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Approximating Road Geometry with
Multisine Signals for Driver Identification

Maurice J. C. Kol↵, Kasper van der El, Daan M. Pool,

1

Marinus M. van Paassen, and Max Mulder

Control and Simulation, Faculty of Aerospace Engineering, TU Delft,
2629 HS, Delft, The Netherlands

Abstract: The understanding of human responses to visual information in car driving
tasks requires the use of system identification tools that put constraints on design of data
collection experiments. Most importantly, multisine perturbation signals are required, including
a multisine road geometry, to separately identify the di↵erent driver steering responses in the
frequency domain. It is as of yet unclear, however, to what extent drivers steer di↵erently along
such multisine roads than they do for real roads. This paper presents a method for approximating
real-world road geometries with multisine signals, and applies it to a stretch of road used in
an earlier investigation into driver steering. In addition, a human-in-the-loop experiment is
performed to collect driver steering data for both the realistic real-world road and its multisine
approximation. Overall, the analysis of driver performance metrics and driver identification data
shows that drivers adopt equivalent control behaviour when steering along both roads. Hence,
the use of such multisine approximations allows for the realization of realistic roads and driver
behaviour in car driving experiments, in addition to supporting the application of quantitative
driver identification techniques for data analysis.

Keywords: manual control, driving, multisine signals, system identification, driver modeling

1. INTRODUCTION

Much of our understanding of driver visuomotor steering
behavior in lane keeping tasks is based on models (Donges,
1978; McRuer et al., 1977; Steen et al., 2011; Van der
El et al., 2019). The parameters of driver models can be
estimated directly from experimental steering data, using
system identification techniques. Such model parameters
explicitly quantify control processes that are internal to
the driver, such as their visual response delay, look-
ahead time, and feedback and feedforward control gains.
Unfortunately, this approach by definition requires that a
model is already available, and the insight gained from the
estimated parameters depends profoundly on the model’s
ability to capture the driver’s steering dynamics.

For direct measurement of drivers’ steering dynamics,
without assuming a model a priori, black-box system
identification techniques can be applied. For example, Van
der El et al. (2019) obtained Frequency Response Function
(FRF) estimates of drivers’ separate responses to road
preview, vehicle lateral position and vehicle heading, and
proposed a novel, physically interpretable, driver steering
model in accordance with each observed steering response.

Unfortunately, the application of such frequency-domain
identification techniques requires a driving experiment
where the road centerline trajectory is defined according
to a multisine signal. It is currently unclear, however, to
what extent the multisine road signals used by Van der
El et al. (2019) match real-world roads and evoke realistic
driver steering behavior.
1 Corresponding author: d.m.pool@tudelft.nl

This paper investigates to what extent driver steering
behavior on multisine roads is identical to steering along a
winding real-world road. To do so, first, a method is intro-
duced for approximating a real-world road trajectory as
accurately as possible by a multisine signal. This method
is then applied to obtain a multisine approximation of the
road used in the seminal driving experiment of Land and
Horwood (1995). Secondly, a human-in-the-loop simulator
experiment is performed in which drivers follow both the
real-world road and its multisine approximation. Measured
steering behaviour on both roads is directly compared,
both in the time-domain, using performance and control
activity measures, as well as with driver identification
results obtained with the multiloop system identification
and modeling techniques from Van der El et al. (2019).

2. MULTISINE SIGNALS

2.1 Driver Identification Problem

This paper presents the work performed under the frame-
work of a larger project in which we aim to increase
understanding of driver steering behavior through a quan-
titative measuring and modeling approach (Van der El
et al., 2017). For this work, we investigate the dynamics
of drivers’ steering behavior in continuous steering tasks,
as shown in a block-diagram representation in Fig. 1.

Fig. 1 shows the vehicle dynamics, separated into the
steering wheel-to-heading dynamics G 

�

and heading-to-
lateral-position dynamics Gy

 

. Furthermore, the three con-
trol responses drivers use when steering through curves
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Fig. 1. Illustration of driver steering and multiloop driver
dynamics, reproduced from Van der El et al. (2019).

are indicated: the feedforward (preview) response to the
road ahead (H

oyc
) and feedback responses to the vehicle’s

heading (H
o ) and lateral position (H

oy ).

As explained in Van der El et al. (2019), when using
instrumental variable identification techniques to estimate
all three responses shown in Fig. 1, three independent
multisine signals, indicated in red, are needed. These are
the road geometry y

c

and disturbances (i.e., wind-gusts)
that perturb the vehicle’s heading ( 

d

) and lateral position
(y

d

). This paper focuses on the first of these signals,
by presenting and testing a stepwise methodology for
approximating real road geometries with multisine signals.

2.2 Multisine Signal Development

The road reference signal, y
c

in Fig. 1, is in practice often
defined in terms of the corresponding heading angle refer-
ence of the road centerline,  

c

(Weir and McRuer, 1970),
shown in Fig. 2. Here, the road heading is a function of
the along-tack distance a, similar to the approach adopted
in earlier experiments (Sharp et al., 2000; Lakerveld et al.,
2016; Van der El et al., 2018):

 
c

(a) =

NfX

k=1

A[k] sin (![k]a+ �[k]) (1)

The signal is characterized by amplitudes A[k], frequencies
![k], and phases �[k] of the k-th sinusoid, with N

f

the
number of components. We aim to find the amplitudes,
frequencies, and phases such that the multsine signal
approximates an original, real-world road geometry best.

In the following, we explain our proposed a four-step
procedure for approximating real road geometries with
a multisine signal as given by Eq. (1). Our proposed
procedure is implemented for deriving a multisine signal
that matches the road used in the landmark driver steering
experiment of Land and Horwood (1995), which used a
portion of Queens Drive (QD) in Edinburgh (detailed in
personal correspondence).

Step 1: Road Coordinate Extraction To obtain the ge-
ometry of a certain stretch of road, a set of (lat/long)
coordinates can be extracted from most publicly available
navigation databases (e.g., GoogleMaps). First, this raw
road coordinate data are converted to measures of dis-
tance. The di↵erence in latitude �

i

and longitude �
i

(in
deg) of two road coordinate points can be converted to
relative position coordinates in meters according to:

∆ai−1

 ci(a)

∆xi

∆yi

north

∆ai+1

Fig. 2. Road geometry and the commanded heading angle
 
c

as function of along-track distance a.
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Here, R
e

indicates the Earth’s radius. These equations are
valid for a spherical earth approximation, which is accept-
able for “small” di↵erences in location, i.e., [�x,�y] ⌧
R

e

. The series of (�x
i

,�y
i

) points fully define the road
geometry, but can be combined through the commanded
heading angle:

 
ci = arctan

✓
�x

i

�y
i

◆
(4)

The corresponding along-track-distance a is defined as the
cumulative sum of the length of all �a intervals up to the
ith road point:

a =
NX

i=1

�a
i

=
NX

i=1

q
�x2

i

+�y2
i

(5)

These Eqs. (4) and (5) together yield the signal  
c

(a),
which fully defines the road centerline trajectory. The
road curvature, another common metric for specifying road
geometry, is given by r

c

= d c

da

.

For our application of the above methodology to the
segment of Queens Drive in Edinburgh, acquired road
coordinate-data from GoogleMaps consists of a total of
N = 559 points. With an assumed constant Earth radius
of R

e

= 6371 km, the latitude and longitude coordinates
were transformed to the Cartesian road geometry shown
in Fig. 3 with the blue markers.

Step 2: Data Processing Exported road coordinates are
generally not equally spaced along the length of the road,
as is clearly visible for our raw road coordinate data in
Fig. 3. An evenly-spaced data point distribution is required
for applying the Fourier transform to obtain the road
frequency spectrum, and approximating this spectrum
with a multisine signal. Therefore, the obtained data
are interpolated to constant along-tack distance (�a =
0.1389 m, corresponding to (Van der El et al., 2019)) using
shape-preserving, piecewise cubic interpolation.

Finally, our experience showed that exported raw road
coordinate data contain inaccuracies and artifacts (i.e.,
noise), which yield unrealistically sharp changes in head-
ing. Therefore, we smoothed the x-, y-coordinate data
with a low-pass filter with a 0.007⇡ rad/m normalized
cut-o↵ and a 0.05⇡ rad/m stopband frequency (100 dB
stopband attenuation). The interpolated and smoothed set
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Fig. 3. Top-down map view of the Queens Drive (QD) road
segment used by Land and Horwood (1995).

of road points is shown in Fig. 3 in red, and matches the
underlying road trajectory well.

Step 3: Road Straightening As is clear from Fig. 2, the
considered section of Queens Drive is part of a circular
track, meaning that the heading angle has a linear trend
(nonzero average curvature). Fig. 4 shows, in blue, this
heading  

c

calculated from the (�x
i

,�y
i

) coordinates
shown in Fig. 3. To follow this road, a nonzero average
steering wheel deflection is required. However, a multi-
sine signal lacks such a linear trend, which must thus
be removed from the real-world road to capture the rel-
ative changes in heading (and the required steering) with
a multisine signal. To achieve this, the overall road is
“straightened” by subtracting the mean curvature of the
road from the actual road curvature at each point, yielding
the heading angles in Fig. 4 (red line).

Step 4: Multisine Frequency, Amplitude, and Phase Selec-
tion Finally, now, the Fourier transform of the head-
ing can be obtained, yielding its frequency spectrum in
rad/m, given in blue in Fig. 5. The spectrum reveals that
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Fig. 4. Heading angle of the real-world road, the same road
corrected for the curvature of the circular track and
its multisine equivalent.
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Fig. 5. Road heading signal spectra for the Queens Drive
road, and its multisine signal approximation.

the Queens Drive road contains power predominantly at
frequencies below 0.25 rad/m. The multisine road signal
used in the driving experiments by Van der El et al.
(2018, 2019) was constructed of N

f

= 10 sine-components,
of frequencies up to 0.7 rad/m, to allow measuring the
driver’s steering dynamics also at higher frequencies. It
was decided to approximate the Queens Drive road by a
multisine with these same frequencies ![k], indicated by
the red peaks in Fig. 5. Note that other choices for the
frequencies are possible, see (Damveld et al., 2010) for
further guidance.

Next, the multisine amplitudes A[k] are determined, by
computing the total power of the Queens Drive road
in each frequency “bin”, with boundaries in the middle
between the selected multisine frequencies ![k]. The bins
and total power are indicated by the gray areas in Fig. 5.
Each multisine amplitude is then selected such that its
power equals the total power in that frequency bin. The
resulting multisine signal spectrum is shown in Fig. 5 in
red. The phases �[k] were subsequently obtained using a
brute force method, in which 10.000 random phase vectors
were generated with �⇡ < �[k] < ⇡. The phase vector
for which heading error variance between the multisine
and real-world road signals was smallest was selected as
solution. The resulting  

c

signal is shown in yellow in
Fig. 4, and its characteristics are listed in Table 1.

3. METHODS

To verify whether the multisine (MS) approximation of
the original Queens Drive road geometry evokes identical
driver steering behavior, a human-in-the-loop experiment
was performed in which drivers followed both road tra-
jectories. This experiment was part of a larger study, in
which also a replication of the visual occlusion experiment
of Land and Horwood (1995) was performed. Here we focus
on the verification of the multisine road geometry.



Table 1. Frequencies, amplitudes, and phases of the multisine approximation of the Queens
Drive road in Edinburgh. The disturbance signals, reproduced from (Van der El et al., 2018,

2019), are given for completeness.

Road center line  
c

Heading angle disturbance  
d

Lateral position disturbance y
d

i k ! A � k ! A � k ! A �
- - rad/m deg rad - rad/m deg rad - rad/m m rad

1 3 0.01 16.2 3.96 7 0.03 2.20 5.04 5 0.02 0.29 5.98
2 9 0.04 15.3 3.17 13 0.06 1.74 6.22 11 0.05 0.24 4.04
3 15 0.07 6.20 4.78 23 0.10 1.08 4.17 19 0.09 0.16 3.03
4 27 0.12 2.34 3.40 35 0.16 0.63 4.40 31 0.14 0.09 6.11
5 39 0.18 2.34 6.28 47 0.21 0.41 4.97 43 0.19 0.06 0.99
6 53 0.24 0.90 6.20 65 0.29 0.25 4.97 59 0.27 0.04 0.11
7 71 0.32 0.05 5.42 85 0.38 0.16 4.10 77 0.35 0.02 1.78
8 93 0.42 0.01 5.71 111 0.50 0.11 5.90 101 0.46 0.02 2.28
9 121 0.55 0.01 0.95 143 0.65 0.08 5.48 131 0.59 0.01 0.41
10 155 0.70 0.01 4.79 183 0.83 0.07 0.73 169 0.76 0.01 2.41

3.1 Experiment Setup

The experiment was performed in TU Delft’s SIMONA
Research Simulator (SRS), see Fig. 6. The motion system
of the SRS was not used and participants performed a
visual-only driving task, see Fig. 7. Visuals were presented
using the collimated 60⇥40 deg field-of-view outside visual
system (single projector), see Fig. 7; the two side projec-
tors of the SRS were switched o↵ to match the experiment
of Land and Horwood (1995) as well as possible. Full
details of the experimental setup are given in Van der El
et al. (2018, 2019).

The task was performed with a constant forward vehicle
velocity U0 = 16.9 m/s, identical to (Land and Horwood,
1995), and the vehicle heading dynamics (G 

�

in Fig. 1)
were an integrator, identical to (Land and Horwood, 1995;
Van der El et al., 2019). Vehicle lateral position is obtained
by integrating the heading angle. The road was 3 m wide.

For the QD condition the measurement portion of each
run covered 1149 m along-track-distance, see Fig. 3. This
corresponds to a nominal measurement time of 68 s (when
the road centerline is followed perfectly), identical to
(Land and Horwood, 1995). For the MS condition, the
measurement portion of the road was extended to 1389 m
(82.2 s nominal measurement time), identical to (Van
der El et al., 2018, 2019), to guarantee that each sine
component fits exactly an integer number of times in
the total measurement, for Fourier analysis. The actual
trajectory driven by participants in each run was extended
by a run-in (277 m) and run-out (138 m) portion, of which
the data were not analyzed.

3.2 Experiment Participants and Procedure

Nine male and three female volunteers (µ = 25.4 yr, � =
3.3 yr) participated in the experiment. All participants
provided informed consent prior to their participation and
were in the possession of a valid driver’s license (µ = 7.2 yr,
� = 3.0 yr), with varying travelled distances per year
(µ = 4420 km, � = 7447 km). Participants were instructed
to drive as they would normally do.

They first completed five runs of the QD condition, in
which the heading and lateral disturbance signals ( 

d

and y
d

) were zero, identical as in (Land and Horwood,

1995). The first two runs were used to familiarize par-
ticipants with the setup, and only the remaining, final
three runs were used for analysis. Subsequently, four runs
were performed for the multisine (MS) condition, which
did include the additional disturbances to facilitate system
identification. Here, only a single run was used for practice,
and the final three runs were analyzed.

3.3 Dependent Measures

Performance and Control Activity Driver steering on
the QD and MS roads is compared by analysis of the
measured steering wheel rotations � (see Fig. 1) and the
car’s lateral position deviation from the centerline y

e

=
y
c

� y. First, measured time traces of �, as well as the
corresponding power spectra, are compared. In addition,
the standard deviations of the control output (�

�

) and

Fig. 6. The SIMONA Research Simulator (SRS).

Fig. 7. Picture of a participant performing the experiment,
illustrating the experiment setup.



the lateral position deviations (�
ye) are used as metrics to

compare control activity and road-following performance
for both roads. The total variance has four components,
e.g., for the control output:

�2
�

= �2
�

(y
c

) + �2
�

(y
d

) + �2
�

( 
d

) + �2
�

(n), (6)
which are the variance components at the frequencies of
the target centerline (y

c

), lateral position disturbance (y
d

),
heading disturbance ( 

d

), and remnant (n). The separate
contributions to the total variance of each component can
be computed in the frequency domain, see (Jex et al., 1978)
for details. For fair comparison with the disturbance-free
QD condition, disturbance-free estimates of �

�

and �
ye

in the MS condition are obtained by subtracting the two
disturbance components (y

d

and  
d

) from the total control
output and lateral deviation variances using Eq. (6).

Driver Identification Driver steering in the MS condition
is further analyzed using multiloop system identification
techniques. The applied methods are identical to those
in (Van der El et al., 2019). The three driver responses
to road preview (H

oyc
), vehicle heading (H

o ), and vehi-
cle lateral position (H

oy ) are estimated, with the driver
steering output (in the frequency domain) defined as the
linear combination of the three responses (see also Fig. 1):

� = H
oyc

y
c

�H
oyy �H

o  (7)

First, Frequency-Response Functions (FRFs) are esti-
mated for the three driver responses, and, second, the
multiloop driver perception and steering control model
from (Van der El et al., 2019) is fit to the FRF data. Only
the first two measurement runs are used for estimating
the driver FRFs and models, while the third measurement
run is used for validation and for computing the Variance
Accounted For (VAF) of the fitted models.

4. RESULTS

4.1 Performance and Control Activity

Fig. 8(a) shows that the measured control outputs for the
Queens Drive (QD) road (blue data) and the multisine
(MS) task (red data) are clearly di↵erent. This is confirmed
by the corresponding power spectra in Fig. 8(b). For
the multisine road the power spectrum shows distinct
peaks at the road and disturbance input frequencies, as
expected. In fact, the shape of the power spectrum at
the multisine frequencies of the road centerline (black
data in Fig. 8(b)) is identical to that of the measured
control output spectrum in the QD task (blue data). The
power at each multisine frequency in the MS task is higher
than the power in the QD task, where the power is more
spread out across frequencies. For road following, it can
thus be concluded that the participant shows identical
steering behavior on the real road (QD) as compared to
the multisine approximation of this road (MS).

This is confirmed in Fig. 9. Both the total lateral position
deviations and the control outputs (i.e., including the
contributions of  

d

and y
d

) are higher on the multisine
road, as compared to the Queens Drive road. However,
when only considering the centerline and remnant frequen-
cies, so excluding the disturbance components in Eq. (6),
the control output and lateral deviation magnitudes are
equivalent for both roads, for all participants.
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4.2 Driver Identification

Fig. 10 shows the estimated multiloop driver response
dynamics obtained from the MS condition data. Note
again that these estimated driver responses can only
be obtained because of the three uncorrelated multisine
perturbations applied in this task. The estimated FRFs,
given by the markers in Fig. 10, show the control dynamics
of the driver in response to the road preview, vehicle lateral
position, and vehicle heading, respectively. The fitted
driver model of Van der El et al. (2019) evidently captures
the driver dynamics very well, except the feedforward
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Fig. 10. Example Bode plots of estimated driver dynamics
in the MS condition, based on the first two measure-
ment runs of Participant 1.

H
oyc

at the highest frequencies, where the control output
is low. The FRF estimates thereby validate that the
driver model indeed describes the actual driver’s multiloop
control dynamics.

Using the estimated model to simulate the control out-
put in the third measurement run (validation data) us-
ing Eq. (7) yields the “model” time traces in shown in
Fig. 8(a) (yellow trace for QD, purple trace for MS). For
the multisine road condition, the modeled control outputs
are nearly identical to the measured control outputs (red
data), with a VAF of 94.1%. Strikingly, using the same
estimated model to simulate the control output in the third
run of the Queens Drive condition provides an equally
good match (93.6% VAF) to the measured control output.
Comparable, but slightly noisier results are obtained for
the other participants, with average VAFs of 86.5% and
89% in the QD and MS conditions, respectively. These
results further indicate that participants adopted equiva-
lent steering behavior in the MS condition, as compared
to driving on the corresponding real-world road.

5. CONCLUSION

This paper presented a method to analyze the spectral
components of real roads and construct equivalent multi-
sine signals with matched power over selected ranges of
frequencies. This method was applied to approximate a

portion of Queens Drive in Edinburgh, used in the ex-
periments of Land and Horwood (1995), with a multisine.
From collected human-in-the-loop experiment data it was
found that driver steering behaviour, in terms of driving
performance and driver control dynamics, is equivalent
between the real Queens Drive and its multisine approxi-
mation. This confirms that a multisine approximation of a
real road evokes similar driver behaviour, which enables
the application of frequency-domain identification tech-
niques to analyze driver steering behaviour in future curve
driving experiments.
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Abstract—In car driving, manual control to keep a vehicle
within its lane is dominated by the use of visual information.
Linear models describing behaviour in such tasks can therefore
be directly based on the human perception of the visual scene,
although it is currently unclear how this perception guides control
behaviour. In literature, occlusion experiments have investigated
this connection by restricting the field of view of the visual scene.
Such experiments were long considered an indication for two-
point models, but only looked at the deviation from the road
current path as a measure of performance. However, drivers are
not necessarily inclined to aim for a high performance by means
of perfect center line tracking, and similar performance measures
can also be the result of different control strategies. In this
paper an occlusion experiment is described in which a recently
developed parametric model is fitted, including the estimation of
the driver Frequency Response Functions (FRFs), describing the
individual responses to road preview, lateral position and heading
angle information. Complementary, the eye gaze is measured and
compared to the interpretable model parameters. For the first
time, insight is given in the behavioral changes under various
occlusion conditions with respect to baseline behavior directly
in relation where drivers look. It is shown that drivers adapt
their modelled aim points and eye gaze to the available road
geometry if only a single slit is present. For double-slit conditions,
drivers place both the gaze and aim points between the occlusion
slits, effectively interpolating the available visual information
while still responding to a single metric, although preprocessing
behavior is reduced compared to full visual driving.

Index Terms—manual control, lane keeping, visual occlusion,
system identification, eye gaze.

I. INTRODUCTION

Car driving is a predominantly visual task [1], [2]. Under-
standing the way in which humans extract information from
the visual scene [3]–[5], by responding to its cue dynamics,
is required to form a comprehensive description of driver
behavior [6], [7]. For that reason, it has been a long-standing
question as to which areas are adequate of providing drivers
enough visual information for their guidance, which visual
regions are actually used in car control, and how this relates
to the attention span of drivers in continuous [8]–[10] or
intermittent [11], [12] tasks. Understanding this level of driver
behavior can for example provide car driving automation that
responds in a human-like manner [13], [14].
In literature, several research studies have aimed at relating
these questions of visual perception and control theory by
performing occlusion studies, in which changes in driver
performance are measured as a function of a decrease in field
of view. This can be done by increasing the transparency of

far- and near visuals [15] or by completely blocking large parts
of the visuals by an overlay, meaning that drivers can only
perceive the road through distinct slits, such as done by Land
& Horwood [16]. In this study, by varying the vertical position
of the slits, it was found that to achieve similar performance
as compared to a baseline (full visuals) measure, at least two
”distinctly” separated areas are required. The need of these
visual areas were considered empirical proof for two-point
driver control models, such as [17], in which driver behavior
is explained by responses to two separate points: a near-view
lateral position feedback response and a far-view feedforward
response to the road curvature.

Similar occlusion experiments ([18], [19]) and simulations
[20] not only failed to reproduce these results, but also mea-
sured a dependency on the experiment setup (e.g. the presence
of optical flow, which affects guidance [21], and the display
type). Furthermore, the presence of texture affects the control
activity of drivers [22], whereas Land & Horwood used sim-
plistic line visuals. Therefore it is currently unclear as to why
driver performance changes for most occlusion conditions.
More importantly, all of these occlusion experiments have only
compared relative performance measures between occluded
and full-visual driving tasks. However, similar performances
do not automatically result from similar control behavior;
drivers can apply different driving strategies to obtain the
same performance. Although lumped driver responses have
been measured before [23]–[25], these provide little insight
in how humans process the different sources of information
(such as lateral position and heading angle perceived from the
scene).

As a recent development, Van der El et al. [26] introduced
a novel control-theoretic driver model, based on a three-
level structure of a road target signal feedforward, lateral
position feedback and heading angle feedback response. In
this structure, drivers respond to a single perceived error,
which combines information on these three metrics. This is
in contrast to the two-point models such as [17], as well
as the most important result of [16]: that at least two dis-
tinctly separated areas are required for successful control.
The development of the control model by [26] also provided
fundamental insight in the behavioral dependency on visual
cues (such as the dependency on lateral position or heading
angle information). This would allow the verification that
specific occlusion conditions possibly not only yield a similar
performance compared to full visuals, but also require a
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Fig. 1: Control-theoretic lane keeping model, indicating the target preview, lateral position feedback and heading angle feedback
to describe human control to a single perceived error e⇤(t), adapted from [26].

similar driving strategy, indicating that only specific regions
are required for describing lane keeping control.

For the disentanglement of such individual driver responses
and determining their Frequency Response Functions (FRF),
multisine signals are required [27]. In [28], a method was
presented for the conversion of realistic road geometries to
multisine signals for the road centerline geometry and shown
that this conversion does not affect the prediction methods of
the model of [26], such that drivers instigate similar driving
behavior. This allows for the use of system identification
and parameter estimation methods within a single occlusion
experiment, gaining more insight in how the geometry of
the road is actually used by humans and how this relates to
the full visual control, and directly relating the eye gaze to
interpretable model parameters. A similar study [29] showed
that for preview tasks, drivers also aim their gaze close to
a presented near-view point rather than the far-view point,
but this has not yet been extended to full lane keeping tasks.
Driver gaze behavior has been measured extensively in car
driving tasks [9], [11], [12], [30], but not in direct relation
to control-theoretic metrics. Given that the model of [26]
provides interpretable parameters directly related to the road
geometry, measuring the gaze simultaneously could therefore
further increase the link between visualperception and control
theory.

The goal of this research study is therefore to form a
better understanding of lane keeping tasks using three main
steps. First, by measuring the effects of visual occlusion,
the experiment originally performed by [16] is replicated and
both studies are directly compared. Second, individual driver
FRF responses of these occlusion conditions are compared
to their full-visual counterparts. This is extended by fitting
the parametric model of [26] to see how drivers adapt their
driving strategy and how this relates to the geometry of the
occlusion. Finally the driver viewing gaze and the interpretable
aim points of the parametric model are directly compared.

This paper is structured as follows. An introduction of driver
modelling is given in Section II, of which the required system
identification methods are explained in Section III. Section IV
describes the methods used for the experiment. The results
are shown in Section V, of which the discussion is given in
Section VI. The paper ends with the conclusions.

II. DRIVER MODEL GEOMETRY

A. Use of Visual Metrics

This paper is part of a larger research project in which the
aim is to increase the understanding of driver steering behavior
by describing the use of visual metrics. Previous work has

investigated a step-wise build up [31] of the traditional pursuit-
and preview control tasks to a representative model of driver
steering behavior in continuous lane keeping tasks.

During lane keeping, the driver control task is to keep the
vehicle on the road by minimizing the lateral position deviation
y
e

(t) from the center-line at y
c

(t) (i.e., y
e

(t) = y
c

(t)� y(t)).
This is done by rotating the steering wheel by �(t), such
that the controlled element (the vehicle dynamics) output y(t)
remains on the road.

The preview information of the road, perceived through the
windscreen, is used to anticipate for changes of the geometry
(i.e., bends). The current vehicle position with respect to
current and future commanded road trajectories guides the
control of the vehicle. However, this position, defined by the
lateral position deviation y

e

(t), cannot be observed directly, as
it is positioned below the vehicle, such that a form of preview
is required. The attitude of the vehicle is directly visible
through the windscreen and defined by the vehicle heading
angle deviation,  

e

=  
c

�  , where  
c

is the commanded
heading angle of the road geometry,  is the heading angle of
the vehicle and  

e

is the resulting heading angle deviation.
Although expressions of optimal driver control exist, such

as [32], drivers are in principle free to choose any strategy
that suits them. However, this freedom is limited to the
visual information available, meaning that hiding segments
of the visual scene strongly affects driver behavior [26] or
performance [16], [18], [19].

Assuming control is described by a look-ahead parameter
T
la

(Point A in Fig. 2a), a perceived angle ⌘(t, T
la

) describes
the current vehicle position with respect to the road center-
line:

⌘(t, T
la

) = arcsin

✓
y
c

(t+ T
la

)� y(t)

U0Tla

◆
�  (t)

⇡ y
c

(t+ T
la

)� y(t)

U0Tla

�  (t) (1)

which is valid for small angles. This optical stabilization angle
describes the geometry of the road within a single metric,
combining information on the lateral position and heading
angle, with U0 the velocity of the vehicle.

B. Relation between Visual Metrics and Control Theory
From a control-theoretic point of view, a similar deduction

can be made. Previous research ([33], [34]) has shown that
drivers apply a form of preprocessing on the road curvature
that affects the above mentioned stabilization angle. This
behavior is modelled by H

of (j!), a low-pass filter that
attenuates the response to high frequencies, while passing the
low frequencies, resulting in corner-cutting behavior:
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H
of (j!) = K

f

eTl,f j!

1 + T
l,f

j!
e⌧cj! (2)

where K
f

is the target response gain. The time constant for the
low-pass filter T

l,f

is measured from a feedforward response at
⌧
c

, such that if T
l,f

= 0 s, drivers apply feedforward control
exactly on the commanded road geometry. Therefore, to be
able to describe corner-cutting behavior, visual information at
⌧
f

= ⌧
c

+T
l,f

is required (Point F in Fig. 2a. This feedforward
control to the commanded road geometry is, as shown in
Fig. 3, complemented by the feedback of the lateral position
and vehicle heading angle, such that drivers aim at minimizing
a single perceived error:

e⇤(j!) = K 

y

✓
K

f

eTl,f j!

1 + T
l,f

j!
e⌧cj!Y

c

(j!)� Y (j!)

◆
� (j!)

(3)
where e⇤(t) represents the perceived error, such that if T

l,f

=
0 s, the equation simplifies to the response of the true error
e(t). K 

y

is the weighting between the lateral position and the
heading angle information. The negation of a single perceived
error also has the implication that driver behavior can be
described in compensatory fashion, which is well-described
by the crossover model [35]. As [26] indicated, the control
description in Eq. (3) is similar in structure to the geometrical
description of the optical cue ⌘(t, T

la

) in Eq. (1). Therefore,
by equating the relations:

K 

y

=
1

U0Tla

(4)

and:

eTlaj! = K
f

e(Tl,f+⌧c)j!

1 + T
l,f

j!
(5)

the first equation shows that the look-ahead time T
la

is linearly
related to the weighting of the lateral position with respect
to the heading angle for a constant vehicle velocity. This
shows that a smaller look-ahead time, thus looking closer
to the vehicle itself, uses more lateral position information.
Geometrically this is true, as due to the perspective viewing
in car driving, the lateral position is visually amplified close

to the vehicle, but gets more compressed (and is thus harder
to perceive) further away from the vehicle.

Eq. (5) shows that the point ⌧
c

approximates the look-ahead
point T

la

, depending on the value of K
f

and T
l,f

. For the
lower frequencies (below 1/T

l,f

) this equation can thus still be
valid for nonzero values of T

l,f

. As the parameters T
la

and ⌧
c

correspond to different dynamics (feedback and feedforward,
respectively), the parameters can both be determined, in which
similar values for both parameters indicate the response to the
same point on the road (i.e., the use of a single cue) [26].

C. Effect of Occlusion on Visual Scene
By hiding large parts of the visuals, occlusion changes the

visual scene and the presented road geometry by definition.
It forces drivers to obtain the visual cues through fixed slits
on the road, as shown by the grey segment in Fig. 2a,
located at �

s

below the horizon. For example, showing visual
information only close to the vehicle (high �

s

) forces drivers
to directly respond to the lateral position information (high
K 

y

). Considering Eq. (4) and Eq. (5), this also affects the
interpretable viewing parameters T

la

and ⌧
f

.
As Fig. 2a shows, both parameters correspond to points on

the road. Thereby, they can be directly linked to the geometry
of the occlusion. The distances that these parameters measure
from the vehicle are T

la

U0 and ⌧
f

U0. Fig. 2b indicates the
angle below the horizon of these parameters, measured from
the Eye Reference Point (ERP), which is located at l

h

above
the road. Therefore, the relation between the angle below the
horizon and the look-ahead parameter T

la

is:

�(T
la

) = arctan

✓
l
h

T
la

U0

◆
(6)

and similarly for �(⌧
f

). By combining the geometries of
the perspective view and the occlusion, system identification
and parameter estimation can be used to measure changes in
behavior for changing occlusion geometries.

III. SYSTEM IDENTIFICATION TOOLS

To measure three independent driver responses required for
the insight in cue dependencies, the system identification of
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Fig. 3: Illustration of driver steering and multiloop driver
dynamics, reproduced from [26].

driver data is required. An illustration of the parallel model
structure as presented by [26], is shown in Fig. 3. This
structure is in essence the same as in Fig. 1, but allows for the
identification of the three control responses that drivers use
when steering on winding roads: the feedforward (preview)
response (H

oyc
) to the commanded road geometry y

c

, the
feedback response (H

o ) to the vehicle’s heading angle  and
the feedback response (H

oy ) to the lateral position y. The total
driver steering output �(j!) is then given as:

�(j!) = H
oyc

(j!)Y
c

(j!)�H
oy (j!)Y (j!)

�H
o (j!) (j!) +N(j!) (7)

where Y
c

(j!), Y (j!) and  (j!) are the Fourier transforms
of the commanded road geometry, lateral position and vehi-
cle heading angle signals, respectively. The remnant N(j!)
describes the non-linear part of the driver control dynamics.
When comparing these dynamics to Fig. 1:

H
o (j!) = Hcomp

o

(j!) (8)

H
oy (j!) = K 

y

Hcomp

o

(j!) (9)

H
oyc

(j!) = H
of (j!)K

 

y

Hcomp

o

(j!) (10)

where Hcomp

o

(j!) = K
e

⇤(1 + T
L,e

⇤j!)e�⌧e⇤ j! , shown in
Fig. 1. These dynamics are characterized by the equalization
gain K

e

⇤ , lead-time constant T
L,e

⇤ and the human processing
delay ⌧

e

⇤ .
Fig. 3 also shows the vehicle dynamics, separated into the

steering wheel-to-heading dynamics G 

�

and heading-to-lateral
position dynamics Gy

 

. Double integrator are used throughout

this paper, i.e., G 

�

=
K

 
�

j!

and Gy

 

= U0
j!

.
As explained in [36], when using identification techniques

to estimate all three responses shown in Fig. 3, also three,
uncorrelated multisine signals, indicated in red, are needed
[27]. This is done by using not only the road geometry y

c

as an independent signal, but also by adding two disturbances
(acting as wind-gusts) that perturb the lateral position (by y

d

)
and vehicle heading (by  

d

).

A. Identification Method
Estimating three independent responses of the control

model, H
o (j!), Ho (j!) and H

o (j!) of Eq. (7), also three
equations are required [26], [37]. The remnant N(j!) is typ-
ically relatively small at the excitation frequencies, compared
to the complete linear response. Although the output �(j!) is
directly measurable at the excitation frequencies of the forcing
function and the two disturbances, the information on the three
estimated dynamics is only valid at those specific frequencies
[37]. This means that, if the system of three equations is to
be solved, interpolation of the signals �(j!), as well as the
three signals Y

c

(j!), Y (j!) and  (j!) is required to be able
to estimate the dynamics at all those frequencies:
2

4
�(j!

yc)

˜�(j!
yc)

ˇ�(j!
yc)

3

5
=

2

4
Y
c

(j!
yc) � (j!

yc) �Y (j!
yc)

˜Y
c

(j!
yc) � ˜ (j!

yc) � ˜Y (j!
yc)

ˇY
c

(j!
yc) � ˇ (j!

yc) � ˇY (j!
yc)

3

5

2

4
H

oyc
(j!

yc)

H
o (j!yc)

H
oy (j!yc)

3

5

(11)
Here, the signals �̃, Ỹ

c

, Ỹ and  ̃ indicate the interpolated
signals from !

 d to !
yc . Similarly, �̂, Ŷ

c

, Ŷ and  ̂ are the
interpolated signals from !

yd to !
yc . Solving this system re-

sults in the estimation of the dynamics H
o (j!yc), Ho (j!yc)

and H
o (j!yc), i.e. the dynamics valid at the target forcing

function frequencies. Therefore, the same steps described
above must also be applied to the lateral position disturbance
frequencies (!

yd ) and the heading angle disturbance (!
 d ) to

be able to describe the dynamics at all excitation frequencies.

B. Parameter Estimation
The parametric model of [26] is fitted using a cost function

over all frequencies using a Nelder-Mead algorithm. The used
cost function of the optimization is:

J(⇥̂) =
30X

i=1

|�(j!)� �̂(j!|⇥)|2 (12)

This cost function is calculated at the frequencies of the
input signal and the disturbances, resulting in 30 frequen-
cies. �(j!) and �̂(j!) are the measured and modelled
Fourier transforms of the steering wheel output, respec-
tively. The latter is optimized for the parameter vector ⇥ =
[K

e

⇤ T
L,e

⇤ ⌧
e

⇤ K 

y

K
f

⌧
f

T
l,f

]T , as defined in Section II. For
the optimization, 30 sets of randomly generated initial condi-
tions for all parameters are evaluated. The initial condition set
that leads to the lowest cost function value J is used as the
best fit. Furthermore, the Variance Accounted For (VAF) is
calculated over the whole frequency range:

VAF = 1�
P

Nf

k=1 |U(j!
b

k)� Û(j!
b

k)|2
P

L

k=1 |U(j!
b

k)|2
(13)

where N
f

is the number of samples of the measured time
traces and !

b

is the fundamental frequency. The VAF value
represents the quality-of-the-fit; a value of 100% indicates a
model that exactly describes the measured steering output.

During the optimization process, parameters were not al-
lowed to become smaller than 0. If these situations would
occur, a penalty value (106) was added to the cost function J ,
such that these model configurations would not be selected as
the optimal solution.
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TABLE I: Frequencies, amplitudes, and phases of the multisine approximation of the Queens Drive road in Edinburgh. The
disturbance signals, reproduced from [26], [38], are given for completeness.

Road center line  
c

Heading angle disturbance  
d

Lateral position disturbance y
d

i k ! A � k ! A � k ! A �
- - rad/m m rad - rad/m m rad - rad/m m rad
1 3 0.01 16.2 3.96 7 0.03 2.20 5.04 5 0.02 0.29 5.98
2 9 0.04 15.3 3.17 13 0.06 1.74 6.22 11 0.05 0.24 4.04
3 15 0.07 6.20 4.78 23 0.10 1.08 4.17 19 0.09 0.16 3.03
4 27 0.12 2.34 3.40 35 0.16 0.63 4.40 31 0.14 0.09 6.11
5 39 0.18 2.34 6.28 47 0.21 0.41 4.97 43 0.19 0.06 0.99
6 53 0.24 0.90 6.20 65 0.29 0.25 4.97 59 0.27 0.04 0.11
7 71 0.32 0.05 5.42 85 0.38 0.16 4.10 77 0.35 0.02 1.78
8 93 0.42 0.01 5.71 111 0.50 0.11 5.90 101 0.46 0.02 2.28
9 121 0.55 0.01 0.95 143 0.65 0.08 5.48 131 0.59 0.01 0.41
10 155 0.70 0.01 4.79 183 0.83 0.07 0.73 169 0.76 0.01 2.41

IV. METHODS

A. Experiment Setup
1) Simulator: The experiment was performed in the SI-

MONA Research Simulator (SRS) at TU Delft. The motion
system of the SRS was not used, such that participants
performed a visual-only driving task, which was approved by
the TU Delft Ethics Committee. Visuals were presented using
the collimated 60⇥40 deg field-of-view visual system (single
projector), see Fig. 4. The two side projectors of the SRS
were switched off to match the experiment of [16] as well as
possible.

Drivers were positioned in the left seat of the simulator,
equipped with a steering wheel. The vehicle heading dynamics
(G 

�

in Fig. 3) was an integrator with constant K 

�

= 1.33
(deg/s)/deg, identical to [36]. The vehicle lateral position is
obtained by integrating the heading angle (Gy

 

), resulting in
the double integrator dynamics between the steering wheel
output and the lateral position on the road, as described in
Section III. The road was 3 m wide and only showed the
outside boundary lines in white. The task was performed with
a constant forward vehicle velocity U0 = 16.9 m/s, identical
to [16], to remain as close as possible to their study.

2) Eye tracker: To measure the eye gaze, drivers wore a
head-mounted Tobii Pro Glasses 2 eye tracker (component
[a] in Fig. 4), which restricted the selection of drivers as
they could not wear ordinary glasses. The eye tracker camera
recorded video images of the visual scene, whereas its infrared
sensor measured the eye gaze relative to the tracker. The
measured gaze therefore depends on the position of the glasses
on their heads. For this reason, calibration was required every
time the glasses were put on. This process required drivers
to look at a fixed point (component [b] in Fig. 4), of which
the shape was automatically recognized by the eye tracker
software and used for the correction of any offsets.

Due to the possible influence of infra-red radiation on the
eye tracker, causing noise in the gaze measurements, the lights
were turned off such that the only source of illumination was
from the visual system. All heat-emitting devices nearby the
glasses, such as the simulator internal camera surveillance
system, were turned off for the same reason.

As the tracker can also be subject to measurement drift
during the runs, as well as the possibility of moving the glasses
by the participant, it was necessary to periodically check

and possibly recalibrate the hardware. After every condition,
drivers were required to look at a fixed LED light (component
[c] in Fig. 4), which was visible in the dark. If this fixed
point fell outside the uncertainty (0.5 deg) of the eye tracker,
recalibration was required, where the lights were temporarily
turned on.

3) Data Acquisition: The measurement portion of the road
was 1389 m, yielding 82.0 s nominal measurement time (if the
center of the road is followed perfectly), for the analysis of
the control data. The actual road driven each run was extended
by a run-in (277 m) and run-out (138 m) to avoid transient
responses in the measurements, of which the data were not
analyzed. The data of the eye tracker during the run- in and
out were also not used.

B. Gaze processing algorithm
The head-mounted eye tracker measures the gaze direction

with respect to the video frame. As the gaze data stream
is stored at a different rate (60Hz) than the video frames
(25Hz), it was first required to match these two together using
a nearest-neighbour approach. Furthermore, for quantitative
comparisons of the measured gaze to the characteristics of

Fig. 4: Picture of a participant performing the baseline con-
dition, illustrating the experiment setup. Component [a] is the
eye tracker, [b] is the eye tracker calibration point and [c] is
the reference LED light.
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Fig. 5: Part of the video screen as recorded during the
experiment, showing the road through the occlusion slits. The
overlay indicates the edge detection points (green) and the
geometry of the gaze frame correction algorithm (white).

the road, it is necessary to convert the eye gaze from its head-
fixed to the world-fixed reference frame. As this requires the
recognition of segments on the video screen of which the
location is known precisely, such as the vertical position of the
slits, it was not possible to correct the horizontal component
as well, as there were no horizontally fixed reference points
on the video screen. Therefore, only the vertical position
below the horizon is analyzed is this paper. As a form of
post-processing in each video frame, this was done using the
following five steps:

1) To be able to detect the slits, the transition points from
occluded to non-occluded parts and vice versa are de-
tected by searching for segments in which the RGB levels
change from black [0,0,0] to non-black (at least [0,40,0])
for the detection of the top of a slit, or vice versa for the
bottom. To ensure that the occlusion was always visible,
this step is done at 30 evenly spaced points ranging from
( 5
16 ) to ( 1116 ) of the video frame, shown in Fig. 5. Linear

regression is used to account for acquisition errors as
much as possible, resulting in two lines for each slit
(the top and bottom, see Fig. 5). In case of the baseline
conditions, as no slits were present, the top of the video
screen and the horizon were used for the edge detection,
functioning as a large ’slit’.

2) For the slit, the rotation angle ↵
u

and, if the second slit
was present, ↵

d

, are determined as the average of the
angles of the slits two lines (white lines in Fig. 5) with
respect to the video frame.

3) To determine the height of a slit in pixels, the average
difference between the two local slit lines (that is, the top
and bottom of a slit) is measured. As this difference is
measured as the vertical difference in the video frame, it
must be corrected for the rotation of the slit itself, such
that the actual difference in pixels becomes:

ĥ
u

= h
u

cos↵
u

(14)

and similarly for the bottom slit.
4) The y-coordinates of the measured eye gaze, which are

also measured with respect to the video frame, are cor-

rected for the rotation angle of the video frame, resulting
in the y-coordinates of the gaze in the world-fixed frame:

y
w

= �x
h

sin↵+ y
h

cos↵ (15)

Where x
b

and y
b

are the measured gaze coordinates in
the head-fixed reference frame. In the presence of two
slits, the average of the angles ↵

u

and ↵
d

is used for ↵.
5) Finally, as the position of the slits is known for each

condition, the relative position between the slits and the
eye gaze can be used to extrapolate the vertical gaze
position in degrees. As the estimated gaze depends on the
extrapolation of the pixels-per-slit, the acquisition error
amplifies if the gaze is located far away from the slits. As
drivers typically look close to or between the visible slits,
this is not considered a large problem. To account for this
as much as possible, in the case of the presence of two
slits, the steps mentioned above are performed separately
for each slits and the two resulting gaze measurements
are averaged.

The resulting vertical gaze position in the world-fixed frame
can now be directly compared to the model parameters. The
raw gaze data from the eye tracker are unfiltered and also
includes the blinks of the eye, in which the view angle
drastically decreases, shown by the blue line in Fig. 6. After
the gaze conversion the data are therefore filtered with a low-
pass filter with a passband frequency of 0.05⇡ rad/s, stopband
frequency of 0.8⇡ rad/s and a stopband attenuation of 100 dB.
This filters the large high-frequency blinks, but also some of
the small saccadic eye movements, as shown by the red line
in Fig. 6.

C. Forcing Function
Because a discrete-frequency forcing function is required for

determining the Frequency Response Function (FRF) [26], the
first part of the experiment included a comparison between a
realistic road geometry of an existing route (Queens Drive in
Edinburgh, United Kingdom, as used by [16]) and its multisine
equivalent, structured as:

 (a) =

NfX

k=1

A[k] sin (![k]a+ �[k]) (16)

where N
f

is the number of sinusoids, 10 in this case, and a
is the along-track distance. The multisine frequencies ![k] are
chosen the same as in [26], whereas the amplitudes A[k] were
set to result in equal power along the complete spectrum of
Queens Drive. Phases �[k] were selected such that the heading
angle variance of the resulting multisine signal compared to
the Queens Drive road was the smallest. In [28], the first part
of this experiment was analyzed by comparing modelled driver
behavior for both the Queens Drive and its multisine equivalent
(the baseline in this paper), showing that both geometries
indeed induce similar driver behaviour.

The occlusion conditions use the same multisine signal as
the baseline. The resulting amplitudes, frequencies and phases
of the individual sinusoids are shown in Table I, which also
includes the sinusoids of the heading angle and lateral position
disturbances, which are the same as in [26].
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Fig. 6: Representative baseline gaze measurement showing the unfiltered and filtered data, subject 1, run 4.

D. Experiment Procedure

Nine male and three female volunteers (µ = 25.4 yr,
� = 3.3 yr) participated in the experiment. All participants
provided informed consent prior to their participation. As
driving performance is affected by the amount of experience
[39], they were all in the possession of a valid driver’s license
(µ = 7.2 yr, � = 3.0 yr), with varying travelled distances per
year (µ = 4420 km, � = 7447 km).

Participants were instructed to drive as they would normally
do and first completed five runs of the Queens Drive road of
[16], which was used for the analysis in [28]. Subsequently,
drivers performed four baseline (BL) runs. The first run was
used to familiarize participants with the condition, and only
the remaining, final three runs were used for analysis.

After both of these full visual conditions, the occlusion was
added, while the road forcing function remained the same. The
position of the slits was the same as in [16], such that three
types of occlusion conditions exist. In single slit conditions
(Denoted S), the position of a single slit was varied between
1� and 10� between the conditions. For top fixed conditions
(Denoted T), a slit between 1� and 2� was always present,
while the position of a second slit was varied between 1�

and 10� between the conditions. Finally, for the bottom fixed
conditions (Denoted B) it was the other way around; A slit at
the lowest position (9�-10�) was always present, with a second
slit varying in position between the conditions.

To account for training effects between the conditions,
the order in which the occlusion conditions were presented
varied per driver and was based on an unfinished latin-square
design, shown in Table II. Participants performed four runs
of each condition, of which all respective first runs were
discarded, such that for all conditions three runs were used
as measurements. Finally, as the baseline condition is used
for relative comparison to all other conditions and is thus of
high importance, an additional set of four baseline runs was
performed after the occlusion conditions. This is to mitigate
for additional training effects and fatigue over all conditions.

Due to the large amount of conditions used in the ex-
periment (25 occlusion, two baseline and one Queens Drive
condition for [28]), the experiment sessions were split up into
two sessions of three hours each, but never on the same day.

After every run, roughly 30 seconds were taken to relax the
driver eye sight, ensure no misery effects were present and
inform drivers about the performance of their last run (given
as �2

ye
) to keep them motivated throughout the experiment. The

completion of four conditions, in most cases corresponding to
16 runs, resulted in a 15 minute break outside of the simulator.

E. Dependent Measures
Steering behavior is compared between the occlusion con-

ditions by various metrics, always including a comparison to
the baseline (full visuals).

1) Performance and Control Activity: The performance is
measured based on the vehicle lateral position y

e

, which is
defined as the vehicle deviation from the current centerline
(y

e

= y
c

� y). For each condition, the standard deviation of
the lateral position error (�

ye ) is determined for each run and
averaged over the three measurement runs. Then, to act as a
direct comparison with [16], the performance of each condition
is determined with respect to the baseline:

Performance =

✓
�
ye,m

�
ye,bl

◆�1

(17)

The inverse in Eq. (17) is used such that the relative
performance is determined in a more intuitive manner; for
a value below 1 the occlusion performance is worse than that
of the baseline. Spreads over the subjects are used to compare
between the conditions

Similar to the performance, the relative control activity
is measured as the standard deviation of the steering wheel
output (�

�

) compared to the baseline:

Control activity =
�
�m

�
�bl

(18)

In this case, the inverse is not used, as there is no advantage
in doing so.

2) Driver Identification: Driver control behavior of oc-
clusion conditions is analyzed by extracting the Frequency
Response Functions (FRFs) of the measured time traces by fol-
lowing the approach outlined in Section III-A. The dynamics
H

oyc
(target preview response), H

oy (lateral position response)
and H

o (heading angle response) are compared between the
occlusion conditions and to the baseline.
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TABLE II: Unfinished randomized latin-square for the condition sequence per subject. BL = Baseline, S = single slit, T = Top
slit fixed, bottom varying and B = Bottom slit fixed, top varying. Numbers indicate the position of the top of the respective
slit in degrees.

Driver C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26
1 BL S5 T5 S7 S8 S3 B2 S6 T3 T7 S1 T6 B4 B3 B5 S2 B6 T2 S4 B8 B7 T8 T9 S9 T4 BL
2 BL T5 B5 T7 T8 T3 S2 T6 B3 B7 S9 B6 S4 S3 S5 T2 S6 B2 T4 S8 S7 B8 S1 T9 B4 BL
3 BL T2 B2 T4 T5 S8 B7 T3 T8 B4 S6 B3 S1 B8 S2 S7 S3 T7 S9 S5 S4 B5 B6 T6 T9 BL
4 BL B2 S2 B4 B5 T8 S7 B3 B8 S4 T6 S3 S9 S8 T2 T7 T3 B7 T9 T5 T4 S5 S6 B6 S1 BL
5 BL T6 B6 T8 T9 T4 S3 T7 B4 B8 T2 B7 S5 S4 S6 T3 S7 B3 T5 S9 S8 S1 S2 B2 B5 BL
6 BL B8 S8 S2 S3 B6 T5 S1 S6 T2 B4 S9 T7 T6 T8 B5 T9 S5 B7 B3 B2 T3 T4 S4 S7 BL
7 BL B5 S5 B7 B8 B3 T2 B6 S3 S7 T9 S6 T4 T3 T5 B2 T6 S2 B4 T8 T7 S8 S9 S1 S4 BL
8 BL T7 B7 T9 B2 T5 S4 T8 B5 S1 T3 B8 S6 S5 S7 T4 S8 B4 T6 T2 S9 S2 S3 B3 B6 BL
9 BL T4 B4 T6 T7 T2 S1 T5 B2 B6 S8 B5 S3 S2 S4 S9 S5 T9 T3 S7 S6 B7 B8 T8 B3 BL

10 BL S4 T4 S6 S7 S2 T9 S5 T2 T6 B8 T5 B3 B2 B4 S1 B5 S9 S3 B7 B6 T7 T8 S8 T3 BL
11 BL S2 T2 S4 S5 B8 T7 S3 S8 T4 B6 T3 T9 T8 B2 B7 B3 S7 S1 B5 B4 T5 T6 S6 S9 BL
12 BL B6 S6 B8 S1 B4 T3 B7 S4 S8 B2 S7 T5 T4 T6 B3 T7 S3 B5 T9 T8 S9 T2 S2 S5 BL

3) Model Fitting and Parameter Estimation: The paramet-
ric driver model from [26], as explained in Section III-B, is
fitted to the steering wheel deflection �(j!) data, of which
the parameters of the occlusion conditions are compared to
the baseline. The first two measurement runs are used for the
identification and modelling, while the third run is always used
to compute the Variance Accounted For (VAF) of the fitted
models.

4) Gaze Behavior: Finally, the timetraces of the viewing
gaze are analyzed. Due to limitations in the experiment setup
only the vertical viewing gaze is considered, as mentioned in
Section IV-B. Individual runs with a bad data quality (such as
the eye tracker failing to detect the eye) are discarded. Over all
subjects, all three measurements runs per subject are grouped
together, such that every condition type has one distribution
describing behavior over all subjects. Histograms containing
the spread of the data are produced. In principle drivers can
apply different gaze positions during a single run, resulting
in inaccurate data representation by their means. Therefore
the medians are used as a method of comparing between
the various conditions. These values are grouped together per
condition and calculated as distributions over all subjects.

F. Hypotheses
During the experiment, the following hypotheses are tested:

H.I For single slit conditions, drivers adapt their behavior
to the available information, such that the interpretable
viewing parameters T

la

as well as the mean focus of the
viewing gaze, lie within the slits. ⌧

f

will be close to 0 as
no information beyond T

la

is available.
H.II For double-slit conditions, drivers will also adapt their

behavior to the available information, but are more free to
place the parameters and gaze between the slits. As visual
information can be extracted from two distinct slits, the
difference between T

la

and ⌧
f

will be more pronounced.
H.III The changes in driver responses are still well captured

by the parametric model, as it is based directly on the
available geometry, resulting in comparable VAF values
for all conditions.

H.IV The results of Land & Horwood will be verified, although
the shifts in the overall trends will be present, as the richer
textures induce more optic flow.

V. RESULTS

A. Relative Performance and Control Activity

To serve as a direct comparison to the original study by
[16], Fig. 7 shows the measured relative performance box
plots for all occlusion conditions with respect to the baseline
performance, indicating the spread across the drivers. The
different types of occlusion configurations (S, B, and T) are
grouped together by a color (green, blue and red, respectively).
Second-order polynomials are fitted for each configuration
type to show general trends. The figure also includes the
normalized standard deviation indicating the spread of the
baseline condition runs (grey band). Finally, to compare the
results of this study to that of Land & Horwood, their
measured relative performances are also indicated in the same
figure, indicated by points and second-order fitted polynomials
(same S, B, and T color configuration, increased transparancy).

The measured relative control activity is shown in Fig. 8,
which uses the same color configuration and also displays the
spread of the baseline runs. As it is unclear how Land &
Horwood defined their ”instability index”, these results are
not directly compared.

1) Single Slit: The single slit conditions are indicated by
the green box plots in Fig. 7 (performance) and Fig. 8 (control
activity). In the condition with the lowest performance, S12,
performance of the baseline is on average 1/0.38 = 2.6 times
higher than for this occlusion condition. By placing the slit
lower on the screen, performance gradually increases, up
to the middle range of slit positions (S56 and S67), which
approximate the bottom of the baseline performance spread.
Putting the slit any higher (S78 - S910) gradually decreases
performance again down to an average of 0.7 times the
baseline performance, meaning that performance is not as
low as for the slits located at the top of the screen (such as
S12 and S23). The results show a similar but slightly better
performance ratio than of Land & Horwood. The increase over
all single slit conditions compared to their study is consistently
around 0.1.

Similarly, the control activity is determined and shown
in Fig. 8. Control activity is comparable to baseline values
between S12 and S45, but sees a strong increase for lower
placed slits. For slits S89 and S910, it thus shows that
these conditions can be controlled at a slight decrease in



9

Slit angle below horizon, deg

P
er

fo
rm

an
ce

,
σ
y
e
,b

l

σ
y
e
,m

,
-

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

±µbl−σbl

µbl

Single slit

Top fixed

Bottom fixed

Single slit, LH

Top fixed, LH

Bottom fixed, LH

Fig. 7: Performance as function of the slit configuration relative to the baseline.

Slit angle below horizon, deg

C
o
n
tr

o
l

ac
ti

v
it

y,
σ
δ
m

σ
δ
b
l

,
-

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

0.8

0.9

1

1.1

1.2

1.3

±
µσδbl

−σσδbl
µσδbl

Fig. 8: Control activity as function of the slit configuration relative to the baseline.

performance (compared to baseline), but at a strong increase in
control activity, of up to 1.5 the baseline value. An explanation
is that for low-placed slits, lateral position information is
more directly visible, such that drivers can more actively
try to achieve a higher performance (directly defined by the
lateral position deviation) compared to cases where the lateral
position information is barely visible. However, the lacking
feedforward information at these areas requires a high control
activity to retain stable control. In that sense, drivers are forced
to either have a baseline-comparable performance but high
control activity, or a baseline-comparable control activity at
the cost of a strongly decreased performance.

2) Double Slit: Compared to single slit conditions, adding
a second slit to the visual scene has an effect on the measured
performance. Surprisingly, adding a second slit at the top
of the screen (the top-fixed conditions, red box plots) even
slightly decreases the relative performance compared to the

single slits, although the spread also consistently decreases.
At the lowest slit positions (T12, T23), performance is again
around 0.38 and for the highest slit positions (T89, T910)
around 0.7. The best configuration is T67 (performance of
0.8), which does not reach the baseline performance. Top-
fixed conditions do consistently result in a relative control
activity of 1. The difference with Land & Horwood is strong,
mainly for low-placed slits (T56 - T910), where they measured
a better performance of up to 0.2. As [19], [22] indicate, the
presence of more realistic texture affects driver behaviour. As
this experiment used a textured road and grass around it, versus
the simpler two-color setup used by Land & Horwood, the
road itself might be more difficult to detect at larger distances.
Drivers can neglect this information of the top slit, effectively
only using visual information from a single slit. This argument
is strengthened by the fact that in this experiment, the top-fixed
conditions show an almost identical performance as the single
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slit conditions.
The bottom-fixed conditions (blue box plots) generally

shows the best relative performance for conditions B23 -
B67, reaching values close to 1 and well within the baseline
spread. Again, this indicates a strong dependency on a low-
placed slit for a high performance, due to the necessity of
lateral position information for reaching high performances.
Control activity is close to the baseline for conditions B12
- B45, but suffers greatly for conditions below B56, and
sees an increase almost identical to the single slit conditions
(up to 2.5). This might indicate that for those conditions a
second slit adds little to the feedforward control required for
baseline-comparable stabilization. Compared to the top-fixed
conditions, the difference to Land & Horwood is smaller and
has higher performance over the complete range of angles.

B. Non-parametric Estimation
The non-parametric estimates of the dynamics are shown

in Fig. 10, divided in the single slit (a), top-fixed (b) and
the bottom-fixed (c) conditions, averaged over all subjects.
The baseline is included in all plots by the grey data, to
serve as a comparison. The occlusion scenarios all have three
representative conditions to show the trends in the measured
behavior. The colors represent the slit positions, for example
dark green represents a high-placed single slit (S12) and light
green a low-placed single slit (S89) in Fig. 10a.

1) Single Slit: Fig. 10a shows the responses to the single
slit tasks. In condition S12, the phase response of the feed-
forward dynamics increases for high slit positions (S12) at
high frequencies, indicating that drivers indeed look further
ahead compared to conditions S56 and S89. This effect is
even stronger (i.e., drivers look further ahead) than for the
baseline. Nevertheless, the magnitude of that same response
has the inverse trend, such that drivers react stronger to the
little available feedforward information, if the slit is located
low on the screen. Similar effects were measured in [40].
Furthermore, this condition shows a neglection of a lateral
position response, indicating that for the highest slit position
possible, drivers almost neglect their lateral position feedback
loop.

Drivers adapt their lateral position magnitude response
depending on the occlusion condition. This is as expected,
as drivers will respond to the lateral position information
more strongly if this type of visual information is also more
present within the scene; as explained in Section II; the
lateral position information becomes more difficult to perceive
at larger distances. Only the heading response sees values
comparable the baseline, indicating that drivers strongly rely
on heading angle information.

Especially present in the feedforward dynamics H
oyc

, the
magnitudes have a flat trend at low frequencies, indicating
that drivers steer equally strong to such frequencies. At high
frequencies (! > 0.30 rad/m), there is a sudden strong increase
in the magnitude by a factor of 102, similar as in [26]. It
is contradictory to the modelled driver response explained in
Section II, which predicts a decrease in magnitude at high
frequencies due to the low-pass filter behavior by preprocess-
ing the commanded road geometry. This behavior is present
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Fig. 9: Measured and modelled magnitude response of the
steering wheel deflection �(j!), Subject 1.

in all condition types, indicating that it is not an artefact of
the presence of occlusion, but might be caused by drivers
not directly responding to these frequencies, such that the
remnant becomes dominant. This effect is indeed observed
in the measurements of �(j!), of which an example is shown
in Fig. 9.

2) Double Slit: By adding an additional fixed slit to this
configuration in principle allows drivers to extract the visual
metrics from both slits. The target responses H

oyc
in Fig. 10b

indicate that behavior changes little between the top-fixed
conditions. Again it should be noted that for frequencies
! > 0.30 rad/m the shown data do not correspond to a
coherent driver response. The phase response of H

oyc
in

Fig. 10b shows that for lower positions of the additional slit,
drivers aim less far ahead (similar as in [29]). By comparing
the feedforward phase responses of Fig. 10a and Fig. 10b, the
phase of T34 is lower than that of S23, indicating that drivers
look less far ahead if a second slit is available, and that the the
additional top-fixed slit is not actively used for the feedforward
response (i.e., drivers place their look-ahead parameter closer).
For both condition types, there are no strong differences in the
lateral position and heading angle responses H

oy and H
o .

C. Parameter Estimation

The parametric model of [26] is fitted to the frequency
signal of the steering wheel output �. Therefore, the individual
responses, described in the previous subsection, can also be
modelled. Fig. 11 shows a representative example of the model
fitted to measured baseline FRF data for subject 7, including
estimated parameters. The complete parameter estimation sets
for all conditions, displayed by boxplots of the subject spread,
are shown in Fig. 12. The parameter K

f

, the low-pass filter
gain of between the actual and processed center-line, was
included in the parametric fits, but was almost always close
to one and showed little difference between the different
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Fig. 11: Representative FRF estimates and model fits of the baseline condition, subject 7.

conditions, (i.e., K
f

= 0.99 ± 0.02). Therefore it was not
included in the figures.

The calculated VAFs describe how well the model parame-
ters are able to describe the measured responses and are shown
in Fig. 12a for all conditions. The VAFs are generally well
above 90%, although for the S12 condition (single slit closest
to the horizon) it is slightly lower (ranging from 80% to 95%),
indicating a larger remnant contribution. The different trends
within occlusion types are separated by the left (single slit),
middle (top fixed) and right (bottom fixed) plots. The baseline
is also included to serve as a direction comparison.

1) Single Slit: Of the three occlusion types, the single slit
conditions show the largest change in behavior. First of all,
the green box plots in Fig. 12(b) shows that K

e

⇤ , representing
the gain to the perceived error of the aim point, has a positive
increasing trend for lower slit positions. Directly affecting the
cross-over frequencies of the open loop dynamics, this indi-
cates that drivers react stronger to the amount of information
that is present, as they respond to a point closer-by, and must
steer stronger to still remain on the road. Surprisingly, T

L,e

⇤

remains constant over all conditions. This indicates that drivers
are not more actively generating lead to increase their stability.

This is confirmed by the human processing delay ⌧
e

⇤ in
Fig. 12(d), which shows no increase for low slit positions,
whereas increases in lead generation typically induce higher
time delays [35]. Surprisingly, the time delay only increases
from 0.4 s to 0.5 s for for high placed slits. Although without
lead generation the delay is expected to always be roughly

the same, as it stems from the human inherent physiological
constraints, it is possible that drivers deliberately delay their
behavior, i.e., drivers wait until the perceived trajectory of the
road is closer by and internally estimate their current road
position to increase their performance.

The lateral position-to-heading angle gain K 

y

is shown
in Fig. 12(e) and indicates that drivers rely more on lateral
position information for low slit positions. This is in
correspondence with Eq. (3), as the further down from the
horizon the visual information comes, the more directly the
lateral position is observable compared to the vehicle heading
angle information. Only the lower positioned slits entail a
similar gain compared to the baseline behavior.

The far-view point ⌧
f

in Fig. 12(f) shows the opposite
trend compared to K 

y

. By determining the correlations
of the look-ahead parameter T

la

between the feedback
(T

la

= 1
U0K

 
y

) and feedforward (T
la

= ⌧
f

� T
l,f

) responses
in Fig. 13 (green points), the correlation is almost unity.
This indicates that drivers consistently respond to a single
cue for all single slit conditions, as expected for a single slit
(see Section II and [26]). Finally, the time constant T

l,f

for
the preprocessed corner cutting behavior is heavily affected
under occlusion and never reaches the baseline, shown in
Fig. 12(g). There is no single condition under which drivers
approximate baseline behavior.
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Fig. 13: Correlation between feedback and feedforward aim-
point estimates for all conditions, averaged over all subjects.

2) Double Slits: The center and right plot of Fig. 12 rep-
resent the top fixed and bottom fixed conditions, respectively.
Slightly increasing values of K

e

⇤ in the top-fixed conditions
of Fig. 12(b) again indicate a more aggressive response to the
optical cue, and remains constant for bottom-fixed conditions.
The time constant ⌧

e

⇤ in Fig. 12(d) for top fixed conditions
again shows the possible deliberate ’delaying’ the human
response, and is not visible in the bottom fixed conditions,
as it is not necessary when the bottom slit is also present.

The lateral position-to-heading angle gain suprisingly that
even for bottom-fixed conditions, the baseline values are
not reached. Only the two conditions that together resemble
(almost) a large, single slit (conditions B78 and B89) approx-
imate the baseline weighting. This shows that drivers respond
to the lateral position information more strongly in full visual
conditions, similarly as was measured in their FRF estimates
(Fig. 10c).

Both types of double slit conditions show a stronger pres-
ence of the corner cutting time constant T

l,f

, especially in
the conditions which have a clear distinction between the top
and bottom slit (for example T78 and B45). This indicates
that drivers only apply this corner cutting behavior if enough
additional information allows them to do so. Considering that
for double slit conditions the visual information sources are
clearly separated from each other, it is surprising that, as
Fig. 13 shows by the red points (top fixed) and blue points
(bottom fixed), drivers still respond to a single cue (unity
correlation). This indicates that drivers internally process the
information perceived from both slits and form an approxima-
tion of the view-points at which they are responding to, i.e.,
interpolate the information.

D. Relation between gaze and aim point parameters

The measured eye gaze data were not always of sufficient
quality to be used for analysis. For two participants, the
processed data could not be used, as it showed highly noisy
data. This was most likely caused by the tracker failing to
detect the eye, which was confirmed by the fact that these
subjects required recalibration after almost every condition.
Furthermore, in the data of a third participant, part of the

experiment setup was partially in the way of the video screen,
caused by the participant not sitting exactly in the middle
of the seat. Therefore, the edge detection algorithm failed to
produce data for this participant, meaning that these data were
also discarded. This resulted in nine participant data sets.

The calculated medians for each condition per subject are
shown in Table III. The baseline eye gaze distributions are
shown in Fig. 14a. It shows that there is a high variability
between the drivers as to which segment of the road they look
at for baseline control. This freedom is not available under
occlusion scenario’s. Fig. 14b shows another distribution, now
for the condition S45, where it is clearly visible that there is a
peak around the visible slit (dashed lines). A same situation is
visible in B78 (Fig. 14d), for two close slits. If the difference
between the slits becomes more pronounced, such as is the
case in T67 (Fig. 14c), drivers place their gaze between the
slits.

As a comparison to the occlusion geometry, Fig. 15 contains
the previously determined spreads of T

la

(feedforward) by
means of green boxplots and the the far-view point ⌧

f

, of
which the difference is by definition the preprocessing constant
T
l,f

. The spread of the eye gaze medians �̃ is shown by the
red boxes. The model parameters are directly related to the
slits through Eq. (6) (pictured as horizontal black lines).

1) Single Slit: The left segment in Fig. 15 shows the single
slit conditions gaze medians and modelled aim points. Drivers
clearly adapt their gaze to the available slit, as this is where
the information must be perceived from. Single slit conditions
also result in an adaptation of T

la

to the slit geometry, with
almost no difference to the feedforward point ⌧

f

.
2) Double Slit: A clear difference is present with the double

slit conditions, in the middle and right of Fig. 15. If the slits
are distinctly separated from each other, looking at two slits
at the same time is impossible. Drivers are also no longer
bound to the geometry perceived through the slit, but prefer
to compensate for their perceived error behind the occlusion,
indicating that a form of interpolation of information from
both slits is used, as explained in Section V-C. This effect
becomes stronger if slits are located further away from each
other. Locating the eye gaze near the top slit is preferred, most
likely because the information from the bottom slit can also be
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Fig. 12: Estimated parameters of the model of [26] for all subjects.



15

Angle below horizon, deg

O
cc

u
re

n
ce

s,
n
o
rm

al
iz

ed
,

-

-2 0 2 4 6 8 10 12 14

0

0.01

0.02

0.03

0.04

0.05

(a) Baseline

Angle below horizon, deg

O
cc

u
re

n
ce

s,
n
o
rm

al
iz

ed
,

-

-2 0 2 4 6 8 10 12 14

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 Subject 1

Subject 2

Subject 3

Subject 6

Subject 7

Subject 8

Subject 9

Subject 10

Subject 12

(b) S45

Angle below horizon, deg

O
cc

u
re

n
ce

s,
n
o
rm

al
iz

ed
,

-

-2 0 2 4 6 8 10 12 14

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

(c) T67

Angle below horizon, deg

O
cc

u
re

n
ce

s,
n
o
rm

al
iz

ed
,

-

-2 0 2 4 6 8 10 12 14

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(d) B78

Fig. 14: Gaze distributions of the baseline and selected occlusion conditions for all subjects, including slit positions (dashed
lines).

perceived through the peripheral vision, whereas the top slit
requires more attention to be perceived due to low optic flow.
If the slits move far away from each other a similar pattern as
for T

la

and ⌧
f

is observed; drivers also aim their gaze between
the slits, indicating that peripheral vision is used for both slits.
Although gaze measurements are always subject to hardware
inaccuracies, it is still observable that there is a correlation
between the median gaze and the far-view point, rather than
with the look-ahead constant T

la

, especially present in the top-
fixed measurements.

VI. DISCUSSION

The goal of this paper was to replicate the original study
performed by Land & Horwood [16] and increase the un-
derstanding in the use of visual perception in lane keeping
tasks. By the estimation of the three individual FRF dynamics,
parameter estimation based on the model of [26] and the
subsequent eye gaze measurements, the perception of the
visuals can be linked to the use of visual metrics guiding the
control.

Drivers were in all occlusion cases able to successfully drive
their vehicle along the winding road, resulting in high VAF
values of the linear model. Presenting single slit conditions
show that drivers adapt their aim-point and the viewing gaze
to the occlusion geometry and that it is possible (optimally
for condition S56) to drive a vehicle by a single aim point,
perceived from a single visual cue point, as predicted by
[26]. This results in only a small decrease in performance
and increase in control activity. As no further information
is possible above the single slit, corner cutting behaviour by
placing the far-view point ⌧

f

further than T
la

is limited, but
not necessarily zero. In principle drivers can place T

la

after
the occlusion slit with ⌧

f

within the slit, still effectively corner
cutting. These results show that drivers are never inclined to
do so, and although stable driver control can be described by
a single visual area, drivers seem to extract visual information
from wider areas of the scene.

This is partially confirmed by the double-slit conditions,
which allow drivers to use a larger range of visual regions
for high performance measures. Drivers consistently place
their aim-point and viewing gaze between the two occlusion
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TABLE III: Measured medians of the eye gaze in degrees
below the horizon.

S1 S2 S3 S6 S7 S8 S9 S10 S12
BL 7,01 6,96 5,57 3,17 7,97 2,53 6,97 3,53 4,22
S12 4,33 1,5 2,17 0,80 1,86 1,90 2,48 1,96 3,40
S23 3,52 2,75 2,77 3.00 2,44 2,88 4,97 2,69 1,47
S34 7,46 3,60 5,84 4,91 3,28 3,75 4,76 4,51 3,13
S45 4,47 4,88 4,56 2,64 4,04 4,22 6,15 5,16 4,37
S56 6,08 3,81 6,98 6,30 5,01 5,33 7,14 8,13 -
S67 7,25 8,41 6,72 3,15 5,66 4,34 8,76 7,05 7,91
S78 4,95 8,50 7,68 6,44 7,01 8,57 7,39 6,99 9,61
S89 9,11 7,29 8,33 6,96 7,72 5,95 1,12 9,07 8,28
S910 1,14 1,03 8,52 1,07 8,28 8,39 1,23 1,03 9,27
T23 3,41 1,60 2,55 2,57 0,33 3,10 1,94 1,81 -
T34 4,76 1,62 2,88 1,40 2,86 1,74 4,51 4,03 -
T45 5,21 3,06 4,48 3,90 3,69 0,85 4,39 4,68 3,89
T56 3,35 3,39 4,08 3,04 5,03 0,74 4,8 3,54 4,30
T67 6,82 3,29 3,01 3,61 3,88 1,90 5,65 3,23 4,24
T78 4,91 3,74 5,80 4,03 4,99 1,18 5,66 3,58 4,73
T89 5,35 4,26 8,28 2,26 6,37 2,35 5,40 3,04 4,96
T910 3,84 1,65 3,14 2,49 5,30 3,48 4,97 2,51 3,93
B23 4,59 4,46 8,63 0,77 8,10 0,40 5,57 4.00 3,80
B34 6,62 5,25 5,92 3,51 9,08 5,40 5,90 4,13 5,21
B45 7,88 6,84 8,38 2,77 7,63 3,43 8,37 6,09 6,03
B56 7,79 6,61 7,76 6,36 6,67 4,41 9,43 8,85 6,28
B67 8,3 5,47 8,49 2,13 6,11 7,21 9,15 6,54 8,34
B78 9,66 9,74 9,49 3,46 7,80 5,63 1,04 7,48 -
B89 9,76 8,15 9,60 5,97 9,92 9,22 1,07 9,68 -

slits if the difference between the slits becomes emphasized,
extracting information from both slits while still responding
to a single visual cue (i.e., a direct correlation between
feedforward and feedback look-ahead times), thus effectively
interpolating the information from both slits. This shows that
visual perception of the road and the use of its visual metrics
are not necessarily the same, and provides an explanation for
the contradictory results found by [26], compared to the two-
level modes of driver behavior ([17]). Furthermore, values of
⌧
f

increase compared to single slit conditions, but drivers are
still not necessarily inclined to place this point in the top slit.

The final hypothesis relates back to the original work of
Land & Horwood. Similar trends were measured for single
slit and bottom-fixed condition, although top-fixed conditions
performed significantly less. Both [22] and [19], the latter
specifically for occlusion, reported a dependency on the pres-
ence of texture of the visuals, which is significantly different
in the case of this experiment compared to Land & Horwood,
which used simple white-on-black visuals and might make the
information from the highest located slits easier to perceive.

Finally, although the experiment was performed at a con-
stant velocity, it is in principle possible to extend the paramet-
ric model and therefore the analysis of occlusion at other (even
varying) velocities. Further research is required to understand
how the parametric model adapts to this change in perception
for both full visuals and occlusion scenario’s.

VII. CONCLUSIONS

In this paper, a replication study based on the occlusion
study of Land & Horwood was described. Based on a human-
in-the-loop lane keeping experiment with twelve participants,
Frequency Response Functions (FRFs) estimates of the target
feedforward, lateral position feedback and vehicle heading
angle feedback were estimated, including the fitting of a
parametric model on the driver control data. For the first time
insight in the behavioral changes under occlusion was given.
For both single- and double slit conditions, it was shown
that drivers adapt their modelled look-ahead, far-view points
as well as the eye gaze within the occlusion slits. In the
presence of two distinctly separated slits, drivers aim both
their eye gaze and the look-ahead points between the slits,
effectively interpolating the information from both presents
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slits while still responding to a single optical cue, although
preprocessing behavior is strongly affected. These results show
a high adaptability to the visual scene and although the results
of Land & Horwood were partially verified, this is not an
indication of two-level driver control.
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Introduction

Manual control forms the cornerstone of many practical applications that people use
throughout their daily life. An important example is car driving, where drivers manually
keep their cars within the instructed lane and away from other cars. With the relatively
low level of training required to enter the domain of car transportation, it is paramount
to understand how drivers steer their cars within their lane. Furthermore, the recent
development of autonomously driving vehicles or lane-keeping assistance systems has
given arise to the question how humans actually perform this type of control, as well as
what cues determine their actions.
In the simplest variant of these situations, the information presented to the driver is
available in a constant, steady flow (same rate of visual information due to fixed velocity,
no discontinuous visuals such as road signs, buildings and surrounding traffic). The
driver is only responding to the dynamics of the road and its visuals. Although driving
on a road induces motion, the information presented by the road is mostly visual (Sivak
[22]). These tasks in which drivers aim at keeping the vehicle between the outer lines
is a lane keeping task, thus a subcomponent of any-day car driving. Modelling the
human behaviour in such situations can directly be used for the design of automated
systems, for example by designing these systems in such a way that they behave similarly
as human drivers.

1.1. Control Models of Lane Keeping
Over the years many studies have attempted to describe this human behaviour with
control models, with varying degrees of success. Although many model forms exist (see
Steen et al. [23]), the most accepted form is the two-point model, of which multiple
variations have been investigated. The first attempt by Donges [4] proposed a relatively
simple variant by stating that human control can be described by two stages (hence their
name): An open loop anticipatory response, where drivers purely observe the oncom-
ing curvature, and a closed loop compensatory response, where drivers aim to minimize
their lateral position deviation through feedback. The latter is the obvious task of the
driver; make sure that the vehicle does not leave the road, whereas the former provides
the driver with anticipatory information to smoothen its response and compensate for
its delay.
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(a) (b)

Figure 1.1: Fully displayed and occluded road visuals.

1.2. Visual Perception
For many years, the other side of the coin has been the study of visual perception, in
which the most important goal is to show humans actually perceive visual information
from their environment. Eye tracking and determining the gaze direction might seem as
the most straightforward approach. The time distribution gives information on where
drives focus their view point, but it gives no insight in how areas outside that view
point (parafoveal and peripheral vision) might contribute to control. Practically, this
method is also often subject to tracking problems (such as not being able to detect the
eye direction) or calibration issues.
A different approach, visual occlusion, has been the most used and discussed method
in the field of visual perception. By occluding large parts of the road and leaving slits
open for drivers to look through, the most important visual regions of the road can be
identified (see Figure 1.1). Land & Horwood [8], as well as others (Cloete & Wallis [3],
Chatziastros et al. [2]), performed such experiments with varying setups. Interestingly,
these occlusion studies all disagree on their findings and their underlying causes, but they
might provide a form of validation of the one- or two point control models, as it forces
drivers to obtain visual information from distinct areas. Land & Horwood described
that the use of two slits (Figure 1.1b) not too close to each other is the minimum for an
identical control compared to full visuals (Figure 1.1a), indicating that indeed at least
two regions of visual information are required. Contrary to analysis of eye tracking,
visual occlusion does allow for the investigation of the effect of non-focal view. The
addition of a second slit might give a driver additional information through parafoveal
or peripheral vision, increasing their performance. Until now, these occlusion experi-
ments have investigated the effect of occlusion only by a performance measure, such as
a difference in the standard deviation of the lateral position, compared to the ’full view’.
This gives a limited understanding of how the individual responses to the obtained met-
rics actually work, as the same performance can be achieved by various control strategies.

1.3. Combining visual perception with control models
Although control-theoretic models provide useful human behaviour models, they often
do not describe how visual information is perceived. A more recent research, described
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in Van der El [25], proposed a model that seems to simplify this connection to the
visual-perceptual approach. The use of system identification tools allowed for the disen-
tanglement of individual driver responses to the signals of the lateral position, heading
angle and target. Drivers minimize a single error on an ’aim point’ in compensatory
fashion, much as humans would do in simple compensatory tasks, already described in
the sixties by McRuer & Jex [13]. It is of yet unclear how this model relates to the
findings of the occlusion experiments, which are suitable in finding the the spatial re-
gions guiding the control. Furthermore, combining a visual occlusion experiment with
system identification and parameter estimation allows the disentanglement of individ-
ual, multiloop, driver responses and the prediction of control parameters as function of
the presence of occlusion its location, such that these can be compared to a full-visual
scenario.

1.4. Report structure
This report first gives a brief overview of the manual control for classical compensatory,
pursuit & preview and precognitive control in Chapter 2, which serves as a basis for
the explanation for understanding the control-theoretic models in Chapter 3. Chapter
4 describes the methods of visual perception, explaining how the understanding of the
use of visual information by humans can be used to also better understand the models
that describe their behaviour. The current lack of understanding, the research questions
and the experiment setup are given in Chapter 5. Finally, Chapter 6 summarizes this
report.
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�
An Introduction to Manual Preview Control

As the use of visual information in car driving can essentially be seen as a extended
preview task, this chapter aims at introducing classical control tasks in terms of their
underlying characteristics and boundaries. Although manual control has various appli-
cations and variations, the hierarchy in which the perception and control occurs for gen-
eral applications can be structured by the Successive Organization of Perception (SOP).
This framework, as presented by Krendel & McRuer [7] aims at capturing the stages in
which humans can perform their control tasks. The three corresponding types of con-
trol (compensatory, pursuit and precognitive control) are discussed briefly in each setion.

2.1. Compensatory control
In the most basic form of the SOP the human responds to and controls a single element,
the displayed error. The error is defined as the difference between the target signal and
the output of the controlled system:

e(t ) = ft (t )°x(t ) (2.1)

Where ft (t ) is the target input signal to be followed and x(t ) is the output signal of
the controlled element. In compensatory tracking, the aim is to follow the input signal,
meaning that a controller constantly aims at minimizing the error e(t ). Only this error
is fed back to the human controller; it will thus not see the input signal that drives the
dynamics, nor the output of the dynamics it controls.
The pilot dynamics as response to this error is denoted as Hp ( j!) and drives the steering
signal u(t ) using a manipulator to the controlled element Hc ( j!). Figure 2.1 gives a
schematic overview of this configuration. Any non-linearities and time-varying effects
that occur in the system are captured by the remnant n(t ).
In manual control tasks the controller is often human. The complete process from
perception of the visuals on the display to the output of a control signal u(t ) can be
captured as part of the human controller Hp ( j!), thus it also includes the dynamics of
the manipulator (such as a control stick or steering wheel).
Human controllers will never be able to achieve perfect error rejection for random input
signals, because they are limited by their physiological constraints and the precision in
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Figure 2.1: Control overview of a compensatory tracking set-up.

execution of the human and the manipulator. The delay caused by the perception of the
visuals, processing of the information in the brain and execution by sending commands
to the muscles is captured in a single time constant øe , resulting in an exponential term
in the frequency domain:

Hd ( j!) = e° j!øe (2.2)

Hence a time delay induces a phase difference between the in- and output signal. Fur-
thermore, the dynamics of the muscles themselves also induce a lag in execution. These
dynamics are commonly described by a second order mass-spring-damper system:

Hnms( j!) =
!2

nms

( j!)2 +2≥nms!nms( j!)+w 2
nms

(2.3)

Where !nms is the natural frequency and ≥nms is the damping coefficient. The dynamic
relations between in the input- and output signals as closed- and open-loop representa-
tions are, in the frequency domain:

Hol , f t ( j!) = X ( j!)
E( j!)

= Hp ( j!)Hc ( j!) (2.4)

Hcl , f t ( j!) = X ( j!)
Ft ( j!)

=
Hp ( j!)Hc ( j!)

1+Hp ( j!)Hc ( j!)
(2.5)

Perfect tracking is achieved when the output signal x(t ) matches the input signal ft (t ).
Signals are equal 1) if their magnitude is equal, hence |Hcl , f t ( j!)| = 1, and 2) if there is
no phase difference between the signals, \Hcl , f t ( j!) = 0.
Furthermore, a signal fd (t ) can be modeled such that it represents a disturbance acting
on the controlled element. The addition of this disturbance becomes of importance when
identifying separate underlying human controller dynamics.
McRuer and Jex [13] found that a human adapts its dynamics Hp ( j!) to the dynamics of
the controlled element Hc ( j!) such that the dynamics of the complete open loop system
approximates integrator dynamics around the crossover region, with an effective time
delay:

Hol ( j!) = Hp ( j!)Hc ( j!) = !c

j!
e° j!øe (2.6)

Where !c is the crossover frequency, which is defined as the frequency where the magni-
tude of the open loop dynamics becomes one, ie. |Hol ( j!)| = 1. Equation 2.6 is only valid
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for compensatory tracking and is therefore often limited to few practical applications,
although it does give the fundamental insight that the high human control adaptability
can actually be measured and predicted, as long as the dynamics of the controlled ele-
ment are known.
For typical controlled elements Hc ( j!) such as Kc , Kc /s or Kc /s2 a model can be con-
structed that describes the adapted behaviour of the human controller, as given in equa-
tion 2.7.

Hp ( j!) = Kp

µ
1+TL j!

1+TI j!

∂
e° j!øe (2.7)

Containing the controller gain Kp , the delay term øe and the two characterizing lead
(TL) and lag (TI ) terms.

Typically, humans will aim at controlling the error that is presented to them (compen-
satory control) as a ’first base’ (Mulder et al [18]); it is the most fundamental situation
and control task if skill for the specific task is limited. If preview of the input signal is
available, a controller can also use this information.

2.2. Pursuit and Preview Control
As is the case with car driving, a human controller will in fact have visual cues give
more information than just the error and indicate the target signal to be followed,
known as pursuit control. In this case, the human does not only respond to the error
e(t ), but also to the input signal ft (t ) and thus also implicitly to the output state
x(t ), as shown in 2.1. An overview of such a control scheme is given in figure 2.2. The
human controller can be seen as a ’summation’ of three individual responses to the input
signals.A feedforward response with dynamics Hpt ( j!) describes the direct response to
the target signal. A feedback response Hpx ( j!) on the current system output and finally
a direct compensatory response Hpe ( j!) to the error. Each response is still subject to
the physiological restraints of the human body.
It is of great fundamental insight to understand how these individual response functions
are used in manual control, although due to the overdetermination of the system this is
impossible, resulting in a choice which blocks are wanted for identification.

Figure 2.2: Control overview of pursuit tasks, adapted from Mulder et al. [18].
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A special case of pursuit tasks is with the presence of preview. In this case, not only
the forcing function at time t is shown to the human controller, but a stretch of future
forcing function points up to t +øp is present. This way, a controller can choose what
information is used to guide their behaviour, for example to allow for the compensation
of their own delay by producing lead, or use no preview information at all (in which the
human response equals that of its pursuit counterpart).
Shown in Figure 2.3 is the preview model by Van der El et al. [26]. Humans low-pass
filter target information of a far view point into a processed error signal e§(t ), which
only exist internally and can smoothen the signal. The near view point response acts
as a high pass filter. An overview on the identification of human dynamics in preview
tasks for various controlled elements can be found in and Van der El et al. [28].

Figure 2.3: Control overview of preview tasks, adapted from Van der El et al. [28].

2.3. Precognitive Control
The final step within the SOP is the precognitive control (Figure 2.4), corresponding to
the highest level of skill. In this method of controlling, drivers are directly responding
to a situation within the forcing function from a learned response; it does not require
feedback of the current state and/or error for successful completion and is completely
open loop. Because precognitive control describes an internal prediction of the output,
it requires an approximate knowledge of the controlled element, hence a deep level of
experience is required.

Figure 2.4: Various precognitive modes for human control, adapted from Mulder et al. [18].

Lappi [11] furthermore distinguishes between predictive and ballistic forms of precogni-
tive behaviour. In the former, the aforementioned predictability will lead to an inverse
motor code to match the forcing function based on an internal model; the driver has
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knowledge on the input (such as in the case of a repetitive system) and thus directly
compensates by the inverse of the controlled element from skill. Although the execution
of control is generally open loop, feedback must be used, such as to see if the signal
indeed acts as predicted. Ballistic precognitive is completely open loop and is a learned
response executed as a motor program; an example would be a direct reflexive response
to a sudden deviation in the forcing function, such as a hole in the road in car driving
situations.
Predictable inputs (such as repetitive signals) can lead to precognitive behaviour, hence
for the design of forcing functions it is necessary to create quasi-random signals that
avoid recognition of patterns, which could lead to an entanglement of precognitive and
preview control, making it difficult to quantify individual responses to the forcing func-
tion.
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�
Control-Theoretic Analysis of Lane Keeping

Many studies have aimed at describing the human behaviour of lane keeping in a fun-
damental way, by constructing models that represent the human dynamics from input
(the road geometry) to output (the position on the road). This chapter describes the
step to representative models of car driving and discusses various of such constructed
models from literature. The goal of these descriptions is often to describe human be-
haviour accurately, but ideally also in the most intuitive manner as possible, such as
with parameter descriptions that match physical interpretations of lane keeping.

3.1. The Road as Control Task
This section describes how car driving can be described as a control task. First, the
definition of the human control task for conventional car lane keeping is given, after
which it is described how the geometry of the road determines the task definition.

3.1.1. The Control Task
In the simplest and most common practical form, drivers are given the assignment of
following a road, alternating between straight and curved segments. Its pattern is clearly
distinct from the current environment (such as on highways), indicated by white lines.
By assuming the driver uses the shape of the road as its main visual cue, the road can
be seen as an input signal that requires constant control action. Here a fundamental
difference arises with the preview tracking explained in Chapter 2, as it is not necessarily
clear what type of control strategy drivers use, as its control task is not clear: Drivers
are free to position the vehicle anywhere on the road, as long as it roughly remains on
the road and within the lines.
As Donges [4] noted, the centreline can be used as the forcing function if a driver actively
tries to keep the vehicle in the middle of the road and the centreline is defined as the
middle of the boundaries, but often centrelines are not visible on roads. Therefore car
driving is a boundary avoidance task, known as lane keeping.
This freedom given to drivers allows for a high flexibility in driving strategies. Drivers
can choose to aim for perfect tracking of the road, or be more selective in the components
of the road that they respond to. For example, neglecting the higher frequency parts of
the road can result in corner cutting behaviour. This strategy might result in a worse
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performance compared to someone who aims for perfect tracking, but the lower control
activity results in a more laid-back driving style.

3.1.2. Road Geometry
With the knowledge that drivers directly use the road as the target signal ahead of
them, lane keeping is an extended form of preview control, in which perspective view-
ing must be taken into account. Figure 3.1(b) shows the same task as in Figure 3.1(a)
at a perspective view, which is the view corresponding to the visual scene present in
lane keeping. The perspective view changes the way how the underlying frequencies are
displayed. Small differences are more difficult to perceive at larger distances, although
these parts become enhanced once they get closer to the driver. This difference between
perspective and top-down viewing thus affects driver behaviour, although changes in
terms of model validity were found to be small (Van Der El et al. [27]), meaning that
the method humans use in handling the lane keeping remains similar.

Figure 3.1: Topdown (a) and perspective (b) views of the road tracking task, adapted from Van der El et al.
[27].

3.2. Metrics of Stabilization
A conceptualization of lane keeping behaviour requires the description of parameters
used by drivers to stay within the lines. Donges [4] described this as stabilization infor-
mation, meaning that drivers use these metrics to stabilize themselves to the road. As
the road shape can change constantly, these metrics are functions of distance. Assuming
the width of the road remains constant, the state of the vehicle can be described by the
three main metrics:

1. The lateral position deviation (denoted ye), which is the difference between the
road centreline and the vehicle position, perpendicular to the local tangent of the
centreline. This metric is measured from the center of gravity, meaning that is
typically not visible from within the vehicle itself. It is therefore not clear to
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which prediction of the lateral position driver respond. The case where the lateral
position deviation is nonzero is shown in Figure 3.3(b).

2. The heading deviation (denoted √e), which is the difference between the com-
manded heading √c of the road and the actual heading √. An example in which
this case is nonzero is shown in Figure 3.3(c). Again it should be noted that there
is no clear definition to what heading humans respond, as they might use any point
along a winding road as their commanded heading. Without the lateral position
or heading angle errors, the case shown in Figure 3.3(a) is present.

3. The curvature deviation (denoted re), which is the difference between the road
curvature rc and the vehicle curvature r . Consider the situation in Figure 3.2. If
a driver would directly steer towards an arbitrary point at heading √c , it would
still need to drive along a winded, and not straight, part of the road, to match the
commanded curvature, meaning that the curvature must be included as a separate
metric. However, it is possible that this curvature matching can be fully explained
by taking the curvature as a range of commanded headings.

ye

 c

rc

r

northvehicle

centreline

Figure 3.2: Overview of visual metrics determining the state of the vehicle with respect to the road.
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(a) ye = 0, √e = 0

(b) ye 6= 0, √e = 0

(c) ye = 0, √e 6= 0

Figure 3.3: Examples of zero errors (a), non-zero lateral position error (b) and non-zero heading error (c) lane
keeping, adapted from Donges [4].

3.3. General Model Structures
An important question that arises is: How do drivers perceive these stabilization metrics,
and how do they use these for lane keeping? The lateral position describes how far the
vehicle is located from the center of the road, which is the main metric to be minimized
for drivers, although it cannot be observed directly. In car control, the lateral position
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is measured from the center of gravity which is located behind the driver, meaning that
drivers have to interpret the lateral position from the visuals in front of the vehicle. As
this information can theoretically be perceived from any part of the road, its location
might vary per driver. The heading angle has a similar problem. It indicates the relative
attitude of the vehicle with respect to the shape of the road, which is directly observable
through the front window. However, it still needs to be extracted from a point on the
road.
Over the years various models have been developed, of which most assume that drivers
obtain these metrics of stabilization from one or multiple fixed points on the road. The
position of the lateral position and heading angle viewpoints do not necessarily have
to coincide. A comprehensive overview was given by Steen et al. [23]. Using control
theory optimal control models can be derived that describe human control accuractely
(such as Sheridan [21] or MacAdam [12]), although these models often lack physical
interpretations of the inputs and thus provide little information on what guides control.
The most accurate predictors of human control that still use some form of physical
interpretations of the driver are the two-point models, in which the control is described
by a combinational use of two points. Donges [4] similarly described driver behaviour in
two stages: An open loop anticipatory control of the curvature of the road, as well as a
closed loop compensatory control loop of the lateral position, in which drivers minimize
their lateral position deviation by forming a closed loop. The model structure proposed
by Donges is shown in Figure 3.4.
Although two-point models as proposed by Donges, or similarly as proposed by Sentouh
et al. [20] often provide relatively accurate description of human control, it is unclear
what the physical interpretation should be of these two points. Humans cannot focus
on more than one point at the same time, but might spread their attention or simply
perceive the information through their peripheral/parafoveal or even focal view. To
partially solve this problem, Salvucci & Gray [19] thought of a combined ’visual angle’
to perceive the information required for the two-point model. However, all of these
models are only confirmed in a performance sense, meaning that until now there have
been no actual measurements of the individual response dynamics, such as to the lateral
position or heading angle. This requires new interpretations of how humans actually
perceive and process the visual information in lane keeping tasks.

3.4. Van der El model
A different explanation on the handling of road geometry was recently described by Van
der El [25], in which driver behaviour is described similarly as in the previously mentioned
combined visual angle: by describing the negation of a single perceived viewing error.

3.4.1. Model Geometry
Consider the situation in Figure 3.6. Van der El stated that the driving data corre-
sponded to the response on a single aim point A, located at some (t +Tl a) ahead. This
Tl a is the look-ahead time, a directly interpretable metric on how far drivers look when
driving down a winding road. The reduction of this perceived error is achieved by a
compensatory fashion, referring to the traditional findings of McRuer & Jex [13]. This
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Figure 3.4: Two-level model structure, adapted from Donges [4].

perceived error, located at angle ¥ from the vehicle heading, is in a sense a combination
of the metrics described in Section 3.2; it provides drivers with information on the lateral
position, heading and curvature deviations. From the geometry in Figure 3.5, this angle
¥(t ,Tl a) equals:

¥(t ,Tl a) = arcsin
µ

yc (t +Tl a)° y(t )
Tl aU0

∂
°√(t ) º yc (t +Tl a)° y(t )

Tl aU0
°√(t ) (3.1)

For small angles. Here, Tl a is the look-ahead time and U0 is the velocity. If Tl a becomes
large (i.e. approaches the vanishing point), this angle approaches the heading angle
error:

¥(t ,Tl a) =°√(t ) (3.2)

This also confirms the notion that ¥(t ,Tl a) contains information on the lateral position
as well as the heading angle, whose weighting depends on the location of the aim point:
1/(Tl aU0).

3.4.2. Control Model
The metric ¥(t ,Tl a) can be used by drivers for control, to which Van der El hypothesized
a model description as response to the heading and lateral position information, shown
in Figure 3.7. The precision model used consists of a gain-lead structure:

H comp
o ( j!) = Ke§(1+TL,e§ j!)e°øv j! !2

nms

( j!)2 +2≥nms!nms j!+!2
nms

(3.3)

With øv the visual response delay, !nms and ≥nms are the parameters of the neuro-
muscular system. Note that the parameter Ke§ and the lead term (1+TL,e§) already
correspond to the following of a smoothed, low-pass filtered signal, slightly deviating
from the original road input signal and leading to corner cutting behaviour:

Ho f = K f
1

1+Tl , f j!
eø f j! (3.4)
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Figure 3.5: Top-down overview of the vehicle state geometry, adapted from Van der El et al. [25].

Figure 3.6: Isometric overview of the vehicle state geometry, adapted from Van der El [25].

This prefiltered signal is thus a low pass filter with time constant Tl , f . As shown in
Figure 3.7, the complete dynamics between the input and the control output equal:

e§( j!) =
µ
K f

1
1+Tl , f j!

eø f j!Yc ( j!)°Y ( j!)
∂

K√
y °√( j!) (3.5)

Which is subsequently the input for the precision model of Equation 3.3. The constant
ø f indicates the farthest point on the trajectory used for control. As can be observed,
this has a similar structure as in Equation 3.1, in which the constants of the heading
angle, lateral position and forcing function responses can be written geometrically:

K√
y = 1

Tl aU0
(3.6)
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And:
K f

eø f j!

1+Tl , f j!
= e j!Tl a (3.7)

This again confirms the notion that the factor Tl a determines the weighting between the
response to the heading angle and the lateral position. From Figure 3.7, the responses
to the individual signal can also be determined:

Ho√( j!) = H comp
o ( j!) (3.8)

Hoy ( j!) = K√
y H comp

o ( j!) (3.9)

Hoyc
( j!) = Ho f K√

y H comp
o ( j!) (3.10)

Where Ho√( j!), Hoy ( j!) and Hoyc
( j!) represent the control of the heading angle, lateral

position and target feedforward, respectively.

Figure 3.7: Control block diagram, adapted from Van der El [25].

This result by Van der El provides a fundamental quasi-linear control model of a multi-
loop phenomenon that forms a greater connection with the visual-perceptual approach
(Chapter 4), as the modelled parameters are directly physically interpretable and for
the first time gave fundamental insight in the disentangled dynamics of each response.
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�
Visual-Perceptual Analysis of Lane Keeping

The study of human control in car driving tasks is incomplete without a description of
how information guides the control and what information is selected by drivers. Car
driving is a predominantly visual control task (Sivak [22]), meaning that the study
of visual perception is important in understanding how stable lane keeping control is
achieved. The main focus of this chapter is thus to describe the underlying principles of
visual perception and methods to analyze to disentangle this flow of information.
The first two sections discuss the concepts of focal levels and optic flow. The third
section gives an overview of gaze attraction models. The last section discusses visual
occlusion, which is the partial hindrance of visual information to what visual regions are
important for successful driving.

4.1. Types of Focal Vision
The visual information, by an almost discrete distribution of rods and cones (either rods
or cones are present at an angle, shown in Figure 4.1) in the eye, is sent to the brain,
where the signals of both two eyes are fused into one single image. This causes a view
that has decent sharpness and color levels, although humans distinguish between colours
best when looking right in front, and minimal differences in intensity are still detected
the best at the sides of the perceived image. This fusion of information allows humans to
perceive large amounts of visual information at the same time from a wide Field of View
(FoV). The 5± area directly around the focal point provides the fovea (Wandell [30]),
corresponding to the yellow spot that provides the sharpest image. The area directly
next to the fovea is the parafovea, which still provides a decent sharpness of an object.
For example, with the parafoveal vision it will not be possible to read a word from a
book, but one might still be able to determine whether it is a long word, how many
words there are and what colours exist. The perifovea compromises the largest area
of the complete visual image, as shown in figure 4.2. In this area it is still possible to
perceive objects or their movements in space, but at a largely decreased sharpness.

4.2. Characteristics of Optic Flow
Car driving is above all a dynamic task, as the human must constantly respond to what
is perceived from its surroundings, such as the road. This change of visual information
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Figure 4.1: Schematic overview of the cone and rode distribution on the retina, adapted from Wandell [30].

fovea

parafovea

perifovea

Figure 4.2: Schematic overview of the focal types from Wandell[30].

is determined by the optic flow, which is the perception of a moving object, or in the
case of car driving, the movement of surroundings. Optic flow can be categorized by
two main metrics (Gibson [6]): The amount mainly stems from the physical properties
of the objects. A stone road is more grainy and thus provides more flow compared to a
perfectly flat road. Secondly, the relative direction or pattern of the optic flow expands
from the focus of expansion (FoE) and provides drivers with the perception of movement,
affecting the drivers’ sense of direction.
This sense of direction can be used to extract heading information (See Warren [34]
or Van den Berg [24]), although it is not agreed upon how accurate this method is for
drivers. Wann et al. [31] as well as Wann & Land [33] developed the idea of optic flow
being the actual guidance for heading control, as shown in Figure 4.3. Wilkie & Wann
[36] stated that humans adapt their heading in such a way that the resulting optic flow
received by the drivers approaches in a straight fashion, indicating that the driver lo-
comotes directly towards its intended target. Humans can judge the heading as well as
path information with an accuracy of ª3± for straight roads, but on curved section this
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judgement dropped to ª5± for the path and to ª13± for the identification of heading.
This study also noted that it is difficult to quantify how large the changes in optic flow
are when imperfections with respect to the intended model arise, such as when drivers
are distracted and move their head. These components of optic flow cannot just be
extracted as separate translations or rotations. This free gaze behaviour affects driver
control behaviour to an extent that it cannot be ignored as potential explanation on
differences found between driving experiments (Mole et al. [16]).

(a) Straight road. (b) Curved road.

Figure 4.3: Optic flow patterns in straight and curved road segments, adapted from Wann & Land [31].

4.3. Gaze Attraction Models
The most direct method to obtain driver data on the use of visual information is eye
tracking, by measuring the gaze of the driver. Using this method one can see where
drivers look when steering. Although these methods often yield a single gaze point,
drivers can also perceive information around that point through their peripheral or
parafoveal vision, first noted by Mourant & Rockwell [17], which is something not cap-
tured by measuring a single gaze point. Although these vision types do not yield vision
with the same sharpness as focal vision, shapes and colours can still be seen and can
provide a useful source of information.
The time distribution of the eye gaze yields a direct spatial distribution such as shown in
Figure 4.4. Similar to the theories of heading extraction from optic flow, Land & Lee [10]
as well as Wilkie & Swapp [32] noted that when drivers approached bends, their focus
would initially be placed on the tangent point of the inner curvature line, shown by the
location of the gaze distribution in the same figure. The geometry links the curvature
of the road segments to the viewing distance from according to:

C = 1
R

= 1
d cosµ

° 1
d
º µ2

2d
(4.1)

Where C and R are the curvature and the radius of the corner respectively, d is the lateral
distance to the tangent point and µ is the relative angle from the driver to the tangent
point (as shown in Figure 4.5). Although this behaviour occurs for the participants in
those studies, drivers often only applied this method for a short period of time; only
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when approaching a bend. Therefore it seems that such models only provide a part of
understanding human control. Salvucci & Gray [19] implemented these ideas within the
framework of a two-point control model and even managed to account for lane changing.

Figure 4.4: Statistical occurrences of gaze direction, adapted from Land & Lee [10].

Figure 4.5: Geometry of the tangent-point attractor model, adapted from Wann & Land [31].

4.4. Visual Occlusion
Considering that the previous sections have formed a short introduction on the use of
visual perception, this section describes how the selection (or occlusion) of the visuals
presented to the drivers can be used to determine how humans use this perception in
lane keeping. The method of visual occlusion relies on the separation of visual informa-
tion to identify the importance of spatial regions of the road on driver behaviour. Only
specific segments of the road are presented to the driver, whereas all other visuals are
hidden. It is notable that often these experiments have formed the empirical evidence
of one- or two point control theoretic models, such as from Donges [4].
The most used method for occlusion is longitudinal segmental visual occlusion, in which
the longitudinal position of the slits is varied for each condition. By varying the position
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of this overlay, and thus the displayed longitudinal segment of the road, for example the
effect on the lateral position deviation over time can be measured.

4.4.1. Study by Land & Horwood
Land & Horwood [8] were one of the first to perform a simple occlusion experiment for
lane keeping tasks, partially motivated by the findings of Donges [4]. In this experiment
a lane keeping task was simulated with simple visuals, where white lines indicated the
boundaries of the road, all else was black. There was no center line present and drivers
drove down a fixed-width (3m) winding road1, while keeping the vehicle between the
lines. No other scenery was displayed. Four types of measurement conditions were
investigated, with the available visual information as independent variable.

Measurement Setup
First the full visuals were displayed to the driver, with no occlusion at all. This is the
closest approximation to the normal car driving situation and serves as the baseline of
the driver behaviour. For the other three conditions the occlusion was presented. Small
apertures of 1± in height, but at full width, formed the only way of looking at the road,
all other points on the visuals were occluded by a black overlay. As if one is watching
through a mailbox, the underlying visuals remain exactly the same, meaning that the
same experiment is performed simply with a decreased amount of visual information, as
shown in Figure 4.6(a-b). By varying the vertical position of these slits below the hori-
zon, the researchers aimed at describing how important each of these vertically spaced
areas are for control.
There were nine possible positions for the segments (Figure 4.7), spanning from the
horizon to ten degrees down, where the field of view always remained constant. Ge-
ometrically speaking, the true horizon is the horizontal line through the convergence
point of the road side lines, known as the vanishing point. In reality, a perfect sight
towards the vanishing point is unlikely and that might have been the reason for Land &
Horwood to locate the highest opened slit at 1± below this true horizon, such as shown
in Figure 4.7. Although this means that the effect of an opened slit between 0± and 1±
was not investigated, this area was included in the baseline visuals.

Independent Measures
After the baseline (full visuals) was complete, the second type of condition showed only
one of these slits, with its middle point at varying position between 1.5± and 9.5±. As
the third step the farthest aperture at 1.5± was visible but fixed over runs, with a second
aperture at varying angle per condition, known as ’top fixed’ and vice versa for the fourth
step, where the bottom aperture was always at a fixed position, known as ’bottom fixed’.
These last two types of conditions thus have two apertures present, providing drivers with
a mixed selection of longitudinal visual information. Sometimes the slits were located
relatively high on the screen, such as in a top-fixed situation with a second aperture at
3.5±, or vice versa. There are also conditions where their distribution is more evenly

1The track used by [8] is based on a model of Queens Drive in Edinburgh, United Kingdom, which is a narrow
road around Arthur’s Seat in Holyrood Park.
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‘
(a) (b)

Figure 4.6: Road segmentation example with non-occluded (a) and occluded (b) visuals, reproduced from
Cloete & Wallis [3].

spread; one bar at the top and one at the bottom.

True horizon

10◦

5◦

0◦

Figure 4.7: Aperture road segment division, as function of longitudinal angle, reproduced from to Land &
Horwood [8].

Control Variables
The car always drove at a fixed velocity of 16.9ms°1 (61kmh°1), whereas a second study
(Land & Horwood [9]) investigated the same conditions at 12.5ms°1 (45kmh°1), and
19.7ms°1 (71kmh°1). The visuals were presented on a 60cm wide screen at a distance
of 80cm and the refresh rate of the display was 7Hz. Drivers aimed their sight from
a position of lh = 1.1m above the road. A double integrator setup was used as vehicle
model, although its integration constants are unknown.
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Dependent Measures
Land & Horwood measured and compared the standard deviation of the cars lateral
position error between the various conditions for three different drivers. The accuracy
ratio æbl

æ was calculated as the standard deviation of the baseline divided by the stan-
dard deviation of the selected condition; it is the reciprocal of standard deviation with
respect to the baseline, hence a value of one indicates an equal performance compared to
the baseline conditions, but anything lower indicates a worse performance. It is possible
to achieve a better performance than the baseline (æbl

æ > 1 ), but one might expect that
reducing the visual information almost always leads to a worse performance. The results
of the original experiment can be seen in Figure 4.8(a-c).
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Figure 4.8: Accuracy ratios as function of longitudinal aperture angle for three different velocities, adapted
from Land & Horwood [9].
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4.4.2. Discussion of Results
For a fixed velocity of v = 16.9ms°1, shown in Figure 4.8(b), presenting only one aperture
decreases the driving performance with respect to the baseline at all angles, although it
is at best in the middle of the road (5± °6±). However, if the nearest aperture is shown
and with that a second aperture as function of position (bottom fixed), the accuracy
ratio increases, with an optimum somewhere in the middle aperture (3± °5±). A similar
observation is made for the reverse case; showing the farthest aperture and varying the
other apertures one at a time (open circles) yields a decent performance and is in two
cases even better than viewing the full road. Here the optimum is somewhere close to
the bottom of the display (6± ° 9±). Hence, these results show that a two-segmental
occlusion scenario can describe the same level of performance as the baseline condition,
for some angles.

At a higher velocity (v = 19.7ms°1), presented in Figure 4.8(c), the same effects can be
observed. The problem of having only one aperture is enhanced and degrades the per-
formance ratio to a maximum of 0.6, whereas two apertures also do not provide drivers
with a similar performance compared to the baseline. However, it should be noted that
the position of the maxima still occur at roughly the same angles.
For the lowest velocity setting of v = 12.5ms°1, shown in Figure 4.8(a), drivers seem
to be able to obtain enough information from a single point, being almost identical to
the top fixed variant, although both have distinct optima. The bottom fixed variant
has, with the exception of the lowest setting, an almost horizontal distribution in the
performance ratio. Land & Horwood explain this by noting that at lower speeds, it is
possible to extract feedback from the road edges from the nearest slit, thus decreasing
the need of a second slit. This strategy becomes increasingly unreliable when the veloc-
ity increases, because this leads to unstable driving.
Although not directly visible in these figures, it was also noted that the position of these
slits determines the strategy that humans apply to keep within the lanes. Only showing
the nearest slit was characterized by a jittery control output, whereas a high placed
slit caused drivers to apply smooth steering. It is not necessarily true that leads to a
difference in performance; different control strategies can work equally well.

The conclusion made is that for the middle velocity (v = 16.9ms°1) drivers are able to
successfully steer cars and approximate the baseline with limited information available,
such that these two conditions become almost indistinguishable from a performance
perspective. This is as long as this information comes from two separated visual points,
with a separation optimum of roughly 5±.

4.4.3. Comments regarding validity
The findings of Land & Horwood are important in the sense that for many years they
have assumed to be the basic verification of two-point models. Quite crucially, however,
some important remarks must be made about the execution of the experiment and its
subsequent claims.

1. Low display refresh rate - The refresh rate of the display was set at 7Hz,
which results in a jittery simulation of an otherwise continuous process. On every

59



non-simulated frame the eye perceives a lack of new information, leading to a
difference between the observed frame of the simulation and the expected visual
information based on experiences of car driving. On every ’lacking’ frame, where
drivers cannot perceive visual feedback, this effectively results in a delay. The way
in which humans change their behaviour depends on the magnitude of this delay
(Miall et al. [14]), meaning that the low refresh rate can have a profound influence
on the behaviour of the driver. Cloete & Wallis [3] describe the way in which
types of control can occur by three stages: smooth, step-and-hold (intermittent
corrections) and ’bang-bang’, where the latter indicates a control strategy where
drivers discretely vary their input between two (near) opposite values. Land &
Horwood [8] also describe the the occurrence of this last type of control, which
might be partially explained by this low refresh rate, although as mentioned, their
explanation is purely based on the interpretation of the control task.

2. Lack of optic flow - The presence of optic flow (such as from the road itself
or surrounding scenery) might have an effect on the performance of the driver,
mainly in the areas where the flow is the heaviest. The aperture close to the
vehicle, having the largest longitudinal angle, show more optic flow than the parts
farther away. The ’aggressiveness’ of these apertures will be higher, and driver
might be more motivated to also attain a more aggressive control strategy or to
increase the control activity. Drivers can also be more selective in the areas they
look at to decrease the ’heavy’ optic flow meeting their eyes. Finally, as explained
in Section , flow can be important in the extraction of the heading angle. As a
comparison is made to real-world driving, where optic flow is also present, it would
be better to implement an optic flow component in the experiment as well.

Furthermore, there are also remarks concerning the analysis of the obtained data.

1. Small data set - Due to the small amount of subjects (N = 3), it is questionable
if the data holds any statistical significance, also due to the lack of (consistent use
of) error bars. Although the main trends were the same for all three drivers, it
is more difficult to argue whether the collected data were outliers and thus how
convincing the results are.

2. No representative population - The authors participated in the experiment
themselves, providing them with unwanted information on control strategies lead-
ing to a confound in the experiment. By designing the experiment it is likely they
were subject to training effects. Most importantly, they were aware of the hypoth-
esis and could thus adapt their driving strategy to this information. Preferably,
one would look for subjects unaware of this type of research and its measuring
methods.

3. Inconsistent data - In two special cases of the top- and bottom fixed config-
urations, there are two apertures overlapping each other: The top fixed exactly
overlaps second aperture at 1.5±, whereas the bottom fixed configuration with a
second aperture at 9.5± results in the same problem. These are indistinguishable
from their single aperture counterparts, and, if tested both, should thus lead to
the same driver performance. However, as can be seen in Figures 4.8 (a-c), there

60



are discrepancies between these conditions. The call for error bars in these figures
is invigorated by this observation.

Comments about the interpretation will be discussed in section 4.4.7.

4.4.4. Study by Cloete & Wallis
As mentioned, the refresh rate used (7Hz) in the original experiment might have a pro-
found effect on the measured performance. In that case drivers could apply a different
driving strategy, for example by using more aggressive steering or acquire more lead to
compensate for the ’delayed’ visuals. In that case, the presence of occlusion will investi-
gate the wrong control task due to the lower refresh rate. It is possible that this effect
is also measurable in the performance ratio’s calculated by Land & Horwood, although
this is not necessarily the case. Drivers can perform equally well while controlling a
different task.

The main work by Cloete & Wallis [3] aimed at the partial reproduction of Land
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Figure 4.9: Accuracy ratios as function of longitudinal aperture angle for three different velocities, from Cloete
& Wallis [3].

& Horwood’s experiment, by comparing between simulations with a low (7.2Hz) and
high refresh rate (72Hz). As mentioned before, the ’stepped’, jittery sequence inputs
of the former, due to the low refresh rate, can give rise to a summation of individual
responses by human controllers (Miall et al. [15]), such that they lead to an oscilla-
tory overcompensating response, instead of a smooth and continuous response to the
information nearby. This can be an explanation for the jerky response as measured by
Land & Horwood. In the experiment, where the eye level was also set at 1.1m, drivers
looked at a 3.4m by 2.7m projector screen. It was confirmed by Cloete & Wallis that for
higher refresh rates (77Hz) the relative performance drops significantly, as they found a
significantly higher standard deviation of the lateral error with respect to the baseline
performance, for all aperture positions.
Again, some concerns about this experiment must be noted:

• The simplistic visuals with white-on-green road presentation (Figure 4.6) were
comparable to the set-up of Land & Horwood, but also partially lack optic flow.
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• Trials were only set at an 8s duration, possibly inducing relatively large transient
response measurements.

4.4.5. Study by Chatziastros et al.
Finally, a more detailed study into individual effects was performed by Chatziastros et
al. [2]. In this study, three different comparisons were made, for an otherwise highly
similar measurement setup as Land & Horwood:

1. Replication - Similarly to Cloete & Wallis, a replication experiment was per-
formed on the slit experiment by Land & Horwood. Chatziastros et al. did not
measure the dependency on a second far-away point, meaning that this information
appears to add nothing to the performance of the driver and that the conclusions
of Land & Horwood could not be replicated.

2. Texture type - Both of the previously mentioned experiments were based on
a simplified representation of car driving. Roads were displayed as lines on a
single-colour background. This comparison directly measures the difference in
performance if the road also contains textures, increasing the amount of optic flow
to the driver. As shown in Figure 4.10(b), this yields a constant offset for all single
slit positions, resulting in a slightly better performance if textures are present. It
is not clear if ground or grass textures were also included.

3. Display type - Finally, a comparison was made between the type of display
presented to the driver (Figure 4.10(c)). Relatively large differences in lateral
deviation were found between a projector and a monitor, at the same field of view.
An explanation given by the authors, is that the presence of the monitor edges
provides drivers with a ’stronger’ reference frame, corresponding to the optical
invariant inner structure of a vehicle. Interestingly, a comparison of the texture
types was also made for both display types, and the positive effect on the lateral
deviation, caused by the additional textures, could not be found. An explanation
for this is the decrease in resolution in the case of the projector screen, as it lowers
the perceived optic flow by the drivers.

62



1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Slit Position [deg]

La
te

ra
ld

ev
ia

ti
on

[m
]

Single Slit
Double, top fixed
Double, bottom fixed

(a) Lateral deviation for different slit configura-
tions

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Slit Position [deg]

La
te

ra
ld

ev
ia

ti
on

[m
]

No surface texture
With surface texture

(b) Lateral deviation for different surface textures

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Slit Position [deg]

La
te

ra
ld

ev
ia

ti
on

[m
]

Projector
Monitor

(c) Lateral deviation for display types

Figure 4.10: Lateral deviation measurements between various setup types, adapted from Chatziastros et al.
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4.4.6. Varying Transparancy as Occlusion
Segmental visual occlusion is not the only method to measure the differences in human
steering capacity. Other types of occlusion can be performed, such as by Frissen & Mars
[5], who performed an experiment in which not the position of the available visuals were
varied, but its transparancy. The authors reported that up to 60% transparency the vi-
suals still provide adequate information for drivers to successfully anticipate their path.
Beyond that point, faster actions indicate a higher dependency on direct lateral position
control, which seems intuitive. Segmental visual occlusion, the practice described in the
studies above, has been a much more popular method due to its simplicity in splitting
up the spatial regions of the road, and over the years has been assumed to be a verifi-
cation method for two-point control models. However, there are some rather important
remarks that must be made about the interpretation of this method.

4.4.7. Discussion of Visual Occlusion
Visual occlusion relies on the idea of forcing drivers to use specific visual information for
control. In ’real’ lane keeping drivers can use the whole road visuals at their discretion,
meaning that the location of the points of attention used for information extraction may
not be constant. Furthermore, drivers can even completely deviate from their task and
quickly scan their surroundings, while peripherally perceiving information of the road
or confidently assuming that deviations do not become large, given that the driver does
not look away for too long. This is a pitfall of visual occlusion, as it only answers the
question which parts of the road describe control models, but it does not answer ques-
tions about the visual attention span of drivers over time. This is not a fundamental
problem for the validity of visual occlusion as a measurement method. Driver models
verified by this method typically do not need to predict this type of behaviour. It does
mean that not many conclusions can be made about time distribution of where humans
look.

First of all it is clear that there is no agreement on the validity of the various occlusion
experiments. The studies by Land & Horwood and comparable model simulations (such
as Salvucci & Gray[19]) showed that a second slit is required for adequate performance
and provides drivers with an almost identical performance compared to the baseline
results, but Cloete & Wallis [3] and Chatziastros et al. [2] failed to confirm this. The
former measured a worse performance at all angles, whereas the latter also showed a
dependency on display type and use of textures. Parts that are located the ’highest’ on
the screen, corresponding to the farthest part of the road (and to the smallest angle)
may be more difficult to perceive if the presented screen is small. Finally, there was also
no optic flow present in these experiments (except for the condition with road textures
present, by Chatziastros et al.). It would be better to directly include this in the ex-
periment, as this provides the strongest link to real lane keeping. Only showing lines
reduces the realism, and more importantly, avoids the matter of compensating for the
effects of optic flow afterwards, as the flow itself might affect steering behaviour.

But more importantly, there is a fundamental difference in understanding which in-
formation segments can be used by drivers in occlusion experiments for an adequate
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performance and the information that actually describes normal car operations. This
is not measurable by comparing occlusion scenario’s with the baseline performance. A
different method of steering can lead to the same results in terms of the lateral position
deviation, and thus the performance scores. In a simulation setting it is also possible
that drivers put in more effort or are triggered to constantly look at the apertures, possi-
bly affecting the way humans perform their task. This fixation of the eye gaze can have
a profound effect on measured performance, as shown by Wilkie & Wann [35], compared
to free gaze. Visual occlusion partially resembles the scenario of tracking gaze, as de-
scribed by Wilkie & Wann. Drivers can feel inclined to constantly look at the points in
a vertical sense, but can use the horizontal space at their discretion.
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Experiment Proposal

The previous two chapters have attempted to provide an introduction to two main
research fields within lane keeping:

• Control-theoretic analysis: How the behaviour of humans in lane keeping tasks can
be described using control models.

• Visual-perceptual analysis: How the guidance information for such models per-
ceived from the visual scene can be analyzed.

This chapter aims to explain the current lack of understanding in the link between
these two fields and subsequently proposes the experiment. The first Section concerns
the interpretation of the Van der El viewing parameters, whereas the second Section
explains why an occlusion replication experiment is required. Section 5.3 states the
corresponding research questions, followed by the experiment setup in Section 5.4.

5.1. Interpreting the parameters of the Van der El model
In Section 3.4 the stabilization metrics of the Van der El model were discussed. The
model is based on the reduction of the aim point angle ¥(t ,Tl a), located at Tl a seconds
ahead on the road, the use of the second viewing parameter Tl , f provides drivers with
the option to smoothen their response (ie. the corner cutting behaviour). Although
providing unparalleled insight in the individual responses of the driver (to the heading
angle, lateral position and target signals), the model does not explain how these viewing
points correspond to the perception by drivers and, one step further, their actual focal
viewing points.
The main focus of this research project is therefore to investigate how visual information
on these control metrics is perceived, and if this in any way corresponds to previously
determined results from literature. The key point here is that such visual perception
studies have so far mainly looked at the change in performance measures and were never
able to determine the individual responses to the stabilization metrics at the same time.
This is an important difference, as identical performances do not necessarily entail iden-
tical driving strategies.
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5.2. Occlusion Replication
Occlusion, the method explained in the previous chapter, can help answer this question
by determining from which regions drivers obtain their visual information. By vary-
ing the amount of slits that can be used by drivers between one and two, as well as
their position, the use of the predicted parameters Tl a and Tl , f can be manipulated,
such that drivers are forced to perceive the road information from the non-occluded
parts and might place their viewing parameters within the slits. This last statement
is not necessarily true, as even in occlusion experiments drivers are still free to place
these parameters wherever suits their driving style, even outside the slits, while still
perceiving the visual information from through the slits (for example, drivers might
extra/interpolate the available information and predict the road geometry behind the
occlusion. The presence of a single slit can also have a profound effect on the presence
of the prefiltering point Tl , f , as this is forced to be located in the same slit as the aim
point at Tl a, possibly resulting in no filtering at all. This might lead to a higher control
activity, as drivers lose the possibility to smoothen the target signal.

As the study by Land & Horwood [8] has been the most cited and accepted occlusion
experiment, a replication experiment is preferably close to their setup, while still improv-
ing upon its shortcomings stated in the previous Chapter. More importantly, the system
identification of the underlying driver responses of the Van der El model require the use
of multisines, to be able to determine the dynamics at distinctly measured frequencies.
The road by Land & Horwood was based on a real road in Edinburgh, meaning that it
is necessary to approximate this signal as a multisine to be able to remain close to the
original Land & Horwood setup and still be able to perform system identification and
parameter estimation.
For this task, changes to the visual scene of the simulated environment are made, shown
in Figure 5.1, meaning that it must be ensured that these affect driver behaviour in an
understood manner. The presence of occlusion is likely to change the identified driver
responses by definition. As of now there is no proof that a multisine approximation of a
real road induces similar driver behaviour. Therefore, as part of the experiment, it must
be confirmed that this assumption on the forcing function is valid.
Finally, as explained in the previous chapter, humans can obtain visual information in
various ways, such as through focal as well as peripheral or parafoveal vision at the same
time. By measuring the eye gaze of drivers during both the full visual and occlusion
scenario’s, it can be determined whether information is actually perceived through the
focal vision and how this corresponds to the model view points.

5.3. Research Questions
Considering the statements of the previous two Sections, the main question to be an-
swered is:

• How does visual information on the stabilization metrics guide the control in lane
keeping tasks?

The aim is to answer this broad question by a set of subquestions:
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Real Road Geometry Multisine Approximation Presence of Occlusion

1 2 3

Figure 5.1: The different stages of the visual scene within the proposed experiment.

1. What is the effect of using a multisine approximation of real roads on driver control
behaviour? (Measurable by the VAF of the measured wheel rotation ± and its
simulated response of the dynamics based on the multisine signal)

2. What is the effect of occlusion on driver behaviour, and is there an occlusion con-
dition that provides the same response compared to the full visuals? (Measurable
by comparing the responses Hoy , Hoyc

and Ho√ as well as Tl a and Tl , f from the
Van der El model between the full visual and occlusion conditions)

3. Does the presence of a single occlusion slit limit the use of prefiltering view point?
(Measurable by determining Tl a and Tl , f as well as the control activity for single
slit conditions compared to conditions where Tl , f is nonzero)

4. To what extent do drivers focus their eye gaze on the view point metrics of the
Van der El model? (Measurable by determining the spread of the eye gaze time-
distribution compared to the parameter estimations of Tl a and Tl , f and the position
of the apertures)

5.4. Experiment Setup
The main driving tasks resembles the setup of Land & Horwood with identical velocity
(16.9m/s) and aperture angles, also with the idea of improving on its shortcomings and
checking their findings. The experiment includes optic flow due to the road, grass and
sky textures. It also contains a fairer and larger selection of participants.
Drivers will repeatedly drive double integrator dynamics, the same as in Van der El
et al. [29]. They are first asked to drive five consecutive runs on the original Land &
Horwood road, named Queens Drive. After that, four runs of the multisine baseline road
are taken. In these runs the wind disturbances are also present, which are the same as
in Van der El et al. [29]. It is assumed that these nine runs provide drivers with enough
’feeling’ of the simulator to perform the occlusion conditions, which follow afterwards.
Of all 24 occlusion conditions (shown in Table 5.2) four runs are taken. The order in
which these conditions are presented is based on a randomized latin-square design for
thirteen participants, shown in Table 5.3.
The last four runs are again the multisine baseline condition. This is to ensure that
the effects of exhaustion as well as training can be taken into account, considering the
baseline condition is important as a reference to which all other conditions are compared.
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Table 5.1: Multisine components of the forcing function and the disturbances in heading angle and lateral
position.

Road center line √c Heading angle disturbance √d Lateral position disturbance yd

i k ! A ¡ k ! A ¡ k ! A ¡
- - rad/m deg rad - rad/m deg rad - rad/m deg rad
1 3 0.01 16.2 3.96 7 0.03 2.20 5.04 5 0.02 0.29 5.98
2 9 0.04 15.3 3.17 13 0.06 1.74 6.22 11 0.05 0.24 4.04
3 15 0.07 6.20 4.78 23 0.10 1.08 4.17 19 0.09 0.16 3.03
4 27 0.12 2.34 3.40 35 0.16 0.63 4.40 31 0.14 0.09 6.11
5 39 0.18 2.34 6.28 47 0.21 0.41 4.97 43 0.19 0.06 0.99
6 53 0.24 0.90 6.20 65 0.29 0.25 4.97 59 0.27 0.04 0.11
7 71 0.32 0.05 5.42 85 0.38 0.16 4.10 77 0.35 0.02 1.78
8 93 0.42 0.01 5.71 111 0.50 0.11 5.90 101 0.46 0.02 2.28
9 121 0.55 0.01 0.95 143 0.65 0.08 5.48 131 0.59 0.01 0.41
10 155 0.70 0.01 4.79 183 0.83 0.07 0.73 169 0.76 0.01 2.41

Table 5.2: Overview of the occlusion conditions.

Variable angle [deg] Single Slit Double slit, top fixed Double slit, bottom fixed
1-2 S12 - -
2-3 S23 T23 B23
3-4 S34 T34 B34
4-5 S45 T45 B45
5-6 S56 T56 B56
6-7 S67 T67 B67
7-8 S78 T78 B78
8-9 S89 T89 B89
9-10 S910 T910 -

Furthermore, every first measurement run of a new condition (first two in the case of
Queens Drive) are not taken into account to ensure that only the data is selected in
which drivers already have some idea about the task they are about to control.
The experiment takes place in the SIMONA Research Simulator. During the whole
experiment, drivers are equipped with a Tobii Pro Glasses 2 eye tracker, which stores
both the video recording of the experiment as well as the measured eye gaze of the driver,
relative to the head or video. The conversion of the eye gaze from the head-fixed frame
of reference to the world frame of reference is performed separately.
Directly related to the original experiment, the standard deviation of the lateral position
deviation is measured, together with the control activity. Furthermore, the parameters
of the control model are estimated based on the control output. The eye gaze data comes
from a different interface and thus must be linked in the time domain to the control data.
This data provides the longitudinal position of the eye gaze point in degrees.
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6
Summary

This chapter summarizes the literature survey and experiment proposal of this report.
Car driving is a manual control task accessible to almost everyone, in which anticipatory
information must be used. Understanding how drivers control cars within lane keeping,
where they are tasked with keeping their vehicle between the boundary lines of the road,
requires an extended understanding of human control with respect to preview control.

For many years, studies have aimed at providing such an understanding by con-
structing models that describe and predict control behaviour, of which an overview is
given by Steen et al. [23]. The most generally accepted form were two-point models,
first noted by Donges [4], where driver control is described by both an open loop an-
ticipatory and a closed loop lateral position deviation response. However, these studies
often only focussed on driver responses by comparing performance measures, meaning
that the underlying responses of drivers to the visual information of the road were not
investigated and thus provide little proof on the proposed structure.
The recent development of a multiloop driver control model by Van der El [25] for the
first time allowed to accurately determine the individual responses of the lateral position,
heading angle and target signal using system identification. The subsequent parameter
estimation describes the use of a single modelled aim point, from which the stabilization
metrics are determined. Furthermore, drivers can adopt corner cutting behaviour by
prefiltering the road signal, such that the human target response can partially neglect
higher frequencies, resulting in a more laid-back driving style (lower control activity).
What this model does not describe is how these modelled points correspond to the ac-
tual visual perception of the driver. Therefore, the main question to be answered in this
experiment is:

• How does visual information on the stabilization metrics guide the control in lane
keeping tasks?

An empirical study originally performed by Land & Horwood [8] had a similar goal.
Land & Horwood performed an occlusion experiment, in which large parts of the visu-
als were occluded by an overlay, such that the importance of spatial regions on driver
control could be determined. Depending on the run, drivers were shown either one or
two slits to look through of which the position was varied. It was determined that to
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reach similar performance as in the baseline condition (full visuals), drivers require at
least two opened slits separated by roughly 5±. This dependency on a second slit became
larger for increasing velocities.
Land & Horwood, as well as various replication experiments, only measured the change
in driver behaviour by a performance metric (the change in the standard deviation of
the lateral position error compared to the full visuals). However, it is not necessarily
true that an identical performance between occlusion scenarios and the full visuals also
entails identical driver behaviour. Drivers can achieve the same performance for different
driving strategies.

The proposed experiment is therefore a combination of the Van der El and Land &
Horwood experiments. As the use of system identification requires the use of multisine
signals, it must first be confirmed that the road geometry of real roads, such as used by
Land & Horwood, can be approximated by a multisine equivalent, and that this change
in road geometry has no effect on driver behaviour.
The presence of occlusion manipulates the information that can be used by drivers,
such that it is likely that the modelled aim points of the Van der El model are affected.
Furthermore, it is possible that only showing a single slit affects the possibility of humans
adopting a corner cutting strategy, as the leading information used for this smoothing
on the aim point is not available anymore or becomes small. This is likely to have an
effect on the control activity of the human, as it is forced to respond to the road without
any pre-smoothing.
Finally, it is not a necessity that drivers aim their focal point, the gaze, directly at either
one of the aim points. Considering that the visual perception of information might be
through peripheral of parafoveal vision, the experiment will also include the measurement
of the driver eye gaze in the time domain, of which the longitudinal statistical distribution
can be compared to the model aim points and, if present, the position of the slits.
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A
Briefing

This chapter includes the briefing as presented to the participants before the experiment.
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SIMONA experiment briefing

Investigating the Use of Visual Information
in Car Driving

The goal of this experiment is to better understand what visual information is important for lane-keeping
in regular car driving. Car drivers directly respond to the road ahead of them, although we do not yet
fully understand which parts of the road provide important information for drivers to stay within their
lane. By occluding parts of the road, we will investigate which visual information is used for simple lane
keeping tasks.

Control Task
During the experiment you will drive along a winding road, in the presence of wind disturbances
that perturb the trajectory of your car. Your goal is to keep the car on the road and between the
lines that mark the road boundaries, see Figure 1a.
In most conditions, large parts of the visuals will be occluded by black boxes, resulting in vertically
spaced horizontal slits to look through. You can see parts of the road through these slits (see Figure
1b), but the occlusion blocks all other visual information that would normally be available for you
when driving a car. By varying the vertical position of these slits, we measure how well you are
still able to control the car. In some cases two slits are available on screen, in others only one slit
is visible. Furthermore, we will also collect reference data when no occlusion is present, so when
the full visual is available for you to use, as in Figure 1a. This serves as a baseline condition with
which all other conditions are compared. In all these conditions your eye movements are measured
using an eye tracker.
You are only able to steer the position of the car, meaning that the velocity of the vehicle remains
fixed and constant throughout the experiment.

(a) (b)

Figure 1: The road visuals fully displayed (a) and partially occluded (b).
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Apparatus
During the experiment you will sit in the left seat of the SIMONA research simulator (see Figure
2. You will use a steering wheel in front of you to steer the car. The velocity of the car will remain
fixed during the experiment, so there are no pedals for accelerating or braking.
Furthermore, the motion of the simulator is turned o↵ during the experiment, so you can only
respond to what is happening on the screen in front of you.
The road is presented on the simulator’s out-of-the-window viewing system, either fully visible as
in Figure 1a, or partially occluded, such as in Figure 1b.
You will be asked to wear an eye tracker in the shape of regular glasses, which will remain on
throughout the experiment. In some cases it might be necessary to calibrate this hardware between
runs, requiring you to look at a fixed aimpoint located on the right of the simulator cabin.

Figure 2: The SIMONA Research Simulator

Experimental Procedure
The experiment will start with a training phase, to get you used to the task and the simulator.
After your performance stabilizes, the experiment will start. A single driving run lasts about 2.5
to 3 minutes. At the end of each run, you will be informed of your score. As the experiment may
induce motion sickness for some people, the experimenter will ask you for any signs of motion
sickness after each run, on a scale from 0 to 10, see Table 1. The experiment will be stopped if
your subjective evaluation of your sickness reaches 5 or higher.
In total, there are 26 experimental conditions (including the baseline). First, you will perform
eight runs with full visuals (no occlusion), after which the occlusion conditions are tested in a
randomized order. For each experimental condition with occlusion present there will be four runs.
At the end of the experiment you will perform another four runs with full visuals. Short (about
10-15 minutes) breaks will be taken regularly after completing several conditions. In addition, the
experiment is split over two days. The full experiment will take approximately 6 hours, resulting
in 3 hours for both days.

Your Rights
Participation in the experiment is voluntary. This means that you can terminate your cooperation
at any time. By participating in the experiment you agree that the collected data may be published.
Your data will remain confidential and anonymous, so only the experimenter can link the results
to a particular participant. To make sure that you understand and comply with the conditions of
the experiment, you will be asked to sign an informed consent form.
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Table 1: Misery Scale (MISC) scores.

symptom score

no problems 0

slight discomfort but no specific symptoms 1

vague 2

dizziness, warm, headache, some 3

stomach awareness, sweating, etc. medium 4

severe 5

some 6

nausea medium 7

severe 8

retching 9

vomiting 10

3



B
Informed Consent Form

This chapter includes the Informed Consent Form as presented to and signed by the par-
ticipants before the experiment.
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Consent	Form	for	Investigating	the	use	of	visual	information	in	car	driving	
  

Please	tick	the	appropriate	boxes	 Yes	 No	 	

Taking	part	in	the	study	 	 	 	

I	have	read	and	understood	the	experiment	briefing	dated	24/09/2018,	or	it	has	been	read	to	me.	I	have	
been	able	to	ask	questions	about	the	study	and	my	questions	have	been	answered	to	my	satisfaction.	
	

�	 �	  

I	consent	voluntarily	to	be	a	participant	in	this	study	conducted	by	Maurice	Kolff,	under	the	supervision	
of	dr.ir.	Daan	Pool,	and	understand	that	I	can	refuse	to	answer	questions	and	I	can	withdraw	from	the	
study	at	any	time,	without	having	to	give	a	reason.		

�	 �	
	

 

I	understand	that	the	study	takes	place	in	the	SIMONA	Research	Simulator	and	involves	the	
measurement	of	my	steering	behaviour	in	a	car	driving	task,	as	well	as	the	recording	of	my	eye	
movements	with	a	head-worn	eye	tracker,	which	will	both	be	stored	for	analysis.	
	
Risks	associated	with	participating	in	the	study	

�	
	

�	
	

 

I	understand	that	taking	part	in	the	study	involves	a	small	risk	of	physical	discomfort	and	nausea	due	to	
simulator	motion	sickness.	I	understand	that	this	is	measured	using	the	Misery	Scale	and	the	
experiment	ends	when	my	subjective	score	reaches	5	or	higher.	
	

�	
 

�	
	

I	confirm	that	the	researcher	has	provided	me	with	a	detailed	safety	and	operational	instructions	on	the	
use	of	the	simulator.	

�	
 

�	
	

	
Use	of	the	information	in	the	study	

	 	 	

I	understand	that	information	I	provide	will	be	used	for	the	scientific	publication	of	the	data.	
	

�	
	

�	
	

 

I	understand	that	personal	information	collected	about	me	that	can	identify	me,	such	as	my	name,	will	
not	be	shared	beyond	the	study	team.		

�	
	

�	
	

 

	
Future	use	and	reuse	of	the	information	by	others	 	 	 	
I	give	permission	for	the	steering	behaviour	data	and	eye	view	video	recordings	that	I	provide	to	be	
archived	at	Delft	University	of	Technology,	so	it	can	be	used	for	future	research	and	learning.	
	
Eligibility	to	drive	
I	confirm	that	I	am	in	the	possession	of	a	European	driving	licence,	category	B.	

� 

 

 

 

�	
	

� 

 

 

 

�	

 

 

 

 

Signatures	 	 	 	
	
_____________________	 																															_____________________	 																________	 	
Name	of	participant	 																															Signature	 	 																	Date	

	 	 	

	 	 	 	
I	have	accurately	read	out	the	information	sheet	to	the	potential	participant	and,	to	the	best	of	my	
ability,	ensured	that	the	participant	understands	to	what	they	are	freely	consenting.	
	
_____________________	 	 															_____________________	 								 ________	 	
Researcher	name		 	 															Signature	 				 												 	Date	
	

	 									 	



C
Conversion of Eye Gaze Data

The measurement of the vertical eye gaze position with respect to the road is measured by
a Tobii pro glasses 2 eye tracker. This appendix gives additional information on the gaze
processing algorithm as explained in Paper II.

C.1. Hardware Interface
All drivers wore the eye glasses during the experiment, for the full duration of the sessions.
This head-worn tracker records a full HD (1920x1080) video stream and was connected to
a computer laptop in the SIMONA control room through a LAN-cable, which stored the
video and gaze data. These video files do not contain the gaze points itself (i.e., it was the
raw video data), meaning that it is necessary to import to gaze data and add it to the video
files frame by frame.

However, there are two main problems that occur when using combining the frames
and gaze data together:

• The measurement of the data is stored within a separate interface from the driver, at
a different rate (60Hz) compared to the video frames (25Hz)

• The gaze data is measured in a head-fixed reference frame, compared to the body-
fixed reference frame of the simulator required for quantitatively determining where
drivers look with respect to the visual scene.

Therefore, an algorithm was written that can link the video and data together, and subse-
quently determine the gaze position relative to the slits or the full visuals.

C.2. Data extraction
The Tobii eye tracker stores its data within a .json data structure. An example of a single
timestamp (in nanoseconds) within a stored timetrace is shown in Figure C.1. The system
does not only measure the [x,y]-coordinates of the gaze 1, but also:

• pc - Pupil center, measures the position of the pupil with respect to the eye in mm,
for both eyes separately.

1Tobi Pro Glasses 2 API Developer’s Guide v.1.12.2. TobiiAB, Stockholm, 2016
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88 C. Conversion of Eye Gaze Data

Figure C.1: Example of a single data timetrace of the Tobii eye tracker.

• pd - Pupil dilation, which measures the size of the pupil in mm, for both eyes sepa-
rately.

• gp - Gaze position, measures the [x,y]-coordinates of the gaze based on the relative
orientation of the eyes with respect to the glasses, as fractions of the video frame size,
for both eyes averaged.

• gp3 - Gaze position 3D, measures the [x,y,z]-coordinates similarly as in gp, but also
estimates the z-coordinate based on the pupil dilation, in mm.

• gd - Gaze direction, measures the [x,y,z] as a vector from the eyes, for both eyes sep-
arately.

As the position must be related to the geometry of the slits for quantitative comparison, the
’gp’ structure provides the most direct approach.

C.3. Conversion of Timestamps
The complete data file is imported and only the ’gp’ data was used for analysis. To link the
video and data together, the algorithm loops through all video frames and approximates
the gaze data at this point. The videos of runs are stored together, such that it would often
occur that 8 or even more runs were recorded within a single video (and a corresponding
data file). If calibration was required, the recording was stopped and a new file was created.
This means that for a single participant, typically 8-10 different video and corresponding
data files exist.

The starting point of each run in seconds (ts) are written down manually and imported
through an Excel-sheet, together with a label that indicates in what files the run is recorded.
At the first frame, the algorithm starts at i = ts · ḋ , where ḋ is the data rate (measured as the
length of the data file divided by the total increase of the timestamp within the file). Within
that single frame, the detection of the slit geometry and the reference frame conversion
take place. Once the algorithm is finished, it jumps to the next frame and the data counter
i is increased by ḋ

v̇ , i.e., how much data measurements were taken within a single frame,
where v̇ is the frame rate of the video. This value is rounded, as only integer values can be
used to evaluate the gaze data, and thus results in a nearest-neighbour approach.
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C.4. Reference Frame Data Conversion
Once the data is available in a frame, the algorithm detects the geometry of the visuals,
either for the occlusion slits or the full-visuals.

C.4.1. Detection of slit geometry
To be able to relate this data to the control model metrics, it is necessary to post-process the
coördinates by detecting parts of the video frame of which the positions are already known.
The occlusion slits provide a perfect method of doing so, as the angles at which the slits are
located below the horizon are known beforehand for each condition.

The core of the algorithm works by detecting the slits in every single video frame, us-
ing edge detection to find transitions from occluded to non-occluded parts and vice versa.
Firstly, the frame RGB-levels are determined. The algorithm then loops through vertical
segments at thirty evenly spaced points, ranging from

° 5
16

¢
to

°11
16

¢
as fractions of the frame

width. Data outside of this range is not analyzed, as this typically corresponds to more
faded-out slits (due to only one projector being active) and thus poor detection quality.

The points where the RGB-values switch from (0,0,0) to (0,40,0) or higher is used as the
transition point, being able to detect both the grass (green) and the road (light grey). This
results in 60 transition points, 30 at the top of a slit and 30 at the bottom. Linear regression
is used to approximate the overall transition position and orientation, i.e. determine the
position of the slit on the screen (and measure its pixels-per-degree ratio), for both the top
and bottom of a slit. The average of these metrics is taken to approximate the slit position
as accurately as possible. The head can freely move, meaning that the coordinates of the
gaze can be rotated with respect of the slit geometry. Therefore, the gaze coordinates must
be corrected by an Euler rotation by the rotation angle of the slit Æ:

yw =°xb sinÆ+ yb cosÆ (C.1)

Now that the position of the gaze and the slits are both known within the same reference
frame, it is possible to relate these together. This is done by measuring the difference in
vertical position and multiplying by the pixel-per-degree ratio, as determined earlier. In
the presence of two slits, these steps are performed separately for each slit and the resulting
gaze is averaged.

C.4.2. Detection of baseline geometry
The algorithm to extract the gaze in baseline (full visual) conditions is the same as for the
slits, with some exceptions. Without the presence of slits, other characteristics of the scene
must be used. In this case, the transition from the top of the video screen and the hori-
zon are used, as shown in Figure C.2. For the edge of the video screen the RGB-threshold
is set to (0,60,0), and for the horizon to (0,0,100). The horizon position is typically diffi-
cult to approximate, as the color levels between the sky and grass/road are closer to each
other. Furthermore, the horizon includes trees and other scenery that affect the estima-
tion, making it even more important to use enough regression points. Specifically, a high
tree section within the scene highly affected the regression by locally placing the transition
points higher than parts that contained almost no trees. Therefore, the algorithm is also
able to discard these high tree sections by looking at the gradient between the regression
points and subtracting a 10-pixel ’penalty’ at these positions.
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Figure C.2: Example of a recorded baseline frame, showing the transition points (green) regressions of the
scene edge and the horizon (white lines), as well as the gaze position (red).
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Figure D.1: Eye gaze timetrace, subject 1, Condition NO
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Figure D.2: Eye gaze timetrace, subject 1, Condition S12
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Figure D.3: Eye gaze timetrace, subject 1, Condition S23
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92 D. Eye gaze measurements
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Figure D.4: Eye gaze timetrace, subject 1, Condition S34
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Figure D.5: Eye gaze timetrace, subject 1, Condition S45
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Figure D.6: Eye gaze timetrace, subject 1, Condition S56
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Figure D.7: Eye gaze timetrace, subject 1, Condition S67
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Figure D.8: Eye gaze timetrace, subject 1, Condition S78
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Figure D.9: Eye gaze timetrace, subject 1, Condition S89
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Figure D.10: Eye gaze timetrace, subject 1, Condition S910

0 1000 2000 3000 4000 5000 6000 7000

Data point

15

10

5

0

-5

A
n

g
le

 b
el

o
w

 h
o

ri
zo

n
, 

d
eg

Unfiltered gaze data

Filtered gaze data

Figure D.11: Eye gaze timetrace, subject 1, Condition S13
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Figure D.12: Eye gaze timetrace, subject 1, Condition T34
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Figure D.13: Eye gaze timetrace, subject 1, Condition T45
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Figure D.14: Eye gaze timetrace, subject 1, Condition T56
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Figure D.15: Eye gaze timetrace, subject 1, Condition T67
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Figure D.16: Eye gaze timetrace, subject 1, Condition T78
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Figure D.17: Eye gaze timetrace, subject 1, Condition T89
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Figure D.18: Eye gaze timetrace, subject 1, Condition T910
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Figure D.19: Eye gaze timetrace, subject 1, Condition B23

0 1000 2000 3000 4000 5000 6000 7000

Data point

15

10

5

0

-5

A
n

g
le

 b
el

o
w

 h
o

ri
zo

n
, 

d
eg

Unfiltered gaze data

Filtered gaze data

Figure D.20: Eye gaze timetrace, subject 1, Condition B34

0 1000 2000 3000 4000 5000 6000

Data point

15

10

5

0

-5

A
n

g
le

 b
el

o
w

 h
o

ri
zo

n
, 

d
eg

Unfiltered gaze data

Filtered gaze data

Figure D.21: Eye gaze timetrace, subject 1, Condition B45
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Figure D.22: Eye gaze timetrace, subject 1, Condition B56

0 1000 2000 3000 4000 5000 6000 7000

Data point

15

10

5

0

-5

A
n

g
le

 b
el

o
w

 h
o

ri
zo

n
, 

d
eg

Unfiltered gaze data

Filtered gaze data

Figure D.23: Eye gaze timetrace, subject 1, Condition B67



96 D. Eye gaze measurements
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Figure D.24: Eye gaze timetrace, subject 1, Condition B78
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Figure D.25: Eye gaze timetrace, subject 1, Condition S810
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Figure D.26: Eye gaze timetrace, subject 2, Condition NO
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Figure D.27: Eye gaze timetrace, subject 2, Condition S12
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Figure D.28: Eye gaze timetrace, subject 2, Condition S23
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Figure D.29: Eye gaze timetrace, subject 2, Condition S34
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Figure D.30: Eye gaze timetrace, subject 2, Condition S45
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Figure D.31: Eye gaze timetrace, subject 2, Condition S56
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Figure D.32: Eye gaze timetrace, subject 2, Condition S67
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Figure D.33: Eye gaze timetrace, subject 2, Condition S78



98 D. Eye gaze measurements
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Figure D.34: Eye gaze timetrace, subject 2, Condition S89
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Figure D.35: Eye gaze timetrace, subject 2, Condition S910
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Figure D.36: Eye gaze timetrace, subject 2, Condition S13
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Figure D.37: Eye gaze timetrace, subject 2, Condition T34
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Figure D.38: Eye gaze timetrace, subject 2, Condition T56
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Figure D.39: Eye gaze timetrace, subject 2, Condition T67
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Figure D.40: Eye gaze timetrace, subject 2, Condition T78
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Figure D.41: Eye gaze timetrace, subject 2, Condition T89
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Figure D.42: Eye gaze timetrace, subject 2, Condition T910
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Figure D.43: Eye gaze timetrace, subject 2, Condition B23



100 D. Eye gaze measurements
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Figure D.44: Eye gaze timetrace, subject 2, Condition B34
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Figure D.45: Eye gaze timetrace, subject 2, Condition B45
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Figure D.46: Eye gaze timetrace, subject 2, Condition B56
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Figure D.47: Eye gaze timetrace, subject 2, Condition B67
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Figure D.48: Eye gaze timetrace, subject 2, Condition B78
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Figure D.49: Eye gaze timetrace, subject 2, Condition S810
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Figure D.50: Eye gaze timetrace, subject 3, Condition NO
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Figure D.51: Eye gaze timetrace, subject 3, Condition S12
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Figure D.52: Eye gaze timetrace, subject 3, Condition S23
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Figure D.53: Eye gaze timetrace, subject 3, Condition S34
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Figure D.54: Eye gaze timetrace, subject 3, Condition S45
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Figure D.55: Eye gaze timetrace, subject 3, Condition S56
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Figure D.56: Eye gaze timetrace, subject 3, Condition S67
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Figure D.57: Eye gaze timetrace, subject 3, Condition S78
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Figure D.58: Eye gaze timetrace, subject 3, Condition S89
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Figure D.59: Eye gaze timetrace, subject 3, Condition S910
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Figure D.60: Eye gaze timetrace, subject 3, Condition S13
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Figure D.61: Eye gaze timetrace, subject 3, Condition T34
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Figure D.62: Eye gaze timetrace, subject 3, Condition T45

0 1000 2000 3000 4000 5000 6000

Data point

15

10

5

0

-5

A
n

g
le

 b
el

o
w

 h
o

ri
zo

n
, 

d
eg

Unfiltered gaze data

Filtered gaze data

Figure D.63: Eye gaze timetrace, subject 3, Condition T56
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Figure D.64: Eye gaze timetrace, subject 3, Condition T67
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Figure D.65: Eye gaze timetrace, subject 3, Condition T78
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Figure D.66: Eye gaze timetrace, subject 3, Condition T89
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Figure D.67: Eye gaze timetrace, subject 3, Condition T910
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Figure D.68: Eye gaze timetrace, subject 3, Condition B23
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Figure D.69: Eye gaze timetrace, subject 3, Condition B34
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Figure D.70: Eye gaze timetrace, subject 3, Condition B45
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Figure D.71: Eye gaze timetrace, subject 3, Condition B56
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Figure D.72: Eye gaze timetrace, subject 3, Condition B67
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Figure D.73: Eye gaze timetrace, subject 3, Condition B78
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Figure D.74: Eye gaze timetrace, subject 3, Condition S810
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Figure D.75: Eye gaze timetrace, subject 7, Condition NO
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Figure D.76: Eye gaze timetrace, subject 7, Condition S12
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Figure D.77: Eye gaze timetrace, subject 7, Condition S23
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Figure D.78: Eye gaze timetrace, subject 7, Condition S34
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Figure D.79: Eye gaze timetrace, subject 7, Condition S45
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Figure D.80: Eye gaze timetrace, subject 7, Condition S56
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Figure D.81: Eye gaze timetrace, subject 7, Condition S67
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Figure D.82: Eye gaze timetrace, subject 7, Condition S78
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Figure D.83: Eye gaze timetrace, subject 7, Condition S89
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Figure D.84: Eye gaze timetrace, subject 7, Condition S910
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Figure D.85: Eye gaze timetrace, subject 7, Condition S13
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Figure D.86: Eye gaze timetrace, subject 7, Condition T34
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Figure D.87: Eye gaze timetrace, subject 7, Condition T45
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Figure D.88: Eye gaze timetrace, subject 7, Condition T56
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Figure D.89: Eye gaze timetrace, subject 7, Condition T67
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Figure D.90: Eye gaze timetrace, subject 7, Condition T78
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Figure D.91: Eye gaze timetrace, subject 7, Condition T89
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Figure D.92: Eye gaze timetrace, subject 7, Condition T910
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Figure D.93: Eye gaze timetrace, subject 7, Condition B23
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Figure D.94: Eye gaze timetrace, subject 7, Condition B34
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Figure D.95: Eye gaze timetrace, subject 7, Condition B45
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Figure D.96: Eye gaze timetrace, subject 7, Condition B56
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Figure D.97: Eye gaze timetrace, subject 7, Condition B67
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Figure D.98: Eye gaze timetrace, subject 7, Condition B78
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Figure D.99: Eye gaze timetrace, subject 7, Condition S810
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Figure D.100: Eye gaze timetrace, subject 8, Condition NO
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Figure D.101: Eye gaze timetrace, subject 8, Condition S12
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Figure D.102: Eye gaze timetrace, subject 8, Condition S23
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Figure D.103: Eye gaze timetrace, subject 8, Condition S34
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Figure D.104: Eye gaze timetrace, subject 8, Condition S45
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Figure D.105: Eye gaze timetrace, subject 8, Condition S67
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Figure D.106: Eye gaze timetrace, subject 8, Condition S78
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Figure D.107: Eye gaze timetrace, subject 8, Condition S89
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Figure D.108: Eye gaze timetrace, subject 8, Condition S910
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Figure D.109: Eye gaze timetrace, subject 8, Condition S13
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Figure D.110: Eye gaze timetrace, subject 8, Condition T45
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Figure D.111: Eye gaze timetrace, subject 8, Condition T56
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Figure D.112: Eye gaze timetrace, subject 8, Condition T67
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Figure D.113: Eye gaze timetrace, subject 8, Condition T78
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Figure D.114: Eye gaze timetrace, subject 8, Condition T89
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Figure D.115: Eye gaze timetrace, subject 8, Condition T910

0 1000 2000 3000 4000 5000 6000

Data point

15

10

5

0

-5

A
n

g
le

 b
el

o
w

 h
o

ri
zo

n
, 

d
eg

Unfiltered gaze data

Filtered gaze data

Figure D.116: Eye gaze timetrace, subject 8, Condition B23
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Figure D.117: Eye gaze timetrace, subject 8, Condition B34
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Figure D.118: Eye gaze timetrace, subject 8, Condition B45
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Figure D.119: Eye gaze timetrace, subject 8, Condition B56
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Figure D.120: Eye gaze timetrace, subject 8, Condition B67
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Figure D.121: Eye gaze timetrace, subject 9, Condition NO
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Figure D.122: Eye gaze timetrace, subject 9, Condition S12
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Figure D.123: Eye gaze timetrace, subject 9, Condition S23
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Figure D.124: Eye gaze timetrace, subject 9, Condition S34
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Figure D.125: Eye gaze timetrace, subject 9, Condition S45
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Figure D.126: Eye gaze timetrace, subject 9, Condition S56
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Figure D.127: Eye gaze timetrace, subject 9, Condition S67
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Figure D.128: Eye gaze timetrace, subject 9, Condition S78
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Figure D.129: Eye gaze timetrace, subject 9, Condition S89
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Figure D.130: Eye gaze timetrace, subject 9, Condition S910
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Figure D.131: Eye gaze timetrace, subject 9, Condition S13
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Figure D.132: Eye gaze timetrace, subject 9, Condition T34
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Figure D.133: Eye gaze timetrace, subject 9, Condition T45
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Figure D.134: Eye gaze timetrace, subject 9, Condition T56
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Figure D.135: Eye gaze timetrace, subject 9, Condition T67
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Figure D.136: Eye gaze timetrace, subject 9, Condition T78
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Figure D.137: Eye gaze timetrace, subject 9, Condition T89
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Figure D.138: Eye gaze timetrace, subject 9, Condition T910
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Figure D.139: Eye gaze timetrace, subject 9, Condition B23
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Figure D.140: Eye gaze timetrace, subject 9, Condition B34

0 1000 2000 3000 4000 5000 6000

Data point

15

10

5

0

-5

A
n

g
le

 b
el

o
w

 h
o

ri
zo

n
, 

d
eg

Unfiltered gaze data

Filtered gaze data

Figure D.141: Eye gaze timetrace, subject 9, Condition B45
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Figure D.142: Eye gaze timetrace, subject 9, Condition B56
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Figure D.143: Eye gaze timetrace, subject 9, Condition B67
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Figure D.144: Eye gaze timetrace, subject 9, Condition B78
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Figure D.145: Eye gaze timetrace, subject 9, Condition S810
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Figure D.146: Eye gaze timetrace, subject 10, Condition NO
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Figure D.147: Eye gaze timetrace, subject 10, Condition S12
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Figure D.148: Eye gaze timetrace, subject 10, Condition S23
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Figure D.149: Eye gaze timetrace, subject 10, Condition S34
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Figure D.150: Eye gaze timetrace, subject 10, Condition S45
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Figure D.151: Eye gaze timetrace, subject 10, Condition S56
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Figure D.152: Eye gaze timetrace, subject 10, Condition S67
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Figure D.153: Eye gaze timetrace, subject 10, Condition S78
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Figure D.154: Eye gaze timetrace, subject 10, Condition S89
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Figure D.155: Eye gaze timetrace, subject 10, Condition S910
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Figure D.156: Eye gaze timetrace, subject 10, Condition S13
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Figure D.157: Eye gaze timetrace, subject 10, Condition T34
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Figure D.158: Eye gaze timetrace, subject 10, Condition T45
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Figure D.159: Eye gaze timetrace, subject 10, Condition T56
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Figure D.160: Eye gaze timetrace, subject 10, Condition T67
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Figure D.161: Eye gaze timetrace, subject 10, Condition T78
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Figure D.162: Eye gaze timetrace, subject 10, Condition T89
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Figure D.163: Eye gaze timetrace, subject 10, Condition T910
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Figure D.164: Eye gaze timetrace, subject 10, Condition B23
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Figure D.165: Eye gaze timetrace, subject 10, Condition B34
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Figure D.166: Eye gaze timetrace, subject 10, Condition B45
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Figure D.167: Eye gaze timetrace, subject 10, Condition B56
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Figure D.168: Eye gaze timetrace, subject 10, Condition B67
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Figure D.169: Eye gaze timetrace, subject 10, Condition B78
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Figure D.170: Eye gaze timetrace, subject 10, Condition S810
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Figure D.171: Eye gaze timetrace, subject 11, Condition NO
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Figure D.172: Eye gaze timetrace, subject 11, Condition S12
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Figure D.173: Eye gaze timetrace, subject 11, Condition S23
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Figure D.174: Eye gaze timetrace, subject 11, Condition S34
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Figure D.175: Eye gaze timetrace, subject 11, Condition S45
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Figure D.176: Eye gaze timetrace, subject 11, Condition S56
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Figure D.177: Eye gaze timetrace, subject 11, Condition S67
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Figure D.178: Eye gaze timetrace, subject 11, Condition S78
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Figure D.179: Eye gaze timetrace, subject 11, Condition S89
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Figure D.180: Eye gaze timetrace, subject 11, Condition S910
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Figure D.181: Eye gaze timetrace, subject 11, Condition S13
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Figure D.182: Eye gaze timetrace, subject 11, Condition T34
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Figure D.183: Eye gaze timetrace, subject 11, Condition T45
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Figure D.184: Eye gaze timetrace, subject 11, Condition T56
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Figure D.185: Eye gaze timetrace, subject 11, Condition T67
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Figure D.186: Eye gaze timetrace, subject 11, Condition T78
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Figure D.187: Eye gaze timetrace, subject 11, Condition T89
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Figure D.188: Eye gaze timetrace, subject 11, Condition T910
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Figure D.189: Eye gaze timetrace, subject 11, Condition B23
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Figure D.190: Eye gaze timetrace, subject 11, Condition B34
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Figure D.191: Eye gaze timetrace, subject 11, Condition B45
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Figure D.192: Eye gaze timetrace, subject 11, Condition B56
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Figure D.193: Eye gaze timetrace, subject 11, Condition B67
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Figure D.194: Eye gaze timetrace, subject 11, Condition B78
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Figure D.195: Eye gaze timetrace, subject 11, Condition S810
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Figure D.196: Eye gaze timetrace, subject 13, Condition NO
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Figure D.197: Eye gaze timetrace, subject 13, Condition S12
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Figure D.198: Eye gaze timetrace, subject 13, Condition S23
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Figure D.199: Eye gaze timetrace, subject 13, Condition S34
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Figure D.200: Eye gaze timetrace, subject 13, Condition S45
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Figure D.201: Eye gaze timetrace, subject 13, Condition S56
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Figure D.202: Eye gaze timetrace, subject 13, Condition S67
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Figure D.203: Eye gaze timetrace, subject 13, Condition S78
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Figure D.204: Eye gaze timetrace, subject 13, Condition S89
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Figure D.205: Eye gaze timetrace, subject 13, Condition S910

0 1000 2000 3000 4000 5000 6000

Data point

15

10

5

0

-5

A
n
g
le

 b
el

o
w

 h
o
ri

zo
n
, 
d
eg

Unfiltered gaze data

Filtered gaze data

Figure D.206: Eye gaze timetrace, subject 13, Condition T34
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Figure D.207: Eye gaze timetrace, subject 13, Condition T45
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Figure D.208: Eye gaze timetrace, subject 13, Condition T56
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Figure D.209: Eye gaze timetrace, subject 13, Condition T67
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Figure D.210: Eye gaze timetrace, subject 13, Condition T78
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Figure D.211: Eye gaze timetrace, subject 13, Condition T89
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Figure D.212: Eye gaze timetrace, subject 13, Condition T910
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Figure D.213: Eye gaze timetrace, subject 13, Condition B23
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Figure D.214: Eye gaze timetrace, subject 13, Condition B34
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Figure D.215: Eye gaze timetrace, subject 13, Condition B45
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Figure D.216: Eye gaze timetrace, subject 13, Condition B56
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Figure D.217: Eye gaze timetrace, subject 13, Condition B67
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Figure D.218: Eye gaze timetrace, subject 13, Condition B78
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Figure D.219: Eye gaze timetrace, subject 13, Condition S810





E
Representative Model Fits - Subject 1

This chapter contains the Frequency Response Functions and fitted parametric model to
the data of Subject 1.
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138 E. Representative Model Fits - Subject 1
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Figure E.1: FRF estimates and parameter estimation, subject 1, Condition NO
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Figure E.2: FRF estimates and parameter estimation, subject 1, Condition S12
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Figure E.3: FRF estimates and parameter estimation, subject 1, Condition S23
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Figure E.4: FRF estimates and parameter estimation, subject 1, Condition S34
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Figure E.5: FRF estimates and parameter estimation, subject 1, Condition S45
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Figure E.6: FRF estimates and parameter estimation, subject 1, Condition S56
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Figure E.7: FRF estimates and parameter estimation, subject 1, Condition S67
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Figure E.8: FRF estimates and parameter estimation, subject 1, Condition S78
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Figure E.9: FRF estimates and parameter estimation, subject 1, Condition S89
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Figure E.10: FRF estimates and parameter estimation, subject 1, Condition S910
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Figure E.11: FRF estimates and parameter estimation, subject 1, Condition T23
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Figure E.12: FRF estimates and parameter estimation, subject 1, Condition T34



150 E. Representative Model Fits - Subject 1

10-2 10-1 100

10-4

10-2

100

102
|

(j
)|

, 
-

Frequency, rad/m

Measured sig. Modelled sig. Road freqs. Lateral dist. freqs. Heading dist. freqs.

200 400 600 800 1000 1200

Distance, m

-0.6

-0.4

-0.2

0

0.2

10-2 10-1 100

Frequency, rad/m

10-2

10-1

100

101

|H
o

f|,
 -

10-2 10-1 100

Frequency, rad/m

0

180

360

540

H
o

f, 
d
e
g

10-2 10-1 100

Frequency, rad/m

10-1

100

|H
o

y

|,
 -

10-2 10-1 100

Frequency, rad/m

-270

-180

-90

0

90

H
o

y

, 
d
e
g

10-2 10-1 100

Frequency, rad/m

10-1

100

101

|H
o

p

|,
 -

10-2 10-1 100

Frequency, rad/m

-270

-180

-90

0

90

H
o

p

, 
d
e
g

K
y

K
e

*

T
L,e

*

= 0.08 rad/m

= 1.217

= 0.233 s

e
*

f

T
l,f

= 0.428 s

= 1.351 s

= 0.6 s

Figure E.13: FRF estimates and parameter estimation, subject 1, Condition T45
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Figure E.14: FRF estimates and parameter estimation, subject 1, Condition T56
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Figure E.15: FRF estimates and parameter estimation, subject 1, Condition T67
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Figure E.16: FRF estimates and parameter estimation, subject 1, Condition T78
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Figure E.17: FRF estimates and parameter estimation, subject 1, Condition T89
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Figure E.18: FRF estimates and parameter estimation, subject 1, Condition T910
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Figure E.19: FRF estimates and parameter estimation, subject 1, Condition B23



157

10-2 10-1 100

10-4

10-2

100

102

|
(j

)|
, 
-

Frequency, rad/m

Measured sig. Modelled sig. Road freqs. Lateral dist. freqs. Heading dist. freqs.

200 400 600 800 1000 1200

Distance, m

-0.4

-0.2

0

0.2

0.4

10-2 10-1 100

Frequency, rad/m

10-2

10-1

100

101

102

|H
o

f|,
 -

10-2 10-1 100

Frequency, rad/m

0

180

360

540

H
o

f, 
d
e
g

10-2 10-1 100

Frequency, rad/m

10-1

100

|H
o

y

|,
 -

10-2 10-1 100

Frequency, rad/m

-270

-180

-90

0

90

H
o

y

, 
d
e
g

10-2 10-1 100

Frequency, rad/m

100

101

|H
o

p

|,
 -

10-2 10-1 100

Frequency, rad/m

-270

-180

-90

0

90

H
o

p

, 
d
e
g

K
y

K
e

*

T
L,e

*

= 0.086 rad/m

= 1.417

= 0.19 s

e
*

f

T
l,f

= 0.387 s

= 1.049 s

= 0.35 s

Figure E.20: FRF estimates and parameter estimation, subject 1, Condition B34
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Figure E.21: FRF estimates and parameter estimation, subject 1, Condition B45
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Figure E.22: FRF estimates and parameter estimation, subject 1, Condition B56
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Figure E.23: FRF estimates and parameter estimation, subject 1, Condition B67
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Figure E.24: FRF estimates and parameter estimation, subject 1, Condition B78
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Figure E.25: FRF estimates and parameter estimation, subject 1, Condition B89
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Figure E.26: Parameter estimations over all conditions, subject 1





F
Representative Model Fits - Subject 3

This chapter contains the Frequency Response Functions and fitted parametric model to
the data of Subject 3.
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166 F. Representative Model Fits - Subject 3
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Figure F.1: FRF estimates and parameter estimation, subject 3, Condition NO
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Figure F.2: FRF estimates and parameter estimation, subject 3, Condition S12
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Figure F.3: FRF estimates and parameter estimation, subject 3, Condition S23
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Figure F.4: FRF estimates and parameter estimation, subject 3, Condition S34
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Figure F.5: FRF estimates and parameter estimation, subject 3, Condition S45
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Figure F.6: FRF estimates and parameter estimation, subject 3, Condition S56
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Figure F.7: FRF estimates and parameter estimation, subject 3, Condition S67
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Figure F.8: FRF estimates and parameter estimation, subject 3, Condition S78
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Figure F.9: FRF estimates and parameter estimation, subject 3, Condition S89
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Figure F.10: FRF estimates and parameter estimation, subject 3, Condition S910
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Figure F.11: FRF estimates and parameter estimation, subject 3, Condition T23
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Figure F.12: FRF estimates and parameter estimation, subject 3, Condition T34
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Figure F.13: FRF estimates and parameter estimation, subject 3, Condition T45
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Figure F.14: FRF estimates and parameter estimation, subject 3, Condition T56
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Figure F.15: FRF estimates and parameter estimation, subject 3, Condition T67
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Figure F.16: FRF estimates and parameter estimation, subject 3, Condition T78
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Figure F.17: FRF estimates and parameter estimation, subject 3, Condition T89
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Figure F.18: FRF estimates and parameter estimation, subject 3, Condition T910
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Figure F.19: FRF estimates and parameter estimation, subject 3, Condition B23
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Figure F.20: FRF estimates and parameter estimation, subject 3, Condition B34
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Figure F.21: FRF estimates and parameter estimation, subject 3, Condition B45
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Figure F.22: FRF estimates and parameter estimation, subject 3, Condition B56
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Figure F.23: FRF estimates and parameter estimation, subject 3, Condition B67
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Figure F.24: FRF estimates and parameter estimation, subject 3, Condition B78
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Figure F.25: FRF estimates and parameter estimation, subject 3, Condition B89
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Figure F.26: Parameter estimations over all conditions, subject 3
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