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1 Introduction

Building information modelling (BIM) and geoinformation are widely recognised as com-
plementary sources of data. Whereas a BIM model can represent a single building or
infrastructure project in high detail, geoinformation-based sources can represent differ-
ent types of features in a large region with less detail. Integrating geoinformation and
BIM is very useful in practice and constitutes an active research field—often referred
to as GeoBIM. A short list of GeoBIM applications include: performing checks for the
issuance of building permits using buildings (BIM) and city regulations (Geo), naviga-
tion that combines outdoor (Geo) and indoor (BIM) portions, facility management for
infrastructure sites (BIM) that include the regional connections between the sites (Geo),
and risk management using regional simulations (Geo) that also takes into account the
impact on specific sites (BIM).

Among the geoinformation datasets that are usually considered within a GeoBIM con-
text, 3D city models stand out because they model buildings in three dimensions, making
them analogous to BIM models of buildings. Because of this, there is a special interest in
integrating building models of these two sources. Following the intuitive classification of
Ma and Ren [2017], the integration can take place through conversions from BIM models
to 3D city models, conversions from 3D city models to BIM models, or conversions of
both to other data models or formats. For instance, such an integration can be used to
provide neighbourhood context for the design of buildings (Geo to BIM) [Noardo et al.,
2019] or input data for simulation software (joint conversion to another format) [Jusuf
et al., 2017].

However, among these three types of conversions, the BIM to 3D city model case is par-
ticularly appealing since it has a wide range of potential applications, such as providing
interior geometries for 3D city models and running spatial analyses to see the effect of
planned—not yet constructed—buildings. Also, since BIM models are generally more
geometrically and semantically detailed than 3D city models, it should be possible to
compute the BIM-to-Geo conversion through an automatic abstraction process using the
data that is already available in a typical BIM model. This conversion is therefore the
focus of most research [Tan et al., 2023] and has substantial software support [Noardo
et al., 2020]. This is unlike the opposite case (3D city model to BIM), which involves
going from a less detailed to a more detailed representation—often making educated
guesses about the shape and size of some elements [Salheb et al., 2020; Isailović et al.,
2025].

There is a large body of research on the conversion of BIM models to 3D city models,
but most methods in the literature tend to avoid applying complex geometric process-
ing to the models—keeping the methods simpler but also limiting what they can do.
For instance, it is difficult or impossible for such a method to output models that are
geometrically valid (even from partially invalid input) or fully conform to a particular
standard (such as a minimum distance between vertices).



In this paper, we apply geometric processing techniques to tackle the creation of building
models at particular levels of detail (LoDs)—a key feature of 3D city modelling standards
that enables efficient and scalable creation, processing and use in applications [Biljecki
et al., 2015]. Our method starts from highly detailed BIM models in the open IFC data
model and abstracts them to 9 different generalised output models that fit within the
LoD frameworks in the open CityGML [Gröger et al., 2008, 2012; Kolbe et al., 2021]
and CityJSON [Biljecki et al., 2016; Ledoux et al., 2019] standards.

1.1 CHEK project

This selection of output LoDs has been created based on the goals of the Horizon Europe
funded CHEK (Change Toolkit for Digital Building Permits) project. In this project,
a toolkit has been developed to check new and renovated buildings (modelled in BIM)
against urban regulations (e.g. maximum building height) by integrating the BIMmodels
into the 3D city models. For the integration, abstractions of the BIM models need to be
derived containing those geometrical and semantic properties as needed in the regulations
checking.

The users involved in the CHEK project, as other stakeholders, initially requested the
output from the BIM to Geo conversion at LoD3 (either LoD3.2 or 3.3), since this is the
most detailed and complete GIS output. However, LoD3 is challenging to generate from
existing BIM models, since it requires extremely well structured IFC models. In addition,
LoD3 models are geometrically complex. When this complex geometry is not required for
downstream analysis or when the IFC model has issues, more abstracted LoD could be
an alternative, more suitable, solution. To support this, the range of LoDs was expanded
to the volumetric LoD2.2, 1.3, 1.2, and 1.0. These LoDs are often used in established
GIS models and their abstracted geometry relies just on a selection of the input BIM
model. The non-volumetric counterparts of LoD2.2, 1.3, 1.2, and 1.0 (LoD0.4, 0.3, 0.2,
and 0.0 respectively) were added as well. These non-volumetric abstractions, except for
LoD0.0, are created in a sub-step of the creation of the volumetric abstractions. They
contain similar data when compared to their volumetric counterparts but their creation
process is simpler. Therefore, these non-volumetric abstractions could function as either
a file size compression method or a “fail-safe” output when the process to generate their
volumetric counterparts encounters some issues.

1.2 Overview of this report

Section 2 covers the related work, including a description of the different LoD ab-
straction frameworks for 3D city models, a review of the BIM-to-Geo conversion
methods available in the literature, and another review of different abstraction
methods that can be used to generalise 3D city models.



Section 3 describes our method that creates buildings for 3D city models at different
LoDs from BIM models.

Section 4 describes the implementation details of the method, which has been made
into an open source prototype.

Section 5 analyses the results of testing the prototype with a variety of IFC files.

Section 6 contains the conclusions of this report.

1.3 Acknowledgements

This research has received funding from the European Union’s Horizon Europe pro-
gramme under Grant Agreement No.101058559.



2 Related work

2.1 3D city model LoD abstraction frameworks

The CityGML standard in its versions 1.0 [Gröger et al., 2008] and 2.0 [Gröger et al.,
2012] introduced an abstraction framework consisting of five levels of detail (LoDs)
ranging from LoD0 to LoD4. In the case of buildings, these LoDs correspond to a 2.5D
representation of the building’s footprint or roof area (roofprint) for LoD0, prismatic
blocks with flat roofs for LoD1, relatively simple models with the shape of the building’s
roof structures and surfaces with semantics for LoD2, detailed architectural models of
the building’s exterior for LoD3, and detailed architectural models that also include the
exterior for LoD4.

In CityGML version 3 [Kolbe et al., 2021], the abstraction framework was overhauled
(Figure 1) in two main ways: (1) surface semantics can be included in any LoD, and (2)
LoD4 was removed and interior geometries are now allowed in all LoDs, which includes
floor plans for LoD0. As a result of the latter change, different LoDs can be used to
represent the exterior and interior features of a building.

Figure 1: The four LoDs available in the CityGML 3.0 standard

Considering the large gaps between LoDs, as well as the possibility of different inter-
pretations of single LoDs in the standard, Biljecki et al. [2016] proposed a finer-grained
abstraction framework in which each LoD in the CityGML standard is split into four re-
fined LoDs (Figure 2). By doing so, an LoDx (where 0 ≤ x ≤ 3) in the original standard
becomes four different levels of the form LoDx.y, where 0 ≤ y ≤ 3. This LoD framework
is explicitly supported in the CityJSON standard [Ledoux et al., 2019].

In this scheme, LoD0.x and 1.x follow a similar pattern, with 0.x modelling footprints
and sometimes roof areas, and 1.x modelling volumes. LoD0.0 and 1.0 allow multiple
buildings to be aggregated into a single geometry, LoD0.1 and 1.1 model buildings in-
dividually (without aggregation) with all their large parts, LoD0.2 and 1.2 also model
smaller parts (e.g. alcoves) with roofs modelled/extruded at a single height, and LoD0.3
and 1.3 are similar but allow multiple roof surfaces at different heights. Note how LoD0.2
and 1.2, as well as 0.3 and 1.3 essentially encode the same information, as the missing
walls in LoD0.x could be derived by extruding the roof surfaces down to ground level.



Figure 2: The 16 LoDs proposed by Biljecki et al. [2016]



In LoD2.x, the different LoDs progressively add smaller elements that can be modelled.
Starting from LoD2.0, which only models large building parts, LoD2.1 adds smaller
building parts, LoD2.2 adds roof superstructures (e.g. dormers), and LoD2.3 adds ex-
plicitly modelled roof overhangs.

LoD3.x is characterised by explicitly modelled openings, e.g. windows and doors, but
abstraction scheme follows a different logic where the different LoDs do not have a
strict increase in detail. LoD3.0 models detailed roof superstructures and their possible
openings (e.g. skylights) but less detailed walls, whereas LoD3.1 is the opposite (detailed
walls with openings but less detailed roofs) and models roof overhangs. These opposing
modelling approaches reflect the elements that can be discerned from the two common
data capture locations: from above (e.g. using satellite or aerial imagery and LiDAR)
and from the ground (e.g. using terrestrial or car-mounted scanners). Finally, LoD3.2
models both detailed walls and roofs, and LoD3.3 incorporates finer details (e.g. window
embrasures and awnings).

2.2 BIM to Geo conversion

The problem of automatic BIM to Geo conversion has long been studied. Most early
academic efforts focused on defining a mapping between equivalent BIM and Geo
classes [Isikdag and Zlatanova, 2009; El-Mekawy et al., 2012], or did a conversion of some
basic geometry types [Wu and Hsieh, 2007]. At roughly the same time, closed source
software (e.g. FME and IFC Explorer) introduced basic functionality to convert from
IFC to CityGML, but the methods used were not documented in literature and the re-
sulting files did not comply with the conventions and expectations of a typical CityGML
file (e.g. containing non-overlapping and correctly classified semantic surfaces).

To our knowledge, the first well-documented effort to perform a BIM to Geo conversion
was around the open source building information server BIMserver. Discussed in de Laat
and van Berlo [2011], it introduced two related pieces of work: the CityGML LoD4 export
functionality of the software and a GeoBIM ADE of CityGML. Since BIMserver can
import IFC files, the export functionality could be used to perform an IFC to CityGML
conversion, whereas the ADE allowed the storage of IFC semantics and properties in
CityGML.

Later on, a few different methods which attempted to extract specific LoDs from BIM
models were developed. For example, Donkers et al. [2016] specifically targets the cre-
ation of CityGML LoD3 models. It uses a combination of semantic mapping of equivalent
CityGML and IFC classes, geometric transformations based on constructive solid geom-
etry to merge elements, and a process of geometric and semantic refinement to obtain
missing surface semantics. There is an open implementation based on the Computational
Geometry Algorithms Library (CGAL).

Similarly, Stouffs et al. [2018] uses a triple graph grammar that defines a correspondence
between equivalent elements in IFC and CityGML. By doing so, object graphs for both



IFC and CityGML are created and related to each other. The end result is a direct
conversion of elements that should be geometrically equivalent to the input IFC model.
The authors also define a CityGML Application Domain Extension (ADE) to improve
the compatibility of CityGML with IFC, as well as the specificities of the Singaporean
context of the study. The latter is described in more detail in Biljecki et al. [2021].

A more recent representative example is described by Lam et al. [2024], who target
CityGML LoD4 specifically. Their method leverages the capabilities of existing soft-
ware (FME and 3dcitydb) to do the initial conversion, validates the results using the
OWL/RDF semantic web technologies and visualises the results using Cesium and Un-
real Engine.

A recent review of the scientific literature of IFC to CityGML conversion is contained
in Liang and Tan [2024], whereas Bello Pérez [2015] has a comprehensive review of the
earliest attempts at this conversion, including descriptions of sources that apparently
are no longer available online. Apart from the methods in the literature, Noardo et al.
[2020] provides a summary of the capabilities and limitations of other software for this
purpose. In summary, while a few different pieces of software offer this functionality, the
results are not ideal: output models are generally invalid, semantic mapping is difficult
and targetting specific LoDs is not realistic.

2.3 Abstraction methods

In order to actually obtain 3D city models at specific LoDs from more detailed BIM
models, applying an abstraction or generalisation method is necessary. Fan et al. [2009]
is an early example of an abstraction method to simplify building models in CityGML.
They describe a few different techniques: extracting the outer envelope of approximately
convex buildings, simplifying ground plans (useful for the bottom of building models),
generalising façades, and substituting detailed windows for typified templates.

Deng et al. [2016] proposed an instance-based method to create mapping rules between
equivalent IFC and CityGML classes, which are formally stored in a reference ontology
called the Semantic City Model. The study focusses on the transformation of coordinates
and the creation of explicit geometries. Multiple LoDs can be generated from a BIM
model by selecting or removing particular types, as well as by extracting the outer
envelope of a building using ray casting.

Kang and Hong [2018] uses a method that combines exterior envelope extraction and
custom LoD mapping rules to extract multiple CityGML LoDs from a BIM model. The
exterior envelope extraction uses a screen buffer to sample the surfaces that are visible
from the exterior quickly, which can be implemented in a GPU.

Similarly, Zhou et al. [2019] use a number of different observation points known to be in
the exterior of a building to extract its outer envelope. Since only the exterior surfaces



of a building are visible from these observation points, this can be used to efficiently
obtain these surfaces.

Ji et al. [2024] use an ontology-based method to extract specific CityGML LoDs from
an IFC file. Rule maps are used to convert coordinates (local to global), filter or extract
geometries and map the semantics of the different objects.



3 Method

The methods developed for the abstraction of BIM (IFC) models to Geo (CityJSON)
models at different LoDs can be split into different steps.

Before the computation of the desired LoD abstraction output, our method always starts
with a preprocessing step, which reduces the data’s complexity to ease the next steps.
In it, the model’s placement is optimised, the objects required for the processes are
selected, and complex objects (doors and windows) are simplified.

Afterwards, a voxelisation step is required for every LoD except for LoD0.0 and 1.0.
Here, the voxels that are used for the coarse filtering of data in most of the downstream
abstraction processes are computed.

This is followed by a series of abstraction-specific processing steps. These are the pro-
cesses where the actual abstracted shapes (i.e. geometries) are created. Depending on
the required output LoD geometries, certain processing steps are executed while others
are omitted. Roughly, the LoD abstraction methods can be grouped into five different
levels. These levels are based on how much of the geometry of the input IFC model the
methods rely on. The levels and the individual LoDs generated are presented in Table 1
and the IFC elements they use are shown in Figure 3. In addition to the standard LoDs
described by Biljecki et al. [2015], we consider one more useful LoD consisting of the
roofing structure of LoD2.2, which we hereafter refer to as LoD0.4.

level output based on BIM model’s

low LoD0.0 and LoD1.0 exterior vertices

mid LoD0.2, 0.3, and 0.4* roof structure roofing geometry
LoD1.2, 1.3 and 2.2 exterior

high LoD0.2 and 0.3 storeys selective outer shell geometry

very high LoD3.2 exterior complete outer shell geometry

interior LoD0.2, 1.2, 2.2, and 3.2 interior IfcSpaces

Table 1: A summary of the five levels of geometry dependence of the different LoD
abstractions. *Non-standard LoD

A schematic overview of the methods and their relationships can be found in Figure 4. As
this overview shows, some of the output LoDs are obtained by a mix of the five methods.
For example, for a full LoD0.3 model, the LoD0.3 roof structure would be created via
the mid geometric dependent abstraction methods, the LoD0.3 storeys and footprint
would be created via the high geometric dependent abstractions and the LoD0.3 rooms
would be created via the interior geometric dependent abstractions. A more detailed
description of the output LoDs that can be derived can be found in Appendix 7.1.



(a) (b)

(c) (d)

Figure 3: The elements relevant for the different abstraction methods. Low geometric
dependent abstraction utilizes the vertices of the model (not displayed in this
figure). a) Mid geometric dependent abstraction utilizes the roofing structure
of the model. b) High geometric dependent abstraction utilizes the geometry
at horizontal internals. c) Very high geometric dependent abstraction utilizes
the complete outer shell. d) Interior geometric dependent abstraction utilizes
the IfcSpace objects.



Figure 4: Flowchart to show the relationships of the different steps in the process. Non-
standard LoD are shown in gray. Optional connections based on the desired
output refinement are shown in dashed lines. This is a simplified representation
of these steps. In practice, and in the descriptions in the following sections,
these are more complex.



In the remainder of this section, the developed abstraction methods are described. First,
the preprocessing and the voxelisation methods are described. After that, the five ab-
straction methods are described.

3.1 Preprocessing

The preprocessing encompasses three different simplifications steps: the model place-
ment is corrected, objects are filtered based on their IfcClass, and objects with complex
geometries are simplified. As mentioned above, these simplifications are done before ev-
ery abstraction method. An exception is the interior geometric dependent abstraction.
This abstraction process does not require the complex geometry simplification step, as
can be seen in Figure 4.

3.1.1 Correction of model placement

An IFC model can be placed in sub-optimal ways in its local coordinate system, see
Figure 5. Mostly, three unwanted situations can occur: a model is placed far away from
its local coordinate system’s origin, a model is rotated in a way where it is not axis
aligned to its local coordinate system’s axis, or both. These erroneous local placements
are often used to compensate for partial, incomplete, or missing referencing data in the
IfcMapConversion class.

Geometry that is located far away from the local coordinate system’s origin (0, 0, 0) can
be affected by floating point precision issues. This would result in a loss of significance
which limits the accuracy of subsequent processing, possibly rendering their outcomes
unusable. An easy solution for this issue is moving the geometry of the model closer
to the local coordinate system’s origin. To do this, a translation vector is computed.
This vector is constructed from the lower left bottom corner of a bounding box around
one of the model’s IfcSlab objects to the origin of the local coordinate system. All
other objects that are to be processed in later steps are translated according to this
vector. This results in a coarse location correction of the model which is sufficient to
avoid issues in further processing. The inverse of this vector is stored to be added to
the georeferencing data of the output GIS file. It is presumed that all building models
include at least a single IfcSlab object. If this is not the case, a fallback can be made
to other classes of objects. However, the methods described in this report are developed
to function on models representing buildings. Most models representing buildings have
IfcSlab objects present, so if those are missing the model is possibly not suitable for the
downstream processing methods.

The computed translation vector is based on only a single object to improve the com-
puting speed and keep the complexity of the implementation simple. To prevent floating
point issues, the model is not required to be placed precisely at the (0, 0, 0) point with
the lower left bottom corner of its total bounding box. A more refined approach would
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Figure 5: An IFC model can be placed in suboptimal ways. a) Shows the optimal place-
ment of the model. It is placed close to the local coordinate system’s origin
and aligned to its axis. b) Shows an often occurring error where the local coor-
dinate system is used as an absolute coordinate system resulting in the model
being placed away from the origin. In practice this placement is often very
far away from the origin. c) Shows another often occurring error where the
model’s location is correctly stored in its georeferencing data, but the rotation
is not. The rotation is incorrectly applied by rotating the model in its local
coordinate system.

be to use all IfcSlab objects or even all IfcObjects. However, this will be an unnecessarily
slow process if the input model is large, such as would be for a high-rise building.

Although the rotation of the model does not introduce the same issues as its location
in the local coordinate system can, it is still important to correct it. As was mentioned
before, and as will be covered by Section 3.2, a large part of the methods rely on
voxelisation. Voxelisation, and especially spatial querying during that process, can be
done more effectively if the model is local coordinate system axis aligned. To correct
the rotation, a smallest orientated bounding box around the model’s IfcSlab object’s
vertices is constructed in the XY plane. To construct this bounding box, the box is
not rotated around the model but the model is rotated around the Z-axis. This will
ensure that the bounding box will always be aligned to the axis of the local coordinate
system. Since most buildings have floor plans that are fairly rectangular, this rotation
will often result in the building model being aligned to the local coordinate system axis.
The inverse of this rotation is stored to be applied to the abstracted output geometry
after their creation.

3.1.2 Class based selection

The first and most coarse filtering step is the filtering based on object class. For the ab-
straction of BIM models to GIS models, only space dividing objects are required [van der



Vaart, 2022]. These objects represent physical/tangible geometries that play a role in
the division of space. Examples are walls, floors, and roofs that encapsulate specific
spaces and isolate the interior of the building from the exterior. The inclusion of objects
which do not fulfil this role will unnecessarily increase the computation complexity of
the processing step.

This filtering can be achieved because every object in an IFC file is assigned to a class.
In most cases, the space dividing object, described by van der Vaart [2022] suffices.
These are: IfcWall, IfcCurtainWall, IfcWallStandardCase, IfcRoof, IfcSlab, IfcWindow,
IfcColumn, IfcBeam, IfcDoor, IfcCovering, IfcMember and IfcPlate objects. However,
in practice the use of classes in IFC files is not consistent and often has errors [Noardo
et al., 2021]. This means that relying only on this selection of classes will not always
yield the desired filtering. To address this, the class filter should be made flexible. If it
is known that a certain class is used in an unexpected way, this class can be included or
excluded from the process. Despite this flexibility in the approach, it is always better
to resolve these issues in the BIM models when possible. Correct IFC class use in BIM
models is a good practice and makes the models more suitable for processing by other
applications.

The classes in an IFC file can also be used as abstract/non-geometric containers that
include other objects that represent actual geometry. For example the IfcRoof class
is often used as a container “super” object that contains IfcSlab class “sub” objects,
which are then used to represent the roof’s geometry. It is important that these “sub”
objects are also evaluated even if their IfcClass falls outside of the used class filter. If
not, important geometry could be missed and the final result could be unusable.

Interior space abstractions could in theory also be based on these space diving objects.
This would be a complex process similar to, and possibly more complex than, the exterior
abstraction processes. Due to time constraints, a simpler approach was chosen.

The interior abstractions are based on the IfcSpace representations. So, if interior spaces
are to be abstracted and exported to CityJSON, the IfcSpace objects are also filtered.
These objects are not part of the potential space dividing object list. They are filtered
and stored in their own unique container to be used as is, see Section 3.7. The class use
of IfcSpaces in IFC models is often correct [Noardo et al., 2021]. So, the filtering process
relies on this IFC class only and no flexibility in the class use is required.

3.1.3 Complex object abstraction

After the initial filtering step, the geometry of complex objects, i.e. IfcDoor and IfcWin-
dow is simplified. These objects often include many small details, such as hinges and
grips, which are not relevant at a GIS scale and would unnecessarily increase the com-
plexity of subsequent abstraction steps. Because doors and windows are often box-like in
nature, they can be abstracted by replacing their geometry with an orientated smallest
bounding box in full 3D space (using X, Y and Z rotation), see Figure 6.
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Figure 6: An example of simplification by bounding box creation. a) Shows a complex
IfcDoor object. b) Shows the resulting bounding box that is used to replace
the IfcDoor geometry. The reduction of detail can be clearly seen, every side
of the door is constructed out of a single surface and the door handle has been
internalized as well. Image from van der Vaart [2022].

Not all IfcDoor and IfcWindow objects can be simplified using this box simplification.
For example, if a window has a triangular frame a rectangular bounding box will not
accurately represent the window, see Figure 7. If the representation error is considered
too large, there should be an option to bypass this simplification process. This can be
done for either all windows and doors, so that none of them are simplified, or selectively,
so that only windows and doors that have a certain GUID are not simplified. The non-
simplified objects will reduce the robustness and time effectiveness of the subsequent
steps due to the increased geometric complexity.

When faster processing is required, a more drastic abstraction of windows and doors
can be achieved by selectively applying subtractive elements. Doors and windows are
often placed in openings inside of IfcWall, IfcSlab, or IfcRoof objects. These openings
can be modelled with IfcOpeningElement or IfcFeatureElementSubtraction objects. The
geometry of these objects is used to subtract geometry of other objects and create
openings. For example, if these subtractive elements related to a wall are not applied,
the wall will have no opening. The windows and doors that were placed inside of these
openings can now be discarded without creating a hole between the interior and exterior.
However, not every IfcOpeningElement and IfcFeatureElementSubtraction object can be
discarded blindly. They can also be used to model openings that are not filled by
doors and windows. Discarding those subtractive elements will close openings that are
supposed to be open. It helps that each unique opening is created by one, or more,
unique subtractive element(s). This means that we can selectively apply subtractive
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Figure 7: Example of the incorrect results that can occur when box simplifying win-
dows that have a triangular frame. a) Input IFC file with triangular windows
highlighted in blue. b) Output LoD3.2 abstraction when box simplification
is used, resulting in windows that are incorrectly simplified. This incorrect
simplification also clips the roofing structure, which will have an effect on the
mid geometric dependent abstraction methods.

elements to the IfcWall, IfcSlab, or IfcRoof objects only if they are not occupied with
an IfcDoor or IfcWindow object, see Figure 8. Both the simplification of the IfcWall,
IfcSlab, and IfcRoof objects and the discarding of a set of IfcDoor and IfcWindow objects
reduces the geometric complexity. However, this will also mean that windows and doors
cannot be detected accurately during the following processes. In most cases this will
have no notable effect on most LoD1.2, 1.3 and 2.2 abstraction processes because most
of these abstractions have no representation of windows and doors. However, in the case
of LoD3.2, windows and doors will often not be properly detectable.

This simplification cannot always be applied. In certain cases, the voids in IfcWall,
IfcSlab, or IfcRoof objects are modelled without the use of IfcOpeningElement and
IfcFeatureElementSubtraction. In these cases selectively applying subtractive elements
has no effect on the objects.

In all normal processing cases, it is recommended to only use the bounding box sim-
plification described earlier. As mentioned, most of the intricate detail of windows and
doors is not required for GIS. It is recommended that the outliers that cannot be prop-
erly simplified by this method are filtered out by their GUID. If no LoD3.2 is required,
selectively applying voids (i.e. subtractive elements) can improve the computing speed
and robustness of the following processes even further. If LoD3.2 is required but no win-



dow/door data is necessary, applying this can also be a solution. In addition, if LoD3.2
is required but the IFC model is too complex to be processed, applying this can be a
solution to allow for further processing. Depending on the desired goal of the abstracted
shape, this is an optimisation choice. However, if this simplification is applied, the out-
put GIS model should have information related to this choice included to inform users.
This is especially important if the opening objects in the IFC model are modelled in
different ways and some windows and doors are eliminated while others are not. With
clear information on the abstraction process followed, the user will know to what extent
to trust the data related to the doors and windows.

3.2 Voxelisation

For mid, high, or very high geometric dependent abstraction processes, a voxel grid will
be created. The bounding box used for the rotation of the IFC model (see Section 3.1.1)
is expanded so that it encompasses all the vertices of the selected space dividing objects
(see Section 3.1.2). This tightly encapsulating bounding box is later used to create the
LoD0.0 and 1.0 abstraction shapes as described in Section 3.3. The dimensions of this
box are rescaled so that there is at least a single layer/shell of non-intersecting voxels
surrounding the entire input model.

The voxelisation approach is dependent on the desired output abstractions. If mid
geometric dependent abstraction is to be executed, the voxel grid would be populated
with voxel columns. If high or very-high geometric dependent abstraction is selected to
be executed, the voxel grid will be populated with full voxelisation. The two approaches
are not interchangeable: if both voxelisation approaches are required, both are executed
to be utilized for their respective abstraction processes.

Column voxelisation is the result of “growing” voxels vertically in a column-like shape,
see Figure 9. All the voxels in the top “slice” of the voxel grid are used as starting voxels
for this growing process. Each voxel will be elongated downwards (negative Z-direction)
with the voxel size dimension until the created column intersects with one or multiple
mesh representations of the space dividing objects. If the column encounters no objects,
the growing of the column ends if it surpasses the lower Z bound of the total voxel
domain. For example, if a voxel size of 1 metre is used, the column starts as a 1× 1× 1
metre cube. If this intersects with no objects, it will grow to a column of 1×1×2 metre.
If again no object is intersected, it grows into a column of 1× 1× 3 metre, and so on.

For the full voxelisation, each voxel is independently tested for intersection with a mesh
representation of any of the space dividing objects. After the intersection test has been
executed for all voxels, the exterior space can be grown from one of the voxels that are
at the edge of the domain. Because the domain was expanded so that it includes a
shell of non-intersecting voxels, it is known that any voxel in this shell represents the
external void and consequently is not intersecting with any of the space dividing objects.
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Figure 8: An example of selectively applying subtractive shapes in an IfcWall object.
a) A wall with no subtractive objects applied. b) The original wall with the
subtractive objects superimposed on top of it. c) The objects encapsulated by
these subtractive objects. The gray void has no nested objects while the blue
void has a nested IfcWindow object. d) Only the subtractive objects with no
internal objects is applied, resulting in the simplified wall geometry. Image
from van der Vaart [2022].
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Figure 9: Example of column voxelisation. a) Shows the starting IFC model. b) Shows
the full voxel grid. c) Shows the top slice of voxels from which the growing
is started. d) Shows the elongated columns that are grown up until they hit
geometry. e) Shows an isolated voxel with the wireframe of the geometry it
intersects with highlighted. f) Shows the isolated geometry of the model that
intersect with the voxel columns. Note that for c) onward the outer ring of
columns has been hidden for clarity.
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Figure 10: Comparison of voxelisation with and without the expansion “ring” domain.
This is a 2D plan view where the outline of a building is shown in gray. Sub-
figure a) and b) show the resulting non-intersecting void voxels highlighted
in blue that were grown from the starting voxel highlighted in dark blue.
a) Shows the correct void found due to the expansion ring. b) Shows that
without this, the growing gets stuck and only detects a small area.

Additionally, this shell guarantees that the growing process can completely surround the
building, see Figure 10.

If information related to interior voxels is required, see Section 3.5, the voxels represent-
ing the interior spaces can be grown after the growing of the exterior has been finished.
This can be started from any unprocessed non-intersecting voxel. This growing process
can be repeated until no unprocessed non-intersecting voxels are left.

The voxels are not just geometry. They also store data. For example, each of the voxels
stores the IfcProduct objects that it is intersecting, part of which space it is, and if it is
located in the interior or exterior of the model.

As noted by van der Vaart et al. [2024] the “ideal” voxel size depends on the size and
nature of the model that has to be voxelised. A too large voxel size might miss detail
required for any of the downstream applications, while a too small voxel size will slow
down the subsequent processes and reduce robustness. Therefore, the voxel size can be
selected by the user so that it can be fine-tuned to fit the model that is to be processed.



3.3 Low geometric dependent abstraction

The low geometric dependent abstraction processing extracts the LoD envelopes that
are primarily based on the model’s vertices (LoD 0.0 and 1.0 exterior). Due to this low
dependency on the model’s geometry and the coarseness of the abstraction shapes, large
errors in the input IFC models can be present without having a notable impact on the
output.

The LoD0.0 representation can consist out of two faces: a face representing the roof
outline and a face representing footprint outline. If the LoD0.0 roof outline is desired, the
face representing the roof outline is created based on the tightly encapsulating bounding
box surrounding all the space dividing objects. The top surface of this bounding box is
isolated and stored as an independent object in the output file. The surface type is set
to RoofSurface. If no footprint outline is desired the roof outline surface is placed at the
footprint height instead of at the top height. Instead of the RoofSurface surface type
this surface gets the custom surface type +ProjectedRoofOutline. This custom type is
used to alert the user that this is not a footprint based surface.

If the LoD0.0 footprint outline is desired, a new bounding box has to be created. The
tightly encapsulating bounding box surrounds all objects, while the footprint in theory
can be smaller. The footprint outline LoD0.0 surface is based on the bounding box of all
the objects that are placed at, or intersect with, the footprint level ±0.15 m. A bounding
box is created from these isolated objects’ vertices. The lower vertical surface of this
bounding box is isolated, placed at the footprint height, and stored as an independent
object in the output file. The surface type is set to GroundSurface.

The model is not rotated when creating the bounding surface that represents the LoD0.0
footprint outline. This means that this bounding surface might not be the smallest
bounding surface around the footprint area.

The LoD1.0 representation is a copy of the shape of the tightly encapsulating bounding
box surrounding all the space dividing objects, see Section 3.2. The type of the four
surfaces of this box that have a normal with a Z-component of close to 0 are set to
WallSurface. Of the two remaining unclassified surfaces, the type of the surface with
the highest Z-value is set as RoofSurface. The type of the other surface is set as Ground-
Surface.

3.4 Mid geometric dependent abstraction

The mid geometric dependent abstraction extracts LoD envelopes and projections that
are primarily based on the model’s roofing structure (LoD 0.2 and 0.3 roof structures
and 1.2, 1.3, and 2.2 exterior). These are the LoDs that are most used in practice
since they are relatively easy to generate from measurements. These abstractions are
usually made from airborne measurements such as airborne LiDAR scans. To isolate the



roof structures from a BIM model these in field approaches are “simulated”. They are,
however, altered to fit and optimised for a BIM source.

The roof related elements are isolated in two steps: coarse filtering with column voxeli-
sation and fine filtering via ray casting in Z-direction, see Figures 9 and 11. Due to the
high dependency on the input model’s roof structure, it is important that this structure
is modelled properly in the IFC file. However, the low dependency on the rest of the
model’s geometry means that large errors can be present in those other areas without
having an impact on the output. In theory, an input model that only includes the roof
structure with all other geometry missing could still create a satisfactory result.

(a) (b) (c)

(d) (e) (f)

Figure 11: Example of the surface filtering and ray casting to isolate the surfaces that are
part of the roof structure. a) The resulting surface collection from the column
voxelisation described in Section 3.2. b) The collection of surfaces is filtered
by eliminating the surfaces with a normal direction with a Z-component of
0. c) The collection of surfaces is filtered by eliminating the similar faces. d)
and e) show an isolated situation of the ray casting process of the two viewer
facing roof surfaces. The top surface in d) has at least one non intersecting
ray (solid colour arrow). The bottom surface in e) has no non intersecting ray
(dotted arrow). f) The results from the complete ray intersecting process.

3.4.1 Filtering of surfaces

The first step in the isolation of the roof objects is the column voxelisation, see Section
3.2. The objects with which the column intersects are assumed to have at least one



surface that could play a role in the construction of LoD0.2, 0.3, 1.2, 1.3, and 2.2. The
unique objects that are intersected and their surfaces are selected, see Figure 11a.

The selected objects’ surfaces are further filtered via a ray casting process where the
rays are cast from each surface upwards parallel to the Z-axis, see Figure 11. The
rays are cast from the surfaces themselves instead of from the “air” (like is done for in
field LiDAR measurements) due to the possible presence of small surfaces that could be
missed if a uniform grid were be used. By using the surfaces as a casting source the
density of the rays can be refined depending on the properties of the surface that has its
visibility tested.

Ray casting can be a resource intensive process, so it is important to avoid unneeded
casts. This is accomplished by filtering the surfaces with some less resource intensive
approaches prior to the ray casting. Firstly, surfaces that have a normal with a Z-
component of close to 0 are removed from the surface list. These surfaces will not be
visible from a Z-direction only cast. Secondly, surfaces that are part of the same object
are tested if they are equal when disregarding the Z-component. For example, a concrete
floor slab often has a top surface representation and bottom surface representation that
are identical except for their location in the Z-direction. Thus, the top surface perfectly
covers the lower surface, this means that only the top surface will be visible from a
Z-direction only cast. The lower surface can be discarded without the need of any ray
cast. This similarity test has been kept lightweight to retain computing performance.
So it only tests for three differences: area, vertex count and vertex pairing by location.
False positives that are incorrectly included due to this coarse filtering will be caught in
the subsequent steps.

The remaining surfaces are populated with a point grid that will function as the rays’
origins to cast from. Depending on the shape of the surface, different approaches can
be applied. If the shape of the surface is a thin triangle, a triangular grid is created by
using the lines between the centre point and the three corners as axis. Other surfaces
are populated by a rectangular grid along the U - and V -coordinates of the surface.
Depending on the shape of the surface, this point grid might not represent the surface
properly, see Figure 12. To improve this, a method utilising the surface’s wires is also
applied. This method offsets the edges of the surface slightly inwards and places points
at a regular interval along these offset edges. The offset edges are only used for the point
population and can be discarded after the process is finished.

The density of the grid from which the rays are cast is at least 0.5×0.5m. This is fairly
coarse as a base and is refined on smaller surfaces. If the surface is covered by less than
5 points, the grid size is split in 2 recursively. This is done until the surface is covered
by more than 5 points or if the grid density is smaller than 0.05×0.05m.

From each of the grid points, rays are cast along the Z-axis vertically upwards. First, it
is tested if any of the rays intersect with another surface of the same object. If all rays
intersect, it means that the surface is completely covered by other surfaces of the same
object. So, this surface wont be visible from above and can be discarded. This reduces



Figure 12: Some surfaces have shapes that are not properly represented by a point grid
that is based on the UV domain. For example, this surface (in blue) has a
thin extension that passes through the grid (in gray) without points being
placed upon it (the crosses).

the pool of surfaces further and also catches the surfaces that might have slipped through
the similarity test in the earlier filtering step. The non-intersecting rays are tested for
intersection again, but this time against the surfaces of the complete pool. If the surface
has at least a single cast ray that does not intersect with any of the surfaces, the surface
is stored as part of the roof structure.

This is followed by a polyhedral surface approximation of the collected surfaces. An IFC
file supports both implicit en explicit geometry while CityJSON only supports explicit
geometry. Doing the simplification step this early in the process improves processing
speed and robustness due to the simplicity of the new surfaces.

3.4.2 Creating surface based abstractions

To construct the LoD0.2 roof abstraction, the surfaces identified as part of the visible
roof structure are all projected to the XY -plane (Z = 0) and merged into a single
surface: the projected roof outline. If footprint extraction is to be executed/exported,
which can be generated by the high dependent abstraction method (see Section 3.5),
the roof outline surface is translated to the max height of the building. The surface
type is set to RoofSurface. If no footprint extraction is to be executed/exported the
projected roof outline is stored at the ground level of the model. This can function as
an alternative representation of the footprint at LoD0.2, See Figure 13. In this case the
surface type of the surface is set to +ProjectedRoofOutline. To alert the user that this
is not the actual footprint representation.
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Figure 13: The different placement of the roof outline surface based on the desired out-
put. a) The roof outline is placed at the building’s footprint height if no
footprint output is desired. b) The roof outline is placed at the building’s
max Z height if footprint output is desired.

To construct the LoD0.3 roof abstraction (i.e. with varying height in case of significant
height jumps), the surfaces identified as part of the visible roof structure are grouped and
flattened, see Figure 14b and 14c. A surface is grouped together with another surface if
the two surfaces have parallel edges that completely or partially rest against each other.
Each group of surfaces is then flattened so that the horizontal component of the normal
has a magnitude of 0. Because surfaces with a normal Z-component of close to 0 were
excluded during the filtering process (see Section 3.4.1), no checks for zero area cases
are required. The flattened surfaces of a group are merged into a singular surface and
placed at a Z height which is the highest Z-value of the original group.

This group of flattened roof surfaces is not yet a valid LoD0.3 roof model. The roof
surfaces of LoD0.3 are not allowed to overlap with each other, according to the LoD
framework of Biljecki et al. [2016]. The LoD0.3 roof structure is in most cases identical
to the LoD1.3 roof structure.

To create a valid LoD0.3 roof structure that does not overhang over itself in the XY -
plane the surfaces have to be trimmed, see Figure 14c, 14d, 14e, and 14f. This is done by
extruding the roof surfaces downwards to the lowest height of the input model to form
solids. These solids are used to split the flattened isolated roof surfaces. Each of these
flattened surfaces are split by the solids that were created by all the other flattened
surfaces, except itself. To test which of these surfaces model the roofing structure,
another ray cast in the Z-direction is done. In this case a single ray cast per surface
suffices. If the ray intersects with one of the flattened surfaces, the split surface it
originates from is ignored. The remaining sub-surfaces are collected and represent the
LoD0.3 roof surface collection. The types of these surfaces are all set to RoofSurface.
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Figure 14: The steps of the LoD0.3 roof abstraction. a) For this example, another model
than in the former figures was picked. b) The fine filtered roof surfaces that
were isolated with the help of column voxelisation and ray casting. Three
different groups of roofing surfaces are highlighted in blue. c) These groups
are flattened. d) The surfaces are extruded to ground floor level and each
original un-extruded surface is split with the extruded shapes that intersect
it. e) The split surfaces are filtered with the help of a ray casting process, solid
arrows do not intersect, dotted ones do. f) The resulting LoD0.3 surfaces.



Although not included in existing LoD frameworks, the non-flattened surfaces identified
as part of the visible roof structure can also go through the same process to create the
non-flattened roof structure. This becomes the isolated roof structure of the LoD2.2
abstraction in the same way LoD0.3 contains the roof structure of LoD1.3 abstractions,
see Figure 15. We call this the roof structure of LoD0.4. To create the LoD0.4 roof
surfaces, all the steps of LoD0.3 are followed, see Figure 14, except for the grouping and
flattening of the shapes.

(a) (b)

(c) (d)

Figure 15: Comparison of LoD0.3 and the non-standard LoD0.4. LoD0.3 (a) contains
the roofing structure of LoD1.3 (b). LoD0.4 (c) contains the roofing structure
of LoD2.2 (d).

3.4.3 Creating volumetric abstractions

To construct the LoD1.2 exterior abstraction, the LoD0.2 roof outline surfaces are pro-
jected to the XY plane (Z = 0), if not already located there. These projected surfaces
are then extruded upwards to the max height of the building. The same logic for the



surface semantics that is applied for the LoD1.0 shape (see Section 3.3) is applied here.
The type of the surfaces that have a normal with a Z-component of close to 0 are set
to WallSurface. Of the two remaining surfaces, the type of the top surface is set as
RoofSurface and the type of the lower surface as GroundSurface.

The construction of the LoD1.3 and 2.2 exterior abstraction is closely related to each
other. The only difference is that the LoD1.3 reconstruction use the LoD0.3 roof struc-
ture as starting point and the LoD2.2 processes uses the LoD0.4 roof structure as starting
point, see Figure 15. The rest of the executed processes are identical.

Each of the starting surfaces (either the LoD0.3 or LoD0.4) are extruded downwards to
the ground level and merged into a single solid. Depending on the input model, this
can be a complex process consisting of many surfaces. Due to the nature of the input
surfaces, a couple of steps can be taken to make the merging process more lightweight. As
described in Section 3.4.2, the input LoD0.3 and LoD0.4 roof surfaces have no spatial
overhang in the XY -plane. So, the extrusions of the input surfaces (LoD0.3 or 0.4
abstractions) will never intersect each other. The only interaction these shapes can have
is surfaces touching. To merge these extrusion only the vertical faces that were created
by the extrusion are required to be removed or trimmed, see Figure 16. The vertical
faces are all the faces that have a normal with a Z-component of 0.

The first sub-step of the trimming process is the removal of duplicate equal vertical
faces. If two, or more, roof surfaces touch, extruding them would result in duplicate
surfaces along the edges where the roof surfaces are touching, see Figures 16a, 16b and
16c. Eliminating these faces effectively joins the extrusions from these neighbouring roof
surfaces into a single shape without the need of any complex processes.

The second sub-step is the collection and splitting of the remaining vertical faces. Ver-
tical faces that rest against each other can be used to split the faces into smaller sub-
surfaces that are either completely inside or outside of the building. The sub-faces that
are inside of the building can be filtered out by again eliminating the duplicate surfaces,
as described in the first sub-step.

For the creation of the bottom surfaces no complex processes are required. Because
the input faces do not overlap in a XY -plane, the “ground” surfaces created by their
extrusion also do not overlap. Therefore, the bottom surfaces that rest against each
other with parallel edges can be merged into a single shape.

In theory, the trimmed vertical faces make a closed watertight shape together with the
roof and bottom surfaces. Depending on the input shapes, the resulting shape will be
an LoD1.3 (if the input were the LoD0.3 roof surfaces) or Lod2.2 (if the input were the
LoD0.4 roof surfaces) abstraction.

A similar process for surface semantics that is applied for the LoD1.0 and LoD1.2 shape
is applied for LoD1.3 and 2.2. The type of the surfaces that have a normal with a Z-
component of close to 0 are set to WallSurface. The type of the surfaces that are at the



(a) (b) (c)

(d) (e) (f)

Figure 16: The steps for the LoD2.2 creation. a) The starting surfaces are LoD0.4.
b) The starting surfaces are extruded downwards to the lower Z bounds.
c) The vertical faces are isolated. d) Duplicate surfaces are removed from
the collection. e) The left over surfaces are split by the surfaces that they
touch and again the duplicate surfaces are removed from the collection. f)
The resulting collection is joined by the earlier isolated non-vertical faces to
create a airtight solid.



footprint height are set to GroundSurface. The type of the remaining surfaces are set to
RoofSurface.

The described methods create LoD1.2, 1.3, and 2.2 abstractions that are based on the
roof structure of the model. However, the LoD framework of Biljecki et al. [2016] does
not clearly state if the LoD1 and LoD2 groups are based on the roof structure or the
footprint. A simple refinement to this approach allows for a footprint based creation.

For LoD1.2 footprint based exterior abstraction the footprint can be extruded upwards
to the building’s max height. This does however required the footprint to be generated,
which is a more complex process that relies more on the IFC model’s geometry, see
Section 3.5.

For LoD1.3 and 2.2 footprint based exterior abstraction the roofing surfaces that over-
hang over the footprint can be trimmed down before being used for extrusion, see Figure
17. The rest of the processes for creating both LoD1.3 and 2.2 remain exactly the same.
However, like for the LoD1.2 case the trimming of the roof surfaces for LoD1.3 and 2.2
requires the footprint to be generated.

When the footprint based extraction is used, the LoD0.2, 0.3, and 0.4 roof surfaces can
differ from the LoD1.2, 1.3, and 2.2 roof surfaces respectively. The LoD0.2, 0.3 and 0.4
roof surfaces remain untrimmed, so when overhang is present over the footprint, this will
be reflected by the roof surfaces. The footprint based LoD1.2, 1.3, and 2.2 roof surfaces
can possibly cover a smaller area in comparison.

3.5 High geometric dependent abstraction

The high geometric dependent abstraction processing extracts elements that are based
on the model’s outer shell (LoD0.2 and 0.3 storey representation and the LoD0.2 and 0.3
footprint). Unlike the very high geometric dependent abstraction processes (see Section
3.6), these processes only sample the outer shell at certain intervals: at the storey heights
respectively and at the building’s footprint heights.

LoD0.2 and 0.3 storey abstraction rules are not well described in existing documentation.
So, we tried to apply the rules defined for the exterior to the interior storeys. For LoD0.2
a storey is represented as a horizontal surface (group) representing all the objects in a
building at a certain storey elevation. This surface (group) will span the entire building
at a single height. This loosely resembles the single top surface of the exterior LoD0.2
roof surface logic. For LoD0.3 a storey is represented as a horizontal surface (group)
representing all the objects at a certain storey elevation that are related to that storey.
This surface (group) can span only a part of the building at a single height. Depending
on how the IFC model has been constructed this resembles the multiple horizontal flat
plane LoD0.3 logic.

Due to the close relation of the LoD0.2 and 0.3 storey representation, their basic output
is often very similar if not identical. For the development of an IFC to GIS method it
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Figure 17: The difference between roof structure based LoD2.2 creation (top row: sub
figure a), b), and c) and footprint based LoD2.2 creation (bottom row: sub
figure d), e), and f). The first column shows the input geometry required
in a) & d). It can be seen that for footprint based extraction both the roof
structure (in red) and the footprint surface (in gray) is required. The second
column shows the utilized faces for downward extrusion highlighted in red in
d) & e). It can be seen that some surfaces are not used for footprint based
extraction (in white) these are parts of the roof surfaces that extend over the
footprint. The final column shows the resulting shapes.



was considered interesting to use two different, although related, approaches to construct
them: LoD0.2 follows a simple approach which creates a simple storey representation.
This is a robust process and works on most IFC models. LoD0.3 follows a more complex
approach which requires a well constructed input IFC model but will also result in a
more accurate storey representation with expanded surface information.

Similarly, the LoD0.2 and 0.3 footprint abstraction rules are also not well described in
documentation. Due to time constraints it was chosen to create the same shape for both.
A horizontal surface (group) representing all the objects in a building at a certain user
submitted footprint elevation.

The footprint, LoD0.2 storey and LoD0.3 storey abstractions, although different in com-
plexity, are closely related, see Figure 18. To keep the description of the three processes
limited, only for the LoD0.2 simple approach the complete process will be described.
The other sections covering the LoD0.3 complex approach and LoD0.2/LoD0.3 footprint
abstraction will only describe how they differ from the simple approach. For the foot-
print of LoD0.2 and 0.3 exactly the same geometry and approach is used, so both the
LoD0.2 and 0.3 footprint is described as one.

3.5.1 Simple approach for storey abstraction

This abstraction method leads to an LoD0.2 storey representation by taking a horizontal
section through all the input model’s space dividing objects at each of the storeys’
height. These heights are found by taking the elevation attribute of the IfcBuildingStorey
objects. If modelled properly this height should represent the elevation of the top of the
construction slab of a storey. If multiple storeys are present with the same or similar
elevation values they are grouped together and handled as if they are a single storey
object. This can occur when a model is constructed from multiple IFC files.

Each unique space dividing object in an IFC file is presumed to be a volumetric air-tight
shape. Splitting these shapes horizontally will thus create a closed planar horizontal
wire. These wires can be converted into a planar horizontal surface. The resulting
surfaces are collected for further processing.

The shapes created during this selection process do not completely represent the storey
geometry. Only the shapes that are intersected by the elevation plane have their planar
section representation created. Depending on how the model is constructed, objects such
as the floors and balconies often may have horizontal faces that are flush or close to flush
with the storey’s elevation. These flush faces do thus not intersect with the elevation
plane, see Figure 20. To prevent them from being ignored, the surfaces that are close to
horizontal and are partially within a ±0.15m buffer of the storey height are projected
to the storey height and selected as well.
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Figure 18: The differences between an LoD0.2 storey (a), LoD0.3 storey (b) and a foot-
print (c). The LoD0.2 and 0.3 abstraction represents the same first storey
of the model displayed in Figure 19. The footprint abstraction is located 1
m lower. a) The LoD0.2 storey is a simple surface with openings represent-
ing the staircase shafts. b) The LoD0.3 storey expands on this by making a
distinction between the balcony surfaces as exterior (in dark blue) and the
rest of the interior. c) The footprint is a simpler surface than LoD0.2 by
eliminating the openings representing the staircase shafts.



Figure 19: 3D view of the model that is used for the example LoD0.2 and 0.3 storey
extraction and the footprint extraction in Figure 18.

The resulting collection of surfaces is cleaned. This thinning done in two steps. Firstly,
duplicate surfaces are removed. These duplicates can occur when a floor structure is con-
structed from different geometric IfcObjects to represent the different structure layers
that fall within the ±0.15m flush face buffer. Secondly, surfaces which are completely en-
capsulated by a single other surface are removed. This will remove surfaces representing
the walls that are completely resting on top of the floors.

The thinned out surfaces are merged into a single, or group of surfaces, representing
the 2D section of the storey at a certain storey elevation. The geometry can be stored
in a BuildingStorey CityJSON city object representing the group of storeys at that
elevation. The used surface type for all the surfaces is FloorSurface. The attributes of
the IfcBuildingStorey object(s) at that elevation can be copied to the city object. Each
of these CityJSON objects has a child relationship to the main building’s CityJSON
object to keep the clear structure in the reconstructed model.



(a)

(b)
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Figure 20: Difference between using intersecting geometry only and augmenting it with
planer surfaces that fall within a buffer. a) Represents the intersection with
geometry only. b) The undesired resulting storey geometry. c) Represents the
intersection augmented with planar surfaces. d) The desired resulting storey
geometry



3.5.2 Complex approach for storey abstraction

The storeys of the LoD0.3 abstraction are created in a similar manner as LoD0.2 but with
two major differences. Firstly, the horizontal section at the storey elevation does not
split all the objects at that elevation. It only splits the objects that are related to that
IfcBuildingStorey object or group of IfcBuildingStorey objects at the storey elevation.
This allows the accurate inclusion of half or split storey elevations across a building
model. However, this requires the IFC model to have the correct objects bound to the
storey surfaces. Secondly, during the process the surfaces are divided based on if they
are interior or exterior. This makes it possible to isolate balconies and parts of the (flat)
roof structure and to not include these outdoor parts in downstream analysis, if, for
example, only interior is required.

To fetch the objects that are related to the storey that is being abstracted its related
IfcRelContainedInSpatialStructure object has to be acquired, see Figure 21. If the model
is properly constructed, this object represents a relationship between a relating struc-
ture/object and a set of related elements. In this case the relating structure is the
IfcBuildingStorey and the related elements are the IfcProducts located at this storey.
As with the LoD0.2 storey abstraction process, IfcBuildingStorey objects that have a
similar or close to similar storey elevation are grouped. In the LoD0.3 case this means
that the IfcRelContainedInSpatialStructure of all the relating grouped IfcBuildingStorey
objects are used to create a single output abstracted storey shape (i.e. a surface or a
multisurface).

To separate the interior surfaces from exterior surfaces, a different merging process is
executed after the buffered horizontal intersection has been made. Because the final
abstracted surfaces are not all simply merged into a single section, like in the LoD0.2
case, the thinning process has to be limited. While for the LoD0.2 abstraction the
duplicates and completely encapsulated surfaces were removed, for LoD0.3 only the
duplicates are removed. This is followed by a splitting process in which every surface is
split by the other surfaces that overlap with it. After this, the duplicate split surfaces are
filtered out. This results in a mosaic like representation of the storey section consisting
of unique non-overlapping surfaces.

To test which surface is exterior and which one is interior, the voxels are used. For
every surface in the mosaic a group it is tested if the voxels above it are representing
the exterior. If any of the voxels is representing the exterior, the surface is assumed to
be exterior. The interior and exterior surfaces are separately grouped. The surfaces of
each of these groups are merged and stored in the GIS file.

Both the interior and exterior surfaces can be stored in the same BuildingStorey CityJ-
SON city object representing the group of storeys at that elevation. The used surface
type is FloorSurface for the interior surfaces and OuterFloorSurface for the exterior sur-
faces. The attributes of the IfcBuildingStorey object(s) at that elevation can be simply
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Figure 21: The relationship between a storey object (c) and the objects situated on that
storey, highlighted in blue (a) is facilitated by IfcRelContainedInSpatialStruc-
ture objects. This relationship is often created by the modeller and is not
always correct (b).

copied to the city object. Each of these CityJSON objects has a child relationship to the
main building’s CityJSON object to keep the clear structure in the abstracted model.

3.5.3 Footprint abstraction

The footprint abstraction method (LoD0.2 and LoD0.3) follows a very similar approach
as the LoD0.2 storey abstraction. Instead of the storey’s elevation, the footprint elevation
is taken as the height of the horizontal section. The final LoD0.2 surface is further refined
by selectively removing inner loops. Certain voids, such as elevator or staircase shafts,
are not of importance for the (outdoor) footprint geometry. Including them will bloat
the file sizes, increase downstream complexity and possibly confuse later users. Not all



inner loops should be removed though, e.g. inner loop can also represent a courtyard
which is an element that should be reflected in the footprint.

The voids are filtered with the help of the voxel grid. For every inner ring’s void area
it is tested if the voxels above it are representing the interior. If any of the voxels is
representing the interior, the ring is ignored.

The surfaces representing the footprint are stored in the same city object in the CityJ-
SON file as the roof abstractions. The footprint shape is considered to be exterior. The
type of the surface is set as GroundSurface.

Unlike the LoD0.2 and 0.3 storey abstractions the LoD0.2 and 0.3 footprint abstractions
are exactly the same geometry. In the current version of CityJSON it is not possible to
store the same geometry with multiple LoDs. So an identical copy of the geometry has
to be stored if both LoD0.2 and 0.3 output is required.

3.6 Very high geometric dependent abstraction

The very high geometric dependent abstraction processing extracts LoD abstractions
that are based on the complete model’s outer shell also adding windows and doors
(LoD3.2 exterior). It is the highest depended abstraction method and requires well
made models to function properly.

The creation of the LoD3.2 abstraction can be split into three main processes: surface
filtering, surface refinement and the fetching process of the attribute data. A visual
example of the complete process can be seen in Figure 22.

3.6.1 Surface filtering

The aim of surface filtering is to isolate the surfaces that play a role in the construction
of the exterior shell of the building. The filtering is done with the help of a voxel assisted
ray casting process. Ray casting is a resource intensive process, because of that a filtering
process based on the voxels is done in advance.

During the voxelisation process, described in Section 3.2, the voxel objects store data
related to their intersections. Important for this process is that the voxels store if they
are intersecting, with what they are intersecting and if they are part of the interior or
exterior voids. With this information a coarse filtering of the objects can be made. The
intersecting voxels that have one, or more, neighbouring voxels that are non-intersecting
and external are assumed to represent the exterior shell of the building. The IfcObjects
with which these filtered voxels intersect are assumed to have at least a single surface
that is part of the exterior shell, see Figure 24. The unique intersecting objects of this
group of voxels are collected and used in the ray casting process.



(a) (b)
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Figure 22: The steps of LoD3.2 abstraction displayed in a part of the floor plan shown in
Figure 23. a) Displays the starting situation after the IfcClass filtering and
complex shape simplification. b) The objects that are close to the exterior of
the building model are isolated by using the intersecting voxels that neighbour
an exterior void voxel. c) The completely inner surfaces are filtered out by
voxel assisted ray casting. d) The surfaces are split and again filtered out by
voxel assisted ray casting



Figure 23: Complete floor plan of the FZK Haus model with the area that is used in
Figures 22, 24, and 25

The surfaces of the collected objects are then filtered with the help of the voxel assisted
ray casting process, see Figure 25. This is done by populating each surface with a point
grid. This point grid is constructed in the same manner as described in Section 3.4.1.
From these points rays are cast to the centres of the surrounding non-intersecting exterior
voxels. For every point on the surface the exterior voxels that fall within 1.5×voxelSize
are selected as ray target points. Every ray is tested for an intersection with any of the
surrounding meshed surfaces (except the surface from which it originates). If the ray
intersects with anything, it is considered a hidden ray. If the surface has at least one ray
that is not hidden, it is considered of importance and collected for further processing.

3.6.2 Surface refinement

The surfaces that were collected are at least partially exterior. However, these surfaces
can still have parts that are interior, see Figure 22c. These interior parts need to be
eliminated to be able to create a closed outer shell. During this surface refinement step,
the surfaces are split and filtered.

Splitting complex surfaces can be a slow and unstable process. The process can be sim-
plified by polyhedralisation of the surfaces prior to processing. As mentioned in Section
3.4.1 IFC supports both explicit and implicit geometry while CityJSON only support



Figure 24: Plan view that shows how an example of the coarse filtering of objects. The in-
tersecting voxels (dark blue), that neighbour voxels that are non-intersecting
and external (light blue), intersect with object that have at least a single sur-
face that is part of the exterior shell. Some of the interior walls are included
in the selection because they partially intersect with a voxel that is queried.



Figure 25: 2D plan view that shows how rays are cast to detect exterior faces. The blue
point is the point from which the rays (black arrows) are cast to the centres
of the surrounding voxels (dark blue) that fall within the 1.5 × voxelSize
range (the dotted ring). Although displayed in 2D in this image this process
is executed in 3D and not 2D.

explicit geometry. So, the complex implicit surfaces have to be simplified regardless and
doing this early in the process increases robustness.

The approximated surfaces are then split by the surrounding surfaces that it touches.
This splitting process creates a pool of surfaces that are either completely exterior or
interior. To detect if the surface is visible another voxel assisted ray cast process is used.
This is similar as described in Section 3.6.1 and shown in Figure 25. However, for this
process no point grid to cast from is required. Instead, a single point on the surface
should suffice. From this point rays are cast to all the exterior voxels that fall within
1.5× voxelSize distance from the origin point. If a single ray is not hidden, the surface
is considered to be completely visible.

The surfaces that are considered to be completely visible can be merged based on their
surface type. Due to the complexity of the types three distinctions are made: doors,
windows and others. Surfaces that touch, have the same normal, and are part of the
same type group can be merged into a single surface.

The merged surfaces utilizing the other similar types will have to get a type for output



in the GIS file. This is easy when the merged surfaces are all of the same IfcClass.
However, this is not always the case. To determine the surface type, the areas of all the
input faces for a single merge process are computed. The surface type that is represented
by the largest sum of areas is the type that is being used for the resulting surface.

The actual determination of the suitable GIS surface types was challenging. The docu-
mentation of CityGML 3.0 [Gröger et al., 2012] is open for interpretation. This mostly
comes to light in the LoD3.2 abstraction due to the complex nature of the output shapes.
There are many cases that are ambiguously documented in the CityGML documentation.
An example of this is the roof structure. According to the CityGML3.0 documentation a
RoofSurface is “.. a surface that delimits major roof parts of a construction”. However,
When a roof has overhang, there is an underside of the roof that is exterior. Is this also
a surface “that delimits major roof parts of a construction” or is it an OuterCeilingSur-
face which is described as “... a surface that belongs to the outer building shell with the
orientation pointing downwards”. Both surface types seem to be suitable in this case.

Because this research is focused on the abstraction of the geometry, it was chosen to
keep the semantic surface type logic simple and lightweight. Therefore, there has been
no extensive research on finding a solution to this issue. However, it is important to note
that this issue exists and should be addressed in the future.

3.6.3 Acquiring attribute data

To be able to merge the surfaces based on their type, but also to correctly store it as
a CityJSON surface, the attribute data is required. In most cases the IfcObject class is
utilized, e.g. IfcWall objects are walls and IfcRoof objects are roofs, see Table 2 for a
full overview of the BIM to GIS types. However, in certain cases using the IfcObject class
is not enough. If a surface originates from an IfcWindow or IfcDoor object it can easily
be typed as either a window or door respectively. However, windows and doors can also
be part of IfcCurtainWall objects. IfcCurtainWall objects are usually constructed out
of IfcPlate and IfcMember objects, see Figure 26. If a door is present in a curtain wall,
it is modelled as an IfcDoor object. If a window is present, it is modelled as an IfcPlate
object. Consequently, a method had to be developed to detect if an IfcPlate object is a
window.

The most reliable way of detecting windows that are nested in IfcCurtainWall objects
is by the material rendering properties which are stored in the IfcSurfaceStyleRendering
class. This rendering class has a transparency attribute that ranges from 0 to 1. If the
transparency is larger than 0.25 the surface is considered to be a window surface.

Relying on the IfcMaterial object’s name attribute is an alternative option. This data
is faster and easier to access. Often if the material represents glass the word “glass” or
“glazed” is part of the material’s name. However, this is not always the case. There
can be many reasons for this. The major one being the language that is used in the



(a)
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Figure 26: a) The window/door structure of the main entrance of the digital HUB model
(its windows highlighted in blue) is modelled as an IfcCurtainWall where the
windows are IfcPlate class objects. b) The model is modelled by a German
party, so relying on the material name which is expected to be English (c)
would not function.



IfcClass CityJSON type

IfcDoor All surfaces: Door

IfcWindow All surfaces: Window

IfcPlate with glass like material All surfaces: Window

IfcSlab If below ground level:
Horizontal: FloorSurface
Other faces: WallSurface

If Above ground level:
Horizontal: RoofSurface
Other faces: WallSurface

Other classes WallSurface

Table 2: The translation logic when going from IfcClass to CityJSON surface type.

model, see Figure 26. If a language other than English is used the words for “glass” and
“glazed” would have to be translated.

The way of detecting the windows passes through all the three options. First the class
type is used. If the type is IfcCurtainWall or IfcPlate, the IfcMaterial class’s name
attribute is searched for. If this name contains the words “glass” or “glazed” the sur-
face is typed as a window. If this is not the case the final option is followed and the
IfcSurfaceStyleRendering class properties are used.

3.7 Interior geometric dependent abstraction

The interior extraction methods are developed for LoD0.2, 1.2, 2.2 and 3.2 interior room
abstractions. Each room in the IFC model will be abstracted into a unique shape. The
LoD0.2 abstraction of a room is limited to a projected ceiling outline while the LoD1.2,
2.2 and 3.2 room abstractions are fully volumetric abstractions.

The abstracted shapes representing the interior rooms are based on the IfcSpace objects.
These IfcSpace objects are modelled similarly in the IFC model as their abstracted GIS
representations will be, see Figure 27. They are both modelled as a shell representing
the transition between tangible geometry and interior void. This makes it a fairly easy
process to transition from IFC to CityJSON. However, relying on the IfcSpace data
does bring some challenges. If there is no IfcSpace data present or if the geometry
representation is incorrect the abstracted shape will also be missing or incorrect.

The room objects are stored in the GIS file as a child object relating to the story object
at which they are located. This storey is found by using the relationship between the
IfcSpace and IfcStorey objects. This means that if this relationship is incorrect, the
resulting abstracted room object will be the child of the incorrect storey object. This
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Figure 27: Comparison between the IFC interior space objects (b) and the CityJSON
interior space objects (c) of the FZK haus model (a). Aside from the surface
types the geometric shape of the IFC spaces and CityJSON spaces are iden-
tical.

will however have no effect on the physical placement of the geometry, just its semantic
relationship.

To create the LoD0.2, 1.2 and 2.2 interior abstractions the ceiling structure of the Ifc-
Space has to be isolated, see Figure 28. This process is similar to the roof structure
detection described in Section 3.4.1 but slimmed down. We assume all IfcSpace objects
are simple volumetric solids that only span a single storey. In practice this means that
it is assumed all surfaces representing the ceiling structure are not overlapping with
each other in the XY -plane. This assumption allows the detection process to be made
more robust and computationally effective. However complex rooms/ceiling structures
that do not adhere to the assumption could be detected incorrectly due to a simplified
implementation.

The simplified process is executed per room by selecting all the surfaces representing an
IfcRoom object and eliminating all the surfaces that have a normal with a Z-component
of close to 0. Now the top surfaces can be detected with the help of ray casting. Because
it is assumed no ceiling surfaces overlap, this can be done with a single ray cast per
surface. For each ray it is evaluated if it intersects with any surface other than the
surface from which it is cast. If the ray does not intersect with anything, the surface is
considered part of the ceiling structure.

For LoD0.2, the ceiling surfaces are projected flat, merged and translated to the Z height
of the lowest point of the original IfcSpace object. Similarly to the LoD0.2 roof outline
of the exterior shell, this surface get the type of the top surface. In this case that is
the +ProjectedCeilingOutline type. This is because the surface is based on the ceiling
structure of the room and not based on the floor structure. In most cases these would
be very similar, however in certain cases this could deviate.
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Figure 28: The steps that are taken for the ceiling detection. a) The starting shapes
are the IfcSpace objects b) For a more clear visual one room is isolated. c)
The vertical faces are discarded. d) A ray is cast from the surface the test
for intersection. e) The surfaces from which a non-intersecting ray is cast are
collected, these are the surfaces representing the ceiling structure.

To create the LoD1.2 abstraction the flattened merged surface that has been created for
LoD0.2 is extruded upwards to the top height of the IfcSpace object’s geometry. The
type of the surfaces that have a normal with a Z-component of close to 0 are set to
InteriorWallSurface. Of the two surfaces that are left, the type of the top surface is set
to CeilingSurface and the type of the bottom one to FloorSurface.

LoD2.2 uses the un-flattened ceiling surfaces. These are extruded downwards to the low-
est height of the original IfcSpace object. If the room has multiple surfaces representing
the ceiling, e.g. an attic room underneath a gable roof, the extruded surfaces have to be
merged together. Because we assume that no surfaces of the ceiling structure overlap,
we can merge the surfaces using the same method as described in Section 3.4.3. The
type of resulting shape’s surfaces that have a normal with a Z-component of close to 0
are set to InteriorWallSurface. The type of the lowest of the remaining untyped surfaces
is set to FloorSurface. The type of the rest of the surfaces is set to CeilingSurface.

The LoD3.2 abstraction shapes for the interior are not abstractions. They are almost
1:1 conversions of the IfcSpace geometry. As mentioned before, IfcSpace objects and
CityJSON space objects are very similar, see figure 27. If the IfcSpace objects are
modelled properly this will result in format compliant LoD3.2 interior abstractions. The



only exception is that IFC supports implicit geometry while CityJSON only supports
explicit geometry. If implicit geometry is used to represent the surfaces modelling the
room, the surfaces are approximated by polyhedral surface approximation. This creates
a detailed approximation of the specific surface consisting of all flat surfaces.

Detecting surfaces representing walls is more of a challenge. Similarly as with the LoD1.2
and 2.2 abstractions, surfaces that have a normal with a Z-component of close to 0 are
walls. However, angled walls can occur in LoD3.2. Consequently, there can be a case
where a wall has a normal with a Z-component that is not close to 0. To be able to
correctly detect those surfaces as walls an extra rule is added. If a surface normal falls
within a 20 degree angle of a horizontal plane the surface is considered a wall.

Similarly, floor surfaces create a challenge to be detected as well. Both for the LoD1.2
and 2.2 case, there is only a single floor surface. The LoD3.2 shape can have multiple
surfaces representing the floor. To detect this a ray cast is done from each surface
upwards along the Z-axis. If it intersects with any other surface, except itself, it is
considered a floor surface. All the remaining surfaces are marked as ceiling surface.



4 Implementation details

4.1 BIM2GEO application

The in Section 3 described methods have been implemented in a software application.
This allows us to test the viability of these methods in an automated manner. The appli-
cation that has been developed for this purpose is the open source IfcEnvelopeExtractor.
The IfcEnvelopeExtractor is a cross platform (Windows & Linux) console application
that takes a IFC model as input and automatically converts it to a CityGML/CityJSON
file with minimal user assistance. The application is lightweight and can be utilized on
local systems and servers. A pre-compiled windows or Ubuntu Linux versions can be
acquired from the application’s GitHub page. The utilized version for this research is
V0.2.6.

The application is C++ based and utilizes IfcOpenShell 0.7 and OCCT 7.5.3 libraries
for accessing the BIM data and processing the geometry. In conjunction to the IfcEn-
velopeExtractor, the C++ library CJT was developed. CJT is an open source library
that enables editing of CityGML/CityJSON files and the conversion of OCCT geometry
to CityGML/CityJSON. This library is an integral part of the IfcEnvelopeExtractor,
but can also be used independently in other C++ applications.

4.1.1 Supported I/O file formats

The IfcEnvelopeExtractor application accepts BIM models in the open Industry Founda-
tion Classes (IFC) format. However, only a subset of IFC versions is currently supported.
The list of supported IFC versions can be seen in Table 3. The developed application
also adheres to the georeferencing standards for IFC4. For IFC2x3, the property sets
(Psets) approach developed for IfcGref [Delft University of Technology, nd] are utilized.
For IFC4x3 the same approach of IFC4 is applied.

Version Name

2.3.0.1 IFC2x3 TC1
4.0.2.1 IFC4 Add2 TC1
4.3.2.0 IFC4x3 ADD2

Table 3: Supported IFC versions

IfcEnvelopeExtractor outputs CityGML models in the CityJSON V2.0 encoding. The
CityJSON file is a single output file that contains all the abstracted shapes. To expand
the ease of use, the application can also export copies of the abstracted shapes in Wave-
front .obj and .STEP file formats. These files do not support LoD in a similar way as
CityJSON does. To accommodate for this, the .obj and step file output are not a single
file but a collection of files each representing a single (or part) of an LoD abstraction.



4.1.2 Supported LoD abstractions

The IfcEnvelopeExtractor can generate and output a large selection of LoD abstractions.
These are the abstractions that are described in this paper, but the software can also
generate a large group of experimental abstraction and non-standardized abstractions
shapes that are not described in this paper. These range from simple shapes, like a
combination of footprint restricted LoD2.2 with unrestricted roof structure, to extremely
complex shapes, like a 1:1 conversion. In total the tool can output 17 different LoD:
8 standard and 9 non-standard. LoD0.4 is the only non-standard LoD covered in this
paper.

4.1.3 Application Configuration

The application is controlled via configJSON files that define the user settings. To set up
the application, the user is only required to set a minimum of 3 different settings. The
input path(s), the output path and the desired LoD. If no other settings are configured
in the file, they are either automatically chosen by the application or a default value is
used. This allows the user to only set 3 settings or expand to the 30+ settings that are
available to fine-tune the application for their unique need.

Setting up such a configJSON can be a daunting task for a normal BIM and/or GIS user
that has no programming background. To facilitate a non-programmer user a python
based GUI was also developed. The GUI functions as a front that exposes a selection
of the available settings for easy configuration, see figure 30. After the offered settings
are configured, the GUI creates a configJSON, feeds it to the correct executable, and
deletes the configJSON. The GUI is available from the GitHub page as both a Python
file and a pre-built Windows executable.

The GUI can also be used as an initial step for the development of custom configJSON
files. Instead of feeding the file directly to the executable it can also only generate and
store a configJSON file. This configJSON file can then be edited with a text editor.
This can be of use if more complex settings are desired than the sub-set exposed by the
GUI. This can only be done via the configJSON file. The more complex settings that
are only accessible from the config file are settings such as the voxel intersection logic,
custom model rotations and max thread count.

The configJSON can be a complex file. To make it easier for the user, but also the parser,
most of the settings are clustered in groups. Each group covers their own topic of settings:
the desired file paths, the desired LoD output, voxel related settings, IFC related settings,
CityJSON related settings, additional outputs format and the tolerances. An example
of a full configJSON can be seen in figure 29.



{

"Filepaths": {

"Input" :

[

"path to IFC file",

"Potential path to other IFC file"

],

"Output" : "path to export (City)JSON file",

"Report" : "path to export report JSON file"

},

"LoD output": [ 0.0, 0.2, 0.3, 1.0, 1.2, 1.3, 2.2, 3.2, 5.0 ],

"Voxel":{

"Size": 1,

"Store values" : 0,

"Logic" : 3

},

"IFC": {

"Rotation angle" : 90,

"Default div": true,

"Ignore proxy": true,

"Div objects" : [],

"Ignore voids" : 0,

"Simplify geometry" : true,

"Ignore simplification" : [],

"Correct placement" : true

},

"JSON" : {

"Footprint elevation": 1,

"Footprint based" : 0,

"Horizontal section offset": 0,

"Generate footprint": 1,

"Generate roof outline": 1,

"Generate interior": 0,

"Generate exterior": 1,

"Generate site": 0,

"Georeference" : 1,

"Merge semantic objects": 1,

},

"Output format" : {

"STEP file" : 1,

"OBJ file" : 1

},

"Tolerances" : {

"Spatial tolerance" : 1e-6,

"Angular tolerance" : 1e-4,

"Area tolerance" : 1e-4

},

"Generate report": 1,

"Threads": 12

}

Figure 29: Example configJSON with all the available settings



Figure 30: GUI of the IfcEnvelopeExtractor v0.2.6.



File name Source IFC version Object Storeys X,Y, Z size
count (m,m,m)

AC20-FZK-Haus IAI/KIT IFC4 102 2 15.0, 13.0, 6.5
AC20-Institute-Var-2 IAI/KIT IFC4 896 5 64.4, 42.2, 15.4
FM ARC DigitalHub RWTH Aachen IFC4 775 3 64.3, 35.6, 12.1
PRAHA GO V5 CHEK IFC4 3588 7 91.4, 61.2, 26.1
Demo Lisbon 2025 CHEK IFC4 591 7 33.3, 11.4, 19.4
Demo Ascoli Piceno v2 CHEK IFC4 3040 8 61.6, 57.7, 22.1

Table 4: Summary of the models used to test performance.

4.2 Used models

The models used to test the performance of the developed methods were picked to
represent a wide range of different types of buildings. Some of these are use cases
in the CHEK project (see introduction). The models range from very simple small
single housing models to moderately complex multiple storey office buildings. Table 4
summarises the main characteristics of the models. The models are visualised in Figure
32.

Some of the models required some editing prior to processing. This is because the models
did not adhere to the input requirements of both the methods and the IfcEnvelopveEx-
tractor. As was mentioned in Section 3.1.2 objects are selected based on their type. This
works well as long as the IFC model is constructed using the proper types. However,
the site of the model is occasionally modelled utilizing incorrect types. For example,
the FM ARC DigitalHub model includes a road that is modelled as an IfcSlab object,
see Figure 31. If this kind of improper site modelling occurred, the object’s type was
changed or the object was removed from the model.

4.3 Used settings

The used settings to generate the abstractions has set as uniformly as possible. For the
majority of the results the ConfigJSON was created using the GUI. So no deep settings
were changed. Most of the settings were identical between the models:

• Active Desired LoD generation: LoD0.0, 0.2, 0.3, 0.4, 1.0, 1.2, 1.3, 2.2 and 3.2

• Active Additional settings: Generate Exterior, Generate interior, Export footprint,
Export Roof outline

• Active Other settings: Ignore proxy elements, Use default div objects, Use high
precision

• Voxel size = 0.3 metre

• Footprint elevation = 0 metre



Figure 31: The FM ARC DigitalHub model. highlighted in blue is a road that is not
part of the building but is incorrectly modelled as an IfcSlab object that
is part of the IfcBuilding object. This object was manually removed from
the model prior to processing. If this object was included it would incorrect
influence the outcome.

Although uniformity in the settings was attempted when running the tool for all test
models, there are some deviations in the settings that were deliberately chosen. These
deviations can be split into two groups, model specific deviations and evaluation specific
deviations. Model specific deviations cover the changes that were made in the input
settings to accommodate the proper processing of the input model. Evaluation specific
deviations cover the choices that were made in the input settings to accommodate the
different evaluations (see Section 5). The model specific deviations are covered here.
The evaluation specific settings are covered in Section 5.

4.3.1 Model specific settings

For the PRAHA GO V5 model the proxy elements are not ignored and the footprint
elevation is set to 250.5 metre. This was done because important elements of the building
were modelled as IfcBuildingElementProxy that otherwise would be ignored, such as the
external staircase/grandstand. For the Demo Lisbon 2025 model, the voxel size has been
set to 0.15 metre. This was done because there are some narrow parts in the model that
otherwise would not be correctly registered.



(a) (b)

(c) (d)

(e) (f)

Figure 32: The different models that are used to evaluate the performance of the
developed methods. a) AC20-FZK-Haus model, b) AC20-Institute-Var-2,
c) FM ARC DigitalHub, d) Demo Lisbon 2025, e) Demo Lisbon 2025, f)
Demo Ascoli Piceno v2. The figures representing these models are not to
the same scale.



5 Results, Evaluation & Discussion

This chapter covers three different types of evaluations: the geometric accuracy, the
semantic accuracy and the model complexity. The three evaluations are described in
Sections 5.1 to 5.3. Each section starts with a sub-section that covers how the evaluation
is set up and what the results are, followed by one or more sub-sections discussing the
results of the evaluations.

5.1 Geometric accuracy

5.1.1 Evaluation set up

Setting up tests to quantify the quality and accuracy of the generated geometry is
challenging. The LoD abstractions do not have a proper ground truth. GIS models
that are used in practice are not candidates to fulfil this role. For example an LoD1.3
abstraction that comes from a GIS database will presumably be less accurate than the
LoD1.3 abstraction that is based on a BIM source. The GIS sourced model will most
likely be based on in field measurements, containing occlusion and noise, issues that the
developed methods do not have to deal with. Additionally, many of the LoD abstractions
that the method can generate are not available from GIS databases.

We can, however, visually compare the input IFC model to the abstracted shapes. In
this way, it can be evaluated if the shapes of the abstractions are as expected and if they
show any elements that the input models do not show. Additionally, we can augment
the visual inspection with a test to see if the volumetric abstraction shapes are closed
volumes.

Instead of assessing the output in binary form as either 1 (correct/as expected) or 0
(incorrect/with issues), we give three scores. A score of 1 signifies an expected output
based on the input model. Additionally, volumetric models should also be closed vol-
umes. A score of 0.5 signifies a model with minor issues. The model visually resembles
the expected output based on the input model, but there are some unexpected issues.
For example, in a volumetric model, there could be some minor self intersections that
prevent it from being closed. These models are expected to still be useable to some
extent in GIS analyses. A score of O signifies a model with issues that would prevent it
from being usable in any GIS analyses. This ranges from missing faces to output shapes
that do not resemble the input IFC model.

The settings that were described in Section 4.3 were used to generate the output for this
evaluation.
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AC20-FZK-Haus 1 1 1 1 1 1 1 1 0.5
AC20-Institute-Var-2 1 1 1 1 1 1 1 1 1
FM ARC DigitalHub 1 1 1 1 1 1 1 1 0.5
PRAHA GO V5 1 1 1 1(0)* 1 1 1 1(0.5)* 0
Demo Lisbon 2025 1 1 1 1 1 1 0.5 0.5 0.5
Demo Ascoli Piceno v2 1 1 1 1 1 1 0.5 0.5 0

Table 5: The success rate of the exterior shell extraction. *Output differs per execution
between the first value and the value between brackets.
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AC20-FZK-Haus 1 1 1
AC20-Institute-Var-2 1 1 1
FM ARC DigitalHub 1 1 1
PRAHA GO V5 1 1 0.5
Demo Lisbon 2025 1 1 0.5
Demo Ascoli Piceno v2 1 0.5 0.5

Table 6: The success rate of the footprint restricted exterior shell extraction.

5.1.2 Results

The results of this inspection can be seen in Tables 5 and 6. The exterior abstraction
scores in Table 5 show that the non-volumetric abstractions perform very well. The
methods applied seem robust and accurate. However, the scores for the volumetric
models are not all good. The scores of LoD1.0 and LoD1.2 are very high, but LoD1.3
and more complex abstractions show lower scores. The scores for the footprint restricted
volumetric abstraction, see Table 6, show similar results. From these scores, it can be
concluded that the more complex the abstraction shape is, the lower the scores are. The
interior abstractions all performed as expected (1), regardless if the output is 2D, 2.5D
or 3D.

5.1.3 Discussion of the results

Propagation of IFC model related issues The results summarized in Tables 5
and 6 do not always cover the whole story. Even when the abstraction scores 1, the



abstracted model could still have issues that make it unusable. This is because these
scores are computed based on the output created from the input model, which might be
faulty. If the IFC model contains unexpected issues or uncertainties, these can lead to
undesirable output, even if the methods implemented in the IfcEnvelopeExtractor tool
work as they should. The Demo Ascoli Piceno v2 model shows two examples of these
input related issues (Figure 33).

Firstly, the tool only utilises the selected space dividing objects as a split between the
interior and exterior. The Demo Ascoli Piceno v2 model has staircase shafts that can
be accessed via an underground parking lot, which is connected to the exterior of the
model. The entrance to the staircases and the parking lot are openly connected to each
other. Consequently, there is no clear division between which space is part of the interior
and which space is part of the exterior. The staircase shafts and all directly connected
spaces are considered exterior by both the tool and the methods. In theory, they are,
because there is no barrier between the interior and exterior. But most likely, this is not
expected by the user. This behaviour becomes apparent in different LoDs: The LoD3.2
exterior, the LoD0.3 storeys, the LoD0.2 and 0.3 footprints and the footprint restricted
LoD1.2, 1.3, and 2.2.

(a) (b)

Figure 33: a) Top view of the footprint restricted LoD2.2 abstraction of Demo Ascoli
Piceno v2. b) Top view of the LoD2.2 abstraction of Demo Ascoli Piceno v2.
The footprint restricted abstraction has two cut outs in the model caused by
the staircase shafts in the footprint that are considered exterior. Although
this is correct behaviour a possibly more desirable result would be if these
staircase shafts were interior and filtered out of the footprint.



A solution for this would be a direct fix in the IFC file. However, if this direct connection
between the shafts and the exterior is correct and required for the design, an alternative
solution should be offered. A potential improvement could be to offer an option that
could rely on other IFC classes to identify the split between interior and exterior.

The second issue that the Demo Ascoli Piceno v2 model exposes can be clearly noted
in the LoD0.3 storey abstraction, but is also present in the LoD3.2 exterior abstraction.
The IFC model has gaps (≥ 1cm) in its facade due to modelling errors. This causes
issues in the high and very high geometric dependent abstractions. The LoD0.3 storeys
abstractions show therefore some areas that are incorrectly typed as OuterFloorSurface
while they are actually interior, see Figure 34. Modelling errors that result in gaps of
this size can be considered as an user error and should be fixed in the input IFC file.

Figure 34: The LoD0.3 interior ground floor abstraction of the Demo Ascoli Piceno v2
model shows an incorrectly detected interior surface. This is caused by a gap
of around 1 cm between one of the columns and doors.

Tolerances/precision The volumetric abstractions show two different issues that can
occur which are closely related. The first issue is incorrect vertical face elimination in
LoD1.3 and 2.2. The second one is incorrect trimming of surfaces in LoD3.2. Both are
related to tolerances in the input IFC models in relation to the Boolean operations that
are used.

The tool utilizes a precise tolerance of 1e-6m (0.001mm). IFC allows the use of such a
precise value, however, the models are made by humans. So even if the way the data
is stored in the model can be very precise, it might be modelled with larger errors. At
a tolerance/precision of 1e-6m, small gaps are not easily noticed by modellers, nor are
they important for most BIM-related cases. However, the IfcEnvelopeExtractor does
behave differently when these gaps are present in the model.

Both the Demo Lisbon 2025 model and Demo Ascoli Piceno v2 model have such small



gaps in the roof structure. During the creation of LoD1.3 and 2.2, the roof representing
shapes are extruded downwards, see Section 3.4.3. Afterwards, the vertical faces are
filtered and trimmed to create a solid shape. Due to the small gaps in the surfaces,
which are used to create the extrusions, the vertical faces do not always rest against
each other. These small gaps prevent the vertical faces to be correctly filtered and
trimmed. The very small tolerance and the gaps do not interact well with the Boolean
and similarity processes. So, remnant faces are left in the model, preventing a proper
closed solid to be formed, see Figure 35.

As can be seen in Table 5, the LoD0.3 and 0.4 of both the Demo Lisbon 2025 model
and Demo Ascoli Piceno v2 model have a perfect score even though these small gaps are
present. This is because the precision of the output GIS files is 1e-3m (1mm). The gaps
causing these issues are often smaller than the GIS precision. So, due to their extremely
small size, they are not conveyed in the GIS output of these LoDs.

(a) (b)

Figure 35: b) A section slice of the Demo Lisbon 2025 LoD2.2 abstraction model (a) that
clearly shows one of the remnant surfaces that has been incorrectly exported.
This should be a hollow ring, but a group of surfaces originating from the
diagonal roofing structure are preventing it from being truly hollow.

Incorrect trimming caused by too precise tolerances can be noted in almost all LoD3.2
abstraction shapes. Even for the simplest building that has been evaluated, the AC20-
FZK-Haus model, some surfaces are not correctly trimmed down. This usually results
in a situation where the abstracted GIS model is watertight, but not a solid. It is
prevented from being a solid by a set of untrimmed surfaces poking into the interior of
the shape, see Figure 36. In all evaluated LoD3.2 models that did not score a perfect 1,
this incorrect trimming occurs at certain places. The areas around windows and doors



seem particularly prone to this issue. The simplification of complex objects helps with
reducing the occurrences of this issue. However, curtain-walls are not simplified by this
simplification process and we often see issues here as well (Figure 37).

Figure 36: A section of the LoD3.2 abstraction of the AC20-FZK-Haus model that shows
some of the incorrectly trimmed surfaces at the round window. These surfaces
should be trimmed and the interior part should have been discarded.

The PRAHA GO V5 model and Demo Ascoli Piceno v2 model show very badly perform-
ing LoD3.2 abstractions. This is because these abstractions not only have the incorrectly
trimmed surfaces, but also have some surfaces that are completely missing. Even though
the missing surfaces are a different issue, the main cause is the same: incorrect surface
trimming. The surfaces are missing due to the second ray casting process, which is cov-
ered in Section 3.6.2. The second ray casting process that occurs after the trimming is
fairly lightweight. It can be so lightweight because it was assumed that when a surface
was split, the resulting sub-surfaces will be either completely interior or exterior. This
assumption is true if the surface is correctly split. However, if it is not, it can still be
partially interior and partially exterior. In that case, the location of the point from
which the rays are cast will determine if it is considered interior or exterior, even though
it is actually both. Regardless of the outcome, the LoD3.2 abstraction will have issues:
either the surface is missing, or the surface partially sticks into the solid.



Figure 37: Isolated section of an LoD3.2 external abstraction showing a curtain wall.
The detailed geometry can cause issues in the implementation which results
in surfaces being incorrectly trimmed or missing.

The issues that are encountered in LoD1.3, 2.2 and 3.2 could possibly all be avoided by
processing the IFC objects with a less precise tolerance. A tolerance of 1e-4m (0.1mm)
is still precise, but could possibly avoid all, or a set of the small gaps that influence the
tool. However, it should further be investigated if this could cause other issues. It is
important to note that the issues covered here are implementation issues. The method
could however improve if a change in tolerances was incorporated/covered.

Unpredictable behaviour The PRAHA GO V5 model also shows another issue that
is not related to tolerances: unpredictable outcomes. The LoD2.2 output can be either
a closed shape or not. This can differ per individual execution of the tool while using
exactly the same settings. We assume this is caused by an improper implementation
of a surface simplification process during the LoD0.4 creation. The surfaces of the
LoD0.4 roof structure seem to always be properly detected. Before further processing,
the LoD0.4 roof structure goes through a simplification step. This eliminates redundant
vertices and edges. However, occasionally some small inner rings are incorrectly removed
from the roof surfaces, see Figure 38. If so, the LoD0.4 roof surfaces can now overlap
each other, leading to erroneous surfaces. The resulting LoD2.2 abstraction based on
these LoD0.4 roof surfaces is not a closed solid. The method and implementation do not
anticipate that this can occur.
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Figure 38: The LoD2.2 abstraction of the PRAHA GO V5 model shows unpredictable
behaviour. a) The process can output an incorrect result when small inner
rings are ignored. b) The process can also output a correct result when the
inner rings are kept. This is an issue that can occur in the LoD0.4 abstraction
and is passed on to LoD2.2



5.2 Semantic accuracy

5.2.1 Evaluation set up

There is no proper ground truth to quantify the quality of the semantic accuracy. This
issue was already addressed in Section 5.1. The issues here are very similar. The only
difference is that instead of inaccurate or missing geometry, the GIS sources containing
the ground truth can also have incorrect or missing surface types.

It is, however, possible to visually evaluate the surface types of each LoD abstraction and
to check if their type adheres to the description in the CityGML3.0 encoding’s standard
data dictionary [Kolbe et al., 2021].

5.2.2 Results

The CityGML 3.0 encoding standard [Kolbe et al., 2021] can be vague in certain situ-
ations, as was noted in Section 3.6.2. This vagueness mostly creates issues in complex
shapes, such as LoD3.2. The evaluation of the LoD3.2 exterior shapes therefore requires
interpretation, which makes this evaluation subjective. Consequently, it was decided
to omit the LoD3.2 exterior from the results. This issue was not encountered during
the evaluation of the LoD3.2 interior shapes. These shapes are a lot simpler than the
exterior shapes. Due to this, the LoD3.2 interior evaluation has been included.

The tests showed that the surface types of all abstractions are as expected when com-
pared to the CityGML 3.0 feature type documentation. The success rate of both the
interior and exterior abstractions show that, even though the way that the surface types
are determined is very simple, they are also accurate. Even on models that were not true
solids, such as the Demo Lisbon 2025 model, the surface types could still be accurately
determined. Note that the surfaces that were incorrectly modelled in the input IFC file
were not included here, since these surfaces are not supposed to be there.

5.2.3 Discussion of the results

Missing roof windows Even though the surface types were technically correct in the
FM ARC DigitalHub and Demo Lisbon 2025 abstracted models, there is something to
be noted. Both these models have windows that are part of the roofing structure. The
FM ARC DigitalHub model has two large planar skylights and the Demo Lisbon 2025
model has smaller angled windows in the roofing structure. Due to the simplicity of the
rules that are used to determine the surface types, these were not classified as windows
in the abstracted shapes, see Figure 39. LoD1.3 officially requires no surface types and
LoD2.2 does not require the surface types that signify if a surface is a window or a door.
However, the value of the models could be enlarged if window surfaces that are part of
the roof structure can be identified as such.
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Figure 39: a) The FM ARC DigitalHub model has windows that are part of the roofing
structure, highlighted in blue. b) These windows are not conveyed to the
LoD2.2 abstraction. Instead the surfaces are typed as RoofSurface. This
behaviour adheres to the description of LoD2.2.

5.3 Model complexity

5.3.1 Evaluation set up

To test the effect of the abstraction methods on the file size complexity, a set of evalua-
tions is made.

The first evaluation compares the size of the different output files with the original file
size. Table 7 compares the size of an 1:1 converted .obj file, the combined CityJSON
abstraction containing nine abstracted representations of the model (LoD0.0, 0.2, 0.3,
0.4, 1.0, 1.2, 1.3, 2.2, and 3.2 interior and exterior) and the LoD3.2 CityJSON abstraction
to the original file. The 1:1 .obj file was added to this evaluation to include the file size
of the input model with all explicit geometry. Similar to .obj, CityJSON only allows
explicit geometry while IFC also allows implicit geometry. This .obj model/file is also
used for the other evaluations in this section. The actual file sizes which are used for
this comparison can be found in the Appendix in Table 11.

The second evaluation covers the geometric complexity of the different LoD abstrac-
tions. To quantify the complexity, the number of triangles that result from a triangula-
tion/meshing of each of the models is counted. Table 8 compares the number of triangles
of the exterior abstractions with the 1:1 OBJ conversion of the IFC model. To compute
the number of triangles of the CityJSON abstractions, the shapes were triangulated



File name OBJ file size CityJSON combined CityJSON LoD3.2
(%) file size* (%) file size (%)

AC20-FZK-Haus 14.43 0.43 0.39
AC20-Institute-Var-2 39.63 8.71 8.06
FM ARC DigitalHub 303.70 1.35 0.78
PRAHA GO V5 3 751.33 7.77 7.11
Demo Lisbon 2025 548.52 1.26 0.65
Demo Ascoli Piceno v2 800.52 4.82 2.19

Average 909.69 4.05 3.20

Table 7: Comparison of the file size of the 1:1 OBJ conversion, the combined output GIS
file and the output GIS file containing LoD3.2 only to the input IFC file. All
the files contain both interior and exterior abstractions. *The combined output
file contains LoD0.0, 0.2, 0.3, 0.4, 1.0, 1.2, 1.3, 2.2, and 3.2.

using Rhino3D. The actual triangle counts, which are used for this comparison can be
found in the Appendix in Table 13.

The interior abstractions were not included in this evaluation because not all LoD ab-
stractions that are generated have interiors. Additionally, not all LoD have the same
interior elements modelled. For example, the LoD0.2 interior abstraction has floor and
rooms, while the LoD1.2 interior abstraction only has rooms included. Including the
interior would thus influence the triangle count without directly reflecting the model’s
geometric complexity.

The third evaluation covers the effects of the complex object simplification process.
This process was covered in Section 3.1.3. Table 9 compares three different approaches
to simplifying IfcWindow and IfcDoor objects to the original triangular polygon count.
To quantify the complexity, we again count the numbers of triangles that result from a
triangulation/meshing of each of the models. To compute the number of triangles of the
CityJSON abstractions the shapes were triangulated using Rhino3D. The actual triangle
counts which are used for this comparison can be found in the Appendix in Table 12.

This third evaluation is expanded by an evaluation of the presence of windows in the
LoD3.2 abstraction. Section 3.1.3 describes how the selective application of voids can
negatively impact the accuracy of window and door data. To quantify this, the num-
ber of windows and doors are counted both in the input IFC model and each LoD3.2
abstraction, see Table 10. This was counted manually for the IFC file since automated
approaches implemented in BIM Authoring software proved to be unreliable. The win-
dows in the IFC file that were taken into account are both IfcWindow objects and
IfcPanel objects that are see-through.



5.3.2 Discussion of the results

File size The file size evaluation shows a clear size reduction when going from BIM
(IFC) to Geo (CityJSON), see Table 7. Even the combination file, which includes nine
different abstracted representations of the model, has a significant smaller file size than
the input model. The average file size of the output is 4% of the original IFC input model.
The LoD3.2 files are even smaller. These single file models, although still keeping a large
amount of details of the original files, have an average file size that is 3% of the original
IFC input model.

This file size reduction is reached by a combination of factors. The most interesting one
for this research is the reduction due to shape abstraction. Simpler geometry requires
less storage space. Due to the magnitude of reduction it can be concluded that the
simpler abstracted shapes have a notable effect. But also other factors play a role in a
significant file reduction: eliminated semantic data, differences in file encoding, and the
way geometry is stored.

During the abstraction processes, semantic data is reduced because not all attributes are
copied to the GIS file. For the exterior only the attributes of the IfcBuilding, IfCDoor,
and IfcWindow objects are copied to the abstracted GIS model. If LoD3.2 is not opted
for, only the attributes of the IfcBuilding object are copied. For the interior, the at-
tributes of the IfcRoom and IfcBuildingStorey objects are copied. However, all the other
attributes are ignored. Depending on the model this can be a very large data volume.
Depending on how this is stored in the input IFC model, it can have a notable effect on
the file size of the output CityJSON file.

The abstracted data is stored in a GIS file format, in this case CityJSON. CityJSON is
a fairly lightweight way to store data in general. IFC in contrast is a rather heavy file
format. The difference in the way the same data is stored in each file type can already
influence the resulting file size. In some cases 1:1 converting IFC data to CityJSON will
already reduce the file size.

IFC allows for the storage of implicit geometry, while CityJSON does not. Therefore,
all the implicit geometry that is used in the output of the IfcEnvelopeExtractor has to
be converted and stored as explicit geometry. Depending on how the input IFC model
is constructed, this can have a bloating effect on the CityJSON files.

Polygon count Table 8 shows as expected a trend of increased polygon count for
less abstracted shapes. This trend is valid for most models. However, there are some
deviations. The PRAHA GO V5 and Demo Ascoli Piceno v2 models show a LoD0.2
abstraction that has a higher or similar triangle count compared to the LoD1.2 abstrac-
tion. This is caused by the LoD0.2 footprints of these models, see Figure 40. The
LoD0.2 footprint in both cases is more complex than the roof outline. As was described
in Section 4.3, the evaluated abstraction models are based on the roof outline and not
the footprint. So the footprint’s complex mesh does not have an effect on the LoD1.2
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AC20-FZK-Haus 0.19 0.19 0.27 0.56 0.56 0.74 65.53
AC20-Institute-Var-2 0.47 0.42 1.27 1.04 1.23 3.49 85.35
FM ARC DigitalHub 0.09 1.25 1.25 1.04 2.39 2.39 9.45
PRAHA GO V5 0.04 0.22 0.43 0.04 0.43 0.68 3.27*
Demo Lisbon 2025 0.17 0.72 1.01 0.22 1.02 3.23 6.54
Demo Ascoli Piceno v2 0.26 0.40 1.53 0.15 0.54 6.77 37.82*

Average 0.20 0.53 0.96 0.34 1.03 2.71 34.66

Table 8: Comparison of the number of triangles compared to the 1:1 OBJ representation
of the IFC file. This is just comparing the exterior geometry. LoD0.0 and 1.0
has been excluded because they will always have a triangle count of 2 and 12
respectively. Note that this table is in per-thousand/per-mille and not percent-
ages. *Abstractions were considered faulty (< 0.5), see Section 5.1.

mesh, while it has for LoD0.2. The other input models do not have a footprint that is
significantly more complex than the roof outline, so this behaviour is not seen in those
cases.

5.3.3 Complex object simplification

When looking at the results of the complex object simplification, an expected reduction
of triangles can be observed when going from full complex object use to bounding box
abstraction (Normal), see Table 12. In some of the models, another reduction of triangles
can be observed when going from bounding box abstraction (Normal) to bounding box
abstraction augmented with selective void applying (Simple). The AC20-FZK-Haus,
AC20-Institute-Var-2 and FM ARC DigitalHub models show large complexity reduc-
tion, the Demo Ascoli Piceno v2 model shows some reduction, The PRAHA GO V5
and Demo Lisbon 2025 models show no reduction. Looking to the window count in Ta-
ble 6, this inconsistent behaviour is corroborated. The models that show a large triangle
reduction when selectively applying voids also show a large reduction in the LoD3.2
window count.

The majority of this unexpected behaviour can be traced back to the implementa-
tion. IfcOpenShell is used to access the geometry of an IFC model. This C++ li-
brary is supposed to be able to access geometry without voids applied. However,
its behaviour showed to be inconsistent. For the AC20-FZK-Haus, AC20-Institute-
Var-2 and FM ARC DigitalHub models this worked flawlessly. However, for the the
PRAHA GO V5 and Demo Lisbon 2025 models all voids were always applied and for



(a) (b)

Figure 40: The APC model has a footprint (a) which is a lot more complex than the roof
outline (b). A wireframe representation highlights this well. The difference
in area of the two is caused by the underground parking lot which is not
reflected in the footprint but is detected as roofing structure that should be
included.

Full Normal Simple
File name LoD3.2 (%) LoD3.2 (%) LoD3.2 (%)

AC20-FZK-Haus 17.45* 6.55 0.61
AC20-Institute-Var-2 24.42 8.53 0.76
FM ARC DigitalHub -* 0.95 0.30
PRAHA GO V5 4.54* 0.33* 0.33*
Demo Lisbon 2025 23.45* 0.68 0.68
Demo Ascoli Piceno v2 77.92* 3.78* 3.67*

Table 9: Comparison of the effect of the complex shape simplification functions on the
final triangular polygon count. The full LoD3.2 has no complex shape sim-
plification applied, the normal LoD3.2 has only bounding box simplification
applied, the simple LoD3.2 has bounding box and selective void simplification
applied. This is just comparing the geometry. LoD3.2 is the outer shell only.
*Abstractions that are considered faulty (< 0.5) if tested for geometric accu-
racy



the Demo Ascoli Piceno v2 voids seem to be almost randomly applied. All the voids
were modelled as expected via the IfcOpeningElement and IfcFeatureElementSubtrac-
tion objects and all the models were of the same IFC version. It is not clear what causes
this issue. It could be that the models contain unexpected combinations of objects that
can cause IfcOpenShell to behave incorrectly.

The increasing complexity when not utilizing any complex object simplification (Full) has
negative effects aside from the increase of complexity. When the complex objects are used
as is it reduces the processing speed noticeably. Sometimes the slow processing prevents
the model from being processed at all. This is the case for the FM ARC DigitalHub
model. But the issues were not limited to processing speed. The LoD3.2 related issues
noted in Section 5.1 were more prevalent when complex shapes were used as is. More
incorrectly trimmed and missing surfaces were present in such a way that all the LoD3.2
would have scored a 0 if they were used for the geometric accuracy tests. The usability of
these models is therefore considerably lower than the models that utilized the abstracted
complex objects.

Normal Simple
File name IFC LoD3.2 LoD3.2

AC20-FZK-Haus 11 11 0
AC20-Institute-Var-2 206 206 0
FM ARC DigitalHub 72 72 20
PRAHA GO V5 372 (362) 362 362
Demo Lisbon 2025 19 (11) 11 11
Demo Ascoli Piceno v2 509 475 424

Table 10: Comparison of the window count in the input models and the LoD3.2 abstrac-
tions. The normal LoD3.2 has only bounding box simplification applied, the
simple LoD3.2 has bounding box and selective void simplification applied.



6 Conclusions

This report describes our research to convert highly detailed BIM models to Geo mod-
els at different LoDs. A method has been developed and implemented that takes an
IFC model as input and converts it to 9 different LoDs depending on the user’s needs,
including volume-based and surface-based LoDs of both interior and exterior. Five
abstraction-specific processing methods have been developed, based on how much of the
geometry of the input IFC model the specific step relies on. The abstraction steps range
from low geometric dependent abstraction to very high geometric dependent abstraction
and interior geometric dependent abstraction. The output LoDs are obtained by a mix
of the five methods, which have been implemented into a prototype application, tested
and evaluated on several BIM models.

Our study shows that the developed and implemented BIM-to-Geo conversion method
achieves robust and accurate results, particularly with non-volumetric and interior ab-
straction methods, which consistently scored highly across various evaluations. However,
the accuracy of volumetric and complex shape abstractions diminishes as the complex-
ity of the output geometric representations increases, largely due to modelling errors in
input IFC models, surface trimming inaccuracies, and tolerance-related issues.

The challenges faced in this research include the propagation of issues present in the IFC
model, such as ambiguous interior-exterior delineations and modelling gaps, which can
have a negative impact on abstraction outcomes. Additionally, the precision tolerances
in input models often lead to small surface gaps that hinder proper Boolean operations,
causing incomplete or inaccurate geometric representations, especially at higher levels
of detail.

Furthermore, the results reveal that abstraction complexity impacts file size reduction
and processing efficiency significantly, with simpler models achieving smaller sizes of
output models and faster processing. Overly complex models without appropriate sim-
plification may also suffer from reduced geometric accuracy.

To improve BIM-to-Geo conversions, future work should consider adaptive tolerance set-
tings, enhanced IFC model pre-processing, and alternative methods for defining interior-
exterior boundaries, especially in designs with interconnected or open spaces. Overall,
while the current methodology provides a solid foundation for BIM-to-GIS integration,
addressing the identified limitations will further enhance its reliability and applicability
in real-world scenarios.



7 Appendix

7.1 LoD framework summary

The rules of the LoD abstractions, that were used to develop the abstraction methods, are
described in this appendix. These rules define each output LoD. Although the rules are
mostly based on the LoD framework of Biljecki et al. [2016], there are some differences.
Some of these differences are related to the fuzziness in the existing LoD definitions that
had to be given a certain interpretation for a proper implementation. Additionally, the
framework of Biljecki et al. [2016] was developed when field measurements combined
with 2D building polygons were the main source for 3D city models, but our research
derives 3D city models from BIM models. Existing LoD definitions do not always match
the BIM-derived models (e.g. more geometrical details on facades), and therefore we had
to make specific choices to make them suitable. Also, due to time constraints and/or the
complexity of the IFC data, certain choices were made that deviate from the framework
as well. Finally, a major difference is the exclusion of semantic surface types in our
implementation of the framework. The rules that we used are geometric-based only.

Figure 41: Input IFC model used for the following abstraction examples.

LoD0.0

2D bounding box representation of the input model, see Figure 42.

The representation consists of:

• Roof surface

– Low geometric dependent abstraction (0).

– Exterior representation.



Figure 42: LoD0.0 abstraction created by the described methods. The input IFC model
can be seen in Figure 41.

– RoofSurface type or +ProjectedRoofOutline when no footprint extraction is
toggled.

– n = 1.

– Created by selecting the top surface of the oriented smallest bounding box
around the input model.

• Ground surface

– Low geometric dependent abstraction (0).

– Exterior representation.

– GroundSurface type.

– n = 1.

– Created by selecting the top surface of the bounding box around the objects
of the input IFC model located in a ±0.15 metre buffer around the footprint
elevation. The resulting surface is placed at the footprint height.

LoD0.2

Simple 2D surface representation of the input model, see Figure 43.

Every surface group is represented by simple flat surface with a normal of (0, 0, x).
For example, the surfaces representing the roof are all located at the same Z height
and represented by a single polygon if they touch or intersect. Overhang is allowed
between surfaces. So, surfaces representing the roof are allowed to overhang over the



(a) (b) (c)

Figure 43: LoD0.2 abstraction created by the described methods. a) Shows the footprint
and roof structure. b) Shows the storeys. c) Shows the rooms. The input
IFC model can be seen in Figure 41.

surfaces representing the footprint. Surfaces representing different storeys are allowed
to overhang each other as well. The representation consists of:

• Roof surface(s)

– Mid geometric dependent abstraction (1).

– Exterior representation.

– RoofSurface type or +ProjectedRoofOutline when the footprint extraction is
not toggled.

– n ≥ 1.

– Created by isolating the top surfaces of the roof structure and projecting
these surfaces flat. These surfaces are merged to simplify the shapes. The
simplified surfaces are placed at footprint height if no footprint extraction is
toggled. The simplified surfaces are placed at the building’s max Z if footprint
extraction is toggled.

• Ground/footprint surface(s)

– High geometric dependent abstraction (2).

– Exterior representation.

– GroundSurface type.

– n ≥ 1.

– Created by taking a section through the entire IFC model at the footprint
height. Close to flush horizontal surfaces that fall within a ±0.15m buffer are
added to the selection as well. These flat surfaces are merged to create the
the footprint geometry. The rings that represent inner shafts and openings



are eliminated to create simple surface. Identical geometry and approach as
LoD0.3 and 0.4.

• Storey surface(s)

– High geometric dependent abstraction (2).

– Interior representation

– FloorSurface type.

– If IFC file includes IfcBuildingStorey objects n ≥ 1, else n = 0.

– Created by taking a section through the entire IFC model at the storey’s
height. Close to flush horizontal surfaces that fall within a ±0.15m buffer are
added to the selection as well. These flat surfaces are merged to create the
storey geometry.

• Room (ceiling) surface(s)

– Interior geometric dependent abstraction (4).

– Interior representation

– +ProjectedCeilingOutline type.

– If IFC file includes IfcSpace objects n ≥ 1, else n = 0.

– Created by isolating the top surfaces of each of the IfcSpace objects and pro-
jecting these surfaces flat. These surfaces are merged to simplify the shapes.
The simplified shape is placed at the lowest height of the IfcSpace object’s
original geometry.

LoD0.3

2D surface representation of the input model with multiple heights, see Figure 44.

Every surface that touches is grouped and flattened to have a face normal of (0, 0, x).
Overhang is allowed between surfaces from different sources. For example, surfaces
representing the roof are not allowed to overhang over each other, but are allowed to
overhang over the surfaces representing the footprint. Surfaces representing different
storeys are allowed to overhang each other as well. The representation consists of:

• Roof surface(s)

– Mid geometric dependent abstraction (1).

– Exterior representation

– RoofSurface type.

– n ≥ 1.



(a) (b)

Figure 44: LoD0.3 abstraction created by the described methods. a) Shows the footprint
and roof structure. b) Shows the storeys. The input IFC model can be seen
in Figure 41.

– Created by isolating the top surfaces of the roof structure. The neighbouring
surfaces are grouped together. These groups are flattened and placed at
the group’s max Z height. Overhang over a lower flattened roof surface is
eliminated by trimming the lower surface.

• Ground/footprint surface(s)

– High geometric dependent abstraction (2).

– Exterior representation

– GroundSurface type.

– n ≥ 1.

– Created by taking a section through the entire IFC model at the footprint
height. Close to flush horizontal surfaces that fall within a ±0.15m buffer are
added to the selection as well. These flat surfaces are merged to create the
the footprint geometry. The rings that represent inner shafts and openings
are eliminated to create simple surface. Identical geometry and approach as
LoD0.2 and 0.4.

• Storey surface(s)

– High geometric dependent abstraction (2).

– Interior representation

– FloorSurface & OuterFloorSurface type.

– If IFC file includes IfcBuildingStorey objects n ≥ 1, else n = 0.



– Created by taking a section through the objects that are related to the storey
at the storey’s height. Close to flush horizontal surfaces that fall within a
±0.15m buffer are added to the selection as well. The surfaces are split and
it is tested which are part of the interior and exterior. The surfaces of each
group are merged to create the storey geometry.

LoD0.4 (LoD added to existing LoD framework)

2.5D surface representation of the roofstructure of the input model, see Figure 45.

Figure 45: LoD0.4 abstraction created by the described methods. The input IFC model
can be seen in Figure 41.

Overhang is allowed between surfaces from different sources. For example, surfaces
representing the roof are not allowed to overhang over each other, but are allowed to
overhang over the surfaces representing the footprint.

The representation consists of:

• Roof surface(s)

– Mid geometric dependent abstraction (1).

– Exterior representation

– RoofSurface type.

– n ≥ 1.

– Created by isolating the top surfaces of the roof structure. Overhang over a
roof surface is eliminated by trimming the lower surface.

• Ground/footprint surface(s)

– High geometric dependent abstraction (2).



– Exterior representation

– GroundSurface type.

– n ≥ 1.

– Created by taking a section through the entire IFC model at the footprint
height. Close to flush horizontal surfaces that fall within a ±0.15m buffer are
added to the selection as well. These flat surfaces are merged to create the
the footprint geometry. The rings that represent inner shafts and openings
are eliminated to create simple surface. Identical geometry and approach as
LoD0.2 and 0.3.

LoD1.0

3D box representation of the input model, see Figure 46.

Figure 46: LoD1.0 abstraction created by the described methods. The input IFC model
can be seen in Figure 41.

The representation consists of:

• Outer shell

– Low geometric dependent abstraction (0).

– Exterior representation.

– RoofSurface, GroundSurface, or WallSurface type.

– n = 1.

– Created by computing the oriented smallest bounding box around the input
model.



LoD1.2

2.5D solid representation of the input model with uniform flat top surfaces, see Figure
47.

(a) (b)

Figure 47: LoD1.2 abstraction created by the described methods. a) Shows the outer
shell. b) Shows the rooms. The input IFC model can be seen in Figure 41.

Downward extrusion of the LoD0.2 top surfaces (RoofSurface or CeilingSurface) down
to the footprint Z height of the model that is being processed. Or, upwards extrusion
of the LoD0.2 base surfaces (only functional GroundSurface) for up to the top Z height
of the model that is being processed. The representation consists out:

• Outer shell(s)

– Mid geometric dependent abstraction (1).

– Exterior representation.

– RoofSurface, GroundSurface, or WallSurface type.

– n ≥ 1.

– Created by extruding the LoD0.2 external roof surface(s) down to the foot-
print height.

• Inner shell(s)

– Interior geometric dependent abstraction (2).

– Interior representation.

– CeilingSurface, FloorSurface, or InteriorWallSurface type.

– If IFC file includes IfcSpace objects n ≥ 1, else n = 0.



– Created by extruding the LoD0.2 internal ceiling surface(s) down to the
room’s floor height.

LoD1.3

2.5D solid representation of the input model with flat top surfaces, see Figure 48.

Figure 48: LoD1.3 abstraction created by the described methods. a) Shows the outer
shell. b) Shows the rooms. The input IFC model can be seen in Figure 41.

Downward extrusion of the 0.3 top surfaces (RoofSurface) down to the footprint Z
height of the model that is being processed. The top surfaces can first be trimmed down
to eliminate the XY overhang over the footprint before extruding downwards. The
representation consists out:

• Outer shell(s)

– Mid geometric dependent abstraction (1).

– Exterior representation.

– RoofSurface, GroundSurface, or WallSurface type.

– n ≥ 1.

– Created by extruding the LoD0.3 external roof surface(s) down to the foot-
print height. The resulting solids are merged.



(a) (b)

Figure 49: LoD2.2 abstraction created by the described methods. a) Shows the outer
shell. b) Shows the rooms. The input IFC model can be seen in Figure 41.

LoD2.2

2.5D solid representation of the input model, see Figure 49.

Downward extrusion of the 0.4 top surfaces (RoofSurface) for the exterior or the IfcSpace
object’s top surfaces down to the footprint Z height of the object that is being processed.
The top surfaces can first be trimmed down to eliminate the XY overhang over the
footprint before extruding downwards. The representation consists out:

• Outer shell(s)

– Mid geometric dependent abstraction (1).

– Exterior representation.

– RoofSurface, GroundSurface, or WallSurface type.

– n ≥ 1.

– Created by extruding the LoD0.4 external roof surface(s) down to the foot-
print height. The resulting solids are merged.

• Inner shell(s)

– Interior geometric dependent abstraction.

– Interior representation.

– CeilingSurface, FloorSurface, or InteriorWallSurface type.

– If IFC file includes IfcSpace objects n ≥ 1, else n = 0.



– Created by extruding the top surfaces(s) of each IfcSpace object down to the
room’s floor height. The resulting solids per room are merged.

LoD3.2

3D full detail solid representation of the input model, see Figure 50.

(a) (b)

Figure 50: LoD3.2 abstraction created by the described methods. a) Shows the outer
shell. b) Shows the rooms. The input IFC model can be seen in Figure 41.

The representation consists out:

• Outer shell(s)

– Very high geometric dependent abstraction.

– Exterior representation

– RoofSurface, GroundSurface, WallSurface, Window, or Door type.

– n ≥ 1.

– Created by isolating the (partially) outer surfaces of the input model with the
help of ray casting. These surfaces are then trimmed to eliminate the parts
that are not exposed to the exterior. The surfaces are typed and merged.

• Inner shell(s)

– Interior geometric dependent abstraction.

– Interior representation.

– CeilingSurface, FloorSurface, or InteriorWallSurface type.

– If IFC file includes IfcSpace objects n ≥ 1, else n = 0.



– Created by 1:1 converting the geometry if the IfcSpace objects.

7.2 Raw result data

File name IFC size OBJ size CityJSON CityJSON LoD3.2
(kB) (kB) size* (KB) size (KB)

AC20-FZK-Haus 25 111 3 624 107 98
AC20-Institute-Var-2 10 678 4 232 931 861
FM ARC DigitalHub 13 746 41 747 185 107
PRAHA GO V5 28 786 1 079 857 2 237 2 047
Demo Lisbon 2025 14 912 81 795 188 97
Demo Ascoli Piceno v2 20 975 168 957 1 012 459

Table 11: Comparison of the file size of the input file, the combined output file and the
output file containing LoD3.2 only. All the files contain both interior and
exterior abstractions. *This CityJSON output file contains LoD0.0, 0.2, 0.3,
0.4, 1.0, 1.2, 1.3, 2.2, and 3.2.

Full Normal Simple
File name IFC/OBJ LoD3.2 LoD3.2 LoD3.2

AC20-FZK-Haus 21 606 3 771* 1 416 132
AC20-Institute-Var-2 42 416* 10 359 3 620 322
FM ARC DigitalHub 172 532* - 1 631 520
PRAHA GO V5 3 502 204 155 915* 11 452 11 452
Demo Lisbon 2025 317 134 74 374* 2 160 2 160
Demo Ascoli Piceno v2 617 644 481 242* 23 360* 22 682*

Table 12: Comparison of the effect of the complex shape simplification functions on
the final triangular polygon count. The full LoD3.2 has no complex shape
simplification applied, the normal LoD3.2 has only bounding box simplification
applied, the simple LoD3.2 has bounding box and selective void simplification
applied. This is just comparing the geometry. LoD3.2 is the outer shell only.
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AC20-FZK-Haus 21 606 4 4 6 12 12 16 1 416
AC20-Institute-Var-2 42 416 20 18 54 44 52 148 3 620
FM ARC DigitalHub 172 532 16 216 216 12 412 412 1 631
PRAHA GO V5 3 502 204 150 770 1 520 130 1 534 2 394 11 452
Demo Lisbon 2025 317 134 54 228 321 70 322 1 023 2 074
Demo Ascoli Piceno v2 617 644 161 248 945 94 334 3 563 23 360

Table 13: Comparison of the triangular polygon count of the input and output exterior
abstractions. This is just comparing the geometry. LoD0.0 and 1.0 has been
excluded because they will always have a triangular polygon count of 2 and
12 respectively.
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