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An Accurate Propagator for Heterogeneous Media
in Full Wavefield Migration

Anyu Li , Dirk J. Verschuur , Xuewei Liu, and Siamak Abolhassani

Abstract— Since seismic imaging creates an image of the
subsurface structure based on information received from the
measured wavefield, it is essential to fully utilize the reflected
waves. Full Wavefield Modeling (FWMod) was developed with
recursive and iterative up-and-down wavefield propagation, using
one-way wave propagation, to model both primary and multiple
reflections. Using FWMod as the modeling engine, Full Wavefield
Migration (FWM) has been introduced to directly image data
including internal multiples, where internal multiple crosstalk
is suppressed automatically via an inversion-based data-fitting
process. This avoids the need for applying internal multiple
removal, which is often challenging. Conventional one-way wave
propagators calculated in the wavenumber domain, like the phase
shift (PS) operator, have limitations when applied to strongly
inhomogeneous media. Even when computing a new operator
at each lateral grid point, they still suffer difficulties because
the medium is assumed to be locally homogeneous. In the past,
matrix eigendecomposition has been proposed as a way to create
accurate, local velocity-based one-way propagation operators.
In this article, an accurate propagator based on eigendecompo-
sition is incorporated into FWMod and FWM. In the numerical
examples, four models with strong lateral velocity variations
were used to test the propagator. With a comparison of the
conventional FWM based on the PS operator with input data
including FWMod and a finite-difference (FD) approach, the
numerical examples demonstrated that the proposed method has
the potential to significantly enhance image reflectivity, suppress
internal multiples, and maintain convergence speed during the
least-squares inversion.

Index Terms— Eigen-decomposition (ED), full wavefield migra-
tion (FWM), propagator, wave equation.

I. INTRODUCTION

CONVENTIONAL seismic migration methods rely on
having primary reflection data. To make the data suitable

for primary wavefield migration (PWM), extensive research
has been carried out to address the issue of multiple reflections
(also known as multiples) in both academic and industrial
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domains. These works remove multiples from the data in a
preprocessing stage. Various studies have focused on mit-
igating surface multiples [1], [2], [3], as well as internal
multiples [3], [4]. Surface multiples tend to be stronger as
they arise from energy reflecting off the surface, whereas
internal multiples are generated between prominent subsurface
reflectors. Eliminating internal multiples is more challenging
due to limited knowledge of the underlying geometric struc-
tures that generate these multiples. However, it is essential to
recognize the valuable information embedded in the multiples
and leverage it instead of discarding it during imaging.

Verschuur and Berkhout [5] proposed the utilization of
surface multiples for imaging purposes. Building upon this
idea, Brown and Guitton [6] achieved multiple wavefield
migration by employing the least-squares method. In subse-
quent work, Verschuur and Berkhout [7] presented a novel
approach that treats surface multiples as responses to the total
upgoing wavefield reflected beneath the surface. This method
incorporates mixed input data, encompassing both primary
reflections and surface multiples. Lu et al. [8] formulated
the imaging of multiples in terms of separated wavefield
recordings at the surface and demonstrated it on 3-D field data.
Unlike conventional approaches, where multiples are excluded
from Green’s function, in this method, multiples are regarded
as part of the incident wavefield. Consequently, this approach
offers improved dual-illumination characteristics. To mitigate
interference in the resulting images, a closed-loop approach
based on parameter-driven forward modeling of the estimated
parameters is employed. Building upon these advancements,
Zhang and Schuster [9] and Tu and Herrmann [10] have also
embraced similar methodologies to facilitate the mapping of
primary wavefields and surface multiples into the subsurface
image. It is important to note that this process, inclusive of
surface multiples, can still be categorized as model-driven.

Taking internal multiples into account in migration, distor-
tions caused by internal multiples in the subsalt region can be
reduced, and additional illumination from internal multiples
can be obtained. Berkhout [11] explained how to extend PWM
to full wavefield migration (FWM) by considering scattering
at each subsurface reflection point in two directions: upward
and downward, where the downward reflection generates inter-
nal multiples. Based on this concept, Berkhout [12], [13]
proposed a series of methods for full wavefield modeling
(FWMod) and FWM. In these closed-loop approaches, both
surface and internal multiples can be created with the seis-
mic image itself to generate scattering, by using one-way
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wavefield propagators instead of relying on finite-difference
(FD) modeling. Through iteration, arbitrary-order multiples
can be simulated and reflectivity can be estimated such that all
reflection events (primary reflections and multiples) conform
to the observed data. In contrast to data-driven multiple
removal methods, FWM is not limited by densely sampled
sources and can handle complete wavefields with both surface
and internal multiples, assuming nonlinearity in reflectivity.
Davydenko and Verschuur [14] further developed this concept
and included angle-dependent imaging in FWM. Davydenko
and Verschuur [15] verified the application potential of FWM
by a field data example including internal multiples.

The propagator plays a crucial role in FWM because both
the primaries and multiples are generated and extrapolated
by repeatedly utilizing it. However, the conventional one-way
wave operators used in FWM, such as phase shift (PS)
migration or PS plus interpolation migration, have limitations
when dealing with strongly inhomogeneous media due to the
assumption of a local homogeneous velocity at each grid
point, as they perform an inverse spatial Fourier transform
on operators modeled in the wavenumber domain [16], [17].
The classical one-way wave propagators and their optimized
methods involved in wave-equation migration were generally
based on the wavefield extrapolation formula for calculating
the wavefield with a higher-order mathematical series [18],
[19], [20], [21], [22]. These methods commonly use a refer-
ence velocity to replace the accurate velocity in the horizontal
direction, leading to errors in inhomogeneous media.

To overcome this issue, the common solution is to calculate
a new operator on all grid points. However, when encountering
strong lateral inhomogeneities, the structure of the PS propa-
gator matrix departs from being Toeplitz and instead, each row
comprises a different local convolutional operator. The length
of this operator influences the accuracy with which lateral
inhomogeneities can be addressed; shorter operators are better
suited for handling such variations but using short operators
can introduce numerical errors during propagation, especially
at large angles [23].

To mitigate this, a local velocity-based one-way wave
propagator has been proposed, which calculates an accurate
solution at each grid node via eigen decomposition of the
propagator matrix, and can accommodate arbitrarily lateral
velocity variations [24], [25], [26]. In this study, we integrate
such one-way wave eigen-decomposition (ED) operators into
the FWMod and FWM frameworks to make them better
suited for heterogeneous media, resulting in improved imaging
amplitude and recovery of reflectivity while still maintaining
the ability to suppress internal multiples.

II. METHOD

A. Full Wavefield Modeling

Conventional wavefield modeling inside a least-squares
migration algorithm is based on the Born approximation,
where an incident wavefield is multiplied by the reflectivity
at each grid point before being extrapolated forward to the
surface. These diffraction responses will produce the simulated
primaries upon superposition. This process is also known as

“de-migration” because it enables the data to be reconstructed
based on the reflectivity approximated during the imaging
procedure. The simulated and measured data are compared,
and the residual data is reimaged to update the reflectivity
for the subsequent iteration. This method also permits the
management of surface multiples by merely modifying the
source-side wavefield [7], [8], however, it does not include
internal multiples.

FWMod extends such an approach by including also internal
multiples in the modeling process. It involves decomposing
the wavefield into two components, namely a downgoing
component represented by P+ and an upgoing component
represented by P−. This representation is made regarding a
preferred direction, which is typically the vertical direction.
The source extrapolation equation can be expressed for a given
shot gathered at one frequency component [12]

P±(zm, z0)=W±(zm, z0)S±(z)+
m−1∑
n=0

W±(zm, zn)δS±(zm, z0)

(1)

where the equation involves a (possible) physically induced
source at depth level z, denoted by S. In addition, there is a
secondary source, δS, triggered by the medium in response to
an incident wavefield. The + indicates downgoing waves, and
the − represents the upgoing ones. The matrices W±(z∓

m, z0)

represent the scattering-free downward and upward propa-
gation operators, respectively, between depth levels z0 and
zm(n > m). The secondary source is connected to the medium
parameters through the following relationship:

δS±(zn, z0)=R∩/∪(zn, zn)P∓
(
zn; z0

)
+δT±(zn, zn)P±(zn; z)

(2)

where R and T represent the vertical components of reflection
and transmission operators and the differential transmission
operator δT is defined as T = I + δT.

Furthermore, for small offsets or under the acoustic approxi-
mation, we can replace T+ and T− with the upgoing reflection
operators R∪ and downgoing version R∩, respectively,

T+
= I + R∪

T−
= I + R∩

δT+
= R∪

δT−
= R∩

= −R∪

(3)

and then (2) can be simplified as

δS
(
zn, z0

)
= R∪

(
zn, zn

)
P+

(
zn; z0

)
+ R∩

(
zn, zn

)
P−

(
zn; z

)
.

(4)

Also as shown in Fig. 1, every subsurface grid point
considers the complete wavefield connection. Any depth level
zn may be illuminated from above by downgoing wavefield
P+ and from below by upgoing wavefield P−, originating
from the same physical experiment. The total wavefields and
potential scattering exit this depth level in both directions.
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Fig. 1. Wavefields and operators in FWMod related to one depth level.

Fig. 2. FWM flowchart.

B. Full Wavefield Migration

FWM is a closed-loop method for a standard
inversion-based imaging technique based on least-squares
migration, for which the flowchart is given in Fig. 2.

In this imaging process, the complete wavefield propagation
is taken into account at each subsurface grid point. Not only
primary waves but also internal multiple waves are considered,
resulting in a more complete illumination and a more complete
description of the measured data. In the closed-loop flow of the
full-wavefield migration algorithm in Fig. 2, with the external
input data, the gradient and least-squares objective function
is obtained by using the difference of the input “measured”
data and the full-wavefield forward modeling result, and from
this residual—via backpropagation into the subsurface—the
reflectivity is updated see more details in [13] and [14].
Thus, FWM works by minimizing the difference between the
observed data and the forward data.

The objective function can be described as

J =

∑
ω

∑
k

1Pk1P H
k (5)

where H stands for conjugate transpose, and 1P is the
difference between the observed data and modeled data (i.e.,
the data residual) for shot number k

1Pk = Pkobs − Pkmod. (6)

C. From PS to ED Propagator

Computing wavefields in neighboring layers involves using
a one-way wave propagator in FWM, which can be written
as [27]

W±
= e∓i31z (7)

where 1z is the depth step and 3 represents the square root
operator, also called vertical wavenumber in the PS migration
method.

The conventional PS operator assumes a locally homo-
geneous medium within a specific region surrounding each
lateral position so that a spatial Fourier transform can be
applied to calculate in the wavenumber domain. To deal with
lateral inhomogeneities, the structure of the propagator matrix
changes from Toeplitz to local convolution operators in each
row by reducing the length of the PS operator. However,
short operators during propagation may result in numerical
errors [28].

To avoid such issues, here we use an eigen decomposition
(ED) method to directly calculate the one-way wave operator
in the space domain [24], [25], [26]. With the relationship of
the Helmholtz operator 32, as

32
=

ω2

v(x)2 +
∂2

∂x2 (8)

in which a second-order discretization of ∂2/∂x2 is included,
this can be written for a single depth level as

32
=



ω2

v2(x1)
0 · · · 0

0
ω2

v2(x2)
· · · 0

...
...

. . .
...

0 0 · · ·
ω2

v2(xn)



+



−2
(1x)2

1
(1x)2 0 0

1
(1x)2

−2
(1x)2

. . . 0

0
. . .

. . .
1

(1x)2

0 0
1

(1x)2

−2
(1x)2


. (9)

This matrix can effectively manage variations in lateral
velocity in the horizontal direction, thanks to the diagonal
elements contained within the matrix. These diagonal ele-
ments correspond to all velocity points located at a specific
depth. Note that for clarity the matrix is constructed using
a second-order FD discretization technique. Still, to improve
the accuracy for FWMod and FWM, it is recommended to
substitute this with a higher-order discretization method.

Using linear algebra theory, the self-adjoint matrix 32 can
be factorized into the product of its eigenvalues and eigenvec-
tors as

32
= VMVT (10)

where the matrix M and V, respectively, denote the eigenval-
ues and eigenvectors of 32, and the superscript T represents
the matrix transpose. Using the matrix decomposition theory
framework, the eigenvalues and eigenvectors of the subfunc-
tions can be represented as follows:

3 = V
√

MVT (11)

W±
= Ve∓i

√
M1zVT . (12)

Note that the traditional PS operator needs an extra filter
process to address the issue of evanescent waves that lead to
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Fig. 3. Velocity model.

instability, as they grow exponentially, such as an f − k filter.
However, in ED propagator-based one-way wave migration,
the growth of evanescent waves is attributed to complex-
valued eigenvalues. Therefore, it is convenient to remove them
by keeping the real-valued eigenvalues and disregarding the
complex-valued ones.

III. NUMERICAL EXAMPLES

In this section, we will discuss the features of the ED-based
FWM scheme in four experiments, including an inverse-crime
that uses FWMod data as observed data in FWM, and three
noninverse-crime processes in which the FD method [29]
is utilized to generate observed data served as input for
FWM. Each of the examples highlights certain aspects of the
proposed methodology.

A. FWM With FWMod (Inverse Crime)

First, we consider the inverse-crime situation, where the
input data is modeled with FWMod. The size of the velocity
model is 1500 × 2000 m with a grid of 20 × 20 m,
which has a strong lateral velocity contrast and steep dipping
angles, as shown in Fig. 3. We use this model to verify
the imaging performance of the proposed FWM algorithm
under ideal circumstances. The shot distance and receiver
distance are 100 and 20 m, respectively, and as a source,
we use a Ricker wavelet with a peak frequency of 30 Hz.
A series of shot-gather records, generated by FWMod with
up to fourth-order multiples, is shown in Fig. 4. The primary
wavefield, the first- and fourth-order multiples, are shown in
Fig. 4(a)–(c), respectively. The multiples only, calculated via
the difference between the fourth order of full wavefield and
primary wavefield, are displayed in Fig. 4(d).

The true reflectivity model is shown in
Fig. 5(a). Fig. 5(b) and (c) shows the imaging results
for 1 and 15 iterations of FWM using the ED operator. Note
that the internal multiple crosstalks observed in the image
after one iteration can be considered the standard depth
migration result [Fig. 5(b)] and is properly suppressed during
the further iterations of FWM. The difference between the
true reflectivity and the estimated reflectivity after using the
proposed ED operator in the 1st and 15th iterations is shown
in Fig. 6(a) and (b). This proves that our method can correctly
recover reflectivity.

Fig. 6(c) illustrates the imaging amplitude at a specific
location on the x-axis (x = 860 m), while Fig. 6(d) depicts

Fig. 4. FWMod using ED propagator. (a) Only primary wavefield,
(b) first-order multiple and primary waves, (c) fifth-order multiple and primary
waves, and (d) only multiples.

TABLE I
COMPUTATIONAL COST COMPARISON

the reflectivity at a particular depth of 740 m. The proposed
algorithm can handle strong velocity contrasts, accurately
show the structure, and achieve true reflectivity, as shown by
a comparison with the real model and imaging section. The
amplitude and reflectivity curves show that the algorithm deals
with transmission compensation and internal multiple imaging.
This is how we can get a real result for amplitude migration.

The costs of computing and memory are another concern for
industry. The computational comparison between the utilized
ED and conventional PS operator is shown in Table I. It illus-
trates that the ED operator is only about three times slower
than that of using the PS propagator, with a little more memory
occupied, which is acceptable for the industry to improve the
image result.

B. Single Impulse Test

In the next example, we show the accuracy of the ED-based
propagator at high angles via a migration impulse response.
The velocity model presented in Fig. 7 is generated using the
function v(x, z) = 15x + 2z + 1500, which has a strong
lateral velocity variation ranging from 1500 to 4500 m/s.
We use a single trace with one wavelet as a receiver wavefield
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Fig. 5. (a) True reflectivity model, the imaging section after, (b) 1st iteration,
and (c) 15th iterations of FWM using the ED propagator.

Fig. 6. Difference between the true reflectivity and the estimated reflectivity
after (a) 1st and (b) 15th iterations of FWM. Imaging reflectivity comparisons
were extracted at (c) x = 860 m and (d) depth = 740 m after the 15th iteration
of FWM, respectively.

with a maximum frequency of 25 Hz to test the suitability of
the ED-based propagator.

Fig. 8 exhibits the real and imaginary components of the
PS and ED propagators at one depth level with 1z = 10 m
for a frequency of 10 Hz. We observe that the imaginary
components of the two operators are very similar, but the real
parts are quite different. Considering that the wave propagation

Fig. 7. Inhomogeneous velocity model with strong lateral velocity gradients.

Fig. 8. Propagator comparison at 10 Hz. (a) Real part of PS. (b) Real part
of ED. (c) Imaginary part of PS. (d) Imaginary part of ED. (e) Comparison
of the absolute phase of ED and PS operators with slowness.

phase depends on both real and imaginary parts of the complex
operator, and should be consistent with the medium velocity.
Therefore, as shown in Fig. 8(e), the two operators’ absolute
phases are used to compare with the trends of slowness,
in which we can see the perfect consistency between the
absolute phase calculated by the utilized ED operator and the
slowness variations.

Fig. 9 represents a comparison of the migration impulse
response with a single wavelet in the middle of the model,
in which the PS, ED, and FD methods are involved. Taking
the FD results as a standard, we can see that the ED propagator
can achieve a more accurate wavefront than the PS operator,
as indicated by the gray arrows at angles close to 90◦, where
we see that the wavefront from the PS propagator becomes
inaccurate and is fading out.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 04,2024 at 12:31:34 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 9. Migration impulse responses of (a) PS, (b) ED, and (c) FD method.

Fig. 10. (a) Accurate and (b) erroneous velocity model.

C. Varying-Velocity Background Model With FD Data

The next velocity model utilized in this study has a size of
1000 × 3000 m with a grid size of 5 × 10 m. The accurate
model exhibits steep dipping angles with a laterally varying
background velocity contrast, as shown in Fig. 10(a). The
erroneous model which changed lateral background velocity
shown in Fig. 10(b) is also employed to evaluate the effi-
cacy of the proposed FWM algorithm in terms of imaging
performance, under the situation of including a kinematic

Fig. 11. Imaging results after the first round of iteration of FWM using
(a) PS and (b) ED operators based on an accurate velocity model; the imaging
section after three rounds of iterations of FWM using (c) PS operator and
(d) ED operators based on accurate velocity model; the imaging section
after 3 iterations of FWM using (e) PS operator and (f) ED operators based
on the erroneous velocity model. (g) True reflectivity model; the difference
between the true reflectivity and the estimated reflectivity of (h) PS and
(i) ED propagators based on the accurate velocity model.

error. The shot and receiver distances are, respectively, set at
50 and 10 m.

The imaging results can be seen in Fig. 11.
Fig. 11(a) and (b) shows comparisons of the imaging
sections that were obtained after a single round of FWM
using the PS and ED propagators. Fig. 11(c) and (d) are
obtained using the PS and the ED propagators after 3 iterations
based on the accurate velocity model, respectively. These
four pictures reveal that both propagators can properly
deal with the internal multiples, as indicated by the deep
green signs. However, the ED operator can produce more
accurate reflectivity, especially for the dipping reflectors of
the subsurface, than the PS operator, as indicated by the
black arrows. Fig. 11(e) and (f) are the imaging results of
corresponding situations with the erroneous model, in which a
kinematic error is inserted. Although it shifts the positioning
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Fig. 12. Shot-domain CIG extracted at x = 1000 m from (a) PS and (b) ED
operator-based FWM methods; shot-domain CIG extracted at x = 2500 m
from (c) PS and (d) ED operator-based FWM methods.

Fig. 13. Difference between true reflectivity and estimated reflectivity after
3 iterations at (a) x = 800 m, and (b) x = 1500 m.

and damages the image quality of the reflections. Still, from
the two subfigures, we can see a slight improvement in image
results, and reveal that the ED operator is still superior,
even when using an erroneous velocity model. Fig. 11(g)
shows the true reflectivity model, which is used to judge how
well the imaging methods work. In the meantime, we calculate
the difference between the true reflectivity and estimated
reflectivity of the PS and ED propagators, as presented in
Fig. 11(h) and (i), respectively. From the different parts, the
light green arrows show that the ED operator-based FWM
algorithm can get a more accurate result than the PS operator.

Additionally, Fig. 12 presents the shot-domain common
image gathers (CIGs) to demonstrate the effectiveness of
amplitude correctness, enhancing the illustration through the
moveout quality of the kinematic behavior of the migration
methods. Shot domain CIG represents information extracted
at a specific lateral position from different single-shot images,
where seismic events should appear flat. Comparing the CIG
generated from the two operator-based FWM at positions of
x = 1000 m and x = 2500 m respectively, it is evident that
the FWM using the ED operator creates flatter gathers than
using the PS operator, as indicated by the black arrows and

Fig. 14. (a) Observed data and residual data using (b) PS and (c) ED
propagators after 3 iterations.

Fig. 15. Objective function when FWM uses the ED operators, compared
with the conventional PS operators.

ellipses. This figure confirms the ED operator’s superiority in
terms of the kinematic behavior and AVA/AVO effect.

Then, Fig. 13(a) and (b) shows comparisons of the true
reflectivity and the estimated reflectivity for the two types of
propagators after three iterative cycles. The data was taken at
x = 800 m and x = 1500 m. This figure further confirms the
better recovery ability of amplitudes by using the ED operator,
from the comparison of amplitude curves with true reflectivity.

Moreover, Fig. 14 shows a comparison between observed
data and residual data from using both PS and ED propagators
in FWM after 3 iterations. In this figure, the residual data of
the ED propagator is cleaner than that of the PS operator. That
means the wavefield generated by the ED operator is closer to
the FD-generated observed data. Fig. 15 presents a comparison
of the objective function obtained using the two types of
propagators in FWM. The objective function serves as a gauge
of the image’s quality after the imaging process. A lower
objective function value indicates that the imaging result is
more accurate and closer to true reflectivity. We can see that
the proposed method achieves a lower objective function value
compared to the conventional PS operator. It indicates that the
proposed method is more effective in describing the input data
and, thereby, producing more accurate imaging results.

D. SEG-EAGE Salt Model Using FD Data

The SEG-EAGE salt model (see [30]) comprises a typ-
ical velocity gradient overlaid by a tetragonal salt with a
significantly higher wave velocity. The selected slice from
this 3-D model we used in this study is shown in Fig. 16.
In this example, the observed data is generated using the
finite-difference method with a grid size of 5 × 5 m. The
receiver interval is 20 m, and the shot distance is 100 m, with
a sampling rate of 4 ms, using the Ricker wavelet with a peak
frequency of 30 Hz.
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Fig. 16. True velocity model extracted from the SEG-EAGE salt model.

Fig. 17. Representations of the complex-valued propagation operator for the
depth slice at z = 2000 m and frequency 15 Hz. The real part of (a) PS
and (b) ED operators; the imaginary part of (c) PS operator and (d) ED
operator. (e) Comparison of the diagonal elements and phases of the real and
imaginary components of PS and ED propagators, together with the relative
velocity variations (in blue) at this depth slice.

Fig. 17(a) and (b) shows the real components of the complex
propagation PS and ED operator at a depth of 2000 m with
a frequency of 15 Hz. Similarly, Fig. 17(c) and (d) are the
imaginary parts of the two operators. To provide a clearer
understanding of the characteristics of the two propagators,
we extract the diagonal elements as shown in Fig. 17(e).
By looking at the phases of PS and ED propagators along with
changes in relative lateral velocity (shown in blue), we can see
that both propagators are in line with changes in velocity. Note
that the differences between the ED and PS operators are only

Fig. 18. (a) True reflectivity model and the imaging section after 10 iterations
of FWM using (b) PS and (c) ED propagators.

visible in the real part, while the imaginary parts are virtually
identical.

Fig. 18 presents the true reflectivity model, showing the
normal incidence reflectivity, along with the imaging sections
after 10 iterations of the conventional PS operator and the
proposed ED operator. As shown in Fig. 18(b) and (c), the
image produced by the ED operators exhibits a more accurate
representation of the subsalt structures, as indicated by the
black arrows, corresponding to the PS operator. These findings
demonstrate the superiority of the proposed ED operator
in improving true amplitude imaging capabilities and image
fidelity in complex subsurface structures.

IV. CONCLUSION

This study presents a novel approach for enhancing FWM
by incorporating an eigendecomposition-based one-way wave
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propagator. The method entails the computation of the eigen-
values and eigenvectors of the Helmholtz operator to construct
an operator that accurately characterizes the behavior of
the wavefield during subsurface propagation. This technique
improves true amplitude imaging capabilities by considering
the lateral velocity heterogeneity in the subsurface model,
instead of making a locally laterally homogeneous velocity
assumption. Numerical tests, like the “inverse crime” process,
which used data modeled with the FWMod engine to reveal
the method’s better performance in FWM, show that the
proposed method works well. The incorporated ED operator
was also tested using FD-modeled observed data. The implau-
sible response tests worked to verify the proposed algorithm’s
image angle. The simple model with accurate and erroneous
velocity illustrated that the operator worked better for reflec-
tors that were dipping steeply while still maintaining the
FWM approach’s ability to suppress internal multiple signals.
Furthermore, the SEG-EAGE-salt model example illustrated
the good performance of our proposed method. Meanwhile, the
difference between the obtained ED and PS propagators was
analyzed to provide insights into why using the ED operator
can produce more accurate results.
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