

Delft University of Technology

Stream differential equations
Specification formats and solution methods
Hansen, Helle Hvid; Kupke, Clemens; Rutten, Jan

DOI
10.23638/LMCS-13(1:3)2017
Publication date
2017
Document Version
Final published version
Published in
Logical Methods in Computer Science

Citation (APA)
Hansen, H. H., Kupke, C., & Rutten, J. (2017). Stream differential equations: Specification formats and
solution methods. Logical Methods in Computer Science, 13(1), Article 3. https://doi.org/10.23638/LMCS-
13(1:3)2017

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23638/LMCS-13(1:3)2017
https://doi.org/10.23638/LMCS-13(1:3)2017
https://doi.org/10.23638/LMCS-13(1:3)2017

Logical Methods in Computer Science
Vol. 13(1:3)2017, pp. 1–51
www.lmcs-online.org

Submitted Jul. 11, 2014
Published Feb. 2, 2017

STREAM DIFFERENTIAL EQUATIONS:

SPECIFICATION FORMATS AND SOLUTION METHODS

HELLE HVID HANSEN a, CLEMENS KUPKE b, AND JAN RUTTEN c

a Delft University of Technology and Centrum Wiskunde & Informatica, Amsterdam
e-mail address: h.h.hansen@tudelft.nl

b University of Strathclyde
e-mail address: clemens.kupke@strath.ac.uk

c Centrum Wiskunde & Informatica, Amsterdam, and Radboud University Nijmegen
e-mail address: jjmmrutten@gmail.com

Abstract. Streams, or infinite sequences, are infinite objects of a very simple type, yet
they have a rich theory partly due to their ubiquity in mathematics and computer science.
Stream differential equations are a coinductive method for specifying streams and stream
operations, and their theory has been developed in many papers over the past two decades.
In this paper we present a survey of the many results in this area. Our focus is on the
classification of different formats of stream differential equations, their solution methods,
and the classes of streams they can define. Moreover, we describe in detail the connection
between the so-called syntactic solution method and abstract GSOS.

1. Introduction

Streams, or infinite sequences, are infinite objects of a very simple type, yet they have a rich
theory partly due to their ubiquity. Streams occur as numerical expansions, data sequences,
formal power series, limit sequences, dynamic system behaviour, formal languages, ongoing
computations, and much more.

Defining the stream derivative of a stream σ = (σ(0), σ(1), σ(2), . . .) by

σ′ = (σ(1), σ(2), σ(3), . . .)

and the initial value of σ by σ(0), one can develop a calculus of streams in close analogy with
classical calculus in mathematical analysis. Notably, using the notions of stream derivative
and initial value, we can specify streams by means of stream differential equations.

For instance, the stream differential equation σ(0) = 1, σ′ = σ has the stream σ =
(1, 1, 1, . . .) as its unique solution, and σ(0) = 1, σ′ = σ + σ, where + is the elementwise
addition of two streams, defines the stream (20, 21, 22, . . .) . Similarly, we can specify stream

Key words and phrases: streams, behavioural differential equations, coinduction, coalgebra, linear sys-
tems, context-free streams, automatic sequences, bialgebra.
a Supported by NWO-Veni grant 639.021.231.
b Supported by EPSRC grant EP/N015843/1.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(1:3)2017

c© H. H. Hansen, C. Kupke, and J. Rutten
CC© Creative Commons

http://creativecommons.org/about/licenses

2 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

functions. For example, f(σ)(0) = σ(0), f(σ)′ = f(σ′′) (this time using second-order
derivatives) defines the function f(σ) = (σ(0), σ(2), σ(4), . . .). In these examples, it is
easy to see that the stream differential equations have a unique solution. But how about
τ(0) = 0, τ ′ = f(τ)? A moment’s thought reveals that this equation has several solutions,
e.g. τ = (0, 0, 0, . . .) and τ = (0, 0, 1, 1, 1, . . .). But what is the difference between this
equation and the previous ones? How can we ensure the existence of unique solutions?
Which classes of streams can be defined using a finite amount of information? These
questions have been studied by several authors in many different contexts in recent years,
and have led to notions such as rational streams, context-free streams, and new insights
into automatic and regular sequences.

In this paper, we present an overview of the current state-of-the-art in formats and solu-
tion methods for stream differential equations. The theoretical basis for stream differential
equations is given by coalgebra [56], but our aim is to give an elementary and self-contained
overview. We consider our contribution to be a unified and uniform presentation of results
which are collected from many different sources. As modest new insights, we mention the
results on the expressiveness of non-standard formats in Section 7. Another contribution
which can be considered new, is the detailed analysis of the connection between the syntac-
tic method and abstract GSOS (in Section 9) This connection is rather obvious to readers
familiar with abstract GSOS, but probably less so to the uninitiated reader.

Overview: We start by giving an informal introduction to stream differential equations
in Section 2, and in Section 3 we provide some basic definitions regarding automata and
stream calculus. Next, in Sections 4 through 7, we shall study in more detail various types
of stream differential equations, each corresponding to a specification format. We describe
solution methods for each of these formats, and characterise the automata and the classes of
streams that these families of stream differential equations can define. The following little
table contains some representative examples, corresponding to Sections 4 through 7:

initial value: derivative: solution: type of equation:
σ(0) = 1 σ′ = σ (1, 1, 1, . . .) simple
σ(0) = 1 σ′ = σ + σ (20, 21, 22, . . .) linear
σ(0) = 1 σ′ = σ × σ Catalan numbers context-free/algebraic

σ(0) = 1 d
dX (σ) = σ

(

1
0! ,

1
1! ,

1
2! ,

1
3! ,

1
4! , . . .

)

non-standard

(For the definition of the convolution product × see (2.6) in Section 2; the non-standard
derivative d

dX is defined in Example 7.1.)
In Section 8, we describe a concrete syntactic solution method for a large class of

well-formed stream differential equations, including all those that we discussed in Sections
4-6. Finally, in Section 9, a more general, categorical perspective on the theory of stream
differential equations is presented. In particular, this section places streams and automata in
a more general context of algebras, coalgebras and so-called distributive laws. Note that this
is the only section that requires some basic knowledge of category theory. In Section 10, we
briefly discuss connections with other methods for representing streams, such as recurrence
relations, generating functions and so on.

Section Interdependency : Sections 2-3 provide the reader with important prerequisites
for the remainder of the article. Sections 4-7 can be read independently of each other.
Section 8 can, in principle, be read without Sections 4-7, but it refers back to earlier sections
for examples and motivations. Section 9 can be skipped by readers who are mainly interested
in concrete specification formats. Section 10 relies on Sections 2-7.

STREAM DIFFERENTIAL EQUATIONS 3

Related work : Here we mention the most important origins of the results in this paper.
A more extensive discussion of related work is found in Section 10. Stream differential
equations [60] came about as a special instance of behavioural differential equations, for
formal power series, which were introduced in [58]. Motivation came from the coalgebraic
perspective on infinite data structures, in which streams are a canonical example, but also
from work on language dervatives in classical automata theory, notably [16] and [17]. The
idea of developing a calculus of streams in close analogy to analysis was further inspired
by the work on classical calculus in coinductive form in [52]. The classification of stream
differential equations into the families of simple, linear and context-free systems stems from
our joint work with Marcello Bonsangue and Joost Winter, in [13] and [69], on classifications
of behavioural differential equations for streams, languages and formal power series. The
results on non-standard stream calculus come from [40, 39], and the examples on automatic
and regular sequences from [41] and [28], respectively.

Acknowledgements: It should be clear from the many references to the literature that
our paper builds on the work of many others. We are, in particular, much indebted to
Marcello Bonsangue and Joost Winter for many years of fruitful collaboration on stream
differential equations. A large part of the work presented here was developed in joint work
with them. We are also grateful to many other colleagues, with whom we have worked
together in different ways on ideas relating to streams, including: Henning Basold, Filippo
Bonchi, Jörg Endrullis, Herman Geuvers, Clemens Grabmayer, Dimitri Hendriks, Bart Ja-
cobs, Bartek Klin, Jan-Willem Klop, Dorel Lucanu, Larry Moss, Milad Niqui, Grigore Rosu,
Jurriaan Rot, Alexandra Silva, Hans Zantema.

Contents

1. Introduction 1
2. Stream Differential Equations 4
2.1. Basic definitions 4
2.2. Simple examples 5
2.3. Stream operations 5
2.4. Higher-order examples 6
3. Stream Automata and Stream Calculus 7
3.1. Stream Automata and coinduction 7
3.2. Stream Calculus 9
4. Simple Specifications 10
5. Linear Specifications 12
5.1. Linear equation systems 12
5.2. Linear stream automata 12
5.3. Matrix solution method 14
6. Context-free Specifications 19
6.1. Context-free equation systems 19
6.2. Solutions and characterisations 20
7. Non-standard Specifications 22
7.1. Stream representations 22
7.2. Simple non-standard specifications 23
7.3. Stream specifications for automatic sequences 27
8. The Syntactic Method 29

4 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

8.1. Terms and algebras 30
8.2. Stream GSOS definitions 30
8.3. Causal stream operations 35
8.4. Causality and productivity 37
8.5. Simple/linear/context-free stream specifications revisited 37
9. A General Perspective 39
9.1. Coalgebras for a functor 39
9.2. Algebras for a monad 40
9.3. Bialgebras for a distributive law 41
9.4. The Syntactic Method via Abstract GSOS 42
9.5. Solving systems of equations 44
10. Discussion and Related Work 46
10.1. Other Specification Methods 46
10.2. Related Work 47
References 49

2. Stream Differential Equations

In this section, we present several examples of stream differential equations (SDEs) and their
solutions. For now the purpose is to get familiarised with the notation of SDEs. Detailed
proofs and solution methods are presented later.

We start by introducing notation and basic definitions on streams.

2.1. Basic definitions. A stream over a given set A is a function σ : N → A from the
natural numbers to A, which we will sometimes write as

σ = (σ(0), σ(1), σ(2), . . .)

The set of all streams over A is denoted by

Aω = {σ | σ : N → A}
Given a stream σ ∈ Aω, we define the initial value of σ as σ(0), and the derivative of
σ as the stream σ′ = (σ(1), σ(2), σ(3), . . .). For a ∈ A and σ ∈ Aω, we define a : σ =

(a, σ(0), σ(1), σ(2), . . .). Higher order derivatives σ(n) are defined inductively for all n ∈ N

by:
σ(0) = σ σ(n+1) = (σ(n))′

Initial value and derivative are also known as head and tail, respectively.

STREAM DIFFERENTIAL EQUATIONS 5

2.2. Simple examples. Stream differential equations define a stream in terms of its initial
value and its derivative(s). As a first elementary example, consider

σ(0) = 1, σ′ = σ. (2.1)

which has the stream ones = (1, 1, 1, . . .) as the unique solution.
For a slightly more interesting example consisting of two SDEs over two stream variables,

consider
σ(0) = 1, σ′ = τ
τ(0) = 0, τ ′ = σ

(2.2)

whose solution is σ = (1, 0, 1, 0, . . .) and τ = (0, 1, 0, 1, . . .).
In the above SDEs, derivatives given by a stream variable. Such SDEs are called simple,

and in Section 4, we will characterise the class of streams that can be specified by finite
systems of simple equations. More generally, we will consider SDEs involving not only
variables, but also operations on streams.

2.3. Stream operations. We illustrate how to define stream operations, and at the same
time introduce a bit of stream calculus. Stream calculus is usually defined for streams over
the real numbers R, but most definitions hold for more general data domains A.

Consider the set Aω of streams over a ring (A,+,−, ·, 0, 1). The stream differential
equation:

(σ + τ)(0) = σ(0) + τ(0), (σ + τ)′ = σ′ + τ ′ (2.3)

defines the element-wise addition of two streams, that is, for all σ, τ ∈ Aω,

(σ + τ)(n) = σ(n) + τ(n) for all n ∈ N. (2.4)

(Note that we use the same symbol to denote addition in A and addition of streams. The
typing should be clear from the context.)

Similarly, one can define the element-wise multiplication with a scalar a ∈ A with the
SDE:

(a · σ)(0) = a · σ(0), (a · σ)′ = a · σ′. (2.5)

where a · σ(0) denotes multiplication in A. It follows that, for all σ ∈ Aω,

(a · σ)(n) = a · σ(n) for all n ∈ N.

Clearly, any element-wise operation on streams can be defined in a similar manner. An ex-
ample of a non-element-wise operation is the convolution product of streams given explicitly
by:

(σ × τ)(n) =
n
∑

k=0

σ(k) · τ(n− k) for all n ∈ N (2.6)

which is defined by the SDE

(σ × τ)(0) = σ(0) · τ(0), (σ × τ)′ = (σ′ × τ) + ([σ(0)]× τ ′) (2.7)

where for a ∈ A,
[a](0) = a, [a]′ = [0] (2.8)

Note that the stream [1] = (1, 0, 0, 0, . . .) is the identity for the convolution product, that
is, σ × [1] = [1]× σ = σ.

One can show that the convolution product is commutative if and only if the multipli-
cation in A is commutative.

6 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

Using the convolution product, and taking A = Z we can form the following SDE:

σ(0) = 1, σ′ = σ × σ (2.9)

It defines the stream σ = (1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .) of Catalan numbers, cf. [13].
When A is a field such as the reals R, some streams σ have an inverse σ−1 with respect

to convolution product, that is, σ × σ−1 = σ−1 × σ = [1]. By taking initial value on both
sides we find that the inverse should satisfy (σ×σ−1)(0) = 1 and hence by the definition of
convolution product, σ−1(0) = 1/σ(0) which exists only if σ(0) 6= 0 in A. Similarly, taking
derivatives on both sides and rearranging, we find the following SDE:

σ−1(0) = 1/σ(0), (σ−1)′ = [−1/σ(0)] × σ′ × σ−1 (2.10)

2.4. Higher-order examples. Just as with classical differential equations, SDEs can also
be higher-order. For instance, the second-order SDE

σ(0) = 0, σ′(0) = 1, σ′′ = σ′ + σ (2.11)

(with + as defined above) defines the stream of Fibonacci numbers σ = (0, 1, 1, 2, 3, 5, 8, . . .).
An nth order SDE can always be represented as a system of n first-order SDEs. For example,
the Fibonacci stream is equivalently defined as the solution for σ in

σ(0) = 0, σ′ = τ
τ(0) = 1, τ ′ = τ + σ

(2.12)

A similar example is given by

σ(0) = 1, σ′ = σ
τ(0) = 0, τ ′ = τ + σ

(2.13)

We know already that ones is a solution for σ (cf. equation (2.1)). Hence (2.13) is equivalent
to

τ(0) = 0, τ ′ = τ + ones (2.14)

which has τ = (0, 1, 2, 3, 4, . . .) as its unique solution.
A slightly more involved example is given by the stream γ of Hamming numbers (or

regular numbers) which consists of natural numbers of the form 2i3j5k for i, j, k ≥ 0 in in-
creasing order (cf. [18, 71]). The first part of γ looks like (1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, . . .).
The stream γ can be defined by the following SDE:

γ(0) = 1, γ′ = (2 · γ) ‖ ((3 · γ) ‖ (5 · γ)) (2.15)

where n ·γ, n ∈ N, is the scalar multiplication defined as in (2.5) and ‖ is the merge operator
defined by

(σ‖τ)(0) =
{

σ(0) if σ(0) < τ(0)
τ(0) if σ(0) ≥ τ(0)

(σ‖τ)′ =

σ′‖τ if σ(0) < τ(0)
σ′‖τ ′ if σ(0) = τ(0)
σ‖τ ′ if σ(0) > τ(0)

(2.16)

That is, ‖ merges two streams into one by taking smallest initial values first, and removing
duplicates.

Many more examples of stream differential equations inspired by analysis, arithmetic
and combinatorics can be found in [57, 58, 60, 68].

STREAM DIFFERENTIAL EQUATIONS 7

3. Stream Automata and Stream Calculus

We will show how one can prove the existence of unique solutions to SDEs by using the
notions of stream automata and coinduction.

3.1. Stream Automata and coinduction. Streams can be represented by so-called stream
automata. A stream automaton (with output in A) is a pair 〈X, s〉 where X is a set (called
the state space, or the carrier) and s = 〈o, d〉 : X → A × X is a function that maps each
x ∈ X to a pair consisting of an output value o(x) ∈ A and a unique next state d(x) ∈ X

(corresponding to the derivative). We will write x
a−→ y when o(x) = a and d(x) = y. A

small example of a stream automaton is given in Figure 1. (In categorical terms, a stream

x0
0 // x1

1
))
x2

0

ii x3

0

��

Figure 1: Stream automaton with X = {x0, x1, x2, x3} and A = {0, 1}.

automaton is a coalgebra for the functor F on Set defined by FX = A×X, cf. Section 9.)
Intuitively, a state x in a stream automaton 〈X, 〈o, d〉〉 represents the stream of outputs

that can be observed by following the transitions starting in x:

(o(x), o(d(x)), o(d(d(x)), o(d(d(d(x)))), . . .)

This stream is called the (observable) behaviour of x. For example, the behaviour of the
state x0 in Figure 1 is the stream (0, 1, 0, 1, . . .). We will now characterise behaviour using
the notion of homomorphism and finality.

A homomorphism of stream automata is a function between state spaces that pre-
serves outputs and transitions. Formally, a function f : X1 → X2 is a homomorphism
from 〈X1, 〈o1, d1〉〉 to 〈X2, 〈o2, d2〉〉 if and only if, for all x ∈ X1,

o1(x) = o2(f(x)) and f(d1(x)) = d2(f(x)),

or equivalently, if and only if, the following diagram commutes:

X1

〈o1,d1〉
��

f // X2

〈o2,d2〉
��

A×X1
idA×f // A×X2

where idA denotes the identity map on A.
The set of streams Aω is itself a stream automaton under the map ζ : σ 7→ 〈σ(0), σ′〉,

and it is moreover final which means that for any stream automaton 〈o, d〉 : X → A × X
there is a unique stream homomorphism [[−]] : X → Aω (called the final map) into 〈Aω, ζ〉:

X

∀〈o,d〉
��

∃![[−]] // Aω

ζ

��
A×X

idA×[[−]]
// A×Aω

8 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

By the commutativity of the above diagram, we find that

[[x]] = (o(x), o(d(x)), o(d(d(x)), o(d(d(d(x)))), . . .)

is indeed the observable behaviour of x ∈ X. The final map [[−]] is therefore often referred
to as the behaviour map. Note that by uniqueness, the final map from 〈Aω, ζ〉 to itself must
be the identity homomorphism, that is, for all σ ∈ Aω:

[[σ]] = σ. (3.1)

It can now easily be verified that for the stream automaton in Figure 1, the behaviour
map is:

[[x0]] = [[x2]] = (0, 1, 0, 1, . . .)
[[x1]] = (1, 0, 1, 0, . . .)
[[x3]] = (0, 0, 0, 0, . . .)

The universal property of the final stream automaton yields a coinductive definition
principle and a coinductive proof principle, both are often referred to as coinduction. In
this paper we will make extensive use of both.

A map f : X → Aω is said to be defined by coinduction, if it is obtained as the unique
homomorphism into the final stream automaton. In practice, such an f is obtained by
equipping X with a suitable stream automaton structure and using the finality of 〈Aω, ζ〉.

A proof by coinduction is based on the notion of bisimulation. Let 〈X1, 〈o1, d1〉〉 and
〈X2, 〈o2, d2〉〉 be stream automata. A relation R ⊆ X1 ×X2 is a stream bisimulation if for
all 〈x1, x2〉 ∈ R:

o1(x1) = o2(x2) and 〈d1(x1), d2(x2)〉 ∈ R. (3.2)

Two states x1 and x2 are said to be bisimilar, written x1 ∼ x2, if they are related by some
stream bisimulation. We list a few well known facts about stream bisimulations, cf. [58].

Lemma 3.1. Let 〈X1, s1〉 and 〈X2, s2〉 be stream automata.

(1) If Ri ⊆ X1 ×X2, i ∈ I, are stream bisimulations then
⋃

i∈I Ri is a bisimulation.
(2) The bisimilarity relation ∼ ⊆ X1 × X2 is the largest bisimulation between 〈X1, s1〉 to

〈X2, s2〉.
(3) If f : X1 → X2 is a stream homomorphism, then its graph R = {〈x, f(x)〉 | x ∈ X1} is

a stream bisimulation.

The main result regarding bisimilarity is stated in the following theorem.

Theorem 3.2. For all stream automata 〈Xi, si〉 and all xi ∈ Xi, i = 1, 2,

x1 ∼ x2 ⇐⇒ [[x1]] = [[x2]]

Consequently, by (3.1), for all streams σ, τ ∈ Aω,

σ ∼ τ ⇐⇒ σ = τ

From Theorem 3.2 we get the coinductive proof principle: to prove that two streams are
equal it suffices to show that they are related by a bisimulation relation.

Finally, we also need the notions of subautomaton and minimal automaton. A stream
automaton 〈Y, t〉 is a subautomaton of 〈X, s〉 if Y ⊆ X and the inclusion map ι : Y → X is
a stream homomorphism, which means that t = s↾Y . Given a stream automaton 〈X, s〉, the
subautomaton generated by Y0 ⊆ X is the subautomaton 〈Y, t〉 obtained by closing Y0 under
transitions. A stream automaton 〈X, s〉 is minimal if the behaviour map [[−]] : X → Aω is

STREAM DIFFERENTIAL EQUATIONS 9

injective. Note that due to Theorem 3.2, every subautomaton of the final stream automaton
is minimal.

Referring to the automaton in Figure 1, an example of a stream bisimulation is given
by {(x0, x2), (x1, x1), (x2, x2)}. It follows from Theorem 3.2 that [[x0]] = [[x2]].

3.2. Stream Calculus. In this short section, we introduce some further preliminaries on
stream calculus that we will be using in the remainder of the paper. As we have seen in
Section 2.3, any operation on A can be lifted element-wise to an operation on Aω. In fact,
any algebraic structure on A lifts element-wise to Aω. (We show this in a more abstract
setting in Section 9.5.2.) But we are not only interested in element-wise operations. We
will use that if A is a commutative ring, then also

(Aω,+,−,×, [0], [1])
is a commutative ring, cf. [58, Thm.4.1]. Similarly, if A is a field, then Aω is a vector space
over A with the operations of scalar multiplication and addition.

Table 1 summarises the SDEs defining the stream calculus operations on Aω most
of which were already introduced in Section 2.3. The fact that these SDEs have unique
solutions will follow from the results in Section 8.

derivative: initial value: name:
[a]′ = [0] [a](0) = a constant [a], a ∈ A
(σ + τ)′ = σ′ + τ ′ (σ + τ)(0) = σ(0) + τ(0) sum
(a · σ)′ = a · (σ′) (a · σ)(0) = a · σ(0) scalar multiplication
(−σ)′ = −(σ′) (−σ)(0) = −σ(0) minus
(σ × τ)′ = (σ′ × τ) + ([σ(0)] × τ ′) (σ × τ)(0) = σ(0) · τ(0) convolution product
(σ−1)′ = −[σ(0)−1]× σ′ × σ−1 (σ−1)(0) = σ(0)−1 convolution inverse

Table 1: Operations of stream calculus. Recall (from Section 2.3) that convolution inverse
is defined only if σ(0) is an invertible element of A. In the case A is a field this is
equivalent with σ(0) 6= 0, and as usual, we will often write σ

τ for σ × τ−1.

We further add to our stream calculus the constant stream

X = (0, 1, 0, 0, 0, . . .) defined by X(0) = 0, X′ = [1].

Multiplication by X acts as “stream integration” (seen as an inverse to stream derivative)
since

(X× σ)′ = σ

This follows from the fact that, for all σ ∈ Aω,

X× σ = σ × X = (0, σ(0), σ(1), σ(2), . . .)

This leads to the very useful fundamental theorem of stream calculus [58, Thm. 5.1].

Theorem 3.3. For every σ ∈ Aω, σ = [σ(0)] + (X× σ′).

Proof. For all σ, we have: σ = (σ(0), σ(1), σ(2), . . .)
= (σ(0), 0, 0, 0, . . .) + (0, σ(1), σ(2), σ(3), . . .)
= [σ(0)] + (X× σ′)

10 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

We conclude this section by an enhancement of the bisimulation proof method. The general
result behind the soundness of this method is described in Section 9.3.

Definition 3.4 (bisimulation-up-to). Let Σ denote a collection of stream operations. A
relation R ⊆ Aω ×Aω is a (stream) bisimulation-up-to-Σ if for all (σ, τ) ∈ R:

σ(0) = τ(0) and (σ′, τ ′) ∈ R̄,

where R̄ ⊆ Aω ×Aω is the smallest relation such that

(1) R ⊆ R̄
(2) { 〈σ, σ〉 | σ ∈ Aω } ⊆ R̄
(3) R̄ is closed under the (element-wise application of) operations in Σ. (For instance, if Σ

contains addition and 〈α, β〉, 〈γ, δ〉 ∈ R̄ then 〈α+ γ, β + δ〉 ∈ R̄.)
We write σ ∼Σ τ if there exists a bisimulation-up-to-Σ containing 〈σ, τ〉.
Theorem 3.5 (coinduction-up-to). Let Σ be a subset of the stream calculus operations from
Table 1. We have:

σ ∼Σ τ ⇒ σ = τ (3.3)

Proof. If R is a bisimulation-up-to-Σ, then R̄ can be shown to be a bisimulation relation by
structural induction on its definition. The theorem then follows by Theorem 3.2.

4. Simple Specifications

In Sections 4-6, we will characterise the classes of streams, i.e. subsets of Aω, that arise as
the solutions to finite systems of SDEs over varying algebraic structures/signatures.

We start by defining the most simple type of systems of SDEs. Let A be an arbitrary
set. A simple equation system over a set (of variables) X = {xi | i ∈ I} is a collection of
SDEs, one for each xi ∈ X, of the form

xi(0) = ai, x′i = yi;

where ai ∈ A and yi ∈ X for all i ∈ I. We call a simple equation system over X finite, if
X is finite. The SDEs in equations (2.1) and (2.2) are examples of finite simple equation
systems. Note that any stream σ is the solution of the infinite simple equation system over
X = {xn | n ∈ N} defined by: xn(0) = σ(n) and x′n = xn+1, for all n ∈ N.

A simple equation system corresponds to a map e : X → A × X, i.e., to a stream
automaton with state space X. A solution of e : X → A×X is an assignment h : X → Aω

of variables to streams that preserves the equations: h(xi) = ai and h(xi)
′ = h(yi) for all

i ∈ I. This holds exactly when the following diagram commutes:

X

e

��

h // Aω

ζ

��
A×X

idA×h// A×Aω

In other words, solutions are stream homorphisms from 〈X, e〉 to the final stream automaton.
By coinduction, solutions to simple equation systems exist and are unique. We will also say
that a stream σ ∈ Aω is a solution of e if σ = h(x) for some x ∈ X, in which case we call e
a specification of σ.

STREAM DIFFERENTIAL EQUATIONS 11

The solutions of finite simple equation systems are exactly the behaviours of finite
stream automata, which are precisely the eventually periodic streams. This is easy to prove.
We state the result explicitly to make clear the analogue with the results on linear and
context-free specifications that will be discussed in Sections 5 and 6.

Proposition 4.1. The following are equivalent for all streams σ ∈ Aω.

(1) σ is the solution of a finite simple equation system.
(2) σ generates a finite subautomaton of the final stream automaton.

(3) σ is eventually periodic, i.e., σ(k) = σ(n) for some k, n ∈ N with k < n.

Proof. 1 ⇒ 2: Let h : X → Aω be a solution of the finite e : X → A×X and σ = h(x) for
some x ∈ X. The subautomaton generated by σ is contained in the image h(X) which is
finite, since X is finite.

2 ⇒ 3: The subautomaton generated by σ has as its state set {σ(k) | k ∈ N} which is

finite by assumption. Consequently, there are k, n ∈ N such that σ(k) = σ(n) and k < n.
3 ⇒ 1: Assume that σ(k) = σ(n) for k < n ∈ N. Let X = {x0, . . . , xn−1} and define

e : X → A×X, for all i = 0, . . . , n− 2, by

e(xi) = 〈σ(i), xi+1〉
and by e(xn−1) = 〈σ(n − 1), xk〉. Now σ = h(x0) where h is the unique solution of e.

Eventually periodic streams constitute some of the simplest infinite objects that have
a finite representation. Such finite representations make it possible to compute with and
reason about infinite objects. We provide a couple of examples.

Example 4.2 (Rational numbers in binary). Let 2 = {0, 1} denote the set of bits. Rational
numbers with odd denominator, that is, elements of Qodd = {q = n

2m+1 | n,m ∈ Z}, can
be represented as eventually periodic bitstreams. The representation B : Qodd → 2ω is
obtained by coinduction via the following stream automaton structure on Qodd:

o(q) = n mod 2, d(q) = (q − o(q))/2

For example, the finitary representation of the number 17
5 can be found by computing output

and derivatives leading to the following stream automaton:

17
5

1 // 6
5

0 // 3
5

1 // −1
5

1 // −3
5

1 // −4
5

0 // −2
5

0

hh

Hence, B(175) = 101(1100)ω . Such base 2 expansions allow for efficient implementations of
arithmetic operations, cf. [31].

Example 4.3 (Regular languages over one-letter alphabet). A bitstream σ ∈ 2ω corre-
sponds to a language L ⊆ P(A∗) over a one-letter alphabet A = {a} via:

an ∈ L ⇐⇒ σ(n) = 1, for all n ∈ N.

For example, the language L = {an | n = 1+3k, k ∈ N} is represented by the state 0 in the
stream automaton:

0
0 // 1

1 // 2

0

dd

12 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

5. Linear Specifications

Equations (2.12) and (2.13) in Section 2 are examples of linear equation systems: the
righthand side of each SDE is a linear combination of the variables on the left. We will now
study this type of systems in more detail.

Throughout this section we assume A is a field. The set Aω then becomes a vector
space over A by defining scalar multiplication and vector addition pointwise, as in Table 1.
We denote by V(X) the set of all formal linear combinations over X, i.e.,

V(X) = {a1x1 + . . .+ anxn | ai ∈ A, xi ∈ X, ∀i : 1 ≤ i ≤ n}
or equivalently, V(X) is the set of all functions from X to A with finite support. In fact,
V(X) is itself a vector space over A by element-wise scalar multiplication and sum, and it
is freely generated by X. That means X is a basis for V(X), and hence every linear map
from V(X) to a vector space W is determined by its action on X. More precisely, for every
function f : X → W there is a unique linear map f ♯ : V(X) → W extending f , which is
defined by:

f ♯(a1x1 + . . .+ anxn) = a1f(x1) + . . . + anf(xn).

We note that the linear extension id♯Aω : V(Aω) → Aω of the identity map id : Aω → Aω

gives the evaluation of formal linear combinations in the vector space Aω.

5.1. Linear equation systems. A linear equation system over a set X = {xi | i ∈ I} is a
collection of SDEs, one for each xi ∈ X, of the form

xi(0) = ai, x′i = yi;

where ai ∈ A and yi ∈ V(X) for all i ∈ I. In other words, a linear equation system is a map

e = 〈o, d〉 : X → A× V(X).

Again, we say that e is finite, if X is finite. A solution of e is an assignment h : X → Aω that
preserves the equations, that is, for all xi ∈ X = {x1, . . . , xn}, if d(xi) = a1x1 + . . .+ anxn,
then

h(xi)(0) = o(xi) and h(xi)
′ = a1 · h(x1) + · · · + an · h(xn)

In the remainder of this section, we give two ways of solving finite linear equation
systems and characterise their solutions. The first uses coinduction for automata over
vector spaces — here we will see that any linear equation system has a unique solution,
and solutions to finite linear equation systems are exactly the streams that generate a
finite-dimensional subspace. The second uses stream calculus and yields a matrix solution
method which in turn shows that solutions to finite linear equation systems are exactly the
rational streams.

5.2. Linear stream automata. In this subsection, we first show how to solve linear equa-
tion systems by viewing them as stream automata over vector spaces. A linear equation
system 〈o, d〉 : X → A×V(X) can be seen as a (specification of a) weighted stream automa-
ton, cf. [11, 60, 58]. In this view, the first component o assigns output weights to states,
and the second component d defines an A-weighted transition structure in which state x
goes to state y with weight a ∈ A iff d(x)(y) = a. (Recall that d(x) is a function from X to
A with finite support.)

STREAM DIFFERENTIAL EQUATIONS 13

To illustrate the construction, consider the two-dimensional linear equation system from
(2.13), repeated here:

x1(0) = 1, x′1 = x1
x2(0) = 0, x′2 = x1 + x2

(5.1)

It corresponds to the following weighted stream automaton (where a state is underlined if
the output is 1, otherwise the output is 0):

x11
%%

x2
1oo 1hh

Let us try to construct a stream automaton for the solution of x2 by inductively applying
(5.1) and the definition of + (cf. (2.3)):

x2
0−→ x1 + x2
1−→ x1 + (x1 + x2) = 2 · x1 + x2
2−→ x1 + (x1 + (x1 + x2)) = 3 · x1 + x2
3−→ . . .

We notice two things: First, the stream behaviour of x2 indeed consists of the sequence of
natural numbers nats = (0, 1, 2, 3, 4, 5, . . .). Second, the states of this stream automaton are
not stream variables, but linear combinations of the stream variables x1 and x2.

Remark 5.1. The above example also shows that for streams over the field A = R, if the
coefficients of the linear system are integers, then the solutions will be streams of integers,
since all initial values will be computed using only multiplication and addition of integers.

The above example motivates the following definition.

Definition 5.2. A linear stream automaton is a stream automaton over vector spaces, i.e.,
it is a pair of maps 〈o, d〉 : V → A×V where V is a vector space over A, and o : V → A and
d : V → V are linear maps. Note that the pairing 〈o, d〉 is again linear. A homomorphism of
linear stream automata is a map between the state vector spaces which is both linear and
a homomorphism of stream automata.

Solutions to a linear equation system will now be obtained by coinduction, for linear
stream automata, using the following lemma.

Lemma 5.3. We have:

(1) A linear equation system e : X → A× V(X) corresponds to a linear stream automaton
e♯ : V(X) → A× V(X)

(2) The final stream automaton is also a final linear stream automaton.

Proof. (1): Since A is a vector space over itself, A×V(X) is a (product) vector space, and
we obtain e♯ : V(X) → A× V(X) as the linear extension of e. Note that e♯ = 〈o♯, d♯〉.

(2): The initial value and derivative maps are linear:

(a · σ + b · τ)(0) = a · σ(0) + b · τ(0)
(a · σ + b · τ)′ = a · σ′ + b · τ ′

Hence 〈Aω, ζ〉 is a linear stream automaton. Moreover, for any linear stream automaton
〈o, d〉 : V → A × V , the final map [[−]] of the underlying (set-based) stream automata is

14 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

linear, since for all v,w ∈ V , a, b ∈ A and n ∈ N,

[[a · v + b · w]](n) = o(dn(a · v + b · w))
= a · o(dn(v)) + b · o(dn(w)) (by linearity of o and d)
= a · [[v]](n) + b · [[w]](n)

Hence [[−]] is also the unique homomorphism of linear stream automata into 〈Aω, ζ〉.
Proposition 5.4. Every linear equation system has a unique solution.

Proof. Applying Lemma 5.3 and the coinduction principle for linear stream automata, we
obtain for each linear equation system 〈o, d〉 : X → A×V(X) a unique linear stream homo-
morphism g : V(X) → Aω, as shown in the following picture where ηX : X → V(X) denotes
the inclusion of the basis vectors into V(X):

X

〈o,d〉
��

ηX // V(X)

〈o♯,d♯〉

zz✉✉✉
✉✉
✉✉
✉✉
✉✉

g // Aω

ζ

��
A× V(X)

idA×g // A×Aω

(5.2)

The composition g ◦ ηX = g↾X : X → Aω is a solution of 〈o, d〉 by the linearity of g. To see
this, suppose that d(xi) = a1x1 + . . .+ anxn for xi ∈ X. We then have:

g↾X (xi)
′ = g(d(xi)) = g(a1x1 + . . .+ anxn)

= a1g↾X(x1) + . . .+ ang↾X(xn)

We note that for finite X, the linear homomorphism g : V(X) → Aω can be represented
by a finite dimensional matrix with rational streams as entries, similar to the one in (5.4)
of the next subsection; see [63] or [11] for details.

We can now state the first characterisation of the solutions to finite linear equation
systems.

Proposition 5.5. The following are equivalent for all streams σ ∈ Aω:

(1) σ is the solution of a finite linear equation system.
(2) σ generates a finite-dimensional subautomaton of the final linear stream automaton.

Proof. For the direction 1 ⇒ 2: Let σ be a solution to a finite e : X → A × V(X). Let
〈Zσ, ζσ〉 be the linear subautomaton generated by σ in the final linear automaton, i.e., the
state space Zσ is the subspace generated by the derivatives of σ. Since V(X) is finite-
dimensional, so is its final image g(V(X)), and since Zσ is a subspace of g(V(X)), also Zσ

is finite-dimensional.
The direction 2 ⇒ 1 follows by constructing a linear equation system using a similar

argument as the one given in the proof of Proposition 5.6 below. A detailed proof can be
found in [63, section 5, Thm.5.4].

5.3. Matrix solution method. In this section we will provide an algebraic characteri-
sation of solutions of finite linear equation systems. We will show that solutions of such
systems are rational streams, and give a matrix-based method for computing these solutions.
Recall (from [58]) that a stream σ ∈ Aω is rational if it is of the form

σ =
a0 + (a1 × X) + (a2 × X2) + · · ·+ (an × Xn)

b0 + (b1 × X) + (b2 × X2) + · · · + (bm × Xm)

STREAM DIFFERENTIAL EQUATIONS 15

for n,m ∈ N and ai, bj ∈ A and with b0 6= 0. (The operations of sum, product and inverse
were all defined in Section 3.2.)

First, we will identify the relevant algebraic structure in which we can do matrix ma-
nipulations. As mentioned in Section 3.2, when A is a commutative ring (so, in particular,
when A is a field), the stream calculus operations turn Aω into a commutative ring. For
any ring R, the set Mn(R) of n-by-n matrices over R is again a ring under matrix ad-
dition and matrix multiplication. When R is commutative then Mn(R) is an associative
R-algebra, which means that it also has a scalar multiplication (with elements from R)
which is compatible with the ring structure, that is, for all r ∈ R and M,N ∈ Mn(R),
r · (MN) = (r ·M)N =M(r ·N). This scalar multiplication r ·M is defined by multiplying
each entry of M by r, that is, (r ·M)i,j = r ×Mi,j . We refer to [42] for further results on
matrix rings.

For a linear equation system with n variables, we will consider the associative Aω-
algebra Mn(A

ω), and we will denote both matrix multiplication and scalar multiplication
by ·. The context should make clear which operation is intended. The · notation is used to
distinguish the operations from the multiplication in the underlying ring of stream calculus.
In order to keep notation simple, we describe the matrix solution method for two variables,
but it is straightforward to generalise it to n variables.

A linear equation system with two variables

x′1 = m11x1 +m12x2 x1(0) = n1

x′2 = m21x1 +m22x2 x2(0) = n2
(5.3)

can be written in matrix form as
(

x1
x2

)′
=M ·

(

x1
x2

) (

x1
x2

)

(0) = N

where derivative and initial value are taken element-wise, and whereM and N are matrices
over Aω given by

M =

(

[m11] [m12]

[m21] [m22]

)

N =

(

[n1]

[n2]

)

By applying the fundamental theorem of stream calculus to both stream variables, we find
that

(

x1
x2

)

=

(

x1
x2

)

(0) + X ·
(

x1
x2

)′

= N + X ·M ·
(

x1
x2

)

(Note that X = (0, 1, 0, 0, 0, . . .) is a scalar stream.) This is in Mn(A
ω) equivalent to

(I − (X ·M)) ·
(

x1
x2

)

= N

where I is the identity matrix. The solution to (5.3) can now be obtained as:
(

x1
x2

)

= (I − (X ·M))−1 ·N (5.4)

We should, of course, first convince ourselves that the inverse of the matrix I − (X ·M)
always exists. In general, an element of a matrix ring Mn(R) (over a commutative ring R)
is invertible if its determinant has a multiplicative inverse in R. Hence I − (X ·M) has an

16 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

inverse in M2(A
ω) if its determinant is a stream whose initial value is non-zero. The matrix

I − (X ·M) looks as follows

I − (X ·M) =

(

[1]− (X× [m11]) [0]− (X× [m12])

[0]− (X× [m21]) [1]− (X× [m22])

)

From the definitions of sum and convolution product it follows that the initial value of the
determinant equals the determinant of the matrix of initial values:

det(I − (X ·M))(0) = det

(

1− (0 ·m11) 0− (0 ·m12)

0− (0 ·m21) 1− (0 ·m22)

)

= det

(

1 0
0 1

)

= 1.

Hence the determinant of I − (X ·M) will always have initial value equal to 1, and con-
sequently (I − (X ·M))−1 exists and can be computed using the standard linear algebra
technique by performing elementary row operations on the identity matrix. These row op-
erations consist of multiplying or dividing by a rational stream, and adding rows, hence if
an invertible matrix has rational streams as entries, then so does its inverse. (Alternatively,
this also follows from Cramer’s rule.) It is easy to see that this argument carries over to
higher dimensions. We have proved one direction of the second characterisation result.

Proposition 5.6. The following are equivalent for all streams σ ∈ Aω:

(1) σ is the solution of a finite linear equation system.
(2) σ is rational.

Proof. If σ is a solution to a finite linear equation system, then by the argument above this
proposition, we find that σ is a linear combination of rational streams, hence itself rational.
For the converse direction, if σ ∈ Aω is rational, there exists a d ∈ N such that the d-th
derivative σ(d) is a linear combination of σ(0), . . . , σ(d−1). (The value d is bounded in terms

of the degree of ρ and τ where σ = ρ/τ .) Hence σ(d) =
∑d−1

i=0 ai ·σ(i) for some ai ∈ A, i < d.
It follows that σ is the solution for x0 in the following d-dimensional linear equation system:

x′0 = x1 x0(0) = σ(0)
x′1 = x2 x1(0) = σ(1)
...

...
...

...
x′d−2 = xd−1 xd−2(0) = σ(d− 2)
x′d−1 = a0x0 + · · · + ad−1xd−1 xd−1(0) = σ(d− 1)

See also [63, Thm.5.3, Thm.5.4] for a more general proof using the vector space structure
of Aω.

We illustrate the matrix solution method with an example.

Example 5.7. The Fibonacci example from (2.11)

σ(0) = 0, σ′(0) = 1, σ′′ = σ′ + σ

corresponds to the linear equation system (with x1 = σ, x2 = σ′)
(

x1
x2

)′
=

(

0 1
1 1

)

·
(

x1
x2

) (

x1
x2

)

(0) =

(

0
1

)

STREAM DIFFERENTIAL EQUATIONS 17

whose solution is given by instantiating (5.4):
(

x1
x2

)

=

(

1 −X

−X 1− X

)−1

·
(

0
1

)

=

(

1−X

1−X−X2
X

1−X−X2

X

1−X−X2
1

1−X−X2

)

·
(

0
1

)

=

(

X

1−X−X2

1
1−X−X2

)

Hence the solution for σ (= x1) is the rational stream

σ =
X

1− X− X2
(5.5)

By computing successive initial value and derivatives using the rational expression for σ,
we find again the Fibonacci sequence:

σ = (0, 1, 1, 2, 3, 5, 8, 13, . . .)

Here are some further examples of linear equation systems that define some more and
some less familiar rational streams.

Example 5.8 (Naturals). Take A = R. The solution for σ in the following linear equation
system is the stream of natural numbers σ = nats = (1, 2, 3, 4, . . .):

σ(0) = 1, σ′ = σ + τ
τ(0) = 1, τ ′ = τ

Applying the matrix solution method, we find the rational expression

σ =
1

(1− X)2

Example 5.9 (Powers). Take A = R. For any a ∈ R, the linear equation

σ(0) = 1, σ′ = a · σ
has as its solution σ = (1, a, a2, a3, a4, . . .) with rational expression

σ =
1

1− (a× X)

Example 5.10 (Alternating). The second-order stream differential equation

σ(0) = 0, σ′(0) = 1, σ′′ = −σ
can be written as a linear equation system

σ(0) = 0, σ′ = τ
τ(0) = 1, τ ′ = −σ

The solution for σ is σ = (0, 1, 0,−1, 0, 1, 0,−1, . . .) with rational expression

σ =
X

1 + X2

Note that σ is actually eventually periodic, and could also be defined by a simple equation
system with four variables.

18 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

Example 5.11 (nth powers). For n ∈ N, consider the stream nats〈n〉 = (1, 2n, 3n, 4n, . . .)
of n-th powers of the naturals. Inspecting the derivatives, we find that

(nats〈n〉)′ = ((1 + 1)n, (1 + 2)n, (1 + 3)n, . . .)

=
(
∑n

k=0

(

n
k

)

1k,
∑n

k=0

(

n
k

)

2k,
∑n

k=0

(

n
k

)

3k, . . .
)

=
∑n

k=0

(

n
k

)

nats〈k〉

This shows that nats〈0〉, . . . , nats〈n〉 can be defined by a linear equation system in n + 1
variables. A rational expression for nats〈n〉 can be computed using the fundamental theorem
(Theorem 3.3). We show here the expressions for n ≤ 3:

nats〈0〉 = 1 +X × nats〈0〉 ⇒ nats〈0〉 =
1

1− X
= ones

nats〈1〉 = 1 +X × (nats〈0〉 + nats〈1〉)

= 1 +X × (1
1−X

+ nats〈1〉) ⇒ nats〈1〉 =
1

(1− X)2
= nats

nats〈2〉 = 1 +X × (nats〈0〉 + 2nats〈1〉 + nats〈2〉)

= 1 +X × (1
1−X

+ 2
(1−X)2 + nats〈2〉) ⇒ nats〈2〉 =

1 + X

(1− X)3

nats〈3〉 = 1 +X × (nats〈0〉 + 3nats〈1〉 + 3nats〈2〉 + nats〈3〉)

= 1 +X × (1
1−X

+ 3
(1−X)2

+ 3(1+X)
(1−X)3

+ nats〈3〉) ⇒ nats〈3〉 =
1 + 4X+ X2

(1− X)4

A recurrence relation for these rational expressions is given in section 6.2 of [51]. In section
6.3 of loc.cit., it is also noted that

nats〈n〉 =
An

(1− X)n

where An is the nth Eulerian polynomial1.

Remark 5.12. In much of this section, we could have weakened our assumptions on A. As
mentioned already, the matrix solution method only requires A to be a commutative ring.
For the notion of linear automata, we only need A to be a semiring, see the next section
for a definition. A linear automaton would then be an automaton whose state space is a
semimodule over A, rather than a vector space. Lemma 5.3 and Proposition 5.4 would still
hold, i.e., coinduction for automata over semimodules can be used as a solution method. An
analogue of Proposition 5.5 does not hold for arbitrary semirings, but we would have the
following version of 1 ⇒ 2: If A is a so-called Noetherian semiring (cf. [24, 14]) and σ
is a solution to a finite linear equation system, then the sub-semimodule generated by σ is
finitely generated.

1The nth Eulerian polynomial is An(x) =
∑m

k=0 A(n, k)xk where the A(n,m) are the Eulerian numbers,

see e.g. [26, Sec. 6.2] or the Wikipedia entry on Eulerian Numbers.

STREAM DIFFERENTIAL EQUATIONS 19

6. Context-free Specifications

We recall equation (2.9) (on page 6):

σ(0) = 1, σ′ = σ × σ

which defines the stream of Catalan numbers. It is neither simple nor linear, as the righthand
side of the equation uses the convolution product. In the present section, we will study the
class of context-free SDEs to which this example belongs.

In this section, we assume that A is a commutative semiring. A semiring is an algebraic
structure (A,+, ·, 0, 1) where (A,+, 0) is a commutative monoid, (A, ·, 1) is a monoid, mul-
tiplication distributes over addition, and 0 annihilates. A semiring (A,+, ·, 0, 1) is commu-
tative, if also (A, ·, 1) is a commutative monoid. The full axioms for commutative semirings
are, for a, b, c ∈ A:

(a+ b) + c = a+ (b+ c) 0 + a = a a+ b = b+ a
(a · b) · c = a · (b · c) 1 · a = a a · b = b · a
a · (b+ c) = a · b+ a · c (a+ b) · c = a · c+ b · c 0 · a = a

(6.1)

Examples of commutative semirings include the natural numbers N with the usual
operations, and more generally any commutative ring such as the integers Z. An important
finite commutative semiring is the Boolean semiring (2,∨,∧,⊥,⊤). More exotic examples
include the tropical (min-plus) semiring (R∪{∞},min,+,∞, 0) and the max-plus semiring
(R∪ {−∞},max,+,−∞, 0). The semiring of languages over an alphabet K (with language
concatenation as product) (P(K∗),∪, ·, ∅, {ǫ}) is an example of a non-commutative semiring,
i.e., one in which the product is not commutative.

For any semiring A, we can define stream constants [a] for a ∈ A, elementwise addition
+ and convolution product × on Aω using the SDEs in Section 3.2. The algebraic structure
(Aω,+,×, [0], [1]) is again a semiring (cf. [58, Thm.4.1]) and the inclusion a 7→ [a] is a
homomorphism of semirings. We will therefore simply write a to denote the stream [a].
Note that the convolution product is commutative if and only if the underlying semiring
multiplication · is commutative. For notational convenience, we will write τσ instead of
τ × σ for all τ, σ ∈ Aω.

6.1. Context-free equation systems. Let M(X∗) = {a0w0 + · · · + anwn | ai ∈ A,wi ∈
X∗} denote the set of formal linear combinations over the set X∗ of finite words over X, or
equivalently, the set of polynomials over (non-commuting) variables in X with coefficients
in A. M(X∗) is again a semiring with the usual addition and multiplication of polynomials.
If we take A to be the Boolean semiring then M(X∗) is the semiring of languages over
alphabet X. We also note that M(X∗) contains A as a subsemiring via the inclusion
a 7→ aǫ, where ǫ denotes the empty word. Since we assume A is commutative, M(X∗) is
a semiring generalisation of the notion of a unital associative algebra over a commutative
ring.

A context-free equation system over set X = {xi | i ∈ I} is a collection of SDEs, one
for each xi ∈ X, of the form

xi(0) = ai, x′i = yi;

where ai ∈ A and yi ∈ M(X∗) for all i ∈ I. In other words, a context-free equation system
is a map e = 〈o, d〉 : X → A×M(X∗).

20 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

As in the linear case, a solution of e is an assignment h : X → Aω that preserves the
equations, that is, for all x ∈ X, if d(x) = a1w1 + . . .+ anwn, then

h(x)(0) = o(x) and h(x)′ = a1h
∗(w1) + · · ·+ anh

∗(wn)

where h∗(x1 · · · xn) = h(x1)×· · ·×h(xn). We call a stream σ context-free if σ is the solution
of some finite context-free equation system.

The name context-free comes from the fact that a finite context-free equation system e =
〈o, d〉 : X → A ×M(X∗) corresponds to an A-weighted context-free grammar in Greibach
normal form with non-terminals in X for a one-letter alphabet L = {λ} as follows:

equation system grammar rules
o(x) = a iff x→a ǫ
d(x)(w) = a iff x→a λw, w ∈ X∗

where x→a λw denotes that x can produce λw with weight a. By taking A to be the Boolean
semiring 2 and allowing an arbitrary alphabet L, a context-free grammar in Greibach normal
form is a system of type X → 2 ×M(X∗)L.

6.2. Solutions and characterisations.

Proposition 6.1. Every context-free equation system has a unique solution.

Proof. Similar to the linear case, we can construct from e : X → A × M(X∗) a stream

automaton e♭ : M(X∗) → A ×M(X∗), and apply coinduction to obtain a solution X
ηX−→

M(X)
g−→ Aω as shown in this diagram:

X

e

��

ηX // M(X∗)

e♭

xxrrr
rr
rr
rr
rr
r

g // Aω

ζ

��
A×M(X∗)

idA×g // A×Aω

(6.2)

where this time ηX : X → M(X∗) denotes the inclusion of variables as polynomials. We
refer to [13, 69] for details.

At present, there are no analogues of Propositions 5.5 and 5.6 for context-free streams,
but it follows from [70, Theorem 23] that context-free streams over A are exactly the
constructively A-algebraic power series over a one-letter alphabet, since streams over A can
be viewed as formal power series over a one-letter alphabet with coefficients in A.

In Section 5.3, we saw that solutions to linear equation systems are definable in stream
calculus as the rational streams. For context-free streams, no such closed form is known, in
general.

We end this section with some more examples of context-free streams.

Example 6.2 (Catalan numbers). Let A = N be the semiring of natural numbers. The
context-free SDE from equation (2.9)

γ(0) = 1, γ′ = γ × γ

defines the sequence γ = (1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .) of Catalan numbers, cf. [13]. In
[60, p. 117-118], it is shown that the Catalan numbers satisfy

γ =
2

1 +
√
1− 4X

STREAM DIFFERENTIAL EQUATIONS 21

where the square root of a stream σ is defined by the following SDE (cf. [60, section 7]):
√
σ(0) =

√

σ(0) (
√
σ)′ = σ′√

σ(0)+
√
σ

(6.3)

Example 6.3 (Schröder numbers). The solution for the stream differential equation

σ(0) = 1, σ′ = σ + (σ × σ)

is the sequence σ = (1, 2, 6, 22, 90, 394, 1806, 8558, 41586, . . .) of (large) Schröder numbers
(sequence A006318 in [1]), see also [69]. For n ∈ N, σ(n) is the number of paths in the n×n
grid from (0, 0) to (n, n) that use only single steps going right, up or diagonally right-up,
and which do not go above the diagonal. In contrast with the Catalan numbers, we do not
know of any stream calculus expression that defines the stream of Schröder numbers.

Example 6.4 (Thue-Morse). This example is a variation on a similar example in [13]. Let
A = F2, the finite field {0, 1} where 1+1 = 0. The following context-free system of equations

τ(0) = 0, τ ′ = (µ× µ) + (X× σ × σ),
σ(0) = 1, σ′ = (σ × σ) + (X × ν × ν),
µ(0) = 1, µ′ = (τ × τ) + (X× ν × ν),
ν(0) = 0, ν ′ = (ν × ν) + (X × σ × σ).

defines the so-called Thue-Morse sequence

τ = (0, 1, 1, 0, 1, 0, 0, 1, . . .)

which, in the world of automatic sequences [4], is typically defined by means of a finite
(Moore) automaton. We return to automatic sequences in Section 7. Note that we could
include the definition of X in the system above by adding the equations:

X(0) = 0, X′ = [1]
[1](0) = 1, [1]′ = [0]
0 = 0, [0]′ = [0]

Example 6.5. The following example is taken from [59], and is not actually context-free
since it uses the shuffle product ⊗ – rather than the convolution product – which is defined
by the following SDE:

(σ ⊗ τ)(0) = σ(0) · τ(0), (σ ⊗ τ)′ = (σ′ ⊗ τ) + (σ ⊗ τ ′) (6.4)

But observing that (Aω,+,⊗, [0], [1]) also forms a semiring, it can be viewed as context-free
with respect to this structure. Let A = N, and consider the SDE

σ′ = 1 + (σ ⊗ σ), σ(0) = 1

Its solution is the stream

σ = (1, 2, 4, 16, 80, 512, 3904, 34816, 354560, . . .)

which is the sequence A000831 in [1]. The stream σ can be described in stream calculus by
a so-called continued fraction (cf. [57, section 17]), as follows:

X

1− 1 · 2 · X2

1− 2 · 3 · X2

1− 3 · 4 · X2

. . .

Again, we do not know of any closed stream calculus expression that defines this stream.

22 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

7. Non-standard Specifications

All stream definitions that we discussed so far make use of the same concrete, “canonical”
representation of streams: a stream of elements of A consists of a first element σ(0) ∈ A (the
“head”) followed by another stream σ′ ∈ Aω (the “tail”). There are, however, many other
possible stream representations and each of these different, “non-standard” representations
yield new ways of defining streams and stream functions. We are now going to discuss
a few of these alternative stream representations and the resulting non-standard stream
specifications.

7.1. Stream representations. Let us start by explaining what we mean by a stream
representation: A representation for streams over some set A is a collection of functions
that can be combined in order to turn the set Aω into a final stream automaton (possibly
of a “non-standard” type; for example, we are going to encounter stream representations
that require automata in which states have two instead of one successor). This intuition
has been made more precise in [40] where the corresponding, slightly more general notion is
called a complete set of cooperations. Here we confine ourselves to listing a few examples.

Example 7.1.

(1) We can supply the set Aω of streams over a field A with the following structure. For
σ ∈ Aω we define

∆σ = (σ(1) − σ(0), σ(2) − σ(1), σ(3) − σ(2), . . .)

(cf. [64, 52, 60]). The ∆-operator plays a central role in the area of Finite Difference
Calculus [15] and is often referred to as the forward difference operator. It can be seen
as a discrete derivative operator for integer functions and provides a tool for finding
recurrence relations in integer sequences (cf. e.g. [64, Section 2.5]). It is not difficult to
see that Aω together with the map

〈()(0), ∆〉 : Aω → A×Aω σ 7→ 〈σ(0), ∆σ〉
is a final stream automaton.

(2) Another structure on Aω is obtained by defining

d

dX
σ = (σ(1), 2 · σ(2), 3 · σ(3), . . .)

for σ ∈ Aω. Again (Aω, 〈()(0), d
dX 〉) is a final stream automaton. The operator d

dX
computes the derivative of a formal power series and has been used in [52] in order to
establish a connection between calculus and the theory of coalgebras.

(3) In a similar fashion lots of examples could be designed: Given a set A together with
some operation o : A×A→ A, we define

∆oσ = (o(σ(0), σ(1)), o(σ(1), σ(2)), o(σ(2), σ(3)), . . .)

and we can see that Aω together with the map 〈()(0), ∆o〉 : Aω → A × Aω is a final
stream automaton provided that for any a ∈ A the map λb.o(a, b) has an inverse.

The fact that tail, ∆ and d
dX all give rise to a final stream automaton structure implies that

there are unique stream isomorphisms between these three structures. These isomorphims
can be viewed as transforms which leads to a fascinating coinductive approach to analytic

STREAM DIFFERENTIAL EQUATIONS 23

calculus as first observed in [52]. More recently, the Newton transform between the ∆- and
tail-structures has been studied in [9].

But non-standard stream representations are not limited to standard stream automata
as the following two interesting examples show. In order to formulate them we need the
notion of a 2-stream automaton which generates an infinite binary tree representing a stream
rather than a stream of symbols directly.

Definition 7.2. A 2-stream automaton is a set Q (of states) together with a function
〈o, d0, d1〉 : Q→ A×Q×Q. A morphism between two 2-stream automata 〈o, d0, d1〉 : Q→
A×Q×Q and 〈p, e0, e1〉 : P → A×P ×P is a function f : Q→ P such that p(f(q)) = o(q)
and ei(f(q)) = f(di(q)) for i = 0, 1 and for all q ∈ Q.

The above definition has an obvious generalisation to k-stream automata. Note that in
this sense a stream automaton is just a 1-stream automaton.

In Example 7.3 below, we describe two ways of representing the set of streams as a final
2-stream automaton. These representations use the stream operations even : Aω → Aω and
odd : Aω → Aω:

even(σ) := (σ(0), σ(2), σ(4), . . .) (7.1)

odd(σ) := (σ(1), σ(3), σ(5), . . .) (7.2)

Example 7.3. Here are two examples of non-standard stream representations, based on
2-stream automata.

(1) The 2-stream automaton with state set Aω and structure map

σ 7→ 〈σ(0), even(σ′), odd(σ′)〉 : Aω → A×Aω ×Aω

is final among all 2-stream automata (cf. [21, 28]).
(2) The set Aω together with the structure map

σ 7→ 〈σ(0), even(σ), odd(σ)〉 : Aω → A×Aω ×Aω

is not final among all 2-stream automata but among all zero-consistent 2-stream au-
tomata (cf. [41]), i.e., among all 2-stream automata (Q, 〈o, d0, d1〉) such that for all
q ∈ Q we have o(d0(q)) = o(q). In Section 7.3, we will see that this slightly weaker
finality property is sufficient for obtaining a syntactic stream definition format.

7.2. Simple non-standard specifications. Next we discuss stream specifications that
use the above non-standard stream representations. The first thing to note is that for the
representations in Example 7.1 we can easily define non-standard variations of the simple,
linear and context-free specifications discussed earlier.

This can be done as follows: given any of the non-standard tail operations ∂ ∈ {∆, d
dX ,∆o}

and a simple, linear or context-free equation system over a set X = {xi | i ∈ I} of variables
with

xi(0) = ai and x′i = yi for i ∈ I,

we call the system of equations

xi(0) = ai and ∂(xi) = yi for i ∈ I,

obtained by replacing all derivatives x′i with the non-standard derivatives ∂(xi), a simple,
linear or context-free ∂-specification, respectively. As before, solutions for such systems
of equations are functions h : X → Aω that preserve the equations. As in the standard

24 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

case, existence of unique solutions is guaranteed by the fact that each non-standard stream
representation induces a final coalgebra on the set of streams.

Example 7.4. Let A = R be the field of real numbers. The equations

x(0) = 1, ∆(x) = x

are an example of a simple ∆-specification of the stream

(1, 2, 4, 8, . . .).

Similarly, the equations

x(0) = 1,
d

dX
(x) = x

are a simple d
dX -specification of the stream

(

1

0!
,
1

1!
,
1

2!
,
1

3!
,
1

4!
, . . .

)

.

The following proposition is folklore and provides a large class of examples of streams
that can be defined using simple ∆-specifications.

Proposition 7.5. Let d ∈ N. For all streams σ ∈ Rω we have ∆d(σ) = (0, 0, 0, 0, . . .) iff
there exists a polynomial ϕ(x) over R of degree < d such that σ(n) = ϕ(n) for all n ≥ 0.

Proof. In order to simplify the notation in the proof, we write λn.(a0 + a1n + · · · + adn
d)

to denote the stream σ defined, for all n ≥ 0, by

σ(n) = a0 + a1n+ · · ·+ adn
d

Clearly, we have λn.a = (a, a, . . .), i.e., if the expression in the scope of λn does not contain
a reference to n, the stream is constant. Furthermore we use the easily verifiable fact that
∆(σ + τ) = ∆(σ) + ∆(τ) for all streams σ, τ ∈ Rω.

Suppose first that there exists some polynomial

ϕ(x) = a0 + a1x+ · · ·+ adx
d, a0, . . . , ad ∈ R, ad 6= 0

of degree d with σ(n) = ϕ(n) for all n ∈ N, i.e., σ = λn.ϕ(n). The following claim suffices
to obtain ∆d+1(σ) = 0 as required:
Claim ∆d(σ) = λn.add!
The proof of the claim is by induction on d.

Case: d = 0. Then σ = λn.a0 and ∆0(σ) = σ = λn.a00! as required.
Case: d = k + 1. Then

∆k+1(σ) = ∆k+1(λn.(a0 + a1n+ · · · + ak+1n
k+1))

= ∆k+1(λn.(a0 + a1n+ · · · + akn
k)) + ∆k+1(λn.(ak+1n

k+1))
I.H.

= 0 +∆k(λn.(ak+1(n+ 1)k+1 − ak+1n
k+1))

= ∆k(λn.(ak+1n
k+1 + ak+1

(

k + 1

k

)

nk + r(n)− ak+1n
k+1))

where r(n) is a poly of degree < k

= ∆k(λn.(ak+1(k + 1)nk + r(n)))

where r(n) is a poly of degree < k
I.H.

= λn.ak+1(k + 1)k! + 0 = λn.ak+1(k + 1)!

STREAM DIFFERENTIAL EQUATIONS 25

Conversely, consider a stream σ such that ∆d(σ) = (0, 0, 0, . . .) and suppose that d ∈ N

is the minimal such d. In case d = 0 there is nothing to prove. If d > 0 we have that
∆d−1(σ) = (r, r, . . .) for some r 6= 0. Define a := r

(d−1)! . Then we put τ := σ − λn.(and−1)

such that σ = τ + λn.(and−1). By the claim that we proved above this implies

∆d−1(σ) = ∆d−1(τ + λn.(and−1)) = ∆d−1(τ) + [a(d − 1)!] = ∆d−1(τ) + [r].

This clearly implies ∆d−1(τ) = (0, 0, 0, 0, . . .) and hence we can apply the I.H. to τ in order
to obtain a polynomial ϕ(x) = a0+ a1x+ · · ·+ ad−2x

d−2 such that τ = λn.(a0 + a1n+ · · ·+
ad−2n

d−2). This implies σ = λn.(a0 + a1n+ · · · + ad−2n
d−2 + and−1), i.e., for all n ∈ N we

have σ(n) = ψ(n) for some polynomial ψ(x) of degree < d.

We are now going to compare finite simple/linear/context-free ∆- and d
dX -specifications

to the corresponding tail-specifications of real-valued streams σ ∈ Rω. It is not too difficult
to see that the set of streams that have a finite simple ∆-specification and the set of streams
that have a finite simple tail-specification are incomparable. This is demonstrated by the
following examples:

Example 7.6.

(1) Recall that a stream σ has finite simple tail-specification iff σ is ultimately periodic.
Therefore the stream

σ = (0, 1, 0, 1, 0, 1, . . .) ∈ Zω

has a finite simple tail-specification. One can prove by induction that σ has infinitely
many distinct ∆-derivatives which implies that σ does not have a finite simple ∆-
specification. However, when A = Z/nZ is a finite ring, σ is definable by a finite
simple ∆-specification2.

(2) It follows from Proposition 7.5 that the stream

σ = (0, 1, 22, 32, 42, . . .)

has a finite simple ∆-specification, but obviously no finite simple tail-specification.

Finite linear ∆-specifications define the same class of streams as their standard linear coun-
terparts. This follows from the fact that

∆(σ) = σ′ − σ and σ′ = ∆(σ) + σ.

Therefore any linear specification can be replaced by the equivalent ∆-specification:

xi(0) = ai
x′i = t

}

⇒
{

xi(0) = ai
∆(xi) = t− xi

Vice versa, any linear ∆-specification can be easily transformed into an equivalent
standard one. Analogously, context-free ∆-specifications and standard context-free specifi-
cations define precisely the same class of streams. We summarise our observations in the
following proposition.

Proposition 7.7. The set of streams σ ∈ Rω definable with finite simple tail-specifications
and the set of streams definable with finite simple ∆-specifications are incomparable. Fur-
thermore we have the following equivalences:

• Any stream σ ∈ Rω is definable with a finite linear tail-specification iff σ is definable with
a finite linear ∆-specification.

2This observation is thanks to Michael Keane and Henning Basold.

26 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

• Any stream σ ∈ Rω is definable with a finite context-free tail-specification iff σ is definable
with a finite context-free ∆-specification.

When comparing d
dX -specifications with tail-specifications, the following identities for arbi-

trary streams σ ∈ Rω are useful:

d

dX
(σ) = σ′ ⊙ nats (7.3)

σ′ =
d

dX
(σ)⊙ nats−1 (7.4)

where

nats = (1, 2, 3, 4, . . .)

nats−1 = (1,
1

2
,
1

3
,
1

4
, . . .)

and where ⊙ denotes the so-called Hadamard-product (element-wise multiplication) given
by

σ ⊙ τ = (σ(0)τ(0), σ(1)τ(1), σ(2)τ(2), . . .).

This means that any simple tail-specification can be replaced by a simple d
dX -specification

in which we are also allowed to employ ⊙ and nats:

xi(0) = ai
x′i = xj

}

⇒
{

xi(0) = ai
d
dX (xi) = xj ⊙ nats

Similarly any simple d
dX -specification can be replaced by a simple tail-specification in which

we are allowed to use ⊙ and nats−1:

xi(0) = ai
d
dX (xi) = xj

}

⇒
{

xi(0) = ai
x′i = xj ⊙ nats−1

We use the description simple tail-nats−1-specification for a simple tail-specification that
may contain ⊙nats−1 on the right hand side of the equation for the derivative a. Similarly,
we define simple d

dX -nats-specifications. The above identities can be used to show that

simple tail-nats−1-specifications and simple d
dX -nats-specifications are equally expressive.

Note that without the extension by⊙, nats and nats−1 the simple tail- and d
dX -specifications

are incomparable, as the following example shows:

Example 7.8.

(1) The stream σ = (1, 1, 1, 1, . . .) has a simple tail-specification but no simple d
dX -specifica-

tion. In order to see the second statement, we use (7.3) and (7.4) to compute:

d
dX (σ) = nats

d
dX (nats) = nats+ nats⊙ nats

and from here onwards it is easy to see that all the derivatives (d
dX)n(σ) for n ∈ N will

be distinct and thus that σ has no finite simple d
dX -specification.

(2) The stream σ = (1, 1, 1
2! ,

1
3! , . . .) has a finite simple d

dX -specification (cf. Ex. 7.4) but
obviously no finite simple tail-specification.

STREAM DIFFERENTIAL EQUATIONS 27

7.3. Stream specifications for automatic sequences. We conclude this section by dis-
cussing stream specifications that make use of the stream representation from Example 7.3.2.
We refer to Remark 7.14 below for a discussion on how these results could be obtained for
the representation from Example 7.3.1.

Definition 7.9. A simple even-odd-stream specification over a set X = {xi | i ∈ I} of
variables contains for every xi ∈ X three equations:

xi(0) = a, even(xi) = yi1, odd(xi) = yi2

where a ∈ A and yi1, y
i
2 ∈ X and where the equations entail that

xi(0) = (even(xi))(0). (7.5)

The notion of entailment can be formalised using conditional equational logic as demon-
strated in [40]. Solutions are again functions h : X → Aω preserving the equations.

Simple even-odd-stream specifications are called zip-specifications in [21]. Note that an
even-odd-stream specification is not a stream differential equation as the stream derivative
is nowhere used. Nevertheless, as shown in [40, 21], an even-odd-stream specification is
a syntactic representation of a type of stream automaton, namely, of a zero-consistent 2-
stream automaton (cf. Example 7.3.2).

Lemma 7.10. There is a 1-1 correspondence between simple even-odd-stream specifications
over a set X and zero-consistent 2-stream automata with state space X. Consequently, every
simple even-odd-stream specifications has a unique solution.

Proof. An even-odd-stream specification over a set X defines a 2-stream automaton with
set of states X in the obvious way:

γ := 〈()(0), even, odd〉 : X → A×X ×X

As the equations of an even-odd-stream specification have to entail (7.5) for all x ∈ X,
we have that (X, γ) is zero-consistent. Conversely, the output and transitions of a zero-
consistent 2-stream automaton can be written in the form of a simple even-odd-stream
specification. Solutions are now easily seen to correspond to (the obvious notion of) homo-
morphism for (zero-consistent) 2-stream automata. By finality of (Aω, 〈()(0), even, odd〉),
(cf. Example 7.3.2), we obtain for every zero-consistent 2-automaton with state space X,
a unique homomorphism h : X → Aω which is the unique solution to the corresponding
even-odd-stream specification.

Our interest in even-odd-stream specifications is rooted in their close relationship to
k-automatic sequences [4]. For simplicity, we only treat the case where k = 2, but all
definitions and results can be straightforwardly generalised for any natural number k.

Let us first state the definition of the reverse binary encoding of natural numbers and
of automatic sequences.

Definition 7.11. For n ∈ N we define the bbin-encoding bbin(n) as the standard binary
encoding read backwards, i.e., with the least significant bit first. For example: bbin(0) = ǫ,
bbin(1) = 1, bbin(2) = 01, bbin(5) = 101, bbin(6) = 011, etc.

The following is one of several equivalent definitions of 2-automatic sequences.

28 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

Definition 7.12. A stream σ ∈ Aω is called 2-automatic if it is generated by a finite
zero-consistent 2-automaton, i.e., if there exists a finite zero-consistent 2-automaton Qσ =
(Q, 〈o, d0, d1〉 : Q→ A×Q×Q) and a state qσ ∈ Q such that for all n ∈ N we have

σ(n) = o
(

dbbin(n)(qσ)
)

,

where for w ∈ 2∗ the function dw : Q → Q is inductively defined by dǫ(q) = q and
dwi(q) = di(dw(q)). In other words, the n-th element of σ is obtained as output from Qσ

by feeding the bbin-encoding of n to the 2-automaton Qσ starting from position qσ.

The following characterisation result from [41] is now immediate.

Theorem 7.13. Let σ ∈ Aω be a stream over some alphabet A. The following are equivalent

(1) σ is 2-automatic.
(2) σ is the solution to a finite simple even-odd-stream specification.
(3) The sub-automaton of (Aω, 〈()(0), even, odd〉) generated by σ ∈ Aω is finite.

The states of the sub-automaton mentioned in item 3 in the above theorem are some-
times referred to as the 2-kernel of σ. Hence another equivalent defintion of 2-automaticity
is to require that the 2-kernel is finite, cf. [4].

Remark 7.14. The stream representation from Example 7.3.1 gives rise to an automa-
ton which is final among all 2-stream automata, and it corresponds to an even-odd-of-tail
stream specification format in which each equation specifies σ(0), even(σ′) and odd(σ′). Such
specifications are equivalent to systems of stream differential equations of the form:

xi(0) = a, σ′ = zip(xj , xk) (7.6)

where the stream operation zip : Aω ×Aω → Aω is defined by:

zip(x, y)(0) = x(0), zip(x, y)′ = zip(y, x′).

It is easy to see that zip : Aω × Aω → Aω and the pairing 〈even, odd〉 : Aω → Aω × Aω are
each others inverses. This is what yields the equivalence of the even-odd-of-tail format and
(7.6). One can show that every simple even-odd-stream specification can be transformed into
one in the format given in (7.6), and one obtains again a characterisation of 2-automatic
streams, but with a different encoding of the natural numbers. For more details, we refer
to [28], where also k-regular sequences are characterised in terms of solutions to a linear
generalisation of the format in (7.6).

Example 7.15. As one example of a even-odd-specification consider the following simple
specification of the Thue-Morse sequence from Example 6.4:

TM(0) = 0 N(0) = 1
even(TM) = TM even(N) = N
odd(TM) = N odd(N) = TM

Clearly the given equations entail that (even(TM))(0) = TM(0) and (even(N))(0) = N(0)
as required by the definition of an even-odd-specification. The unique solution for this
specification maps TM to the Thue-Morse sequence. Much more on this way of looking at
automatic sequences can be found in [21, 41].

STREAM DIFFERENTIAL EQUATIONS 29

8. The Syntactic Method

The examples of the previous sections illustrate the general approach to defining streams
and stream operations by systems of SDEs. In this section, we discuss a general method
for showing that many such systems of SDEs have a unique solution. Because the method
associates with each such system of SDEs a set of terms, we call it syntactic. As we shall
see, the method will work for all systems of SDEs that satisfy a rather general condition on
their (syntactic) shape. Furthermore we will show that the various specific families of SDEs
that we discussed in Sections 4, 5 and 6 can be seen as instances of the syntactic method.
An earlier version of the material in this section is found in [39].

The basic idea of the syntactic method is as follows. Given a signature Σ with operation
symbols f , let TΣ(A

ω) denote the set of all Σ-terms over Aω. Any system of SDEs that
for each k-ary symbol f in Σ and any streams σ1, . . . , σk contains an SDE that defines
f(σ1, . . . , σk), yields an inductive definition of a stream automaton 〈o, d〉 : TΣ(A

ω) → A ×
TΣ(A

ω) which has terms as states. The stream solutions are obtained via coinduction:

TΣ(A
ω)

[[−]]
//

〈o,d〉
��

Aω

ζ

��
A× TΣ(A

ω) // A×Aω

The behaviour map [[−]] thus yields for each term t ∈ TΣ(A
ω) a stream [[t]] ∈ Aω, in other

words, it defines an algebra (of signature Σ) on the set of streams. In particular, the stream
defined by f(σ1, . . . , σk) is obtained as [[f(σ1, . . . , σk)]].

Example 8.1. In order to define the sequence of natural numbers as in (2.13), we take
A = N and Σ = {ones, nats,+} where ones and nats are 0-ary operations (constants), and
+ is binary. The associated (infinite) system of SDEs consists of all defining SDEs put
together:

ones(0) = 1, ones′ = ones,
nats(0) = 0, nats′ = nats+ ones,
(σ + τ)(0) = σ(0) + τ(0), (σ + τ)′ = σ′ + τ ′, for all σ, τ ∈ Aω.

The shapes of the SDEs seen so far are all instances of the general format called stream
GSOS, cf. [38]. Informally stated, a system of SDEs is in the stream GSOS format if for all
k-ary operations f in Σ, the SDE defining f has the shape:

f(σ1, . . . , σk)(0) = a, f(σ1, . . . , σk)
′ = t

where a ∈ A depends only on σ1(0), . . . , σk(0), and t is a Σ-term over σ1, . . . , σk, σ
′
1, . . . , σ

′
k

that depends only on σ1(0), . . . , σk(0).
To see how things can go wrong when straying from the GSOS format, consider the

following SDE (for the signature Σ containing a single constant c):

c(0) = 1, c′ = c′ (8.1)

This SDE does not have a unique solution, since any stream starting with a 1 is a solution,
and indeed (8.1) is not in the GSOS format. The reason is that the derivative of c should
be defined as a term t ∈ TΣ(∅), and c′ /∈ TΣ(∅) = {c} (since the derivative operation is
not part of the signature). Moreover, note that it is not possible to extend the signature

30 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

with the derivative operation. This follows from the fact that all stream operations defined
in the GSOS format are causal (as we will see in Proposition 8.11), a property which the
derivative operation lacks. We return to causal operations in Section 8.3.

In the remainder of this section we present and prove the correctness of the syntactic
method for SDEs in the stream GSOS format. This result follows from more general insights
in the theory of bialgebras and abstract GSOS, cf. [7, 38, 65], and we give a brief summary
of this more abstract, categorical presentation in Section 9. In the current section, we wish
to present a self-contained, elementary proof of this fact.

8.1. Terms and algebras. A signature Σ is a collection of operation symbols f , each of
which has an arity k. Nullary operations (with arity 0) are called constants, and unary
operations are called functions. We write Σk for the set of k-ary operations in Σ. The set of
Σ-terms over a set X (of generators) is denoted by TΣ(X), and defined inductively as the
least set T that contains X and is closed under the following formation rule: if t1, . . . , tk
are in T and f is in Σk, k ∈ N, then f(t1, . . . , tk) is in T .

A Σ-algebra 〈X,α〉 consists of a carrier set X and a collection of maps α = {fα : Xk →
X | f ∈ Σk, k ∈ N} containing for each k-ary operation f ∈ Σ, a map fα : X

k → X
interpreting f . A homomorphism of Σ-algebras from 〈X,α〉 to 〈Y, β〉 is a function h : X → Y
that respects the algebra structure, i.e., for all f ∈ Σk, k ∈ N, and all x1, . . . , xk ∈ X:
h(fα(x1, . . . , xk)) = fβ(h(x1), . . . , h(xk)).

For any X, the set TΣ(X) of Σ-terms over X is a Σ-algebra 〈TΣ(X), γΣ〉 where γΣ is
given by construction of terms. In fact, it is the so-called free Σ-algebra over X which means
that if 〈Y, α〉 is a Σ-algebra and h : X → Y is a function mapping generators to elements in
Y , then there is a unique homomorphism h∗ : 〈TΣ(X), γΣ〉 → 〈Y, α〉 extending h which is
defined inductively by:

h∗(x) = h(x) for all x ∈ X,
h∗(f(t1, . . . , tk)) = fα(h

∗(t1), . . . , h∗(tk)) for all f ∈ Σk, k ∈ N.

Note that every homomorphism g : 〈TΣ(X), γΣ〉 → 〈Y, α〉 is determined by its action on
the generators X. In other words, there is a 1-1 correspondence between homomorphisms
〈TΣ(X), γΣ〉 → 〈Y, α〉 and maps X → Y . In particular, a Σ-algebra 〈X,α〉 corresponds
uniquely to a homomorphism α : 〈TΣ(X), γΣ〉 → 〈X,α〉 (by taking α to be the homomorphic
extension id∗X). We call the homomorphism α : 〈TΣ(X), γΣ〉 → 〈X,α〉 the interpretation of
Σ-terms induced by α.

Terms come equipped with the standard notion of substitution. A substitution is a
homomorphism s : TΣ(X) → TΣ(Y). For a term t ∈ TΣ(X) over variables x1, . . . , xk ∈ X
and a substitution s for which s(xi) = si for i = 1, . . . , k, we write t[si/xi]i≤k for the result
of applying the substitution s to t.

8.2. Stream GSOS definitions. In the rest of this section, let Σ be an arbitrary, but
fixed signature.

Definition 8.2 (Stream GSOS definition). A stream GSOS definition for f ∈ Σk, k ∈ N,
is a pair 〈of , df 〉 (defining “initial value” of and “derivative” df of f) where

of : Ak → A

df : Ak → TΣ({x1, . . . , xk, y1, . . . , yk})

STREAM DIFFERENTIAL EQUATIONS 31

If df (a1, . . . , ak) does not contain any of the xi variables, then we say that 〈of , df 〉 is a

stream SOS definition of f .
A stream GSOS (respectively, SOS) definition for Σ is a set D of stream GSOS (respec-

tively, SOS) definitions 〈of , df 〉, one for each f ∈ Σ.

Note that in the above definition, each pair 〈of , df 〉 corresponds to a stream differential
equation:

f(σ1, . . . , σk)(0) = of (σ(0), . . . , σk(0))

f(σ1, . . . , σk)
′ = df (σ(0), . . . , σk(0))[σi/xi, σ

′
i/yi]i≤k

(8.2)

Example 8.3 (GSOS definition of arithmetic operations). Let A = R. The SDEs defining
addition and convolution product on streams of real numbers in (2.3) and (2.7) are equivalent
to the following stream GSOS definition. Take as signature Σar = {+,×} ∪ {[a] | a ∈ R},
where + and × are binary operation symbols and [a] is a constant symbol, for all a ∈
R. (We use the underline to indicate the difference between an operation symbol and its
interpretation.) Let 〈o[a], d[a]〉, 〈o+, d+〉, 〈o×, d×〉 be defined as follows:

o[a] = a d[a] = [0] for all a ∈ R,

o+(a, b) = a+ b, d+(a, b) = y1 + y2,

o×(a, b) = a · b, d×(a, b) = (y1 × x2) + ([a] × y2)

where + and · on the right-hand sides of o-definitions denote addition and multiplication of
real numbers. Note that, in fact, 〈o[a], d[a]〉 and 〈o+, d+〉 are stream SOS definitions whereas

〈o×, d×〉 is a stream GSOS definition, since it uses x2 in d×(a, b).

A solution of a stream GSOS definition D for Σ is a Σ-algebra 〈Aω, α〉 on the set of
streams which respects D, that is, for all f ∈ Σ, k ∈ N,

fα(σ1, . . . , σk)(0) = of (σ1(0), . . . , σk(0))

fα(σ1, . . . , σk)
′ = α(df (σ1(0), . . . , σk(0))[σi/xi, σ

′
i/yi]i≤k)

(8.3)

This definition, in fact, says that α is a solution if the induced interpretation α is a homo-
morphism not only of algebras, but also of stream automata. We will make this precise
below.

We will now prove that every stream GSOS definition D has a unique solution. Using
the correspondence between Σ-algebras on Aω and interpretations TΣ(A

ω) → Aω, we obtain
a candidate solution by coinduction by observing that a stream GSOS definition D yields
a stream automaton structure on TΣ(A

ω).

Definition 8.4 (Syntactic stream automaton). Let D be a stream GSOS definition for
a signature Σ. The syntactic stream automaton for D is the map 〈oD, dD〉 : TΣ(A

ω) →
A× TΣ(A

ω) defined inductively as follows: For all σ ∈ Aω,

oD(σ) = σ(0), dD(σ) = σ′

and for all k ∈ N, f ∈ Σk, and t1, . . . , tk ∈ TΣ(A
ω),

oD(f(t1, . . . , tk)) = of (oD(t1), . . . , oD(tk))

dD(f(t1, . . . , tk)) = df (oD(t1), . . . , oD(tk))[ti/xi, dD(ti)/yi]i≤k

32 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

The final homomorphism of stream automata from 〈TΣ(A
ω), 〈oD, dD〉〉 is denoted by [[−]]D,

i.e.,

TΣ(A
ω)

[[−]]D //

〈oD ,dD〉
��

Aω

ζ

��
A× TΣ(A

ω)
idA×[[−]]D // A×Aω

(8.4)

and we let αD be the Σ-algebra on Aω obtained by restricting [[−]]D to terms of depth 1.
That is, αD = {fD : (Aω)k → Aω | f ∈ Σk, k ∈ N} where

fD(σ1, . . . , σk) = [[f(σ1, . . . , σk)]]D (8.5)

Example 8.5. Let D be the stream GSOS definition from Example 8.3. We briefly describe
some of the transitions in the syntactic stream automaton of D. We use again the notation

introduced in Subsection 3.1 by writing x
a−→ y when oD(x) = a and dD(x) = y. Let

σ = (2, 0, 0, . . .), τ = (1, 1, 1, . . .), δ = (1, 0, 0, . . .) and ρ = (0, 0, 0, . . .). Then here are two
examples of states and transitions:

σ × (τ + δ)
4−→ (σ′ × (τ + δ)) + ([2]× (τ ′ + δ′))

=
(ρ× (τ + δ)) + ([2]× (τ + ρ))

[5]× σ
10−→ ([0]× σ) + ([5]× [0])

The definition of the syntactic stream automaton ensures that the following fundamen-
tal result holds.

Lemma 8.6 (Bisimilarity is a congruence). On the syntactic stream automaton given by
〈TΣ(Aω), 〈oD, dD〉〉, bisimilarity is a congruence, that is, for all terms g ∈ TΣ(Z) over some
set of variables Z = {z1, . . . , zn}, and all terms s1, . . . , sn, u1, . . . , un ∈ TΣ(A

ω),

∀j = 1, . . . , n : sj ∼ uj ⇒ g[sj/zj]j≤n ∼ g[uj/zj]j≤n

Proof. We define relations {Rm}m∈N on TΣ(A
ω) inductively by R0 := ∼ (the bisimilarity

relation on TΣ(A
ω)) and for m ≥ 1, Rm+1 is defined by the following congruence rule:

s1Rm u1 · · · snRm un
g[sj/zj]j≤nRm+1 g[uj/zj]j≤n

(g ∈ TΣ(Z)) (8.6)

where Z = {z1, . . . , zn}. Note that Rm ⊆ Rm′ for all m ≤ m′. Let R =
⋃

m∈NRm. We show
that R is a bisimulation. More precisely, we show by induction on m that

∀t, v ∈ TΣ(A
ω) : tRm v ⇒ [oD(t) = oD(v) and dD(t)RdD(v)] (8.7)

For convenience, we use the shorthand notation t[s] := t[sj/zj]j≤n and t[u] := t[uj/zj]j≤n

for any term t ∈ TΣ(Z).
The base case (m = 0) is immediate since R0 =∼ and ∼⊆ R. For the induction step

(m+1), suppose s1Rm u1 , . . . , snRm un and g ∈ TΣ(Z). We show by subinduction on the
term structure of g that

oD(g[s]) = oD(g[u]) and dD(g[s])RdD(g[u]) (8.8)

For g = zj ∈ Z, it follows that 〈g[s], g[u]〉 = 〈sj, uj〉 ∈ Rm and hence (8.8) holds by the
main induction hypothesis (for m).

STREAM DIFFERENTIAL EQUATIONS 33

For g = f(t1, . . . , tk), by subinduction hypothesis, we have for all i = 1, . . . , k:

oD(ti[s]) = oD(ti[u]) and dD(ti[s]) R dD(ti[u]).

We now check the subinduction claim (8.8) for g.
Outputs are equal:

oD(f(t1, . . . , tk)[s])
= of (oD(t1[s]), . . . , oD(tk[s])) (def. oD)
= of (oD(t1[u]), . . . , oD(tk[u])) (sub-I.H.)

= oD(f(t1, . . . , tk)[u]) (def. oD)

Next states are related: First, for notational convenience, let w denote the term that specifies
the next state for f , i.e.,

w := df (oD(t1[s]), . . . , oD(tk[s]))
sub-I.H.
= df (oD(t1[u]), . . . , oD(tk[u]))

From the definition of R it follows that

ti[s]Rm+1 ti[u] for all i = 1, . . . , k

and from the sub-induction hypothesis, it follows that

dD(ti[s])RdD(ti[u]) for all i = 1, . . . , k.

hence there is some M ∈ N such that

ti[s]RM ti[u], dD(ti[s])RM dD(ti[u]) for all i = 1, . . . , k.

By the definition of R, we then have

w[ti[s]/xi, dD(ti[s])/yi]i≤k RM+1 w[ti[u]/xi, dD(ti[u])/yi]i≤k (8.9)

and hence
dD(f(t1, . . . , tk)[s])

= w[ti[s]/xi, dD(ti[s])/yi]i≤k (def. dD)
R w[ti[u]]/xi, dD(ti[u]])/yi]i≤k (by (8.9))
= dD(f(t1, . . . , tk)[u]) (def. dD).

This concludes the subinduction on g, and hence also the main induction for m.

The map [[−]]D is by definition a stream homomorphism. We now show that it is also
an algebra homomorphism.

Lemma 8.7 ([[−]]D is algebra homomorphism). Let D be a stream GSOS definition for a
signature Σ, and αD be the Σ-algebra on Aω defined in (8.5) of Definition 8.4. The term
interpretation αD induced by αD is precisely [[−]]D. Consequently, [[−]]D is a morphism of
Σ-algebras.

Proof. Let αD = {fD : (Aω)k → Aω | f ∈ Σk, k ∈ N} be defined as in (8.5). We show by
induction on the term structure that for all t ∈ TΣ(A

ω):

αD(t) = [[t]]D (8.10)

34 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

For t = σ ∈ Aω, we clearly have that αD(σ) = σ = [[σ]]D. For k ∈ N, f ∈ Σk, and
t1, . . . , tk ∈ TΣ(A

ω), we have

αD(f(t1, . . . , tk)) = fD(αD(t1), . . . , αD(tk)) (def. αD)
= fD([[t1]]D, . . . , [[tk]]D) (I.H.)
= [[f([[t1]]D, . . . , [[tk]]D)]]D (def. fD)
= [[f(t1, . . . , tk)]]D

where the last equality holds because [[−]]D identifies bisimilar states, and bisimilarity of
f([[t1]]D, . . . , [[tk]]D) and f(t1, . . . , tk) follows from Lemma 8.6 (bisimilarity is a congruence),
and the fact that for all t ∈ TΣ(A

ω),
t ∼ [[t]]D (8.11)

since [[−]]D is a stream homomorphism.

We now characterise the solutions to D as being those maps α whose induced interpre-
tation is a stream homomorphism.

Proposition 8.8. Let D be a stream GSOS definition for a signature Σ. For all Σ-algebras
〈Aω, α〉, α is a solution of D if and only if α : TΣ(A

ω) → Aω is a stream automaton
homomorphism from 〈TΣ(A

ω), 〈oD, dD〉〉 to the final stream automaton 〈Aω, ζ〉.
Proof. Let α be a solution of D. We show that α is a homomorphism of stream automata by
induction on the term structure. The base case is immediate, since by definition α(σ)(0) =
σ(0) = oD(σ) and α(σ)′ = σ′ = dD(σ). For the inductive step, let k ∈ N, f ∈ Σk. We have

α(f(t1, . . . , tk))(0) = fα(α(t1), . . . , α(tk))(0) (def. α)

= of (α(t1)(0), . . . , α(tk)(0)) (α is solution)

= of (oD(t1), . . . , oD(tk)) (by I.H.)

= oD(f(t1, . . . , tk)) (def. oD)

and

α(f(t1, . . . , tk))
′

= fα(α(t1), . . . , α(tk))
′ (def. α)

= α(df (α(t1)(0), . . . , α(tk)(0))[α(ti)/xi, α(ti)
′/yi]i≤k) (α is solution)

= α(df (oD(t1), . . . , oD(tk))[α(ti)/xi, α(dD(ti))/yi]i≤k) (I.H.)

= α(df (oD(t1), . . . , oD(tk))[ti/xi, dD(ti)/yi]i≤k) (∗)
= α(dD(f(t1, . . . , tk))) (def. dD)

where (∗) holds since nested applications of α are “flattened” into one outermost application
which interprets the entire term.

For the converse, assume that α is a homomorphism of stream automata. Then in
particular, for all k ∈ N, f ∈ Σk, and all σ1, . . . , σk ∈ Aω,

α(f(σ1, . . . , σk))(0) = oD(f(σ1, . . . , σk)) (8.12)

α(f(σ1, . . . , σk))
′ = α(dD(f(σ1, . . . , σk))) (8.13)

It follows that

fα(σ1, . . . , σk)(0) = α(f(σ1, . . . , σk))(0) (def. α)

= oD(f(σ1, . . . , σk)) (by (8.12))

= of (σ1(0), . . . , σk(0)) (def. oD)

STREAM DIFFERENTIAL EQUATIONS 35

and
fα(σ1, . . . , σk)

′

= α(f(σ1, . . . , σk))
′ (def. α)

= α(dD(f(σ1, . . . , σk))) (by (8.13))

= α(df (oD(σ1), . . . , oD(σk))[σi/xi, dD(σi)/yi]i≤k) (def. dD)

= α(df (σ1(0), . . . , σk(0))[σi/xi, σ
′
i/yi]i≤k) (def. oD and dD)

which proves that α is indeed a solution of D.

Finally, we can put everything together.

Theorem 8.9. Let D be a stream GSOS definition for a signature Σ. The unique solution
of D is the Σ-algebra 〈Aω, αD〉 that corresponds to the term interpretation given by the final
stream homomorphism [[−]]D : TΣ(A

ω) → Aω of the syntactic stream automaton.

Proof. By Lemma 8.7, αD = [[−]]D, hence by Proposition 8.8, αD is a solution to D. The
uniqueness of αD follows from the uniqueness of [[−]]D and the 1-1 correspondence between
Σ-algebras 〈X,α〉 and term interpretations α : TΣ(A

ω) → Aω.

Example 8.10. Consider the final map [[−]] = [[−]]D for the GSOS definition D of the
arithmetic operations from Example 8.3 (taking again A = R, and σ = (2, 0, 0, . . .), τ =
(1, 1, 1, . . .), δ = (1, 0, 0, . . .), ρ = (0, 0, 0, . . .)). We find that

[[σ × (τ + δ)]] = [[σ]]× ([[τ]] + [[δ]])

= (4, 2, 2, 2, . . .)

[[(ρ× (τ + δ)) + ([2]× (τ + ρ))]] = ([[ρ]]× ([[τ]] + [[δ]])) + ([[[2]]] × ([[τ]] + [[ρ]]))

= (2, 2, 2, . . .)

which confirms that [[−]] respects the transition from σ × (τ + δ). Similarly, we find that
the following transition in the syntactic automaton

[5]× σ
10−→ ([0] × σ) + ([5]× [0])

is mapped by [[−]] to the following transition in 〈Rω, ζ〉
(10, 0, 0, 0, . . .)

10−→ (0, 0, 0, . . .).

8.3. Causal stream operations. Next we will show that stream GSOS definitions exactly
define the so-called causal stream operations, that is, operations such that for all n ∈ N, the
n-th value of the result stream depends only on the first n values of the argument stream(s).
For a formal definition, we use the following notation. For σ, τ ∈ Aω and n ∈ N, we write
σ ≡n τ if for all j ≤ n, σ(j) = τ(j). A k-ary stream operation f : (Aω)k → Aω is causal if
for all σi, τi ∈ Aω, i = 1, . . . , k,

∀i ≤ k : σi ≡n τi ⇒ f(σ1, . . . , σk) ≡n f(τ1, . . . , τk)

Let Γk denote the set of all causal k-ary stream operations f : (Aω)k → Aω. The elements of
Γk are exactly the behaviours of (k-ary) Mealy machines which are maps of type m : X →
(A×X)A

k
. Mealy machines and causal stream functions are treated in detail in [29, 62]. We

give a brief recap here. For all f ∈ Γk and all (a1, . . . , ak) ∈ Ak, we define the notion ofMealy
output f [(a1, . . . , ak)] and Mealy derivative f(a1,...,ak) of f as follows. For all σ1, . . . , σk ∈ Aω,

36 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

f [(a1, . . . , ak)] = f(a1 :σ1, . . . , ak :σk)(0)
f(a1,...,ak)(σ1, . . . , σk) = f(a1 :σ1, . . . , ak :σk)

′ (8.14)

Note that since f is causal, it follows that f(a1,...,ak) ∈ Γk and that f [(a1, . . . , ak)] is well-
defined, as it does not depend on σ1, . . . , σk. We define a Mealy machine structure γ : Γk →
(A× Γk)A

k
by

γ(f)(a1, . . . , ak) = 〈f [(a1, . . . , ak)], f(a1,...,ak)〉, (8.15)

In fact, 〈Γk, γ〉 is a final Mealy machine, cf. [29, 62].

Proposition 8.11. If f : (Aω)k → Aω is stream GSOS definable, then f is causal.

Proof. Suppose that f is stream GSOS definable, that is, f is one of the operations in the
solution αD for some stream GSOS definition D. The proof follows essentially from the fact
that for all n ∈ N, ≡n is a congruence, that is, for all t ∈ TΣ(Z), Z = {z1, . . . , zl}, and all
σi, τi ∈ Aω, i = 1, . . . , l:

for all i ≤ l : σi ≡n τi ⇒ [[t[σi/zi]i≤l]]D ≡n [[t[τi/zi]i≤l]]D (8.16)

which can be shown by double induction on n and the structure of t. We refer to [39] for
details.

Conversely, any causal stream operation can be defined by a (potentially very large)
stream definition.

Proposition 8.12. If f : (Aω)k → Aω is causal, then f is stream GSOS definable.

Proof. We define a stream definition DC for the signature ΣC = {f | f : (Aω)k → Aω causal,
k ∈ N}, by including, for each k-ary function symbol f ∈ ΣC, the equation

of (a1, . . . , ak) = f [(a1, . . . , ak)] ∈ A

df (a1, . . . , ak) = f(a1,...,ak)(y1, . . . , yk) ∈ TΣ({y1, . . . , yk}) (8.17)

Let α be the ΣC-algebra on Aω in which each symbol f is interpreted as f . We show that
α is a solution to DC. For f ∈ Γk, we have

f(σ1, . . . , σk)(0) = f [(σ1(0), . . . , σk(0))]
= of (σ1(0), . . . , σk(0))

f(σ1, . . . , σk)
′ = f(σ1(0),...,σk(0))(σ

′
1, . . . , σ

′
k)

= α(f(σ1(0),...,σk(0))(y1, . . . , yk)[σ
′
i/yi]i≤k)

which shows that α is a solution to DC.

Remark 8.13. Note that in (8.17) the derivative term df (a1, . . . , ak) only uses the yi-

variables, i.e. the derivatives of the arguments, and not the arguments themselves (i.e. the
xi-variables). This means that all causal stream operations are definable by a (possibly
infinite) SOS specification.

Theorem 8.14. Let f : (Aω)k → Aω be a stream operation. We have: f is causal if and
only if f is stream GSOS definable.

STREAM DIFFERENTIAL EQUATIONS 37

8.4. Causality and productivity. Every stream GSOS defined operation is productive,
meaning that by successively computing output and derivative using the SDEs we can
construct the entire stream in the limit.

A well known example of a stream operation that is not causal is the operation

even(σ) = (σ(0), σ(2), σ(4), . . .)

which we encountered already in Section 7 (cf. equation (7.1)). The operation even : Aω →
Aω can be defined by the following SDE:

even(σ)(0) = σ(0), even(σ)′ = even(σ′′)

If σ is given by a productive definition, then also even(σ) is productive. However, it is easy
to give a SDE using even which is not productive:

σ(0) = 0, σ′ = even(σ) (8.18)

One sees the problem when we try to compute initial value and derivatives. The first two
steps are fine:

1. σ(0) = 0, σ′ = even(σ)
2. even(σ)(0) = σ(0) = 0, even(σ)′ = even(σ′′)

But when we try to compute the initial value of even(σ′′), we get:

even(σ′′)(0) = σ′′(0) = ?

which does not yield a value. The SDE (8.18) has several solutions, e.g. σ = [0] = (0, 0, 0, . . .)
or σ = 0 : 0 : ones = (0, 0, 1, 1, 1, . . .), but it does not have a unique one.

Productivity of stream definitions in a term rewriting context have been closely studied
in [22, 20].

8.5. Simple/linear/context-free stream specifications revisited. In conclusion of
this section, we will demonstrate how the syntactic method can be applied to prove the
existence of unique solutions to the simple, linear and context-free specifications from Sec-
tions 4-6.

Simple Specifications. A simple equation system (i.e. a stream automaton) 〈X, e〉 can be
seen as a stream definition over the signature Σ which contains a constant for each x ∈ X,
and no further operation symbols. Note that since a stream definition consists of one
equation for each operation symbol, we must treat the elements of X as constants (rather
than variables)) in order to view 〈X, e〉 as a stream definition. Hence TΣ(A

ω) = X, and it
follows that the syntactic solution from Theorem 8.9 coincides with the direct solution by
coinduction.

Linear Specifications. A linear equation system over X can be viewed as a stream definition
for a signature which contains a constant for each x ∈ X, and operation symbols for scalar
multiplication and sum, as we explain now. Consider the linear signature Σ which contains
a unary scalar multiplication operation for each a ∈ A and a binary sum operation. The
set of Σ-terms over a set X is generated by the following grammar:

t ::= x ∈ X | a · t | t+ t, a ∈ A. (8.19)

A linear equation system over a set X can now be seen as a map 〈o, d〉 : X → A×TΣ(X). In
order to get a stream definition, we can again view elements of X as constants and consider
the larger signature Σ̄ = Σ ∪X. So in particular, X ⊆ TΣ̄(Y) for any set Y . By putting

38 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

together the equations from 〈o, d〉 and the SDEs that define scalar multiplication and sum,
we obtain a big stream definition D for Σ̄. From the syntactic method (Theorem 8.9), we

then obtain a map X → Aω via inclusion and the term interpretation X →֒ TΣ̄(A
ω)

α−→ Aω.
We repeat here the relevant diagram for convenience:

TΣ(A
ω)

α //

〈oD ,dD〉
��

Aω

ζ

��
A× TΣ(A

ω)
idA×α // A×Aω

(8.20)

This map X → Aω preserves the equations in 〈o, d〉, since α is a homomorphism of both Σ̄-
algebras and stream automata, hence it is a solution to 〈o, d〉, and by uniqueness of solutions

it must coincide with the solution obtained as the composition X
ηX−→ V(X)

g−→ Aω in (5.2)
on page 14 in Section 5.

A more detailed argument of why the syntactic method yields a solution in the sense
of Section 5 goes as follows. We prove that the two methods lead to the same solution map
X → Aω by showing that the following relation on streams

R = {〈α(x), g(ηX (x))〉 | x ∈ X} ⊆ Aω ×Aω (8.21)

is a bisimulation-up-to scalar multiplication and sum, cf. Theorem 3.5. To this end, let
x ∈ X be arbitrary, and suppose that d(x) = a1x1 + . . .+ akxk.
Initial value:

α(x)(0) = oD(x) = o(x) = o♯(ηX(x)) = g(ηX(x))(0).

Derivative: We have

α(x)′
(8.20)
= α(d(x)) = α(a1x1 + . . . akxk) = a1α(x1) + . . . + akα(xk)

g(ηX(x))′
(5.2)
= g(d(x)) = g(a1x1 + . . . akxk) = a1g(x1) + . . .+ akg(xk)

where the last equalities in each line follow from α being a Σ̄-algebra homomorphism, and
g being linear, respectively. We have now shown that R is a bisimulation-up-to scalar
multiplication and sum. It follows that for all x ∈ X, α(x) and g(ηX(x)) are bisimilar, and
hence by coinduction they are equal.

The equivalence between the two solution methods also follows from a more general
result in [12] which relates specifications that use pure syntax (such as TΣ(X)) and specifica-
tions that use an algebraic structure viewed as syntax modulo axioms (such as V(X) viewed
as TΣ(X) modulo vector space axioms). We describe this is more detail in section 9.5.1.

Context-free Specifications. As in the linear case we obtain unique solutions to context-free
equation systems by combining the equations with the SDEs that define the operations used
on the right-hand side of the equations. In this case, we consider the polynomial signature
Σ, which contains a stream constant for each a ∈ A, and binary symbols + and ×. The set
TΣ(X) of all Σ-terms over a set X is generated by the following grammar:

t ::= x ∈ X | a ∈ A | t+ t | t× t (8.22)

A context-free equation system over X can now be seen as a map 〈o, d〉 : X → A ×
TΣ(X). Putting the equations from 〈o, d〉 together with the SDEs defining the polynomial
Σ-operations a ∈ A,+,× we obtain one big stream definition D for the extended signature

STREAM DIFFERENTIAL EQUATIONS 39

Σ̄ = Σ ∪ X where elements from X are viewed as constants. From the syntactic method

(Theorem 8.9), we obtain a solution map X →֒ TΣ̄(A
ω)

α−→ Aω.
As in the linear case, one can show that this solution coincides with the solutions

obtained via stream automata (cf. Section 6.2) using bisimulation-up-to polynomial opera-
tions.

Remark 8.15. Unique solutions of simple, linear and context-free equation systems for the
non-standard tail operations ∂ ∈ {∆, d

dX ,∆o} can be obtained via the syntactic method in
essentially the same way as the method only relies on the finality of ζ : Aω → A×Aω.

9. A General Perspective

In this section, we describe how the stream GSOS definitions of the prevous section relate to
the categorical framework known as abstract GSOS. Abstract GSOS was developed in [65]
as a general framework in structural operational semantics [3] for studying rule formats that
guarantee a compositional semantics. The more recent survey paper [38] gives an excellent
introduction to abstract GSOS, and includes many examples on streams. We present here
a brief account of the categorical underpinnings of stream GSOS, and relate the general
constructions to the concrete ones we have seen in earlier sections. The material in this
section is based mainly on [7, 38, 44].

For this section, we assume some familiarity with basic categorical notions such as
functor and natural transformation, cf. e.g. [48]. Throughout, let Set be the category of
sets and functions.

The generality of abstract GSOS is obtained by generalising stream automata to F -
coalgebras, and observing that a GSOS definition (for F -coalgebras) corresponds to a so-
called distributive law which links algebraic structure with coalgebraic behaviour.

9.1. Coalgebras for a functor. In previous sections, we focused on stream automata
which are maps of the typeX → A×X. We will now look at them from a more abstract point
of view, namely as coalgebras [56, 34]. Coalgebra is a framework for studying state-based
systems in a uniform setting. This is achieved by describing the system type by a functor
F which defines the kind of transitions and observations the system can make. By varying
F we obtain many known structures such as A-labelled binary trees (FX = X × A ×X),
deterministic automata (FX = 2 ×XA), and labelled transition systems (FX = P(X)A),
to mention just a few. The advantage of viewing systems as F -coalgebras is that we obtain
generic definitions of morphisms and bisimulation, and we can often prove results uniformly
for many system types.

The general definition is as follows. Given a functor F : Set → Set, an F -coalgebra is a
pair 〈X, c〉 where X is a set and c : X → FX is a function. An F -coalgebra morphism from
〈X, c〉 to 〈Y, d〉 is a map f : X → Y such that d ◦ f = Tf ◦ c. An F -coalgebra 〈Z, ζ〉 is final
if for any F -coalgebra 〈X, c〉 there is a unique F -coalgebra morphism h : 〈X, c〉 → 〈Z, ζ〉.
An F -coalgebra bisimulation between 〈X, c〉 and 〈Y, d〉 is a relation R ⊆ X × Y which
carries itself an F -coalgebra structure r : R → FR such that the projections R → X and
R → Y are F -coalgebra morphisms. It is straightforward to check that stream automata
are coalgebras for the functor F = A × (−) which maps a set X to A×X and a function
f : X → Y to idA × f . In particular, A× (−)-coalgebra morphisms and A× (−)-coalgebra
bisimulations are stream homomorphisms and stream bisimulations, respectively, and the
final A× (−)-coalgebra is indeed the final stream automaton described in Section 2.1.

40 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

9.2. Algebras for a monad. Where coalgebra gives us an abstract view on systems and
behaviour, algebras for a monad give us an abstract view on algebraic theories, and compo-
sitionality.

We start by explaining how the usual notion of an algebra for a signature (described
in Section 8.1) can be understood categorically. An algebra for a signature Σ of operations
f
i
, i ∈ I, with arities ki, i ∈ I, is a map

∐

i∈I X
ki → X where X is the carrier and

∐

denotes coproduct (or disjoint union). For example, if Σ contains a constant c, a unary f
and a binary g, then an algebra for Σ with carrier X is a map [c, f, g] : 1+X+(X×X) → X
given by case distinction with components c : 1 → X, f : X → X and g : X ×X → X. A
signature Σ corresponds in this way to a Set-functor (which we also denote by Σ), defined
by ΣX =

∐

i∈I X
ki , and an algebra for the signature Σ with carrier X is thus a pair

〈X,α : ΣX → X〉. More generally, for any functor G : Set → Set, a G-algebra is a pair
〈X,α : GX → X〉, and a G-algebra homomorphism from 〈X,α〉 to 〈Y, β〉 is a map h : X → Y
such that h ◦ α = β ◦Gh. A G-algebra 〈X,α〉 is initial if for any G-algebra 〈Y, β〉 there is
a unique G-algebra homomorphism h : 〈X,α〉 → 〈Y, β〉. Note that a Σ-algebra (where Σ is
viewed as a functor) is the same as an algebra for Σ (where Σ is viewed as a signature).

Monads are functors with extra “monoid” structure. Formally, a monad is a triple
T = 〈T, η, µ〉 consisting of a Set-functor T , together with natural transformations η : Id ⇒ T
(the unit), and µ : TT ⇒ T (the multiplication) such that µ ◦ Tη = id = µ ◦ ηT and
µ ◦ µT = µ ◦ Tµ.

An Eilenberg-Moore algebra for the monad T = 〈T, η, µ〉 (or just T -algebra for short)
is a T -algebra 〈X,α〉 that respects the monad structure meaning that α ◦ ηX = id and
α ◦ µX = α ◦ Tα. Note that the latter condition says that α is itself a homomorphism. A
homomorphism of T -algebras is just a homomorphism of T -algebras. An important role
is played by 〈TX,µX〉 which is the free T -algebra. Given any T -algebra 〈Y, α〉 and any
function f : X → Y , there is a unique T -algebra homomorphism f∗ : TX → A such that
f∗(η(x)) = f(x) for all x ∈ X, given by α ◦ Tf .

We have already encountered several examples of monads. For a signature Σ, the
mapping TΣ that assigns to a set X the set TΣ(X) of Σ-terms over X is the (functor part
of the) free monad generated by the functor Σ. The unit ηX : X → TΣ(X) is inclusion
of variables as terms, and the multiplication µX : TΣTΣ(X) → TΣ(X) is the flattening of
nested terms into terms.

Another example of a monad is the construction V from Section 5.2 where A is assumed
to be a field. Recall that V(X) is the set of all formal linear combinations over X, i.e.,

V(X) = {a1x1 + . . .+ anxn | ai ∈ A, xi ∈ X, ∀i : 1 ≤ i ≤ n}
First, V is a functor by defining V(f) : VX → VY by V(f)(∑ aixi) =

∑

bjyj where bj =
∑

f(xi)=yj
ai. The unit ηX : X → VX includes variables as the linear combinations: x 7→

1x, and the multiplication µX : V2X → VX flattens by distributing scalars over sums as
illustrated here for a, b, c, d, e, f ∈ A and x, y, z ∈ X:

µX(a(cx+ dy) + b(ex+ fz)) = (ac+ be)x+ ady + bfz.

The free V-algebra 〈VX,µX 〉 is the vector space with basis X.
Finally, also the construction M(X∗) of polynomials over X with coefficients in a

commutative semiring A from Section 6 is a monad with unit and multiplication defined in
the expected way. For A = N, this was shown in [33, sec. 3.4], and the proof generalises in

STREAM DIFFERENTIAL EQUATIONS 41

a straightforward manner. As noted already in Section 6, the free algebra M(X∗) is again
a semiring.

The vector space monad V and the polynomials monad M((−)∗) are examples of mon-
ads that capture equational theories. Namely, a variety of algebras defined by a signature
Σ and equations E is (isomorphic to) the class of Eilenberg-Moore algebras for the quotient
monad TΣ/≡E that maps a set X to TΣ(X)/≡E where ≡E is the congruence generated
by E on Σ-terms. For example, V(X) can be viewed as the set of “linear terms” defined in
(8.19) quotiented with the axioms of vector spaces. Similarly, M(X∗) is the set of “polyno-
mial terms” defined in (8.22) quotiented with the axioms of unital associative algebras over
a semiring.

9.3. Bialgebras for a distributive law. The notion of a bialgebra combines coalgebraic
and algebraic structure. The interaction between the two structures should be specified
by a so-called distributive law. This definition is rather abstract at first sight, but we will
later see that for a free monad TΣ = 〈TΣ, η, µ〉, distributive laws involving TΣ are essentially
systems of SDEs.

In the rest of this subsection, we let T = 〈T, η, µ〉 be a monad and F be a functor, both
on Set. A distributive law of T over F is a natural transformation λ : TF =⇒ FT that is
compatible with the monad structure, i.e., for all X the following diagrams commute:

FX
ηFX //

FηX
!!❈

❈❈
❈❈

❈❈
❈❈

❈❈
❈❈

TFX

λX

��

(unit-λ)

FTX

T 2FX

µFX

��

TλX //

(mult-λ)

TFTX
λTX // FT 2X

FµX

��
TFX

λX // FTX

A λ-bialgebra is a triple 〈X,α, β〉 where α : TX → X is a T -algebra and β : X → FX
is an F -coalgebra, and the two are compatible via λ, i.e., the following diagram commutes:

TX

Tβ

��

α // X
β // FX

TFX
λX // FTX

Fα

OO (9.1)

A morphism of λ-bialgebras from 〈X1, α1, β1〉 to 〈X2, α2, β2〉 is a function f : X1 → X2

which is both a T -algebra morphism and an F -coalgebra morphism.
At present we are mainly interested in the case where F = A × (−) is the functor of

stream automata, and we find that a distributive law λ of T over A × (−) is a natural
transformation whose X-component has the type λX : T (A × X) → A × TX, and a λ-

bialgebra has the type TX
α−→ X

β−→ A×X.
An important reason why distributive laws yield solutions to systems of SDEs is that

they induce T -algebraic structure on the final F -coalgebra, as we explain now.
Given a distributive law λ of T over F , the functor F lifts to a functor Fλ on the category

of T -algebras; and dually the monad T lifts to a monad Tλ on the category of F -coalgebras
(cf. [7, Lem. 3.4.21]). In particular, the functor Tλ maps an F -coalgebra ξ : X → FX to the
F -coalgebra λX ◦ Tξ : TX → FTX. Applying Tλ to the final F -coalgebra 〈Z, ζ〉, we obtain
an F -coalgebra on TZ, and hence by the finality of 〈Z, ζ〉 there is a unique F -coalgebra

42 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

morphism α : TZ → Z. For the case of stream automata, this is shown in the following
diagram:

T (Aω)
Tζ //

α

��

T (A×Aω)
λAω // A× T (Aω)

idA×α
��

Aω ζ // A×Aω

(9.2)

Furthermore, it can be shown that α is a T -algebra on Z, and that 〈Z,α, ζ〉 is a final λ-
bialgebra, see e.g., [7, 38] for details. In short, a distributive law λ of T over F induces a
canonical T -algebra on 〈Z, ζ〉.

This leads us to yet another reason why distributive laws and bialgebras are useful.
Namely, since α is also a T -algebra homomorphism, the coalgebraic semantics is compo-
sitional with respect to T -algebraic structure. In particular, F -bisimilarity is a T -algebra
congruence (cf. [7, Thm. 3.2.6]), and Lemmas 8.6 and 8.7, Proposition 8.8 and Theorem 8.9
are thus special instances of more general results on bialgebras. Moreover, the presence of
a distributive law ensures the soundness of the enhanced coinduction principle coinduction-
up-to context (cf. [7, 55]) of which Theorem 3.5 is an instance.

9.4. The Syntactic Method via Abstract GSOS. We now show how SDEs and the
syntactic method can be understood in terms of abstract GSOS. The relationship between
SDEs and operational rules is described very well in [38], and we focus here on a more
direct translation fom SDEs to the abstract GSOS framework in which formats correspond
to certain types of natural transformations.

9.4.1. Stream differential equations as natural transformations. To illustrate, we use the
SDEs from Section 2.3 that define the constant streams [a], addition + and convolution
product ×. We repeat them here together for convenience:

[a](0) = a, [a]′ = [0] for all a ∈ R,

(σ + τ)(0) = σ(0) + τ(0), (σ + τ)′ = σ′ + τ ′,

(σ × τ)(0) = σ(0) · τ(0), (σ × τ)′ = (σ′ × τ) + ([σ(0)]× τ ′)

(9.3)

They correspond to stream GSOS definitions for the signature Σar = {+,×}∪ {[a] | a ∈ R}
as shown in Example 8.3, and we repeat them here:

o[a] = a, d[a] = [0] for all a ∈ R,

o+(a, b) = a+ b, d+(a, b) = y1 + y2,

o×(a, b) = a · b, d×(a, b) = (y1 × x2) + ([a] × y2)

(9.4)

where a, b ∈ R correspond to σ(0), τ(0) and x1, y1, x2, y2 are stream variables that corre-
spond to σ, σ′, τ, τ ′.

STREAM DIFFERENTIAL EQUATIONS 43

The connection with abstract GSOS is made by observing that the definitions in (9.4)
correspond to families of functions:

(X × R×X)
ρ
[a]
X−→ R× TΣ(X)

〈x1, a, y1〉 7→ 〈a, [0]〉

(X × R×X)× (R×X)
ρ+X−→ R× TΣ(X)

〈〈x1, a, y1〉, 〈x2, b, y2〉〉 7→ 〈a+ b, y1 + y2〉

(X × R×X)× (R×X)
ρ×X−→ R× TΣ(X)

〈〈x1, a, y1〉, 〈x2, b, y2〉〉 7→ 〈a · b, (y1 × x2) + ([a] × y2)〉

(9.5)

The functor corresponding to the arithmetic signature is Σar(X) = XA+(X×X)+(X×X),

and we can combine the above three maps into one ρX = [(ρ
[a]
X)A, ρ+X , ρ

×
X] (which applies

the relevant component by case distinction on its argument):

ρX : Σar(X × R×X) −→ R× TΣar
(X)

In general, a stream GSOS definition for a signature Σ corresponds to a family of maps ρX :

ρX : Σ(X ×A×X) −→ A× TΣ(X)

which has a component for each k-ary f ∈ Σ:

ρ
f

X : 〈x1, a1, y1〉, . . . , 〈xk, ak, yk〉 7→ 〈of (a1, . . . , ak), df (a1, . . . , ak)〉 (9.6)

Notably, ρX is defined uniformly in X, and in fact, ρ is a natural transformation of type

ρ : Σ(−×A×−) =⇒ A× TΣ(−) (9.7)

This is an instance (with F = A× (−)) of the more general type of natural transformation
ρ : Σ(Id× F) =⇒ FTΣ.

The reader may have noticed that in the above, ρ
[a]

X and ρ+X do not use the x-components
of their arguments. In fact, any collection of stream definitions D for a signature Σ that do
not use the x-variable on the right-hand side (i.e., D is in the SOS-format) can be expressed
by a natural transformation of the simpler type

ρ : Σ(A×−) =⇒ A× TΣ(−) (9.8)

For an arbitrary functor F , this would be a natural transformation ρ : ΣF =⇒ FTΣ.
We have thus seen how stream definitions correspond to natural transformations, and

that the types of these natural transformations correspond to various definition formats
such as stream SOS and stream GSOS.

9.4.2. From natural transformations to distributive laws. The following central results in
abstract GSOS show that natural transformations ρ involving a signature Σ as in the pre-
vious subsection, in fact, determine distributive laws for the free monad TΣ. We start with
the relatively simple result for natural transformations in the SOS-format.

44 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

Lemma 9.1. Let Σ be a signature functor, and TΣ = 〈TΣ, η, µ〉 the free monad over Σ. For
any functor F , there is a 1-1 correspondence:

λ : TΣF =⇒ FTΣ distributive law of TΣ over F

ρ : ΣF =⇒ FTΣ plain natural transformation

Proof. This is Lemma 3.4.24(i) of [7].

This correspondence extends to ρ of the type in (9.7) with one small modification,
namely that a natural transformation ρ : Σ(Id × F) =⇒ FTΣ induces a distributive law λ
of TΣ over the functor Id× F such that π1 ◦ λ = TΣπ1, where π1 : Id× F =⇒ Id is the left
projection. We call such a distributive law λ a GSOS law for TΣ and F . A GSOS law is
also known as a distributive law of the monad TΣ over the cofree copointed functor over F
(given by 〈Id× F, π1〉). We refer to [44] or [54, sec. 3.5.2] for further details.

Lemma 9.2. Let Σ be a signature functor, and TΣ = 〈TΣ, η, µ〉 the free monad over Σ. For
any functor F , there is a 1-1 correspondence,

λ : TΣ(Id× F) =⇒ (Id× F)TΣ distributive law of TΣ over 〈Id× F, π1〉
ρ : Σ(Id× F) =⇒ FTΣ plain natural transformation

Proof. See Lemma 3.5.3 of [54] or Lemma 3.5.2(i) of [7].

If D is a stream GSOS definition with corresponding ρ, we obtain by Lemma 9.2 a
stream GSOS law λ, and for any stream automaton β : X → A×X this λ yields a stream
automaton structure on TΣ(X) by

TΣ(X)
TΣ〈idX ,β〉 // TΣ(X × (A×X))

π2◦λX // A× TΣ(X)

If we apply this construction to the final stream automaton ζ = 〈hd , tl〉 : Aω → A×Aω, we
obtain precisely the syntactic stream automaton 〈oD, dD〉 from Definition 8.4, and hence
the unique stream automaton homomorphism [[−]]D = α : TΣ(A

ω) → Aω by coinduction, as
shown in the following diagram:

TΣ(A
ω)

TΣ〈id,ζ〉 //

α
��

TΣ(A
ω × (A×Aω))

π2◦λAω // A× TΣ(A
ω)

idA×α
��

Aω ζ // A×Aω

(9.9)

As in (9.2), it can be shown that α is a TΣ-algebra homomorphism, and hence essentially a
solution to D.

To summarise, a collection of SDEs that together form a stream GSOS definition D
corresponds to a stream GSOS law λ, which yields a stream automaton structure on TΣ(A

ω),
and hence, by coinduction, a unique interpretation of stream operations in Σ.

9.5. Solving systems of equations. We have now seen how the syntactic method is
essentially an instance of the abstract GSOS framework. We now show that also the solution
methods based on coinduction for stream automata in Sections 5.2 and 6.2 can be placed
in the bialgebraic framework. They are, in fact, instances of λ-coinduction as defined in [7].

Recall that linear equation systems are maps of the form e : X → A×VX, and context-
free equation systems are maps of the form e : X → A×M(X∗). More generally, a system
of equations for a monad T = 〈T, η, µ〉 and a functor F is a map e : X → FTX. If we

STREAM DIFFERENTIAL EQUATIONS 45

have a distributive law λ of T over F , then for every equation system e : X → FTX, we
can construct a λ-bialgebra 〈TX,µX , eλ〉 with free T -algebra component by taking eλ =
FµX ◦ λTX ◦ Te, cf. [7, Lemma 4.3.3]. We now obtain a unique λ-bialgebra morphism g
into the final λ-bialgebra, as shown here for the stream functor F = A× (−):

T 2(X)

µX

��

Tg // T (Aω)

α

��
X

e

��

ηX // T (X)

eλ

||②②
②②
②②
②②
②②

g // Aω

ζ

��
A× T (X)

idA×g // A×Aω

(9.10)

Note that diagrams (5.2) for linear solutions and (6.2) for context-free solutions are both
instances of (9.10); except that the algebra part was left implicit.

In the terminology of [7], e : X → FTX is a guarded recursive specification, and the
map g ◦ ηX : X → Aω is a λ-coiterative arrow, which implies that g ◦ ηX is the unique
solution to e, cf. [7, Lemma 4.3.4].

The above generalises to distributive laws of monads over cofree copointed functors, i.e.,
in particular to GSOS laws, but the argument is a bit more involved. Detailed arguments
are found in Corollary 4.3.6 and Lemma 4.3.9 from [7]; see also [33, 44].

9.5.1. Distributive laws for non-free monads. If T = TΣ is a free monad for a signature
Σ, then λ is essentially given by a collection of SDEs that define Σ-operations. However,
the two monads V and M(−∗) relevant for linear and context-free systems are not free. If
T is not free, then we cannot immediately claim the existence of a λ (and hence unique
solutions) by giving a system of SDEs. However, when T encodes a variety of algebras in
terms of operations Σ and equations E, (such as, for example, V or M((−)∗)), then λ can
often be described as a quotient of a law λΣ that does correspond to a system of SDEs. In
this case, the solution obtained from λ coincides with the solution obtained from λΣ. The
existence of such a λ can be proved by showing that the SDEs defining the operations in Σ
respect the equations in E in a certain sense. These results are described in detail in [12].

9.5.2. Linear equation systems, revisited. Let A be a field. The behaviour functor is the
stream automaton functor F = A × (−), T is the vector space monad V described in
Section 9.2. Let λ : V(A× (−)) =⇒ A× V(−) be given by (cf. [35, Thm. 10]) :

λX : V(A×X)
〈Vπ1,Vπ2〉 // VA× VX β×idVX // A× VX (9.11)

where β : VA→ A is the vector space structure on the field A, and π1, π2 denote left and right
projection, respectively. It is straightforward to verify that λ is indeed a distributive law.
Moreover, by working out the details one sees that the V-algebra (i.e. vector space structure)
induced on Aω by λ coincides with the element-wise operations of scalar multiplication and
addition that are also defined by the SDEs. This way of obtaining a distributive law easily
generalises to any stream operation that is defined element-wise from an operation on A.

46 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

A linear equation system is a map e : X → A × VX, and by (9.10), a unique solution
always exists. This solution method is essentially the same as linear coinduction. Namely,
for the λ in (9.11), λ-bialgebras are the same as linear automata.

9.5.3. Context-free equation systems, revisited. Now we assume that A is a commutative
semiring. The behaviour functor is again the stream functor F = A × (−) and T is the
polynomial monad M((−)∗) described at the end of Section 9.2.

In order to solve context-free systems using (9.10), we need a distributive law for
M((−)∗). Note, however, that we cannot simply replace V by M((−)∗) in (9.11) above,
since the desired algebraic structure on Aω is not an element-wise extension, as in the linear
case. In particular, the convolution product of streams Aω is not the element-wise extension
of the semiring product on A. We therefore need a distributive law λ of M((−)∗) over the
cofree copointed functor over F . The existence of such a λ is shown in [12, Example 4.11] by
showing that the SDEs in (9.3) respect the semiring axioms, as explained in Section 9.5.1.
It follows that every context-free equation system e : X → A×M(X∗) has a unique stream
solution.

10. Discussion and Related Work

10.1. Other Specification Methods. There exist many ways of representing streams,
other than by stream differential equations. Among the classical methods in mathematics
are recurrence relations, generating functions and continued fractions. In computer science,
weighted automata are also often used (cf. Section 5.2). As a basic and instructive example,
we use the stream of Fibonacci numbers

φ = (0, 1, 1, 2, 3, 5, 8, 13, . . .)

to quickly illustrate a number of different stream representations.
We already saw a definition of φ by means of a stream differential equation (cf. (2.11)):

φ(0) = 0 φ(1) = 1 φ′′ = φ+ φ′ (10.1)

A definition of φ by means of a recurrence relation is the following:

φ(0) = 0 φ(1) = 1 φ(n + 2) = φ(n) + φ(n+ 1) (10.2)

The following representation is called in mathematics a closed form generating function:

f(x) =
x

1− x− x2
(10.3)

It corresponds to the rational expression X

1−X−X2 , which we already saw in (5.5). The

expansion of f(x) into f(x) = x+x2+2x3+3x4+5x5+ · · · gives us the Fibonacci numbers.
Finally, the value of the nth Fibonacci number can be read from this weighted automaton
(where a state is underlined if its output is 1, otherwise the output is 0)

s
1

''

1

��
t

1

hh

(10.4)

by counting the number of finite paths of length n leading from the state s back to the state
s again.

STREAM DIFFERENTIAL EQUATIONS 47

All is well with this basic example. All four representations above (and still others)
are well-understood, including the way to obtain one from the other (as we have seen in
Section 5). But things get much less clear very quickly. Consider for instance the stream
of factorial numbers ψ = (0!, 1!, 2!, 3!, . . .). A recurrence relation is again easily given:

ψ(0) = 1 ψ(n + 1) = (n+ 1) · ψ(n) (10.5)

but now look at the following stream differential equation, also defining ψ:

ψ(0) = 1 ψ′ = ψ ⊗ ψ (10.6)

where the righthand side uses the shuffle product (defined in (6.4)). It is unclear how (10.5)
and (10.6) are related. Furthermore, we know of no closed form generating function for ψ
but then again, there is the following continued fraction:

ψ =
1

1− x− 12x2

1− 3x− 22x2

1− 5x− 32x2

. . .

(10.7)

as well as the following representation of ψ by means of an (infinite) weighted automaton

s0

1
))

1

��
s1

2
))

1

ii

3

��
s2

3
**

2

ii

5

�� · · ·
3

ii (10.8)

For this example, the relation between (10.7) and (10.8) is fairly direct but, more generally,
the relation between all four different representations (10.5)-(10.8) of the factorial numbers
is by no means well-understood, and serves as an illustration of an interesting class of
problems that need further study.

10.2. Related Work. We have given an overview of recent results on stream differential
equations obtained via a coalgebraic perspective. In this subsection we will give pointers
to the surveyed literature, and a brief overview of some related work, which is bound to be
incomplete.

Formal power series and automata theory. Streams are formal power series in only one
variable and as a consequence, many of the properties of streams and stream differential
equations presented here are ultimately special instances of more general facts about formal
power series. We mention [10] as a fundamental reference on formal power series in multiple
noncommutative variables, and refer to [68] for an extensive discussion of the relationship
between the coalgebraic and the classical approaches to streams and formal power series.

Streams and coalgebra. The coalgebraic treatment of streams, stream differential equations
and stream calculus started with [57, 58]. Section 5 on linear specifications is based on
work found in the just mentioned papers, as well as further investigations into rational
streams and linear systems in [63, 11]. Section 6 on context-free specifications is based
on [13, 70, 69]. Previously, context-free languages were studied coalgebraically in [30], but
using a different approach, see [69, sec. 1.1] for a discussion. Section 7 on non-standard
specifications is based on work in [40] and for automatic sequences on [21, 41]. Further
work in this direction includes [28] on k-regular sequences.

48 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

Other coalgebraic investigations into streams and stream functions include the following.
Specification formats and coalgebraic semantics (as Mealy machines) for stream functions
in 2-adic arithmetic have been studied in [62, 29]. Causal stream functions generalise to
continuous stream functions, which have been characterised categorically in [25].

Stream circuits. Linear circuits (or signal flow graphs) are another representation of streams
(which we did not include in our survey). In [61] it was shown that rational streams are
exactly the streams that can be defined by closed linear circuits. An axiomatisation of
rational streams in a fixed point calculus was given in [49]. Recently, the semantics of open
linear circuits was given a coalgebraic and algebraic characterisation in [8], which leads also
to a complete axiomatisation in a calculus of commutative rings and modules.

Morphic and automatic sequences. Yet another way of specifying streams which comes from
the field of combinatorics on words is as a limit of a (monoid) morphism, see e.g. [45, Ch. 10]
and [4, Ch. 7]. A translation between morphic definitions and coinductive definitions was
given in [23, Sec. 2]. Coalgebraic characterisations of automatic and regular streams were
given in [21, 41, 28]

Abstract GSOS. Abstract GSOS originated as a categorical approach to structural opera-
tional semantics [3]. The seminal paper on the topic is [65], and [38] provides an introductory
overview, which also contains many examples for streams. Other rich sources of general re-
sults on bialgebras and distributive laws are [6, 7, 37, 43, 44, 66]. See also [33, 35] for a
bialgebraic treatment of formal languages and regular expressions, and several other exam-
ples. In [27], it is shown that a stream GSOS definition D can be transformed into a GSOS
defintion C for causal stream functions that defines the pointwise extensions of the stream
operations defined by D.

Functional programming. Lazy functional programming languages, such as Haskell, allow
programming on streams, and leads to many interesting examples and applications [19, 32].
Here it is also of interest to find methods of ensuring that a program operating on streams
(or, more generally, on codata) is well-defined. Specification formats for codata in functional
languages have been studied in, e.g., [2, 5]. Functional programming on non-wellfounded
structures such as stream automata was studied in [36].

Term rewriting. Closely related to functional programming is the work on streams in term
rewriting. In particular, the productivity of stream specifications given as term rewrite
systems is studied in [20, 22, 72].

Tools. Several tools exist for specifying and reasoning about streams using stream differen-
tial equations. We mention just a few. The rewriting-based tool CIRC [47, 46, 53] can check
equivalence of stream specifications (i.e., whether they define the same stream) using circu-
lar coinduction. The tool Streambox [73] uses more general equational reasoning combined
with circular coinduction to prove equivalence of stream specifications. The Haskell-based
tool QStream [67] provides facilities for entering stream differential equations, and exploring
streams together with interfacing with the OEIS [1].

STREAM DIFFERENTIAL EQUATIONS 49

References

[1] Sloane’s Online Encyclopedia of Integer Sequences. http://oeis.org.
[2] A. Abel and B. Pientka. Well-founded recursion with copatterns. In Morrisett and Uustalu [50], pages

185–196.
[3] L. Aceto, W.J. Fokkink, and C. Verhoef. Structural operational semantics. In J.A. Bergstra, A. Ponse,

and S.A. Smolka, editors, Handbook of Process Algebra, pages 197–292. Elsevier, 2001.
[4] J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Generalizations. Cambridge

University Press, 2003.
[5] R. Atkey and C. McBride. Productive coprogramming with guarded recursion. In Morrisett and Uustalu

[50], pages 197–208.
[6] F. Bartels. Generalised coinduction. Mathematical Structures in Computer Science, 13:321–348, 2003.
[7] F. Bartels. On Generalised Coinduction and Probabilistic Specification Formats. PhD thesis, Vrije Uni-

versiteit Amsterdam, 2004.
[8] H. Basold, M.M. Bonsangue, H.H. Hansen, and J.J.M.M. Rutten. (Co)algebraic characterizations of

signal flow graphs. In F. van Breugel, E. Kashefi, C. Palamidessi, and J. Rutten, editors, Horizons of
the Mind: A Tribute to Prakash Panangaden, volume 8464 of Lecture Notes in Computer Science, pages
124–145. Springer, 2014.

[9] H. Basold, H.H. Hansen, J.-E. Pin, and J.J.M.M. Rutten. Newton series, coinductively. In F. Valencia,
editor, Proceedings of the 12th International Colloquium on Theoretical Aspects of Computing (ICTAC
2015), volume 9399 of Lecture Notes in Computer Science, pages 91–109. Springer, 2015.

[10] J. Berstel and C. Reutenauer. Noncommutative Rational Series with Applications. Cambridge University
Press, 2011.

[11] F. Bonchi, M. Bonsangue, Boreale M., Rutten J.J.M.M., and Silva A. A coalgebraic perspective on
linear weighted automata. Information and Computation, 211:77–105, 2012.

[12] M.M Bonsangue, H.H Hansen, A. Kurz, and Rot J. Presenting distributive laws. Logical Methods in
Computer Science, 11, issue 3, paper 2, 2015.

[13] M.M. Bonsangue, J.J.M.M. Rutten, and J. Winter. Defining context-free power series coalgebraically.
In D. Pattinson and L. Schroeder, editors, Proceedings of CMCS 2012, volume 7399 of Lecture Notes in
Computer Science, pages 20–39. Springer, 2012.

[14] M.M. Bonsangue, Milius S., and Silva A. Sound and complete axiomatizations of coalgebraic language
equivalence. ACM Transactions on Computational Logic, 13, 2012.

[15] G. Boole. A Treatise on the Calculus of Finite Differences. MacMillan and Co., 1880.
[16] J.A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11(4):481–494, 1964.
[17] J.H. Conway. Regular algebra and finite machines. Chapman and Hall, 1971.
[18] E.W. Dijkstra. Hamming’s exercise in SASL. Handwritten note EWD792, University of Texas, 1981.
[19] K. Doets and J. van Eijck. The Haskell Road to Programming. Texts in Computing. College Publications,

2nd edition, 2012.
[20] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J.W. Klop. Productivity of stream definitions.

Theoretical Computer Science, 411(4-5):765–782, 2012.
[21] J. Endrullis, C. Grabmayer, D. Hendriks, J.W. Klop, and L.S. Moss. Automatic sequences and zip-

specifications. In N. Dershowitz, editor, Proceedings of LICS 2012, 2012.
[22] J. Endrullis and D. Hendriks. Lazy productivity via termination. Theoretical Computer Science,

412(28):3203–3225, 2011.
[23] J. Endrullis, D. Hendriks, and M. Bodin. Circular coinduction in Coq using bisimulation-up-to tech-

niques. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Proc. 4th Int. Conf. on Interac-
tive Theorem Proving (ITP 2013), volume 7998 of Lecture Notes in Computer Science, pages 354–369.
Springer, 2013.

[24] Z. Ézik and A. Maletti. The category of simulations for weighted tree automata. International Journal
of Foundations of Computer Science (IJFCS), 22(8):1845–1859, 2011.

[25] N. Ghani, P. Hancock, and D. Pattinson. Representations of stream processors using nested fixed points.
Logical Methods in Computer Science, 5(3), 2009.

[26] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete mathematics (second edition). Addison-Wesley,
1994.

[27] H.H. Hansen and B. Klin. Pointwise extensions of GSOS-defined operations. Mathematical Structures
in Computer Science, 21:321–361, 2011.

50 H. H. HANSEN, C. KUPKE, AND J. RUTTEN

[28] H.H. Hansen, C. Kupke, J.J.M.M. Rutten, and Winter J. A final coalgebra for k-regular sequences. In
F. van Breugel, E. Kashefi, C. Palamidessi, and J. Rutten, editors, Horizons of the Mind: A Tribute
to Prakash Panangaden, volume 8464 of Lecture Notes in Computer Science, pages 363–383. Springer,
2014.

[29] H.H. Hansen and J.J.M.M. Rutten. Symbolic synthesis of mealy machines from arithmetic bitstream
functions. Scientific Annals of Computer Science, 20:97–130, 2010.

[30] I. Hasuo and B. Jacobs. Context-free languages via coalgebraic trace semantics. In J.L. Fiadeiro, N. Har-
man, M. Roggenbach, and J. Rutten, editors, Proceedings of CALCO, volume 3629 of Lecture Notes in
Computer Science, pages 213–231. Springer, 2005.

[31] E.C.R. Hehner and R.N. Horspool. A new representation of the rational numbers for fast easy arithmetic.
SIAM Journal on Computing, 8:124–134, 1979.

[32] R. Hinze. Concrete stream calculus: An extended study. J. Funct. Program., 20(5-6):463–535, 2011.
[33] B. Jacobs. A bialgebraic review of deterministic automata, regular expressions and languages. In K. Fu-

tatsugi, J.-P. Jouannaud, and J. Meseguer, editors, Algebra, Meaning and Computation: Essays ded-
icated to Joseph A. Goguen on the Occasion of his 65th Birthday, volume 4060 of Lecture Notes in
Computer Science, pages 375–404. Springer, 2006.

[34] B. Jacobs and J.J.M.M. Rutten. An introduction to (co)algebras and (co)induction. In D. Sangiorgi and
J.J.M.M. Rutten, editors, Advanced topics in bisimulation and coinduction, volume 52 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2011.

[35] Bart Jacobs. Distributive laws for the coinductive solution of recursive equations. Inf. Comput.,
204(4):561–587, 2006.

[36] J.-J. Jeannin, D. Kozen, and A. Silva. Language constructs for non-well-founded computation. In
M. Felleisen and P. Gardner, editors, 22nd European Symposium on Programming (ESOP 2013), volume
7792 of Lecture Notes in Computer Science, pages 61–80, Rome, Italy, March 2013. Springer.

[37] B. Klin. Bialgebraic methods and modal logic in structural operational semantics. Information and
Computation, 207(2):237–257, 2009.

[38] B. Klin. Bialgebras for structural operational semantics: An introduction. Theoretical Computer Science,
412:5043–5069, 2011.

[39] C. Kupke, M. Niqui, and J.J.M.M. Rutten. Stream differential equations: concrete formats for coinduc-
tive definitions. Technical Report RR-11-10, University of Oxford, 2011. To appear as a book chapter.

[40] C. Kupke and J.J.M.M. Rutten. Complete sets of cooperations. Inf. Comput., 208(12):1398–1420, 2010.
[41] C. Kupke and J.J.M.M. Rutten. On the final coalgebra of automatic sequences. In R.L. Constable and

A. Silva, editors, Festschrift for Dexter Kozen, volume 7230 of Lecture Notes in Computer Science.
Springer, 2012. CWI Technical Report SEN-1112, 2011.

[42] S. Lang. Algebra. Graduate Texts in Mathematics. Springer, 2002.
[43] M. Lenisa, J. Power, and H. Watanabe. Distributivity for endofunctors, pointed and co-pointed endo-

functors, monads and comonads. Electr. Notes Theor. Comput. Sci., 33:230–260, 2000.
[44] M. Lenisa, J. Power, and H.Watanabe. Category theory for operational semantics. Theoretical Computer

Science, 327(1-2):135–154, 2004.
[45] M. Lothaire. Applied Combinatorics on Words. Cambridge University Press, 2005.
[46] D. Lucanu, E.-I.Goriac, G; Caltais, and G. Rosu. CIRC: a behavioral verification tool based on circular

coinduction. In A. Kurz, M. Lenisa, and A. Tarlecki, editors, Proceedings of CALCO, volume 5728 of
Lecture Notes in Computer Science, pages 433–442, 2009.

[47] D Lucanu and G. Rosu. CIRC: a circular coinductive prover. In T. Mossakowski, U. Montanari, and
M. Haveraaen, editors, Proceedings of CALCO, volume 4624 of Lecture Notes in Computer Science,
pages 372–378, 2007.

[48] S. MacLane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics.
Springer, 2nd edition, 1998.

[49] S. Milius. A sound and complete calculus for finite stream circuits. In Proceedings of LICS, pages
449–458. IEEE Computer Society, 2010.

[50] G. Morrisett and T. Uustalu, editors. Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’13, New York, NY, USA, 2013. ACM.

[51] M. Niqui and J.J.M.M. Rutten. An exercise in coinduction: Moessners theorem. Technical Report
SEN-1103, Centrum Wiskunde & Informatica, 2011.

STREAM DIFFERENTIAL EQUATIONS 51

[52] D. Pavlovic and M.H. Escardó. Calculus in coinductive form. In Proceedings of LICS 1998, pages 408–
417. IEEE Society, 1998.

[53] G. Rosu. CIRC tool webpage. URL: http://fsl.cs.illinois.edu/index.php/Circ.
[54] J. Rot. Enhanced Coinduction. PhD thesis, Leiden University, 2015.
[55] J. Rot, M. Bonsangue, and J. Rutten. Coalgebraic bisimulation-up-to. In P. van Emde Boas, F. Groen,

G. Italiano, J. Nawrocki, and H. Sack, editors, Proceedings SOFSEM, volume 7741 of Lecture Notes in
Computer Science, pages 369–381, 2013.

[56] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249(1):3–80,
2000.

[57] J.J.M.M. Rutten. Elements of stream calculus (an extensive exercise in coinduction). In S. Brooks and
M. Mislove, editors, Proceedings of MFPS 2001, volume 45 of Electronic Notes in Theoretical Computer
Science, pages 1–66. Elsevier Science Publishers, 2001.

[58] J.J.M.M. Rutten. Behavioural differential equations: a coinductive calculus of streams, automata and
power series. Theoretical Computer Science, 308(1):1–53, 2003.

[59] J.J.M.M. Rutten. Coinductive counting with weighted automata. Journal of Automata, Languages and
Combinatorics, 8(no. 2):319–352, 2003.

[60] J.J.M.M. Rutten. A coinductive calculus of streams. Mathematical Structures in Computer Science,
15:93–147, 2005.

[61] J.J.M.M. Rutten. A tutorial on coinductive stream calculus and signal flow graphs. Theoretical Computer
Science, 343(3):443–481, 2005.

[62] J.J.M.M. Rutten. Algebraic specification and coalgebraic synthesis of Mealy machines. In Proceedings
FACS 2005, volume 160 of ENTCS, pages 305–319, 2006.

[63] J.J.M.M. Rutten. Rational streams coalgebraically. Logical Methods in Computer Science, 3:9:1–22,
2008.

[64] N. Sloane and S. Plouffe. The Encyclopedia of Integer Sequences. 1995.
[65] D. Turi and G.D. Plotkin. Towards a mathemathical operational semantics. In Proceedings of the 12th

Annual IEEE Symposium on Logic in Computer Science (LICS 1997), pages 280–291. IEEE Computer
Society, 1997.

[66] H. Watanabe. Well-behaved translations between structural operational semantics. In L. Moss, editor,
Proceedings of CMCS 2002, volume 65 of Electronic Notes in Theoretical Computer Science, pages
337–357. Elsevier, 2002.

[67] J. Winter. QStream: a suite of streams. In R. Heckel and S. Milius, editors, Proceedings of CALCO,
volume 8089 of Lecture Notes in Computer Science, pages 353–358. Springer, 2013.

[68] J. Winter. Coalgebraic Characterizations of Automata-theoretic Classes. PhD thesis, Radboud Univer-
siteit Nijmegen, 2014.

[69] J. Winter, M.M. Bonsangue, and J.J.M.M. Rutten. Coalgebraic characterizations of context-free lan-
guages. Logical Methods in Computer Science, 9(3:14), 2013.

[70] J. Winter, M.M. Bonsangue, and J.J.M.M. Rutten. Context-free coalgebras. Journal of Computer and
System Sciences, 69:911–939, 2015.

[71] C.K. Yuen. Hamming numbers, lazy evaluation, and eager disposal. ACM SIGPLAN Notices, 27(issue
8):71–75, 1992.

[72] H. Zantema. Well-definedness of streams by transformation and termination. Logical Methods in Com-
puter Science, 6(3):paper 21, 2010.

[73] H. Zantema and J. Endrullis. Proving equality of streams automatically. In M. Schmidt-Schauß, editor,
Proceedings of the 22nd International Conference on Rewriting Techniques and Applications, RTA 2011,
May 30 - June 1, 2011, Novi Sad, Serbia, pages 393–408, 2011.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Stream Differential Equations
	2.1. Basic definitions
	2.2. Simple examples
	2.3. Stream operations
	2.4. Higher-order examples

	3. Stream Automata and Stream Calculus
	3.1. Stream Automata and coinduction
	3.2. Stream Calculus

	4. Simple Specifications
	5. Linear Specifications
	5.1. Linear equation systems
	5.2. Linear stream automata
	5.3. Matrix solution method

	6. Context-free Specifications
	6.1. Context-free equation systems
	6.2. Solutions and characterisations

	7. Non-standard Specifications
	7.1. Stream representations
	7.2. Simple non-standard specifications
	7.3. Stream specifications for automatic sequences

	8. The Syntactic Method
	8.1. Terms and algebras
	8.2. Stream GSOS definitions
	8.3. Causal stream operations
	8.4. Causality and productivity
	8.5. Simple/linear/context-free stream specifications revisited

	9. A General Perspective
	9.1. Coalgebras for a functor
	9.2. Algebras for a monad
	9.3. Bialgebras for a distributive law
	9.4. The Syntactic Method via Abstract GSOS
	9.5. Solving systems of equations

	10. Discussion and Related Work
	10.1. Other Specification Methods
	10.2. Related Work

	References

