time pressure. In order to be able to

control for especially time pressure, we rely on stated preference methods. Compared with

conventional SP methods, travel simulators typically stimulate respondents to be more

actively involved in the experiment, provide illustrative and interactive user interfaces, and

most importantly for our study, provide the researcher with more control about ex-

perimental conditions (e.g., Chen and Mahmassani 1993; Mahmassani and Jou 2000;

Bonsall and Palmer 2004; Chorus et al. 2007; Prendinger et al. 2011). In the following, we

describe the activity-based travel simulator (ATS), a travel simulator which we specifically

developed for this study.

The starting point for the development of ATS is the notion that a traveller needs to

conduct some activities in a normal workday, such as working, grocery shopping, meeting

friends, etc., the so-called activity program. In order to limit the number of combinations,

only a few typical activities from different activity categories are selected in ATS, that is:

(1) Primary activities work; (2) Maintenance activities grocery shopping and fitness; (3)

Leisure leisure shopping and meeting friends. In order to execute all activities, people have

to travel between respective locations. Conducting a daily activity program usually consists

of several trips, for which typically various modes are available to choose from. Moreover,

the timely order to execute activities (defined as activity sequence) may differ. To reflect

these activity-travel options, an alternative in a choice set in our ATS describes the
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execution of a complete activity program for a given day, which contains the following

basic elements: (i) a timely ordered sequence of the activities; (ii) geographic locations of

the activities; and (iii) a trip between the activity locations, including trip modes, their

respective travel time and travel cost.

Participants were asked to assume that they recently moved to the hypothetical travel

environment created in the ATS. This environment, displayed in Fig. 1, basically involves

two cities where activities can be conducted. The supposed home is located in Stad A (city

A), where one can conduct most activities, while the work location is located in Stad B

(city B). All the daily activity program alternatives are graphically displayed in the main

screen in a sequential animation with arrows indicating the sequence of the activities and

required travel. The arrows are accompanied with the icons denoting the travel mode for

each trip, accompanied by its related travel time and costs. The mode is depicted as an

icon. Some icons additionally illustrate the additional travel burden associated with trav-

eling by that mode for a particular activity, e.g. a bicycle with a shopping bag in the basket

in case of a grocery trip by bicycle. In addition, the complete activity schedule including all

trips is shown in one string at the bottom of the screen, denoting the same information in a

different format. It is important to note that at any moment in time, the specific information

of only a single alternative can be shown on the interface, so that it is impossible to see all

the alternatives in a choice set on a single screen. However, the respondent can easily

switch between the different screens to become acquainted with all the alternatives of the

choice task.

Travel times and costs that correspond to the travel mode for a trip between two

activities, are randomly drawn from a predefined range of values for each choice task and

for each participant, as presented in Table 1.

Fig. 1 An example of the ATS computer screen
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Variations in task complexity and time pressure

Choice task complexity levels are varied by varying: (i) the number of alternatives in the

choice set, which varies between 2 and 4, and (ii) by varying the number of activities

within each choice alternative, which varies between 1 and 4. Table 2 shows the six task

complexity combinations used for this study.

In the first part of the experiment, there is no predefined time budget for making choices

(i.e., participants could take as long as they want to make a choice). Every participant is

first presented with a series of six choice tasks, one for each of the choice task numbers as

presented in Table 2, and in order of increasing complexity. The time it takes the par-

ticipant to make a decision is recorded. After a break, another series of six choice tasks is

presented to each participant, again each representing any of the six choice task numbers of

Table 2. However, this time the participant has to make the choices under the condition of

a time constraint.

The decision budget for this second series of choices needs to be set in such a way that a

participant is neither stressed out by a very small time budget nor overly relaxed due to a

Table 1 Ranges of attribute-
values for the travel trips

Travel time (min) Travel cost (€)

Within neighbourhood

Cycling 6–10 0

Car 3–5 1–2

Between neighbourhood and train station A

Cycling 12–16 0

Car 6–10 2–3

Between train station A and integrated facility

Walking 1–3 0

Cycling 1–3 0

Between train station A and train station B

Train 35–45 4–6

Between train station B and office

Walking 3–5 0

Between neighbourhood and office

Car 46–56 7–10

Table 2 Variations in task complexity (CTnr = choice task number)

Nr. of activities in an
activity program

Nr. of travel alternatives in choice set

2 3 4

1 CTnr 1: work

2 CTnr 2: work,
grocery shopping

CTnr 3: work, fitness

3 CTnr 4: work, fitness,
grocery shopping

CTnr 5: work, meeting friends,
fitness

4 CTnr 6: work, leisure shopping,
fitness, meeting friends
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very large time budget. The time budget is therefore personalized and depends on the time

the participant took to make the first series of choices, multiplied by a time factor. To set

the values of the time factor, a small-scale pilot experiment was carried out. 20 people

were recruited for this pilot run, who were randomly divided into three groups. For the first

group of seven persons, the time factors all equal one. A brief interview was conducted

afterwards, asking their opinions about the extent to which they felt time-pressured to make

their decisions for each of the tasks. Based on these results, the time factor values were

adjusted, and the procedure is repeated for the second and the third group. This finally led

to time factors applied in the experiment, which are shown in Table 3. A time factor larger

than 1 means that participants are given more time to make a decision than it took them in

the first series, however, the resulting assigned time budget may still be perceived as a time

pressure as participants may not be aware of the time it took them to make a decision in the

first series of choices; because there was no time constraint in the first series, any constraint

may add to the notion of feeling pressured.

The time budget assigned to make a choice is presented very clearly in the upper-right

corner of the computer screen: a countdown clock showed how many seconds were left for

choice making (‘‘Aftellen’’ in Fig. 1). If the participant fails to reach a decision within the

given time budget, ATS would inform him or her that because of this, a choice is randomly

and automatically made by ATS instead. Respondents were informed before starting this

part of the experiment, that if they would not choose within the allowed timeframe, a

random choice would be made for them.

The sample

In May and June 2012, participants were recruited to participate in this experiment by

IntoMart, a marketing research company. The company approached persons from its ex-

isting panel database, who own a car, work at least 2 days a week and who commute to

towns or cities other than their own place of residence. Participants were offered €20

incentive and €10 of travel cost to join. The experiment was executed in a controlled

computer room in a sequence of sessions, with a maximum of 40 persons each to ensure

that every participant could be closely monitored by an experiment supervisor. Table 4

presents the main characteristics of the participants. In total, 113 persons participated, who

almost all have a paid job. 74 % of those with paid jobs commute to work at least 4 days a

week. For the rest of the background characteristics, except that half of the participants

belong to the category of WO/HBO4 in education, the sample is fairly heterogeneous.

Participants’ experiences with ATS

Before presenting the results we briefly discuss the suitability of the simulator. More

specifically, in this section, we report on the participants’ experiences with the activity-

based simulator. After completing the experiment, participants rated five statements, each

Table 3 Time factor per choice task number

Choice task Nr. 1 2 3 4 5 6

Value of time factor 0.7 0.7 0.7 1.1 0.9 1.1

4 WO/HBO stands for university education, MAVO/VMBO intermediate vocational education, HAVO
higher general continued education, and WO pre-university education in the Dutch vocational system.
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on a five-point scale ranging from ‘‘completely disagree’’ denoted as 1 to ‘‘completely

agree’’ denoted as 5, regarding their evaluations of the experiment, as listed in Table 5.

The table suggests that a large majority of the participants were able to remain focused

during the experiment process, felt the information shown in ATS was illustrative, un-

derstood the experiment well, and enjoyed the experiment as a whole. A small proportion

of the participants felt that activity programs presented to them were not sufficiently

realistic to their real life situation. Overall, this feedback suggests rather positive

evaluations from the participants. Note that the average ratings obtained here are quite

comparable to those attained in another travel simulator (Chorus et al. 2007). In Chorus

et al.’s experiment, similar evaluations on the participants’ feedback on their simulator are

obtained, with the following four statements: (1) I found it difficult to remain concentrated

during the experiment; (2) I found it difficult to identify with the different travel situations;

(3) I found the travel simulator easy to understand; (4) I enjoyed participating in the

experiment. They found that the average ratings of the four statements are 2.24, 1.94, 4.19

and 4.47 respectively on a scale from 1 to 5 (the small values of the first two are due to the

negative formulations in the answers of the two statements). If the first two statements

would be reformulated by replacing the word ‘difficult’ with ‘easy’, the ratings of the two

might be transposed to 3.76 and 4.06 respectively. It may be argued that the choice task in

the travel simulator in this study is complex, but very concrete, while the choice task

applied in Chorus’ et al.’s travel simulator was less complex, but more abstract. That

comparable results are found for both simulators, indicates that indeed travel simulators

succeed in engaging participants in complex choice tasks.

Table 4 Characteristics of the experiment participants

Characteristics Category Distribution (n = 113) (%)

Job Paid job 97.3

Volunteer 0.8

Others 1.8

Commuting to work (days per week) C4 days 74.3

4[ and C2 days 16.8

\2 days 8.9

Age 20–30 14.2

30–40 11.5

40–50 25.7

50–60 39.8

60–70 8.8

Gender Male 69.9

Female 30.1

Education Lower education 5.3

MAVO/VMBO 27.4

HAVO 14.2

VWO 2.7

WO/HBO 50.4

Marriage Single 31.9

Married 48.7

Partner/living together 19.4
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Model estimation

The systematic component of the utility function

In addition to the usual travel time and cost attributes, we include the number of inter-

changes (relevant only for public transportation and multi-modal travel options) as well as

a dummy variable for travel options that only included car (to capture intrinsic preferences

for the car option beyond time, cost, and interchanges). For the sake of readability of the

Table 5 Self-reported feedbacks on the experiment

Variable Frequency Percentage

It was easy to understand the travel simulator

1 very much disagree 1 0.9

2 disagree 1 0.9

3 neutral 10 8.8

4 agree 48 42.5

5 very much agree 53 46.9

Average (4.34)

It was easy to remain focused during the experiment

1 very much disagree 1 0.9

2 disagree 2 1.8

3 neutral 2 1.8

4 agree 60 53.1

5 very much agree 48 42.4

Average (4.36)

The information shown in the abstract map was illustrative

1 very much disagree 1 0.9

2 disagree 2 1.8

3 neutral 1 0.9

4 agree 67 59.3

5 very much agree 42 37.1

Average (4.30)

The daily activity programs presented in the experiment look realistic for my situation

1 very much disagree 5 4.4

2 disagree 12 10.6

3 neutral 28 24.8

4 agree 50 44.2

5 very much agree 17 15.0

Average (3.52)

It was enjoyable to participate in the experiment

1 very much disagree 1 0.9

2 disagree 1 0.9

3 neutral 1 0.9

4 agree 41 36.3

5 very much agree 69 61.0

Average (4.56)
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equations, the utility function of a choice alternative is formulated from a single repre-

sentative person’s perspective. Therefore, the subscript representing a particular person is

suppressed from the equations. As such, the systematic component of the utility function

can be formulated as the following linear-in-parameter formulation: Vi ¼ bTT � TTi þ bTC �
TCi þ bTI � TIi þ bcar � Cari; where TTi denotes total travel time of alternative i; TCi de-

notes total travel cost of alternative i; and TIi denotes the number of travel interchanges in

alternative i. Dummy Cari equals 1 when alternative i only employs car as travel mode, and

0 when it does not.

Specification of the scale

The specification of the scale parameter for inclusion in the heteroscedastic model follows

from the previous discussion and is written as follows: ls ¼ eðkDT �DT 0sþðdT �DSsþhT �DS2
s Þ

þx � DT 0s � DSsÞ, where DT 0s is the indicator of the complexity of the task of complexity task

number s and based on the measured decision time under the condition of no time constraint;

kDT denotes the parameter for task complexity, which is expected to have a negative sign, as

higher levels of task complexity are expected to decrease the scale; DSs denotes the en-

gagement/time pressure index; dT denotes the parameter for the linear component of the

engagement/time pressure index; hT denotes the parameter for the quadratic component of

the engagement/time pressure index.5 In line with the hypothesized non-monotonic relation

between the engagement/time pressure index and the scale of utility (see ‘‘Model devel-

opment’’ section), the linear parameter dT is expected to be positive as very low values of the

index are associated with a small scale value and this may increase as the index value

increases; the quadratic parameter is expected to be negative, because the index is hy-

pothesized to have an optimum value, somewhere between a very low and a very high value

of the index. Finally, x gives the strength of the interaction effect of task complexity and

time pressure, which is expected to have a negative sign as the simultaneous combination of

both conditions (i.e., high levels of task complexity and of time pressure) are expected to

result in an additional negative effect on the scale.

Estimating the model

The developed HL model is estimated using Python biogeme (Bierlaire 2008). In addition,

three other models are estimated: (i) a basic MNL model, (ii) a Mixed Logit (ML) model

that takes taste heterogeneity into account, but not the abovementioned scale effects; and

(iii) a heteroscedastic mixed logit (HML) model that takes both taste heterogeneity and the

abovementioned scale effects into account. As the parameters for time, cost and number of

interchanges are expected to be negative, triangular distributions are assumed with the

additional constraint that the sum of the mean and the spread takes a negative sign, to

ensure that the whole distribution lies within the negative-sign range (Hensher and Greene

2003). A normal distribution is assumed for the car dummy variable. Halton draws were

used to simulate the integrals for ML and HML models, and the number of the draws was

5 Models with random scale components were also tried out, but these unfortunately did not converge. Note
that we also estimated a parameter in the scale function to capture potential learning or fatigue effects; it
might be expected that respondents—due to such effects—became quicker or slower in terms of responding
to choice tasks, during the course of the experiment. This learning/fatigue parameter which was coupled to
the number of the choice task turned out to be statistically insignificant at any reasonable level of
significance.
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gradually increased to 3000 where stability of the estimated parameters of both the ML and

the HML models was achieved. The models are estimated on 1356 observed choices (12

each) made by 113 participants.

Results

The impacts of task complexity and time pressure

As shown in Table 6, each less constrained model performs better in terms of both adjusted

rho square and the associated likelihood ratio test, than its more constrained predecessor

(presented on its left). This suggests that model fit is gradually enhanced by increased

model sophistication in both allowing for random parameters and for heteroscedasticity. It

is clear that taking taste heterogeneity into account improves fit much more than taking

heteroscedasticity into account. Nevertheless, comparing the HL with the MNL model, and

the HML with the ML model, makes clear that adding the impacts of task complexity and

engagement/time pressure modestly increases model performance, irrespective of whether

unobserved taste heterogeneity is accounted for or not.

Note that the parameter of the mean of travel time (bTI) is statistically insignificant in

the HL model that does not take random taste heterogeneity into account, and that its

estimate is drastically different from those produced by the other models. Hence, em-

bedding the impacts of task complexity and time pressure into the conventional MNL

model without taking random taste heterogeneity into account has led to a bias in the

Table 6 Estimation results

MNL HL ML HML

Adjusted rho-square 0.150 0.171 0.271 0.282

Initial log-likelihood -1528.12 -1528.12 -1528.12 -1528.12

Final log-likelihood -1295.780 -1260.534 -1108.436 -1088.864

Likelihood ratio test 464.68 535.172 839.368 878.512

Nr. of draws 3000 3000

Nr. of parameters 3 6 5 8

Parameters Value t-stat. Value t-stat. Value t-stat. Value t-stat.

Mean (bTC) -0.0415 -2.74 -0.0738 -2.66 -0.115 -4.75 -0.159 -3.88

Spread (bTC)a (0.115) (0.159)

Mean (bTT) -0.0125 -2.16 -0.00669 -0.63 -0.0476 -5.10 -0.0636 -3.67

Spread (bTT) (0.476) (0.0636)

Mean (bTI) -0.373 -14.41 -0.690 -3.86 -0.590 -9.72 -0.938 -5.20

Spread (bTI) 0.406 4.21 0.590 2.63

Mean(bCar)
b 0 0 0 0

SD (bCar) 1.70 6.07 2.92 4.12

kDT -0.0101 -6.05 -0.00745 -3.16

dT 2.03 3.95 2.56 4.44

hT -3.36 -4.58 -3.96 -5.01
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estimate of the taste for travel time. Nevertheless, the estimates of the HL model as far as

the scale of utility is concerned, are quite comparable to the ones produced by the HML

model.

As shown in Table 6, the estimate of task complexity (kDT) is significant in both the HL

and the HML model and has the expected negative sign. This means that, as hypothesized,

the more complex a choice task is, the smaller the scale, or in other words, the larger the

error variance. The interaction effect between task complexity and time pressure (x) was

found to be not statistically significant in both the HL and the HML models and is therefore

dropped from both models and not reported here. This means that, in contrast with our

expectations, time pressure and task complexity in our experiment do not reinforce each

other in their impact on scale. Possibly this is caused by the fact that more complex tasks in

our experiment are given relatively more time in the time pressure condition, as indicated

by the time factors presented in Table 3. From hindsight, this correlation between ex-

perimental conditions should have been avoided.

With respect to the parameters estimated for time pressure, both the linear (dT) and

quadratic (hT) components are statistically significant and have signs that support the

hypothesized non-monotonicity of the relation with scale. More specifically, dT and hT

equal to 2.56 and -3.96 respectively, which results in the relation between engage-

ment/time pressure and scale as plotted in Fig. 2. Note that in this Figure, the dotted line

corresponds to the HL model, the continued line corresponds to the HML model. The value

of the vertical axis represents the value of the scale divided by exp (Ds). The Figure clearly

shows that if the DSs index values increases, the scale first increases until an optimal level

is reached (at DSs = 0.321), after which it decreases. Thus, as hypothesized, for very low

values of DSs (i.e., in situations where the participant took very little time to make a

decision) the scale of the utility is smaller than for intermediate values. We believe that this

signals the absence of engagement with the choice task.

Hence, this index indeed has a dual interpretation and is consequently labelled as

‘engagement/time pressure index’ as opposed to a time pressure index. Moreover, also a

hypothesized, the results indicate that the choices tend to become more random when the

time is running out, hence, when time pressure is high.

Table 6 indicates that the estimates for the total travel cost, the total travel time and the

total number of interchanges in the MNL, the ML, and the HML model are all significant
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and have the expected negative sign. The mean of the car dummy is not statistically

significant and therefore fixed at zero, but the Car dummy has a relatively large standard

deviation, which suggests that both strongly positive and negative basic preferences for car

travel exist.

Beyond the inspection of estimation results, an important question relates to the po-

tential differences in choice probability predictions implied by the estimated

heteroscedastic models (which capture task complexity and time pressure) and their ho-

moscedastic counterparts (which do not). As will be seen in the following illustrations, this

difference—and hence the bias resulting from not accommodating for task complexity and

time pressure—can be substantial. As a first illustration, we compute and compare elas-

ticities for travel time and cost, for the Mixed Logit and the Heteroscedastic Mixed Logit

models. Note that we ignored the HL model and its comparison with the MNL model, as

we distrust the former given its insignificant travel time parameter. Travel time elasticities

for the ML and HML models equalled -0.737 and -0.646 respectively. Travel cost

elasticities for the ML and HML models equalled -3.118 and -2.758 respectively. The

difference, in terms of elasticities, between the two models implies that on the average,

travelers in our dataset were less sensitive to changes in travel time and cost than one

would conclude based on a model which ignores the impact of task-complexity and time-

pressure.

This implication is in line with conclusions that we draw from our second illustration:

we selected a choice task that was considered as relatively complex by participants, in the

sense that the average decision time (in the condition where no time constraints were

present) was higher than those of other tasks. Recall that the task complexity indicator is

individual specific, hence even though the average decision time of the selected choice task

is relatively high (87 s), there is still much heterogeneity in perceived complexity among

the participants. As shown in Table 7, the selected task involved a choice between four

alternatives, each containing a relatively large number of travel interchanges.

For this choice task, we predicted choice probabilities for each of the four alternatives

using the heteroscedastic Mixed Logit6 model and its homoscedastic counterpart. We

distinguished between four (two 9 two) conditions: first, low task complexity for which

we took the average decision time of 87 s; and high task complexity for which we took the

highest recorded decision time for this task, being 227 s. Second, time pressure, which was

varied in a low value, for which we took the value(s) of the engagement/time pressure

variable that corresponds to the highest scale—see Fig. 2), and a relatively high value for

Table 7 Choice task used for illustration

Alternative Travel cost
(euro)

Travel time
(min)

Nr. of travel
interchanges

Car as dominant
travel mode

1 10 118 7 No

2 15 117 9 No

3 12 110 8 No

4 19 121 5 Yes

6 Given the partly unreliable results obtained for the heteroscedastic logit model (see discussion further
above) we choose to focus on the mixed (Heteroscedastic) logit models. Each choice probability was
simulated using 1,000,000 multidimensional Halton draws.
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which we took the value of 1 for the engagement/time pressure variable). Table 8 reports

the simulation results.

The Table reports choice probabilities for the four alternatives as implied by the ho-

moscedastic mixed logit model, as well as by the heteroscedastic mixed logit model (under

the four different conditions); in addition, the choice probability difference between the

most and least popular alternatives is reported. A first result is that for the condition of both

low task complexity and low time pressure levels, the heteroscedastic mixed logit model

predicts more profound differences in choice probabilities than its homoscedastic coun-

terpart. When time pressure increases to its maximum level (i.e., right before the time runs

out), and keeping task complexity fixed, the heteroscedastic mixed logit model predicts

much less profound differences in choice probabilities than its homoscedastic counterpart.

For respondents that consider the task to be highly complex (the two columns on the right

hand side), the heteroscedastic mixed logit model predicts less profound differences in

choice probabilities than its homoscedastic counterpart, and especially so when much time

pressure is present. In this latter situation, i.e., involving high levels of both task com-

plexity and time pressure, the difference between the homo- and heteroscedastic models is

particularly striking: while the homoscedastic model predicts that the most popular al-

ternative is more than seven times as popular as the least popular alternative, the

heteroscedastic model predicts that the two are almost equally popular.

These results are of course fully in line with expectations (and with theory) in the sense

that higher levels of task complexity and time pressure were expected to lead to more

random choice behaviour. This dependency of choice behaviour on task complexity and

time pressure conditions is captured by the heteroscedastic model, but ignored by its

homoscedastic counterpart. To the extent that the heteroscedastic model fits the data sta-

tistically better than its homoscedastic counterpart (as is the case on our data), these results

suggest that failing to incorporate task complexity and time pressure in activity-travel

models may lead to non-trivial biases in forecasting.

Conclusion and discussion

This paper presents a discrete choice model of activity-travel behaviour that incorporates

the effects of task complexity and time pressure on the scale of the utility. The model is

subsequently estimated on data from a novel activity-travel simulator experiment that was

specifically designed for the purpose of testing our model. Our main results are as follows:

Table 8 Illustration of the modelled impact of task complexity and time pressure on choice probabilities

Mixed logit
(homoscedastic)

Heteroscedastic mixed logit

Low task complexity High task complexity

Low time
pressure

High time
pressure

Low time
pressure

High time
pressure

P (alt1) 0.23 0.22 0.25 0.25 0.25

P (alt2) 0.06 0.05 0.19 0.14 0.23

P (alt3) 0.30 0.27 0.26 0.27 0.26

P (alt4) 0.41 0.47 0.30 0.35 0.27

P (alt4)–P(alt2) 0.35 0.42 0.11 0.21 0.04
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firstly, high levels of time pressure and task complexity lead to a smaller scale of utility and

hence to more random choice behaviour. Secondly, very short decision times also lead to

more random behaviour, although in that case there is no evidence of time pressure. We

interpret this phenomenon in terms of a lack of engagement with the choice task among

those who make a choice within a matter of one or 2 s after being presented with the choice

task. Thirdly, contrary to expectations, we find no evidence for an interaction effect between

task complexity and time pressure. In other words, the impact of task complexity on choice

behaviour in the context of our data does not become more pronounced when there is a high

level of time pressure (and neither vice versa). Fourthly, on our data, heteroscedastic models

that incorporate the effects of time pressure and task complexity achieve higher levels of

model fit than corresponding homoscedastic models that do not accommodate these effects.

Fifthly, and more importantly than these differences in model fit, we find that choice

probability predictions differ substantially between estimated homo- and heteroscedastic

models: the former predict much more (less) pronounced differences in choice probabilities

between alternatives than the latter, when there are relatively high (low) levels of task

complexity and time pressure. In other words, under these conditions, heteroscedastic

models predict a much more (less) even distribution of choice probabilities across choice

alternatives, than their homoscedastic counterparts. Our findings are intuitive and suggest

that incorporating task complexity and time pressure pays off, in terms of achieving a better

model fit and—more importantly—in terms of presumably achieving a more realistic ac-

count of activity-travel behaviour and attaining more accurate choice probability forecasts.

This latter dimension (i.e., a potentially substantial improvement in forecasts) implies

that capturing the impacts of time pressure and task complexity in discrete choice models

of activity-travel behaviour is also important from a practical or policy-viewpoint; this

holds even more in light of the fact that in real life, many activity-travel choices are made

under conditions of considerable task complexity and time pressure. Our results suggest

that by ignoring in choice models the effects of task complexity and time pressure on

activity-travel behaviour, policy makers are likely to overestimate traveller sensitivity to

changes in the attributes of travel options, when some choices are made under conditions

of high levels of task complexity and time pressure, and others are not. Our heteroscedastic

models suggest that under high levels of task complexity and time pressure, choice be-

haviour is governed to a large extent by randomness, implying a limited sensitivity to

changes in the availability and characteristics of travel options.

Of course, before our results can be generalized, it is important that they are verified

based on other datasets. Although the impact of task complexity has by now been well

established, this is not the case for the impact of time pressure (nor for the presence or

absence of interaction effects between the two). Whereas we used Stated Preference data

collected in a simulator experiment, it would be particularly interesting to see if our results

also hold in the context of revealed preference data. Some readers might even argue that

what we measured in our experiments is perhaps even more about the impact of takes

complexity and time pressure in choice experiments, than about their impact on (real life)

travel behavior. Although we went through a lot of effort to design a simulator which gives

a realistic account of a travel behavior context, it goes without saying that we only partly

succeed therein. As a consequence, our manipulation of task complexity and time pressure

can only be considered proxies of the variation in task complexity and time pressure that

travelers may experience in real life. This in turn implies that our results should be

interpreted with the utmost care. In our view, they are only but a first step towards a proper

understanding of real life behaviors under varying levels of task complexity and time
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pressure. Before any stronger conclusions and generalizations can be drawn, revealed

preference data clearly are a necessity.

Needless to say, it is a challenge to collect RP data in a way that they allow the

researcher to accurately measure task complexity and time pressure (this was in fact the

main reason why we used a carefully controlled SP experiment). However, new tech-

nologies (including mobile phone applications) might make it possible to collect reliable

RP-data in the not so far away future. The models and analyses presented in this paper

provide a stepping stone for these and other possible follow up research efforts.
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