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 A B S T R A C T

In density-based topology optimization of flow problems, flow in the solid domain is generally 
inhibited using a penalization approach. Setting an appropriate maximum magnitude for the 
penalization traditionally requires manual tuning to find an acceptable compromise between 
flow solution accuracy and design convergence. In this work, three penalization approaches 
are examined, the Darcy (D), the Darcy with Forchheimer (DF), and the newly proposed Darcy 
with filtered Forchheimer (DFF) approach. Parameter tuning is reduced by analytically deriving 
an appropriate penalization magnitude for accuracy of the flow solution. The Forchheimer 
penalization is found to be required to reliably predict the accuracy of the flow solution. The 
state-of-the-art D and DF approaches are improved by developing the novel DFF approach, based 
on a spatial average of the velocity magnitude. In comparison, the parameter selection in the 
DFF approach is more reliable, as convergence of the flow solution and objective convexity are 
more predictable. Moreover, a continuation approach on the maximum penalization magnitude 
is derived by numerical inspection of the convexity of the pressure drop response. Using two-
dimensional optimization benchmarks, the DFF approach reliably finds accurate flow solutions 
and is less prone to converge to inferior local optima.

1. Introduction

Designing flow structures is of importance for many engineering problems, see for example, the design of tesla-type turbine 
devices [1], microfluidic mixers [2], or drag minimization and lift maximization [3]. Such problems often involve moderate to 
high Reynolds flow, which is difficult to design for due to the highly nonlinear flow equations. A tool to design flow structures is 
density-based Topology Optimization (TO). In flow TO, we intend to find an optimal phase distribution to separate a design domain 
into distinct solid and fluid parts. This is commonly accomplished by introducing the Darcy penalization to inhibit flow in the solid 
domain [4–6]. High penalizations are present in the solid domain, low or no penalizations are used in the fluid domain. A continuous 
penalization interpolation is used between the solid and the fluid domain, such that gradient-based optimizers can be used. This 
approach can be seen as an optimization by penalty method [7], where the zero velocity constraint in the solid domain is enforced 
using a penalty term. In this approach, a proper selection of the magnitude of the penalization is crucial. It is well known that the 
penalization should be high enough to sufficiently inhibit flow in the solid domain, but small enough to ensure numerical stability. 
Often, finding the correct penalty requires manual tuning [8], which is time consuming and requires experience with TO. In this 
work we focus on the flow penalization in TO of moderate Reynolds flow problems, and aim to improve parameter robustness and 
algorithmic stability.
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The most common approach to select an appropriate magnitude for the Darcy penalization is presented by Olesen et al. [6]. 
The maximum penalization is determined based on a Darcy number and a characteristic length 𝐿. As a characteristic length the 
inlet diameter is often used, and in porous flow modeling, the Darcy number relates viscous and porous friction forces. However, 
parameter tuning remains necessary to select a Darcy number, such that flow is sufficiently reduced in the solid domain. On top 
of a user-defined Darcy number, [3] include the Reynolds number to select the maximum penalty magnitude, and recent work 
confirms that the relation between flow reduction and penalization depends on the Reynolds number for inertia dominated flows [9]. 
However, complex geometries with locally varying flow velocities, length scales, and Reynolds numbers may be found using TO. A 
Darcy penalization based on a single estimation of the Reynolds number is thus unable to appropriately penalize flow in all parts of 
a design.

As the Darcy penalization is linearly dependent on the velocity magnitude, including the Reynolds number in the penalization 
results in a penalization which depends quadratically on velocity magnitude. A direct way to include a quadratic dependency on 
the flow magnitude in the penalty is through the Forchheimer penalization [10]. Alonso and Silva [1] find improved designs when 
using the Forchheimer penalization in addition to the Darcy penalization. However, selecting the appropriate magnitude for the 
Forchheimer penalization also requires manual tuning. Often, the maximum penalization magnitude is selected based on the physical 
interpretation of the Forchheimer term as a friction term for flow through porous media [11–13]. So far, no critical analysis on the 
relation between Forchheimer penalization and accuracy of the flow solution has been performed.

Flow solutions are obtained using discretization. Bruns [7] selects a penalty which is a couple of magnitudes larger than the 
largest diagonal stiffness matrix value, which suggests a relation between discretization and penalization magnitude. Recent work 
by Theulings et al. [14] and by Abdelhamid and Czekanski [15] suggests that the penalization should depend on the mesh size. 
This is supported by Jensen [16], who finds increasingly thin features using mesh adaptation for increasingly high penalization 
magnitudes.

Another problem generally associated with the penalty approach is the convergence to ill-performing local optima. Design 
convergence is influenced by the maximum penalization, the penalty interpolation, and the initial design. Borrvall and Petersson 
[4] show that a linear interpolation of the Darcy penalization results in optimal discrete solid/fluid designs without intermediate 
gray areas for Stokes flow problems. However, to escape ill-performing local optima, a penalization interpolation function which 
lowers the penalty for intermediate gray design variables is used in the earlier design iterations. Gersborg-Hansen et al. [5] note 
that a lower penalization for gray design variables increases the convexity of the objective response, but also increases the amount 
of gray in the optimal design. A continuation approach which starts with a low penalization for gray design variables to escape ill-
performing local optima, and ends with a higher penalization for gray design variables is recommended. Olesen et al. [6] improve 
the convergence behavior of the design by first optimizing using a low maximum flow penalization, allowing the optimizer to 
escape ill-performing local optima but finding designs with inaccurate flow solutions. Subsequently, the design is further optimized 
using a higher maximum penalization, resulting in designs with accurate flow solutions. Moreover, initial designs, dominated by 
flow penalization, are found to show a larger tendency to converge to ill-performing local optima. The relation between the choice 
of interpolation function and the objective behavior is analyzed on a simplified problem where a solid/fluid boundary is slightly 
modified for a fluid structure interaction problem in [17]. Results suggest that the objective should respond monotonically to design 
updates for the problem to be well-posed. Besides the convergence of the design, the convergence of the flow solution should be 
taken into account. While using a high flow penalization increases the accuracy of the flow solution, it can affect the stability of 
the flow solver [18]. The penalization approach should thus be included in the stabilization approach of the flow solver [19].

In this work, we aim to formulate a reliable approach for moderate Reynolds flow TO, which exhibits four desirable traits:

1. Parameter tuning is reduced.
2. The flow solution in the optimized design is accurate.
3. The optimization procedure does not show a tendency to converge to inferior local optima.
4. The flow solver remains stable over changing designs during the optimization process.

To reduce parameter tuning, we closely inspect three different penalization approaches in Section 2, and derive appropriate 
parameters for the magnitude of the flow penalization. We inspect the common approach using the Darcy penalization, and introduce 
two new approaches which additionally include the Forchheimer penalization. In Section 3, we discuss the implementation and the 
stabilization approach for the flow solution. Numerical analyses are performed using the finite element method implemented in [20], 
as the necessary capabilities are readily available and as the use of a commercial software will further promote the use of presented 
techniques outside academia. In Section 4, we investigate the accuracy of the flow solution and the robustness of our parameter 
definition for varying Reynolds numbers. Subsequently, in Section 4.2, we inspect the convexity of the pressure drop objective, and 
derive a novel continuation strategy. In Section 5, the different approaches are compared in terms of accuracy of the optimized 
solution and of tendency to converge to inferior local optima for two different TO problems. We evaluate our novel method with 
respect to the proposed four traits identified for a reliable approach in the discussion in Section 6 and conclude in Section 7.

2. Penalization in laminar flow topology optimization

In this section, we introduce the incompressible Navier–Stokes equations used to model laminar flows. To make them suitable for 
density-based TO and represent fluid and solid, we add penalization terms. Several approaches including Darcy and/or Forchheimer 
penalizations are explored. To derive an appropriate penalization magnitude, we use a dimensional analysis similar to [14]. In 
2 
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Section 2.2, the novel approach to the dimensional analysis will lead to the same results found by Theulings et al. [14], confirming 
its validity. In Section 2.3, we introduce the Forchheimer penalization similar to [1] and use our method to derive novel settings 
for the penalization magnitudes of this term. Finally, in Section 2.4, we introduce a novel approach based on the Forchheimer 
penalization and a filtered velocity magnitude and derive the associated appropriate penalization magnitudes.

2.1. Incompressible Navier–Stokes equations for density-based TO

For laminar flow problems, the steady-state incompressible Navier–Stokes equations consist of: (i) the momentum equation, 
which represents the forces acting on an infinitesimal volume of fluid, and (ii) the continuity equation, which ensures that no fluid 
mass is created or destroyed. They are given in residual form as: 

𝑅𝑅𝑅vvv(vvv, 𝑝) = −𝜌∇vvv ⋅ vvv − ∇𝑝 + ∇ ⋅
(

𝜇
(

∇vvv + ∇vvv⊤
))

= 000,

𝑅𝑝(vvv) = ∇ ⋅ vvv = 0,
(1)

where vvv⊤ = [𝑢, 𝑣] is the velocity vector with 𝑢 and 𝑣, the velocities in 𝑥 and 𝑦 direction, 𝑝 the pressure field, 𝜌 the fluid density, and 
𝜇 the dynamic viscosity. In the momentum equation, we find the inertial force 𝜌∇vvv ⋅vvv, the pressure force −∇𝑝, and the viscous force 
∇ ⋅

(

𝜇
(

∇vvv + ∇vvv⊤
))

.
For density-based TO, a design variable 𝛼, representing the fluid volume fraction, is used to distinguish between solid and fluid 

parts of the design domain. We continuously interpolate between the solid domain, 𝛼 = 0, and the fluid domain, 𝛼 = 1. In the solid 
domain, we aim to inhibit the flow by counteracting the forces in the momentum equation. The most common approach to adapt 
the Navier–Stokes equations to density-based TO is through the Darcy penalization [4–6], here referred to as the D approach, which 
adds a force proportional to and in the opposite direction of the velocity to the momentum equation: 

𝑅𝑅𝑅vvv(vvv, 𝑝) = −𝜌∇vvv ⋅ vvv − ∇𝑝 + ∇ ⋅
(

𝜇
(

∇vvv + ∇vvv⊤
))

Darcy penalization
⏞⏞⏞⏞⏞
−𝐷1(𝛼)vvv = 000. (2)

where 𝐷1(𝛼) is a design dependent interpolation which inhibits flow in the solid domain using a high penalization 𝐷1(𝛼 = 0) = 𝐷1. 
The flow is governed by the standard momentum equation and 𝐷1(𝛼 = 1) = 0 in the fluid domain. The challenge in this adaptation lies 
in the selection of an appropriate maximum value 𝐷1 and of an adequate interpolation function 𝐷1(𝛼). The maximum penalization 
𝐷1 should be large enough to sufficiently penalize the flow in the solid domain. However, it should not be chosen too large, as such 
a choice would lead to a deterioration of the convergence of the forward solution due to ill-conditioning of the system equations, 
as well as a premature convergence to ill-performing local optima.

To define an appropriate magnitude for the penalization, we follow a similar approach to our earlier work [14] and investigate 
the local flow reduction. Flow reduction is defined as the ratio 𝑣𝑠∕𝑣𝑓  between 𝑣𝑠 and 𝑣𝑓 , the flow magnitudes in neighboring solid 
and fluid domains, respectively. We intend to define the maximum penalization 𝐷1 such that we can accurately predict 𝑣𝑠∕𝑣𝑓 = 10−𝑞 , 
where the user-defined parameter 𝑞 indicates the order of magnitude by which the velocity in the solid and fluid domain differ. 
Subsequently, we can select the parameter 𝑞 and the interpolation function 𝐷1(𝛼) to achieve a compromise between accuracy and 
convergence.

The flow reduction should be appropriate in the smallest scale represented by our model, i.e., the expected flow reduction is 
achieved in the thinnest design features. In this work, we use the finite element method to discretize the Navier–Stokes equations. 
We derive penalization magnitudes in the context of this discretization, although the proposed derivation is not limited to the finite 
element method and can be applied for other weighted residual methods, such as the finite volume method. To estimate the flow 
reduction, we consider a small part of the design domain 𝛺𝑃 , discretized with four square elements of size ℎ, as shown in Fig.  1. We 
define a fluid domain 𝛺𝑓 , made of two fluid elements, and a solid domain 𝛺𝑠, made of two solid elements. The interface between 
fluid and solid is defined as 𝛤 = 𝛺𝑓 ∩ 𝛺𝑠. We aim to define a penalization such that 𝑣𝑠∕𝑣𝑓 = 10−𝑞 , where the velocity magnitude 
𝑣𝑓  represents the maximum magnitude in fluid elements neighboring solid elements with a velocity magnitude 𝑣𝑠.

The discretized residual is used to compare the velocity magnitudes 𝑣𝑠 and 𝑣𝑓 . From the discretization in Fig.  1, we select the 
center Node 𝑃  on the interface to which test function 𝜙𝑃 (𝑥𝑥𝑥) is attached, with 𝑥𝑥𝑥⊤ = [𝑥, 𝑦] the spatial coordinate vector. In the finite 
element discretization, the test function spans only the four elements in 𝛺𝑃 = 𝛺𝑓 ∪𝛺𝑠 which are attached to Node 𝑃  and are zero 
outside of 𝛺𝑃  and on the boundary 𝛤 𝑃 = 𝛺𝑃 ⧵ 𝛺𝑃 . The weighted residuals attached to Node 𝑃  in domain 𝛺𝑃 , are subsequently 
defined using the discretized velocity and pressure fields vvvℎ(𝑥𝑥𝑥) and 𝑝ℎ(𝑥𝑥𝑥): 

[

𝑅𝑃
𝑢

𝑅𝑃
𝑣

]

= ∫𝛺𝑃
𝜙𝑃𝑅𝑅𝑅vvv(vvvℎ, 𝑝ℎ)𝑑𝛺 = ∫𝛺𝑓

𝜙𝑃𝑅𝑅𝑅vvv(vvvℎ, 𝑝ℎ)𝑑𝛺 + ∫𝛺𝑠
𝜙𝑃𝑅𝑅𝑅vvv(vvvℎ, 𝑝ℎ)𝑑𝛺 = 000, (3)

where we defined the discretized residuals 𝑅𝑃
𝑢  and 𝑅𝑃

𝑣 , in 𝑥 and 𝑦 direction respectively, using the same scalar test function 𝜙𝑃 . 
In the finite element method, weighted residuals of the momentum equation are commonly defined per element and subsequently 
assembled in the complete residual 𝑅𝑅𝑅ℎ

vvv = 000, discretized on the 𝑁𝑑 nodes in the mesh. For this analysis, we investigate all contributions 
to Node 𝑃  at once, associated with the complete residual as 𝑅𝑅𝑅ℎ

vvv
⊤ = [𝑅1

𝑢 , 𝑅
1
𝑣,… , 𝑅𝑃

𝑢 , 𝑅
𝑝
𝑣,… , 𝑅𝑁𝑑

𝑢 , 𝑅𝑁𝑑
𝑣 ] = 000.

Eq.  (3) presents the weighted residual of the momentum equation at Node 𝑃  in the solid/fluid domain 𝛺𝑃 . For the discretized 
residual to be zero, we require the discretized solid and fluid domain terms to be in equilibrium. Using Eq.  (3), we will be able to 
compare the velocity magnitudes 𝑣𝑓  and 𝑣𝑠 in the neighboring fluid and solid elements.
3 



M.J.B. Theulings et al. Computer Methods in Applied Mechanics and Engineering 443 (2025) 118027 
Fig. 1. A four element domain 𝛺𝑃 , with two fluid elements (𝛼 = 1) to the left in 𝛺𝑓  (white) and two solid elements (𝛼 = 0) to the right in 𝛺𝑠 (gray), such that 
𝛺𝑃 = 𝛺𝑓 ∪𝛺𝑠 with boundary 𝛤 𝑃 = 𝛺𝑃 ⧵𝛺𝑃 . At the solid/fluid interface 𝛤 = 𝛺𝑓 ∩𝛺𝑠, node 𝑃 is selected for the analysis of flow leakage. On top the behavior 
of the flow magnitude over the elements is illustrated. In the fluid domain 𝛺𝑓  we find a flow magnitude ‖vvv‖ = 𝑣𝑓  which decreases towards ‖vvv‖ = 𝑣𝑠 at the 
solid/fluid interface 𝛤 after which it stagnates at a magnitude 𝑣𝑠 in the solid domain 𝛺𝑠. We assume a regular mesh with elements of size ℎ.

We use the fact that for Eq.  (3) to hold, the fluid and solid domain terms on the right-hand side are equal in magnitude and 
opposite in direction: 

|

|

|

|

∫𝛺𝑠
𝜙𝑃𝑅𝑅𝑅vvv(vvvℎ, 𝑝ℎ)𝑑𝛺

|

|

|

|2
=
|

|

|

|

∫𝛺𝑓
𝜙𝑃𝑅𝑅𝑅vvv(vvvℎ, 𝑝ℎ)𝑑𝛺

|

|

|

|2
, (4)

where |□|2 is the L2-norm. We proceed to approximate the terms in Eq.  (4) using approximate fluid and solid domain velocity 
magnitudes 𝑣𝑓  and 𝑣𝑠. First, we simplify the required analysis. If |

|

𝑅𝑅𝑅vvv(vvvℎ, 𝑝ℎ)||2 = 𝐶 is constant, the left- and right-hand side in Eq. 
(4) become |

|

∫𝛺𝑠 𝜙𝑃 𝑑𝛺|

|2𝐶 and |
|

∫𝛺𝑓 𝜙𝑃 𝑑𝛺|

|2𝐶, respectively. We use the test function 𝜙𝑃  to inspect the residual at Node 𝑃 , but do 
not want to approximate its value and aim for the derivation to be general and independent on a specific test function. We thus 
normalize Eq.  (4) as: 

|

|

∫𝛺𝑠 𝜙𝑃𝑅𝑅𝑅vvv(vvvℎ, 𝑝ℎ)𝑑𝛺|

|2
|

|

∫𝛺𝑠 𝜙𝑃 𝑑𝛺|

|2
=

|

|

∫𝛺𝑓 𝜙𝑃𝑅𝑅𝑅(vvvℎ, 𝑝ℎ)vvv𝑑𝛺|

|2
|

|

∫𝛺𝑓 𝜙𝑃 𝑑𝛺|

|2
. (5)

We note that due to the symmetry of 𝜙𝑃  over 𝛤  and the structured square mesh, |
|

∫𝛺𝑠 𝜙𝑃 𝑑𝛺|

|2 = |

|

∫𝛺𝑓 𝜙𝑃 𝑑𝛺|

|2. If a different 
unstructured mesh is used, this normalization does not hold and the difference in element size and shape in the fluid and solid 
domains has to be taken into account. Subsequently, we define a notation for approximating the orders of magnitude of the residuals 
as: 

𝑠
(

𝑅𝑅𝑅vvv
)

≈
|

|

∫𝛺𝑠 𝜙𝑃𝑅𝑅𝑅vvv(vvvℎ, 𝑝ℎ)𝑑𝛺|

|2
|

|

∫𝛺𝑠 𝜙𝑃 𝑑𝛺|

|2
, 𝑓

(

𝑅𝑅𝑅vvv
)

≈
|

|

∫𝛺𝑓 𝜙𝑃𝑅𝑅𝑅vvv(vvvℎ, 𝑝ℎ)𝑑𝛺|

|2
|

|

∫𝛺𝑓 𝜙𝑃 𝑑𝛺|

|2
, (6)

which can be approximated and compared as 𝑓
(

𝑅𝑅𝑅vvv
)

≈ 𝑠
(

𝑅𝑅𝑅vvv
)

.
In this paper, we use the following rules for computing approximate orders of magnitude 𝑠(∙) and 𝑓 (∙). For an arbitrary vector 

field 𝛹𝛹𝛹 (𝑥𝑥𝑥) in 𝛺𝑓  and 𝛺𝑠, we define: 
𝑠

(

𝛹𝛹𝛹
)

= 𝛹 𝑠, 𝑓
(

𝛹𝛹𝛹
)

= 𝛹𝑓 , (7)

where we approximate 𝛹 𝑠 ≈ |𝛹𝛹𝛹 |2 ∈ 𝛺𝑠 and 𝛹𝑓 ≈ |𝛹𝛹𝛹 |2 ∈ 𝛺𝑓 . The largest gradient is assumed to be dependent on the element size 
ℎ such that: 

𝑠
(

∇𝛹𝛹𝛹
)

≈ 𝛥𝛹 𝑠∕ℎ, 𝑓
(

∇𝛹𝛹𝛹
)

≈ 𝛥𝛹𝑓∕ℎ, (8)

where 𝛥𝛹 𝑠, 𝛥𝛹𝑓  are estimates of the maximum change of |𝛹𝛹𝛹 |2 in 𝛺𝑠 and 𝛺𝑓 , respectively. We emphasize that this assumption on 
the magnitude of gradients is essential, and can only be made because we investigate the discretized residual in Eq.  (3). Using an 
4 
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analysis of the residual in Eq.  (2), gradients would be related to an overall length scale 𝐿 related to the design, which would lead 
to the common approach relating the penalization magnitude to a Darcy number 𝐷𝑎 and 𝐿 [6], which has limitations as shown 
by Theulings et al. [14]. Finally, we assume that only one term in either the fluid and solid domain is dominant: 

𝑠
(

𝐴𝐴𝐴 +𝐵𝐵𝐵
)

≈ max
(

𝑠
(

𝐴𝐴𝐴
)

,𝑠
(

𝐵𝐵𝐵
))

, 𝑓
(

𝐴𝐴𝐴 +𝐵𝐵𝐵
)

≈ max
(

𝑓
(

𝐴𝐴𝐴
)

,𝑓
(

𝐵𝐵𝐵
))

. (9)

To summarize, we use an estimation of 𝑓
(

𝑅𝑅𝑅vvv
)

≈ 𝑠
(

𝑅𝑅𝑅vvv
)

 to derive an approximation for 𝑣𝑠∕𝑣𝑓 . This is done by examining each 
term in 𝑅𝑅𝑅vvv(vvvℎ, 𝑝ℎ), as presented in Eq.  (2), individually. Subsequently, the approximation is used to define a penalization such that 
we achieve a desired flow reduction 𝑣𝑠∕𝑣𝑓 = 10−𝑞 .

2.2. The Darcy approach

First, we examine how to appropriately use the D approach and study its limitations. We start by investigating the magnitude 
of the terms in the fluid domain 𝛺𝑓 . The magnitude of the velocity gradient is approximated using the plot in Fig.  1. We find a 
velocity magnitude of |

|

vvvℎ|
|2 = 𝑣𝑓  on the left edge of 𝛺𝑓  and of |

|

vvvℎ|
|2 = 𝑣𝑠 ≪ 𝑣𝑓  on the right edge of 𝛺𝑓  at the solid/fluid interface 

𝛤 . In 𝛺𝑓  we assume that any change in velocity magnitude between neighboring nodes in the fluid domain is lower than between 
fluid and neighboring solid/fluid interface nodes. Consequently, the maximum change in velocity magnitude is approximated as 
𝛥𝑣𝑓 = 𝑣𝑓 − 𝑣𝑠 ≈ 𝑣𝑓 . As square elements are used, the maximum velocity gradient is found in the direction normal to the fluid/solid 
interface 𝛤 , and is approximated as 𝑓

(

∇vvvℎ
)

≈ 𝛥𝑣𝑓∕ℎ ≈ 𝑣𝑓∕ℎ. We note that for distorted elements with high aspect ratios, this 
assumption may not hold. The magnitude of the inertial and viscous terms are consequently approximated as: 

𝑓
(

−𝜌∇vvvℎ ⋅ vvvℎ + ∇ ⋅
(

𝜇
(

∇vvvℎ + ∇vvvℎ⊤
)))

≈ max

(

𝜌𝑣
𝑓 2

ℎ
, 𝜇 𝑣𝑓

ℎ2

)

. (10)

Subsequently, the magnitude of the pressure term is approximated as: 

𝑓
(

∇𝑝ℎ
)

≈
𝛥𝑝𝑓

ℎ
, (11)

where 𝛥𝑝𝑓  is an estimate of the maximum change in pressure in 𝛺𝑓 . In the fluid domain the magnitude of the Darcy penalization 
is zero, 𝐷1(𝛼 = 1) = 0. Finally, the magnitude of the terms in the fluid domain can be estimated as: 

𝑓
(

𝑅𝑅𝑅vvv
)

≈ max

(

𝜌𝑣
𝑓 2

ℎ
, 𝜇 𝑣𝑓

ℎ2
,
𝛥𝑝𝑓

ℎ

)

. (12)

The magnitude of the velocity gradient in the solid domain is estimated using the change in velocity 𝛥𝑣𝑠 as 𝑠
(

∇vvvℎ
)

≈ 𝛥𝑣𝑠∕ℎ, 
which is used to approximate the inertial and viscous terms: 

𝑠
(

−𝜌∇vvvℎ ⋅ vvvℎ + ∇ ⋅
(

𝜇
(

∇vvvℎ + ∇vvvℎ⊤
)))

≈ max
(

𝜌𝑣
𝑠𝛥𝑣𝑠

ℎ
, 𝜇 𝛥𝑣𝑠

ℎ2

)

. (13)

Similar to the fluid domain, we approximate the pressure term as: 

𝑠
(

∇𝑝ℎ
)

≈
𝛥𝑝𝑠

ℎ
, (14)

In the solid domain, the magnitude of the Darcy penalization is maximal, 𝐷1(𝛼 = 0) = 𝐷1, and is estimated as: 

𝑠
(

𝐷1(𝛼)vvvℎ
)

≈ 𝐷1𝑣
𝑠. (15)

Gathering terms from Eqs. (13), (14), (15), the magnitude of the terms in the solid domain is estimated as: 

𝑠
(

𝑅𝑅𝑅vvv
)

≈ max
(

𝜌𝑣
𝑠𝛥𝑣𝑠

ℎ
,
𝛥𝑝𝑠

ℎ
, 𝜇 𝛥𝑣𝑠

ℎ2
, 𝐷1𝑣

𝑠
)

. (16)

As we assume that the terms in the fluid and solid domain are in equilibrium 𝑓
(

𝑅𝑅𝑅vvv
)

≈ 𝑠
(

𝑅𝑅𝑅vvv
)

: 

max

(

𝜌𝑣
𝑓 2

ℎ
,
𝛥𝑝𝑓

ℎ
, 𝜇 𝑣𝑓

ℎ2

)

≈ max
(

𝜌𝑣
𝑠𝛥𝑣𝑠

ℎ
,
𝛥𝑝𝑠

ℎ
, 𝜇 𝛥𝑣𝑠

ℎ2
, 𝐷1𝑣

𝑠
)

. (17)

Our approach is to investigate each term on the left-hand side assuming it is dominant. Subsequently, we investigate how the right-
hand side counteracts these terms and how the velocity magnitudes are related. A first working assumption is that if an appropriate 
penalization is applied then 𝑣𝑓 ≫ 𝑣𝑠 > 𝛥𝑣𝑠. Since the inertial and viscous terms scale the same with respect to 𝜌, 𝜇 and ℎ in the 
fluid and solid domains, we neglect the solid domain inertial and viscous terms as they cannot counteract the fluid domain terms. 
Reducing Eq.  (17) to: 

max

(

𝜌𝑣
𝑓 2

,
𝛥𝑝𝑓

, 𝜇 𝑣𝑓
2

)

≈ max
(

𝛥𝑝𝑠
, 𝐷1𝑣

𝑠
)

. (18)

ℎ ℎ ℎ ℎ
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Moreover, in [14] we derived an appropriate penalization based on the assumption that the pressure field is 𝐶1-continuous and 
𝑠

(

∇𝑝ℎ
)

≈ 𝑓
(

∇𝑝ℎ
)

. In [21] and from experience, we find this assumption to hold across a solid/fluid interface. Assuming that if 
dominant, the pressure gradients are in equilibrium, we neglect them in the order analysis: 

max

(

𝜌𝑣
𝑓 2

ℎ
, 𝜇 𝑣𝑓

ℎ2

)

≈ 𝐷1𝑣
𝑠. (19)

In Eq.  (19), two terms might be dominant in the fluid domain. We need to determine which one to select an appropriate maximum 
penalization 𝐷1. Following [14], we select the dominant term based on the elemental Reynolds number, the ratio between elemental 
inertial and viscous term magnitudes: 

𝑅𝑒𝑓𝑒 =
𝜌 𝑣𝑓 2

ℎ

𝜇 𝑣𝑓
ℎ2

=
𝜌𝑣𝑓ℎ
𝜇

. (20)

The fluid domain velocity magnitude 𝑣𝑓  varies throughout the design domain and is not known when selecting 𝐷1. An estimation 
of the magnitude 𝑣̃𝑓 ≈ 𝑣𝑓  is thus needed to evaluate the elemental Reynolds number: 

𝑅𝑒
𝑓
𝑒 ≈

𝜌𝑣̃𝑓ℎ
𝜇

(21)

Generally, we estimate 𝑣̃𝑓  using the maximum velocity magnitude at the inlet or outlet. For low elemental Reynolds number, ̃𝑅𝑒𝑓𝑒 ≤ 1, 
viscous terms are dominant and Eq.  (19) reduces to 𝜇𝑣𝑓∕ℎ2 ≈ 𝐷1𝑣𝑠, such that we can compute the flow reduction as: 

𝑣𝑠

𝑣𝑓
≈

𝜇

ℎ2𝐷1
≈ 10−𝑞 . (22)

Subsequently, we find a maximum penalization for the desired flow reduction: 

𝐷1 = 10𝑞
𝜇
ℎ2

. (23)

To summarize, we first used the fact that 𝑓
(

𝑅𝑅𝑅vvv
)

≈ 𝑠
(

𝑅𝑅𝑅vvv
)

 to find an expression for the ratio of velocity magnitudes 𝑣𝑠∕𝑣𝑓 . 
Subsequently, 𝐷1 is defined to ensure that this ratio approximately takes a desired value, i.e., 𝑣𝑠∕𝑣𝑓 ≈ 10−𝑞 . A similar method will 
be used to define all other penalization magnitudes.

For low elemental Reynolds numbers, 𝑅𝑒𝑓𝑒 ≤ 1, the definition of the maximum Darcy penalization is straightforward. However, 
for larger elemental Reynolds numbers, 𝑅𝑒𝑓𝑒 > 1, the inertial term is dominant and Eq.  (19) reduces to 𝜌𝑣𝑓 2∕ℎ ≈ 𝐷1𝑣𝑠, such that 
flow reduction is computed as: 

𝑣𝑠

𝑣𝑓
≈

𝜌𝑣𝑓

ℎ𝐷1
≈ 10−𝑞 , (24)

which holds for: 

𝐷1 = 10𝑞
𝜌𝑣𝑓

ℎ
≈ 10𝑞

𝜌𝑣̃𝑓

ℎ
= 10𝑞

𝜇
ℎ2

𝑅𝑒
𝑓
𝑒 . (25)

The estimation of the velocity magnitude 𝑣̃𝑓  influences the selection of 𝐷1 in two ways: first in selecting whether inertial or viscous 
terms are dominant in 𝑅𝑒𝑓𝑒 , and second when inertial terms are dominant in selecting the penalization 𝐷1. An inaccurate estimation 
of the velocity 𝑣̃𝑓  influences the flow reduction, as shown by Theulings et al. [14]. Therefore, in this work, we aim to construct a 
penalization that does not require an a priori estimation of the velocity.

2.3. The Darcy with Forchheimer approach

To circumvent the estimation of the velocity magnitude 𝑣̃𝑓 , we add the Forchheimer penalization [10] to the momentum 
equation, resulting in the Darcy with Forchheimer (DF) approach. The Forchheimer penalization depends quadratically on the 
velocity and is introduced beside the Darcy penalization as: 

𝑅𝑅𝑅vvv(vvv, 𝑝) = −𝜌∇vvv ⋅ vvv − ∇𝑝 + ∇ ⋅
(

𝜇
(

∇vvv + ∇vvv⊤
))

Darcy penalization
⏞⏞⏞⏞⏞
−𝐷2(𝛼)vvv −𝐹2(𝛼)|vvv|2vvv

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Forchheimer penalization

= 000. (26)

Both penalizations are set to zero 𝐷2(𝛼 = 1) = 𝐹2(𝛼 = 1) = 0 in the fluid domain and to their maximum value 𝐷2(𝛼 = 0) = 𝐷2, 
𝐹2(𝛼 = 0) = 𝐹 2 in the solid domain. To add the Forchheimer term to the order analysis performed in Section 2.2, we estimate its 
magnitude in the solid domain as: 

𝑠
(

𝐹 (𝛼)||vvvℎ|| vvvℎ
)

≈ 𝐹 (𝑣𝑠)2 , (27)
2
| |2 2

6 



M.J.B. Theulings et al.

vv

Computer Methods in Applied Mechanics and Engineering 443 (2025) 118027 
whereas its magnitude is set to zero in the fluid domain. Subsequently, we introduce the magnitude of the Forchheimer penalization 
to the right-hand side of Eq.  (19): 

max

(

𝜌𝑣
𝑓 2

ℎ
, 𝜇 𝑣𝑓

ℎ2

)

≈ max
(

𝐷2𝑣
𝑠, 𝐹 2 (𝑣𝑠)

2
)

. (28)

We aim for the Forchheimer penalization to counteract inertial terms, as both scale quadratically with velocity, and for the Darcy 
penalization to counteract viscous terms, as both scale linearly with velocity. Neglecting the viscous (𝑅𝑒𝑓𝑒 ≥ 1) or inertial (𝑅𝑒𝑓𝑒 < 1) 
terms, we find:

𝑅𝑒𝑓𝑒 ≥ 1 ∶ 𝜌𝑣
𝑓 2

ℎ
≈ 𝐹 2 (𝑣𝑠)

2 , (29)

𝑅𝑒𝑓𝑒 < 1 ∶ 𝜇 𝑣𝑓

ℎ2
≈ 𝐷2𝑣

𝑠, (30)

from which we derive the desired flow reduction and consequent maximum penalization magnitude as:

𝑅𝑒𝑓𝑒 ≥ 1 ∶ 𝑣𝑠

𝑣𝑓
≈
√

𝜌

ℎ𝐹 2
≈ 10−𝑞 , 𝐹 2 = 102𝑞

𝜌
ℎ
, (31)

𝑅𝑒𝑓𝑒 < 1 ∶ 𝑣𝑠

𝑣𝑓
≈

𝜇

ℎ2𝐷2
≈ 10−𝑞 , 𝐷2 = 10𝑞

𝜇
ℎ2

. (32)

We find that the Forchheimer magnitude scales similarly to the Darcy magnitude in the D approach when inertial terms are dominant 
𝑅𝑒

𝑓
𝑒 ≥ 1 in Eq.  (25), but with a factor 102𝑞 instead of 10𝑞 . Moreover, we emphasize that, contrary to the D approach, both terms in 

Eqs. (31) and (32) do not require an a priori velocity estimation.

2.4. The Darcy with filtered Forchheimer approach

The DF approach solves the problem of estimating 𝑣̃𝑓 , but we find inconsistencies when performing numerical analysis in the 
assumptions made in the derivation of 𝐹 2 and 𝐷2. We assumed that when inertial (resp. viscous) terms are dominant in the fluid, 
the Forchheimer (resp. Darcy) term is dominant in the solid. However, this assumption might not hold. To compare dominant terms, 
we define a solid domain elemental Reynolds number 𝑅𝑒𝑠𝑒 by inspecting the definition of 𝑅𝑒𝑓𝑒 . The fluid domain element Reynolds 
number in Eq.  (20) was defined as the ratio between inertial and viscous term magnitudes, which is equivalent to dividing Eq.  (29) 
by Eq.  (30): 

𝑅𝑒𝑓𝑒 =
𝜌𝑣𝑓ℎ
𝜇

≈
𝐹 2𝑣𝑠

𝐷2
. (33)

Subsequently, we define the solid domain elemental Reynolds number by substituting the maximum values for the 
Forchheimer/Darcy penalization in Eq.  (33): 

𝑅𝑒𝑠𝑒 =
𝐹 2𝑣𝑠

𝐷2
= 10𝑞

𝜌𝑣𝑠ℎ
𝜇

, (34)

Using this definition, it should hold that 𝑅𝑒𝑓𝑒 ≈ 𝑅𝑒𝑠𝑒, i.e., the elemental Reynolds number should be continuous as it is of similar 
magnitude in neighboring solid and fluid domains. In the ideal case when 𝑣𝑠 = 𝑣𝑓 10−𝑞 this holds as 𝑅𝑒𝑠𝑒 = 10𝑞(𝜌𝑣𝑠ℎ)∕𝜇 = (𝜌𝑣𝑓ℎ)∕𝜇. 
However, it might happen that 𝑅𝑒𝑠𝑒 ≥ 1, while 𝑅𝑒𝑓𝑒 < 1, or vice versa. This mainly occurs during the convergence of the state solution 
when we have not yet converged to a solution where 𝑣𝑠∕𝑣𝑓 = 10−𝑞 . When this occurs, 𝑅𝑒𝑠𝑒 and penalizations may abruptly change, 
resulting in unstable convergence behavior. Consequently, in our numerical analysis in Section 4, we find the DF approach to have 
less predictable solutions and a less predictable objective convexity. Moreover, in Appendix  B jumps in the elemental Reynolds 
number are shown to lead to convergence problems of the forward solution. An alternative penalization approach, which ensures a 
more continuous elemental Reynolds number, is needed.

To solve this issue, we aim to define penalizations such that 𝑅𝑒𝑠𝑒 = 𝑅𝑒𝑓𝑒 = 𝜌𝑣𝑓ℎ∕𝜇, and 𝑅𝑒𝑠𝑒 should thus be dependent on the 
fluid domain velocities 𝑣𝑓 . However, no field containing information on fluid domain velocities is present in the solid domain. To 
pull information from the fluid domain to the solid domain, we define the filtered velocity magnitude 𝑈 by applying the PDE filter, 
as described for the design field by Lazarov and Sigmund [22], to the velocity magnitude: 

− 𝑅2∇2𝑈 + 𝑈 = |vvv|2. (35)

Information about the local flow velocity is distributed over a domain with a radius of 𝑁 elements using 𝑅 = 𝑁ℎ∕(2
√

3), such that 
we may estimate 𝑠

(

𝑈ℎ
)

≈ 𝑣𝑓 . Although the filtered velocity magnitude 𝑈 will have a significant magnitude in the solid domain, 
which does not appropriately represent the physics, it can be used to appropriately penalize and decrease the actual magnitude of 
v = [𝑢, 𝑣]⊤ in the solid domain. The filtered velocity magnitude 𝑈 thus exists in conjunction with the actual velocity and its magnitude 
7 
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|vvv|2, i.e., no additional flow is introduced in the solid domain. We introduce a filtered Forchheimer penalization, resulting in the 
Darcy with filtered Forchheimer (DFF) approach: 

𝑅𝑅𝑅vvv(vvv, 𝑝) = −𝜌∇vvv ⋅ vvv − ∇𝑝 + ∇ ⋅
(

𝜇
(

∇vvv + ∇vvv⊤
))

Darcy penalization
⏞⏞⏞⏞⏞
−𝐷3(𝛼)vvv −𝐹3(𝛼)𝑈vvv

⏟⏞⏞⏞⏟⏞⏞⏞⏟
filtered Forchheimer penalization

= 000. (36)

The magnitude of the filtered Forchheimer penalization is estimated as 𝑠
(

𝐹3(𝛼)𝑈ℎvvvℎ
)

≈ 𝐹 3𝑣𝑓 𝑣𝑠, which is introduced in Eq.  (19), 
to find: 

max

(

𝜌𝑣
𝑓 2

ℎ
, 𝜇 𝑣𝑓

ℎ2

)

≈ max
(

𝐷3𝑣
𝑠, 𝐹 3𝑣

𝑓 𝑣𝑠
)

. (37)

The Darcy penalization remains unchanged with respect to the DF approach and the maximum penalization 𝐷3 = 10𝑞𝜇∕ℎ2 found 
in Eq.  (32) is used. When 𝑅𝑒𝑓𝑒 ≥ 1 and inertial terms are dominant, we aim for the filtered Forchheimer penalization to inhibit the 
flow. We find 𝜌 𝑣𝑓 2

ℎ ≈ 𝐹 3𝑣𝑓 𝑣𝑠, and a flow reduction with resulting maximum penalization: 
𝑣𝑠

𝑣𝑓
≈

𝜌

ℎ𝐹 3
≈ 10−𝑞 , 𝐹 3 = 10𝑞

𝜌
ℎ
, (38)

which is a factor 10𝑞 lower than the maximum 𝐹 2 for the DF approach in Eq.  (31). Moreover, computing the solid domain elemental 
Reynolds number using the filtered Forchheimer penalization, we find: 

𝑅𝑒𝑠𝑒 =
𝐹 3𝑣𝑓 𝑣𝑠

𝐷3𝑣𝑠
=

𝜌𝑣𝑓ℎ
𝜇

= 𝑅𝑒𝑓𝑒 . (39)

Using the filtered Forchheimer penalization, we ensure a continuous elemental Reynolds number and appropriate penalization 
magnitudes for viscous and inertial terms.

2.5. Overview of penalization approaches

Three approaches for penalizing the flow in the solid domain are discussed in this paper: the Darcy, the Darcy with Forchheimer, 
and the Darcy with filtered Forchheimer approach, defined respectively as:

D: − 𝜌∇vvv ⋅ vvv − ∇𝑝 + ∇ ⋅
(

𝜇
(

∇vvv + ∇vvv⊤
))

−𝐷1(𝛼)vvv = 000 (40)

DF: − 𝜌∇vvv ⋅ vvv − ∇𝑝 + ∇ ⋅
(

𝜇
(

∇vvv + ∇vvv⊤
))

−𝐷2(𝛼)vvv − 𝐹2(𝛼)|vvv|2vvv = 000, (41)

DFF: − 𝜌∇vvv ⋅ vvv − ∇𝑝 + ∇ ⋅
(

𝜇
(

∇vvv + ∇vvv⊤
))

−𝐷3(𝛼)vvv − 𝐹3(𝛼)𝑈vvv = 000. (42)

Subsequently, maximum penalizations are defined such that the flow reduction at the fluid/solid interface can be approximated 
as 𝑣𝑠∕𝑣𝑓 = 10−𝑞 . For the D approach, an appropriate penalization depends on an estimate of the fluid velocity magnitude and 
consequent elemental Reynolds number in Eq.  (21). The maximum penalization values derived in previous sections can be found in 
Table  1. 

Table 1
The derived appropriate settings for the maximum penalization in the solid domain at 𝛼 = 0 such that the flow reduction can 
be estimated as 𝑣𝑠∕𝑣𝑓 = 10−𝑞 .

 D: 𝑅𝑒𝑓𝑒 ≤ 1 D: 𝑅𝑒𝑓𝑒 > 1 DF DFF  
 Darcy 𝐷1 = 10𝑞 𝜇

ℎ2 𝐷1 = 10𝑞 𝜇
ℎ2 𝑅𝑒

𝑓
𝑒 𝐷2 = 10𝑞 𝜇

ℎ2 𝐷3 = 10𝑞 𝜇
ℎ2  

 Forchheimer – – 𝐹 2 = 102𝑞 𝜌
ℎ

𝐹 3 = 10𝑞 𝜌
ℎ
 

2.6. Interpolation function and post-processing approach

So far, this section has mainly focused on the flow reduction at crisp fluid/solid interfaces. However, since gradient-based 
optimization with continuous design variables is used, we interpolate the penalization 𝐷(𝛼) and 𝐹 (𝛼) for 0 ≤ 𝛼 ≤ 1, and fluid/solid 
interfaces generally exhibit intermediate values of 𝛼. In this work, we use the interpolation function presented by Borrvall and 
Petersson [4] and shown in Fig.  2: 

𝐷(𝛼) = 𝐷
𝑝̂(1 − 𝛼)
𝑝̂ + 𝛼

, (43)

where the parameter 𝑝̂ was originally introduced in a two-step continuation approach to control the level of gray in the optimized 
designs. The layout is first optimized using 𝑝̂ = 0.01 to make the response surface of the objective more convex and allow the 
optimizer to escape ill-performing local optima. Secondly, the resulting designs are further optimized using 𝑝̂ = 0.1 to obtain a 
discrete valued solution. In Section 4.2, the relation between the interpolation function and convexity of the pressure drop objective 
will be further investigated.
8 
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Fig. 2. The interpolation function presented in Eq.  (43) in linear and logarithmic scales.

Our approach for finding appropriate interpolation functions is to examine a fluid/solid interface, where the solid domain in Fig. 
1 is replaced by a porous domain with 𝛼 ≈ 0.5. We note that [5] already interpret the interpolation as a function which decreases 
the penalization in the gray areas to improve the convexity of the objective response. However, using our prediction of the flow 
reduction, a more reliable derivation of the required parameter 𝑝̂ can be obtained. We investigate the penalization achieved for 
these interface areas by observing that the interpolation lowers the magnitude of the penalization determined by 10𝑞 in Table  1, 
and consequently increases the predicted flow. In all approaches, the Darcy penalization is interpolated by using 𝑝̂ = 10−𝑞 in Eq. 
(43), as: 

𝐷(𝛼) = 𝐷
10−𝑞(1 − 𝛼)
10−𝑞 + 𝛼

, (44)

such that 𝐷(𝛼 = 0.5) ≈ 10−𝑞𝐷, decreasing the Darcy penalization by 10−𝑞 as shown in the logarithmic plot in Fig.  2, resulting in 
more porous domain flow as 𝑣𝑠∕𝑣𝑓 = 10𝑞−𝑞 .

For the Forchheimer penalization, a different interpolation function is used for the DF and the DFF approach where we substitute 
𝑝̂ = 10−2𝑞 and 𝑝̂ = 10−𝑞 , respectively: 

𝐹2(𝛼) = 𝐹 2
10−2𝑞(1 − 𝛼)
10−2𝑞 + 𝛼

, 𝐹3(𝛼) = 𝐹 3
10−𝑞(1 − 𝛼)
10−𝑞 + 𝛼

, (45)

such that at the fluid/solid interface 𝐹2(𝛼 = 0.5) ≈ 10−2𝑞𝐹 2 and 𝐹3(𝛼 = 0.5) ≈ 10−𝑞𝐹 3, decreasing the penalization by 10−2𝑞 and 10−𝑞 , 
respectively. In Table  1, the penalizations for the DF and DFF approach scale respectively with 102𝑞 and 10𝑞 , both resulting in a 
flow reduction of 𝑣𝑠∕𝑣𝑓 = 10−𝑞 . The lower parameter 𝑝̂ = 10−2𝑞 for the DF approach is thus needed to ensure that the flow in the 
porous domain scales similarly for the DF and DFF approaches as 𝑣𝑠∕𝑣𝑓 = 10𝑞−𝑞 .

Using the predicted flow reduction in porous areas, we derive an improved threshold on 𝛼 for the post-processing of optimized 
results. Common approaches for post-processing define the solid domain as the areas where 𝛼 < 𝛼𝑡 = 0.5. However, using our 
prediction of the flow reduction, we define the solid domain as the domain where a specific flow reduction is achieved and derive 
a specific value 𝛼𝑡 dependent on both 𝑞 and 𝑞. For a specific flow reduction of 10−𝑟, we require an interpolated Darcy magnitude of 
𝐷(𝛼𝑡) = 𝐷10𝑟−𝑞 , and the solid domain is defined as those areas where: 

10−𝑞(1 − 𝛼)
10−𝑞 + 𝛼

> 10𝑟−𝑞 , (46)

which can be used to threshold the design using the interpolation function itself, or be rewritten as a threshold for 𝛼 in the solid 
domain: 

𝛼𝑡 <
1 − 10𝑟−𝑞

1 + 10𝑟−𝑞+𝑞
. (47)

The same threshold for 𝛼𝑡 is found using the interpolation function in Eq.  (45) for the Forchheimer penalization in the DF approach. 
For the remainder of this work, we threshold the designs using 𝑟 = 1 such that the solid domain is defined as those areas where 
𝑣𝑠∕𝑣𝑓 < 0.1.

3. Numerical implementation

For the analysis and optimization of the flow problems, we use [20]. Since the implementation is done by the multiphysics 
software, we take a birds-eye view of the model. However, it remains important to make informed choices of the settings within 
the software.
9 
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3.1. Discretization and optimization approach

Shape functions, stabilization approaches, and solution procedures have to be specified for the flow field, pressure field, and 
filtered flow field. All fields are discretized using the finite element method on the same quadrilateral mesh with square elements of 
size ℎ. For the flow field we use quadratic while for the pressure field we use linear interpolation functions. The filtered velocity field 
is handled similarly to the velocity field with quadratic interpolation functions. Streamline diffusion [23,24] is used to stabilize the 
solution when convection is dominating the flow. In our changing topology, small islands or sharp corners may appear, therefore, 
to stabilize the solution around these features, additional diffusion is added by applying crosswind diffusion [23,25]. We note that 
streamline and crosswind diffusion slightly lower the accuracy of the flow solution, although not significantly in comparison to 
errors related to flow leakage. However, the use of these stabilization terms promote a smooth convergence of the flow solution.

Finally, the design is represented using a constant volume fraction 𝛼 in each element in the mesh, and no filter is applied on the 
design variables. Furthermore, we use the Method of Moving Asymptotes (MMA) approach with an optimality tolerance of 10−3 and 
a constraint penalty factor of 102. The relatively low penalty factor allows for more design flexibility while satisfying the constraints 
within an acceptable tolerance. To compute sensitivities, the adjoint approach is used.

3.2. Stabilization of the state solution

To solve the state equations reliably for moderate Reynolds numbers, a pseudo time-stepping scheme is used [26], and a transient 
problem is solved until steady state is reached: 

𝑅𝑅𝑅𝑣 = −𝜌vvv
𝑛 − vvv𝑛−1
𝛥𝑡

− 𝜌∇vvv𝑛 ⋅ vvv𝑛 − ∇𝑝𝑛 + ∇ ⋅
(

𝜇
(

∇vvv𝑛 + ∇vvv𝑛⊤
))

− 𝑓𝑓𝑓 (vvv𝑛) = 000, (48)

where the superscript 𝑛 denotes the iteration in the pseudo time-stepping scheme and 𝑓𝑓𝑓 represents the selected penalization. Time 
steps are computed based on the local Courant–Friedrichs–Lewy (CFL) number as 𝛥𝑡 = 𝐶𝐹𝐿𝑙𝑜𝑐𝛥𝑡𝑟, where the reference time step is 
defined as: 

𝛥𝑡𝑟 =
ℎ

|vvv𝑛|2
. (49)

The local CFL number 𝐶𝐹𝐿𝑙𝑜𝑐 is determined by a PID regulator, and |vvv𝑛|2 the local velocity magnitude. This approach assumes that 
inertial terms are dominant on the element scale and are the limiting factor for a stable time step. However, using this approach, 
some solutions diverge in the forward solve during optimization. Upon close inspection, divergence happens for higher 𝑞 ≥ 2 and 
when an update in the design causes a new solid element to appear in the fluid domain. To speed up computations, we initialize the 
flow solution in the current design using the flow solution from the previous design. We found this may cause large non realistic 
flow speeds and consequently diverging flow solutions in the newly introduced solid elements.

We solve the stability issue by investigating the assumption of dominant inertia in penalized elements. In Section 2.2, we assumed 
that when inertia is dominant in the fluid domain, the penalization terms are dominant in the solid domain. As a consequence, the 
penalization term in should be dominant over the inertia terms in the solid domain. An appropriate time step in the solid domain 
should thus be dependent on the penalization magnitude.

To define an appropriate time step, we investigate the order of magnitude of the transient and the penalization term in the solid 
domain: 

𝑠
(

𝜌vvv
𝑛 − vvv𝑛−1
𝛥𝑡

)

= 𝜌 𝑣𝑠

𝛥𝑡𝑓
, 𝑠

(

𝑓𝑓𝑓
)

= |𝑓𝑓𝑓 |2 = 𝑓 𝑠, (50)

where we compute 𝑣𝑠 = |vvv𝑛|2 at each time step, and define the magnitude of the penalization in the differing approaches as:
D: 𝑓 𝑠 = 𝐷1(𝛼)𝑣𝑠 (51)

DF: 𝑓 𝑠 =
(

𝐷2(𝛼) + 𝐹2(𝛼)𝑣𝑠
)

𝑣𝑠, (52)

DFF: 𝑓 𝑠 =
(

𝐷3(𝛼) + 𝐹3(𝛼)𝑈
)

𝑣𝑠. (53)

We use interpolated values 𝐷(𝛼) and 𝐹 (𝛼) as instabilities may already occur in gray elements with relatively high penalization 
values. Subsequently, we assume the penalization is dominant and limits the maximum time step (𝜌𝑣𝑠)∕𝛥𝑡𝑓 = 𝑓 𝑠:

D: 𝛥𝑡𝑓 =
𝜌

𝐷1(𝛼)
(54)

DF: 𝛥𝑡𝑓 =
𝜌

𝐷2(𝛼) + 𝐹2(𝛼)𝑣𝑠
, (55)

DFF: 𝛥𝑡𝑓 =
𝜌

𝐷3(𝛼) + 𝐹3(𝛼)𝑈
. (56)

In the fluid domain where 𝛼 = 1 and 𝑓𝑓𝑓 = 000, the inertial term remains dominant. Since the time step is computed per element and 
inversely proportional to either the inertia or penalization term, we use the smallest computed time step in our solution procedure.

𝛥𝑡 = 𝐶𝐹𝐿𝑙𝑜𝑐 min
(

𝛥𝑡𝑟, 𝛥𝑡𝑓
)

. (57)

To regularize the time step and speed up the computation the local CFL number is included in the time step definition.
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We note that computational time is generally reduced when a direct steady-state solver is used instead of the pseudo time-
stepping scheme. However, when Reynolds numbers increase, the presented pseudo time-stepping approach is often necessary for 
the state-solution to converge. Pseudo time-stepping performs more gradual updates of the flow and pressure fields, and generally 
needs more iterations to converge. This results in a larger computational cost, but a more smooth and reliable convergence behavior.

4. Model investigation

In Section 2, we described three penalization approaches that should lead to a flow reduction of 𝑣𝑠∕𝑣𝑓 = 10−𝑞 . In Section 4.1, 
we verify the predicted flow reduction. We expect the D approach to be less predictable due to the estimation of the fluid domain 
velocity magnitude and the DF and DFF approaches to achieve a more predictable flow reduction. In Section 4.2, we examine the 
convergence behavior of the optimization by investigating the convexity of the objective function, here chosen as the pressure drop.

4.1. Model accuracy and flow leakage

To investigate the flow leakage, we use the setup in Fig.  3 and the geometry and material parameters in Table  2. Different inlet 
Reynolds numbers 𝑅𝑒𝑖𝑛 are investigated and we define the fluid density as: 

𝜌 =
𝑅𝑒𝑖𝑛𝜇
𝑣𝐿

, (58)

where 𝑣 is the maximum inlet velocity and 𝐿 the inlet diameter. For the D approach, we estimate the fluid domain flow speed using 
the maximum inlet velocity 𝑣. For the DFF approach, we filter the velocity over 𝑁 = 10 elements, i.e., 𝑅 = 𝑁ℎ∕(2

√

3), based on the 
findings from Appendix  A on the effect of the filter radius on flow leakage. The choice of 𝑁 = 10 is based on the maximum filter 
radius for which overpenalization does not occur.

To check the predictability of the flow leakage, we place solid obstacles with 𝛼 = 0 either in the center (𝛺𝑐
𝑖 ) or towards the 

edge (𝛺𝑒
𝑖 ) of all 𝑖 ∈ {1 ∶ 6} channels. The design is constructed such that different elemental Reynolds numbers occur naturally in 

different parts of the domain. In Channel 6, low flow velocities lead to low elemental Reynolds numbers, while in Channel 1, larger 
flow velocities lead to relatively high elemental Reynolds numbers. Additionally, flow speeds and elemental Reynolds numbers 
near the channel walls are significantly lower than in the center of the channels. A unique estimation 𝑣̃𝑓  and thus 𝑅𝑒𝑓𝑒  for the 
penalization in the D approach does not exist as the velocity varies throughout the domain, a situation that often occurs during 
topology optimization.

Fig. 3. The setup to measure the accuracy of the predicted flow leakage. The design is symmetric over the dashed boundary. In Channel 1 to 6, obstacles with 
volume fraction 𝛼 = 0 are placed. We either add the green obstacles 𝛺𝑒

𝑖  at the edge or the red obstacles 𝛺𝑐
𝑖  in the center of the channels. Obstacles consist of 

a four by four element domain. To measure the flow leakage relative to the local flow magnitude, we define fluid edges 𝛤 𝑒
𝑖  and 𝛤 𝑐

𝑖  as the edges one element 
away from 𝛺𝑒

𝑖  and 𝛺𝑐
𝑖 , respectively.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
The parameters used to verify the predicted flow leakage using the setup in Fig.  3.
 𝐿 𝐷𝑓 ℎ 𝜇 𝑣 𝑣̃𝑓 𝑁  
 1 [m] 7𝐿

20
𝐿
80

1 [Pa s] 10 [m s−1] 𝑣 10 

We compute the flow leakage by comparing the average flow magnitude within obstacles 𝛺𝑒
𝑖  or 𝛺𝑐

𝑖  to the average flow speed 
on 𝛤 𝑒

𝑖  or 𝛤 𝑐
𝑖 , the fluid edges located one element away from the obstacles. Superscripts 𝑐 and 𝑒 denote center and edge obstacles, 

respectively. To average the flow speeds, we use the surface area for the obstacles 𝐴𝛺, and length of the center or edge boundaries 
𝐿𝛤 𝑐  or 𝐿𝛤 𝑒 , respectively. The flow leakage is computed as: 

𝜖e𝑖 = 𝑣𝑠

𝑣𝑓
≈

∫𝛺e𝑖 |vvv|2𝑑𝛺

∫𝛤 e𝑖 |vvv|2𝑑𝛤
𝐿𝛤 𝑒

𝐴𝛺
, 𝜖c𝑖 = 𝑣𝑠

𝑣𝑓
≈

∫𝛺c𝑖 |vvv|2𝑑𝛺

∫𝛤 c𝑖 |vvv|2𝑑𝛤
𝐿𝛤 𝑐

𝐴𝛺
(59)

After computing the flow leakage from our solution, we check it against our prediction of 𝑣𝑠∕𝑣𝑓 = 10−𝑞 . The order of the flow 
reduction 𝑞 in the 𝑖th channel can be computed when solving with a different 𝑞 ∈ 0, 1, 2, 3, as: 

𝑞𝑒 = − log
(

𝜖𝑒
)

, 𝑞𝑐 = − log
(

𝜖𝑐
)

, (60)
𝑞,𝑖 10 𝑖 𝑞,𝑖 10 𝑖
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Fig. 4. Trend in the flow leakage for increasing 𝑞 in the problem in Fig.  3 with parameters in Table  2. Errors for Channel 1 and 6 are shown as these channels 
present the highest and lowest flow magnitudes. Both the DF and DFF approaches predict errors well as 10−𝑞 . The D approach predicts errors well for low but 
not for high Reynolds numbers.

Table 3
The error in flow reduction for the center obstacles (𝜉𝑐 ), edge obstacles (𝜉𝑒) for moderate (𝑅𝑒𝑖𝑛 = 100, 𝑅𝑒𝑓𝑒 ≤ 1) 
and relatively high (𝑅𝑒𝑖𝑛 = 1000, 𝑅𝑒𝑓𝑒 > 1) Reynolds numbers. Examining the errors, the DF approach is found to 
be the most accurate followed by the DFF and D approaches.
 𝜉𝑒, 𝑅𝑒 = 100 𝜉𝑒, 𝑅𝑒 = 1000 𝜉𝑐 , 𝑅𝑒 = 100 𝜉𝑐 , 𝑅𝑒 = 1000

 D 0.159 0.627 0.280 0.462  
 DF 0.142 0.086 0.217 0.102  
 DFF 0.188 0.137 0.299 0.176  

where subscript 𝑞 denotes the user-defined parameter for the solution. The measured magnitude of the flow reduction is subsequently 
used to compute a mean error with respect to our prediction: 

𝜉𝑒 =

∑3
𝑞=1

∑6
𝑖=1

|

|

|

𝑞 − 𝑞𝑒𝑞,𝑖
|

|

|2
18

, 𝜉𝑐 =

∑3
𝑞=1

∑6
𝑖=1

|

|

|

𝑞 − 𝑞𝑐𝑞,𝑖
|

|

|2
18

. (61)

We do not include results for 𝑞 < 1 in the verification as the flow reduction associated to such values is too low to be accurate 
and all approaches show similar results. The analysis will be performed for moderate and relatively high inlet Reynolds numbers 
𝑅𝑒 = 100 and 𝑅𝑒 = 1000 such that low (𝑅𝑒𝑒𝑓 < 1) and high (𝑅𝑒𝑒𝑓 > 1) elemental Reynolds numbers are present.

In Fig.  4, the measured flow leakage for varying 𝑞 can be found. We present only errors in Channels 1 and 6 as in these channels, 
the highest and lowest flow magnitudes and elemental Reynolds numbers are found, as shown in Fig.  5. The first observation is that 
for 𝑅𝑒 = 100, the D approach is in good agreement with the prediction, while for 𝑅𝑒 = 1000, it overpenalizes flow leading to an 
increased flow reduction. This is caused by an erroneous estimation 𝑣̃𝑓  of the velocity magnitude. For 𝑅𝑒 = 100, the approximate 
elemental Reynolds number is low 𝑅𝑒𝑓𝑒 = 1.25 and the estimation of 𝑣̃𝑓  does not significantly influence the penalization. For 
𝑅𝑒 = 1000, the approximate elemental Reynolds number is larger, 𝑅𝑒𝑓𝑒 = 12.5, and the magnitude of the penalization is largely 
dependent on the estimation of 𝑣̃𝑓 . The estimation of the flow velocity is only valid in the center of Channel 1 where 𝑅𝑒𝑓𝑒 ≈ 𝑅𝑒𝑓𝑒 . 
For all other obstacles, the flow velocity is overestimated leading to excessive flow reduction.

As reported in Table  3 by the errors in prediction 𝜉, both the DF and DFF approaches produce more predictable errors, whereas 
errors in the D approach spike for 𝑅𝑒 = 1000. In all cases, the DF approach is found to be the most accurate. However, the DF 
approach shows convergence problems, even with the stabilization procedure in Section 3.2 and generally takes more iterations to 
converge. For high Reynolds numbers, the D approach does not predict flow leakage accurately which will cause problems for the 
optimization procedure as examined in Sections 4.2 and 5.
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Fig. 5. Elemental Reynolds number 𝑅𝑒𝑓𝑒 , computed using the D approach. Only edge obstacles 𝛺𝑒
𝑖  are introduced. Using 𝑣̃𝑓 = 𝑣, we obtain an approximate 

elemental Reynolds number of 𝑅𝑒𝑓𝑒 = 1.25 (𝑅𝑒 = 100) and 𝑅𝑒𝑓𝑒 = 12.5 (𝑅𝑒 = 1000).

4.2. Objective convexity and continuation approach

To use the D, DF, or DFF approach for TO effectively, a continuation strategy is derived by investigating the effect of design 
changes on the objective. In particular, we study how the magnitude of the flow reduction and the shape of the interpolation function 
for the Darcy and the Forchheimer penalization affect an objective function, here chosen as the pressure drop: 

𝑔𝑝 = ∫𝛤𝑜
𝑝𝑑𝛤 − ∫𝛤𝑖

𝑝𝑑𝛤 , (62)

where 𝛤𝑜 and 𝛤𝑖 are the flow outlets and inlets, respectively. To examine the interaction between objective and penalization, we 
use the problems described in Fig.  6 with parameters in Table  4, and a Reynolds-dependent density: 

𝜌 =
𝑅𝑒𝑖𝑛𝜇
𝑣𝐿𝑐

, (63)

where 𝐿𝑐 is the inlet diameter. To study the convexity of the objective response, we perform a similar analysis as [17], who inspect 
the monotonicity of the objective response for fluid structure interaction problems. We impose a change in design variable from 
solid, 𝛼 = 0, through gray, 𝛼 ≈ 0.5, to fluid, 𝛼 = 1, for certain areas of the design. A convex response presents lower values for gray 
than for crisp designs, while a concave response takes lower values for crisp than for gray designs. Therefore, a convex response 
leads to designs that more freely change than for a concave response. Based on this information, a continuation approach can be 
derived to allow for large design updates in the early optimization stages and to ensure a crisp 0∕1 design in later stages.

Fig. 6. The two-channel problems used to investigate the convexity of the objective. On the inlets 𝛤𝑖, a parabolic inflow is applied and on the outlets 𝛤𝑜, a 
parabolic outflow is applied. Both parabolic in- and outflows have maximum velocity 𝑣. In the red and blue areas, the design is changed. While the light gray 
is fluid (𝛼 = 1) and the dark gray solid (𝛼 = 0), the red and blue areas are changed through gray (𝛼 ≈ 0.5) from solid to fluid or vice versa.  (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Parameters for the analysis of the objective convexity for the problem in Fig.  6.
 𝐿 𝐿𝑐 ℎ 𝜇 𝑣 𝑣̃𝑓  
 1 [m] 𝐿 𝐿

20
1 [Pa s] 1 [m s−1] 𝑣  

Two design changes, regulated by parameter 0 ≥ 𝛼𝑑 ≥ 1, are examined as shown in Fig.  6. In Fig.  6(a), the channel walls are 
perturbed over one element to examine viscous dominated design changes. For 𝛼𝑑 = 1, the upper channel is straight while the lower 
channel is curved, and vice versa for 𝛼𝑑 = 0. In Fig.  6(b), a four-by-two-element-island is introduced in the center of the channel 
to examine inertia dominated design changes. For 𝛼 = 1, an island is present only in the top channel, and for 𝛼 = 0, only in the 
𝑑 𝑑
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Fig. 7. Convexity of the pressure drop for the DFF approach using a viscosity dominated (Fig.  6(a)) or an inertia dominated design change (Fig.  6(b)) at Reynolds 
number 𝑅𝑒𝑖𝑛 = 10,500.

bottom channel. The design changes are symmetric to ensure the overall volume fraction in the design domain remains constant, 
as most optimization procedures involve an active volume fraction constraint. Additionally, as the designs for 𝛼𝑑 = 0 and 𝛼𝑑 = 1
are the same when mirrored over the center wall, we find the same objective values for these designs, which allow us to visually 
observe whether the response is concave or convex.

We present the pressure drop objective 𝑔𝑝 for different values of 𝛼𝑑 in the two designs defined by Figs.  6(a) and 6(b) using either 
𝑅𝑒𝑖𝑛 = 10 or 𝑅𝑒𝑖𝑛 = 500 for, respectively, the DFF , DF, and D approach in Figs.  7, 8, and 11. The penalization in the gray areas 
is lowered using the penalization interpolation approach described in Section 2.6 using 𝑞 ∈ {1, 2} and the maximum penalization 
magnitude is defined by 𝑞 ∈ {0, 1, 2, 3}, which should lead to a flow reduction at the gray/fluid interface of 𝑣𝑠∕𝑣𝑓 = 10𝑞−𝑞 .

First, we analyze the convexity of the objective using the DFF approach in Fig.  7 and find a clear switch between convex and 
concave behavior. When the predicted flow reduction is 𝑣𝑠∕𝑣𝑓 = 10−𝑞+𝑞 > 1 (q< 𝑞), the response is convex, when it is 𝑣𝑠∕𝑣𝑓 < 1
(q> 𝑞), the response is concave, and when it is exactly 𝑣𝑠∕𝑣𝑓 = 1 (𝑞 = 𝑞), the response differs between the sub-figures and is 
undetermined. We note that for a predicted 𝑣𝑠∕𝑣𝑓 ≥ 1, the penalization is not active and we measure 𝑣𝑠∕𝑣𝑓 ≈ 1. This behavior can 
be explained by the constant fluid volume associated to the design changes in Fig.  6. When the average volume fraction remains 
constant and gray areas emerge in the design, two scenarios may occur. If the penalization in the gray areas is low enough such 
that they can be seen as a fluid domain. The total ‘‘fluid’’ domain is increased, which is generally associated with less pressure drop. 
If the penalization is high enough such that the gray areas can be seen as a solid domain. The ‘‘solid’’ domain is increased which 
generally leads to an increase in pressure drop.

Secondly, we analyze the convexity of the objective using the DF approach in Fig.  8. We emphasize that following Section 2.6, 
a steeper interpolation is used for the Forchheimer than for the Darcy penalization. The DF approach does not present a consistent 
behavior as the DFF approach. For 𝑅𝑒𝑖𝑛 = 10, we find convex behavior for 𝑞 < 𝑞 and concave for 𝑞 > 𝑞, the same as the DFF approach. 
The response is thus convex for lower 𝑞 and concave for higher 𝑞. However, for 𝑅𝑒𝑖𝑛 = 500 in the viscous dominated design change, 
we find different behavior. The response is concave for 𝑞 = 0, convex for 𝑞 = 1, and concave again for 𝑞 = 2 and 𝑞 = 3.

The difference in behavior between DF and DFF approaches can be understood from the flow profiles in Figs.  9(a) and 9(b). For 
𝑞 = 0, larger flow leakage through the center wall is observed for the DF approach compared to the DFF approach. Subsequently, 
the leakage causes the flow path to curve resulting in more pressure drop for the DF approach. Consequently, when gray elements 
are introduced 0 < 𝛼𝑑 < 1 at the center wall, the resulting penalization lowers results in more flow leaking through the wall. This 
further deteriorates the objective, causing the DF response to be concave. However, for 𝑞 = 1, the flow profile for the DF approach 
is similar to the profile for the DFF approach, and the response becomes convex.

To explain why the DF approach does not reproduce a flow solution similar to the DFF approach for 𝑞 = 0, we further examine the 
DFF flow solution. In Section 2.4, we predicted that a difference in elemental Reynolds numbers in the solid and fluid domains may 
cause an abrupt change in penalization in the DF approach. In Fig.  10, the elemental Reynolds numbers are shown for the solution 
using 𝑞 = 0 and 𝛼𝑑 = 0. The solid domain elemental Reynolds numbers are computed following Eq.  (34) for the DF approach in Fig. 
10(a), and using Eq.  (39) for the DFF approach in Fig.  10(b). In both figures, the elemental Reynolds numbers are computed using 
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Fig. 8. Convexity of the pressure drop for the DF approach using a viscosity dominated (Fig.  6(a)) or an inertia dominated design change (Fig.  6(b)) at Reynolds 
number 𝑅𝑒𝑖𝑛 = 10,500.

Fig. 9. Flow profiles for viscous dominated design change (Fig.  6(a)) for 𝑞 = 0, 𝑞 = 1, 𝛼𝑑 = 0, and at 𝑅𝑒𝑖𝑛 = 500.

the DFF flow solution. The DFF elemental Reynolds numbers in Fig.  10(b) are of the same order of magnitude in the solid wall and 
in the channels. However, the DF elemental Reynolds numbers in Fig.  10(a) are at least one order of magnitude lower in the solid 
wall than in the channels. Moreover, in the solid domain the elemental Reynolds numbers are smaller than 1, 𝑅𝑒𝑠𝑒 < 1, while in the 
fluid domain, they are larger than one, 𝑅𝑒𝑓𝑒 > 1. In the solid domain, the Darcy penalization, which should inhibit viscous forces, is 
dominant, while in the fluid, inertial forces are dominant. For this reason, the flow solution found using the DFF approach cannot 
be obtained using the DF approach.

It is important to note that the DF approach is not less accurate nor that the flow leakage is less predictable. The examined 
results are computed for 𝑞 = 0, which results in less predictable flow leakage for all approaches. Additionally, due to the curved 
flow path through the center wall in the DF flow solution in Fig.  9(a), flow speeds close to the wall (𝑣𝑓 ) are higher resulting in a 
similar flow leakage (𝑣𝑠∕𝑣𝑓 ) for both approaches. In fact, these results illustrate that the response computed using the DF approach 
is less predictable than the one computed with the DFF approach.

Finally, we examine the convexity of the pressure drop for the D approach in Fig.  11. Generally, the results are similar to those 
using the DFF approach, i.e., the response is convex for 𝑞 < 𝑞 and concave for 𝑞 > 𝑞. However, for 𝑅𝑒𝑖𝑛 = 500, 𝑞 = 0, 𝑞 = 1 in 
the viscous dominated change and for 𝑅𝑒𝑖𝑛 = 500, 𝑞 = 1, 𝑞 = 2 in the inertia dominated change, the response is neither completely 
concave or convex. This results from the estimation of the flow velocity, which leads to an elemental Reynolds number 𝑅𝑒𝑓𝑒 > 1
and consequently to an overestimation of the required penalization in those areas where 𝑅𝑒𝑓𝑒 < 1. As we will show in Section 5, 
overpenalization can make the responses concave and leads to convergence to inferior local optima.
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Fig. 10. Elemental Reynolds numbers for the viscous design change (Fig.  6(a)) for 𝑞 = 0, 𝑞 = 1, 𝛼𝑑 = 0, and 𝑅𝑒𝑖𝑛 = 500. All elemental Reynolds numbers are 
computed using the DFF flow solution in Fig.  9(b).

Fig. 11. Convexity of the pressure drop for the D approach using a viscosity dominated (Fig.  6(a)) or an inertia dominated design change (Fig.  6(b)) at Reynolds 
number 𝑅𝑒𝑖𝑛 = 10,500.

Using the results in this section, we create an informed continuation approach for optimization. In the initial stage of 
optimization, we are interested in the flexibility of the design while the accuracy is less important. In the later stage of optimization, 
we want to guide the design to a solid/fluid 0∕1 solution which accurately describes the flow and thus the objective and constraint 
functions. We therefore use a continuation on 𝑞 and optimize using low 𝑞 in the initial stage and high 𝑞 in the later stages. Another 
approach to add more convexity in the response is to use larger 𝑞, as seen in Figs.  7, 8, and 11. However, in the authors’ experience, 
adding a steeper slope to the interpolation function using 𝑞 > 2 generally deteriorates the convergence of the optimization procedure.

5. Topology optimization

In this section, we compare the penalization approaches using optimization examples. Section 5.1 focuses on the ability of the 
approaches to escape ill-performing local optima. In Section 5.2.1, we investigate the relation between design convergence and 
continuation, and show the limitations of the D approach under varying estimations of velocity magnitude 𝑣̃𝑓 .

Beside accuracy and convexity, another important property is the stability of an approach. Stability with respect to the 
convergence of the flow solution, and with respect to the convergence of the optimization process. In our experience with the DF 
approach, design updates were often larger and less stable. Moreover, the solution procedure for the flow and pressure fields suffers 
from convergence issues, even using the stabilization approach described in Section 3.2. We found that the initial flow conditions 
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were more important for the flow/pressure fields to converge in the DF approach than in the D or DFF approaches. Using the D and 
the DFF approach, we could use the flow/pressure solution of the previous design as initial solution for the current design, resulting 
in much lower computational cost. Using the DF approach, we were often forced to reinitialize the flow/pressure fields resulting in 
large computational efforts. In Appendix  B, we further investigate instabilities in the DF approach. Although the DFF approach is 
less predictable with respect to flow leakage than the DF approach, it is preferred for its stability. For the remainder of this chapter 
we do not consider the DF approach.

5.1. Dealing with ill-performing local optima

To examine the ability of the D and DFF approaches to escape inferior local optima, we use the problem introduced for the 
convexity analysis in Fig.  6. The parameters are provided in Table  5 for 𝑅𝑒𝑖𝑛 = 500 using the Reynolds dependent density defined 
in Eq.  (63). The design domain is limited to the gray center areas and the inlet/outlet channels remain unchanged during the 
optimization. We expect optimized designs to consist of two straight channels with a parabolic flow profile. Using an inlet Reynolds 
number 𝑅𝑒𝑖𝑛 = 500, we expect the elemental Reynolds number 𝑅𝑒𝑒𝑓  to be larger than one in the center of the parabolic flow, and 
lower than one towards the channel walls.

Table 5
Parameters for the optimization of the problem in Fig.  6.
 𝐿 ℎ 𝜇 𝑣 𝑣̃𝑓 𝑁𝑖 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 𝛥𝑞 𝑞 𝑉𝑓  
 1 [m] 𝐿

20
1 [m s] 1 [m s−1] 𝑣 50 0 3 1 1, 2 2𝐿𝑐∕4𝐿 

In Section 4.2 we defined a general continuation approach which starts the optimization using a low 𝑞 and ends using a high 𝑞. 
Specifically, we partition the optimization procedure into four stages of maximum 𝑁𝑖 = 50 design iterations. Each part is terminated 
after the 𝑁𝑖 = 50 iterations or when the largest change in a single design variable is less than 10−3. We start the optimization using 
𝑞 = 𝑞𝑚𝑖𝑛 = 0, and increase 𝑞 after each stage by 𝛥𝑞 = 1 until 𝑞𝑚𝑎𝑥 = 3.

To examine the different approaches, we use a problem with a predictable optimum, i.e., two straight channels. This design 
would use 2𝐿𝑐∕4𝐿 of the design space and we set a volume constraint to: 

𝑔𝑣(𝛼𝛼𝛼) =
∑𝑁𝛼

𝑖=1 𝛼𝑖
𝑁𝛼

− 𝑉𝑓 ≤ 0, (64)

where we have 𝑁𝛼 design variables 𝛼𝑖 in the design domain 𝛺𝑑 and 𝑉𝑓 = 2𝐿𝑐∕4𝐿. Two different inlet diameters and consequent 
volume constraints will be considered, 𝐿𝑐 = 𝐿 and 𝐿𝑐 = 𝐿∕2. We normalize the pressure drop objective in Eq.  (62) with the pressure 
drop associated to the two straight channel design, i.e., 𝑔𝑝0 = 112𝜇𝑣𝐿∕𝐿𝑐 .

Another important choice is the initial design 𝛼 = 𝛼0 ∈ 𝛺𝑑 . We use two approaches and either start with a fully fluid (𝛼0 = 1) or 
gray (𝛼0 = 𝑉𝑓 ) design. Starting from a fully fluid design, largely violating the volume constraint, leads to large design updates that 
tend to deteriorate the convergence of the forward problem. We found this effect to be worsened by increasing 𝑞. A gray design 
initially inhibits the flow, decreasing the inertia effects, and favoring convergence towards designs with reduced viscous energy 
dissipation.

Optimal designs, raw (𝑔∗𝑝 ), and post-processed (𝑔∗𝑝,𝑟𝑒𝑓 ) objective values for the problem using 𝐿𝑐 = 𝐿 are shown in Fig.  12, 
convergence history can be found in Fig.  13. It is noticeable that using 𝑞 = 1 inferior local optima with curved channels are found. 
For the D approach, both initial designs lead to the inferior optimum, while for the DFF approach, the inferior optimum is only 
found using 𝛼0 = 1 and the superior straight channel optimum is found using 𝛼0 = 𝑉𝑓 . Increasing 𝑞 to 2 improves the convexity of 
the objective response and allows the optimizer to escape the local optimum.

In the convergence history in Fig.  13, we find an increased convergence instability caused by using 𝑞 = 2 and 𝛼0 = 1. The objective 
of both the D and DFF approach show a large increase at iteration 4 caused by large design changes. When initializing using 𝛼0 = 1, 
the design violates the volume constraint resulting in relatively large design changes and objective fluctuations. Moreover, a spike 
in objective for the DFF approach using 𝑞 = 2 and 𝛼0 = 1 is observed at iteration 35. The volume fraction in the center wall, 
and the associated penalization, become too low, and flow leaks through the wall. As the volume fraction in the center wall, and 
consequently the penalization, is increased, the flow profile and objective stabilize. It should be noted that the DFF approach using 
𝑞 = 1 and 𝛼0 = 𝑉𝑓  requires relatively few optimization iterations, see Fig.  13, and generates the desired topology quickly. Later 
increase in 𝑞 do not lead to topology changes but help improve the accuracy of state solution.

Although improved design convergence is found for the D approach when using a more convex interpolation function with 𝑞 = 2, 
this cannot be generalized to other optimization problems. The same problem is investigated but with an inlet diameter 𝐿𝑐 = 𝐿∕2, 
a maximum volume fraction 𝑉𝑓 = 2𝐿𝑐∕4𝐿, and an estimated elemental Reynolds number 𝑅𝑒

𝑓
𝑒 = 50. Resulting designs, raw (𝑔∗𝑝 ), 

and post-processed (𝑔∗𝑝,𝑟𝑒𝑓 ) objective values are given in Fig.  14, convergence history in Fig.  15. For this slight variation of the 
problem, the D approach converges to significantly different and inferior optima. The larger 𝑅𝑒𝑓𝑒 = 50 results in a large maximum 
Darcy penalization 𝐷1. As predicted in Section 4.2, the penalization is overestimated for the straight channel optimum which is 
dominated by viscous effects. Consequently, the objective response becomes concave and the optimization process converges to an 
inferior local optimum dominated by inertial effects. Moreover, the D approach designs do not converge to fully solid/fluid designs 
and present larger gray areas which lower the accuracy of the raw objective values with respect to the post-processed ones, as shown 
by the large errors 𝐸𝑟𝑟 = (𝑔∗ − 𝑔∗)∕𝑔∗  in Fig.  14.
𝑔 𝑝,𝑟𝑒𝑓 𝑝 𝑝,𝑟𝑒𝑓
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Fig. 12. Optimized designs computed using 𝐿𝑐 = 𝐿 and associated raw objective value 𝑔∗𝑝 and post-processed objective value 𝑔∗𝑝,𝑟𝑒𝑓  following Section 2.6 using 
𝛼𝑡. Only the solution in the gray design domain in Fig.  6 is shown.

Fig. 13. The convergence history for the problem in Fig.  6 using 𝐿𝑐 = 𝐿.

Comparing the DFF against the D results, it should be noted that while the DFF approach performs better, optimized designs 
still present bent channels which are suboptimal. As can be seen in Fig.  15, the convergence behavior of the DFF approach using 
𝑞 = 1 is more stable and converges faster than the D approach. Large jumps and fluctuations are observed in the D objective after 
iteration 50 when we 𝑞 is updated from 0 to 1. They are caused by the increase in 𝑞, which disturbs the objective by reducing the 
flow leakage through the solid domain, increasing the flow in the fluid domain and, consequently the pressure drop. To limit such 
disturbances a more gentle update of 𝑞 is used in Section 5.2. Large objective fluctuations are only present in the DFF approach for 
𝑞 = 2 during the initial convergence when using 𝑞 = 0 in the first 25 design iterations.

In this section, we compared the D and DFF approaches with respect to their ability to escape ill-performing local optima. 
Optimization methods should balance accuracy of the solution, design flexibility, and convergence. The main issue of the D approach 
is a conflict between accuracy and design flexibility. As shown by the relatively large errors in objective 𝐸𝑟𝑟𝑔 found using the D 
approach in Fig.  14, a large Darcy penalization is needed for accuracy. However, a large penalization also results in the design 
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Fig. 14. Optimized designs computed using 𝐿𝑐 = 𝐿∕2 and associated raw objective value 𝑔∗𝑝 and post-processed objective value 𝑔∗𝑝,𝑟𝑒𝑓  following Section 2.6. Only 
the solution in the gray design domain in Fig.  6 is shown. Relative errors in objective are defined as 𝐸𝑟𝑟𝑔 = (𝑔∗𝑝,𝑟𝑒𝑓 − 𝑔∗𝑝 )∕𝑔

∗
𝑝,𝑟𝑒𝑓 .

Fig. 15. The convergence history for the problem in Fig.  6 using 𝐿𝑐 = 𝐿∕2. Large fluctuations in objective are observed for the D approach after iteration 50 
where we update 𝑞 from 0 to 1.

converging to ill-performing local optima. This effect is less prevalent in the DFF approach which generally converges to better 
performing optima.

Another issue in both approaches is a conflict between design flexibility and convergence behavior. To avoid premature 
convergence to inferior local optima and promote design flexibility, the objective response is made more convex by lowering the 
penalization for gray design variables and using the higher 𝑞 = 2. However, the resulting interpolation function has a steep slope 
towards the maximum penalization, which often results in large design updates causing large changes in the flow solution and jumps 
in objective. Using a less steep interpolation function with 𝑞 = 1 results in smaller design updates, but a larger tendency to end up 
in ill-performing local optima.
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5.2. Flow inverter

In more practical optimization problems, design domains are larger and flow velocities may vary more drastically. For example, 
a heat exchanger may present large velocities at the inlet, and relatively low velocities in many branching channels. To illustrate 
the benefits of achieving a predictable flow reduction in the DFF approach regardless of the local 𝑅𝑒𝑓𝑒 , we tackle a problem with 
inherently differing elemental Reynolds numbers. The problem is inspired by the flow inverter introduced by Gersborg-Hansen et al. 
[5] and recently used by Alexandersen [9]. It is assumed that by inverting the flow, velocities locally increase, causing elemental 
Reynolds numbers to increase and vary throughout the design domain. In the problem shown in Fig.  16, fluid generally flows from 
the inlet 𝛤𝑖, where a parabolic inflow with maximum velocity 𝑣 is applied, to the outlet 𝛤𝑜, where a constant static pressure (𝑝𝑜 = 0) 
is applied. However, we optimize for the maximum amount of inverted flow in 𝑥-direction −𝑢𝑝 at the center of the domain, and 
minimize: 

𝑔𝑣 = 1 +
𝑢𝑝

𝑢𝑝,𝑚𝑎𝑥
, (65)

where 𝑢𝑝,𝑚𝑎𝑥 is set to ten times the inlet velocity 𝑢𝑝,𝑚𝑎𝑥 = 10𝑣. We add the volume constraint in Eq.  (64) and a constraint on the 
inlet pressure: 

𝑔𝑝 =
1
𝐿 ∫𝛤𝑖 𝑝𝑑𝛤

𝑝(𝛽)
− 1 ≤ 0, (66)

where 𝑝 is the maximum allowed pressure drop, dependent on the user-defined parameter 𝛽. We define the reference pressure drop 
𝑝 assuming a parabolic flow profile as: 

𝑝 =
8𝜇𝑣
𝐿2

(1 + 𝛽)5𝐿, (67)

where the pressure gradient defined as 𝜕𝑝∕𝜕𝑥 = 8𝜇𝑣∕𝐿2 is multiplied by the length of inlet and outlet channel and we allow for 
𝛽 times the pressure drop in the gray design area of length 5𝐿. This pressure drop constraint is consistent with [9]. We use the 
parameters in Table  6 and a Reynolds dependent viscosity: 

𝜇 =
𝜌𝑣𝐿
𝑅𝑒𝑖𝑛

. (68)

As in this problem, a symmetric initial design tends to converge to an ill-performing local optimum [9], the design is initialized 
using the non-symmetric design with a thin wall on the bottom of the channel in Fig.  16. We first use 𝑅𝑒𝑖𝑛 = 100, 𝛽 = 30, ℎ = 𝐿∕50 to 
compare the results to [9] and investigate the relation between design evolution and continuation approach. In a second application, 
we will use 𝑅𝑒𝑖𝑛 = 200, 𝛽 = 60, ℎ = 𝐿∕40 to examine the effect of different estimations of velocity magnitude 𝑣̃𝑓  in the D approach.

Fig. 16. The flow inverter optimization problem.
Table 6
Material and optimization parameters for the flow inverter in Fig.  16.
 𝐿 𝜌 𝑣 𝑣̃𝑓 𝑁𝑖 𝑞𝑚𝑖𝑛 𝑞𝑚𝑎𝑥 𝛥𝑞 𝑞 𝑉𝑓  
 1 [m] 1 [kgm−3] 1 [m s−1] 𝑣 20 0 2 1

3
1, 2 0.6 

5.2.1. Design evolution and continuation
At the optimum, the pressure drop constraint is generally active and a change in 𝑞 may drastically perturb it. We thus use a 

more gradual continuation scheme for 𝑞 and increase its value from 𝑞𝑚𝑖𝑛 = 0 to 𝑞𝑚𝑎𝑥 = 2 by small increments of 𝛥𝑞 = 1∕3 triggered 
every 𝑁𝑖 = 20 design updates, as shown in Table  6. It should be noted that a maximum value 𝑞𝑚𝑎𝑥 = 2 is selected for this problem, 
as increasing 𝑞 further leads to more accuracy of the flow solution, but no significant design changes. For higher 𝑞, the pressure 
response becomes concave and the design does not change much compared to the one found using lower values of 𝑞. Moreover, for 
the D approach and to a lesser extent the DFF approach, using 𝑞 = 3 often causes the flow solution to become unstable and design 
updates more erratic. Once the maximum value for 𝑞 = 𝑞𝑚𝑎𝑥 is set after 120 iterations, the optimization process is allowed to take 
80 extra iterations to perform final shape changes to the design.

We inspect the optimized designs and their convergence behavior. The designs, inverted flow magnitudes and inlet pressures in 
the optimized density-based design (𝑢∗𝑝 , 𝑝∗𝑖𝑛), and their reference values (𝑢∗𝑝,𝑟𝑒𝑓 , 𝑝∗𝑖𝑛,𝑟𝑒𝑓 ) computed using a post-processed design as 
described in Section 2.6, can be found in Fig.  17 for 𝑞 = 1 and Fig.  18 for 𝑞 = 2. We compute errors with respect to the post-processed 
reference designs as:

𝐸𝑟𝑟𝑢 =
𝑢∗𝑝,𝑟𝑒𝑓 − 𝑢∗𝑝

∗ 𝐸𝑟𝑟𝑝 =
𝑝∗𝑖𝑛 − 𝑝∗𝑖𝑛,𝑟𝑒𝑓

∗ ,

𝑢𝑝,𝑟𝑒𝑓 𝑝𝑖𝑛,𝑟𝑒𝑓

20 



M.J.B. Theulings et al. Computer Methods in Applied Mechanics and Engineering 443 (2025) 118027 
Fig. 17. The flow inverter designs including streamlines for 𝑅𝑒𝑖𝑛 = 100, ℎ = 𝐿∕50 and 𝛽 = 30 at the end of each continuation step for 𝑞 optimized using 𝑞 = 1. 
Only the solution in the gray design domain in Fig.  16 is shown. Inverted flow velocity and inlet pressure 𝑢∗𝑝/𝑝∗𝑖𝑛 at the optimum and their post-processed 
reference values 𝑢∗𝑝,𝑟𝑒𝑓 /𝑝∗𝑖𝑛,𝑟𝑒𝑓 , computed using 𝛼𝑡 = 0.45 following Section 2.6, are given. Inlet pressures are constrained using 𝑝 = 12.4.

where a negative (resp. positive) error deteriorates (resp. improves) the design. Using 𝑞 = 1, the D and DFF approaches find similar 
performing optima with low errors 𝐸𝑟𝑟𝑢, 𝐸𝑟𝑟𝑝. Comparing our designs to [9], both the D and DFF approach find a similar topology. 
We note that our problem and continuation setup are different and we optimize using a higher maximum penalization than the one 
used in [9].

To examine the relation between the continuation and design evolution, we show the final design for each continuation step on 
𝑞 in Fig.  17 for 𝑞 = 1 and in Fig.  18 for 𝑞 = 2. Both approaches find a final topology for lower 𝑞 after which only shape changes 
occur for higher 𝑞. However, for 𝑞 = 1 respectively 𝑞 = 2, the D approach generates the distinct fluid/solid topology for 𝑞 = 2

3
respectively 𝑞 = 1, and the DFF approach for 𝑞 = 4

3  respectively 𝑞 = 5
3 . The DFF approach settles to its final topology for designs 

with higher penalization and thus more accurate flow solutions. Using the higher 𝑞 = 2 allows the optimizer to keep changing the 
topology at higher penalization values. However, the final designs in Fig.  18 for 𝑞 = 2 contain more intermediate volume fraction 
elements at the boundaries. Porous solid/fluid interfaces are caused by the convexity of the pressure drop response, which was 
found in Section 4.2 to be undetermined for 𝑣𝑠∕𝑣𝑓 = 10𝑞−𝑞 = 1. We note that the optimal design found using the DFF approach with 
𝑞 = 1 performs best.

Another distinction in design convergence is the fact that the DFF approach is able to introduce a fluid channel within a solid 
domain at later stages of the optimization procedure. For 𝑞 = 1

3 , a solid domain is constructed in the top left half of the design, 
although significant flow is present in this porous solid domain. Over the subsequent iterations, the flow through the porous solid 
domain is inhibited, forcing the creation of new channels through these areas. The final topology is found at 𝑞 = 1 and 𝑞 = 4

3  for 
𝑞 = 1 and 𝑞 = 2, respectively. A rationale behind the evolving channels can be found by inspecting the pressure drop constraint in 
Fig.  19. At each increase in 𝑞, less flow is allowed in the porous solid domain and forced back into the fluid domain, resulting in an 
increase in the inverted flow magnitude and pressure drop. To counter this effect, side channels bypassing the flow inversion are 
introduced in areas of large flow leakage in the porous solid domain. For the D approach, the design evolution is straightforward. 
After finding its first distinct fluid/solid topology, only shape and no topology changes are performed. We note that in Fig.  18 for 
𝑞 = 2, the D approach attempts to form a channel through the solid domain in the bottom left half of the design at 𝑞 = 5 . However, 
3
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Fig. 18. The flow inverter designs including streamlines for 𝑅𝑒𝑖𝑛 = 100, ℎ = 𝐿∕50 and 𝛽 = 30 at the end of each continuation step for 𝑞 optimized using 𝑞 = 2. 
Only the solution in the gray design domain in Fig.  16 is shown. Inverted flow velocity and inlet pressure 𝑢∗𝑝/𝑝∗𝑖𝑛 at the optimum and their post-processed 
reference values 𝑢∗𝑝,𝑟𝑒𝑓 /𝑝∗𝑖𝑛,𝑟𝑒𝑓 , computed using 𝛼𝑡 = 0.082 following Section 2.6, are given. Inlet pressures are constrained using 𝑝 = 12.4.

Fig. 19. The objective and the inlet pressure constraint for the flow inverter design computed with 𝑅𝑒𝑖𝑛 = 100 and ℎ = 𝐿∕50. We observe fluctuations in objective 
and constraint at each increase of 𝑞 in our continuation.

the design change is too slow and increasing the penalization using 𝑞 = 2 removes the channel from the design. The DFF approach 
is more flexible in the sense that even when the penalization and the consequent flow solution accuracy are increased, topology 
changes are more likely to occur.

5.2.2. Design convergence for differing estimations of the elemental Reynolds number
Although elemental Reynolds numbers were varying over the design domain in the previous example, they remained generally 

low. Using the maximum inlet velocity 𝑣𝑓 = 𝑣 = 1 or the inverted flow magnitude 𝑣𝑓 = 𝑢 ≈ 5, we find elemental Reynolds numbers 
𝑝
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Table 7
The estimations for 𝑣̃𝑓  and consequent elemental Reynolds numbers and penalization magnitudes. Values are 
computed for the flow inverter using 𝑅𝑒 = 200 and ℎ = 𝐿

40
.

 D− 𝐷 D+  
 𝑣̃𝑓 0.1𝑣 𝑣 10𝑣  
 𝑅𝑒𝑓𝑒 0.5 5 50  
 𝐷1 10𝑞 𝜇

ℎ2 = 8 ⋅ 10𝑞 10𝑞 𝜇
ℎ2 𝑅𝑒

𝑓
𝑒 = 40 ⋅ 10𝑞 10𝑞 𝜇

ℎ2 𝑅𝑒
𝑓
𝑒 = 400 ⋅ 10𝑞 

of 𝑅𝑒𝑓𝑒 = 2 or 𝑅𝑒𝑓𝑒 = 10, respectively. To investigate the convergence for higher elemental Reynolds numbers, we optimize the flow 
inverter for 𝑅𝑒𝑖𝑛 = 200 and ℎ = 𝐿

40 , which leads to an increase in pressure drop for similar inverted flow magnitudes. While the 
elemental Reynolds number at the inlet remain low, 𝑅𝑒𝑓𝑒 = 5, we allow for larger pressure by increasing 𝛽 from 30 to 60, which 
should result in a higher elemental Reynolds number at the flow inversion of 𝑅𝑒𝑓𝑒 ≈ 25.

To investigate the effect of the penalization on local features where flow speeds and thus elemental Reynolds number vary, we 
examine the effect of selecting different estimations of 𝑣̃𝑓  and associated elemental Reynolds number 𝑅𝑒𝑓𝑒 . Varying the estimated 
flow velocity allows us to investigate the effect of an erroneous estimation as could be encountered in larger, more complex 
optimization problems. As shown in Table  7, we study the D approach for 𝑣̃𝑓 = 0.1𝑣, 𝑣, and 10𝑣, referred to as the D−, D, and 
D+ approaches, respectively. Using 𝑣̃𝑓 = 0.1𝑣 and 𝑅𝑒𝑓𝑒 = 0.5, the dominant forces are expected to be viscous, and we penalize using 
𝐷1 = 10𝑞𝜇∕ℎ2. Using 𝑣̃𝑓 = 10𝑣 and 𝑅𝑒𝑓𝑒 = 50, the penalization magnitude dependents linearly on the elemental Reynolds number 
as 𝐷1 = 10𝑞𝑅𝑒

𝑓
𝑒 𝜇∕ℎ

2 and is two times larger than a penalization computed using 𝑣̃𝑓 = 𝑢𝑝 ≈ 5 and 𝑅𝑒𝑓𝑒 = 25. The D+ approach thus 
uses a fair approximation when the actual maximum velocity magnitude in the design domain is taken into account. To illustrate 
the advantage of the DFF approach which does not rely on 𝑣̃𝑓 , we compare designs optimized using the DFF approach against those 
optimized using the D−, D, and D+ approaches.

We compare the optimized designs, objective, and constraint in Fig.  20. The D and the DFF approaches show the best performance 
and find a similar design. The D− and D+ approaches yield ill-performing local optima associated with large errors 𝐸𝑟𝑟𝑢 and 𝐸𝑟𝑟𝑝. 
In the D− design, volume fraction 𝛼 ≈ 0.95 is found for 𝑞 = 2 in the area shown by the green circle. In this area with flow 
magnitudes around 𝑣𝑓 ≈ 1.5, the penalization is too low to force the channel to become completely fluid. Moreover, due to the high 
amount of flow leaking through the solid domains, objective and constraint values have large errors with respect to the reference 
simulation, computed using 𝛼𝑡 = 0.45 following Section 2.6. The cause of the excessive flow leakage is examined in Fig.  21 using the 
elemental Reynolds number in the optimized designs. For the D− approach, the elemental Reynolds numbers abruptly decrease at the 
solid/fluid interface, and the solid domain significantly underestimates the fluid domain elemental Reynolds numbers. Consequently, 
the penalization based on 𝑅𝑒𝑓𝑒 < 1 assumes viscous terms are dominant, whereas the higher inertial terms are dominant in the fluid 
domain where 𝑅𝑒𝑓𝑒 > 1.

The D+ designs in Fig.  20 quickly converge to an inferior local optimum. Due to the high penalization, the design topology is 
identified using 𝑞 = 0, and does not undergo any large modifications over subsequent continuation steps. The elemental Reynolds 
number is significantly overestimated in the solid domain as shown in Fig.  21. Moreover, with respect to the post-processed design. 
the D+ design presents large errors 𝐸𝑟𝑟𝑢 and 𝐸𝑟𝑟𝑝, which have two origins. Firstly, the design contains small, but crucial, features of 
only one element in size, which are gray (𝛼 ≈ 0.5) but have a relatively large impact on the flow. The optimizer is thus misusing the 
high penalization in intermediate density elements to improve the objective. Secondly, when post-processing using the approach in 
Section 2.6, we assume that a correct penalization is used, such that 𝑣𝑠∕𝑣𝑓 < 10−1 in the solid domain where 𝛼 < 𝛼𝑡. However, due to 
the overestimation of the elemental Reynolds number and consequent over-penalization, the prediction of 𝑣𝑠∕𝑣𝑓  becomes inaccurate. 
Consequently, we are not able to threshold the design appropriately. In general, issues related to the under- or over-estimation of 
the velocity become more significant when considering designs with many branching flow channels and differing flow magnitudes.

As we expect post-processing to be inaccurate due to erroneous estimations of 𝑅𝑒𝑓𝑒 , an adapted post-processing approach for the 
D− and D+ designs is examined. In Eq.  (47), we determine the threshold value as 𝛼𝑡 = (1−10𝑟−𝑞)∕(1+10𝑟−𝑞+𝑞), using a flow reduction 
in the solid domain of 𝑣𝑠∕𝑣𝑓 < 10−𝑟. This value is based on an appropriate penalization magnitude and estimation of 𝑅𝑒𝑓𝑒 . In all 
designs, we find 𝑢𝑝 ≈ 5 and we assume an appropriate estimation to be 𝑅𝑒𝑓𝑒 = 5. For the D− approach, the penalization is thus five 
times too low. To compensate for this underpenalization, the threshold value should be chosen at a penalization value which is five 
times higher than the one found at 𝛼𝑡. This is found using 𝑟 = 1 at a threshold of 𝛼̃𝑡 = (1 − 5 ⋅ 10𝑟−𝑞)∕(1 + 5 ⋅ 10𝑟−𝑞+𝑞) = 0.083. For the 
D+ design, a similar analysis results in a threshold of 𝛼̃𝑡 = 0.9. Using these threshold values, we find the errors with respect to the 
post-processed design to decrease in Fig.  20. This poses a challenge to post processing larger designs with many branching channels 
as an appropriate threshold value depends on a local elemental Reynolds number, and a unique threshold 𝛼𝑡 may not exist.

The flexibility and stability of the design convergence are investigated by inspecting the objective and constraint convergence in 
Fig.  22. For the D− approach, we find the objective to converge slowly over the first iterations. This is caused by the fact that the 
penalization is not high enough to sufficiently guide the flow and impact the design. For the D+ approach, the objective decreases 
relatively quickly. After the 𝑞 = 1

3  continuation step, no large design changes happen and the main reduction in objective is caused 
by a reduction of the flow through the porous solid areas. Moreover, due to the high penalization, we observe oscillatory behavior 
of the pressure constraint, especially in the first 30 iterations. The D and DFF approaches both converge smoothly, except at the 
iterations where 𝑞 is increased. The D− approach is unable to accurately represent the design and the D+ approach prematurely 
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Fig. 20. The flow inverter designs including streamlines for 𝑅𝑒𝑖𝑛 = 200, ℎ = 𝐿∕40 and 𝛽 = 60 at the end of continuation steps for 𝑞 optimized using 𝑞 = 1. Only 
the solution in the gray design domain in Fig.  16 is shown. In the D− 𝑞 = 2 design, porous elements of volume fraction 𝛼 ≈ 0.95 are found in the area denoted by 
the green circle. Inverted flow velocity and inlet pressure 𝑢∗𝑝/𝑝∗𝑖𝑛 at the optimum and their post-processed reference values 𝑢∗𝑝,𝑟𝑒𝑓 /𝑝∗𝑖𝑛,𝑟𝑒𝑓  are given. For the D− and 
D+ results, we additionally post-process using updated threshold values 𝛼̃𝑡, based on a compensation of the erroneous penalization magnitude. Inlet pressures 
are constrained using 𝑝 = 12.2.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

converges towards an ill-performing local optimum. This demonstrates that the tuning of the penalization in the D approach is both 
crucial and sensitive. However, the DFF approach requires no velocity estimate and shows design flexibility while the optimal design 
remains accurate.

6. Discussion

One of the main advantages of the Darcy with Filtered Forchheimer (DFF) approach is the reduced parameter tuning. While 
common approaches require trial-and-error to find an appropriate penalization magnitude, we select a penalization magnitude for 
a desired flow reduction of 𝑣𝑠∕𝑣𝑓 = 10−𝑞 using Table  1. Moreover, we control convexity of the pressure drop response using both 
the penalization magnitude with 𝑞, and the penalization interpolation with 𝑞. The DFF approach does not require tuning based on 
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Fig. 21. Elemental Reynolds numbers in the designs for 𝑞 = 2 from Fig.  20. In the fluid domain we plot 𝑅𝑒𝑓𝑒 = (𝜌|vvv|2ℎ)∕𝜇. For the DFF approach we plot 
𝑅𝑒𝑓𝑒 = (𝜌𝑈ℎ)∕𝜇 in the solid domain. For the D, D− , and D+ approaches, we approximate and plot the constant 𝑅𝑒𝑓𝑒  as found in Table  7 in the solid domain. 
For D+ approach, the solid domain elemental Reynolds number is 𝑅𝑒𝑓𝑒 = 50, but the color-scale is limited to 30 for enhanced readability.

Fig. 22. The objective and the inlet pressure constraint for the flow inverter design computed with 𝑅𝑒𝑖𝑛 = 200 and ℎ = 𝐿∕40.

simulation results, but allows engineers to make an informed selection of the appropriate penalization based on a desired balance 
between flow solution accuracy and objective convexity. In practice, we recommend using 𝑞 = 1 and control convexity of the 
pressure drop response using 𝑞. Subsequently, a continuation on 𝑞 can be derived starting with 𝑞 < 𝑞, to create a convex pressure 
drop response, and ending with 𝑞 > 𝑞, to create a concave pressure drop response. We recommend to initialize the optimization 
using 𝑞 = 0 and finalize using 𝑞 = 2. While choosing 𝑞 > 2 decreases the flow leakage, we generally found the pressure drop response 
to become too concave for effective design updates. The update on 𝑞 should be done in small increments to avoid destabilizing the 
design process. We found that increasing 𝑞 by 𝛥𝑞 = 1∕3 every 𝑁𝑖 = 20 design iterations performed well for the relatively unstable 
flow inverter design. However, more efficient continuation strategies are suggested as a subject for future research.

As discussed in Appendix  A, the filter radius is defined in terms of number of elements 𝑁 , which should not change for a different 
element size. Although an appropriate penalization can also be defined for a different number of elements 𝑁 , tuning this parameter 
is not recommended. The main parameter determining the order of magnitude of the penalization is 𝑞. As a continuation on 𝑞 is 
proposed, the required accuracy of the filtered velocity field is relaxed. A radius within 6 ≤ 𝑁 ≤ 12 elements will have enough 
accuracy for the continuation approach to work and the final design to be accurate.

The most common continuation strategy in flow TO is to start the optimization procedure with a highly convex penalization 
interpolation, i.e., equivalent to high 𝑞 in this paper, and to finalize the optimization process using a less convex interpolation 
function, i.e., low 𝑞 in this paper. We verified that the convexity of the pressure drop objective depends on the penalization magnitude 
in the gray areas of intermediate volume fraction. A highly convex interpolation function with a steep slope towards the maximum 
penalization has the same effect as the low maximum penalization used in this work, as both reduce the penalization in gray areas. 
However, using a steep slope in the penalization interpolation often causes design updates to become more erratic. A small change 
in design variable may have a large effect on the flow solution due to a sudden high penalization, which can drastically change the 
flow solution over design iterations due to the non-linear nature of the Navier–Stokes equations. For this reason, we prefer to use a 
continuation on the penalization magnitude instead of on the penalization interpolation. However, hybrid methods which apply a 
continuation on both the penalization interpolation and magnitude may be derived using the convexity analysis and the prediction 
of flow reduction in this paper.
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As a first attempt at using the Forchheimer penalization previously introduced by Alonso and Silva [1], the Darcy with 
Forchheimer (DF) approach was introduced which improves on previous work by using an order analysis for the appropriate 
penalization magnitude. Although the DF approach is found to more reliably predict the flow reduction than the DFF approach, 
it also suffers from unstable flow solutions. Unstable flow solutions are mainly caused by reusing the state solution over subsequent 
design iterations, as reusing the state solution significantly decreases the computational effort. In the authors’ experience, when 
attempting optimization using the DF approach, more erratic design updates are encountered, increasing the tendency to find 
diverging flow solutions when reusing the state solution. Furthermore, we note that the DF approach can be seen as a special 
case of the DFF approach where the velocity is averaged over a radius 𝑅 = 0, and the penalization magnitude is increased. A 
hybrid between the DF and DFF approaches could thus be derived. Using a smaller filter radius 𝑅, the averaged flow magnitude 
will underestimate the fluid domain flow magnitude 𝑈 < 𝑣𝑓 , which may be compensated by using a higher maximum Forchheimer 
penalization 10𝑞𝜌∕ℎ < 𝐹 < 102𝑞𝜌∕ℎ. Using this approach, a novel method may be derived which is as stable as the DFF approach 
and finds accurate flow reductions as the DF approach.

The presented study on laminar moderate Reynolds flow TO is a first step towards improved understanding of turbulent high 
Reynolds flow TO. For future work, we recommend a similar procedure to derive an appropriate penalization strategy for turbulent 
flow TO using Reynolds Averaged Navier–Stokes (RANS) equations. The procedure should follow three steps: (1) A dimensional 
analysis on the discretized physics, similar to the one presented in Section 2. (2) The flow reduction and other turbulent boundary 
conditions at the solid/fluid interface are verified using an analysis similar to Section 4.1. (3) The convexity of the objective response 
is inspected using a method similar to Section 4.2. As turbulent flow inherently contains high Reynolds numbers, we expect the DFF 
approach to be required to appropriate penalize the RANS momentum equation. Moreover, a similar procedure to derive a robust 
TO approach may be performed for other problems. An example is TO problems involving thermo-fluid equations which often 
require tuning to find appropriate material interpolation functions. To this end, we introduced a more general analysis approach 
in Section 2.1 than the one presented in [14]. While the analysis in [14] is specific for flow physics and relies on the continuous 
pressure gradient, the analysis in this work can be extended to penalization or interpolation approaches for different physics.

7. Conclusion

To derive a reliable penalization approach for moderate Reynolds flow TO, the Forchheimer penalization is crucial. While the 
flow in areas where viscosity is dominant, is inhibited using the Darcy penalization, to penalize the flow in areas where inertia 
is dominant, the Forchheimer penalization is used. The Darcy penalization alone cannot simultaneously penalize the flow in both 
areas appropriately.

A reliable penalization and continuation approach for density-based TO of laminar moderate Reynolds flow problems has been 
introduced and compared to the state-of-the-art. The novel DFF approach is based on a Forchheimer penalization dependent on a 
filtered velocity, and a continuation strategy with a predictable flow reduction in the solid domain. Moreover, the approach does not 
depend on a specific problem setup, as it can be used without additional tuning to optimize different inlet/outlet configurations with 
different Reynolds numbers, and different mesh sizes. We improve all four conditions, stated in Section 1, for a reliable approach 
as follows: (1) Continuing our previous work in [14], parameter tuning is reduced by deriving appropriate penalization magnitudes 
for a predictable flow reduction. (2) As the flow reduction is predictable in the DFF approach, we can guarantee its value and that 
the flow solution is accurate in the optimal design. (3) By analyzing the convexity of the pressure drop response, a continuation 
strategy is derived for both the D and the DFF approach which mitigates the tendency to converge to ill-performing local optima. 
By starting the optimization procedure with a low penalization, the pressure drop response is convex and the design easily changes. 
Subsequently, the maximum penalization is increased making the pressure drop response concave and forcing the design into a 
discrete solid/fluid solution. (4) Although no thorough analysis is performed on the stability of the flow solution, we found relatively 
quickly and reliably converging flow solutions for both the D and the DFF approach.
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Appendix A. Filter size for the Darcy with filtered Forchheimer approach

We investigate the effect of the filter size 𝑅 on the flow reduction in the DFF approach. A predictable flow reduction is desirable 
as the continuation approach in Section 5 allows for more leakage and design flexibility in the first design iterations, and less leakage 
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resulting in accurate and crisp but less flexible designs in the final design iterations. We require the filter to be large enough such 
that the filtered velocity magnitude 𝑈 in solid elements accurately represents the velocity magnitude in neighboring fluid elements, 
i.e., 𝑈 ≈ 𝑣𝑓 . For 𝑅𝑒𝑓𝑒 > 1, underestimating the fluid velocity magnitude 𝑈 ≪ 𝑣𝑓 , leads to an underestimated Forchheimer magnitude 
and results in increased flow leakage, 𝑣𝑠∕𝑣𝑓 > 10−𝑞 . Overestimation 𝑈 ≫ 𝑣𝑓  leads to an overestimated Forchheimer magnitude, 
resulting in reduced flow leakage, 𝑣𝑠∕𝑣𝑓 < 10−𝑞 . We intend to find the appropriate filter radius 𝑅 = 𝑁ℎ∕(2

√

3), which determines 
the distance over which information is distributed. The radius is defined using 𝑁 , the number of elements of size ℎ in radius 𝑅 [22].

Fig. 23. Design for testing the effect of different filter radii 𝑅 on the predictability of the flow reduction in the DFF approach. The design is split into Channel 
1 at the bottom with relatively large velocity magnitudes, and Channel 2 at the top with relatively low velocity magnitudes. The separating wall consists of a 
solid part (black), where velocity is fixed as vvv = 000, and a density-based part (gray), where flow is inhibited such that 𝑣𝑠 ≪ 𝑣𝑓 . At the midpoint of both channels, 
density-based obstacles of size 2ℎ by 2ℎ are placed at the edge (𝛺𝑒

𝑖  in green) and in the center (𝛺𝑐
𝑖  in red). Separated by one element from the obstacles, 

boundaries 𝛤 𝑐
𝑖  and 𝛤 𝑒

𝑖  are defined to measure the velocity magnitudes in neighboring fluid elements.  (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

The design in Fig.  23 is used to inspect flow leakage for several filter radii. Two channels separated by a two-element thick 
porous wall are investigated. In Channel 1 at the bottom, flow speeds are high with a maximum inlet velocity of 𝑣1 = 𝑣, in Channel 
2 at the top, they are low with 𝑣2 = 0.02𝑣. We expect 𝑈 to overestimate 𝑣𝑓  in the top channel when the filter radius is too large, as 
𝑈 will be influenced by the large flow magnitude in the bottom channel. The parameters in Table  8 are used and we inspect two 
different mesh sizes, ℎ = 𝐿

40  and 
𝐿
80 . A Reynolds dependent density 𝜌, in Eq.  (58), is used. We emphasize that the different mesh 

size influences the filter radius as it is dependent on a number of elements 𝑁 . We thus compute the flow solution for varying 𝑁 , 
and expect to find the appropriate 𝑁 , independent of the mesh size ℎ.

Table 8
Parameters used to measure the effect of the filter radius in flow leakage for the design in
Fig.  23.
 𝐿 𝑅𝑒𝑖𝑛 𝜇 𝑣  
 1 [m] 4000 1 [N sm−2] 10 [m s−1] 

To inspect the flow leakage, we introduce obstacles in the flow at the edges and in the centers of the channels. Flow leakage 
is computed using Eq.  (59). Edge and center obstacle have domains 𝛺𝑒

𝑖  and 𝛺𝑐
𝑖 , both with area 𝐴𝛺, and boundary 𝛤 𝑒

𝑖  and 𝛤 𝑐
𝑖

with length 𝐿𝑒
𝛤  and 𝐿𝑐

𝛤 , respectively. Beside the leakage, we inspect the accuracy in filtered flow magnitude 𝑈 with respect to the 
measured fluid velocity magnitude: 

𝑈 𝑒
𝑖 = 𝑈

𝑣𝑓
≈

∫𝛺𝑒
𝑖
𝑈𝑑𝛺

∫𝛤 𝑒
𝑖
|vvv|2𝑑𝛺

𝐿𝑒
𝛤

𝐴𝛺
, 𝑈 𝑐

𝑖 = 𝑈
𝑣𝑓

≈
∫𝛺𝑐

𝑖
𝑈𝑑𝛺

∫𝛤 𝑐
𝑖
|vvv|2𝑑𝛺

𝐿𝑐
𝛤

𝐴𝛺
(69)

For accuracy close to 1, the filtered velocity magnitude 𝑈 accurately represents the fluid velocity magnitude 𝑣𝑓  and the filtered 
Forchheimer penalization should lead to the expected flow leakage of 𝑣𝑠∕𝑣𝑓 = 10−𝑞 .

To measure the effect of the filter radius on the filtered Forchheimer penalization, we require it to be dominant and thus 
𝑅𝑒𝑓𝑒 ≈ 𝑅𝑒𝑠𝑒 > 1. In Fig.  24, we show elemental Reynolds numbers in the channels for the most accurate flow solution computed 
using 𝑞 = 3, 𝑁 = 16, and ℎ = 𝐿∕80. In the fluid (𝛼 = 1) and the solid (𝛼 = 0) domain, elemental Reynolds numbers are computed 
as: 

𝑅𝑒𝑓𝑒 =
𝜌|vvv|2ℎ

𝜇
, 𝑅𝑒𝑠𝑒 =

𝜌𝑈ℎ
𝜇

. (70)

Consequently, in Channel 1 we find elemental Reynolds numbers of 𝑅𝑒𝑓𝑒 ≈ 34 at the center and 𝑅𝑒𝑓𝑒 ≈ 7.4 at the edge obstacles, 
and in Channel 2, of 𝑅𝑒𝑓 ≈ 0.60 and 𝑅𝑒𝑓 ≈ 0.39, respectively. In bottom Channel 1, erroneous estimations of 𝑈 ≈ 𝑣𝑓  cause an 
𝑒 𝑒
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Fig. 24. Elemental Reynolds numbers in the fluid and solid domains for 𝑞 = 3, 𝑁 = 16, and ℎ = 𝐿∕80.

Fig. 25. The flow leakage and filtered velocity magnitude accuracy for the center obstacles 𝛺𝑐
𝑖 .

inappropriate penalization and less predictable flow leakage. In top Channel 2, underestimating 𝑈 < 𝑣𝑓 , resulting in 𝑅𝑒𝑠𝑒 < 𝑅𝑒𝑓𝑒 < 1, 
renders the Darcy penalization dominant, which should accurately penalize the dominant viscosity in the fluid domain. However, 
overestimating 𝑈 > 𝑣𝑓  may cause 𝑅𝑒𝑠𝑒 > 1, resulting in a dominant Forchheimer penalization with a larger magnitude than the 
appropriate Darcy penalization.

In Fig.  25, the measured leakage and filtered velocity accuracy for the center obstacles can be found. At the center island 
in Channel 1, the accuracy 𝑈 𝑐

1  tends to 1 for filter radii containing more elements, which leads to a predictable flow reduction 
𝑣𝑠∕𝑣𝑓 = 10−𝑞 . In Channel 2, the accuracy in filtered flow magnitude is overestimated for 𝑁 > 8. The filter radius is too large and 
the flow velocity in bottom Channel 1 starts to influence the filtered velocity magnitude in top Channel 2. The overestimation of 
local flow speeds subsequently causes the flow leakage to decrease. The overestimation in the filtered velocity magnitude is more 
pronounced for ℎ = 𝐿∕40. This is caused by the fact that the center island is six elements away from the bottom channel for ℎ = 𝐿∕40
and 11 elements for ℎ = 𝐿∕80. A filter radius with less elements 𝑁 thus results in the filter penetrating the bottom channel earlier 
for ℎ = 𝐿∕40 than ℎ = 𝐿∕80.

For the edge obstacles, overestimation of fluid flow velocities due to large filter radii poses a larger problem, as shown in Fig. 
26. For the obstacle next to the solid bottom wall in Channel 1, increasing the filter radius past 𝑁 = 8 elements results in an 
overestimation of the fluid flow velocity 𝑈 𝑒

1 > 1. This causes the flow leakage to decrease below the expected value 𝑣𝑠∕𝑣𝑓 < 10−𝑞 . 
In top Channel 2, 𝑈 𝑒

2  increases even more drastically, but this does not cause a significantly larger flow reduction. When velocity 
magnitudes in the bottom channel dominate the filtered velocity in the top channel edge obstacle, the filtered velocity largely 
overestimates the local fluid velocity magnitude. However, flow in the edge obstacle is influenced by the bottom channel as flow 
passes through the porous wall into the edge obstacle. For the parabolic flow profile over the bottom inlet with maximum velocity 
𝑣1 = 10 𝑚𝑠−1, the velocity magnitude at a distance ℎ from the wall is theoretically 1.38 or 0.678 for ℎ = 𝐿∕40 or ℎ = 𝐿∕80, 
respectively. However, when we compute the average velocity magnitude around the edge obstacle in the top channel for 𝑞 = 3, we 
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Fig. 26. The flow leakage and filtered velocity magnitude accuracy for the edge obstacles 𝛺𝑒
𝑖 .

find 0.29 > 𝑣𝑓 > 0.19 and 0.088 > 𝑣𝑓 > 0.077 for ℎ = 𝐿∕40 and ℎ = 𝐿∕80, respectively. Forces in the Navier–Stokes equations scale 
with velocity magnitude. Fluid domain forces below the wall will thus be larger than those above the wall. Consequently, the flow 
through the wall and in the edge obstacle next to the wall will be mostly dependent on the velocity magnitude below the wall.

To determine the appropriate number of elements 𝑁 in the filter, we compare the different flow leakage results. A larger 𝑁
is expected to distribute sensitivities more equally between the fluid and solid domain and to improve design convergence. Small 
changes may drastically alter the nonlinear flow solution and objective, smoothing out sensitivities and making design changes 
more gradual can improve design convergence. We thus choose the largest 𝑁 for which no significant overpenalization occurs. 
Moreover, in the choice of filter radius, the results in Fig.  26 in top Channel 2 are neglected. The velocity magnitude in a solid 
domain is always determined by the largest velocity magnitude in the adjacent fluid domain. Consequently, overestimation of 𝑈
only matters compared to the largest fluid domain velocity magnitude. Which is one of the major drawbacks of all penalization 
approaches presented in this paper. In two fluid areas separated by a thin solid domain, flow leaking from an area with high flow 
velocity to an area with low flow velocity significantly disturbs the flow in the latter area. In bottom Channel 1 in Fig.  26, a small 
amount of overpenalization occurs for 𝑁 = 10, in Fig.  25, 𝑁 = 10 results in an appropriate penalization. In this work, we thus use 
𝑁 = 10 to determine the filter radius for averaging the velocities.

Appendix B. Instability of the Darcy with Forchheimer approach

During optimization, we often found the DF approach to become unstable due to large fluctuations in design and the forward 
solution diverging. In this section, we investigate the cause of this instability in the DF approach and motivate our preference for 
the DFF approach.

The forward solve is a computationally expensive and time consuming part of the optimization process. The overall optimization 
time can be significantly reduced by decreasing the time spent on the forward solve. In this work, we use the forward solution in the 
previous design as the initial guess for the solution in the current design. However, reusing the previous flow solution may lead to 
instabilities, particularly in the DF approach. When solid material is introduced in areas previously filled with fluid, the initial guess 
based on this previous design significantly overestimates the flow magnitude in the current design, which may lead to instabilities 
in the forward solve. Consequently, instabilities are amplified by the larger design fluctuations more often found when optimizing 
using the DF approach than using the DFF approach. Moreover, as shown in this section, for the DFF approach this does not lead 
to diverging flow solutions, contrary to the DF approach.

To examine the effect of reusing the flow solution when sudden changes in design happen, we use the problem in Fig.  27. A thin 
solid fin is inserted in the middle of a flow channel with parabolic flow inlet and constant pressure outlet. We use the parameters 
in Table  9 and the Reynolds-dependent density from Eq.  (58). The design is changed by extending the solid fin upstream, such that 
solid material is added in an area with large velocity magnitudes. We first solve the problem using the short fin, and subsequently 
reuse this flow solution to solve for the extended fin. We expect instabilities to be mainly caused by large elemental Reynolds 
numbers. A large 𝑅𝑒 = 1000 is thus used to ensure the large 𝑅𝑒𝑠 found in Fig.  29(a) for the DF approach.
𝑖𝑛 𝑒
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Fig. 27. The fin in a channel used to investigate forward solve instabilities. In the fluid domain (white), no penalization is present and in the solid domain 
(dark gray), the maximum penalization is present. At the tip of the fin, we change the fluid volume fraction 𝛼 and thus the penalization in the two-by-two 
element sized light gray domain.

Table 9
Parameters used to investigate the instability of the DF approach using the problem in Fig.  27.
 𝐿 𝜇 𝑣 𝑝0 𝑅𝑒𝑖𝑛 𝑞 ℎ  
 1 [m] 1 [N sm−2] 1 [m s−1] 0 [Pa] 1000 2 𝐿

10
 

Fig. 28. The flow magnitude |vvv|2 and flow lines found using the DFF approach in the first half of the channel.

Fig. 29. Flow lines and elemental Reynolds number in the first forward iteration of the extended fin problem. In the fluid domain we plot 𝑅𝑒𝑓𝑒 = (𝜌|vvv|2ℎ)∕𝜇, 
while in the solid domain we plot 𝑅𝑒𝑠𝑒 = 10𝑞 (𝜌|vvv|2ℎ)∕𝜇 for the DF approach and 𝑅𝑒𝑠𝑒 = (𝜌𝑈ℎ)∕𝜇 for the DFF approach.

While the forward solution of the extended fin in Fig.  28 converges using the DFF approach, it diverges using the DF approach. 
When initializing using the flow solution of the problem without extended tip, the elemental Reynolds number for the DF approach 
in the extended tip is high relative to the elemental Reynolds number in the surrounding fluid, as shown in Fig.  29. For the 
DFF approach the elemental Reynolds number varies more smoothly. As described in Section 2.4, the fluid domain elemental 
Reynolds number 𝑅𝑒𝑓𝑒 = (𝜌𝑣𝑓ℎ)∕𝜇 should be similar to neighboring solid domain elemental Reynolds number 𝑅𝑒𝑠𝑒 = 10𝑞(𝜌𝑣𝑠ℎ)∕𝜇. 
To compensate for the jump in elemental Reynolds number in the DF approach, the fluid domain elemental Reynolds number is 
increased by increasing the fluid domain velocity magnitude 𝑣𝑓  in the first forward iteration, as shown in Fig.  30(a). Subsequently, 
the flow solution does not stabilize. The abrupt change in elemental Reynolds number, caused by reusing the state solution after 
a sudden design change, destabilizes the forward solution in the DF approach. Contrarily, using the DFF approach, the velocity 
magnitude is significantly decreased in the solid tip after the first forward iteration and velocity magnitudes in the surrounding 
fluid area are not drastically increased, as shown in Fig.  30(b). This results in convergence of the forward solution even when 
initializing using an inaccurate initial guess in the DFF approach.

Data availability

Data will be made available on request.
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Fig. 30. Velocity magnitude |vvv|2 and flow lines in the extended fin problem after performing one nonlinear solution iteration. Instead of decreasing the relatively 
high flow in the tip, the flow around the tip is significantly increased.
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