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Abstract
DynSem is a domain-specific language for concise specification of the dynamic semantics of program-
ming languages, aimed at rapid experimentation and evolution of language designs. To maintain a
short definition-to-execution cycle, DynSem specifications are meta-interpreted. Meta-interpretation
introduces runtime overhead that is difficult to remove by using interpreter optimization frameworks
such as the Truffle/Graal Java tools; previous work has shown order-of-magnitude improvements from
applying Truffle/Graal to a meta-interpreter, but this is still far slower than what can be achieved
with a language-specific interpreter. In this paper, we show how specifying the meta-interpreter
using scope graphs, which encapsulate static name binding and resolution information, produces
much better optimization results from Truffle/Graal. Furthermore, we identify that JIT compilation
is hindered by large numbers of calls between small polymorphic rules and we introduce rule cloning
to derive larger monomorphic rules at run time as a countermeasure. Our contributions improve
the performance of DynSem-derived interpreters to within an order of magnitude of a handwritten
language-specific interpreter.
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1 Introduction

A language workbench [9, 36] is a computing environment that aims to support the rapid
development of programming languages with a quick turnaround time for language design
experiments. Meeting that goal requires that (a) turning a language design idea into an
executable prototype is easy; (b) the delay between making a change to the language and
starting to execute programs in the revised prototype is short; and (c) the prototype runs
programs reasonably quickly. Moreover, once the language design has stabilized, we will
need a way to run programs at production speed, as defined for the particular language and
application domain.
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Semantics specification languages such as Redex [10], K [30], and DynSem [34] provide
abstractions for directly expressing the operational semantics rules of a language under
design. For example, DynSem supports concise specification based on the implicitly modular
operational semantics approach, which requires mentioning semantic components such as
environments and stores only in rules that actually interact with those components [23, 22].
Such high-level specification languages reduce the effort of defining an object language. But
how best to generate an executable prototype from such a definition?

Since we typically do not need the prototype to run especially fast, one natural approach
is to generate an interpreter for the object language. For example, the original DynSem
implementation [34] generates interpreters in Java. However, this approach requires a
sequence of steps – generating code from the operational semantics definition, compiling
that generated code, starting up a JVM, and running the generated interpreter on an object
language AST – that altogether take on the order of a minute, even for very small language
definitions. This delay inhibits workbench users from incorporating prototype generation
and testing into their design iteration loop.

The standard solution to making a translated language more agile is to interpret it instead.
An interpreter for an interpreter specification language is a meta-interpreter, resulting in
two layers of interpretation: the meta-interpreter reads the AST of a specification and the
AST of an object program, and interprets the rules from the specification, which in turn
interpret the object language AST. While this reduces the code-to-run cycle, it increases the
execution time of object programs by at least an order of magnitude, potentially limiting
the scalability of tests or experiments. So, it seems that we either get slow interpreter
generation or slow meta-interpreter execution. Can we get fast interpreter generation and
fast interpreter execution?

There is reason to hope that we can: trace-based optimization frameworks such as
RPython [4] and partial evaluation frameworks such as Truffle/Graal [38] have been successful
in bringing the benefits of JIT compilation to (suitably instrumented) interpreters. We have
been exploring whether such approaches will also work for meta-interpreters. In prior work [35]
we demonstrated that specializing a meta-interpreter for DynSem using the Truffle/Graal
framework can lead to an order of magnitude speed-up over a naive meta-interpeter. However,
we were curious about whether we could do better still. Can we get close to the performance
of a manual implementation of an object-language interpreter, or even of a production-quality
object-language compiler?

In this paper, we report progress towards this goal. We show that the combination of the
use of a uniform memory model and cloning semantics rules leads to a meta-interpreter for
DynSem with a performance that is within a geometric mean factor of 4.7 of a hand-written
object-language-specific interpreter for a small set of benchmarks on a simple object language.
Both interpreters are implemented using the Truffle AST interpreter framework [40] and run
with the Graal JIT compiler for the Java VM [38], which aggressively inlines stable method
calls into efficient machine code. This work makes the following contributions:

Memory representation using “scopes and frames” : The specifications of Vergu et al. [35]
use environments for the representation of memory (environment and store) as is common
in dynamic semantics specifications. However, this memory representation is language-
specific and has high performance overhead. In this paper we use the “scopes and
frames” approach [28], a uniform (language parametric) model for the representation of
memory in dynamic semantics specifications based on scope graphs [25, 32]. By mapping
frames onto Truffle’s Object Storage Model, we can piggy-back on the optimizations for
that representation.
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Rule cloning: The units of execution in a DynSem specification are reduction rules for
language constructs. Since the same rule is used for all occurrences of a language construct
in a program, the specializer considers them as polymorphic, with limited specialization
as result. By cloning rules for each call site, rules become monomorphic, allowing Graal
to inline them.
Evaluation: We have evaluated the approach using the Tiger language [2]. We compare
the performance of three variants of DynSem specifications for Tiger and a Tiger-specific
interpreter implemented in Java, all running on the Graal VM. The variants compare
memory representation (environments vs scopes-and-frames) and inlining vs not inlining.
The results suggest that this is a viable approach, with performance of meta-interpretation
using inlining and scopes-and-frames within an order of magnitude of the language-
specific interpreter.

Outline. We proceed as follows. In the next section, we describe the DynSem specification
language and review the Truffle/Graal framework. In Section 3 we discuss the design of
the (hybrid) meta-interpreter. In Section 4 we review the “scopes-and-frames” approach,
demonstrate its application in DynSem specifications, and discuss the mapping of frames
to Truffle’s Object Storage Model. In Section 5 we discuss the design of rule cloning in the
meta-interpreter driven by a light-weight binding time analysis. In Section 6 we present the
set-up of the evaluation experiment and discuss the results. In Section 7 we discuss related
and future work.

2 Background

In this section we discuss the background on the DynSem specification language and the
Truffle and Graal framework.

2.1 DynSem
DynSem [34] is a meta-DSL for specifying the dynamic semantics of programming languages.
It is included in the Spoofax Language Workbench [17] and is a part of a larger effort to
derive programming environments from high-level specifications [36]. In DynSem, programs
are represented as terms and program execution is modeled as reduction of program terms
to value terms. We illustrate the key concepts of DynSem with the example in Figure 1.

Signatures. The structure of terms is defined by means of an algebraic signature, which
defines the sorts (types) of terms, term constructors, typed reduction arrows, and semantic
components. Figure 1a illustrates these concepts for a subset of the term signatures of
Tiger [2]. Tiger is a simple programming language originally invented for teaching about
compilers; it is a statically typed language and has let bindings, functions, records, control-flow
constructs and arrays. Figure 1a declares two sorts of terms: Exp for program expressions,
and Val for value terms. A constructor declaration defines the arity and types of terms that a
constructor can be applied to. For example, the Plus constructor is used to construct terms
of the form Plus(e1, e2) where the subterms e1 and e2 are terms of sort Exp. Note that
just like program expressions, value terms are represented by a sum type to represent different
kinds of values, unified in the Val sort. The example defines integer and closure values.

An arrow defines the source and target sort of a reduction. For example, the Exp −→ Val

arrow states that Exp terms can be reduced to Val terms using the −→ arrow. Semantic
components are used to represent the run-time state of programs. In the example, semantic
components for environments E (mapping identifiers to locations) and heaps (stores) H

(mapping locations to values) are defined.

ECOOP 2019
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signature
sorts Exp Val
constructors
Plus: Exp * Exp→ Exp
Call: Id * Exp→ Exp
IntV: Int→ Val
ClosureV: Id * Exp * E→ Val

arrows
Exp−→ Val

components
E : Map(Id, Int)
H : Map(Int, Val)

(a)

E ` e1 :: H1−→ IntV(i) :: H2;
E ` e2 :: H2−→ IntV(j) :: H3;
IntV(addI(i, j))⇒ v
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
E ` Plus(e1, e2) :: H1−→ v :: H3

(b)

e1−→ IntV(i); e2−→ IntV(j)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Plus(e1, e2)−→ IntV(addI(i, j))

(c)

readVar(f)−→ ClosureV(arg, efun, E);
e−→ varg;
E {arg 7→ varg, E} ` e−→ v
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Call(f, e)−→ v

(d)

signature
arrows
readVar(String) −→ Val
lookup(String) −→ Int
read(Addr) −→ Val
write(Addr, Val)−→ Val
allocate(Val) −→ Int

(e)

readVar(x)−→ read(lookup(x))

E ` lookup(x)−→ E[x]

read(a) :: H−→ H[a]

write(a, v)::H−→ v :: H {a 7→ v,H}

fresh⇒ a; write(a, v)−→ _
−−−−−−−−−−−−−−−−−−−−−−−−−−−
allocate(v)−→ a

(f)

Figure 1 (a) Algebraic term signatures in DynSem. (b) Fully elaborated rule for arithmetic
addition and (c) its concise equivalent with implicit propagation of semantic components. (d)
Semantics of a unary function call. (e) Signatures of auxiliary meta-functions for environment and
store operations and (f) their corresponding rules.

DynSem specifications are statically checked with respect to signatures. The checker
ensures that term patterns in rules are consistent with constructor declarations and that
arrow arguments are of the right sort.

Rules. Reduction rules define the dynamic semantics of programs by reduction of program
terms to value terms. A rule has the form
prem1; prem2; ...
−−−−−−−−−−−−−−−−−
lhs−→ rhs

where the conclusion is an arrow declared in the signature. It defines that a term matching lhs
is reduced to the instantiation of term rhs, provided that the premises prem1; prem2; ...

succeed. Premises are either recursive arrow applications or pattern matches. An arrow
application premise lhs −→ rhs instantiates the pattern lhs with the substitutions for
meta-variables from the left-hand side of the conclusion or from earlier premises, reduces
it with the arrow, and matches the result against the rhs pattern. A pattern matching
premise lhs ⇒ rhs instantiates the pattern lhs, which may possible involve application of
meta-functions (see below), and matches it to the pattern rhs. Arrows are usually defined
in a big-step style [16]. That is, a rule reduces a program term to a value term in one step,
using recursive invocation of arrows in the premises. This is illustrated in Figure 1c, which
defines the reduction of Plus(e1, e2) terms with the −→ arrow by completely reducing
the argument terms to value terms. The right-hand side of the conclusion constructs the
resulting value term by using the addI meta-function.
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Semantic Components. The rule in Figure 1c does not account for the evaluation of an
expression in the context of an environment binding variables in scope and a heap storing
values with longer lifetimes. DynSem supports the propagation of such contextual information
by means of so called semantic components, which are distinguished in read-only components
and read-write components. A read-only component is mentioned to the left of the ` symbol,
and propagates downwards (environment semantics). A read-write component is mentioned
after the :: symbol and is threaded through the evaluation of the relation.

The rule in Figure 1b propagates semantic components E and H through the evaluation
of the sub-expressions of Plus. Semantic component E (representing a variable environment)
propagates as a read-only semantic component, while component H (representing a store) is
threaded through the computation and returned from the rule.

A rule only has to explicitly mention those semantic components that it modifies; other
components can be left implicit. The rule of Figure 1b modifies neither environment nor store
and both may therefore be left implicit, as shown in Figure 1c. A static analysis infers which
semantic components must be propagated and informs a source-to-source transformation
that makes all components explicit.

Meta-Functions. DynSem allows standalone units of semantics to be separately defined as
meta-functions. This supports reuse across rules and promotes concise rules. The semantics
of a unary function call given in Figure 1d illustrate the use of meta-functions in DynSem.

Meta-functions readVar, lookup, read, etc. with their signatures and semantics of
Figure 1e and Figure 1f, respectively, provide a library of memory operations. The operations
are used, for example, to lookup the heap address of a variable in the environment by its
name, and to read the value associated with this address from the heap. The readVar

combines these two operations in a single meta-function which is used, for example, in the
Call rule of Figure 1d to retrieve the function closure.

2.2 Truffle and Graal
We use Truffle [40] and Graal [38] as runtime frameworks for the execution of DynSem
specifications. For a definitive guide we refer the reader to the Truffle and Graal literature [40,
39, 14, 38]. Throughout this section it is useful to keep in mind that a runtime derived
from a DynSem specification is an interpreter of DynSem specifications that consumes an
object-language specification and a program to execute, as depicted in the architecture
overview Figure 6. We provide an overview of this in Section 3.

Truffle Interpreters. Truffle [40] is a Java framework for implementing high-performance
interpreters, in particular interpreters for dynamic languages. Truffle interpreters are AST
interpreters. In an AST interpreter the syntactic structure of the program determines the
organization of the interpreter. Each AST node implements the semantics of the language
construct it represents. In a typical Truffle interpreter the parser instantiates the AST of
the interpreter given a particular program. Execution in the interpreter flows downwards in
the tree and results flow upwards. Truffle provides the logistics for implementing interpreter
nodes and maintaining the AST.

Figure 2 shows the skeletons of the two base classes that provide the basis for implementing
language-specific nodes. A Node is the basic building block of a Truffle interpreter. The
language developer extends the Node class to give semantics to language constructs. The
Node class provides facilities for constructing and modifying trees of nodes and for traversing
the tree, downwards and upwards. For example, a node for binary addition has two children

ECOOP 2019
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abstract class Node ... {
Node parent;

Node getParent() {
return parent;

}

RootNode getRootNode() {
Node rootNode = this;
while (rootNode.getParent() != null) {
rootNode = rootNode.getParent();

}
return (RootNode) rootNode;

}

Node replace(Node newNode){ ... }

Node adopt(Node child) { ... }
}

abstract class RootNode ... {
abstract Object execute(VirtualFrame f);

}

Figure 2 Skeletons of Truffle Node and RootNode classes and logistics for traversing the AST
upwards.

nodes, one for each of its subexpressions, and provides an execution method that performs
the addition and returns the result. If the implemented language has variables, the execute
method is parameterized with an environment-like data structure, called a Frame, that
contains the variables in scope at that location of the program.

An interpreter node without a parent is a RootNode. Each tree of interpreter nodes has
a root, which is an entry point for execution and typically corresponds to a function in the
object program. Multiple interpreter trees exist at run time, typically one for each function
of a program. Each root node is parameterized by a frame descriptor defining the structure
of the Frame that is propagated downwards during evaluation. For example, if a root node
corresponds to a function, its frame descriptor defines the variables bound in the body of the
function. The Truffle runtime uses the frame descriptor to instantiate a frame to be used
when calling the function.

Specializing Truffle Interpreters. Truffle interpreters are particularly suited to dynamic
languages because the AST structure of the interpreter allows each node to self-optimize
based on runtime information. The core idea is that the interpreter AST evolves at run
time to a more efficient implementation based on runtime values. For example, the plus
operator of a dynamic language may embed semantics for both arithmetic addition and
string concatenation, and at runtime specialize itself to one of these two semantics based on
the (dynamic) values of its operands. A node may replace itself by a more specific variant by
using the replace method, which updates the node’s parent to point to the new variant.
Alternatively, a node may decide to replace one of its children by a more efficient one, or adopt
a new child altogether, by using the adopt method. Truffle provides a set of class and method
annotations, collectively known as the Truffle DSL [14], that reduce the implementation effort
(and boilerplate) of developing node specializations. The annotations drive a (compile-time)
code generator which emits highly-efficient implementations of behavior specialization and
inline caching.
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The Graal JIT Compiler. Graal [38] is a high-performance JIT compiler for the Java VM
with powerful partial evaluation and component inlining phases. Graal aggressively inlines
stable method calls in order to generate efficient machine code. Runtime decisions about
what calls are inlined are based on the outcome of a cost-benefit analysis. Truffle and Graal
are designed to work together to obtain JIT-compiled Truffle interpreters with little effort.
Graal treats each Truffle AST root node as a single compilation unit, i.e. Graal compiles
root nodes individually. Once a Truffle interpreter tree stabilizes (i.e. node rewriting has
stopped) Graal inlines all method calls of the nodes which are under a common root and
emits machine code for that tree. A Frame that is never stored in a class field can remain
virtualized – VirtualFrame. Since all the execution methods are inlined, the virtual frame
can be eliminated, resulting in highly efficient machine code. If, after compilation, a node
has to be re-specialized, for example due to a specialization that is no longer valid, the
VM transfers execution of the entire executing tree back to interpreted code, disregards the
machine code, and the tree is recompiled to machine code once its structure has stabilized
again. The size of a tree therefore greatly affects the cost-benefit analysis of JIT compilation
for that subtree. As we discuss in Sections 5 and 6, small trees compile cheaply but with
little benefit, whereas JIT-compiling large trees delivers better peak performance but at an
increased risk of costly recompilation.

3 Meta-Interpreters

The DynSem runtime of Vergu et al. [35] is a meta-interpreter, i.e. it interprets dynamic
semantics specifications of a language. Figure 3 gives a macroscopic view of the components at
play in meta-interpretation. A DynSem specification undergoes lightweight source-to-source
transformations (syntactic desugaring, semantic component explication, factorization, etc.)
to make it amenable to interpretation. The meta-interpreter enacts the desugared DynSem
specification with respect to a program’s AST in order to evaluate the program. Each
rule of the specification is loaded in the meta-interpreter as a callable function. The body
of a function is made up of meta-interpreter nodes that implement the semantics of the
DynSem instructions used within the rule. This results in two layers of interpretation: the
meta-interpreter interprets the rules of the specification which in turn interpret the object
language AST.

While meta-interpretation reduces the code-to-run cycle, it increases the execution time
of object programs, potentially limiting the scalability of tests or experiments. So, it seems
that we either get slow interpreter generation or slow interpreter execution. Motivated by the
goal of having fast interpreter generation and fast interpreter execution, the DynSem meta-
interpreter is implemented as a Truffle [40] AST interpreter and executes on an Oracle Graal
VM [38]. Much of the original meta-interpretation research [35] is focused on determining an
interpreter morphology and providing runtime information to the Graal JIT such that it can
remove the meta-interpreter layer.

Hybrid Meta-interpretation. Because meta-interpretation is slowed down by interpretation
of generic term operations (pattern matching and construction), and because term operations
for an object language are specific to that language, the DynSem meta-interpreter replaces
generic term operations with statically generated language-specific term operations, which
are derived from the DynSem specification of the language. Vergu et al. named the
combination of specification meta-interpretation and generated term operations hybrid

ECOOP 2019



4:8 Scopes and Frames Improve Meta-Interpreter Specialization

DynSem
specification

Program

Desugared
specification

Program AST

Meta-
interpreter Result

Static Runtime

Figure 3 Overview of meta-interpretation.

meta-interpretation [35]. The original hybrid meta-interpreter starts up with generic term
operations that immediately specialize themselves to the language-specific operation at their
first execution, which is essentially a form of local JIT compilation.

Meta-interpreter Modifications. We apply the improvements presented in this paper to
the DynSem hybrid meta-interpreter with two small modifications. First, we replace the rule
dispatch mechanism by a simple rule call mechanism with an inline cache. The simplified
rule call mechanism looks up the callee rule in the registry of rules and invokes it. The
inline cache allows the call mechanism to remember callee rules so that the lookup is avoided
in future calls. We chose to make this simplifying refactoring to allow a redesign of the
rule call specialization mechanism, as we will show in Section 5. Second, we refactored the
meta-interpreter to directly use the generated term operations instead of lazily replacing
generic ones at run time. At best this leads to one less iteration required until warmup, but
it simplifies interpreter initialization. The change does not have an effect after warmup and
thus has no impact on the evaluation of the contributions of this paper.

Limitations of Name Resolution with Maps. In the original DynSem work [34], typical
language specifications model name binding, resolution and program memory using ab-
stractions for environments (mapping names to addresses) and stores (mapping addresses
to values). Thus, for example, every reference to an object program variable involves a
string-based lookup of the variable name in an environment data structure. Environments
and stores are themselves implemented using ordinary DynSem reduction rules on top of a
built-in type of persistent (i.e. functional) maps. The approach has previously been identified
as a DynSem performance bottleneck [35]. The performance penalty is due in the first
instance to the inherent cost of (hash-)map operations. But a more fundamental issue is
that the JIT compiler cannot see the algorithms of the underlying maps, which means it
cannot comprehend the operation of environments, and hence cannot comprehend name
resolution in object programs. Observing and optimizing name resolution is, however, an
essential ingredient in JIT compilation. Moreover, to write an environment-based DynSem
specification, a language developer must define name binding and resolution in the dynamic
semantics. Typically, they do this by writing higher-level DynSem meta-functions, such as
variable lookup, that abstract from the low-level details of environment manipulation and
encapsulate the object language’s name resolution policy (Section 2.1). Unfortunately, such
meta-functions are typically language-specific, making them difficult to reuse.
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(a)
s0

s2y

P

s1

P

x

x

y

scope

declaration

reference

linkl

(b)

scope

slot val

link

frame

ref

l
s0

s1

x 1

P

s2

y 2

P

x y

(c)

Figure 4 (a) Program with nested let bindings. The labelled box surrounding a code fragment
indicates the scope the fragment resides in. Declarations and references for the same name are
shown in the same color. (b) The scope graph describing the name binding structure of the program.
Colors highlight name resolution paths from references to declarations. (c) Heap of frames at the
end of program evaluation.

4 Scopes and Frames

To address the performance issues of the use of maps for the representation of name binding,
we adopt the scopes-and-frames approach of Poulsen et al. [28]. In this section, we provide
an overview of the previous work on name resolution with scope graphs and frames to
represent scopes at run time. Then we discuss the extension of DynSem with support for
scopes-and-frames and its implementation in terms of Truffle’s Object Storage Model.

4.1 Name Resolution with Scope Graphs

Our approach is based on the theoretical framework of a resolved scope graph [25], which is a
distillation of a program’s name-binding structure that supports name resolution in a mostly
language-independent way. Consider the small program of Figure 4a and its corresponding
resolved scope graph in Figure 4b. Scopes are code regions that behave uniformly with
respect to name binding and resolution. They are marked in code with labelled boxes and
are shown in the scope graph as named circles. Scopes contain declarations, shown as named
boxes with an incoming arrow, and references, shown as named boxes with an outgoing arrow.
Visibility inclusion between scopes is shown as a labelled directed arrow between scopes. For
example, the fact that declarations of the outer let are visible in the inner let is indicated
by the arrow from scope s2 to s1. Arrow labels characterize visibility inclusion relationships.
In this case the P label indicates a lexical parent inclusion relationship. Resolving a name
involves determining a path in the graph from the scope containing the name reference to
the scope containing its declaration. The reference y resolves to the local declaration by the
red path in the scope graph, while reference x resolves to the declaration in the parent scope
by the blue path. The name resolution of a program is the set of paths which uniquely relate
each reference to a declaration.

ECOOP 2019
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(a)

s0

s2

f

Ps1

P

x

s3

P

f

n

nnn
x

associated
scope

f

(b)

s0

s1

x 1

P

s2

f Fn

P

s3

n 1

s3

n 0

P
P

xnnn

f

f xnnn
f

(c)

Figure 5 (a) Program with nested let bindings and a recursive function. (b) The scope graph
describing the name binding structure of the program. (c) Heap of frames at the end of the evaluation
of the program.

The example in Figure 5 shows how function scopes are modeled using scope graphs.
These examples demonstrate examples of lexical scope, in which declarations in inner scopes
shadow declarations in outer scopes. The Tiger language, which is used for the experiments
in this paper, also has records and recursive type definitions. However, scope graphs are
not limited to these patterns, but rather support the formalization of a wide range of
name binding patterns, including variations of let bindings (sequential, parallel, recursive),
modules with (recursive and transitive) imports, classes with inheritance, packages [25, 24],
type-dependent name resolution [32], and structural and generic types [33]. The framework
allows modeling a variety of visibility policies by configuring path specificity and path
well-formedness predicates [32].

Frames. Poulsen et al. [28] provide the theoretical foundation for using a resolved scope
graph to describe the layout of frames in a heap and the semantics of the base memory
operations: allocation, lookup, access, and update. Declarations and references of a scope
provide a recipe for constructing a memory frame at run time. A heap of frames, for example
that of Figure 4c, results from program evaluation. A new frame is created when evaluation
enters a new scope. The structure of the frame is determined by the declarations and
references in its describing scope, which become slots of the frame. Newly created frames are
linked to existing frames in accordance to their scope links. In the frame heap, references are
related to slots by the name resolution path from the scope graph. Resolving a reference to
a slot is performed by traversing frame links in accordance with the path. A new frame is
created each time evaluation enters a scope. We illustrate this in the program of Figure 5,
where the function body is evaluated in a fresh frame for each function call. Note that for a
recursive function like this, multiple frames for a single scope can exist simultaneously.

Architecture. In the rest of this section we describe how we incorporate scopes-and-frames
into DynSem. Figure 6 gives an architectural overview of the approach. The static semantics
of the object language is described in the constraint-based NaBL2 [32] language. Notably, it
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Figure 6 Architecture of the approach: static analysis on a program’s AST via constraints
produces an AST with explicit name and type information, which is the input for interpretation in
accordance with a dynamic semantics specification.

uses scope graphs to represent the binding structure of the programs. The result of type
checking with an NaBL2 specification is an annotated AST and a resolved scope graph. The
DynSem specification for the object language uses frames based on scopes in the scope graph
to represent memory and paths in the scope graph to resolve names to declarations in the
frame heap.

4.2 Static Semantics with NaBL2

The scope graph for a program is constructed during type checking. The type checker derived
from an NaBL2 specification generates constraints for an object program, which are solved
by a language-independent constraint solver. We give a brief introduction to static semantics
specifications with NaBL2 [32] using the rules in the left column of Figure 8 for the subset
of the Tiger language used in the examples in Figure 4 and Figure 5. The signature of the
abstract syntax of this subset is defined in Figure 7. (For the sake of conciseness of the
presentation we have simplified the constructs in the subset to unary instead of n-ary let
bindings and function definitions and calls. Furthermore, we use type equality instead of
subtyping. For the experiments we have used the full Tiger language.)

An NaBL2 rule of the form Srt[[C(e1, e2, . . .) ^ (s) : t ]]:= C. specifies that the
(abstract syntax of) language construct C(e1, e2, . . .) in the context of scope s has type t
provided that the constraint C is satisfied. The constraint in the body of a rule is typically
a conjunction of multiple simpler constraints. Constraints include recursive invocations
Srt[[C(e1, e2, . . .) ^ (s) : t ]] of constraint rules on subterms, unification constraints
on constraint variables, and scope graph constraints, which support the introduction of a
new scope (new s), the definition of a scope edge (s P−→s’), the definition of a declaration
in a scope (o ← s), the definition of a reference in a scope (o → s), the association of a
type with an occurrence (o : t), and the resolution of a reference to a declaration (o 7→d).
Here o denotes an occurrence NS{x} consisting of a namespace NS and a concrete occurrence
of a name x in a program. The NaBL2 constraint @l.scopeOf := s’ attaches the newly
created scope s’ as a property on the program term to make it available to the runtime.

For example, the rule for Let introduces a new scope s_let, links it to the parent
scope, and passes it on as the binding scope for the declaration and as the scope of its
body expression. The rule for VarDec introduces the variable x as a bound variable in the
binding scope s’ and associates the type of the initializer expression with it. The rule for
Var declares x as a reference in the scope of the variable, resolves the name to a declaration
d, and retrieves the associated type ty. The rule for FunDec creates a new scope s_fun for
the body of the function and declares the formal parameter x as a declaration in that scope.
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signature
sorts Id
sorts Dec constructors
VarDec : Id * Type * Exp→ Dec
FunDec : Id * Id * Type * Type * Exp→ Dec

sorts Exp constructors
Let : Dec * Exp→ Exp
Var : Id→ Exp
Call : Id * Exp→ Exp
Plus : Exp * Exp→ Exp
Minus : Exp * Exp→ Exp

Figure 7 Signature for an adapted subset of Tiger.

Exp[[ l@Let(dec, e) ^ (s) : ty ]] :=

new s_let, s_let
P−→ s,

@l.scopeOf := s_let,
Dec[[ dec ^ (s_let, s) ]],
Exp[[ e ^ (s_let) : ty ]].

newframe(scopeOfTerm(l))⇒ F’;
link(F’, L(P(), F)⇒ _;
Fs (F’, F) ` dec−→ _;
F’ ` e−→ v
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F ` l@Let(dec, e)−→ v

Dec[[ VarDec(x, t, e) ^ (s’, s) ]]:=
Tp[[ t ^ (s) : ty ]],
Exp[[ e ^ (s) : ty ]],
Var{x}← s’, Var{x} : ty.

F ` e−→ v2;
set(F’, x, v2)⇒ _
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fs (F’, F) ` VarDec(x, _, e)−→ U()

Exp[[ Var(x) ^ (s) : ty ]] :=
Var{x}→ s, Var{x} 7→ d, d : ty.

F ` Var(x)−→ get(lookup(F, x))

Dec[[ d@FunDec(f, x, t1, t2, e) ^ (s’, s) ]]:=

new s_fun, s_fun
P−→ s’,

@d.scopeOf := s_fun,
Tp[[ t1 ^ (s) : ty1 ]],
Tp[[ t2 ^ (s) : ty2 ]],
Var{x}← s_fun, Var{x} : ty1,
Exp[[ e ^ (s_fun) : ty2 ]],
Var{f}← s’, Var{f} : FUN(ty1, ty2).

FunV(F, scopeOfTerm(d), arg, e)⇒ clos;
set(F, f, clos)⇒ _
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fs (F’, F) ` d@FunDec(f, arg, _, e)−→ U()

Exp[[ Call(f, e) ^ (s) : ty2 ]]:=
Var{f}→ s, Var{f} 7→ d, d : FUN(ty1, ty2),
Exp[[ e ^ (s) : ty1 ]].

get(lookup(F, f))⇒
FunV(Fp, s_fun, x, e_fun);

link(newframe(s_fun), L(P(), Fp))⇒ Fcall;
F ` e−→ varg;
set(Fcall, x, varg)⇒ _;
Fcall ` e_fun−→ v
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F ` Call(f, e)−→ v

Exp[[ Plus(e1, e2) ^ (s) : INT() ]]:=
Exp[[ e1 ^ (s) : INT() ]],
Exp[[ e2 ^ (s): INT() ]].

e1−→ IntV(i1); e2−→ IntV(i2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Plus(e1, e2)−→ IntV(plusI(i1, i2))

Exp[[ Minus(e1, e2) ^ (s) : INT() ]]:=
Exp[[ e1 ^ (s) : INT() ]],
Exp[[ e2 ^ (s): INT() ]].

e1−→ IntV(i1); e2−→ IntV(i2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Minus(e1, e2)−→ IntV(subI(i1, i2))

Figure 8 Left: static semantics in NaBL2 for an adapted subset of Tiger. Right: corresponding
dynamic semantics in DynSem using scopes and frames.

Note that the rule for VarDec analyzes the initializer expression using scope s, which is
the outer scope of the corresponding Let. This entails that the variable declaration cannot
be recursive (refer to itself). On the other hand, the rule for FunDec makes the scope s’ in
which the function is added as declaration, a parent scope s_fun, the scope of the body of
the function. This entails that functions can be recursive.
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sorts Val Frame Addr Occurrence

components
F : Frame

sorts Link constructors
L: Label * Frame→ Link

arrows
newframe(Scope)−→ Frame
link(Frame, Link)−→ Frame
lookup(Frame, Occurrence)−→ Addr
get(Addr)−→ Val
get(Frame, Occurrence)−→ Val
set(Addr, Val)−→ Val
set(Frame, Occurrence, Val)−→ Val

Figure 9 DynSem API for frame operations.

4.3 DynSem with Scopes-and-Frames
Frame-based DynSem specifications rely on primitive frame operations provided as a language-
independent library. Figure 9 declares the most important frame operations but elides their
implementation. We discuss their semantics here; a reference dynamic semantics is given by
Poulsen et al. [28].

The collection of linked frames is called the heap. The newframe operation instantiates a
new frame in the heap given a Scope, which is a reference to a scope in the scope graph.
This creates the required frame and frame slots for declarations and references but does not
link the new frame. The link operation adds a link to a given frame. All links are labelled
as in the scope graph. An Occurrence is a unique identification of the use of a name at
a specific location in the program. Static name analysis transforms the program AST to
replace each name occurrence, be it a declaration or a reference, with a unique identifier. Due
to its uniqueness each occurrence is in precisely one scope. Given a reference occurrence and
a frame, the lookup operation traverses the heap from the given frame to the frame holding
a slot for the declaration occurrence by using the statically computed name resolution path.
A lookup result is an Address specifically identifying a slot in a frame. Operations get and
set read and update slots, respectively. Both operations come in a basic form operating on
an address, and in a form directly operating on a frame and a slot.

Frame operations provide the building blocks for defining frame-based dynamic semantics
specifications. The right column of Figure 8 shows the dynamic semantics in DynSem for
the subset of Tiger discussed above. Each DynSem rule is listed next to the NaBL2 rule for
the same construct. The binding in the DynSem rules follows the static semantics. Where
the NaBL2 rule uses a scope, the DynSem rule uses a corresponding frame. Where the
NaBL2 predicate is indexed by a scope (or scopes), the DynSem arrow is indexed by a
corresponding frame (or frames). Thus, the language constructs are evaluated with the
Fs (Frame, Frame) `Dec −→ Unit and F `Exp −→ Val arrows.

Where the NaBL2 rule creates a new scope, the DynSem rule creates a corresponding
frame. There is some choice in the decision when to create a frame for a scope. For example,
in the case of a Let, the frame is created as soon as the construct is evaluated. (Note
that the scope is obtained from the NaBL2 scopeOf AST property, which is read using
scopeOfTerm operator.) However, the evaluation rule for a function declaration does not
create an instantiation of the scope of the function. Rather, a closure (FunV) is created that
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records the scope and the parent frame (F) of the function declaration. Only evaluation of
the corresponding function call creates the function call frame and links it to the parent
frame from the closure.

Where the NaBL2 rule declares a name, a DynSem rule assigns a value to the corresponding
slot. For example, the VarDec rule assigns the value of the initializer expression to the slot
for the variable in the binding frame. In the case of a function, the assignment of the value
of the actual parameter is only done once the frame is created by the function call.

Where the NaBL2 rule resolves a name, the DynSem rule uses lookup to find the
corresponding slot, using the path obtained from resolving the name in the scope graph. For
example, the Var rule looks up the address of the slot for the variable and gets the value
stored there. Similarly, the Call rule looks up the address of the function name and gets the
closure stored there.

The systematic correspondence between static and dynamic name binding exhibited by
the rules in Figure 8 extends to all name binding patterns covered by scope graphs. The Tiger
language used for the evaluation of this paper has n-ary sequential let bindings, mutually
recursive function declarations, type declarations, (recursive) record types, and arrays. The
scope of a record describes the layout of its fields. A record instance is a frame derived from
record’s scope and holds field values. Record instantiation involves retrieving the scope of
the record and creating a new frame from it.

4.4 Native Library for Scopes-and-Frames
A resolved scope graph is the result of static name and type analysis; once created, the graph
and all the scopes it describes remain constant at run time. Thus, all frames created for a
given scope will have the same structure, and the edges between frames follow the pattern
fixed by scope graph edges. For example, a particular local variable reference in a program
will always have the same name resolution path and will always identify the same slot in its
declaration frame. This means that at run time we can partially evaluate a variable lookup
to a number of frame link traversals and an offset in a declaration frame, similar to the way
an optimizing compiler would optimize lookups statically.

The implementation strategy presented in this section is designed to allow the JIT
compiler of the hosting VM (an Oracle Graal VM) to observe that frame structure is constant
and to perform optimizations based on this observation. Our approach is to provide a Java
implementation of the scopes and frames API of Figure 9, to be used in DynSem specifications.
The library implements language-independent optimizations on frame operations which any
language with a frame-based DynSem specification can benefit from, out of the box.

Object Storage Model. Our implementation choice is to model scopes and frames using the
Truffle Object Storage Model (OSM) [37] and to implement scope and frame operations on
this model. The OSM was designed as a generic framework for modeling memory in languages
with dynamic name binding and typing. In particular the OSM provides a framework for
modeling objects in memory that undergo shape changes, similar to objects in prototype-
based languages such as Javascript. Truffle and Graal have special knowledge of the classes
that make up the OSM and can perform optimizations on memory allocation and operations.
Applying the OSM to a scope graph, which is by definition fixed at run time, is akin to
applying it to its ideal corner case: all shapes of all objects are constant. It is however
possible that the OSM introduces a certain amount of overhead that persists even in this
ideal situation. As an alternative implementation strategy, one could map a scope to a Truffle
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Figure 10 Components of a scope graph.

FrameDescriptor and a heap frame to a VirtualFrame. However, this mapping is intricate
and would require all linked frames to be materialized in order to support frame linking. It
is our understanding that materialized frames are slower than frames on the OSM.

We give a brief overview of the mapping of scopes and frames to the OSM. The OSM
has three basic building blocks: objects, shapes and properties. A shape is a manifest of
the properties of a family of objects and how they are laid out, akin to a prototype for
an object or a class for an instance object. Shapes act as both descriptors for objects and
factories for objects. A shape can be used to check whether a given object conforms to it, to
retrieve properties of the object and to create new objects of that shape. A property uniquely
identifies a slot and provides additional metadata to the JIT, such as whether the slot is
mutable, nullable, and the type of values that it will store. The metadata informs the shape
as to how the storage area for an object is to be constructed. Additionally, a property of a
shape is the most efficient way to read or write the slot it identifies in an object of that shape.
A property can therefore be seen as both a slot descriptor and a slot offset into an object.

Scope Graphs on OSM. Figure 10 shows the components in the makeup of a scope graph.
We model them using the Truffle OSM. Declarations of layout interfaces inform the Truffle
DSL to generate their implementations. A scope graph consists of scopes, declarations and
references. A name resolution complements the scope graph with resolution paths from
references to declarations. Paths start at the reference scope and end at the declaration scope.
We use occurrences to uniquely identify declarations and references, and scope identifiers
to uniquely identify scopes. Scope identifiers and occurrences are the keys to associative
arrays maintained by the scope graph and are used to access detailed data. Note that we
store scope graph data in a flattened representation; it is more efficient to look up scopes,
declarations and references in flat associative maps than to search in graph-like structures. In
the implementation, the associative arrays are instances of DynamicObject from the Truffle
OSM. This allows Graal to optimize allocations and lookups, and gives us a set of tools
for efficient access. Occurrence and ScopeIdent are optimized to have efficient hash code
computation and fast equality checking.

At run time there exists precisely one scope graph. The meta-interpreter keeps a reference
to the scope graph in a global interpreter context which is accessible to any interpreter node.
This allows scope graph information to be accessed from anywhere in the meta-interpreter.
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Figure 11 Structure of natively implemented frames.

Frames on OSM. We map frames and their respective operations onto the three core
concepts of the OSM. Figure 11 describes the makeup of a frame. We implement a frame
as an OSM object. A frame is made up of a scope uniquely identified by a ScopeIdent

and an area for data storage. Each scope defines a unique frame shape. Each declaration
is identified by its Occurrence and derives a frame slot property. Each edge of a scope is
identified by an EdgeIdent – a pair of the edge label and the destination scope, and becomes
a shape property and a slot in a frame. A shape dictates the structure of the storage area of
a frame. Note that, by construction, all frames of a scope have the same shape. By checking
whether any two frames have the same shape we effectively check whether they are frames of
the same scope and vice versa.

Given a reference Occurrence and a starting frame, we look up the intended slot by
traversing frame links as dictated by the name resolution path from the resolved scope graph.
The result of the lookup is the address of the slot. The address is a pair of the frame and
declaration Occurrence of the slot. The Occurrence identifies a slot property in the shape
of the frame. This slot property can be used to efficiently access the slot in all frames of that
shape. By definition, the relationship between a code fragment at a particular location and
its surrounding scope is static. This means that code at that particular location will always
execute in the context of frames derived from the same scope. This allows slot properties to
be cached after their first lookup and later applied to access the slot efficiently, speeding up
memory operations considerably. Such caching is particularly efficient because it can be left
unguarded, since there is a static guarantee that the cached property will always be valid for
that particular code location.

An advantage of mapping scopes and frames onto the Truffle OSM is that it allows the
JIT compiler to observe memory operations. Since the JIT compiler can see through the
memory of a running interpreter, we expect that the improvement will not be limited to
just faster memory operations, but that the JIT will also optimize the running program
by optimizing memory allocations. An additional advantage of using native frames is that
garbage collection of frames is automatic and requires no effort from the language developer.

The native scopes and frames library makes the frame heap implicit and mutable, and
does not allow it to be captured or reset. On the other hand, the vanilla DynSem library
for scopes and frames uses explicit persistent data structures to model the heap. Although
the heap is normally hidden from view (as an implicitly threaded semantic component),
a language designer could intentionally define a semantics that observes it, captures or
resets it. However, we have not encountered a language for which this would be a desirable
implementation strategy. For example, even if a language needed transactional memory,
capturing and resetting the entire heap would not be a good implementation approach;
something finer-grained is needed. A more realistic approach would be to wrap the scopes
and frames library to provide transaction support. This would work for both the vanilla
DynSem and native scope and frames libraries.
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5 Rule Inlining

The DynSem meta-interpreter [35] relies on Graal to optimize code within a rule and calls
across rules. A rule call in the meta-interpreter corresponds to a function call in a regular
interpreter. The JIT compiler will try to inline stable callees in order to reduce the number
of dispatches and to generate larger compilation units. We observe that the vast majority
of DynSem rules do not perform stable calls. The underlying cause is that most rules are
intermediate rules, i.e. they adapt the input program term and call other rules to further
reduce sub-terms. Consider, for example, the program of Figure 12a and the rule call tree of
Figure 12b corresponding to its evaluation. With the exception of FunDef, Var and Int, all
rules are intermediate. With the exception of meta-functions which are identified statically
by their name, a callee rule is identified at runtime by the sub-term to be reduced, which in
turn depends on the caller’s input term. In other words a callee rule is looked up by what
the JIT compiler sees as a runtime parameter to the caller. If it cannot determine that a
caller’s input term is constant, the JIT cannot decide to inline callees.

Not inlining of an intermediate callee rule leaves that rule exposed to calls from various
callers on various program terms. We call a rule polymorphic, if throughout its invocations it
reduces different terms. Conversely, a rule that always reduces the same term is monomorphic.
For example, the Call, Int and Var rules of Figure 12b are polymorphic. (In this simple
example, relatively many rules are monomorphic. In practice most rules in a specification
are polymorphic, because the corresponding language constructs are used more than once in
the program under evaluation.) Callees of polymorphic rules are not inlined, and not inlining
increases the number of polymorphic rules. In larger programs, the net result is many small
polymorphic rules which perform dynamic calls.

We distinguish two kinds of rule dispatch in a DynSem interpreter: dynamic dispatch,
which depends on runtime values of the object program, and structural dispatch, which
depends on the object program AST. In the call tree of Figure 12b all star-labeled arrows
represent structural dispatch. It is desirable, and plausible, that all structural dispatch be
eliminated by the JIT compiler; however, the issues outlined above prevent this. In this
section we address this problem by presenting improvements to the DynSem interpreter that
enable it to take explicit inlining decisions. In the ideal case the only remaining calls are
those corresponding to dynamic dispatches, as illustrated in Figure 12d. The improvements
consist of the following components:

A rule-level source-to-source transformation on DynSem specifications that explicitly
annotates structural rule dispatch.
A load-time fusion of overloaded rules.
A run-time rule-level signaling mechanism which allows any interpreter node to query
whether its surrounding rule is monomorphic.
A modified rule dispatch mechanism that can explicitly inline callee rules.

Binding-time Analysis. We introduce a lightweight source-to-source transformation of
DynSem specifications that analyzes rules and identifies structural dispatches by marking
meta-variables whose binding depends solely on the object program structure. Consider
the arithmetic addition rule of Figure 13a where meta-variables e1 and e2 are annotated
with const. The meaning of the const annotation on a meta-variable is twofold: (1) the
meta-variable is known to stem from the rule’s input without dependence on evaluation
context or rule calls, and (2) the meta-variable will be bound to a term that will be constant if
the surrounding rule is monomorphic. The const annotations of the meta-variables that are
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let
function fac(n) =
if n = 0
then

1
else

n * fac(n−1)
in
fac(1)

end
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Figure 12 (a) Tiger program, (b) Rule call tree of program evaluation, (c) Rule call tree with
cloned rules, (d) Rule call tree with rule inlining. Arrows marked with ∗ indicate calls on constant
terms. Rules with green circles are monomorphic, those with red circles are polymorphic. Arrow
numbers in figures (b) and (c) indicate execution order.

the inputs to the first two relation premises effectively mark the two rule calls as performing
structural rule dispatch. It is the propagation of the const annotation to rule call premises
that allows structural dispatch in Figure 12b to be identified and arrows labeled.

Consider the rule for a unary function call of Figure 13b. The meta-variable e bound to
the parameter expression is const annotated. This identifies the evaluation of the parameter
expression as requiring structural dispatch. At run time the evaluation of the parameter
expression can be inlined if the surrounding rule is monomorphic. The function body efun

retrieved from the closure is not const and its evaluation requires dynamic dispatch.

Fusion of Overloaded Rules. We call multiple DynSem rules that match the same pattern
overloaded rules. Consider the six eqV rules of Figure 14a as an example of overloaded rules.
The meta-interpreter loads overloaded rules as bundles. At rule call-time the rules in a
bundle are executed one by one until the first applicable one is found and the call site caches
the applicable rule at the call site. Subsequent executions of the call site first attempt the
cached rules. In the event of a cache miss the remaining bundled rules are tried and the
cache is grown with the newly applicable rule.

We observe that the success of a rule from the bundle is more likely to be determined by
the state of the object program rather than by its structure. Consider for example a bundle of
the two rules for an if-then-else statement. Indeed selecting one of the if-then-else rules
depends on the result of evaluating its guard condition. By this reasoning we cannot estimate
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const e1−→ IntV(i1);
const e2−→ IntV(i2);
IntV(addI(i1, i2))⇒ v
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Plus(const e1, const e2)−→ v

(a)

get(lookup(F, const f))⇒
FunV(Fp, sfun, arg, efun);

link(newframe(sfun), L(P(), Fp))⇒ Fcall;
F ` const e−→ varg;
set(Fcall, arg, varg)⇒ _;
Fcall ` efun−→ v
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F ` Call(const f, const e)−→ v

(b)

Figure 13 DynSem rules for (a) arithmetic addition and (b) unary function call with annotated
meta-variables after binding-time analysis.

the risk of a cache miss locally; and the price to pay for a cache miss is the decompilation of
the caller rule. The risk of a cache miss increases further if the call is a dynamic dispatch or
the caller is polymorphic.

We propose that a better strategy is to not force the caller to select a successful rule,
and instead to let the callee choose the applicable rule. We do this by introducing a rule
node that combines rules of a bundle into a single executable node, as shown in Figure 14b.
At rule load-time, the meta-variable environments of the fused rules are concatenated and
a FusedRule node is created for each rule bundle. The execution method of a FusedRule

iterates through the rules, returning the result of the first applicable rule. Since the number
of rules in a fused bundle is fixed at run time, the JIT compiler can completely unroll
the iteration, and additional profiling can be performed on the actual number of iterations
required. In addition to mitigating the risk of decompilation due to a callee cache miss,
fusing rules drastically simplifies call-site logic. In the remainder of this section we refer to a
rule obtained by fusion generically as a rule.

Signaling Monomorphic Rules. A structural dispatch call site (a call site which reduces
a term assigned to a const-annotated meta-variable) must be able to query whether the
surrounding caller is monomorphic or polymorphic and use this information to decide which
call site optimizations can be performed. In the terms of Figure 12b, this means that a
star-labelled outgoing arrow should be able to observe whether its source rule is green or red,
i.e. monomorphic or polymorphic. To achieve this we install a flag at the root of each rule,
as shown in the left panel of Figure 15. The flag is visible to all nodes within a rule, thus
also to the nodes that implement variable reading semantics and call sites. A rule starts
off as monomorphic and remains so as long as it is always invoked on the same program
term. A rule becomes polymorphic, and its flag is invalidated, if and when it is invoked on a
different program term. This is the case for the Call rule of Figure 15 which is invoked both
from the body of the let construct, and from within the function body. We implement flag
invalidation at the rule level, as shown in the left panel of Figure 15.

In the figure we describe the flag as a boolean, but in reality we implement the signal
using a Truffle Assumption. Graal ensures that checking whether Assumptions are valid from
JIT-ed code is very cheap, so using an assumption as a cache guard, or as a specialization
guard is very efficient. While guard checking with assumptions is very cheap, the cost of
decompilation and recompilation is still high.

Inlining Rules. In the call tree of Figure 12b, although dispatches to Call, Int and Var
are all structural, the rules themselves are polymorphic because their different callees pass
different input terms. However, we know that since a program is fixed, even a polymorphic
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eqV(IntV(i), IntV(j))−→ eqI(i, j)

eqV(StringV(x), StringV(y))−→ eqS(x, y)

eqV(NilV(), NilV())−→ 1

eqV(NilV(), RecordV(_))−→ 0

eqV(RecordV(_), NilV())−→ 0

eqV(RecordV(F1), RecordV(F2))−→ eqFrames(F1, F2)

(a)

class FusedRule extends Rule {
final Rule[] rules;

FusedRule(Rule[] rules) {
this.rules = rules;

}
Result execute(VirtualFrame frame) {
for (int i = 0; i < rules.length; i++) {

try {
return rules[i].execute(frame);

} catch (RuleFailure e) {}
}
throw new ReductionFailure("No more rules to try");

}
}

(b)

Figure 14 (a) Overloaded equality rules. (b) Sketch implementation of the fused rule node.

rule has a finite set of behaviors. This set of behaviors is bound in the set of program terms
that match the rule’s pattern. We can create a specialized copy of the rule for each program
term in this set, thereby reducing a polymorphic rule to a set of monomorphic rules. The
specialized copies can be inlined to replace structural dispatches within other monomorphic
rules. Applying rule cloning to the call tree of Figure 12b results in the call tree of Figure 12c;
all rules in the tree are monomorphic. The dynamic dispatches that remain are those that
reduce computed terms, i.e. the two closure applications (arrows 4 and 14).

We modify the meta-interpreter to inline (at run time) callees into their call site if two
conditions are met: (1) the caller is monomorphic; and (2) the dispatch is structural. The
right panel of Figure 15 sketches the inlining mechanism. At call time, if the conditions
hold, the uninitclone() method copies the callee in an uninitialized state (i.e., in its
state prior to any invocation), and the copy is adopted into the caller, becoming a child
node. For subsequent calls, the inlined callee is executed directly as long as the rule stays
monomorphic. The inlined callee is discarded and replaced by dynamic dispatch if the
rule becomes polymorphic. Dynamic dispatch will attempt to cache callees locally to avoid
repeated lookups; Figure 15 omits caching details for conciseness. Note that a callee is inlined
without its root node, which allows calls to getRootNode() from within the callee to resolve
to the root node of the caller. This has the advantage of sharing a single monomorphic flag
for all inlined rules within a tree.

If we apply the cloning and inlining mechanism to the call tree of Figure 12b, the JIT
will compile a monomorphic caller together with its inlined callees in a single compilation
unit, thereby eliminating dispatches between rules altogether. This results in the call tree
of Figure 12d where the red arrows correspond to the only two dynamic dispatches that
remain. Inlining of structural dispatches creates rules which do more work locally and perform
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class RuleRoot extends RootNode {
boolean monomorphic = true;
Rule rule;

Result execute(VirtualFrame f) {
return rule.execute(f);

}
}

class Rule extends Node {
Pattern patt;
Premise[] premises;
TermBuild output;
Term tInit;

Result execute(VirtualFrame f) {
Term t = getInputTerm(f);
patt.match(t);
if (tInit == null) {

tInit = t;
} else if (getRootNode().monomorphic

&& tInit != t) {
getRootNode().monomorphic = false;

}
for (Premise p : premises) {

p.execute(f);
}
return output.build(f);

}
}

class Premise extends Node { ... }

class RelationPremise extends Premise{
TermBuild input;
Pattern output;
Rule callee;

void execute(VirtualFrame f) {
Term t = input.build(f);
Result res;
if (getRootNode().monomorphic

&& input.isconst()) {
if (callee == null) {
callee = adopt(

ruleRegistry().lookup(t)
.rule.uninitclone()

);
}
res = callee.execute(...);

} else {
callee = null;
res = ruleRegistry().lookup(t)

.execute(...);
}
output.match(res);

}
}

Figure 15 Schematic implementation of rule calls with rule cloning.

fewer dynamic calls. In addition to reducing dynamic calls, this enables more intra-rule
optimizations. Disadvantages of this method are longer compilation times due to larger
compilation units and overhead during warmup due to rule cloning. Additionally, while
larger compilation units enable better partial evaluation, this partial evaluation possibly
takes longer, requiring more warmup rounds.

6 Evaluation

We evaluate our performance improvement techniques using DynSem specifications for Tiger,
a simple programming language originally invented for teaching about compilers [2]. Tiger is
a statically typed language with let bindings, functions, records and control-flow constructs.
Our evaluation compares execution times across different flavors of Tiger implementations.

6.1 Experiment Set-up

Subjects. We evaluate four different implementations of Tiger: three meta-interpreted
DynSem specifications and one hand-written Tiger interpreter. These are:

Meta-Env: an environment-based DynSem specification interpreted on the runtime de-
scribed in Section 3. This was the state-of-the-art DynSem runtime prior to the contribu-
tions of this paper.
Meta-SF: a DynSem specification using Scopes & Frames as described in Section 4.3,
interpreted on the runtime with native Scopes & Frames bindings of Section 4.4.
Meta-SF-Inline: specification and runtime identical to Meta-SF with runtime rule
inlining enabled.
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Hand: a Truffle-based AST interpreter using Scopes & Frames and implementing common
Truffle optimization techniques (e.g. loop unrolling, polymorphic inline caches, branch
profiles).

Workloads. We adapted the set of Tiger benchmark programs of Vergu et al. [35], which
are translations of the Java programs of Marr et al. [19]. During earlier experimentation
we discovered that benchmark runtime was too short on the faster meta-interpreters for
a reliable time measurement. We addressed this by making the problems solved harder,
resulting in the following six programs:

queens: a solver for the 16-queens problem. The implementation uses let bindings, arrays,
recursive function calls, for loops and nested conditional constructs.
list: builds and traverses cons-nil lists. The program makes use of records, recursive
function calls, while loops and conditionals.
towers: a solver for the Towers of Hanoi game, primarily exercising records and recursive
function calls.
sieve: Sieve of Eratosthenes algorithm finding prime numbers smaller than 14,000. The
program primarily exercises variable declarations, variable access in nested lexical scopes,
and nested loops.
permute: generates permutations of an array of size 8.
bubblesort: performs bubble sort on a cons-nil list of 500 integers, initially in reverse
order. The lists are built using records.

Methodology. We modified the four Tiger runtimes to repeat the evaluation of a program
200 times in the same process and to record the duration of each repetition. The time
recorded is strictly program evaluation time, i.e. it excludes VM startup, program parsing,
static analysis and interpreter instantiation. Each sequence of 200 in-process repetitions
is repeated 30 times, as separate processes. We run the experiment on a Hewlett Packard
ProLiant MicroServer Gen 8 with an Intel Xeon CPU E3-1265L V2 running at 2.5Ghz.
The CPU has four cores; we disable one of the cores to ensure that heat dissipation is
sufficient, and we disable hyper-threading to improve predictability. The machine has 16
GB of DDR3 memory, divided in two sockets, operating at a maximum frequency of 1.6Ghz,
with ECC mode enabled. The operating system is a fresh minimal installation of Ubuntu
Server 18.04.2 running a Linux kernel version 4.15.0-48. All non-essential system daemons
and networking are disabled before running the experiment, and we connect to the machine
through out-of-band management facilities. All benchmark programs are run on the Oracle
Graal Enterprise Edition VM version 1.0.0-rc9.

We are interested in the steady state performance of each benchmark and VM combination.
We use warmup_stats, part of the Krun [3] benchmarking system, to process and analyze the
recorded timeseries. It performs statistical analyses to determine whether each combination of
benchmark and VM shows stable performance and to compute this steady state performance.

6.2 Results
Table 1 shows the steady state runtimes, in seconds, for each configuration of benchmark
and runtime. A missing measurement indicates that the configuration did not exhibit steady
performance according to warmup_stats. We first consider the performance difference between
traditional environment-based (Meta-Env) and scopes-and-frames (Meta-SF) specifications.
For the remainder of this section, when we describe average speedup, we are referring to the
geometric mean.
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Table 1 Median steady state execution times, expressed in seconds, for combinations of bench-
marks and VMs. The 99% confidence interval is shown in small font. Execution times for combinations
which do not exhibit stable performance are excluded.

Meta-Env Meta-SF Meta-SF-Inline Hand
queens 1.7019 ±0.72583 0.0682 ±0.18626 0.0208 ±0.09366 0.0047 ±0.00085

list 0.2396 ±0.01789 0.0965 ±0.03700 0.0773 ±0.06191

towers 9.5841 ±0.49535 0.6647 ±0.05259 0.0508 ±0.00460 0.0107 ±0.00030

sieve 0.0041 ±0.01925 0.0025 ±0.00196 0.0003 ±0.00053

permute 12.7514 ±1.91232 0.3216 ±0.02547 0.1108 ±0.00241 0.0260 ±0.00050

bubblesort 2.3551 ±0.34690 0.1164 ±0.01155 0.0147 ±0.00502 0.0060 ±0.02275

Table 2 Median number of repetitions required to reach steady state performance, and in small
font the interquartile range. In parentheses (in normal font): the average duration, in seconds, of a
warmup iteration.

Meta-Env Meta-SF Meta-SF-Inline Hand

queens 1 10.5 (1.0, 75.4)

(1.78s)
51 (1.0, 77.1)

(0.49s)
20 (18.5, 40.0)

(0.25s)

list 98.5 (56.7, 121.5)

(0.51s)
38.5 (25.0, 125.3)

(0.49s)
81 (1.0, 106.5)

(0.18s)

towers 1 18 (18.0, 25.0)

(2.49s)
89.5 (75.3, 119.5)

(0.18s)
50.5 (42.4, 58.0)

(0.09s)

sieve 106 (73.4, 146.6)

(0.12s)
126 (5.5, 143.1)

(0.04s)
9 (8.0, 17.6)

(0.18s)

permute 1 68.5 (65.0, 84.5)

(0.60s)
44 (40.0, 52.0)

(0.28s)
30 (30.0, 43.5)

(0.09s)

bubblesort 1 49 (31.4, 89.1)

(1.42s)
67.5 (57.0, 85.5)

(0.13s) 1

The Meta-SF interpreter improves on Meta-Env performance by an average 15x, with the
highest gains for permute (39x) and smallest gains for list (2.5x). The runtimes on the two
VMs are strongly correlated (correlation coefficient of 0.75), suggesting that adopting scopes
and frames improves all benchmarks fairly uniformly. However, we also find a moderate
correlation (correlation coefficient of 0.64) between the runtimes of Meta-Env and speedup
gains exhibited by Meta-SF, suggesting that the longer the benchmark runtime on Meta-Env,
the higher the speedup offered by Meta-SF. This may be due either to Meta-SF optimizing
precisely the bottlenecks in Meta-Env, or simply to more complex programs benefiting more.

The Meta-SF-Inline VM improves on the performance of Meta-SF in 50% of the cases,
while in the other 50% of the cases they are statistically indistinguishable. Meta-SF-Inline
is always faster than Meta-Env by at least an order of magnitude and typically by two orders
of magnitude, with the exception of queens for which it is at least 8.5x faster. There is
strong correlation (0.79) between the runtime of benchmarks on Meta-SF and the speedup
on Meta-SF-Inline. Coupled with only a moderate correlation (0.42) of runtimes on the
two VMs, this suggests that, for the programs benchmarked, inlining addresses precisely
the bottlenecks in Meta-SF. We do note the overlap in confidence intervals of runtime on
Meta-SF and on Meta-SF-Inline for benchmarks queens, sieve and list which makes
them statistically indistinguishable.

The handwritten interpreter Hand is on average 4.7x faster than Meta-SF-Inline, but
not more than 30x faster. Some of these benchmarks have very short runtimes, but focusing
on the two benchmarks with longest runtimes on Hand, permute and towers, produces a
very similar overhead figure of 4.5x.
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The number of iterations that are required until reaching steady state is an indication both
of how JIT-able a benchmark/VM combination is and of how much particular optimizations
compromise warmup time for maximum performance. Table 2 shows the median number
of warmup iterations required until steady state is reached and the median duration of an
iteration during warmup. With the exception of list, benchmarks on the environment-based
VM do not seem to warm up well: they reach steady state performance in one iteration and
never improve after that. It is noteworthy that list, the only benchmark that warms up on
Meta-Env, is also the one least improved on by Meta-SF. In contrast to Meta-Env, the JIT
compiler is able to optimize programs on the Meta-SF VM, but requires an average of 37
iterations to do so. We find a similar pattern for Meta-SF-Inline, typically requiring more
warmup iterations than Meta-SF but resulting in faster code. We observe that even when
the median warmup round on Meta-SF-Inline is slower than the steady-state performance
on Meta-SF, it is within an order of magnitude slower, and that the average median warmup
time on Meta-SF-Inline is shorter than on Meta-SF. From Table 1 we note that runtime
confidence intervals are wider for the Meta-SF and Meta-SF-Inline VMs than they are for
Hand; in particular for benchmark queens on Meta-SF, and for benchmarks queens and list
on Meta-SF-Inline. The wide confidence intervals appear correlated with benchmark-VM
combinations that have one or more non-warmup process executions (Table 2, combinations
for which the 25th quantile is 1.0). This suggests some non-determinism over which we have
little current understanding.

We find that replacing environments and stores by scopes and frames has a strictly
beneficial effect on the execution time, and that meta-interpreters derived from scopes-and-
frames specifications have better warm up characteristics. Adopting scopes and frames
“out of the box” allows the JIT compiler to optimize the executing code. The JIT can
see through memory operations and examine the memory layout of the program which
enables partial evaluation of memory operations. Since our experiment does not measure the
garbage collection activity, it is unclear to what degree the reported performance numbers
are affected, positively or negatively, by garbage collection activity. We proposed in Section 5
that the fine granularity of code that the JIT is optimizing in the meta-interpreter case is a
bottleneck in the optimizations that it can perform, and we introduced cloning and inlining of
monomorphic rule calls at run time to attempt to improve on this situation. The expectation
was that increasing the size of the rules, and thereby minimizing the number of calls across
rules, would make the program easier to optimize. This expectation is borne out: in 50% of
cases Meta-SF-Inline faster than Meta-SF, and in the other cases it is not slower. Inlining
of rules increases the size of compilation units, aligns the structure of the rule call tree with
the syntactic structure of the executing program, and the JIT can produce faster code.

Overall the combination of scopes and frames with inlining delivers a meta-interpreter
that is always faster than using environments and stores. The speedup is at least one and
typically two orders of magnitude. Moreover, the best meta-interpreter is within 10x slower
(approximately 4.7x) than our optimized handwritten interpreter.

7 Discussion; Related and Future Work

The work presented in this paper is a performance improvement on the state of the art
DynSem meta-interpreter. The improvement is achieved by (1) using scope and frames to
model memory in dynamic semantics and (2) applying inline expansion of DynSem rules
at run time.
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Our work demonstrates a significant reduction in the execution time of meta-interpreted
specifications of dynamic semantics using two techniques. The first exploits the systematic
correspondence between static and run-time name binding exhibited by scopes and frames [28].
The second inlines reduction rules at run time to obtain coarser-grained rules that reflect
the structure of the interpreted program. Combining these two techniques results in meta-
interpreters that are at least one order of magnitude and generally two orders of magnitude
faster than the state of the art DynSem meta-interpreter; and within a factor 5 from an
optimized handwritten interpreter.

We remark that optimizations made to frame operations are in fact optimizations made
to the executing program, not to the meta-interpreter. A resolved scope graph and paths
in the scope graph representing the results of name resolution are program specific. Using
the scope graph to inform optimizations of frame operations results in optimizations that
are program specific. The JIT of the hosting VM, which hosts the meta-interpreter, is thus
traversing the meta-interpreter layer to operate on the top-level interpreter. In the end,
the program-specific optimizations performed by the JIT unlock further meta-interpreter
optimizations than those limited to syntax-driven optimizations. Another indication that
this is happening is, aside from the increased performance, the number of iterations required
for code to warm up.

Related Work. DynSem [34], as a dynamic semantics framework, is part of the family of
structural operational semantics (SOS) frameworks. This family contains big-step SOS (or
natural semantics [16]); small-step SOS as originally introduced by Plotkin [27]; and reduction
semantics with evaluation contexts (e.g. [11]), of which PLT Redex [10] is an instantiation.
MSOS [22] and its extension I-MSOS [23] improve on the modularity and conciseness of
traditional SOS by allowing semantic components such as environments and stores to be
propagated implicitly through rules that do not modify those components. DynSem borrows
the notion of implicit semantic propagation from I-MSOS and implements a systematic
transformation of specifications with implicit components into equivalent specifications with
explicit components. Typical DynSem specifications are in big-step style with implicit
propagation of semantic components.

Dynamic semantics specifications take one of two approaches to specifying name binding:
(a) eagerly substituting values for names or (b) propagating semantic components such as
environments or stores that associate values with names. Specifications in Redex [18] and
Ott [31] typically use substitution, while specifications in K [30] and funcons [7] typically
use semantic components. Prior to the developments presented in this paper, DynSem
specifications modeled name binding using semantic components that map identifiers to
addresses and addresses to values and embedded name resolution semantics in terms of
operations on these components. The DynSem extensions of Section 4 use scope graph [25]
information to automatically derive a memory layout in terms of frames [28] and provide
a set of primitives for operating on memory. The approach replaces environments, stores
and other custom semantic components with a generic representation of memory stored in
an implicitly propagated store. The only components passed in rules are frame references
into the store.

Given a dynamic semantics for an object language there are three conceptual approaches
to obtaining a execution engine for that language: (1) compile the semantics to an interpreter,
(2) compile the semantics to a compiler or (3) interpret the semantics. DynSem, Redex [18]
fall into the final category, i.e. a runtime is obtained by (meta-)interpreting a semantics. An
older runtime for K [30] generated an interpreter for object language, but more recently K
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specifications can be directly interpreted. Significant amounts of research have gone into
generating compilers from semantics [21, 26, 8] with varying degrees of applicability and
usually with slow compilation or slow execution or both. For example, the SIS compiler
generator of Mosses [21] compiled denotational semantics to a code generator, demonstrating
that it was possible to compile code generators from declarative specifications. However,
both the generated compiler and its emitted code were quite slow.

Translating a dynamic semantics specification to an efficient (and optimizing) compiler
requires some form of offline partial evaluation [15]. The three approaches to make semantics
specification executable are conceptually related to partial evaluation [15] and the Futamura
projections [12, 13]. The first Futamura projection of a meta-interpreter and a semantics
specification yields an interpreter, and the first Futamura projection of that interpreter and
a program yields an executable. The second Futamura projection of a meta-interpreter
and a semantics yields a compiler derived from the semantics. Amin et al. [1] describe the
construction of a one-pass compiler that collapses all interpreter layers in a hierarchy-of-layers,
thus eliminating the overhead of stacked interpretation.

Our approach to make DynSem specifications executable is through meta-interpretation
with minimal pre-compilation. This raises the challenge of eliminating the overhead of
meta-interpretation. The problem is more complicated than just optimizing an interpreter at
runtime (as is done in just-in-time (JIT) compilation), because both the hosting and the
hosted interpreters must be optimized simultaneously. The hosting meta-interpreter cannot
effectively be partially evaluated without the hosted object interpreter, whose optimization
in turn requires the program input.

There are two mainstream directions for implementing efficient interpreters, both relying
on JIT compilation: meta-tracing and online partial evaluation. Meta-tracing, as provided
by RPython [4] and applied to PyPy [5, 6] traces the execution of an interpreter to obtain a
JIT compiler specific to that interpreter. The obtained JIT monitors the execution of the
interpreter and compiles frequently executed code (of the interpreter) into highly efficient
machine code. Only recently has online partial evaluation been shown as a practical meta-
compilation technique of AST interpreters. Würthinger et al. [40] have developed Truffle, a
framework for implementing interpreters. Truffle interpreters are AST interpreters, i.e. the
control-flow of the interpreter follows the syntactic structure of the executing program. The
Graal partial evaluator [39, 38] determines compilation units by resolving control-flow jumps
across parts of the AST. For a practical comparison and evaluation of both meta-tracing and
online partial evaluation of interpreters, we refer the reader to the research of Marr et al. [20].

To the best of our knowledge, neither meta-tracing nor online partial evaluation have
been applied to two stacked layers of interpretation. Conceptually, meta-interpretation of
a program with respect to a semantics specification involves a syntax-directed sequence of
rule applications. A fixed program informs a fixed arrangement of rule applications, i.e. the
rules of a specification are arranged such that they follow the AST of the program. This
observation has motivated the choice of Truffle as an implementation target for the DynSem
meta-interpreter. Conceptually, the Graal JIT has sufficient information to construct a tree
of rules that strictly mimics the program AST. Construction of such a tree requires inlining
of structural dispatch to rules, as discussed in Section 5. The inlining introduced in Section 5
is designed to aid the JIT in identifying control-flow jumps in the hosting meta-interpreter
that are known to be stable but that the JIT cannot observe as such due to the intermediate
interpreter layer.
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Future Work. In the future we plan to investigate using Graal to perform optimizations with
respect to program values. To some limited extent this is happening already: checks on value
terms from within DynSem rules are observable by the JIT, and frame slot allocation takes into
consideration the type of the declaration. There also still are opportunities for optimization
with respect to rule inlining. Currently not all static bindings in rules are recognized as
monomorphic. For example, while for a particular object language a function call is known
to always resolve to a specific closure, the DynSem static analysis cannot currently determine
this. While we can allow the language developer to explicitly annotate const meta-variables,
we believe a better solution would be to uncover more static bindings automatically. We
expect that combining a program, its scope graph, and a DynSem specification provides
sufficient information to determine this. The scopes-and-frames approach may also apply to
dynamic languages. We plan to investigate if by building frame structures dynamically and
caching results of run-time name resolution we can obtain similar performance gains. Yet
another research avenue is to explore whether using DynSem to define intrinsically-typed
interpreters [29] for object languages provides further benefits for specialization.
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