

Delft University of Technology

Modular Data Analytics

Spinellis, Diomidis

DOI
10.1109/MS.2024.3409988
Publication date
2024
Document Version
Final published version
Published in
IEEE Software

Citation (APA)
Spinellis, D. (2024). Modular Data Analytics. IEEE Software, 41(5), 20-23.
https://doi.org/10.1109/MS.2024.3409988

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MS.2024.3409988
https://doi.org/10.1109/MS.2024.3409988

20 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 4 © 2 0 2 4 I E E E

Editor: Gerard J. Holzmann
Nimble Research
gholzmann@acm.org

ADVENTURES CODEADVENTURES IN CODE Editor: Diomidis Spinellis
dds@aueb.gr

A SOPHISTICATED ANALYSIS of
data is often based on relational ana-
lytical processing (ROLAP) meth-
ods. These involve using SQL queries
on a relational database system to
perform on the data operations such
as slice and dice, drill down, and
roll up. Such queries can be com-
plex, involving tens of tables and
many intermediate steps. On large
datasets they can also be expensive
to run, taking hours or days to com-
plete. Modularizing the SQL que-
ries can make them more readable,
testable, and amenable to incremen-
tal execution.

SQL offers two mechanisms to
modularize queries. First, the SQL
common table expression syntax
(WITH name AS …) allows the naming
of intermediate result sets within the
query. However, such elements can-
not be developed, tested, or run in
isolation because they are part of a
larger, often unwieldy, query. Sec-
ond, SQL views (CREATE VIEW AS …) al-
low the permanent establishment of
an alias for the results that a query
would return. A view can be devel-
oped and tested as a separate unit.
However, both mechanisms incur

the query’s cost every time it is eval-
uated, leading to monolithic, waste-
ful, and slow computations. On the
other hand, they offer the possibil-
ity of advanced cross-query optimi-
zations. Materialized views, which
cache the results of a view’s query,
address the performance problem,
but their automatic refresh when
the base data change is not well
supported in popular open source
relational database management
systems, such as PostgreSQL and
MySQL/MariaDB.

Handling Dependencies
To facilitate the development of
maintainable, time-efficient, and
testable ROLAP queries, I developed
simple-rolap (github.com/dspinellis/
simple-rolap/), a small open source
software framework that automates
the dependency analysis and or-
chestrates the execution of multiple
modular queries. I have used it for
tens of queries1,2 on the GHTorrent3
GitHub metadata and the Alexan-
dria3k4 bibliographic records. The
framework’s design is based on con-
vention over configuration centered
on two databases. A main database
contains the primary queried data,
which are assumed to be infrequently
modified. A secondary database is

used for caching derived intermedi-
ate ROLAP results. Users split com-
plex queries into simple ones that
either create intermediate tables or
report results; see the example in Fig-
ure 1. Both types of queries can be
easily unit tested with RDBUnit.5

The running of queries in the ap-
propriate order is orchestrated by
GNU make, the GNU implementa-
tion of the Unix make tool,6 which
was originally devised to automate
the building of programs.5 The make
tool works by reading a file (named
Makefile by default) that specifies build
rules. Each rule is written as a target
file followed by a colon and (option-
ally) some prerequisite files that are
required to build that target. Any
following tab-indented lines contain
the commands that must be executed
for building the target. The make
tool will read the rules and establish
a dependency graph according to the
targets and their prerequisites. It will
then execute, in the appropriate or-
der, all commands needed to build
each target if it depends on prereq-
uisite files that are missing or that
have been modified after the target’s
modification time.

As an example, the following
two rules specify that to create the
sales-statistics.txt file (using the ministat

Modular Data Analytics
Diomidis Spinellis

Digital Object Identifier 10.1109/MS.2024.3409988
Date of current version: 13 August 2024

mailto:dds@aueb.gr
https://orcid.org/0000-0003-4231-1897

ADVENTURES IN CODE

 SEPTEMBER/OCTOBER 2024 | IEEE SOFTWARE 21

program) the file sales.csv must have
been fetched through the specified
curl command. (The >$@ incantation
requires further explanation. The >
sign redirects the command’s output
to the file named on its right, $ is the
prefix for make’s variables, and @ is
the name of a built-in variable that
is set to the value of the rule’s target,
so in the first rule sales-statistics.txt.)

sales-statistics.txt: sales.csv
 ministat sales.csv >$@
sales.csv:
 curl https://example.com/sales.csv>$@

Although make was originally de-
vised to automate program builds, it
can accommodate any task in which
files must be updated when some oth-
ers are missing or change. For instance,
I am using it to maintain my website’s
content, to format course notes, and to
typeset articles and books.

In the case of simple-rolap, make
starts by running a Unix shell script
that analyzes all SQL queries resid-
ing in a project’s directory and cre-
ates a list of their dependencies so
that they can be run in the appro-
priate order. It stores the dependen-
cies into a file that the simple-rolap
Makefile includes, if it exists. Having
read the query dependencies, make
(re)runs the queries whose results are
outdated or missing.

For make to work, all dependen-
cies must be mapped to files. Query
results satisfy this requirement be-
cause simple-rolap stores them in
a directory named reports. On the
other hand, database tables are not
directly visible to make as files. To
address this, when simple-rolap
executes a table creation query, it
creates or updates the modifica-
tion time of an empty file named
after the corresponding table in a

directory named tables, which make
can then readily use for depen-
dency management.

A Makefile pattern rule (one match-
ing any specified file) for all files
with a .sql suffix invokes another
script that executes each SQL query.
For queries that output results, the
script stores them in a file named
after the query under the reports di-
rectory. For queries that create an
intermediate table, the script creates
or updates the associated time stamp
file in the tables directory. Both types
of files are the entities that make
uses to determine which targets are
missing or outdated and need to be
(re)created.

Other simple-rolap scripts create
or drop the ROLAP database, run
the RDBUnit tests, and create edi-
tor tags. (An editor “tags” database
maps navigable source code entities,
such as methods, functions, classes,

FIGURE 1. Query steps for calculating the journal impact factor.

Primary Table Derived Table Report works

works_issn

works_references

publications citations

citable_works

impact_factorprioritized_titles

impact_factor_titles

impact_factor_non_review

multiple_titlesjournals_issnsjournals_names Print

https://example.com/sales.csv

ADVENTURES IN CODE

22 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

or query names, in the case of sim-
ple-rolap, into hyperlinked locations
in source code files that the code edi-
tor will show when the user asks to
see the definition of a given entity.)
Most of this functionality is directly
coded in the Makefile as single shell
commands. The simple-rolap frame-
work makes this functionality avail-
able through targets named after
the created files (as is, for example,

the case for the tags target) or, al-
ternatively, a feature of make called
phony targets. These are targets that
do not correspond to files but have
their commands executed whenever
make is invoked with that name as
the target.

The shell scripts underlying simple-
rolap’s operation abstract the specific
database management systems by
calling their command-line interfaces
with the appropriate options. In addi-
tion, the script that creates the depen-
dency list uses the sed stream editor
to extract the dependencies from the
SQL query files, while the script that
runs the SQL queries adds commands
from a local configuration and drops
tables before issuing the user-supplied
creation command.
The help pseudotarget, which lists
available make targets, involves a
trick that has often served me to
provide documentation regarding
a make file’s operation. After each

target, I add a comment explaining
the target’s purpose, like this:

help: # Help: Show this help message
 […]
clean: # Help: Drop database and remove generated
files

The help target command is a
short sed-based pipeline that goes
through the make file and converts

all target names that are followed by
Help:-prefixed comments into a sorted
list of explanatory text. You may
want to adopt this rule in your own
make files.

Using simple-rolap
To use simple-rolap, clone its
GitHub repository and create a file
named Makefile (by convention the
file with make’s configuration) that
includes the simple-rolap Make-
file and specifies the parameters of
your analysis. As a minimum, de-
fine the relational database man-
agement system you will be using
by setting the environment vari-
able RDBMS to one of mysql, postegresql,
or sqlite and the names of the main
and ROLAP databases through the
variables MAINDB and ROLAPDB. For
the PostgreSQL and MySQL/Mari-
aDB systems you will also need to
set the DBHOST and DBUSER variables
and arrange for corresponding

database engine authentication and
authorization. With that setup you
can begin writing your queries,
storing them in files suffixed with
.sql. Each query can either store its
results in an intermediate table (CRE-
ATE TABLE …), which will be dropped
and created as needed, or it can ob-
tain a result set (SELECT …), which
will be stored in the reports directory
with the query file’s base name suf-
fixed by .txt. For dependency track-
ing to work, place the table names
on the same line as the SQL FROM
and JOIN clauses, indent nested SE-
LECT clauses (such as those used for
creating tables), and prefix ROLAP
tables with the corresponding data-
base name.

Sophisticated workflows often
have additional processing steps. For
example, they may fetch data from
remote sources or nonrelational da-
tabases, populate tables with them,
or postprocess obtained results for
statistical analysis, charting, or re-
port formatting. You can specify
these through additional make rules
using the reports files as prerequi-
sites and the table time stamp files as
targets or as prerequisites. Consider
as an example the following two
make rules:

tables/metrics: metrics.csv
tables/cdindex: tables/base
 calc-index $(ROLAPDB).db >$@

The first rule specifies that the
metrics table has the file metrics.csv
as its prerequisite, presumably be-
cause the SQL statement that cre-
ates the table imports its data from
that file. The second rule specifies
that the cdindex table target depends
on the (generated) base table pre-
requisite and is created by running
the calc-index program on the ROLAP
database (creating the table time

The simple-rolap framework also
offers you rules and configuration
options to test, visualize, navigate,
benchmark, and troubleshoot the

workflow’s execution.

ADVENTURES IN CODE

 SEPTEMBER/OCTOBER 2024 | IEEE SOFTWARE 23

stamp file as a side effect) rather
than through an automatically de-
tected SQL query. You can also in-
ject prerequisites that need to be
satisfied before any other processing
(for example, to populate the main
database) by specifying them in the
DEPENDENCIES variable. Similarly, addi-
tional targets can be specified in the
ALL variable.

You can control the workflow’s
execution in several ways. Run make
clean to remove all auto-generated
files, so that you can start a new
analysis from scratch. Remove in-
dividual reports or table files to
rebuild those and any dependents.
You can also put SQL statements
that you want to precede each
query (for example, MySQL opti-
mizer tuning SET commands) in the
file .config.sql.

The simple-rolap framework also
offers you rules and configuration
options to test, visualize, navigate,
benchmark, and troubleshoot the
workflow’s execution.

• Run make test to run any RD-
BUnit unit tests you may have
written. Pass UNIT=unit-name to
execute only the specified unit
test.

• Run make graph.png (or .pdf or .svg)
to generate a diagram of the RO-
LAP queries’ dependencies. Use
full-graph rather than graph as the
target name to also include the
main database tables.

• Run make tags to create a tags file
that many editors can use to
automatically navigate between
the queries.

• Run make ordered-dependencies to
create a correspondingly named
file with the queries listed in

the order determined by their
dependencies.

• Run make V=1 (verbose) to see the
commands executed within the
Makefile.

• Run make V=1 TIME=time to
see timing information of
executions.

• Run make V=2 to also see the
commands executed within the
simple-rolap shell scripts.

Finally, run make help to see a sum-
mary of the available targets and
configuration options.

This adventure in code taught
me two lessons. First, prob-
lems that crop up repeat-

edly can often be profitably addressed
through bespoke small-scale tool build-
ing. (The source code of simple-rolap
amounts to about 600 lines.) Second,
using existing mature tools, such as
make, to carry out the heavy lifting
simplifies tool building.

References
 1. D. Spinellis, Z. Kotti, and A.

Mockus, “A dataset for GitHub

repository deduplication,” in Proc.

17th Int. Conf. Mining Softw. Re-

positories (MSR), New York, NY,

USA: Association for Computing

Machinery, Jun. 2020, pp. 523–527,

doi: 10.1145/3379597.3387496.

 2. D. Spinellis, Z. Kotti, K. Kravvari-

tis, G. Theodorou, and P. Louridas,

“A dataset of enterprise-driven open

source software,” in Proc. 17th

Int. Conf. Mining Softw. Reposi-

tories (MSR), New York, NY, USA:

Association for Computing, Jun.

2020, pp. 533–537, Machinery. doi:

10.1145/3379597.3387495.

 3. G. Gousios and D. Spinellis, “GHTor-

rent: Github’s data from a firehose,”

in Proc. 9th IEEE Working Conf.

Mining Softw. Repositories (MSR),

M. Lanza, M. D. Penta, and T. Xie,

Eds., Piscataway, NJ, USA: IEEE,

Jun. 2012, pp. 12–21, doi: 10.1109/

MSR.2012.6224294.

 4. D. Spinellis, “Open reproducible

scientometric research with Alexan-

dria3k,” PLoS One, vol. 18, no. 11,

Nov. 2023, Art. no. e0294946, doi:

10.1371/journal.pone.0294946.

 5. D. Spinellis, “Unit tests for SQL,”

IEEE Softw., vol. 41, no. 1, pp.

22–26, Jan. 2024, doi: 10.1109/

MS.2023.3328788.

 6. S. I. Feldman, “Make—A program

for maintaining computer programs,”

Softw., Pract. Exp., vol. 9, no. 4,

pp. 255–265, 1979, doi: 10.1002/

spe.4380090402.

ABOUT THE AUTHOR

DIOMIDIS SPINELLIS is a professor in the Department of Management

Science and Technology at the Athens University of Economics and Busi-

ness, Athens 104 34, Greece, and a professor of software analytics in the

Department of Software Technology at the Delft University of Technology,

2600 AA Delft, The Netherlands. He is a Senior Member of IEEE. Contact

him at dds@aueb.gr.

http://dx.doi.org/10.1145/3379597.3387496
http://dx.doi.org/10.1145/3379597.3387495
http://dx.doi.org/10.1109/MSR.2012.6224294
http://dx.doi.org/10.1109/MSR.2012.6224294
http://dx.doi.org/10.1371/journal.pone.0294946
http://dx.doi.org/10.1109/MS.2023.3328788
http://dx.doi.org/10.1109/MS.2023.3328788
http://dx.doi.org/10.1002/spe.4380090402
http://dx.doi.org/10.1002/spe.4380090402
mailto:dds@aueb.gr

	20_41ms05-adventurescode-3409988

