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Abstract. The typical drivers of drought events are lower
than normal precipitation and/or higher than normal evap-
oration. The region’s characteristics may enhance or allevi-
ate the severity of these events. Evaluating the combined ef-
fect of the multiple factors influencing droughts requires in-
novative approaches. This study applies hydrological mod-
elling and a machine learning tool to assess the relation-
ship between hydroclimatic characteristics and the severity
of agricultural and hydrological droughts. The Soil Water As-
sessment Tool (SWAT) is used for hydrological modelling.
Model outputs, soil moisture and streamflow, are used to cal-
culate two drought indices, namely the Soil Moisture Deficit
Index and the Standardized Streamflow Index. Then, drought
indices are utilised to identify the agricultural and hydrolog-
ical drought events during the analysis period, and the in-
dex categories are employed to describe their severity. Fi-
nally, the multivariate regression tree technique is applied to
assess the relationship between hydroclimatic characteristics
and the severity of agricultural and hydrological droughts.

Our research indicates that multiple parameters influence
the severity of agricultural and hydrological droughts in the
Cesar River basin. The upper part of the river valley is very
susceptible to agricultural and hydrological drought. Precip-
itation shortfalls and high potential evapotranspiration drive
severe agricultural drought, whereas limited precipitation in-
fluences severe hydrological drought. In the middle part of
the river, inadequate rainfall partitioning and an unbalanced

water cycle that favours water loss through evapotranspira-
tion and limits percolation cause severe agricultural and hy-
drological drought conditions. Finally, droughts are moder-
ate in the basin’s southern part (Zapatosa marsh and the Ser-
ranía del Perijá foothills). Moderate sensitivity to agricultural
and hydrological droughts is related to the capacity of the
subbasins to retain water, which lowers evapotranspiration
losses and promotes percolation. Results show that the pre-
sented methodology, combining hydrological modelling and
a machine learning tool, provides valuable information about
the interplay between the hydroclimatic factors that influence
drought severity in the Cesar River basin.

1 Introduction

Projections indicate that drought frequency, severity, and du-
ration are expected to increase globally in the 21st century
(United Nations Office for Disaster Risk Reduction, 2021).
Upcoming soil moisture drought scenarios predict statisti-
cally significant large-scale drying, especially in scenarios
with strong radiative forcing in Central America and tropical
South America (Lu et al., 2019). A similar trend is predicted
for hydrological drought severity, which is expected to in-
crease by the end of the 21st century, with regional hotspots
in central and western Europe and South America, where
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the frequency of hydrological drought may increase by more
than 20 % (Prudhomme et al., 2014). The intensification of
drought characteristics (in combination with other factors)
could force the migration of up to 216 million people by
2050 (Clement et al., 2021), increase wildfire risk and tree
mortality, and negatively affect regional air quality, among
other ecosystem impacts (Vicente-Serrano et al., 2020).

It is essential that we better understand drought drivers
if we are to foster preparedness and resilience to projected
drought events. Remarkable progress has been achieved in
understanding drought propagation through the hydrologi-
cal cycle (Van Loon et al., 2012). Drought occurs due to
climatic extremes, which may be enhanced or alleviated by
region characteristics and anthropogenic influence (Senevi-
ratne et al., 2012; Hao et al., 2022; Tijdeman et al., 2018).
Typically, droughts are triggered by atmospheric circula-
tion and weather systems that combine to cause lower-than-
normal precipitation and/or higher-than-normal evaporation
in a region (Sheffield and Wood, 2011a; Destouni and Verrot,
2014). Reduced precipitation leads to a decrease in soil mois-
ture, causing agricultural drought. When soil moisture deple-
tion is high, it is restored in the wet season, thus reducing
subsurface flow and groundwater recharge and giving rise to
hydrological drought (Iglesias et al., 2018). Regional charac-
teristics such as soil type, elevation, slope, vegetation cover,
drainage networks, water bodies, and groundwater systems
play a relevant role in response to the climate anomalies that
affect drought propagation and contribute to different lev-
els of agricultural and hydrological drought (Sheffield and
Wood, 2011a; Zhang et al., 2022). Equally important, hu-
man interventions in the hydrological cycle (e.g. reservoirs,
water diversion, deforestation, over-pumping groundwater,
overgrazing, urbanisation) can reduce water supplies, trig-
gering a drought situation or exacerbating a climate-driven
drought (Rangecroft et al., 2019; Wang et al., 2021).

Drought planning also uses research progress on drought
characterisation. Using drought indices is a widespread
methodology for drought characterisation (Zargar et al.,
2011). Drought indices are computed numerical representa-
tions of drought severity (Keyantash and Dracup, 2002; Hao
and Singh, 2015). Severity refers to the drought strength,
also described as the deficit degree (Cavus and Aksoy, 2020),
soil moisture deficit in the case of agricultural droughts, and
streamflow deficit in the case of hydrological droughts. Gen-
erally, severity is divided into different categories (e.g. mod-
erate, severe, extreme), providing a qualitative assessment of
the drought state in a region during a given period. Drought
indices (and their categories) are crucial for tracking or an-
ticipating drought-related damage and impacts (WMO and
GWP, 2016).

Despite remarkable progress achieved in understanding
the drought-generating process and drought characterisation,
there is still a need for studies that assess the complex inter-
play between the different drivers of droughts and how their
combined effect influences drought characteristics (e.g. du-

ration, severity, intensity) (Valiya Veettil and Mishra, 2020).
Previous studies have focused on the influence of one driver
(Mastrotheodoros et al., 2020; Shah et al., 2021; Margariti
et al., 2019; Xu et al., 2019), and some of the methodologies
applied cannot adequately address the non-linear relationship
between climate, basin processes, and droughts characteris-
tics (Saft et al., 2016; Van Loon, 2015; Peña-Gallardo et al.,
2019).

We have found two studies employing machine learning to
assess the non-linear relationship between climate and basin
processes and droughts (Valiya Veettil and Mishra, 2020;
Konapala and Mishra, 2020). The studies reported relevant
findings on the parameters driving droughts; however, the se-
lected techniques showed a limitation for the drought analy-
sis since they allow only one output variable. In both cases, it
was necessary to apply the chosen technique multiple times
to find the relationships between hydroclimatic parameters
and the different categories of the evaluated drought char-
acteristics. For example, Valiya Veettil and Mishra (2020)
used a classification and regression tree (CART) to iden-
tify the variables influencing drought duration. CART al-
lows one output variable; then, the authors applied the ap-
proach three times to evaluate the variables influencing short-
term, medium-term, and long-term drought events. Mean-
while, Konapala and Mishra (2020) used a random forest
(RF) algorithm to identify the climate and basin parameters
influencing the characteristics (duration, frequency, and in-
tensity) of three different drought regimes (long duration and
mild intensity, moderate duration and intensity, short dura-
tion and high intensity). As the core of RF is a decision tree
that allows one output variable (in this case, each character-
istic of each drought regime), the authors repeated the proce-
dure nine times, one for each drought regime and character-
istic.

The aforementioned research shows the potential of ma-
chine learning techniques for drought-related analysis; never-
theless, it also suggests that assessing the parameters driving
drought characteristics requires techniques capable of simul-
taneously handling the different categories of drought char-
acteristics. Commonly used in ecology to relate independent
environmental conditions to populations of multiple species,
the multivariate regression tree (MVRT) arises as a suitable
technique for this purpose. MVRT is a constrained cluster-
ing technique that links explanatory variables to multiple
response variables while maintaining the individual charac-
teristics of the responses. Significantly, the technique does
not assume a linear relationship between explanatory and
response variables. Furthermore, it allows for the so-called
“interpretable machine learning” algorithms that make de-
cisions and predictions understandable to humans (Molnar,
2022). MVRT interpretably is a relevant attribute for drought
researchers and planners since it allows them to identify the
parameters influencing severe (or mild) drought conditions.

To understand the relationship between the drivers of
droughts and the individual categories of agricultural and
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hydrological drought severity, this study employs a three-
step methodology. The first is hydrological modelling. We
used SWAT to simulate the hydroclimatic parameters re-
quired for analysing droughts and applying the MVRT ap-
proach. The second is the analysis of droughts. SWAT out-
puts, soil moisture and streamflow, are used to calculate the
drought indices, i.e. the Soil Moisture Deficit Index (SMDI)
and the Standardized Streamflow Index (SSI). Drought in-
dices are utilised to identify the agricultural and hydrolog-
ical drought events in the analysis period. Then, we calcu-
late the months for each drought severity category during the
observed droughts. Finally, the MVRT approach is applied
to assess the relationship between hydroclimatic character-
istics (represented by the simulated parameters in each sub-
basin) and drought severity categories (represented by the to-
tal number of months for each drought severity category in
each subbasin). The analyses for agricultural and hydrolog-
ical droughts were conducted separately; thus, two MVRTs
were obtained. A concrete application of this methodology is
developed in the Cesar River basin (Colombia, South Amer-
ica).

2 Study location and methods

2.1 Case study

Figure 1 presents the Cesar River basin’s location, topogra-
phy (Fig. 1a), and land use (Fig. 1b). The basin is located
between 72◦53′W, 74◦04′W longitude and 10◦52′00′′ N,
7◦41′00′′ N latitude (Colombia). It extends for an area of
22 312 km2. The basin’s topography defines three distinct cli-
matic regions (Universidad del Atlántico, 2014). In the north
is La Sierra Nevada de Santa Marta. This sector is charac-
terised by steeply sloped mountains reaching up to 5700 m
above sea level (m a.s.l.). The temperature ranges from 3 to
6 ◦C, and the mean annual precipitation is 1000 mm. In the
east is La Serranía del Perijá. This mountainous area is an
extension of the eastern branch of the Andes range. In this
sector, the altitude ranges from 1000 to 2000 m a.s.l. The av-
erage temperature is 24 ◦C, and the average annual precip-
itation varies from 1000 to 2000 mm. Lastly, the valley of
the Cesar River and the Zapatosa marsh are in the west and
south of the basin, respectively. The valley is characterised by
flat topography and a complex system of marshes formed by
the Cesar River floodplains and its confluence with the Mag-
dalena River. The average temperature is 28 ◦C, and the mean
annual precipitation is 1500 mm. The basin’s annual rainfall
pattern is bimodal. The dry season occurs from December to
April, followed by a rainy season from April to May. From
June to July, precipitation decreases, and the main rainfall
events occur between August and November.

The predominant land use is pasture, followed by agricul-
ture (Universidad del Atlántico, 2014). The primary land use
in La Sierra Nevada foothills is pastures for cattle farming. In

La Serranía del Perijá, the high-altitude areas are covered by
forests in very good condition; at the lower altitudes, the prin-
cipal land use is agriculture, particularly subsistence crops.
The Cesar River valley’s soils are rich in nutrients, provid-
ing favourable conditions for agriculture. The riverbanks are
covered by forests with low tree density.

The Zapatosa marsh is recognised as one of the most im-
portant wetlands in the country, and considering the rele-
vance of this ecosystem, it was declared a Ramsar site in
2018 (Ramsar sites are wetlands of international importance
for containing rare or unique wetland types or for their rel-
evance in conserving biological diversity). Nevertheless, the
region is threatened by high water demand of monocrops and
the overexploitation of forest resources. In addition, climate
change projections indicate that by 2070, the basin’s tem-
perature may increase by 2.7 ◦C, and precipitation may re-
duce by 10 % compared to the reference period 1971–2000
(Universidad del Magdalena et al., 2017). Accordingly, mul-
tiple initiatives are oriented to improve water management
and create resilience to hydroclimatic extremes (Ministerio
de Ambiente y Desarrollo Sostenible (Colombia), 2015).

2.2 Methods

Figure 2 illustrates the three-step methodology applied in this
study. Section 2.2.1 describes the hydrological modelling and
Sect. 2.2.2 the drought analysis. Section 2.2.3 presents the
description of the MVRT technique.

2.2.1 Hydrological modelling

The SWAT model with an ArcSWAT extension was used
to simulate the hydrological balance of the Cesar River.
SWAT is a continuous-time, semi-distributed, and process-
based river watershed scale model developed by the Agri-
cultural Research Service of the United States Department
of Agriculture (ARS-USDA). The model is designed to sim-
ulate the quality and quantity of surface and groundwater
and predict the environmental impacts of land management
and climate change (Neitsch et al., 2011). SWAT divides the
basin area up to the outlet point into several subbasins. Each
subbasin is further split into multiple hydrological response
units (HRUs), which are areas within the subbasin with com-
mon combinations of land cover, soil type, and slope (Arnold
et al., 2012).

Model setup

The model was built for the period from 1987 to 2018. The
Cesar River basin was divided into 313 subbasins with a
median area of 70 km2. Four slope classes were set for the
HRUs generation: flat (0 %–2 %), gentle (2 %–10 %), steep
(10 %–35 %), and considerably steep (> 36 %) (GEF et al.,
2020, 2021). The following methods were used to model the
principal hydrological processes: the soil conservation ser-
vice curve number (SCS-CN) was used to simulate surface
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Figure 1. Cesar River basin: (a) topography and (b) land use.

runoff, potential evapotranspiration was estimated using the
Hargreaves method, and water was routed through the chan-
nel network using the variable storage routing method. The
details and sources of the SWAT model input data are pre-
sented in Table 1.

Model calibration and validation

We used the SWAT-CUP software package with Sequential
Uncertainty Fitting version 2 (SUFI-2) for automatic model
calibration and validation. SUFI-2 operates by performing
several iterations. The calibration parameters are sampled in
each iteration using the Latin hypercube technique against
the objective function values (Abbaspour et al., 2018).

Based on expert judgement and the available literature
(ASABE, 2017; Arnold et al., 2012), the following SWAT pa-
rameters were used in the calibration and validation process:
baseflow alpha factor (ALPHA_BF), effective hydraulic con-
ductivity in main channel alluvium (CH_K), Manning’s
value for the main channel (CH_N2), SCS runoff curve num-
ber for moisture condition II (CN2), soil evaporation com-
pensation factor (ESCO), groundwater delay (GW_DELAY),
threshold depth of water in the shallow aquifer required
for return flow to occur (GWQMN), deep aquifer percola-
tion fraction (RCHRG_DP), threshold depth of water in the
shallow aquifer for percolation to the deep aquifer to occur
(REVAPMN), and available water capacity of the soil layer
(SOL_AWC). In the calibration process, a physically mean-
ingful range is set for each parameter in each iteration. Then,
a new parameter value (within the range) is selected and ap-
plied at each HRU or subbasin.

The model was calibrated from 1985 to 2002 and validated
from 2003 to 2018 using the streamflow series from four
stream gauges (Fig. 1a). The source of the discharge data is

the Institute of Hydrology, Meteorology and Environmental
Studies (IDEAM), Colombia. The first 2 years were used as
a warming-up period in both cases. Thus, performance in-
dicators were calculated for 1987 to 2002 (calibration) and
2005 to 2018 (validation). The model’s performance for sim-
ulating streamflow was evaluated using the Nash–Sutcliffe
efficiency (NSE) and percent bias (PBIAS), represented by
Eqs. (1) and (2), respectively:

NSE= 1−

N∑
i=1

(Oi −Pi)
2

N∑
i=1

(
Oi −O

)2 (1)

PBIAS=

N∑
i=1

(Oi −Pi)× 100

N∑
i=1

Oi

, (2)

where Oi is the observed data, Pi the predicted data, O the
mean of the observed data, and N the number of observations
during the simulation period.

The NSE is a dimensionless indicator ranging from−∞ to
1, with 1 representing a perfect match between the observed
and simulated values (Moriasi et al., 2007). The PBIAS mea-
sures the average tendency of the simulated values to be
larger or smaller than the observed values. The ideal PBIAS
is 0, with low-magnitude values indicating accurate model
simulation (Moriasi et al., 2007).

2.2.2 Agricultural and hydrological drought analysis

The present study used the soil moisture deficit index
(SMDI) to analyse agricultural droughts. We chose this in-
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Figure 2. Flow chart of the methodology.

dex since it was developed to use simulated soil moisture
as the input parameter (Narasimhan and Srinivasan, 2005).
SWAT calculates the soil water content of the entire soil pro-
file. Three soil layers were identified in the Cesar River basin.
The first layer thickness (vertical distance from the surface)
reaches up to 350 mm, the second 1000 mm, and the third
1500 mm.

The computation procedure to determine the soil mois-
ture deficit used the long-term soil moisture characteristics
and the soil moisture conditions during the drought period.
The indicator was scaled between −4 and 4 to allow the spa-
tial comparison of the drought index, regardless of climatic

characteristics (Narasimhan and Srinivasan, 2005). Negative
values of SMDI indicate dry periods, while positive values
indicate wet periods (compared to the region’s normal con-
ditions). Per the SMDI, agricultural drought severity was di-
vided into three categories: moderate drought (SMDI−2.0 to
−2.99), severe drought (SMDI −3.0 to −3.99), and extreme
drought (SMDI−4). The following procedure was applied to

https://doi.org/10.5194/nhess-23-3863-2023 Nat. Hazards Earth Syst. Sci., 23, 3863–3883, 2023
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Table 1. SWAT model input data.

Data type Details Source

Digital elevation model 25× 25 m Dataset ALOS PALSAR L1.0, Cartog-
raphy 1 : 25000 Geographic Institute
Agustín Codazzi (IGAC), Colombia

Soil map 300× 300 m Soil profiles Project GEF Magdalena–
Cauca VIVE, GEF, BID, Fundación
Natura, Colombia

Land use map 25× 25 m Land use map Geographic Institute
Agustín Codazzi (IGAC), Colombia

Daily precipitation and daily minimum
and maximum temperature

Period 1985–2018 (34 years) Institute of Hydrology, Meteorology
and Environmental Studies (IDEAM),
Colombia

compute the SMDI at each subbasin:

SDij =
SWij −MSWj

MSWj −minSWj

× 100, if SWij ≤MSWj (3)

SDij =
SWij −MSWj

maxSWj −MSWj

× 100, if SWij > MSWj , (4)

where SDj is the soil moisture deficit (%), SWj is the
monthly soil water available in the soil profile (mm), MSWj

is the long-term median available soil water in the soil pro-
file (mm), and maxSWj and minSWj are the maximum and
minimum soil water available in the soil profile (mm), re-
spectively, (i = 1987–2018 and j = 1–12).

The SMDIj of any given month was calculated using
Eq. (5):

SMDIj = 0.5×SMDIj−1+
SDj

50
, (5)

where SMDIj−1 is the SMDI from the previous month.
SMDI was not calculated for the subbasins that correspond

to the Zapatosa marsh. In these subbasins, the predominant
land cover is water. See Fig. 5.

We used a SSI to represent hydrological droughts. The in-
dicator was introduced by Modarres (2007) and further in-
vestigated by Vicente-Serrano et al. (2011). The index is stat-
ically analogous to the commonly used standardised precip-
itation index (SPI) introduced by Mckee et al. (1993). SSI
values mainly range from −2.0 (extremely dry) to 2.0 (ex-
tremely wet), and hydrological drought severity is divided
into three categories: moderate drought (SSI−1.0 to−1.49),
severe drought (SSI −1.5 to −1.99), and extreme drought
(SSI −2.0 or less). The procedure to calculate SSI consists
of converting streamflow values to standardised anomalies
(i.e. z scores). To this aim, the monthly simulated streamflow
at each subbasin in the analysis period (1987 to 2018) was
fitted to the gamma probability distribution function.

SMDI and SSI were calculated monthly using the simu-
lated soil water and streamflow values at each subbasin. The

drought events during the period of analysis were then iden-
tified. A drought (agricultural or hydrological) event was as-
sumed to occur in the basin when a number of subbasins
(covering at least 30 % of the basin’s total area) were in a
drought state (moderate, severe, or extreme) for at least two
consecutive time steps (i.e. in this study month). According
to the spatial and temporal thresholds, a drought event began
when both conditions were met and continued until one of
them failed to be met. It is worth highlighting that the mini-
mal extension of a drought is not defined, but it is accepted
that droughts typically occur on a large scale (Sheffield and
Wood, 2011b). Setting a spatial threshold is a common prac-
tice to maintain a minimum drought-affected and prevent
identifying isolated areas experiencing dry spells as drought
events (Brunner et al., 2021). The temporal threshold was
used to avoid including short-term droughts (i.e. daily or
weekly) in the analysis (Li et al., 2020).

2.2.3 Multivariate regression tree approach for
evaluating the relationships between
hydroclimatic characteristics and drought
severity

MVRT is an extension of the popular regression tree
(Breiman, 2001), but it differs in that it allows for multiple
outputs (see De’ath, 2002). It recursively splits a quantita-
tive response variable (predictand, output) controlled by a
set of numerical or categorical explanatory variables (predic-
tors, input). The approach yields a set of non-linear models,
each a piece-wise linear regression model (of zero order).
An MVRT result is a tree whose terminal groups (leaves)
of instances (input–output vectors) comprise subsets of sam-
ples selected to minimise the within-group sums of squares.
Each successive split is given by a threshold value of the ex-
planatory variables (Borcard et al., 2018). MVRT is applied
to dataset exploration, description, and prediction (De’ath,
2002). In this study, the explanatory variables are the hy-
droclimatic parameters at each subbasin, represented by the
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average value of each parameter during the analysis period
(1987 to 2018). The multivariate response is the number
of months observed in the three drought severity categories
(moderate, severe, and extreme) at each subbasin. The anal-
yses for agricultural and hydrological droughts were con-
ducted separately; thus, two MVRTs were obtained.

The following MVRT attributes are relevant for this study.
First, MVRT can capture the non-linear interactions between
the parameters influencing droughts and their severity. Sec-
ond, the technique can handle numerical and categorical
hydroclimatic parameters influencing drought severity (ex-
planatory variables). Third, MVRT’s capability to handle
multiple outputs allowed us to evaluate the influence of the
hydroclimatic parameters on moderate, severe, and extreme
drought conditions simultaneously (response variables). Si-
multaneous analysis of different drought categories provides
a comprehensive understanding of the drought-generating
process and the factors influencing severe (or mild) drought
conditions. Fourth, MVRT results can be easily visualised
and interpreted. The resulting tree structure provides a clear
representation of the relationship between the drivers of
droughts and the severity of agricultural and hydrological
droughts.

For building the MVRT, R software was used, namely,
package mvpart (De’ath, 2006). Before the analysis, the sets
of explanatory and response variables were transformed to
compare the descriptors measured in different units and to
modify the variables’ weights. The matrix of explanatory
variables was standardised to a mean of 0 and a standard de-
viation of 1. The matrix of response variables was standard-
ised by the column maximum, then again by the row total
(Wisconsin double standardisation).

Datasets

Set of explanatory variables

To select the set of explanatory variables, we used the out-
comes of previous studies on governing drivers of droughts
(Zhang et al., 2022; Sheffield and Wood, 2011a). Table 2 de-
scribes the 11 parameters selected as the potential drivers of
droughts. The used values correspond to the parameters’ av-
erage in the analysis period (1987 to 2018). The averages
were computed using the SWAT model results at each sub-
basin. We used the dominant category at each subbasin for
the curve number, the slope, and the soil type (categorical
variables).

Set of response variables

We used the drought analysis outcomes to define the response
variables (Table 3). Following the methodology presented in
Sect. 2.2.2, we identified the agricultural and hydrological
drought events during the analysed period. After identifying
the drought events, we counted the months for each drought

severity category at each subbasin. The observed months for
each one of the three drought categories were used as re-
sponse variables. The analyses for agricultural and hydro-
logical droughts were conducted separately; thus, two sets
of response variables were obtained.

Building the MVRT: constrained partitioning of the data
and cross-validation

Building the MVRT consisted of two processes: (1) the con-
strained partitioning of the data and (2) the cross-validation
of the results. The mvpart package runs both processes in
parallel. The two procedures are briefly explained below,
and a more detailed description can be found in Borcard et
al. (2018).

The data partitioning consisted of three steps. First, for
each explanatory variable all possible partitions of the sites
(subbasins) were generated into two groups. Second, for each
partition, the resulting sum of within-group sums of squared
distances to the group means for the response data (within-
group SS) was calculated. Within-group SS is equivalent to
standard deviation. Lastly, the partition into two groups to
minimise the within-group SS and the threshold value/level
of the explanatory variable was retained. These steps were re-
peated within the two previously established subgroups until
all the objects formed their own groups. For each tree that
was computed, the relative error was calculated as the sum
of the within-group SS of all leaves divided by the overall
SS of the data. This procedure for MVRT is equivalent to the
one originally proposed by Breiman (2001) for his regression
tree technique.

A cross-validation procedure was used to prune the tree
and identify the optimal tree size (Kuhn and Johnson, 2013;
Legendre and Legendre, 2012). The cross-validation proce-
dure was performed automatically using mvpart. Per this pro-
cedure, the data were randomly divided into roughly equal-
sized test groups. Each test group was held out in turn while
the tree was fitted using the remaining groups. The distances
between the centroids of the objects at tree leaves and each
object of the test group were then calculated. Finally, the ob-
jects of the test group were allocated to the closest leaf of the
constructed tree. An overall relative error statistic (relative
cross-validation error, CVRE) was calculated for each group
using all n objects, per Eq. (6):

CVRE(k) =

n∑
i=1

∑p

j=1
(
yij (k)− ŷj (k)

)2
n∑

i=1

∑p

j=1
(
yij − yj

)2 , (6)

where yij (k) is the value of variable j for object i belonging
to test group k, ŷj (k) is the value of that same variable at the
centroid of the leaf closest to object i, and the denominator
is the overall sum of squares of the response data.

This cross-validation process was repeated several times
for consecutive and independent divisions of the data into
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Table 2. Explanatory variables used in MVRT.

Hydroclimatic parameter Abbreviation Unit Definition

Precipitation PRECP mm Average precipitation at each subbasin

Potential evapotranspiration PET mm Average potential evapotranspiration at each subbasin

Evapotranspiration ET mm Average actual evapotranspiration at each subbasin

Percolation PERC mm Average percolation past the root zone

Surface runoff SURFQ mm Average surface contribution to the streamflow at each
subbasin

Groundwater GRWQ mm Average groundwater contribution to the streamflow at
each subbasin

Water yield WYLD mm Average amount of water that leaves the subbasin and
contributes to the streamflow at each subbasin

Sediment yield SYLD t ha−1 Average sediment from the subbasin transported into
the reach

Curve number CN – Dominant curve number at each subbasin

Slope SLP – Dominant slope at each subbasin

Hydrologic soil group STY – Dominant hydrologic soil group (A, B, C, and D) at
each subbasin. The soil hydrologic groups refer to the
soil’s infiltration characteristics. Properties of each soil
type can be found in USDA (2007)

Table 3. Response variables used in MVRT.

Drought category Abbreviation Unit Definition

Moderate agricultural/hydrological drought MOD month Number of months in the moderate agri-
cultural drought category during the
drought events identified in the simula-
tion period at each subbasin

Severe agricultural/hydrological drought SEV month Number of months in the severe agri-
cultural drought category during the
drought events identified in the simula-
tion period at each subbasin

Extreme agricultural/hydrological drought EXT month Number of months in the extreme agri-
cultural drought category during the
drought events identified in the simula-
tion period at each subbasin

test groups. For each group, the mean and standard devia-
tion of all CVRE were computed. The CVRE varied from 0
for perfect predictors to close to 1 for poor predictors (as er-
ror increases, CVRE increases indefinitely). Among the mv-
part function arguments, we used 10 cross-validation groups
(function argument, xval= 10) and 100 iterations (function
argument xmult= 100). The tree was selected using interac-
tive cross-validation (function argument xv= “pick”).

To choose the size of the tree that retained the most de-
scriptive partition, we used the approach suggested by De’ath

(2002). According to the author the tree with the smallest
CVRE offers the best combination of explanatory power and
interpretability. Once the tree was built, the proportion of ex-
plained variance (EV) was calculated as 1−REtree (tree rel-
ative error) (Cannon, 2012).
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Table 4. SWAT model performance simulating streamflow.

Gauging station Calibration Validation

NSE PBIAS NSE PBIAS
[%] [%]

Puente Salguero 0.61 4.28 0.52 −8.3
Puente Carretera 0.50 −5.34 0.52 7.6
Cantaclaro 0.58 −11.30 0.50 −11.7
Puente Canoas 0.70 −1.34 0.57 10.64

Table 5. SWAT model performance simulating flows in the dry sea-
son.

Gauging station Calibration Validation

NSE PBIAS NSE PBIAS
[%] [%]

Puente Salguero 0.65 −19.4 0.53 −21.3
Puente Carretera 0.67 −15.3 0.53 17.2
Cantaclaro 0.67 −3.6 0.58 16.3
Puente Canoas 0.55 −15.7 0.60 −13.5

3 Results

3.1 SWAT model calibration and validation

Table 4 summarises the calibration and validation perfor-
mance indicators for the SWAT model at each gauging
station. The calibration and validation models simulated
monthly stream flows with NSE values equal to or greater
than 0.50 and relatively low PBIAS values (GEF et al., 2020,
2021). According to the performance ratings for calibrating
and validating hydrological models, NSE and PBIAS val-
ues indicated that the model was appropriate for simulat-
ing streamflow (Moriasi et al., 2007). Figure 3 presents the
model hydrographs at each gauging station for the calibra-
tion and validation periods. The locations of the stations can
be found in Fig. 1.

Since the study focuses on droughts, the model perfor-
mance simulating streamflow in the dry season was analysed
separately. Performance indicators were calculated for the
period corresponding to the basin’s dry season (December
to March). The intermediate period of precipitation decrease
from June to July was also included in this analysis. Table 5
summarises the calibration and validation performance indi-
cators in the dry season. According to the rating guidelines,
the model performance simulating streamflow in the dry sea-
son is satisfactory (ASABE, 2017).

3.2 Hydroclimatic drivers of droughts

Figure 4 presents the numerical and categorical hydrocli-
matic parameters used as potential drivers of droughts. Fig-
ure 4a to h present the multi-annual average of the numerical

hydroclimatic drivers of droughts at each subbasin. The av-
erage was calculated using the hydrological model’s results
during the simulation period (1987 to 2018). Figure 4i to k
present the categorical drivers: the curve number, slope, and
soil type. The dominant category at each subbasin is shown
in Fig. 4i to k. The dataset of explanatory variables was cre-
ated from the values presented in Fig. 4.

3.3 Drought events during the simulation period and
their duration

We identified the drought events and estimated their duration
following the definition of droughts presented in Sect. 2.2.2.
A month was summed to the duration of an event when a
number of subbasins, covering at least 30 % of the basin’s
total area, were in a drought state (moderate, severe, or ex-
treme). The identified droughts in the simulation period were
in good agreement with the chronology of drought events in
Colombia described at the National Study of Water (Instituto
de Hidrología, 2019). Table 6 shows the dates and durations
of the drought events.

After identifying the agricultural and hydrological drought
events, it was possible to determine the number of months
for each drought category in each subbasin, as represented in
Figs. 5 and 6. The results presented in Figs. 5 and 6 are the
response variables for the MVRT technique.

3.4 Multivariate regression tree

In this section, we describe the results of the MVRT tech-
nique applied to identify the governing drivers of agricultural
and hydrological drought severity and their critical thresh-
olds.

3.4.1 Drivers of agricultural drought

Figure 7 presents the tree generated by R software, the num-
ber of subbasins clustered at each terminal group (variable
“n”), and the spatial distribution of these subbasins. The tree
consists of 5 levels of split and 12 leaves. The minimum value
of the cross-validation error (CVRE= 0.46) was used to se-
lect the tree size. The relative error of the MVRT was 0.19,
and the EV was 0.81; 8 represents the tree’s numerical out-
put: namely, the number of months for each drought category.
The scattering of the outputs in each leaf allows us to identify
the most susceptible subbasins to agricultural droughts.

The MVRT indicated that actual evapotranspiration was a
strong driver of agricultural droughts; it appeared three times
at different tree levels of split (Fig. 7). The subbasins were
split at the first level according to ET (924 mm). At the sec-
ond level of split, precipitation (1318 mm) was used for the
left branch of the tree and percolation (271 mm) for the right
branch. Then, the left branch was recursively split as fol-
lows: at the third level, according to potential evapotranspi-
ration (1888 mm) and evapotranspiration (1191 mm); at the
fourth level, according to evapotranspiration (1064 mm) and
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Figure 3. Monthly calibration and validation for streamflow at (a) Puente Salguero, (b) Puente Carretera, (c) Puente Canoas, and (d) Can-
taclaro.

Table 6. Agricultural and hydrological droughts during the period of analysis.

Event Agricultural droughts Hydrological droughts

Date Duration [months] Date Duration [months]

I May 1991–Jun 1992 13 Apr 1991–May 1992 14
II Jun 1997–Apr 1998 11 Apr 1997–Feb 1998 11
III Jun 2001–Aug 2001 3 May 2001–Jun 2001 2
IV Oct 2009–Jan 2010 4 Sep 2009–Nov 2009 3
V Jun 2014–Aug 2014 3 Jun 2014–Jul 2014 2
VI May 2015–Jul 2016 15 Apr 2015–Apr 2016 13

percolation (111 mm); and at the fifth level, according to sed-
iment yield (101 t ha−1). The left branch accounts for 7 out
of the tree’s 12 leaves. Regarding the right branch, splitting
was done according to evapotranspiration (729 mm) and the
curve number (67) at the third level and according to the wa-
ter yield (352 mm) at the last level. In the following, we de-
scribe agricultural drought MVRT terminal groups.

Leaf a clusters seven subbasins in the north part of the
basin. In this area, actual evapotranspiration and potential
evapotranspiration were above the basin average, while pre-
cipitation was below average (Fig. 4c, b, and a, respectively).
Figure 8a shows that these subbasins experienced the high-
est number of months in extreme agricultural drought and a
median of 15 months in severe agricultural drought. Leaf b

clusters two subbasins in the western part of the basin. In
this leaf, there are no months in the extreme drought cate-
gory. The median of months in the moderate and severe agri-
cultural drought categories is 10 months, one of the lowest
among the terminal groups (Fig. 8b).

Leaves c and d cluster 24 and 19 subbasins, respectively.
Leaf c groups subbasins located in the upper part of the river
course and the basin east. Precipitation was slightly below
the basin average in the subbasins located in the north and
close to the average in subbasins in the east (Fig. 4a). Leaf
d groups subbasins located in the upper course of the river
and in the basin’s western part. The actual evapotranspira-
tion threshold to split leaves c and d is 1064 mm, a value
above the basin average (Fig. 4c). For subbasins with ac-
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Figure 4. Average value of hydroclimatic parameters during the simulation period at each subbasin: (a) precipitation (in mm), (b) potential
evapotranspiration (in mm), (c) actual evapotranspiration (in mm), (d) percolation (in mm), (e) surface runoff (in mm), (f) groundwater
contribution to streamflow (in mm), (g) water yield (in mm), (h) sediment yield (in t ha−1), (i) curve number, (j) slope, and (k) soil type. The
soil hydrologic groups A, B, C, and D refer to the soil’s infiltration characteristics.
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Figure 5. Months in each agricultural drought category: (a) moderate, (b) severe, and (c) extreme. SMDI was not calculated in the wetland
subbasins (i.e. hatched area).

Figure 6. Months in each hydrological drought category: (a) moderate, (b) severe, and (c) extreme.

tual evapotranspiration below the threshold, leaf c, the me-
dian of months in the severe drought category is below 10
(Fig. 8c). For subbasins with actual evapotranspiration above
the threshold, leaf d , the median of months in the severe
drought category is 16, one of the highest among the terminal
groups (Fig. 8d).

Leaves e, f , and g cluster 24, 6, and 12 subbasins, re-
spectively. Subbasins are located in the river valley and the
basin’s western part. In these subbasins, precipitation was be-
low the basin average (Fig. 4a), and actual evapotranspira-
tion was above the average (Fig. 4c). The percolation thresh-
old to split leaves e and f from leaf g is 111 mm, a value
considerably below the basin average (Fig. 4d). At the fifth
level of split, the sediment yield threshold to split leaves e

and f is 101 t ha−1, a value close to the average in the basin
(Fig. 4h). Figure 8e, f, and g show that subbasins clustered in
these leaves are prone to agricultural droughts. The median
of months in the moderate drought category was above 20
months, the severe category was above 10 months, and the
three leaves exhibited months in the extreme drought cate-
gory.

Leaves h, i, and j cluster 26, 52, and 56 subbasins, respec-
tively. Subbasins are mainly located in the wetland surround-
ings, La Serranía (leaf i), and some outliers are located in
the basin’s north (leaves h and j ). Percolation in leaves h, i,
and j was close to the basin average (Fig. 4d). Actual evapo-
transpiration in terminal groups h and i was relatively close
to the basin average (Fig. 4c). The water yield threshold to

Nat. Hazards Earth Syst. Sci., 23, 3863–3883, 2023 https://doi.org/10.5194/nhess-23-3863-2023



A. Paez-Trujilo et al.: Explainable machine learning for drought analysis 3875

Figure 7. MVRT of hydroclimatic drivers of agricultural droughts at the Cesar River basin and spatial distribution of the subbasins clustered
at each leaf. Tree leaves are named from a to l, and n indicates the number of subbasins clustered at each leaf. The wetland subbasins are not
included in the analysis for agricultural drought.

split clusters h and i is 352 mm. Overall, subbasins clustered
at leaves h, i, and j presented low susceptibility to severe
and extreme agricultural drought conditions. The median of
months in the moderate drought category was slightly higher
than 10; the median for months in the severe category was
the lowest for the study area and showed no months in the
extreme drought category (Fig. 8h, i, and j).

Leaves k and l cluster two and six subbasins, respectively.
Subbasins are located towards the basin’s north, and one out-
lier is observed in the subbasin east (leaf l). In these sub-
basins, percolation was lower than 271 mm, a value rela-
tively low compared to other basin areas (Fig. 4d). In leaf
k, the curve number was lower than 67, while in leaf l, it was
higher. In leaf k, the median of months for the moderate cat-
egory is 10, and for the severe category, it is 14. In leaf l, the
median of months in the moderate category is above 10, and
the subbasins experienced some months in severe drought.
Leaves k and l show no months in the extreme drought cate-
gory (Fig. 8k and l).

3.4.2 Drivers of hydrological drought

Figure 9 presents the hydrological drought MVRT, the num-
ber of subbasins clustered at each terminal group (variable
“n”), and the spatial distribution of these subbasins. The tree
consists of four levels of split and eight leaves. The mini-
mum value of the cross-validation error (CVRE= 0.67) was
used to select the tree size. The relative error of the MVRT
was 0.52, and the EV was 0.48. Figure 10 presents the tree’s
numerical output: namely, the number of months for each
drought category. This information allowed us to identify the
clusters of subbasins prone to hydrological droughts.

The MVRT demonstrated that precipitation was a primary
driver of hydrological drought; it appeared two times at dif-
ferent levels of split. The subbasins were separated at the
first split level according to precipitation (1632 mm). At the
second split level, precipitation (1398 mm) was used as the
left branch of the tree, and water yield was used as the right
branch (29 mm). The left branch was then further divided ac-
cording to percolation (153 mm) at the third level and ac-
cording to curve number (51) at the fourth level. At the third
level, the right branch was split according to evapotranspira-
tion (833 mm) and surface runoff (0.5 mm). The MVRT ter-
minal groups were then examined in detail.

Leaf a clusters 28 subbasins in the upper basin and one
outlier located in the western part of the subbasin (Fig. 9a).
In these subbasins, precipitation was considerably below the
basin average (Fig. 4a). Figure 10a shows that the subbasins
in this terminal group repeatedly experienced moderate, se-
vere, and extreme hydrological drought.

Leaves b and c cluster 37 and 13 subbasins, respectively.
Subbasins clustered at leaf b are relatively distant; most are
towards the eastern part of the basin, and the rest are in the
north and west of the basin. Subbasins in leaf c are located
in the river’s middle course towards the western part of the
basin and some outliers in the north. Precipitation and per-
colation were slightly above the basin average in subbasins
clustered at leaves b and c (Fig. 4a and d). The curve num-
ber threshold to split leaves c and d is 51. Subbasins with a
curve number above the threshold, leaf b, experience months
in extreme drought and present one of the highest median
of months for severe drought (Fig. 10b). For subbasins with
curve number below the threshold, leaf c, the median of
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Figure 8. Number of months in agricultural drought categories (moderate, severe, extreme) at each leaf. Tree leaves are named from a to l.

months at moderate drought is almost 20 and experienced
months at severe and extreme category (Fig. 10c).

Leaf d clusters 29 subbasins in the river’s middle course
and the basin’s eastern part. Figure 10d indicates that in this
terminal group, the subbasins experienced fewer months in
the severe and extreme drought categories than the other
clusters in the tree’s left branch; however, subbasins expe-
rienced one of the highest medians of months at moderate
drought.

In leaves, e (n= 72) and f (n= 23), precipitation ex-
ceeded the basin average and water yield was considerably
high in the subbasins in La Serranía del Perijá (Fig. 4a and
g). The actual evapotranspiration threshold to split leaves e

and f is 833 mm, a value below the basin average (Fig. 4c).
Both terminal groups describe moderate exposure to hydro-
logical drought. At leaf e, the median of months in the se-
vere and extreme drought categories is below 10, while the
median of months in the moderate drought category is 20
(Fig. 10e). The hydrological drought exposure of the sub-
basins clustered at leaf f is also mild. In these subbasins,
actual evapotranspiration is above the threshold and close to
the basin average. These subbasins present the lowest median
of months for all drought categories (Fig. 10f). Notably, the
Zapatosa marsh and upstream subbasins are clustered in this
terminal group (Fig. 9f).

Leaves g and h cluster 71 and 40 subbasins, respectively.
Subbasins clustered at these leaves are located upstream of
the Zapatosa marsh. The surface runoff threshold to split the
leaves g and h is 0.5 mm. Figure 10g shows that the sub-
basins grouped at leaf g present the low susceptibility to
hydrological drought. The median of months for all cate-
gories is the lowest in the basin. In leaf h, the surface runoff
was lower than 0.5 mm. In these subbasins, the medians of
months in the severe and extreme categories are relatively
low, while the median of months in the moderate category is
18 (Fig. 10h).

4 Discussion

4.1 Hydroclimatic drivers of agricultural drought

The left branch of the MVRT clusters the subbasins suscep-
tible to severe agricultural drought (Fig. 8a, d, e, f, and g).
Conversely, the right branch of the MVRT clusters the sub-
basins experiencing moderate agricultural drought severity.
The subbasins in leaves h, i, and j predominately experi-
enced months in the moderate drought category (Fig. 8h, i,
and j).

Interestingly, agricultural drought severity in leaves a, e,
f , and g was comparable but governed by different param-
eters. For instance, leaf a presented the highest median of
months for severe and extreme agricultural drought (Fig. 8a).
The drought drivers in this terminal group, namely precip-
itation and potential evapotranspiration, indicate that agri-
cultural drought results from an imbalance between the soil
moisture supply (i.e. precipitation relatively close to the min-
imum value at the basin) and soil moisture demand (i.e. mod-
erately high potential evapotranspiration). Leaves b, c, and d

corroborate the significant influence of evapotranspiration on
agricultural drought severity. A comparison of clusters a and
b and c and d indicates that the leaves with higher evapotran-
spiration are more prone to experiencing severe drought. It is
interesting to notice that in clusters c and d , the actual evapo-
transpiration threshold causes a notable difference in drought
severity. While leaf c clustering subbasins with actual evap-
otranspiration below 1064 mm presents the lowest median of
months at severe category at the left branch of the tree, leaf
d shows the highest median of months at the same category
in the tree.

This finding aligns well with studies demonstrating
that potential evapotranspiration considerably enhances the
severity of agricultural droughts in water-limited areas (Teul-
ing et al., 2013; Ding et al., 2021; Manning et al., 2018).
According to such studies, potential evapotranspiration in-
fluence on agricultural drought severity may be explained
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Figure 9. MVRT of hydroclimatic drivers of hydrological drought at the Cesar River basin and spatial distribution of the subbasins clustered
at each leaf. Tree leaves are named from a to h, and n indicates the number of subbasins clustered at each leaf.

Figure 10. Months in hydrological drought categories (moderate, severe, extreme) at each leaf. Tree leaves are named from a to h.

by the significant increase in net radiation during droughts,
as the lack of rainfall usually concurs with decreased cloud
cover.

In contrast, the MVRT outcomes suggest that a lack of pre-
cipitation is not a primary driver of agricultural drought in the
subbasins clustered at leaves e, f , and g. Particularly, leaf e

grouped the subbasins that experienced the most severe agri-
cultural drought in the analysis period. The median of months
in the moderate drought category was above 20; the severe
category was above 10, and subbasin experienced months in
extreme category (Fig. 8e). The observed evapotranspiration
and percolation thresholds might indicate poor precipitation
partitioning and a disturbed water regime that favours wa-
ter lost by runoff and evapotranspiration. Furthermore, the

sediment yield threshold (notably above the median) may be
linked to poor soil structure, thus compromising soil water
retention capacity and enhancing drought severity.

The results from leaf e show that a higher sediment
yield slightly increases the occurrence of extreme droughts
(Fig. 8e), as compared to the results from leaf f . This agrees
with earlier findings concluding that soil degradation en-
hances agricultural drought characteristics (Masroor et al.,
2022; Trnka et al., 2016; Santra and Santra Mitra, 2020). Fur-
ther, our results are consistent with previous studies that indi-
cate the incidence of droughts is caused not only by extreme
weather events but also by the inefficient soil–water manage-
ment associated with land and soil degradation (Cornelis et
al., 2019; Wildemeersch et al., 2015).
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The right branch of the tree provides valuable informa-
tion on the hydroclimatic parameters that reduce the sever-
ity of agricultural droughts. Moderate drought susceptibil-
ity in leaves h, i, and j is linked to relatively low evapo-
transpiration thresholds; accordingly, it may be asserted that
evapotranspiration-controlling measures (e.g. surface cover,
crop rotation, agroforestry, intercropping) are relevant inter-
ventions for building resistance to agricultural drought. At
terminal groups h and i, water yield was found to influence
the severity of agricultural drought. Notably, the subbasins at
leaf i were slightly more resistant to drought (Fig. 8i); this in-
dicates that measures aimed at increasing the subbasins’ wa-
ter storage capacity (e.g. rainwater and floodwater harvesting
techniques) are suitable interventions to reduce the severity
of agricultural drought.

Some of the subbasins grouped at leaf i showed high ex-
posure to hydrological drought (Fig. 10b and c). Contrasting
exposure to agricultural and hydrological droughts suggests
that the water retention capacity in these subbasins reduces
the severity of agricultural drought events but limits the con-
tribution of surface runoff, lateral flow, and groundwater to
the streamflow, thus exacerbating the water deficit and hy-
drological drought severity. Therefore, drought management
interventions require the prior assessment of the potential ef-
fects on both types of droughts.

4.2 Hydroclimatic drivers of hydrological droughts

The subbasins clustered on the left branch of the tree were
prone to hydrological drought (Fig. 10a, b, c, d). Leaf a

presented the highest median for months in the severe and
extreme hydrological categories. The analysis results con-
firmed that precipitation deficits caused the severe hydrolog-
ical drought conditions in the upper part of the basin.

Conversely, the MVRT also showed that in terminal
groups b, c, and d , hydrological drought severity was linked
to the inefficient partition of precipitation. Selected drivers
(precipitation, percolation and curve number representing
land use) are widely recognised as predominant drivers of
hydrological droughts (Iglesias et al., 2018; Stoelzle et al.,
2014; van Lanen et al., 2013; van Loon, 2015). The dif-
ference observed between the precipitation and percolation
thresholds suggests that a large part of rainwater was lost ei-
ther by evapotranspiration or surface runoff (or other water
abstractions; e.g. human consumption, agriculture). Low per-
colation values limited the groundwater contribution to the
streamflow, enhancing the streamflow deficit during drought
periods.

Interestingly, the curve number was selected as a driver
of hydrological drought for leaves b and c (Fig. 9b and c).
The subbasins in leaf b presented higher curve numbers than
those in leaf c and higher exposure to hydrological drought.
High curve number values are commonly the result of an-
thropogenic changes in land cover, which modifies evapo-
transpiration and the division of precipitation into evapotran-

spiration and streamflow. The present selection of the curve
number at the third level of split is consistent with previous
studies, which established that hydroclimatic parameters and
human activities influence hydrological droughts; however,
the influence of both drivers is uneven. Results indicate that
hydroclimatic parameters are more influential (Saidi et al.,
2018; Jehanzaib et al., 2020).

The right branch of the MVRT grouped subbasins with
moderate and intermediate exposure to hydrological drought.
The hydroclimatic parameters and the thresholds used to de-
fine leaves e and f (precipitation, water yield, and evapotran-
spiration) demonstrate that in these subbasins, precipitation
values compensated for the water abstraction by evapotran-
spiration. When we compare the severity of the hydrological
droughts observed in leaves e and f , we find that lower evap-
otranspiration values reduce exposure to severe and extreme
hydrological drought but increase the incidence of moderate
hydrological drought.

The subbasins in terminal group g experienced the low-
est median number of months for all hydrological drought
categories (Fig. 10g). The water yield threshold indicates
good water retention capacity in these subbasins. It can be
explained by the proximity of the subbasins to the marsh
(which acted as a natural control), the low slope in the area
(which reduced streamflow velocity), and the presence of wa-
ter bodies (which collected and stored runoff during the rainy
season). The runoff threshold indicates that part of rainwater
reaches the streamflow; nevertheless, the subbasins in clus-
ter g have one of the lowest runoff potentials in the basin
(Fig. 4e). On the contrary, in these subbasins, percolation
is considerably high (Fig. 4d). This seems to confirm that
low susceptibility to hydrological droughts is linked to sub-
basin water retention capacity. The present findings suggest
that the water storage capacity of the Zapatosa marsh can
compensate for the increased evaporation that occurs dur-
ing drought events, thereby alleviating hydrological drought
severity upstream. Our results concur with previous analy-
ses concluding that wetlands (located in different climatic
regions) significantly alleviate hydrological drought severity
when direct evaporation from the water body does not signif-
icantly reduce water storage (Wu et al., 2023).

The hydrological drought conditions in the subbasins clus-
tered at leaf h were mild, despite water yield values below
29 mm (Fig. 10h). Negligible surface runoff values indicated
that in leaf h, rainfall is stored in the soil profile, is lost by
evapotranspiration, or percolates in an area of minimal base-
flow contribution to streamflow. This limits the amount of
water reaching the streamflow and enhances the severity of
hydrological droughts, compared to leaf g.
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4.3 Comparison of the hydroclimatic parameters
influencing the severity of agricultural and
hydrological droughts

Crucial similarities and differences emerge from contrasting
the parameters influencing the severity of droughts and the
spatial distribution of the subbasins experiencing severe and
mild drought conditions. MVRTs indicate that severe agri-
cultural and hydrological drought conditions occurred in the
upper and middle course of the river. Nevertheless, the severe
droughts were influenced by different hydroclimatic factors.
Severe agricultural drought in the headwater was driven by
the interaction between precipitation shortfalls and high po-
tential evapotranspiration (Fig. 7a). Conversely, severe hy-
drological drought condition was solely driven by limited
precipitation. It is worth highlighting that the severe hydro-
logical situation extends from the headwater to the subbasins
in the middle course (Fig. 9a).

Downstream, in subbasins located in the middle course,
the agricultural and hydrological drought situation was also
severe. In this area, drought severity was linked to inad-
equate rainfall partitioning and an unbalanced water cycle
that favours water loss through evapotranspiration and low
percolation values (Figs. 7d, e, f, and g and 9b, c, and d).
Significantly, agricultural and hydrological droughts in these
leaves were more severe than in leaves experiencing precip-
itation deficits (Figs. 7a and 9a). Results also suggest that
poor soil structure enhanced severe agricultural drought con-
ditions (Fig. 7e), and high curve numbers seem to increase
hydrological drought severity (Fig. 9b).

MVRTs also showed subbasins experiencing mild agricul-
tural and hydrological drought severity. Overall, these sub-
basins were located in the southern part of the basin. How-
ever, for agricultural drought, a few cases were observed in
the north of the basin (Fig. 7h, i, and j). Subbasins presenting
mild hydrological drought severity are allocated upstream of
the Zapatosa marsh (Fig. 9g). Moderate agricultural drought
severity was linked to low evapotranspiration losses and the
subbasins’ capacity to retain water in the soil profile, im-
proving percolation (Fig. 7j). In turn, moderate hydrologi-
cal drought severity is related to the subbasins’ proximity to
the marsh (which acted as a natural control reducing the wa-
ter yield) and surface runoff contributions to the streamflow
(Fig. 9g). Remarkably, some of these subbasins also showed
mild agricultural drought conditions (Fig. 7i).

4.4 Accuracy of the MVRTs

The high EV (0.81) value indicates the good explanatory
power of the tree built for agricultural drought. This confirms
that the selected explanatory variables significantly influence
the severity of agricultural drought. Nevertheless, two po-
tential disadvantages of the tree are identified. First, clusters
h and i are very similar. Drought severity is alike in these
leaves, and the parameters influencing droughts are the same.

This suggests that these two clusters can be merged into one.
Second, leaves b and k cluster only two subbasins. Accord-
ingly, the distribution presented in the boxplots must be in-
terpreted cautiously. Neither of these disadvantages compro-
mises the study’s main findings; however, further analysis is
recommended to determine the size of the tree (number of
clusters) that better fits the assessment of the hydroclimatic
drivers of droughts.

Conversely, the explanatory power of the tree built for hy-
drological drought is not very high (EV= 0.48). This may be
related to the inaccurate representation of groundwater con-
tribution to the streamflow. Streams depend significantly on
groundwater during droughts to maintain flow; nevertheless,
groundwater contribution to the streamflow was not included
as a key drought driver in the MVRT, although it was in the
list of explanatory variables. It is possible that the model’s
simplifications for the simulation of groundwater flow and
storage did not adequately represent the groundwater contri-
bution to the streamflow (Molina-Navarro et al., 2019). The
lack of adequate information about this relevant factor hy-
drological drought may have compromised the MVRT’s ac-
curacy. Unexplained variability may also link to factors that
influence hydrological drought but were not considered in
the dataset of explanatory variables (e.g. abstractions such as
water for irrigation, industry, or human consumption).

5 Conclusions

In this study, a machine learning technique, namely multi-
variate regression tree (MVRT), was applied. The main aim
was to build an “explanatory AI” model to explicitly iden-
tify relationships between a subbasin’s hydroclimatic char-
acteristics (i.e. explanatory variables) and the severity cate-
gories of agricultural and hydrological drought (i.e. response
variables). The results show that the machine learning tech-
nique identifies drought severity’s primary drivers and criti-
cal thresholds reasonably well. Notably, the MVRT built for
agricultural drought shows a good explanatory power. The
MVRT also identifies parameters which can contribute to re-
ducing agricultural and hydrological drought severity.

The outcomes of the MVRT provide valuable information
on the hydroclimatic parameters influencing the drought-
generating process in the Cesar River basin. MVRTs indicate
that severe agricultural and hydrological drought conditions
observed in the upper and middle course of the river are influ-
enced by different hydroclimatic factors. The interaction be-
tween precipitation shortfalls and high potential evapotran-
spiration drives severe agricultural drought in the headwater.
Conversely, severe hydrological drought condition is mostly
caused by limited precipitation. In subbasins in the middle
course, drought severity is linked to inadequate rainfall parti-
tioning and an unbalanced water cycle, favouring water loss
through evapotranspiration and low percolation values. No-
tably, results suggest that poor soil structure enhances se-
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vere agricultural drought conditions, and high curve num-
bers seem to increase hydrological drought severity. In the
southern region, subbasins experience moderate agricultural
and hydrological drought severity. Mild agricultural drought
is linked to low evapotranspiration losses and subbasins’ ca-
pacity to retain water in the soil profile, improving percola-
tion. In turn, moderate hydrological drought severity relates
to the subbasins’ proximity to the marsh (which acted as a
natural control reducing the water yield) and surface runoff
contributions to the streamflow. The outcomes of this study
also demonstrate that the combined effect of parameters with
low impact can trigger a drought situation as severe as the
one produced by one or two of the most influential parame-
ters. It is worth mentioning that the study outcomes indicate
that the slope and the soil type do not influence the severity
of agricultural and hydrological droughts in the Cesar River
basin.

It can also be concluded that the MVRT (and other ma-
chine learning techniques that generate “explainable AI”
models based on progressive tree-like data partitioning and
simplified models in leaves) is a relevant tool for defining
drought management strategies. The tool helps to identify
drought-prone areas and design management strategies that
contribute to maintaining the hydrological parameters influ-
encing droughts above (or below) the thresholds that trigger
severe and extreme drought conditions.

This study is not without limitations. First, we used a sim-
plified approach to modelling a complex phenomenon us-
ing SWAT software (e.g. representing the groundwater com-
ponents that impact hydrological drought conditions). Sec-
ond, only a single machine learning (ML) technique was
employed to build explainable models. Further extensions
of this research may address these limitations. For exam-
ple, candidate ML techniques could include M5 model trees
(rather than regression trees), which have shown their effec-
tiveness in solving water-related problems (see Solomatine
and Dulal, 2003; Solomatine and Xue, 2004). These result
in linear models in tree leaves rather than constants like in
regression trees. Additionally, there is still a need to better
represent anthropogenic interventions (and other relevant pa-
rameters influencing droughts) in the set of explanatory vari-
ables (e.g. abstractions such as water for irrigation, industry
or human consumption, groundwater pumping).

The issue of combining human and artificial intelligence
(and knowledge of physics with machine learning) is cur-
rently a point of great interest (see Jiang et al., 2020, on
“physics-aware deep learning models”, Moreido et al., 2021,
and Bertels and Willems, 2023, on the role of experts in con-
straining machine-learning and hydrological models). How-
ever, the mentioned approaches directly incorporate physical
knowledge into ML models, and domain experts still see the
resulting models as “black boxes”. This study can be seen as
the one that contributes to developing and testing tools to bet-
ter incorporate “explanatory” ML, leading to models that can
be overviewed and analysed by experts and hence have better

potential for inclusion into existing modelling and manage-
ment practices.
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