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Abstract

With the ever-increasing need to reduce the use of fossil fuels, Tesla is accelerating the world’s
transition to sustainable energy. This means replacing all internal combustion vehicles with elec-
tric ones over time. The growing number of Tesla vehicles on the road poses interesting scaling
challenges for all departments especially for the Service Engineering team. To help prioritize is-
sues and reduce service costs, frequencies, and duration, a way to generate an overview of all the
costs separated by types of repair is needed. This thesis aims to automatically generate such an
overview by borrowing techniques used in Natural Language Processing.

In particular, the LDA and GSDMM algorithms for topic generation are tested. Additionally, a novel
method based on the cross frequencies of items is presented. Methods are also presented to
compute the novelty of every topic and a new metric, here called the growing score, is introduced
as a mean to monitor the frequencies of the topics over time.

The methods are applied to service records data from Tesla and the results are analyzed in detail.
The results are also enhanced by computing additional information regarding costs for all parts of
the service visit and also the configurations of the cars. It is found that the novel approach for the
topic generation and the novelty and growing scores produce useful information that can be used
to optimize and avoid the need for service procedures to reducing total cost of ownership.
Keywords — LDA, GSDMM, topic generation, trends analysis, novelty scores, growing scores, Tesla
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1
Introduction

1.1. Tesla and Service Engineering
The mission of Tesla is to accelerate the world’s transition to sustainable energy and to achieve that, the goal
is to produce and sell 20 million vehicles per year and reach level 5 autonomy. Tesla is already the biggest
EV car manufacturer in the world, with 1.3 million cars sold in 2022 [1]. The projection for the sales in the year
2023 is set to surpass 2022 as it has done every year since the beginning of the company, continuing to get
closer to the 20 million goal.

Tesla has been focusing on cheaper mass-produced vehicles such as the Model 3 and the Model Y, all models
can be seen in Figure 1.1. Increasing the production, however, has been mainly blocked by the difficulties
of scaling the manufacturing. Tesla has currently 4 factories around the world (Fremont, Texas, Shanghai,
and Berlin [2]) that produce EVs each specialized in different sets of models. More factories are set to open
shortly to increase the production numbers. However, every factory is constantly pushing to increase its own
production capabilities, as evidenced by both Giga Texas [3] and Giga Berlin [4] hitting a record high of 5
thousand cars produced in a single week recently.

Tesla runs repair workshops for servicing Tesla vehicles. When a vehicle visits the Service Center, a data
record is generated that includes the symptom of the customer concern, the repair action that was taken and
which part was replaced. The task of analyzing this data and optimizing the service procedures is the job of
the Service Engineering team.

Therefore, the Service Engineering team has to link a lot of different departments: the design team, the pro-
duction team, the field quality, and customer service, just to name a few. Additionally, the Service Engineers
need to have very high knowledge of the vehicles and all the possible failure modes associated with every
subsystem, so that they can assist and react quickly to every possible scenario. Thanks to the Service Engi-
neering team many improvements are made continually in both the design and production of the vehicles as
well as Over-the-air (OTA) software updates.

Due to the skill set required, there is a need for specialization and subsystem experts among the Service
Engineers. The team is thus split into sub-departments that are each responsible for different subsystems:
Powertrain, Infotainment, Chassis & LV, etc. Additionally, to improve the responsiveness, there is one of
each team per region: North America (NA); Europe, the Middle East, Africa (EMEA); and Asia-Pacific (APAC).
Between January and September 2023, I worked for Tesla as an Intern in the EMEA Powertrain Service
Engineering Team.

1
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Figure 1.1: Tesla models available as of 2023

1.2. Data at Tesla
Tesla is on the cutting edge of data acquisition. Every car has hundreds of sensors monitoring all and every
aspect of the car’s functionality. The sensor values are read and used by the controllers in the car, but some
of that data is anonymized and sent to Tesla for the purpose of product improvement.

Due to data storage constraints, not all the data is retained, it would be too much data even for a relatively
”small” fleet of around 4million cars. So the cars send data only during specific events, such as during detected
failures of components or after a targeted request from an engineer or a technician in order to diagnose and
repair a vehicle on request by the vehicle owner.

During a service visit, the technicians record information about actions they perform:

• Symptoms: what did the customer experience that led to a request for a service appointment;
• Parts replaced: which parts were replaced during the visit. Every part is registered by its unique Part
Number;

• Correction Codes: which actions were performed during the visit. All actions have codes associated
with them to identify exactly what kind of work was performed;

• Flat Rate Time (FRT): ”hands-on” time the technicians spent diagnosing or repairing the car;
• Days in Service: the total amount of days the car has spent in the Service Center;
• Pay type: were the parts replaced in warranty or not, and who ended up paying for the visit.

There are other data points recorded for every visit, but the ones mentioned above are the most interesting
and the ones used throughout this project. Every Service Visit is split into several Repair Order Jobs, for
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Figure 1.2: Example of a few configurations for some cars

which data is collected separately. This is very useful since, most of the time, separate Jobs in the same
Service Visits have to do with unrelated repairs.

Finally, every vehicle has a set of configuration options that are logged and stored in specific databases. Some
configurations are constant throughout the lifetime of the car, such as model (S, X, 3, or Y) and factory (Berlin,
Fremont, Shanghai). Other configurations are subject to change but remain constant the majority of the time,
such as type of LV and HV battery or country of use. Some examples of configurations can be found in Figure
1.2.

1.3. Project Goal and Motivation
Due to the current increasing rate of vehicle production, the focus of Tesla as a whole has been set on cost
reduction, continuous demand generation, and value creation. As for the cost reduction part, Service costs
are a contributor to the total vehicle cost, both to Tesla and the customer. Therefore, the Service Engineering
team has a big role to play in this area.

There are many ways to reduce Service costs, for example: reduce failure rates, reduce the cost of the parts
replaced, reduce diagnostic and repair time, and identify new issues earlier to push fixes to the fleet. Some
efforts aimed at reducing cost have been discussed in the previous section.

For more efforts to be effective, it is necessary to have an overview of the issues contributingmost to diagnostic
time, repair time, and cost that are present in Service. The high amount of data makes it challenging to create
such an overview. An additional challenge is posed by the fact that the data required for such an analysis is
scattered throughout many different data sources that need to be combined to create the full picture.

Moreover, we would like a way to determine trending new and early life issues, so that the engineering teams
can tackle them in time and resolve the core root cause to stop the spread to more vehicles.

This leads to the following Project Goals:

1. Create an actionable list of the top cost impacting items;
2. Create a system to identify new and growing issues.
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Figure 1.3: Tesla Service Center

Figure 1.4 shows the project structure and the flow of information. The data from the repair orders is collected
and, using techniques from Natural Language Processing analyzed to produce intermediate results called
topics that we associate with individual repairs. For every topic, metrics can be computed, such as novelty
and costs, and metadata can be added to enhance the topics’ definitions.

The combination of all the data results in a list of topics that can be sorted by many metrics, depending on the
interests of the user. The additional metadata and root cause data indicate the actions that can be taken to
reduce the impact of the specific issue. The main contribution of the author is the approach to the analysis of
the data and the aggregation of the results in an interactive display.

The methods used to generate the results are explained in detail in Section 2. The results of the topic gener-
ation algorithms are presented in Section 3, while the results for the trends analysis are reported in Section 4.
Finally, Section 5 shows the interactive dashboards created and draws conclusions about the project.

1.4. Tesla Definitions
At Tesla, there is specific terminology that is used on a day-to-day basis. Here is a list, with definitions, of the
terms that are most needed to understand this document:

• Service Center: Site where Tesla cars can go to get repaired, see Figure 1.3.
• Service Technician: A person who works in a Service Center repairing cars.
• Service Engineering: Group of Tesla employees that focuses on improving the Service process.
• Article: An article is a webpage describing a specific known failure. The article contains steps to
diagnose and repair the car affected by the issue. Every article is identified by a unique article ID.

• Vin: Vehicle Identification Number, also used as a synonym for car.
• Part Number: String of letters and numbers that identifies a specific part of the car. Every part has a
unique part number.

• Correction Code: Code that identifies an action performed during a service visit.
• Symptom: General issue that the car shows before the service visit according to the customer, selected
from a broad, but fixed, set of options.

• Service Visit: The act of a single car going to a service center for any reason.
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• Repair Order: Formal name for a Service Visit. Every Repair Order is registered and gets a Repair
Order Number that uniquely identifies it.

• Repair Order Job: For every Repair Order, the technician will instantiate different Job lines that focus
on different repairs. Thus every Repair Order has one or more Repair Order Jobs associated with it.
Every Repair Order Job is identified by a unique number.

• Service Records: Databases that store data regarding Service Visits. This includes all parts, correction
codes, and symptoms.

• Car Config: Parameters that are specific to a car. There are hundreds of different config parameters,
some examples are model (S, X, Y, 3) or build factory (Berlin, Fremont, Austin). This data is stored in
Tesla databases.

• LV: Low Voltage.
• HV: High Voltage.
• EV: Electric Vehicle.
• SoC: State of Charge (of the battery).
• FRT: Flat Rate Time

1.5. On Censoring
Sensitive data has been omitted from this report. The focus of this report is the methods and the process
as opposed to the exact results. The majority of the precise costs, frequencies, and part numbers are not
mentioned, preferring percentages or qualitative statements instead. The censoring of this data does not
compromise the quality of the methods or the processes used for this project. This report will also be under
embargo for a duration of 2 years.
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Figure 1.4: Project Flowchart



2
Methods

This chapter describes the methods used during the project. Section 2.1 introduces the overall ideas of the
methods with an introduction to previous research. In Section 2.2 multiple methods for topic generation are
presented and explained in detail. The LDA algorithm is described in Section 2.2.1, the GSDMM algorithm in
Section 2.2.2 and two algorithms designed by the author in Section 2.2.3 and 2.2.4. Then, in Section 2.3 and
2.4, the formulas for computing novelty and growing scores respectively are presented. Finally, in Section 2.5
and 2.6 additional metrics and analyses are proposed that are specific to our application.

2.1. General Method
The analysis of trends has been a very hot topic in the last decade and a half thanks mostly to the explosion
in data availability made possible by the popularity of microblogging platforms such as X (before Twitter),
Facebook, Tumbler, and many others. The scale and variety of posts published on these platforms created
huge opportunities for people to gain valuable information from data mining posts. Twitter, for example, was
made popular in part thanks to its evaluation and exposure of trending topics and hashtags. In this thesis, the
work done by researchers in the context of microblogs and Natural Language Processing is leveraged and
applied to the Tesla problem domain by transferring concepts over to the context of Service visits.

In NLP, the smallest unit of information is a word1. While sometimes single words can be a major contributor
to a popular trend, for example the name of a famous person, it is far more common that a set of words all
concerning the same topic rises in popularity with the trend. This idea is reflected in the literature [5] [6] [7],
where most often the analysis is split into two main steps: first group words into topics, then compute the
trends for the topics. This helps reduce the dimensions of the problem since the number of unique topics is
usually much smaller than the number of unique words. The thesis, and the hope, is that the topics generated
by these methods in the Service Visit domain are related to single issues or repairs.

Here are some definitions for the most common parameters used in the following sections:

• D is the number of documents, the group of all documents is called the corpus;
• V is the number of unique words present in the documents, the group of unique words is called the
vocabulary;

• K is the number of topics.
1Technically words can be broken down in to letter, but letters don’t have semantic meaning by themselves

7
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In Table 2.1, the concepts in the NLP domain compared to their counterparts in the Service Visit context.

NLP concept Tesla equivalent
Document Repair Order Job
Corpus Collection of Repair Order Jobs
Word Item (Parts replaced, Symptom, Correction code applied)

Vocabulary Unique items
Topic Repair or issue

Table 2.1: NLP concept in the Tesla domain

In [6] and [7] methods are proposed for the monitoring of trends on microblogs. In [6] Online-LDA (OLDA)
is proposed, an algorithm that ”automatically captures the thematic patterns and identifies emerging topics
of text streams and their changes over time”. In [7] an improved version of the OLDA algorithm is proposed,
where the vocabulary and model size are constrained to not grow with time. To gather results about the trends
of the topics over time the outputs of the algorithms are analyzed and conclusions about the frequencies are
drawn.

Both of the approaches mentioned above are reliant on the Latent Dirichlet Allocation (LDA) algorithm for topic
generation, or slight modification of it. There are, however, some disadvantages in using the LDA algorithm
in our context, as is shown in Section 3.1.3. The main issue is that LDA is designed to work on long-form
text where the number of words in a document is high, while service visits may only have a handful of items
associated with each of them. The reliance of the methods proposed in [6] and [7] on LDA makes it hard to
change the topic generation algorithm for a better suited one in our context. So other methods need to be
researched.

Methods proposed elsewhere make use of different techniques for evaluating the trends over time. For ex-
ample other methods for evaluation of emerging features can be used such as: chi-square testing for term’s
foreground and background distributions [8], exponentially weighted average (EWMA) of terms, and co-occur
terms [9] and high utility pattern mining [10]. Then other clustering or classification algorithms are used such
as modularity-based partitioning, kNN, or SVM to gather emerging features into emerging topics.

Finally, the method proposed in [5] is a more flexible alternative to [6] and [7], and allows for any topic gener-
ation algorithm, this creates possibilities to use alternative methods to LDA that might be more suitable. The
basic idea of the method is to compute a novelty score for each word and separately compute the topics.
Then, in a final pass, the scores and the topics are combined to generate a novelty score for each topic. An
overview of the information flow described above can be found in Figure 2.1.

2.2. Topic Generation
There are many types of topic generation algorithms, each with its strengths and weaknesses. Examples
are Latent Dirichlet Allocation (LDA) [11], Gibbs Sampling for the Dirichlet Multivariate Mixture (GSDMM) [12],
Hierarchical Latent Tree Analysis (HLTA) [13], and Probabilistic Latent Semantic Indexing (pLSI) [14]. In this
section, the algorithms used in this project are presented, together with their differences and their preferred
domain of application. There are, however, two assumptions that are common to all the algorithms: the
exchangeability of words in a document and the exchangeability of documents [15]. This means that the
order of words in a document can be neglected as well as the order of the documents themselves. Both of
these assumptions are meant to simplify the inference without losing much information. In the case of the
documents, it is pretty intuitive to justify their exchangeability in most contexts where the timespan between
the first and last document is relatively low and the generation of documents is independent. The order of the
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Figure 2.1: Trend analysis overview

words, on the other hand, conveys much more meaning that is lost by considering them exchangeable. In our
application, however, there is no intrinsic order in the items and thus this assumption is perfectly reasonable.

This leads to the inputs being simplified to a matrix B of size DxV , where the value of Bdw is equal to the
number of times that the word w occurs in document d.

The LDA algorithm is described first in Section 2.2.1 as it is the most commonly used and the one suggested
in [5]. The outputs of the LDA algorithm are taken as the blueprint for all the others and in places where the
outputs don’t match exactly, some effort is made to do so. Then the GSDMM algorithm is analyzed in detail
in Section 2.2.2 as it has nice properties when working in a short-text domain, such as our own. Section 3 will
show that the quality of the topics generated by both LDA and GSDMM could be improved, and thus two more
algorithms designed by the author are presented. The first, deemed theCombine and Split algorithm of Section
2.2.3, aims at extracting topics by using simply the cross frequencies of the items, while the second, deemed
the Correction Based algorithm of Section 2.2.4, utilizes more domain knowledge by treating correction codes
differently from other items.

2.2.1. Latent Dirichlet Allocation
LDA was first proposed by Pritchard et al. [16] in 2000 and then later applied in the context of machine learning
in 2003 by Blei et al. [11], since then it has been a staple of Natural Language Processing. To understand the
LDA model, it is useful to first explain how the model assumes the documents are generated.

Useful Distributions In the course of this section, a few probability distributions will be used, and here
we give the formal definition of them.

The Poisson distribution is a discrete distribution on the positive integers [17], first introduced by S. Poisson
himself in [18]. The Poisson distribution has one parameter, usually called λ, that describes its shape and the
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probability mass function is defined in Eq. (2.1):

p(x) =
λxe−x

x!
(2.1)

The Dirichlet distribution is a continuous multivariate distribution parameterized by a vector of positive reals
[19], usually called α. The Dirichlet distribution is a multivariate generalization of the beta distribution [20].
The probability density function can be seen in Eq. (2.2):

f(x,α) =
1

B(α)

K∏
i=1

xαi−1
i , (2.2)

where B(α) =
∏K

i=1 Γ(αi)/Γ(α0).

Finally, the Multinomial distribution is the generalization of the Binomial distribution to a multivariate output
set [21]. For n independent trials and p1 . . . pk event probabilities, the probability mass function is given in Eq.
(2.3):

p(x) =
n!

x1! . . . xk!
px1
1 . . . p

xk
k . (2.3)

The Model In the LDAmodel, two latent variables describe how to generate a document. The first variable,
α, describes the probabilities for each topic to appear in a document. The second variable, β, describes the
probabilities for each word to appear in a document, given that the document contains a specific topic. The
document generation starts by sampling the number of words that will make up the document,N . N is typically
distributed like a Poisson distribution with parameter η. Then γ is sampled from a Dirichlet distribution with
parameter α. The value of γ represents the distribution of the topics for the document. Then for each of the
N words in the document, a topic zn is chosen from a Multinomial distribution with parameter γ. Finally, the
word wn is chosen from a Multinomial probability of β conditioned on the topic chosen zn. The algorithmic
form of the generative process can be seen in Algorithm 1.

Algorithm 1: LDA document generation algorithm
(1) Choose N ∼ Poisson(η).
(2) Choose γ ∼ Dir(α).
(3) For each of the N words wn:

(a) Choose a topic zn ∼Multinomial(γ).
(b) Choose a word wn from p(wn|zn, β).

Note that the Poisson assumption is not critical to any step that follows step 1 in Algorithm 1 and other distri-
butions can be used as necessary, additionally, N is independent of the other generated variables (γ and z).
It is thus an ancillary variable and its effect will be ignored in the following analysis.

Now that we have a general idea of how a document is constructed we can give proper mathematical defini-
tions:

• Ni is the number of words in document i;
• α is a K-dimensional vector, the parameter of the Dirichlet prior of the per-document topic distribution;
• γi is a K-dimensional vector, topic distribution for document i sampled from Dir(α);
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Figure 2.2: Plate Notation for the full LDA model

• β is a KxV matrix, where every row is the parameter of the Dirichlet prior of the per-topic word distri-
bution;

• φk is a V -dimensional vector, word distribution for topic k sampled from Dir(βk);
• zij is a value between 1 andK, the topic for the j-th word in document i sampled fromMultinomial(γi);
• wij is a value between 1 and V , specific word in position j for document i sampled fromMultinomial(φzij ).

The LDA generation model can be represented in plate notation as in Figure 2.2. Instead of drawing each
repeated variable individually, a plate or rectangle is used to group variables into a subgraph that repeats
together, and a number is drawn in the bottom right of the plate to represent the number of repetitions of the
subgraph in the plate. The assumptions are that the subgraph is duplicated that many times, the variables in
the subgraph are indexed by the repetition number, and any links that cross a plate boundary are replicated
once for each subgraph repetition. Structures such as the ones shown in Figures 2.2 and 2.3 are referred to
as hierarchical models [22] or conditionally independent hierarchical models [23]. Such models are also often
referred to as parametric empirical Bayes models, a term that refers not only to the model structure but also
to the methods used for estimating parameters in the model [24].

Out of all the variables in Figure 2.2, w is the only variable that is observable from the documents. All other
variables are called ”hidden” since they are not observable by looking at the document. Additionally, α and β
are called ”latent” because they are the variables from which all others are generated through the sampling
process described above.

Inference and Parameter Estimation The key inferential problem that we need to solve to use LDA is
that of computing the posterior distribution of the hidden variables given a document:

p(γ, z|w,α, β) =
p(γ, z, w|α, β)

p(w|α, β) . (2.4)

Unfortunately, this distribution is intractable to compute in general [25]. There exists, however, a wide variety
of approximate inference algorithms. In the following, a convexity-based variational algorithm for inference in
LDA based on [11] is described, a similar method is used by the Python package scikit-learn [26], used in the
project for the calculations. The implementation is based on [27] and [28].
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Figure 2.3: Plate Notation for the variational LDA model

The basic idea of this algorithm is to make use of Jensen’s inequality to obtain an adjustable lower bound on
the log-likelihood [29]. A way of obtaining such a lower bound is to approximate the intractable distributions
with variational parameters that are chosen to be restricted to a simpler family of distributions. The variational
parameters are then computed by minimizing the difference with the original distributions. In our case, we
simplify the LDAmodel to what is shown in Figure 2.3 and thus add the variational parameters: λ and ϕ, where
λ is from a Dirichlet distribution and every (ϕ1, ..., ϕN ) is from a Multinomial distribution.

Finding the values of the variational parameters is equivalent to the following optimization problem:

(λ∗, ϕ∗) = arg min
(λ,ϕ)

D ((q(γ, z|λ, ϕ), p(γ, z|w,α, β)) , (2.5)

where D(X,Y) is the Kullback-Leibler (KL) divergence and it is used to measure the difference between the
distributions of γ and z in the model with and without the variational parameters.

As shown in [11], the minimization problem in Eq. (2.5) can be solved by the iterative fixed-point method. Eqs.
(2.6) and (2.7) are the update equations for ϕ and λ respectively:

ϕni ∝ βiwn exp{Eq [log(γi)|λ]}, (2.6)

λi = αi +

N∑
n=1

ϕni. (2.7)

The summary of the variational inference procedure can be found in Algorithm 2, with appropriate starting
points for λ and ϕ. From the pseudocode, it is clear that each iteration of variational inference for LDA requires
O((N + 1)k) operations.

The goal of the inference is to find parameters α and β such that the log-likelihood of the data is maximized:

l(α, β) =

D∑
d=1

p(wd|α, β) (2.8)
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Algorithm 2: LDA variational inference algorithm
(1) ϕ0

ni ← 1/k ∀i, n
(2) λi ← αi +N/k ∀i
(3) repeat
(4) for n = 1 to N
(5) for i = 1 to k
(6) ϕt+1

ni ← βiwn exp(Eq [log(γi)|λ])
(7) normalize ϕt+1

ni to sum to 1
(8) λt+1 ← α+

∑N
n=1 ϕ

t+1
n

(9) until convergence

This can be done by iteratively computing (λ, ϕ) and (α, β). We saw how to approximate (λ, ϕ) in Eqs. (2.6)
and (2.7), so what is left to show is how to maximize (α, β) based on the values of (λ, ϕ). This method is
called variational EM procedure, due to the E(stimation) and M(aximization) steps.

Again, [11] shows that maximizing the log-likelihood in Eq. (2.8) results in Eq. 2.9 used to calculate β:

βij ∝
D∑

d=1

Nd∑
n=1

ϕdniw
j
dn, (2.9)

while the equation for α does not have a closed-form solution since it is much more complicated. However, a
solution can be found by the use of an efficient Newton-Raphson method in which the Hessian is inverted in
linear time. This method is often used for maximum likelihood estimation of the Dirichlet distribution as in [30]
and [31].

Outputs To conclude this section on LDA, these are the outputs of the algorithm that are of the highest
interest to us:

• φkw: Probability of word w appearing in topic k, the topic-word distribution (approximation of β);
• γkd: Probability of topic k being present in document d, the document-topic distribution;
• θk: Probability of topic k appearing in a document, the topic distribution (approximation of α).

2.2.2. Gibbs Sampling for Dirichlet Multinomial Mixture Model
Gibbs Sampling algorithm for Dirichlet Multinomial Mixture, or GSDMM for short, is a clustering technique that
can be used to infer topics from textual data. The algorithm was first introduced in [12]. The LDA algorithm
described in Section 2.2.1 is designed to work on long-form documents, while the GSDMMalgorithm described
in this section is best when used on short texts. This is because the GSDMM algorithm assumes that every
document is associated with a single topic. In our application for service visits, the document length is usually
pretty short so GSDMM could be the preferred algorithm.

As stated in [32], there are several issues with clustering: 1) Setting of the number of clusters; 2) Ability to
work with high-dimensional data; 3) Interpretability of the results; 4) Scalability to large datasets. Short-text
clustering has all of the above challenges and has the additional challenge of sparsity, since most, if not all,
the words tend to appear only once per document, thus rendering some measures useless. GSDMM attempts
to solve them by changing some of the assumptions of other methods.
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Movie Group Process First, an explanation of how the GSDMM algorithm works is given so that we have
a base for discussing how the algorithm solves the above problems. As explained in the original paper [12],
the GSDMM algorithm is equivalent to the Movie Group Process (MGP). MGP is very intuitive to understand
and since it is equivalent to GSDMM, MGP is presented first.

We can imagine that the professor of a movie discussion course has a class of students. He plans to divide
the students into several groups so that they can have smaller discussions where everyone can participate.
He expects the students in the same group to have watched similar movies, such that they would have more
movies to discuss. The professor asks the students to write down a list of movies they have watched and it
only gives them a short period to finish the task. This is to reduce the number of movies on the list and increase
the likelihood of the students writing down movies they have watched recently or movies they particularly like.
In both cases, those will be the movies that the students are more interested in discussing. After the students
finished writing their lists, each student can be represented by the list of movies they produced. The professor
needs to find a way to cluster the students into several groups according to his initial requirements: students
in the same group will share similar movie lists, while students in different groups will have different interests.

The professor then invites all students to a big restaurant with K tables and randomly assigns the students to
each of these tables. Then he asks the students to choose a different table in turn if the following two rules
are satisfied:

Rule 1: The new table has more students.
Rule 2: The students at the new table have watched more similar movies.

As this process goes on, students will continue to move to tables according to the above rules. Thus some
tables will grow larger and others will become empty. When the process stops (either because the professors
decides the groups are good enough or because there are no more students that can move), we can expect
that only some tables will be populated and the students in each table will share similar interests.

We can see that the above two natural rules are related to the two goals of clustering: Completeness and Ho-
mogeneity [33]. Completeness represents the objective that all members of a ground true group are assigned
to the same cluster. Rule 1 of MGP tends to result in high completeness, as it leads popular tables to be more
popular, and students in the same ground true group are more likely to be in the same table. Homogeneity
represents the objective that each cluster contains only members of a single ground true group. Rule 2 of
MGP tends to result in high homogeneity because it leads the students in the same table to be more similar
and thus more likely to be in the same ground true group.

To put it in a formal context with matching terms used in Section 2.2.1, the singular students represent doc-
uments and the entirety of them form the corpus, so D is the number of students. Every unique movie
represents a word in the vocabulary and the total number of unique movies is V . N is then the number of
movies in a specific student’s list. The sparse characteristic of short text means that V is really large (often
larger than 104), while the average number of words (N ) in each short text is small (often less than 102). For
GSDMM K is not the number of clusters (or topics), but an upper bound on the number of clusters. This is
because some of the initial tables can become empty by the end of the process and thus will not count as
clusters in the end.

As mentioned at the beginning of this section, GSDMM attempts to solve the main clustering problems in the
context of short-text datasets. Here are some properties of GSDMM that contribute to the attempt:

1. GSDMM can infer the number of clusters. The initial number of clusters,K, is an input to the algorithm,
but it is only an upper bound leaving the model free of selecting the actual number of output clusters.

2. GSDMM can easily cope with sparse and high-dimensional data. Common similarity-based models like
K-means [34] for text clustering usually represent the documents with the Vector Space Model (VSM)
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[35]. Each document is represented with a vector of length V , where each element is the weight of the
corresponding word. This way of storing data wastes a massive amount of memory due to the sparsity
of short-text documents. GSDMM solves this problem by working directly on lists of words thus storing
a minimal amount of data.

3. GSDMM has fast convergence. For every iteration, the GSDMM algorithm has a time complexity of
O(KDN), whereas other clustering algorithms such as K-means have a time complexity of O(KDV )
per iteration. This difference is much more pronounced when the algorithms are applied to short-text
clustering since the value of N is orders of magnitude less than the value of V .

Mathematical Model With the idea of the MGP in mind, let’s introduce now the Dirichlet Multinomial
Mixture (DMM) model used first in [36]. The model makes two assumptions about the generative process: (1)
the documents are generated by a mixture model [37], and (2) there is a one-to-one correspondence between
mixture components and clusters. When generating document d, DMM first selects a mixture component
(cluster) k according to the mixture weights (weights of clusters), p(z = k). Then document d is generated by
the selected mixture component (cluster) from distribution p(d|z = k). The likelihood of a document d can be
characterized by the sum of the total probability over the mixture components:

p(d) =

K∑
k=1

p(d|z = k)p(z = k). (2.10)

With the assumption of exchangeability, we can define p(d|z = k) as:

p(d|z = k) =
∏
w∈d

p(w|z = k). (2.11)

The assumption made in [36] is that each cluster is a multinomial distribution over words, such that p(w|z =
k) = p(w|z = k,ϕ) = ϕkw, where w = 1, . . . V and

∑
w ϕkw = 1. They assume a Dirichlet distribution as

the prior for each cluster and that the weight of each cluster is sampled from a multinomial distribution. finally,
they assume a Dirichlet prior for this multinomial distribution.

The graphical model of DMM is shown in Figure 2.4. In this short text clustering problem, we need to estimate
the mixture component (cluster) z for each document d.

Algorithm 3 describes the collapsed Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture model,
which is equivalent to the Movie Group Process, and the meaning of its variables is shown in Table 2.2.

In the initialization step, the documents are randomly assigned to K clusters. The following information is
recorded: z (cluster labels of each document), mz (number of documents in cluster z), nz (number of words
in cluster z), and nw

z (number of occurrences of word w in cluster z). Then the documents are traversed for I
iterations. In each iteration, t=the documents are in turn re-assigned to a cluster according to the conditional
distribution: p(zd = z|z,d). Each time a cluster z is re-assigned to document d, the corresponding information
in z, mz, nz, and nw

z are updated accordingly. GSDMM is also a soft clustering model like the Gaussian
Mixture Model (GMM) [38] since we can get the probability of each document belonging to each cluster from
p(zd = z|z,d).

2.2.3. Combine and Split Algorithm
It is reasonable to expect that if item A is always present with item B, then they belong to the same topic. The
simple algorithm presented in this section attempts to create topics based on this intuitive rule.

The algorithm is based on the computation of the cross-frequency matrix, C. C is a V xV matrix where Cij

corresponds to the probability of item j to be present in documents where item i is present, thus making every
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Figure 2.4: Plate notation for the DMM model

Algorithm 3: GSDMM
Data: Documents in the input, d.
Result: Cluster labels for each document, z.
initialize mz, nz and nw

z as zero for each cluster z
for each document d ∈ [1, D] do

sample a cluster for d:
zd ← z ∼Multinomial(1/K)
mz ← mz + 1
nz ← nz +Nd

for each word w ∈ d do
nw
z ← nw

z +Nw
d

for i ∈ [1, I] do
for each document d ∈ [1, D] do

record the current cluster d : z = zd.
mz ← mz − 1
nz ← nz −Nd

for each word w ∈ d do
nw
z ← nw

z −Nw
d

sample a cluster for d:
zd ← z ∼ p(zd = z|zd,d)
mz ← mz + 1
nz ← nz +Nd

for each word w ∈ d do
nw
z ← nw

z +Nw
d
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V number of words in the vocabulary
D number of documents in the corpus
d documents in the corpus
z cluster labels of each document
I number of iterations
mz number of documents in cluster z
nz number of words in cluster z
nw
z number of occurrences of word w in cluster z

Nd number of words in document d
Nw

d number of occurrences o word w in document d

Table 2.2: GSDMM notations

Cij a number between 0 and 1. In simple examples and ignoring very low values, the cross-frequency matrix
can be visualized in a graphical way as in Figure 2.5, where every node represents an item and every edge
from node i to node j represents the value of Cij .

In the case where item A is (almost) always present with item B, item B is not necessarily always present
with item A. Therefore the algorithm goes through the following rules iteratively until it cannot make progress
anymore while recomputing the cross-frequency matrix at every iteration to accommodate the changes:

1. Rule 1: Combine items A and B if both CAB and CBA are higher than a threshold;
2. Rule 2: Split item A if there is at least one item B for which CBA is higher than a threshold;
3. Rule 3: Remove item A if it has no occurrences (this sometimes happens when splitting an item from

Rule 2).

When item A and item B are combined, then they become item A + B, and their occurrences are combined.
When splitting item A against item B, item A is deprecated in favor of two new items: A (B) and A - (B). Every
occurrence of the original item A is transferred to either item A (B), if item B appears in the same document, or
item A - (B), if item B does not appear in the same document. At the end of the process, the cross-frequency
matrix will hold the information regarding the topics and can be used to compute all the outputs as for the LDA
algorithm.

Let’s demonstrate how the algorithm works with a simple example with a vocabulary size of V = 10. Some
ground true topics are chosen such that they can be sampled to generate the input data. Every topic is
represented by a list of items, in this case, every item is given a unique number between 0 and 9. The topics
picked for this example are shown in Table 2.3.

Topic Elements Frequency
1 1, 2, 3 0.1
2 1, 2, 4, 5 0.1
3 6 0.1
4 7, 8, 9 0.4
5 5, 7 0.05
6 0, 8 0.25

Table 2.3: Combine and Split algorithm example topics
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A corpus of D = 10000 documents is simulated by sampling one topic per document according to the
frequencies listed above. Moreover, every document had additional topics sampled according to a Poisson
distribution with λ = 0.4 to simulate multiple topics per document. Most of the documents still had only a
single topic, but about a third of the documents were made up of more than one topic. The result was B, a
1000x10 matrix (DxV ).

Now let’s examine the steps of the process by visualizing the cross-frequency as a graph. Figure 2.5a shows
the cross-frequency matrix of the input data, the links between item 2 and all other nodes (except 1) were
omitted for clarity as they have the same values as the links from and to item 1. As expected from the list of
topics there seem to be 3 almost separate groups of nodes: (1, 2, 3, 4, 5), (0, 5, 7, 8, 9), and (6); with item 5
linking the two big groups.

The first step finds items to combine according to Rule 1, this resulted in the merging of item 1 with item 2 and
item 7 with item 9. The results of the merge are shown in Figure 2.5b.

After that, we find nodes to split according to Rule 2, and this results in the split of: node 1+2 between nodes 3,
4, and none; node 5 between nodes 4, and none; node 8 between nodes 0, 7+9, and none. The recomputed
cross-frequency matrix is visualized in Figure 2.5c. Of all the new splits, the node 1+2 - (3,4) and the node 8
- (0, 7+9) had a zero count so they are removed in the next step according to Rule 3. Additionally, new nodes
can be combined: 7+9 with 8 (7+9), 0 with 8 (0), 3 with 1+2 (3), 4 with 1+2 (4) and 5 (4), as expected. The
resulting graph is shown in Figure 2.5d.

This leaves only a single connection in the graph that can be split (Figure 2.5e) and combined to make up
the final topics division of Figure 2.5f. In this example, the topics were ”discovered” almost perfectly and it
indicates that the method has merit at least for a small sample of topics and items.

2.2.4. Correction Based Algorithm
This algorithm is based on the idea that parts, corrections, and symptoms should be treated differently to create
topics. In particular, every correction code starts as being its own topic, and all the parts and symptoms are
appended to these topics based on the cross frequencies between them. The steps are shown in Algorithm
4.

Algorithm 4: Correction Based Algorithm
(1) Create one topic per unique correction code.
(2) Combine topics if the correction codes in them have cross frequencies higher than a
threshold on both directions.
(3)Set threshold t and loop over:

(a) Find all parts and symptoms with cross-frequency higher than t to a correction code.
(b) Add the parts and symptoms to the topics containing the correction codes.
(c) Lower t and go back to 3.a. Only consider parts and symptoms that have not been

assigned to a topic yet.

This algorithm takes some ideas from the Combine and Split algorithm and additionally utilizes knowledge
about the difference between correction codes, parts, and symptoms to achieve more accurate and desirable
topics.

Computing the topic-word and document-topic distribution Since every correction code is only
assigned to a single topic, the value of the topic word distribution for topic k and correction code c is simply
the number of times c appears in the population.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4 (e) Step 5 (f) Step 6

Figure 2.5: Steps of Combine and Split algorithm Example



2.3. Novelty Scores 20

Parts and symptoms can be assigned to different topics, so a more involved process is needed and it can be
described in Algorithm 5.

Algorithm 5: Topic Word Distribution for Parts and Symptoms
(1) Select a word w.
(2) Select all documents with w in it.
(3) For every document d:

(a) For every correction code c in d, select the topic k containing c.
(b) If w was associated with topic k, then: φkw += 1

ncc
, where ncc is the number of

correction codes in d

Finally, Algorithm 6 describes how to compute the document-topic distribution.

Algorithm 6: Document Topic Distribution
(1) Select a document d.
(2) Select all correction codes present in document d.
(3) For every correction code c:

(a) Select the topic k containing c
(b) γkd += 1

ncc
, where ncc is the number of correction codes in d.

2.2.5. Topics Generation Algorithms Conclusions
The algorithms presented above can all be used for topic generation. The results for all of them applied to
the same data set can be found in Section 3, where also a comparison of the strengths and weaknesses
of the algorithm is discussed. Since the algorithms perform well in different situations and make different
assumptions it is important to test them all and compare them to select the best one for our context.

2.3. Novelty Scores
As roughly explained in Section 2.1, the process for computing the novelty of every topic first has to go through
the computation of novelty for every word in the vocabulary. The goal of this computation is to assign a novelty
score to each individual word at every timestep by looking at the word frequency over time. The algorithm
should assign a high novelty score where the frequency graph has a peak, a neutral score when the frequency
graph is stationary or linear, and a low (negative) score when the frequency graph has a dip.

Words Novelty Score We could use different methods for achieving the desired novelty scores that
satisfy our requirements, the most straightforward would be to compare the frequency of the word at time t
with the historical average. Let’s say we want to compute the score for the word w at time t, this will result in
computing a sort of z-score of the form:

zw(t) =
pw(t)− µw

σw
, (2.12)

where µw and σw are respectively the historical mean and standard deviation of the frequency of w, and pw(t)
is the frequency of w at time t.

The above approach could work in some circumstances, however, it seems to be too simplistic. In many
cases, frequencies tend to be seasonal or the words have multiple consecutive spikes that we would like
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to capture individually. Both of these scenarios can’t be handled properly by only comparing the individual
frequencies with the historical statistics. Therefore, as proposed in [5], we make use of a Locally Weighted
Linear Regression (LWLR) [39].

”Locally”, means that we do not look at the full historical data, but we restrict the scope to the S−1 observations
before the current timestep. Wewill call S the horizon. ”Weighted” means that data points closer to the current
timestep are considered more important and thus get a higher weight, we will define the weight function later.
Finally, a ”Linear Regression” for w at timestep S is of the form:

hwS(x) = awSx+ bwS x = 0, . . . , S. (2.13)

Other methods are proposed to evaluate word novelty based on the average frequency of historical data
such as in [40] and [41], but this method ensures new-coming words stand out from existing words more
significantly.

For simplicity, from now on we will be omitting the S and thew in our notation since all the computations before
are valid for every timestep and every word without loss of generality.

To compute the coefficients a and b for a LWLR, we have to minimize the following:

J(a, b) =
1

2

S−1∑
x=1

w(x)(h(x)− p(x))2, (2.14)

where w(x) is an arbitrary weight function.

Substituting Eq. (2.13) into Eq. (2.14) we get:

J(a, b) =
1

2

S−1∑
x=1

w(x)(ax+ b− p(x))2, (2.15)

Taking the partial derivatives of J with respect to a and b gives the following:

∂J(a, b)

∂a
=

S−1∑
x=1

xw(x)(ax+ b− p(x)) (2.16)

∂J(a, b)

∂b
=

S−1∑
x=1

w(x)(ax+ b− p(x)) (2.17)

Setting the partial derivatives equal to 0 results in the following set of linear equations in a and b:
a
∑S−1

x=1 x2w(x) + b
∑S−1

x=1 xw(x) =
∑S−1

x=1 xw(x)p(x)

a
∑S−1

x=1 xw(x) + b
∑S−1

x=1 w(x) =
∑S−1

x=1 w(x)p(x),

(2.18)

which are easily solved.

Finally, after having computed a and b, and thus the function h, we can compute the novelty scores in the
following way:
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Figure 2.6: Visual examples of novelty scores in different situations

novelty =



w(S)(p(S)− h(S))2∑S
x=1 w(x)(p(x)− h(x))2

if p(S) > h(S);

−w(S)(p(S)− h(S))2∑S
x=1 w(x)(p(x)− h(x))2

if p(S) < h(S);

(2.19)

Figure 2.6 shows the variables we worked with in different situations. The blue dots are the frequencies
p(x), the red line is the representation of the linear regression h, and the red ”X” is the estimated value for the
frequency at time S. In all the examples the horizon S was 10 and the weight function was constant (w(x) = 1).

The novelty score is independent of the absolute frequency, as it gets normalized in Eq. (2.19). We call then
nw(t) the novelty probability for word w at time t and is computed as follows:

nw(t) = noveltyw(t)pw(t). (2.20)
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Figure 2.7: Qualitative visualization of the novelty scores

Topic Novelty Score The novelty score for topic k is the combination of the novelty score for the individual
words. The words’ novelty scores are weighted according to the topic-word distribution φ as in the following:

nk =
∑
w

nwφkw. (2.21)

The final value will be a number between -1 and 1 indicating the novelty of the topic. A value > 0 means the
topic is growing in popularity at a higher rate than before (peak), a value of 0 means that the frequency of the
topic is stationary or linear, and a value of < 0 means the topic frequency is descending faster than before
(dip).

Computing the novelty probability allows us to not only figure out emerging topics but also to track their evo-
lution over time and classify them as fading or stationary. This is not the case with other approaches such as
the ones presented in [42] and [43].

2.4. Growing Scores
The way we defined the novelty scores encapsulates the deviation of the current frequency from the extrap-
olation of the previous timesteps. The useful visualization in Figure 2.7 can help understand this, here the
arrows represent the trend of the observations previous to the current timestep and the colored dots represent
possible current observations, one set for each possible trend line. The green dots represent observations
with novelty > 0, yellow ones a novelty of 0, and red ones a novelty < 0.

So, if the frequency of a certain item is increasing linearly over time, apart from a spike at the beginning, the
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novelty score will be close to 0 the whole time. This falls perfectly within our definition of the novelty score,
but it might be useful to consider an additional score that only looks at the trend of the frequency graph. For
example, looking again at Figure 2.7, a score that is > 0 in the case of the green arrow, 0 in the case of the
yellow arrow, and < 0 in the case of the red arrow.

Computing the growing scores In Section 2.3, we already saw a way of computing the slope of a
frequency curve through the means of a LWLR. Thus, we use Eq. (2.14) with one modification: we sum all
values up to S instead of S − 1 since the current values don’t need to be predicted, but it’s part of the linear
regression. Resulting in:

J(a, b) =
1

2

S∑
x=1

w(x)(h(x)− p(x))2, (2.22)

that can be solved similarly to Eq. (2.14).

Now, a represents the slope of the graph and is related to the growing score we are trying to compute. Much
like in Eq. (2.19), we then normalize the value of a to a value between -1 and 1. The maximum possible value
of a (in absolute value) for any interval is defined by the following formula:

A =
1.5

S − 1

(
max

1<x<S
p(x)− min

1<x<S
p(x)

)
, (2.23)

A full derivation of Eq. (2.23) can be found in the next paragraph. The final growing score is then defined as:

growing =
a

A
. (2.24)

Figure 2.8, shows some examples of frequency graphs and their growing scores. Finally, the growing proba-
bility for word w at time t is defined as:

gw(t) = growingw(t)pw(t). (2.25)

Topic growing scores The way we defined the novelty scores for each topic at the end of Section 2.3,
can be easily extended to the definition of a topic growing score. Eq. (2.21) can be extended to any metric
that is valid per item thanks to the topic-word distribution. The growing score of topic k can be computed as
follows:

gk =
∑
w

gwφkw. (2.26)

2.4.1. Max Slope
The equation for a linear regression solution computed with least squares in a 2D plane is the following:

a =
Cov(x, y)

V ar(x)
=

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
. (2.27)

The problem of finding the maximum slope possible for n points where the xs are equidistant and yi ∈ [0, 1]
∀i can be expressed as follows:

max
0≤yi≤1

a = max
0≤yi≤1

n∑
i=1

(i− x̄)(yi − ȳ) = max
0≤yi≤1

J(y), (2.28)
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Figure 2.8: Visual examples of growing scores in different situations
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since the denominator is independent of the yi values and we assume that xi = i as the absolute value of
the distance between the x values can be ignored without loss of generality. Substituting the values for the
averages of both x and y results in the following equation for J :

J =

n∑
i=1

(
i− n+ 1

2

)(
yi −

1

n

n∑
k=1

yi

)
. (2.29)

Taking the partial derivative of J with respect to the individual yj we have the following:

∂J

∂yj
= j − n+ 1

2
− 1

n

n∑
i=1

(
i− n+ 1

2

)

= j − n+ 1

2
− 1

n

(
n∑

i=1

i−
n∑

i=1

n+ 1

2

)

= j − n+ 1

2
− 1

n

(
n(n+ 1)

2
− n(n+ 1)

2

)
= j − n+ 1

2
, (2.30)

which means that:

∂J

∂yj


< 0 if j < n+1

2
.

= 0 if j = n+1
2
.

> 0 if j > n+1
2
.

(2.31)

This result means that having the first half of the yj = 0 and the second half of the yj = 1. If n is odd, the
value in the middle won’t matter as the ∂J/∂y(n+1)/2 = 0. What remains to compute is the value of a and the
computations are split into two: for n odd and for n even.

n Odd Computing the Variance:

V ar(x) =
1

n− 1

n∑
i=1

(
i− n+ 1

2

)2

=
1

n− 1

n−1
2∑

j=−n−1
2

j2 =
2

n− 1

n−1
2∑

j=1

j2

=
2

n− 1

n−1
2

(n−1
2

+ 1)(2n−1
2

+ 1)

6
=

n(n+ 1)

12
. (2.32)
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Computing the Covariance:

Cov(x, y) =
1

n− 1

n∑
i=1

(
i− n+ 1

2

)
(yi − ȳ)

=
1

2(n− 1)

(n−1)/2∑
i=1

(
n+ 1

2
− i

)
+

n∑
i=1+(n+1)/2

(
i− n+ 1

2

)
=

1

2(n− 1)

(n−1)/2∑
j=1

j +

(n−1)/2∑
j=1

j

 =
1

n− 1

(n−1)/2∑
j=1

j

=
1

n− 1

n−1
2

(n−1
2

+ 1)

2
=

n+ 1

8
. (2.33)

Finally, computing a:

amax =
Cov(x, y)

V ar(x)
=

n+ 1

8

12

n(n+ 1)
=

3

2

1

n
. (2.34)

n Even Computing the Variance:

V ar(x) =
1

n− 1

n∑
i=1

(
i− n+ 1

2

)2

=
2

n− 1

n/2∑
i=1

(
n+ 1

2
− i

)2

=
2

n− 1
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(
j − 1

2

)2

=
2
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n/2∑
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n
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4
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]
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12(n− 1)
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n(n+ 1)

12
(2.35)

Computing the Covariance:

Cov(x, y) =
1

n− 1

n∑
i=1

(
i− n+ 1

2

)
(yi − ȳ)

=
1

2(n− 1)
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(
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j −
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n(n+ 2)
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8(n− 1)
(2.36)
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Figure 2.9: Plot of amax for the first values of n

Finally, computing a:

amax =
Cov(x, y)

V ar(x)
=

n2

8(n− 1)

12

n(n+ 1)
=

3

2

n

n2 − 1
(2.37)

Combining the results Figure 2.9 shows the max value of a for every value of n, and it shows that
amax can be approximated by either Eq. (2.34) or Eq. (2.37). Since Eq. (2.34) is simpler, that is the chosen
equation. Additionally, if the interval within which the yi are constrained is not [0, 1], but is [ymin, ymax] then
all the analysis remains the same, and the values of amax is:

amax =
1.5(ymax − ymin)

n
(2.38)

2.5. Computing Cost Metrics
For every repair order job data points can be collected to compute the cost for each repair. The following are
the most influential items to the overall cost, let’s recall their definitions first introduced in Section 1.4:

• Pay type: were the parts replaced in warranty or not, who ended up paying for the visit;
• Parts Cost: the cost of the individual parts replaced during the service visit;
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• Flat Rate Time: ”hands-on” of time spent by the technician working directly on the car;
• Days in Service: amount of days the car has spent in the Service Center.

The warranty type can distinguish between repairs that were paid by the customer and repairs that were in
warranty and thus paid by Tesla. The other three are the factors that most contribute to the cost of a service
visit. In this section, a way to combine all of the above to compute cost information per topic is presented.

2.5.1. FRT Cost
If FRTd represents the Flat Rate Time associated with the repair job d, then the value of the Flat Rate Time
associated with a topic k (FRTk) can be computed by using the document-topic distribution as follows:

FRTk =

D∑
d=1

γkdFRTd. (2.39)

To compute the FRT associated with only Tesla-payed repairs, then it is sufficient to have the sum go over
only those service visits, likewise for customer-paid repairs.

2.5.2. Parts Cost
Similarly to the FRT, we can compute the total cost of parts for every topic k as follows:

total_part_costk =

V∑
w=1

cost(w)

D∑
d=1

γkdBdw, (2.40)

and the sum over d can be restricted to customer-paid or Tesla-paid repairs depending on the quantity com-
puted.

2.5.3. Days in Service Cost
Both FRT and parts are associated with a repair order job directly. The number of days the car spends in
the Service Center, however, is associated with the overall service visit, which can be (and usually is) split
into several repair order jobs. So the number of days in service queried from the database needs to first be
divided by the number of repair order jobs associated with the service visit. After that, the computation for the
days in service for each topic are very similar to the one for the FRT in Eq. (2.39):

DiSk =

D∑
d=1

γkdDiSd. (2.41)

2.6. Car Configuration analysis
As explained in Section 1.2, vehicles have properties such as the vehicle model, the number of drive units,
which factory it was built at, and when. Some properties are static and some of them dynamic, and for
every parameter there are many options available. When analyzing failure modes, parameters such as car
model, factory, and firmware version are almost always investigated to see if there are any discernible patterns.
There are, for example, failure modes that are unique to some specific model or that are introduced by specific
firmware versions. Due to the vast number of options, however, it is a hard task to pull and compare every
parameter, especially if the useful ones are non-obvious.

Additionally, every Service Visit can be connected to one or more of the topics computed in Section 2.2, which
means that lists of cars can be created per topic. It would be useful to know which configurations are the most
prevalent in those lists since that can help identify the core issue behind the repair or point out where to focus
efforts to reduce the cost of the repair.
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For the reasons above, in this section, a simple method for calculating outstanding configurations from a group
of cars is proposed.

As seen in Figure 1.2, the data is stored in databases with one row per car. Every row has many columns,
one for each configuration, and every configuration has many different options.

Let us consider the case of comparing the configurations of a group of cars with the population. We start by
calculating the overall probability for every configuration c and every option o by simply doing the following:

pco =
#cars with option o for config c in the population

#cars in the population . (2.42)

If the population is large enough, we expect the number of cars with option o for config c in the group to be
distributed like a Binomial distribution: Xco ∼ Bin(N, pco), were N is the number of cars in the group. If nco

is the number of cars in the group with option o for config c, then we can compute the following:

zco = P(Xco > nco) = P
(

Xco −Npco
Npco(1− pco)

>
nco −Npco

Npco(1− pco)

)
(2.43)

If N is large enough the left-hand side of the inequality can be approximated with a normal distribution.

zco ≈ P
(
Z >

nco −Npco
Npco(1− pco)

)
= 1− Φ

(
nco −Npco

Npco(1− pco)

)
. (2.44)

Computed as above, zco is a value between 0 and 1 that represents a measure of the difference between the
distribution of the overall population and the distribution of the group. A low zco means that the specific option
is present more in the group than in the population, while a high value of zco means that the opposite is true.

Sorting the zco for all cs and all os from lowest to highest results in an ordered list of configuration options
that are more unique to the group compared to the overall population. This method can be used to generate
additional useful information about the topics.

2.7. Software Used
In this section, an overview of the software tools that were used for this project is given, together with their
applications.

2.7.1. Tableau
Tableau [44] is a data visualization software platform that allows the user to define helpful and interactive
visualizations of all kinds of data types. Tesla makes use of Tableau extensively and in many different contexts,
from keeping track of failures over time to displaying information about the fleet. Almost all technical divisions
at Tesla create and maintain numerous dashboards. Those dashboards are then hosted on a server and are
accessible for everyone to interact with.

During my internship at Tesla, I interacted with Tableau significantly and learned how to use it in the process.
Many of the data produced by this project were presented to other people through different Tableau dash-
boards. All the different types of graphs are equipped with a lot of functionality, such as sorting, tool-tips, and
selections. These features make it intuitive and effective to navigate large amounts of data. Tableau also
encourages the use of dynamic elements that can filter or select different data to show depending on the inter-
ests of the person interacting with the dashboard. Additionally, it was really easy to share the visualizations
due to Tesla servers dedicated to hosting them.
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Figure 2.10: Example of Tableau dashboard

Another convenient feature of Tableau is the ability to get data from a variety of data sources. Tableau supports
local files, spreadsheets, relational and non-relational databases, and more. Any of Tableau’s data sources
may be readily connected and combined with data from other sources to generate visuals. For my use case,
the ability to query data from Tesla databases as well as files on my computer was crucial.

2.7.2. SQL
The majority of the data needed for this project was stored in multiple different Tesla databases and a sub-
stantial amount of time was spent querying and organizing the data from said databases. The queries were
done in the SQL (Structured Query Language), which is a domain-specific language used in programming and
designed for managing data held in a relational database management system, or for stream processing in a
relational data stream management system introduced first in 1970 in [45]. It is particularly useful in handling
structured data.

SQL, or slight modifications of it, is the default for most databases and it is one of the most used programming
languages in the world. SQL has 2 main advantages over other APIs. Firstly, many records can be accessed
with a single command. Secondly, it eliminates the need to specify how to reach a record, for example, with
the use of an index. An example of a SQL query used for this project can be seen in Figure 2.11.

2.7.3. Python
All the code written for the project was written in Python with the use of Jupyter Notebooks [46], an example can
be seen in Figure 2.12. Python offers easy-to-use libraries for connecting to all types of databases with simple
and intuitive APIs. The handling of the results of the SQL queries was done using the package pandas [47]
as well as the data pre-processing. The package numpy [48] was used for most of the computations, as it is a
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Figure 2.11: Example of an SQL query

very efficient and effective library for array programming. The LDA algorithm implementation was taken from
the package scikit-learn [26], in particular the class: sklearn.decomposition.LatentDirichletAllocation. Finally,
the graphs were made using the package matplotlib [49].
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Figure 2.12: Beginning of a Jupyter notebook used during the project



3
Topic Generation Results

In this chapter, the results for the different topic generation algorithms are presented. In Section 3.1 the
results for the LDA algorithm are shown and discussed. In Section 3.2 the results computed with the GSDMM
algorithm are shown. Section 3.3 shows the results for the Combine and Split algorithm and, finally, Section
3.3.1 shows the results for the Correction Based Algorithm.

3.1. Latent Dirichlet Allocation Results
The results presented in the following sections for the LDA algorithm were computed with data for a single
month. The dataset used for this analysis was separated as follows:

• 800,000 parts replaced, of which 10k are unique;
• 2.1 million correction codes applied, of which 4k are unique;
• 300,000 symptoms reported, of which 500 are unique.

It is easy to see that the amount of data for just a single month of service records is quite large. To put into
perspective, the matrix of 64-bit floating point numbers (float64) needed to compute the topics by the LDA
algorithm (Algorithm 1) would be almost 100 GB, a value that is at the limit of the very best computers’ RAM
and greatly surpassed the capabilities of the 32GB of RAM in normal computers. Simply storing the input data
is a challenge that cannot be blindly handed to Python or the numpy package. The default type in numpy is
a float64 and, as we saw above, storing a full matrix of float64 in memory is not possible. So the input matrix
had to be represented in memory with a datatype that used less than 8 bytes, for this reason, the input matrix
was stored using the numpy type i1 (8-bit signed integer) that only occupies 1 byte of memory. Thus the input
matrix had a memory footprint of a little over 12GB.

3.1.1. Data Pre-processing
From the rough numbers given above it seems clear that there should be a pre-processing step to filter the
repair order jobs and the items. As explained in [50], for LDA applied to Natural Language Processing, it is
common practice to apply the following three pre-processing techniques to the input data:

1. Document deduplication: Working with textual documents, it is possible to encounter very similar or
identical copies in a dataset. It is usually pretty straight-forward to detect duplicated documents due

34
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Original The mission of Tesla is to accelerate the world’s transition to
sustainable energy and in order to achieve that, the goal is to
produce and sell 20 million vehicle per year and reach level 5
autonomy.

Stop words highlighted The mission of Tesla is to accelerate the world’s transition to
sustainable energy and in order to achieve that, the goal is to
produce and sell 20 million vehicle per year and reach level 5
autonomy.

Stop words removed mission Tesla accelerate world transition sustainable energy
order achieve that, goal produce sell 20million vehicle per year
reach level 5 autonomy

Stemming highlighted mission Tesla accelerate world’s transition sustainable energy
order achieve that, goal produce sell 20million vehicle per year
reach level 5 autonomy

Final mission Tesla acceler world transit sustain energy order achiev
that, goal produc sell 20 million vehicl per year reach level 5
autonomy

Table 3.1: Pre-processing steps visualized for an example phrase

to the length of text-based data. If the amount of duplicated documents is significant, it could lead to
reduced performance of the model. So this technique aims to remove such duplicated documents.

2. Stopword removal: Extremely common words like: ”the”, ”an”, ”and”, ”are”, ”is” are called stop words.
The name derives from the fact that these words are part of a stop list, the words in this list are usually
filtered out before the processing of the data due to them having little to no significance since they don’t
have a specific meaning. The stop list can be different depending on the context and the analysis being
performed.

3. Stemming: In almost every language, some words are derived from others. For example, the noun
”attachment” is derived from the verb ”attach” and it is common to see these words be used in similar
contexts. With stemming, every word is remapped to its root word (or stem), thus reducing the total
number of words in the vocabulary.

Table 3.1 shows the ideas of stopword removal and stemming applied in the natural language context. The
phrase taken as an example is the very first phrase of Section 1.

For our purposes, document deduplication is not relevant since the data is already free of any duplicates,
every repair order job is tied to an actual event in the real world. This does not mean that there are no repair
order jobs that display the same parts/corrections/symptoms, but it means that identical repair order jobs are
significant to the analysis and should not be removed since they represent useful information that cannot be
omitted.

In our context stopword removal is very relevant and translates to removing itemswith high frequency and low
information. The items with really high frequency are only a handful so the stop list can be created manually.
For this purpose, the 100most frequent items were reviewed and the ones that were too general and would not
add useful information to the analysis were added to the stop-list. Some examples are the following correction
codes: Perform General Inspection, General Diagnosis, and the symptom: Courtesy Service Provided.

Since we are not dealing with language, stemming cannot be applied in the same way as in NLP. However,
a similar concept can be used to combine some of the parts. The part numbers used to identify parts are
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(a) All items (b) Items with < 100 occurrences

Figure 3.1: Item counts distribution before pre-processing

separated into 2 codes, the first part is a 7-digit number (base part number) and the second is a 3-character
identifier (suffix). For some base part numbers, there could be multiple parts with different suffixes that are
related, but slightly different. For example, they could be different revisions of the same part, be fitted for
different countries, or be different colors or materials. It is useful to combine parts with the same base part
number into a single part for the same reason that stemming is done on words, the parts are very closely
related. Additionally, in our application, most of the time parts with the same base and different suffixes are
mutually exclusive, which makes it simple to combine them with little repercussion to the rest of the data.

Applying the techniques above helped to reduce the number of items by around 350, roughly 340 ”stemmed”
parts, and 10 high-frequency low information correction codes and symptoms. So the quality of the inputs
increased, but the problem with the amount of data persists. By looking at the frequency distributions of the
items in Figure 3.1, we can see that the majority of the items have a very low frequency, with more than 3,500
occurring only once in a full month of Service Records.

It is then reasonable to focus our data reduction on these low-frequency items. Here is where we need to
use more domain knowledge to guide us. We could remove all items with a frequency lower than a specified
number, but by doing so we risk removing parts that are valuable to the analysis. For example, there are a lot
of types of HV batteries and some of them are replaced rarely (less than 20 times a month), those batteries
are, however, some of the most expensive parts for Service so removing them would remove very valuable
items for determining the total costs involved.

With the above in mind, I decided to remove items from three different categories:

1. Fasteners. Fasteners are the combination of bolts, screws, and studs. They are really cheap and
frequently used during replacements and maintenance. Fasteners are usually paired with more specific
parts and do not convey as much information as other parts. Fasteners could be seen as an extension
of the stopwords list, although not as ubiquitous as the items in that list. In total, of the 10k unique
parts, 650 of them were classified as fasteners. The cost of all the fasteners amounts to a very small
percentage of the total parts costs.

2. Low cost parts. This group is defined by the parts that have < 100 occurrences and < $1, 000 of total
cost. Total cost here refers to the cost of the specific part times the occurrences. The 100 occurrences
and the $1,000 are numbers that can be changed and could be tuned to obtain better performance.
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(a) All items (b) Items with < 100 occurrences

Figure 3.2: Item counts distribution after pre-processing

Much like the fasteners category above, this group of parts has low impact and can be safely removed.
This group totaled 7,500 parts and the total cost of them was higher than that of the fasteners, but still
in a range that could be ignored.

3. Low frequency items. This group is defined by any item with less than 20 occurrences, with an ex-
ception for parts of which total cost is greater than $3,000. Much like for the group above, the $3,000
threshold can be changed and adapted for better results. This group totaled 3,500 items.

Finally, some jobs were discarded due to their non-interesting nature. The most frequent example was that of
Merchandise / Over-The-Counter Sale. These are technically saved in the databases as separate job lines,
but they do not interest the car or are relevant for any repair. Most of these are linked to the sale of accessories
(like key batteries) and charging adapters or equipment. All repair order jobs with the Merchandise / Over-
The-Counter Sale symptom or any of the relevant correction codes were removed.

After all the filtering was applied, the resulting dataset was made up of roughly 650 thousand repair order
jobs and 3,500 items. As we can see from comparing Figure 3.1 and Figure 3.2, the majority of the low-
frequency items were removed as well as some of the highest-frequency ones. To compare data size, the
100GB matrix needed for computation before pre-processing turned into a 16GB matrix, which can be easily
stored in memory.

3.1.2. Topics Generated
As explained in Section 2.2.1, the two inputs to the LDA algorithm are: the bag-of-words representation of the
corpus and the number of topics to generate K. The former is computed from the pre-processed data from
Section 3.1.1, while the latter is still a free parameter.

The usual approach for selecting the optimal K is done through the help of a quantity called perplexity. The
perplexity can be computed on the results generated by the LDA algorithm run with different values of K, the
results with lower perplexity will, in general, be the ones most closely matching the true topics distributions.
Various models for perplexity have been proposed over the years, starting with the original LDA paper [11] in
2003 and continuing with [51] and [52].

The LDA algorithm was run on the input data with the following values ofK: 700, 1000, and 1200. Usually, the
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penalty for using too large of a value of K is having repeated and/or diluted topics that have low recognition.
In our application, however, the effect was much more dramatic. The results for K = 1000 and K = 1200
showed many hundreds of ”empty” topics (293 for K = 1000 and 474 for K = 1200). By empty, it is meant
that the topic-word distribution φ for that specific topic shows the same low probability for every word in the
dictionary. The reason for this phenomenon is hypothesized in later sections.

The results for K = 700, did not show a significant proportion of empty topics, and since the number of
nonempty topics seen by increasing the value ofK resulted in numbers close to 700 the following results and
examples are taken from running the LDA algorithm with K = 700.

The run times of the algorithm on the machine (Lenovo 20Y4 - Intel i7 @2.5GHz, 8 Cores - 32GB of RAM)
used to get the results are displayed in Table 3.2.

K Run time [min]
700 64
1000 72
1200 78

Table 3.2: LDA run time

Example Topics The topics shown in Table 3.3, 3.4, and 3.5 are the first few in the list generated, so they
serve as ”random” topics.

Topic 0
Item Type φ

Door difficult to close Symptom 0.57
Exterior Adjustment - 0.4 Correction 0.23
Exterior Adjustment - 0.6 Correction 0.20

Table 3.3: LDA Topic 0

Topic 0 from Table 3.3 seems to be a very good topic. ”Door difficult to close” is paired most often with the
two corrections in the table and no other item has similar correlations. The values of φ also represent well the
dynamic, as only 30% of the time the two correction codes appear when the ”Door difficult to close” is present.
Both ”Exterior Adjustment” corrections are more popular than the symptom and so they appear in more than
just this topic. In fact, they appear in 11 and 19 more topics respectively.

Topic 1
Item Type φ

Reverse camera inoperative Symptom 0.74
Trunk Handle Part 0.13
Rear Camera (Remove & Replace) Correction 0.13

Table 3.4: LDA Topic 1

Topic 1 from Table 3.4 appears to be another good topic. When the ”Trunk Handle” part is replaced, almost
always there is a ”Reverse camera inoperative” symptom and a ”Rear Camera” correction, no other item is
even close to the same cross frequencies. The ”Rear Camera” correction is also associated with a specific rear
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camera part, but there is another topic dedicated to this interaction. Additionally, ”Reverse camera inoperative”
is much more common than the other two items, so the values of φ make sense.

Topic 2
Item Type φ

Service Bulletin Symptom 0.24
Inspect Vehicle Firmware Version Correction 0.20
Seat heater does not produce heat Symptom 0.15
Fog lights have poor performance Symptom 0.10
Front left seat Trim Part 0.06
Power Strut O-ring Part 0.06
Driver Seat Trim Cushion Correction 0.06

Table 3.5: LDA Topic 2

Topic 2 from Table 3.5 is the worst topic of the first three shown. The ”Service Bulletin” and the ”Inspect
Vehicle Firmware Version” are always paired together in the input data, however, there are no occurrences
of ”Inspect Vehicle Firmware Version” with any of the other items. ”Seat heater”, ”Front left seat Trim” and
”Power Strut O-ring” do appear together. ”Fog lights have poor performance” only appears a handful of times
with ”Service Bulletin” and with no other item, same for ”Driver Seat Trim Cushion”. The ”Service Bulletin”
symptom is associated with different types of repair and thus the topic is the aggregation of multiple ones. In
this case, it seems that this topic is the aggregation of multiple ones, thus being uninformative and not too
useful. Also, the φ values do not seem to map to anything meaningful, as the relative frequencies of the items
in the data do not correspond to those values.

Topic 3
Item Type φ

HV Battery (Remove & Replace) Correction 0.24
Discharge HV Battery Correction 0.24
Decrease in estimated range Symptom 0.16
HV Battery 75kWh Part 0.12
Battery Alert Symptom 0.10
Coolant Part 0.06
Penthouse seal Part 0.05
Refill Coolant Correction 0.02
Fuse HV Battery (Remove & Replace) Correction 0.06

Table 3.6: LDA Topic 3

Topic 3 from Table 3.6 is quite a large topic, incorporating seemingly completely different repairs such as
coolant refill and Hv battery replacement. However, these repairs in practice are very much linked. The HV
battery is water-cooled, so when replacing it the cooling lines are inevitably affected and thus need to be
refilled.

Most Popular Topics The following topics shown in Table 3.7, 3.8, and 3.9 were the most frequent
according to the results.

In Topic 523 from Table 3.7, the ”Perform Vehicle Inspection” symptom is one of the most common items in the
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Topic 523
Item Type φ

Perform Vehicle Inspection Symptom 0.21
Paint Protection Film - Rear Doors Correction 0.14
Paint Protection - Right Part 0.14
Paint Protection - Left Part 0.14
Mud Flap Part 0.13
Retrofit Request Symptom 0.12
PDI Correction 0.12
Retrofit Paint Protection Film Symptom 0.12
Retrofit Mud Flap Correction 0.12

Table 3.7: LDA Topic 523

data, and 35% of the time it is present with ”PDI”. The ”Paint Protection Film - Rear Doors” correction is also
quite frequent and almost 100% of the time it comes with both ”Paint Protection” parts and the ”Retrofit Paint
Protection Film” symptom. About 20% of the time ”Mud Flap” and ”Paint Protection” are replaced together
and almost always when the ”Mud Flap” is replaced there is a ”Retrofit Request” symptom and a ”Retrofit Mud
Flap” correction. This topic seems to be the combination of a couple of popular repairs that a low percentage
of the time are done together. The fact that ”Perform Vehicle Inspection” is present in this topic makes the
frequency higher than the single repairs would imply.

Topic 400
Item Type φ

Perform Vehicle Inspection Symptom 0.64
PDI Correction 0.36

Table 3.8: LDA Topic 400

As said for Topic 523, the items of Topic 400 from Table 3.8 are seen together quite often in the data and are
relatively frequent. This topic by itself is not particularly interesting as the items are very general, but it is to
be expected that some of the topics would be of this type even with some of the most general items removed.

Topic 559
Item Type φ

Hinge Support Grommet Part 0.20
Service Bulletin Symptom 0.20
Arrowhead Domed Tie Part 0.20
Cable Tie Part 0.20
Inspect And Retrofit Trunk Lid Harness Correction 0.20

Table 3.9: LDA Topic 559

Topic 559 from Table 3.9 represents basically a perfect topic. When the ”Hinge Support Grommet” was re-
placed almost 100% of the time all other four items are also present. This hints at a very specific repair that
was performed several times in the timeframe of the data.
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Some Bad Topics These final topics shown in Table 3.10 and 3.11 are examples of bad topics.

Topic 30
Item Type φ

Service Containment Activity Symptom 0.65
Falcon Door noisy Symptom 0.22
Fan Shroud Part 0.07
Fan Condenser Left (Remove & Replace) Correction 0.06

Table 3.10: LDA Topic 30

Topic 30 from Table 3.10, much like Topic 2, is messy and does not have any engineering meaning. The ”Fan
Shroud” and the ”Fan Condenser Left” are coupled in the data, but are not linked in any way with the other
two items. ”Service Containment Activity” and ”Falcon Door noisy” are also not linked.

Topic 266
Item Type φ

Radio will not change stations correctly Symptom 0.51
Wiper Arm Left (Remove & Replace) Correction 0.23
Wiper Arm Pair (Remove & Replace) Correction 0.17
Panoramic roof makes noise Symptom 0.09

Table 3.11: LDA Topic 266

In Topic 266 from Table 3.11, even though ”Wiper Arm Left” and ”Wiper Arm Pair” are associated with similar
items, they are rarely seen together and never with the other two symptoms in this topic.

Figure 3.3 shows the frequency distribution of all the topics. The majority of the topics have very low frequen-
cies and the distribution is very skewed towards 0, with more than 600 topics with a frequency of less than
0.0025.

3.1.3. Conclusions
These example topics show some of the strengths of LDA and its potential in this application, but they also
expose some of the weaknesses it has in this specific context. The main strength of the algorithm is its ease of
use and its general applicability to many situations. However, LDA is not designed for short-text applications,
such as this, and thus fails at generating consistent topics. Going over all the topics, most of them are in the
”good” category, but there were enough ”bad” topics (like 2, 30, and 266). Some topics are unfocused and
others are a mix of multiple repairs with low interpretability. Additionally, even after extensive pre-processing,
about 36% of the 3,500 items were not attached to any topics. All of these drawbacks make LDA not a suitable
enough solution by itself for the topic generation problem.

Let us then expand on the assertions above and discuss the benefits of the LDA algorithm in our application.
The topics generated are mostly good, as they combine items that are seen in the field to be correlated and
retain the engineering meaning of single repair (topics 0, 1, and 559 are examples of this).

The other advantage is the generality of the algorithm. It can be applied with little set-up and if more types of
data get introduced at a later date, the process can be easily extended to accommodate for it.

However, while the majority of the topics have a good engineering meaning, there is still a significant portion
of them that seem to be either the mix of multiple individual repairs or just unfocused and random. This
inconsistency makes it hard to trust the topics generated.
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Figure 3.3: Topics’ Frequencies Distribution

Another major problem is the fact that more than a third of the items are not categorized in any topic according
to the topic-words distribution φ. Even though these items have lower frequency on average, there are plenty
of examples of replaced parts with low frequency but very high impact on the overall cost. For example,
the most expensive part of an electric vehicle is the HV battery. Fortunately, the frequency of HV battery
replacements is relatively low compared to most other replacements, but, due to the high price of these parts,
the cost is very significant and absolutely cannot be ignored if the goal is to have an accurate picture of all
service costs.

Even though the pre-processing of the data was done carefully to avoid removing useful information from
the inputs, it is still an extra step that is not strictly needed. It also adds a point where human supervision is
required and increases the possibility of mistakes.

Another aspect that is not ideal is the fact that increasing the number of topics does not change the outputs
much. This means that LDA believes the 700 topics it generates are close to the ground truth value and
makes the algorithm consistent, however, this also makes it static and not tunable. Looking at the topics
generated, we would like to have more topics that are more distinct, but this is not possible due to the lack
of input parameters that influence the result. It is possible to reduce the number of input topics and this will
generate larger and more aggregate topics, but that does not line up with our goals.

The reasons for most of the problems with LDA are not in the algorithm but in the application. LDA is designed
to be best when documents have a large number of words and multiple topics can be attributed to the same
document. Our input data, however, has very low words per document and there are rarely repeated words.
This results in unfocused and merged topics as the algorithm is not good at separating such sparse data. The
problem of items not being categorized can also be attributed to this, as most of the items have low frequency
and thus the algorithm has trouble figuring out the correlations between them.
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Another major problem with LDA is that it does not make a distinction between parts, corrections, and symp-
toms, treating them all as words. This simplifies the process drastically, but perhaps too much as a lot of
context is lost this way. For example, the majority of repair order jobs are associated with a single symptom
and the relation between a symptom and the actual issue with the car can be thin as the symptoms are se-
lected by the owners and can contain mistakes. On the other hand, the relationship between a correction
code and the underlying issue (topic) is much stronger, as the technician selects the corrections and has to
make sure that they solve the problem. This discrepancy is not an input to the LDA algorithm and thus cannot
be used to generate better topics. The rigidity of the inputs also makes it difficult to adjust the topic gener-
ation towards more meaningful results. Overall LDA performs an alright job in this application, but it can be
improved by considering the differences between Natural Language Processing and our problem domain.

3.2. GSDMM Results
The input data to GSDMMwas the same as for the LDA algorithm, with the pre-processing described in Section
3.1.1. The number of initial topics was chosen to be 700 and Table 3.12 shows why no other experimentation
was done regarding this.

GSDMM is an iterative algorithm that tends to converge to the optimal solution. The process can be, however,
stopped at any step and the algorithm would generate an approximate solution. The run time of the algorithm
on the machine (Lenovo 20Y4 - Intel i7 @2.5GHz, 8 Cores - 32GB of RAM) used to get the results was: 8
hours and 1 minute. Due to its heavy run-time, the algorithm was stopped after 10 iterations. The step-by-step
statistics of the modifications and the run time can be seen in Table 3.12.

Step Items moved # of Clusters
0 652k 700
1 332k 700
2 177k 689
3 139k 342
4 123k 248
5 114k 235
6 109k 235
7 104k 226
8 100k 226
9 97k 222

Table 3.12: GSDMM run time

It is clear that the number of topics generated is much less than 700, so starting with a higher number of
topics would only increase the already high run-time. Since we saw in the LDA section that 700 topics were
not enough to describe the dataset as per our requirements, we expect the 222 topics generated by GSDMM
to also be insufficient. Figure 3.4 shows the distribution of the number of items in each topic clustered by the
GSDMM algorithm.

Example Topics Since GSDMM is a clustering algorithm, the value of φ has to be computed from the
frequency of every item present in every cluster. In the following tables, the φ was substituted with frequency
to be more clear about this relationship. In Table 3.13 and 3.14 the first two topics generated by the algorithm
are shown.

Topic 0 from Table 3.13 seems to be related to various camera-related repairs. This topic is quite focused
on this kind of repairs, but it still combines several individual repairs as can be seen by the relatively low
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Figure 3.4: GSDMM items per topic distribution

Topic 0
Item Type Frequency
Validation Test Drive Correction 0.30
Camera Alerts Symptom 0.24
Autopilot Camera Calibration Symptom 0.21
Forward Camera Pitch Verification Correction 0.19
Forward Camera (Remove & Replace) Correction 0.14
Occupant Camera (Remove & Replace) Correction 0.14
Driver Assistance Issues Symptom 0.12
Low Voltage Circuit Check Correction 0.08
Security Camera Part 0.07

Table 3.13: GSDMM Topic 0

frequencies of all the items.

Topic 1 from Table 3.14 perfectly captures the 12V battery repair with a clear symptom, correction, and parts
replaced.

Most Popular Topics In Table 3.15 and 3.16 the twomost popular topics according to the GSDMM results
are sown.

Topic 22 from Table 3.15 is grouping the majority (60%) of the ”Service Bulletin” repair order jobs. The result
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Topic 1
Item Type Frequency
12V Battery Alert Symptom 0.88
12V Battery (Remove & Replace) Correction 0.88
12V Battery Model S Part 0.78
12V Battery Model X Part 0.14

Table 3.14: GSDMM Topic 1

Topic 22
Item Type Frequency
Service Bulletin Symptom 0.99
Power Strut O-ring Part 0.30
Install Power Strut O-Ring Correction 0.30
Inspect And Update Vehicle Software Correction 0.20
Inspect Secondary Hood Latch Correction 0.07
Inspect Vehicle Software Version Correction 0.06

Table 3.15: GSDMM Topic 22

is analogous to Topic 0, a few similar, but different, repairs clustered together.

Topic 178
Item Type Frequency
Exterior Adjustment - 0.6 Correction 0.35
Exterior Adjustment - 0.4 Correction 0.30
Door difficult to close Symptom 0.13
Exterior Adjustment - 0.2 Correction 0.08
Door Handle Does Not Function Symptom 0.05
Liftgate has poor alignment Symptom 0.05

Table 3.16: GSDMM Topic 178

In Topic 178 from Table 3.16, a lot of different repairs related to door adjustments are combined together.

3.2.1. Conclusions
As the topics shown demonstrate, the GSDMM algorithm is working as intended by the authors, but it is
not suitable for this application. The number of topics is too low to capture the individual repairs as intended.
Additionally, the high run time and the lack of control over the topics make it hard to experiment with to improve
these results.

The low number of topics mainly comes from Rule 1 of the Movie Group Project: the new table as more
students. This rule tends to generate bigger clusters at the cost of precision. Additionally, GSDMM assumes
one topic per document and, while this assumption may hold for most service visits, it probably does not
hold for every single one. This could have caused some confusion in the clustering, combining topics that
otherwise would have been separated.
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The high run time of the algorithm is due to the chosen implementation used for this project. Due to the
lower popularity of the GSDMM algorithm, few implementations are available. The one used is a pure Python
implementation and does not make use of fast numerical libraries like numpy to do the computations.

Much like for the LDA algorithm, it is hard to influence the result by changing the inputs and the lack of tunable
parameters does not help.

Since this algorithm seems to be good at clustering related repairs, it could be used as a pre-processing step
to divide the repair order jobs into subgroups and then another algorithm could be used to extract the final
topics. As interesting as this application might be, it was not experimented with in this project.

3.3. Combine and Split Results
The Combine and Split algorithm was applied to the same data as the LDA and GSDMM in the previous
sections, with te same pre-processing step described in Section 3.1.1. The total run time of the algorithm was
3 min and 12s. The number of topics outputted by the algorithm was 2896.

Of these 2896 topics, 1929 were made up of single items. This means that only a third of the topics were
made up of more than one item and that about 55% of all the items were not assigned to any topic. Table 3.17
shows the distribution over the different item types. As can be easily seen, the majority of the symptoms fall
in the ”Alone in a Topic” category and the total amount is dominated by correction codes.

Item Type Total Alone in a Topic Percentage Alone in a Topic
Symptoms 420 358 85%

Parts 1053 376 36%
Correction Codes 1751 897 51%

Table 3.17: Items not associated to a topic

The other multi-item topics generated by this method were, of course, in line with the requirements as the
rules wouldn’t allow for groupings of items that are not correlated. Examples can be seen in Table 3.18, 3.19,
and 3.20. All these topics represent clear relationships between a part and a correction code, this is exactly
the objective of the algorithm. Most of the topics generated this way are pretty satisfactory.

Topic 1
Item Type
Primary Seal Front Left Door Part
Primary Seal FL (Remove & Replace) Correction

Table 3.18: C&S Topic 1

Topic 2
Item Type
Front Left Door Trim Part
FL Door Trim (Remove & Replace) Correction

Table 3.19: C&S Topic 2

Figure 3.5 shows the distribution of the number of items per topic, it can be seen that, apart from the single-
item topics, the majority of the topics were made up of only 2 items. Most of the 2-item topics were the
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Topic 3
Item Type
Security Camera Part
Occupant Camera (Remove & Replace) Correction

Table 3.20: C&S Topic 3

Figure 3.5: Item counts distribution

combination of a correction code and a part number. Additionally, Figure 3.6 shows the distribution of the
topics’ frequencies.

3.3.1. Conclusions
The algorithm did not perform as well as expected with the majority of the topics being single-items. The
quality of the rest of the topics, however, shows that the approach of looking at the cross frequencies has
some merit.

The reason for the high number of single-item topics is that the algorithm only combines items if it sees high
cross frequencies between them. The symptoms, most of the time, are quite general and associated with a
variety of different items and thus have a low correlation to most items. Similarly, but to a lesser degree, this is
also true for some correction codes. These insights regarding the practical differences between corrections,
parts, and symptoms, inspired the creation of the next algorithm.
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Figure 3.6: Topics’ frequencies distribution

3.4. Correction Based Algorithm Results
Contrary to LDA and GSDMM, the Correction Based Algorithm was very efficient in the computations and
didn’t require any pre-processing of the data to reduce either memory footprint or computation time. The
inputs was thus the full bag-of-words representation of the corpus without any filtering applied. The run time
of the algorithm was (again on a Lenovo 20Y4 - Intel i7 @2.5GHz, 8 Cores - 32GB of RAM): 3 min 20s. The
number of topics outputted by the algorithm was 4093.

Example Topics Due to the lack of pre-processing, the majority of the most frequent topics are made up
of the high frequency, general correction codes such as ”General Diagnosis” or ”No Labor Performed” that
were removed for other algorithms. Still, there are a couple of interesting topics out of the 10 most popular
ones and they are shown in Table 3.21 and 3.22.

Topic 2912
Item Type Frequency
Automated Tire Pressure Check Correction 0.37
Tire Tread Depth Check Correction 0.36
Courtesy Service Symptom 0.26
Courtesy Inspection and top fluids Symptom 0.01

Table 3.21: CBA Topic 2912

Figure 3.2a shows the item counts before any pre-processing is done, it is then expected that the majority of
the topics will have very low frequencies. In fact, out of the 4093 topics, 2115 have less than 10 occurrences.
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Topic 2641
Item Type Frequency
Install Power Strut O-ring Correction 0.33
Service Bulletin Symptom 0.33
Power Strut O-ring Part 0.33

Table 3.22: CBA Topic 2641

Figure 3.7: Topic’s Frequencies Distribution

Figure 3.7 shows the distribution of the topics’ frequencies. In Table 3.23, 3.24, 3.25, and 3.26 some examples
of topics with medium frequencies among the first 100 are shown. All these topics seem reasonable and hold
to further analysis of the data.

Topic 29
Item Type Frequency
Replace all PT sensors Correction 0.30
N/A Symptom 0.24
PT Sensor, High Pressure Part 0.23
PT Sensor, High Pressure Part 0.23

Table 3.23: CBA Topic 26

The topics displayed in Table 3.27, 3.28, and 3.29 are less clearly defined and contain correction codes that
don’t have any other symptom or part associated with.
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Topic 31
Item Type Frequency
Coat Hook (Remove & Replace) Correction 0.53
Model Y Coat Hook (a) Part 0.25
Coat anger Issue Symptom 0.09
Map light missing Symptom 0.05
Model Y Coat Hook (b) Part 0.02
Model Y Coat Hook (c) Part 0.02
Model Y Coat Hook (d) Part 0.02
Model 3 Coat Hook (a) Part 0.01
Model 3 Coat Hook (b) Part 0.01

Table 3.24: CBA Topic 31

Topic 96
Item Type Frequency
Charge Port Door (Remove & Replace) Correction 0.57
Motorized Charge Port Door Part 0.23
Charge port doesn’t open Symptom 0.20

Table 3.25: CBA Topic 96

Topic 100
Item Type Frequency
Replace VCM To Upgrade Correction 0.34
Service Bulletin Symptom 0.33
Tegra VCM Part 0.33

Table 3.26: CBA Topic 100

Topic 102
Item Type Frequency
HV Battery Isolation Inspection Correction 1.0

Table 3.27: CBA Topic 102

Topic 104
Item Type Frequency
Balance FR Tire Correction 1.0

Table 3.28: CBA Topic 104

These correction codes are not often associated with any other parts or symptoms in any significant way. The
frequency of the three examples is relatively low, so with more data it could be that new relations will emerge.
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Topic 128
Item Type Frequency
RL Brake Rotor (Remove & Replace) Correction 1.0

Table 3.29: CBA Topic 128

3.4.1. Conclusions
The results show that this approach is promising for topic generation. The topics on both ends of the frequency
spectrum could be improved, but that is a problem for all algorithms. The main strength of this Correction
Based algorithm is the fact that it has many variables that can be tuned to output better results, something
that is hard for the previously shown algorithms.

For the lower frequency topics, by definitions, there is less data to work with, and thus do not emerge properly
in any algorithm. For the higher frequency topics and items, on the other hand, there is too much data and it
gets mixed with a large variety of other topics and items thus obfuscating the ground true topics.

The benefits of the Correction Based algorithm compared to the ones shown previously are still valid as it
eliminated some of their flaws. This algorithm does not require extensive pre-processing to run, it has fast
computation time, and every item is categorized in at least one topic. This means that the pre-processing step
could be used to improve the results by treating high-frequency and low-frequency items ad hoc, instead of
being a required step to make the algorithm run at all as with LDA. Additionally, the algorithm has many more
parameters that can be tweaked to achieve better performance, perhaps the most easily seen are the values
of the thresholds that get decreased in the looping step.



4
Trend Analysis Results

In this chapter, the results of the trend analysis are presented. First, in Section 4.1 the results for the methods
applied to a full month of service visits are shown. Then, in Section 4.2 the results for a subset of a year
of service visits are shown. Finally, Section 4.2.1 draws some conclusions about the methods and their
application to our data.

4.1. Results for one month of data
The weight function w(x) defined in Section 2.3 can be chosen to be any function of x that is monotonically
increasing until xS . In [5], the following function is proposed:

w(x) = exp

(
− (x− xS)

2

ρ

)
, (4.1)

where ρ is a parameter that can be chosen and shapes the weight function as can be seen in Figure 4.1.

The dataset used for computing the novelty and growing scores was the same that was used for the LDA
algorithm. The repair order jobs were organized based on the day they were open in order to compute the
frequencies of each item over time. Since repairs are far more likely to be opened on a weekday, rather than
during the weekend, a 7-day moving average was applied to the frequencies to smooth out this inconsistency.

In Figure 4.2 all of the topics have been plotted in a 2D graph showing on the x-axis the novelty scores and
on the y-axis the growing scores. The size of the dot represents the frequency of the topic, a bigger dot
corresponds to a higher frequency. The colors are there to help readability and are not tied to any quantity.
The scores in the graph are taken from the last day of data. It can be seen that the majority of the topics have
a novelty score of around 0, the growing scores, however, seem to be more spread out with one clump around
0 and another one around -0.001.

Figure 4.3, shows the data over time for frequency, word novelty, and growing scores for a few selected topics.
Topic 640 has the highest novelty score, Topic 622 has the highest growing score, Topic 341 has a high novelty
and high growing score, and finally, Topic 0 is the first in the sequence and was analyzed in Section 3.1. The
values of the novelty scores and growing scores for the items in the first few days of data are not accurate as
there are fewer data points to compare with. This is why the novelty scores at the beginning jump frequently
between 0 and 1 for example.

52
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Figure 4.1: Shape of the weight function for different values of ρ

In the original application to microblogs, considering daily frequencies is a great way to find trending topics
as the system reacts very quickly to external events. Service visits, on the other hand, are much more slow
to react to the introduction of new issues or the scaling up of old ones. Mistakes introduced in the production
line could take weeks if not months to show up in the field and failures due to environmental conditions (such
as temperature) are as slow to change as the climate itself. With this in mind, it would be useful to see if the
full procedure is suitable to apply to datasets that are significantly longer than a single month.

As explained in Section 3.1 the amount of data for a full month of repairs is already extremely high, collecting
all the data for 6 or more months and processing it all together is not feasible. There are a few options to
mitigate this, for example, it is possible to split the service visits, process them separately and then combine
the results. The split can be done based on the individual months or by categorizing the service visits based
on what items they contain. Alternatively, a subgroup can be selected and the rest ignored, provided that this
subgroup is representative enough of the overall population.

4.2. Results for 1 year of data
To test the process on a longer time frame, data for a full year of ”Service Bulletins” service visits was collected
and analyzed. Service Bulletins are campaigns aimed at solving specific known issues. Only a small percent-
age of the service visits is due to Bulletins so it is possible to collect data for longer periods. Additionally, since
every campaign is aimed at solving a specific issue, the data will consist of naturally coherent groups. Data
was collected for all Service Bulletins from June 1st, 2022 until August 1st, 2023, resulting in 1500 unique
correction codes, and 2,300 unique parts replaced.

The topics were generated with the LDA algorithm with k = 500. To reduce the volatility of the results, the
repair order jobs were agglomerated by week instead of by day thus removing the need for a moving average.
Figure 4.4 shows the novelty scores and growing scores for all the 500 topics, once again the size of the dots
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Figure 4.2: Novelty vs Growing scores
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Figure 4.3: Time domain data for Topic 0 (Top), Topic 341 (Middle-Top), Topic 622 (Middle-Bottom), and Topic 640
(Bottom)
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Figure 4.4: Novelty vs Growing scores for the Service Bulletins

represents the frequency of the topics and the colors are for clarity. The plotted scores refer to the last week
of data.

Figure 4.5 shows the time data for some salient topics. Topic 167 and 145 are both novel and growing while
being some of the most frequent, Topic 473 has a lower frequency, but still displays a high growing score.
Due to the way the scores are computed, higher-frequency topics will be awarded higher scores if the shapes
of the items’ frequencies are the same. It is easy to see from the frequency plots of Figure 4.5 that all three
topics have items with increasing frequencies in the last weeks. In particular, the frequencies of the items in
Topic 473 have been growing since the 40th week and they seem to be plateauing or decreasing at the very
end. This explains the high growing score and the close to 0 novelty score.

These graphs and scores show that extending the analysis to longer periods results in smoother curves and
more interpretable results.

4.2.1. Conclusions
The approach of separating the growing score from the novelty score has proven to be effective since the
scores seem to be independent. Overall, the results look promising and the trends seem to be captured well
by the scores. The results for a 1 year of data, even though restricted to a specific type of repair, show almost
impeccable correspondence with the frequency data. The methods for computing the scores are also very
flexible and many parameters, such as the ρ and the horizon, can be changed to obtain more specific results.
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Figure 4.5: Time domain data for Topic 145 (Top), Topic 167 (Middle), and Topic 473 (Bottom)
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As can be seen in both Figure 4.2 and 4.4, most novelty scores are very close to 0, while the growing scores
are more spread out across the full spectrum. Additionally, there seems to be little correlation between the
two scores, which justifies the separation of them into two different metrics.

The graphs in Figure 4.3 and 4.5 visually show that the correlation between the scores and frequencies.
Looking at the frequencies of the items for all three topics shown in Figure 4.5, we expect high growing
scores towards the end, since the frequencies are all increasing. And that is exactly what we see in Figure
4.4. Additionally, the novelty scores for Topic 145 and 167 should be high due to the sharp increase in the
frequencies over the last few weeks. And indeed, that is also reflected in their novelty scores plotted in 4.4.

The computations of the scores have quite a few parameters that can be tuned to achieve better results. The
ρ parameter in Eq. 4.1 controls the influence of the historic observations, a higher value of ρ pushes the
weights closer to one making the LWLR less ”local”, while a lower value of ρ focuses the linear regression on
the most recent observations. The other major parameter is the horizon S. In combination with ρ, S can be
tuned to encompass more or less observations into the linear regression.
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Conclusion

All the results put together can be seen in Figure 5.1, a screenshot of an interactive Tableau dashboard. The
top left sheet shows the items present in a specific topic. The Count column indicates the number of times the
item has been associated with the topic; the Normalized column shows the with which percentage the item
has been associated with the topic; and the Cost column shows the cost contribution of the item to the parts
cost of the topic.

The topic to be displayed in this sheet can be selected with the drop-down on the top or by selecting a data
point from the other sheets. This makes it very convenient to analyze the data and check out the topics. The
sheet in the middle left shows all the article IDs associated with the repair orders that showed the selected
topic. Article IDs are the outputs of automated diagnostic tools.

The top right sheet is the combination of many metrics. The Tesla column shows the total cost to Tesla for the
topic; the Customer column shows the total cost to the customer for the topic; and the Cost column shows the
total cost for both customer and Tesla. The S, X, 3, Y columns in red show the percentage of cars per model
associated with the topic. Finally, the bottom sheet plots the different components contributing to the overall
cost against the frequency of every topic. These graphs are computed also for the subset of repairs paid by
the customer and the repairs paid by Tesla. The graphs can be swapped with the use of a toggle that is not
visible in Figure 5.1.

Some information in this graphic has been censored for the publishing of this report. The values of the costs
have been normalized to be in the range [0, 1], and the same for all the quantities in the graphs in the bot-
tom sheet. Additionally, exact part numbers and items have been hidden, only showing the systems and
subsystems.

The dashboard described above is a good representation of the service costs and can be used to inspect the
top items contributing to the total costs. Different metrics can be prioritized in different situations depending
on the objective. For example, the people responsible for the supply chain could focus on topics with a high
number of days in service and low FRT, this indicates that most likely the cars were waiting for parts to arrive.
Something that is not shown in the dashboard above is that it is also possible to filter all the topics and keep
only the ones related to specific systems or subsystems. This filter could be used by sub-departments to
prioritize their work.

The dashboard shown in Figure 5.2 is meant to ease the use of the dashboard shown in Figure 5.1. Here, a
specific item can be selected from a drop-down menu on the top right and all the information regarding the
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Figure 5.1: Tableau Dashboard showing most of the information computed in the previous sections combined
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Figure 5.2: Tableau Dashboard showing the topics associated to a selected item with additional information for the articles

item is displayed. On the top is a list of all the topics associated with the item, ordered by highest value, while
on the bottom is the combined description of those topics. This dashboard can be used to quickly assess
specific items or groups of items to then compare with the other dashboards.

The final dashboard presented is possibly the most immediately useful. Figure 5.3 shows the average and
total cost for every article together with their counts. This information is very valuable as the articles are very
directly linked to specific issues. Having a clear sorted list of the most impactful articles to service can be
easily acted upon by focusing efforts on reducing the issues linked to the top articles.

The data for this dashboard has been computed by aggregating parts, FRT, and days in service costs for
every repair order. Then, all the costs for the repair orders were divided among the articles associated with
it. The costs and counts displayed here are once again normalized to be in the range [0, 1] so as to not show
any sensitive information.

The goal of this project was to generate an actionable list of the top cost-impacting items for Service Engineer-
ing and create a system to identify new and growing issues in the field.

Firstly, a way to separate costs by repair type or issue needed to be implemented, and in this project, it
was done through the use of topic generation algorithm borrowed from Natural Language Processing. Two
known topic generation algorithms were tested, Latent Dirichlet Allocation and Gibbs Sampling for the Dirichlet
MultivariateMixtureModel, and were found to be not satisfactory for our application. Then twomore algorithms
designed by the author, the Combine and Split algorithm and the Correction Based algorithm, were introduced
and analyzed. The Correction Based Algorithm was found to produce the most satisfactory results out of all
the algorithms tested.
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Figure 5.3: Tableau Dashboard showing the average and total cost for each article



5.1. Discussion 63

Secondly, a way to access the data produced was needed. In particular, the following data points were the
focus:

• contribution to the cost of a service visit: parts costs, flat rate time, and days in service;
• the division of costs between the customer and Tesla;
• the data of the car configurations;
• distribution of article IDs.

This was achieved with the use of the Tableau software through interactive dashboards such as the ones
displayed in Figures 5.1, 5.2, and 5.3.

Finally, to identify trends in the repairs, a novel approach of computing two scores: a novelty score and a
growing score, was introduced. It was shown in Section 4 that the approach produces results that are in line
with the expectations from the data and it is viable for identifying new and growing issues.

Overall, the approach of using methods from Natural Language Processing in in completely different context
has proven to generate mixed results. On the one hand, the ideas and the structure of the analysis proved to
be useful, but on the other hand, many adjustments to the algorithms needed to be made to achieve decent
results. This is not surprising as the structure of the data used for this project is very different from text-based
data.

5.1. Discussion
While the model and the visualization are useful, they can be improved to generate a more actionable list of
issues. At the moment, the main information used to derive possible improvements comes from looking at the
list of article IDs associated with the topics or at the configurations of the cars. A better interface for navigating
configuration information should be worked on. The display of the Model in separate columns is good, but it
is not scalable for multiple configurations with a lot of options for each.

Another way to gather actionable information is to look at signals and alerts. Data can be collected in the
hours/days/weeks before a failure to get more context. Some general signals are almost always relevant, such
as km driven, ambient temperature, and vehicle speed, but more specific signals can be queried depending on
the type of repair performed. This data could be used to further separate the cars within a topic and recognize
trends.

Of course, the topic generation can also be improved. Here are a few points that can be looked into to improve
the Correction Based Algorithm:

• Some generic and frequent correction codes absorb a large number of items. This results in massive
and unfocused topics. Topics based on very frequent correction codes could be penalized for adding
new items. These correction codes could be marked by hand or with some heuristics to produce better
topics.

• The limits chosen for the threshold t could be optimized generally or chosen depending on the input
dataset.

• More analysis should be done to attribute more fairly the cost of the days in service and FRT. At the
moment it is divided equally between the topics for each repair order. However, some topics require
more time and should take more of the costs.

In general, to improve the utility of the project, iterating with the users should be a priority to see what sort of
information would be the most useful to collect and display. More dashboards could be made to improve the
readability of the data or make the results easier to search or sort. In particular, a new dashboard should be
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made to organize the novelty and growing scores in either 2D form such as Figure 4.4 or in a sorted list as in
the top right sheet of Figure 5.1.
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