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Summary
With rising concern about the environmental impact of aviation, propellers are considered as an alterna­
tive, more efficient propulsion method compared to jet engines. Using (hybrid) electric propulsion, even
further emission reduction can be achieved. Electric engines also offer more flexibility in design, since
they are relatively low­weight and can be scaled easily without performance drawbacks. This opens
up new design possibilities with regard to aero­propulsive integration. One of the promising ways of
beneficial aero­propulsive integration is wingtip­mounted propellers. For a tractor configuration with
inboard­up rotating propeller, the swirl in the propeller can be used to counteract the wingtip vortex.
Doing so leads to an increase in effective aspect ratio, increasing wing performance.

The aerodynamic interaction of wingtip­mounted propellers is very complex. There are multiple
mechanisms that change the relative benefit of the propeller­wing interaction. While research into
wingtip­mounted propellers has been increasing over the last years, guiding design principles for op­
timum system efficiency are still lacking. Thus, this research aims to quantify the sensitivity of the
aerodynamic performance of a wingtip­mounted tractor propeller­wing system. The analysis is done
using a low­order numerical model. Using this model, the performance of the propeller­wing system is
calculated throughout the defined design space. To minimize the number of numerical model evalua­
tions, a metamodel is created on top of the numerical model, which approximates the numerical model
response.

The numerical model consists of two parts: a propeller model and a wing model. The propeller
model consists of a blade element method (BEM). Using this BEM code the propeller is analyzed at dif­
ferent advance ratios to create a performance map. This performance map is then used to calculate the
propeller performance for an arbitrary non­uniform inflow field. This inflow field is determined by wing
induced velocities. The slipstream of the propeller is modelled by a slipstream tube model. The origi­
nal slipstream tube model assumes a straight wake and a propeller in uniform inflow. The slipstream
tube model was improved by adding slipstream deflection, slipstream contraction and by allowing an
azimuthal circulation distribution. Next, the wing model consists of a vortex lattice method (VLM). The
VLM code allows for spanwise non­uniform inflow. However, the increased dynamic pressure jet in­
duced by the propeller has a finite height. This means that the circulation increase on the wing is a
function of the dynamic pressure increase and of the slipstream height. The effect of the slipstream
height is accounted for by a jet correction. The induced drag of the wing model is calculated using
a Trefftz plane analysis. Furthermore, using 2D wing section analysis, corrections were calculated to
account for non­linear effects.

The described propeller model is dependent on the induced velocities of the wing, while the wing
model is dependent on the induced velocities of the propeller. So, to calculate the performance of the
propeller­wing system, an iterative scheme is used. It was found that the model shows convergent
behaviour most of the time, only at high thrust settings there is a chance that convergence is not
reached. Validation of the numerical model was done using data from windtunnel experiments. It was
found that the main trends in the data were all predicted well by the numerical model.

The results are obtained by creating three metamodels. The first two metamodels investigate the
interaction between lift distribution, propeller size and propeller position. This is done by varying aspect
ratio, outboard wing twist, propeller diameter­to­span ratio, propeller vertical position and propeller
horizontal position. This was done at constant lift coefficient and thrust. The thrust for metamodel 2
was doubled with respect to metamodel 1, to compare the effect of thrust. To investigate the effect of
the relative magnitude of thrust and the propeller swirl with respect to the lift, a third metamodel was
created. This metamodel varies design lift coefficient, design thrust, the amount of swirl and the wing
aspect ratio.

From the data it was found that the drag of the propeller­wing system mainly depends on the span­
wise wing lift distribution. The reduction in drag due to beneficial propeller­wing interaction is typically
an order of magnitude lower than the value of drag. Thus, the drag is mainly determined by the amount
of drag of the clean wing. Furthermore, the increase in wing performance, given by an increase in
lift­to­drag ratio, was found to be mainly dependent on the total drag and the change in drag due to
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propeller­wing interaction. Thus, lowering the drag with propeller­wing interaction should be prioritized
over a lift increase to obtain better performance. For a low total drag, the same decrease in drag gives
a higher increase in lift­to­drag ratio. Since the change in drag is not highly dependent on the wing lift
distribution, a wing with low drag would also benefit the most from propeller­wing interaction in terms of
lift­to­drag ratio. For a realistic thrust level of 𝑇𝐶 = 0.05, a maximum drag reduction of about 2 ⋅ 103 or
20 drag counts could be obtained. This would be translated to an increase in lift­to­drag ratio of about
6 for the a wing with aspect ratio 16.

It was found that increasing thrust is beneficial for both lift and drag. On the other hand, the horizontal
position of the propeller requires a trade­off. Increasing the propeller horizontal position is beneficial for
the drag, but disadvantageous for lift. Furthermore, it was found that propeller vertical position mainly
affects lift and the diameter­to­span ratio mainly affects drag.

Throughout the analyzed design space, a thrust increase was obtained due to propeller­wing inter­
action, mainly due to a wing induced angle of attack on the propeller. However, this thrust increase
was always paired with a proportional increase in power, thus propeller efficiency is not affected by the
propeller­wing interaction with a tractor propeller. Furthermore, this thrust increase is relatively low in
magnitude, a relative increase of about 1% in thrust is typically found.

Lastly, a total system efficiency was calculated by multiplying propeller efficiency with lift­to­drag
ratio. It was found that with increasing thrust, lift­to­drag ratio increases. However, this would only lead
to an increase in system efficiency if propeller efficiency would also increase. In other words, if thrust
is increased, this gives a benefit in lift­to­drag ratio, but this increase is relatively small compared to the
change in propeller efficiency due to the change in thrust. Thus, the propeller should be designed to
maximize efficiency and not to maximize the gain in lift­to­drag ratio from propeller­wing interaction.
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1
Introduction

With increasing environmental awareness, there has been a great push to make aircraft more efficient.
One of the means to achieve this is by means of propeller propulsion, which accelerates a large vol­
ume of air with a low velocity, making it more efficient than jet propulsion. By placing the propeller at
the wingtip, even higher efficiencies can be reached. This chapter will describe the developments in
wingtip­mounted propellers, from which a research gap will be identified. From this research gap a
research objective is formulated, which will form the basis of this thesis.

1.1. Background information
This section will provide some background information on the research presented in this thesis. It
describes the historical background and an overview of the main developments in research on wingtip­
mounted propellers.

1.1.1. History of propeller propulsion
Propeller propulsion has been used since the inception of heavier­than­air aircraft. Propeller propulsion
was first successfully introduced in 1852 to propel an airship and in 1903 the Wright Flyer took off using
propeller propulsion. The first propellers were not very sophisticated and had a low efficiency [1]. But
in 1917 Durand [2] published his extensive experimental research on propellers, greatly advancing
propeller design, leading to efficiencies of around 75 to 80%. However, low fuel prices and the desire
to fly at high Mach numbers led to the success of the turbojet and turbofan engines, and research in
propeller propulsion slowed down after the mid­1950s. Interest in propeller propulsion was regained
after the oil crisis in 1973. Fuel efficiency of aircraft had to be increased due to the high fuel prices. In
1975 an open rotor concept called propfan was published by Rohrbach and Metzger [3]. The propfan
promised better efficiency than turbofan engines, even at Mach numbers around 𝑀 = 0.8, as seen in
Figure 1.1. By the time all problems regarding the propfan design and implementation were overcome,
oil prices dropped again. Also, turbofan engines were made increasingly more efficient by increasing
bypass ratio. This removed the incentive to further develop the propfan concept and halted further
research.

With the rising fuel prices and increasing environmental awareness in the 21st century, there is
again a need to make aircraft more fuel efficient. To address climate change, ambitious goals have
been set by multiple institutions. The International Air Transport Association (IATA) aims for carbon
neutral growth from 2020 onwards, with a reduction in CO2 emissions of 50% in 2050 compared to
2005 levels [4]. Other institutions like the Advisory Council for Aviation Research and innovation in
Europe (ACARE)1 and National Aeronautics and Space Administration (NASA) [5] have also set goals
for emissions and noise reduction. Propellers are one of the solutions for this problem, as they provide
a higher propulsive efficiency with respect to turbofan engines [6][7]. While propeller propulsion is
generally associated with higher noise compared to turbofan engines, new technologies can provide
noise reduction, such as propeller cowling [8] and propeller blade sweep [9]. This has increased the
1https://www.acare4europe.org/sria/flightpath­2050­goals/protecting­environment­and­energy­supply­0,
Retrieved on: 27 July 2018
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Figure 1.1: Comparison of different propulsion technologies in 1975 [3]

research in open rotor propulsion. One of the ongoing projects investigating open rotor concepts is
Clean Sky 22, the successor of the successful Clean Sky project. In this project research on open rotor
concepts is done in collaboration with influential companies like Airbus, GKN and Safran.

1.1.2. Electric propulsion
With hybrid electric or full electric propulsion, even further emission reductions can be achieved [10].
Electric motors are relatively low weight and can be scaled without major efficiency decrease. Thus,
electric propulsion also allows for more flexibility in the placement of the propellers. This can lead to new
propulsion architectures and aircraft configurations. Distributed propulsion can for example replace
the high lift system of an aircraft, if it is integrated properly [11]. It is also possible to further increase
aerodynamic performance by placing propellers at the wingtips [12][13]. Furthermore, air properties
like temperature and pressure have limited effect on the performance of electric engines. This means
that, when sizing for take­off conditions, an aircraft with electric propulsion system needs less power
and less wing area compared to one with an air breathing system. With the many benefits of electrical
propulsion, the aircraft efficiency, noise, safety and operating costs can be improved compared to
aircraft with conventional propulsion systems [14].

In Europe research on (hybrid) electric propulsion is done by projects like Modular Approach to
Hybrid­Electric Propulsion Architecture (MAHEPA)3 and Distributed Propulsion and Ultra­high by­pass
Rotor Study at Aircraft Level (DisPURSAL)4, while NASA is working on several concept planes with
distributed electric propulsion like the X­57 and N3­X [15]. Furthermore, distributed electric propulsion
is already being implemented in the on­demand air taxi Lilium5, shown in Figure 1.2. The Lilium jet
performed its first successful full­scale test flight in 2019 and it is planned to be operational in 2025.
And wingtip­mounted electric propulsion is being applied in the Eviation Alice6, shown in Figure 1.3,
which is planned to enter service in 2023.

1.1.3. History of wingtip­mounted propellers
When looking at propeller placement, wingtip­mounted propellers could lead to major performance ben­
efits. Propellers that rotate in opposite direction of the wingtip vortex (inboard up) can have beneficial
interaction between the propeller swirl and the wingtip vortex. This can lead to increased wing and/or
propeller efficiency.

The first implementation of wingtip­mounted propellers happened already in the 1930s. The V­173
and XF5U­1, designed by Charles H. Zimmerman, were very low aspect ratio aircraft with counter­
rotating propellers mounted on the wingtips, as seen in Figures 1.4 and 1.5. The unconventional design
allowed for low approach and landing speeds [16]. The design featured wingtip­mounted counter­
rotating propellers, in opposite direction of the wing­tip vortices to decrease induced drag. In wind­
tunnel experiments on the V­173 it was concluded that the beneficial interaction of the propeller with
the wingtip vortex could increase the effective aspect ratio of the wing [16][17]. However, when the
2https://www.cleansky.eu, Retrieved on: 27 July 2018
3https://mahepa.eu, Retrieved on: 27 July 2018
4https://www.dispursal.eu, Retrieved on: 27 July 2018
5https://lilium.com, Retrieved on: 27 July 2018
6https://www.eviation.co/, Retrieved on: 4 August 2020
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rotational direction of the propellers was reversed, it only resulted in a small decrease in performance,
contrary to the designer’s hypothesis. Furthermore, during aerodynamic testing of the XF5U­1, it was
recognized that the propellers increased lift coefficient due to higher dynamic pressure in the propeller
slipstream and the upwards directed component of the propeller thrust [18].

Figure 1.2: Lilium jet Figure 1.3: Eviation Alice

Figure 1.4: Vought V­1737 Figure 1.5: Vought XF5U­18

In 1968 Snyder and Zumwalt [19][20] started systematically testing the effects of wingtip­mounted
tractor propellers by conducting windtunnel experiments. Here the effects of rotational speed and span­
wise position of different propellers were investigated. Propellers rotating opposite the wingtip vortex
move the vortex core outboard, as shown in Figure 1.6. This decreases induced drag. Furthermore,
the high dynamic pressure in the slipstream increases the wing lift coefficient. This combined effect
leads to a higher effective aspect ratio of the wing, based on the drag polar. In Figure 1.7 it can be seen
that these effects are most favorable when the propeller is positioned at the wingtip. When moving the
propeller inboard, the effective aspect ratio decreases. The worst performance is obtained when the
propeller is rotating with the wingtip vortex at the wingtip.

In 1970 Patterson and Flechner [21] performed windtunnel experiments to investigate the effect of a
fan­jet engine at the wingtip. The results suggest that some of the vortex energy can be dissipated by a
high­energy non­rotating wake, leading to a decrease in induced drag. However, it was also suggested
that a counter­vortex rotating engine wake could be more effective. In 1985 and 1987 Patterson and
Bartlett [22][23] conducted windtunnel experiments on wingtip mounted pusher propellers. From this
research it was concluded that a propeller immersed in the wingtip vortex needs less power for the same
amount of thrust. This is due to the vortex velocity seen by the propeller blade (as shown in Figure 1.8),
leading to a more streamwise directed lift component on the propeller blade. Also, the induced drag is
decreased by having a propeller at the wingtip. The drag decreases even more when the nacelle was
placed under an incidence angle, which places the propeller above the wing chord plane. This leads
to better alignment between the propeller and wingtip vortex, further reducing induced drag.
7SDASM Archives www.flickr.com/photos/sdasmarchives/4822056685/, Retrieved on: 28 July 2018
8SDASM Archives www.flickr.com/photos/sdasmarchives/16318271846/, Retrieved on: 28 July 2018
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Figure 1.6: Trailing vortex core trajectory in the plane of the wing [19]

Figure 1.7: Influence of the spanwise position of the propeller on wing lift and drag [19]

Figure 1.8: The induced velocity on a propeller due to a wingtip vortex [22]
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Tip mounted propellers have also been investigated using mathematical models by Loth and Loth
[24], Miranda and Brennan [12], and Kroo [13]. Loth and Loth observed that wingtip­mounted propellers
could induce upwash on the wing and downwash beyond the wing span. This could lead to reduced
drag. However, Miranda and Brennan pointed out that the model used by Loth and Loth was incorrect.
In Loth and Loth’s model, the propeller wake was modelled as a vortex which induces velocities up to
infinity. However, in reality only the domain within the slipstream tube of the propeller is affected by the
propeller. Miranda and Brennan and Kroo found that the same efficiency is obtained for both the tractor
and pusher configurations, based on Munk’s Stagger Theorem [25]. For a tractor configuration mainly
the wing induced drag is decreased, while for a pusher configuration the propeller thrust is increased,
as visualized in Figure 1.9. Furthermore, Kroo notes that the aerodynamic benefits of wingtip­mounted
propellers could be overshadowed by factors like the One Engine Inoperative (OEI) condition and the
added structural weight due to reinforcement to account for the moment created by the thrust force.

Figure 1.9: Munk’s Stagger Theorem applied to wingtip­mounted propellers [12]

1.1.4. Recent research on wingtip­mounted propellers
In 2014 NASA started research on an all­electric experimental plane, the X­57 Maxwell9, shown in
Figure 1.10. This aircraft is a modified Tecnam P2006T. At the wingtips two propellers are located, pro­
viding thrust during cruise. There are an additional 12 tractor propellers along the wing span, providing
high­lift during take­off and landing. During cruise, these propellers will be folded into the nacelle to re­
duce drag. The latest configuration of the X­57 has a 2.5x reduction in wing area and a 4.8x reduction
in energy consumption compared to the original aircraft [26]. From a CFD analysis a 7.5% reduc­
tion in induced drag during cruise conditions is predicted compared to a wing without wingtip­mounted
propellers [27].

There is also a lot of research done on propeller­wing interaction and wingtip­mounted propellers
by the Flight Performance research group at Delft University of Technology. In 2004 and 2005 Veldhuis
[28][29] published the results of his research on propeller­wing interaction. By means of experimental
and numerical analysis a good overview of the different propeller­wing interaction mechanisms and
phenomena was provided. And over the last few years, research has been done on different aero­
dynamic interaction phenomena for propellers. Some of the researched topics are: propeller­pylon
interaction [30][31][32][33], swirl recovery vanes [34][35][36] and non­uniform inflow [37][38]. Further­
more, several studies have been conducted completely focusing on wingtip­mounted propellers. Van
Arnhem et al. [39] investigated the aerodynamic interaction effects of propellers mounted on the hori­
zontal tailplane. A study on the accuracy and capability of the use of a RANS solver for the simulation
of wing­tip mounted propellers was investigated by Stokkermans et al. [40]. The latest study is per­
formed by Sinnige et al. [41], where aerodynamic interaction effects of a wingtip­mounted propeller

9NASA www.nasa.gov/centers/armstrong/news/FactSheets/FS­109.html, Retrieved on: 16 August 2018
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Figure 1.10: X­57 Maxwell [27]

are thoroughly investigated. Furthermore, the performance of a wing with wingtip­mounted propeller is
compared to a conventional configuration where the propeller is mounted inboard of the wing. Lastly,
there are several Master’s theses investigating wingtip­mounted propellers [42][43][44].

Although there is understanding of the aerodynamic interaction principles regarding wingtip­mounted
propellers, there is little known on the design principles for wingtip­mounted propellers. For an isolated
propeller and isolated wing it is known which design parameters to change to achieve an optimal dis­
tribution of circulation/force to achieve the highest possible efficiency. However, when there is strong
interaction, such as for a wingtip­mounted propeller, these design principles could change and the
sensitivity of the design parameters is not known. This is the focus of this thesis. Since the interaction
effects for tractor and pusher propellers are very different, it was chosen to focus on only one of these
configurations. Pusher propellers see a non­uniform inflow, which alters the performance of the pro­
peller. Furthermore, a non­uniform inflow on the propeller could lead to significant vibrations and noise.
On the other hand, the non­uniform inflow seen by the wing for a tractor configuration is less critical to
the design and it can be better modelled with lower order tools. Thus, it was chosen to investigate the
tractor configuration.

1.2. Research aim and objectives
The research consists of finding design principles to get the best performance of a wingtip­mounted
tractor propeller­wing system. This is done by varying design parameters and determining the sensi­
tivity for these design parameters on the performance. From this the main objective is formulated:

To quantify the sensitivity of the aerodynamic efficiency of the whole propeller­wing system
for the main design parameters for a wingtip­mounted tractor propeller­wing system by means
of a low­order numerical model

A low­order model was chosen, since it is expected that many evaluations are needed to map
the design space. While low­order models are generally less sophisticated than higher­order models,
they still provide accurate results in the near­linear regime. Low­order models can also provide direct
aerodynamic interaction properties, such as induced velocity, which can provide insightful informa­
tion about propeller­wing interaction. These aerodynamic properties can not be directly obtained from
higher­order models. A the basic geometry for the model that will be investigated is shown in Figure
1.11. Furthermore, from this main objective, the following sub­objectives were derived:
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Figure 1.11: Propeller­wing system geometry

• To create a low­order model that can accurately capture the aerodynamic interaction phe­
nomena for a wingtip­mounted tractor propeller­wing system
Low­order models have been used in the past to model propeller­wing interaction, but some in­
teraction effects could use improved modelling. An example is the frequently used swirl recovery
factor, which has a large effect on the wing lift distribution, but is not based on any physical flow
phenomena. Also, slipstream contraction is usually calculated using an assumed shape, while
more physical ways of modelling are possible here.

• To determine the influence of the wing spanwise lift distribution on the aerodynamic per­
formance of a wingtip­mounted propeller­wing system
Since the propeller­wing interaction is driven by the wingtip vortex, it is assumed that the lift dis­
tribution should play a significant role in the performance of the propeller­wing system. It was
decided to vary lift distribution by means of aspect ratio and linear twist to the wing. Sweep and
taper were not included, since this would complicate modelling and it would make results hard to
compare due to the more complex geometry.

• To determine the influence of the linear and angular momentum distribution of the pro­
peller on the aerodynamic performance of a wingtip­mounted propeller­wing system
This sub­objective concerns the design parameters of the propeller. By changing the propeller
design, a different distribution of linear and/or angular momentum can be found, which has a
different interaction effect with the wing.

• To determine the influence of the main design parameters on the aerodynamic perfor­
mance of a wingtip­mounted propeller­wing system
This sub­objective includes the design parameters that are not specific to either the propeller or
wing. To investigate this sub­objective, three design variables were chosen: propeller diameter
to span ratio, and the horizontal and vertical distance between wing and propeller. This leads to
three non­dimensional parameters: 𝐷/𝑏, 𝑥/𝑐 and 𝑧/𝐷.

• To find a relation between the main aerodynamic performance parameters of the wing and
propeller
The main performance parameters of the propeller­wing system are defined as lift, drag, thrust
and power (𝐶𝐿, 𝐶𝐷, 𝑇𝐶 and 𝑃𝐶 respectively). By evaluating many design, a correlation could be
found between some of these parameters. By understanding these correlations, more conscious
decisions can be made about trade­offs or beneficial interaction effects.

1.3. Thesis outline
The theory used in this thesis is presented in Chapter 2. Chapter 3 describes the implementation of the
theory to create a numerical propeller model, while Chapter 4 describes a numerical wing model. The
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models are integrated in Chapter 5, to create amodel that can predict the aerodynamic performance of a
wingtip­mounted propeller­wing system. This model is subsequently validated in Chapter 6. In Chapter
7 the process of metamodelling is described, which makes it possible to evaluate the numerical model
within the design space in an efficient way. In Chapter 8 the results of the evaluation of the model are
discussed. The results found here lead to conclusions and recommendations, which are presented in
Chapter 9.



2
Theoretical background

This chapter aims to provide an understanding of the aerodynamic principles at work when dealing
with propeller­wing interaction. The chapter is divided in three parts. Section 2.1 provides a descrip­
tion of wing aerodynamics, mainly focusing on potential flow models. Section 2.2 describes propeller
aerodynamics and slipstream modelling. Finally, in Section 2.3 the interaction effects of the wing and
propeller are discussed.

2.1. Wing aerodynamics
This section describes the main principles of wing aerodynamics by means of potential flow models.
Section 2.1.1 provides information on the basics wing modelling in potential flow. In Section 2.1.2 the
aerodynamics for a wing in a jet are introduced, which will be important when modelling propeller­wing
interaction.

2.1.1. Potential flow models
The wing produces lift by creating a pressure difference between the upper and lower surface. At the
wingtips air flows from the high pressure (bottom) to the low pressure (top) area, which leads to wingtip
vortices. A common low­order way to describe these phenomena on the wing is by using potential
flow models. Potential flow assumes that the velocity field can be described as the gradient of a scalar
function, which is referred to as the potential function. The flow described by a potential function is
irrotational. When this flow is also assumed to be incompressible, the flowfield should satisfy Laplace’s
equation. A vortex is one of the flow elements that satisfies this equation. In Equation 2.1 the formal
definition is given for the circulation Γ. In the case of a vortex, Γ is the strength of the vortex. Γ is the
integral of the local velocity 𝑈 along a closed contour 𝐶. Furthermore, the Kutta­Joukowski theorem
relates circulation to lift, as shown in Equation 2.2. Here it can be seen that the upstream velocity 𝑈∞
determines the lift per unit span 𝑙. Note that the Kutta­Joukowski theorem is derived in 2D, so this 𝑈∞
is the upstream velocity at a certain 2D section.

Γ = −∮
𝐶
𝑈 ⋅ 𝑑𝑠 (2.1)

𝑙 = 𝜌∞𝑈∞Γ (2.2)

In Figure 2.1 a simple representation of a wing is shown. On the wing the bound vortex produces lift.
According to Helmholtz’s theorem a vortex has a constant strength and a vortex can not end, meaning
that a vortex must always form a closed loop. This leads to the starting vortex, which is shed when the
wing starts producing lift. This starting vortex is connected to the bound vortex by tip vortices or trailing
vortices. In reality the tip and starting vortex dissipate after some time, but the wing still experiences
induced velocity from the tip vortices, this induced velocity is called downwash. This leads to lift induced
drag, which is dependent on the strength of the tip vortices and thus the magnitude of the wing lift and
lift distribution.

9
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Figure 2.1: A simplified vortex representation of a wing [45]

In reality the wing does not consist of a single vortex line with constant strength. Circulation will be
distributed over the wing surface, leading to a continuous vortex sheet in the wake. Different potential
flow models represent this continuous vortex distribution differently. A lifting line model has a spanwise
distribution of circulation on a single line. A Vortex Lattice Method (VLM) model adds a chordwise distri­
bution of circulation, with the vortices lying on the camberline. Finally, a panel method puts circulation
on the surface of the wing, actually modelling the wing volume. Another benefit of the panel method
is that it is able to model any geometry, thus it is relatively easy to model other parts of the aircraft,
while this is not possible for the other previously described methods. These potential flow methods all
require a relatively low computational cost, while still producing accurate and useful results for many
applications.

A downside is that viscous effects are not captured by potential flow models. Due to the no­slip
condition at a surface, there exists a thin layer of air with a high velocity gradient, which is the boundary
layer. Inside the boundary layer the flow is considered viscous, while outside the boundary layer the
flow is considered inviscid [46]. Thus, the flow outside the boundary layer can be modelled using
potential flow models. However, drag is highly dependent on the boundary layer. The velocity gradient
at the surface leads to a shear stress, which results in friction drag. This drag is dependent on the
development of the boundary layer, which determines the velocity gradient at the surface. The velocity
gradient is also dependent on the state of the boundary layer. Here a distinction is made between
laminar (smooth and regular) and turbulent (random and irregular) flow. So, to correctly estimate drag
using potential flow models, friction drag should be added. The boundary layer can also influence the
lift, mainly through separation. Separated flow is mainly associated with stall, where the flow separation
leads to a large decrease in lift. Furthermore, separation gives rise to pressure drag. In normal flight
conditions separation occurs at high angles of attack, thus the potential flow models are less accurate
here.

2.1.2. Wing in jet
For conventional analysis methods for a wing, the wing usually sees a freestream velocity which is
completely uniform. Using conventional methods the response of the wing to (small) disturbances
in angle of attack or dynamic pressure with respect to this uniform freestream velocity can still be
predicted. However, when the wing is submerged in a jet, as shown in Figure 2.2, conventional ways
of analyzing the wing do not hold anymore when using potential flow models. When the freestream
velocity 𝑈∞ is doubled, the lift is expected to increase by a factor of four, since lift scales quadratically
with the velocity. However, when this area of increased dynamic pressure has a finite height, this
relation is no longer valid. Due to the finite height of the jet, the increase in lift is less than expected.
This is shown in Figure 2.3, based on the theory presented by Ting and Liu [47]. Here the blue line
shows the relation for 𝑈𝑗 = 2𝑈∞ and the red line shows it for 𝑈𝑗 = 1.5𝑈∞. The lift ratio 𝐾𝑙 is defined as
the the lift for a certain jet height divided by the lift without jet or with a uniform inflow of the freestream
velocity 𝑈∞.

While Figure 2.3 is valid for a 2D airfoil or infinite wing with an infinitely wide jet, something similar
happens when a circular jet is applied to the wing. Due to the finite height of the jet, the increase in
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Figure 2.2: Schematic of a wing in a jet with finite slipstream
height

Figure 2.3: The lift of an airfoil section for different jet heights
[48]

lift is less than what is expected from predictions from conventional potential flow models. This has
been shown by Nederlof [48], as shown in Figure 2.4, based on the theory by Rethorst [49][50]. Here
a case is shown with a circular jet in the middle of the wing and 𝑈𝑗 = 1.5𝑈∞. It can be seen that by
simply applying the velocity increase in the jet region as boundary conditions to the lifting line model,
the lift is highly overestimated when compared to the CFD data. With a correction for the jet applied, the
increase in lift is lower and it matches the CFD data. This reduction in lift has sometimes been modelled
for propeller­wing interaction as a reduction in swirl or swirl recovery, this will be further discussed in
Section 2.3.2.

Lastly, the circulation distribution requires some attention. As shown in Figure 2.5 the circulation
distribution exhibits a step change at the jet boundary. While this seems unusual for a wing, it still
follows the definition of circulation and Kutta­Joukowski theorem, as given in Equation 2.1 and 2.2
respectively. For pressure, and thus lift, to be spanwise continuous, the circulation must show a step
change when there is a spanwise step change in inflow velocity.
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Figure 2.4: The lift distribution for a wing with a circular jet at
the center [48]
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Figure 2.5: The circulation distribution for a wing with a circular
jet at the center [48]

2.2. Propeller aerodynamics
The main purpose of a propeller is to provide thrust. This is done by rotating the propeller blades, which
results in a forward force, called the thrust, and a tangential force, which causes torque. The thrust,
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torque and subsequent power can be non­dimensionalized, resulting in Equations 2.3, 2.4, 2.5.

𝐶𝑇 =
𝑇

𝜌𝑛2𝐷4 (2.3)

𝐶𝑄 =
𝑄

𝜌𝑛2𝐷5 (2.4)

𝐶𝑃 =
𝑃

𝜌𝑛3𝐷5 (2.5)

An important propeller parameter is the advance ratio 𝐽, given in Equation 2.6. The advance ratio
is useful for scaling propellers, because at the same advance ratio, a propeller experiences the same
angle of attack on its blades if the pitch distribution is the same, neglecting propeller wake induced
velocities. By dividing the effective propulsive power by the input power, the efficiency can be obtained,
as shown in Equation 2.7.

𝐽 = 𝑈∞
𝑛𝐷 (2.6)

𝜂 = 𝑇𝑈∞
𝑃 = 𝐶𝑇

𝐶𝑃
𝐽 (2.7)

When looking at propeller­wing interaction, it might be useful to compare forces to the aircraft forces.
In this case forces can be non­dimensionalized in the same way as the aircraft forces. This leads to
Equation 2.8 for the thrust coefficient, where 𝑆𝑟𝑒𝑓 is a reference surface area on the aircraft, usually
the wing area.

𝑇𝐶 =
𝑇

1
2𝜌𝑈

2∞𝑆𝑟𝑒𝑓
(2.8)

2.2.1. Actuator disk model
A simple way to analyse the behaviour of a propeller is by using the actuator disk model. In this model
the flow affected by the propeller is captured by the streamtube. Subsequently it is assumed that
the flow in the streamtube is an axial flow, uniform across its cross section, so without any rotational
velocities. With these assumptions a one dimensional analysis can be done using the continuity and
momentum equations.

Such a simple analysis already provides a good insight of the aerodynamic phenomena around the
propeller, as visualized in Figure 2.6. The pressure far up­ and downstream are assumed to be equal
to the freestream pressure 𝑝∞. A (total) pressure step change is seen at the propeller disk, which
results in the thrust force. On the other hand, the velocity remains continuous across the propeller
disk. An axial induction factor 𝑎 is introduced to describe the propeller induced axial velocity. At the
propeller disk the propeller induced velocity is 𝑎𝑈∞ and it increases to 2𝑎𝑈∞ in the wake, leading to
the expressions in Equation 2.9. This analysis also gives an expression of the thrust coefficient as a
function of the axial induction factor, as shown in Equation 2.10. Lastly, it can be seen that by applying
conservation of mass, the slipstream area must decrease due to the increasing velocity.

𝑈𝐷 = (1 + 𝑎)𝑈∞
𝑈𝑤 = (1 + 2𝑎)𝑈∞

(2.9)

𝐶𝑇 = 4𝑎(1 + 𝑎) (
𝜋
8 𝐽
2) (2.10)
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Figure 2.6: Schematic of the actuator disk model

2.2.2. Blade element momentum theory
The actuator disk model gives a good indication the overall performance of a propeller, but it is un­
suitable to analyse propeller geometries. To perform a low­cost analysis on a propeller geometry, the
actuator disk can be split into independent annular streamtubes, shown in Figure 2.7. These stream­
tubes can again be analyzed using equations for conservation of mass and conservation of momentum,
like in the actuator disk model. This is the basis of the Blade Element Momentum (BEM) theory. This
model takes into account axial and tangential velocities, but initially neglects 3D effects.

In each streamtube a 2D airfoil analysis can be done. This is shown in Figure 2.7. The blade element
sees two velocity components, one axial and one tangential. The axial velocity can again be described
using an induction factor, which gives: 𝑈𝑎 = 𝑈∞(1 + 𝑎). The same can be done for the tangential
velocity. Over the width of the propeller disk swirl is added to the flow. This swirl velocity is 𝑎′Ω𝑟 at the
propeller disk, where 𝑎′ is the tangential induction factor. The swirl velocity increases and becomes
2𝑎′Ω𝑟 in the wake. Thus, at the blade element the tangential velocity given by 𝑈𝑡 = Ω𝑟(1 − 𝑎′). The
local velocity 𝑈, created by 𝑈𝑎 and 𝑈𝑡 has a certain angle, which is referred to as the advance angle
𝜙. With the blade pitch and advance angle known, the angle of attack can be determined. Using a 2D
airfoil analysis, the forces on the blade element can be calculated, which can be resolved in an axial
and tangential force, as shown in Equation 2.11. By integrating over all streamtubes, the total thrust
and torque for the propeller can be determined.

𝑑𝐹𝑥 = 𝑑𝐿 cos (𝜙) − 𝑑𝐷 sin (𝜙)
𝑑𝐹𝑧 = 𝑑𝐿 sin (𝜙) + 𝑑𝐷 cos (𝜙) (2.11)
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𝛼
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𝑑𝐿𝑑𝐹𝑥

𝑑𝐹𝑧

𝜙

Figure 2.7: Schematic of the BEM theory

Since in each streamtube only a 2D analysis is performed, 3D effects are initially neglected. How­
ever, at the tip and root of the propeller blade trailing vortices are present, similar to tip vortices on
a wing. Due to the rotation of the propeller, the shape of these vortices is helicoidal and this vortex
structure has a large effect on the propeller induction factor [51]. This results in a tip and root loss.



14 2. Theoretical background

While tip losses have a significant impact on the propeller performance, root losses can often be ne­
glected, since the forces on the blade root are much lower compared to the tip. This is because at
the root, where the radius is small, tangential velocity is much lower. This gives low dynamic pressure
and leads to relatively small forces at the root, thus the circulation gradient at the root is also relatively
small, which gives trailing vortices with little strength and does not lead to significant losses.

To calculate the tip loss, the induced velocity by the wake must be known. One could assume a rigid
wake and calculate the induced velocities using the Biot­Savart law for each vortex filament [51]. This is
computationally expensive and extra steps must be taken to obtain the solution for steady flow, as this
way of modelling is time­depedent, while the BEM model is steady. Using an infinite number of blades
could lead to acceptable results [52], but this is computationally expensive. A less computationally
expensive method would be using exact solutions for a helicoidal wake. XROTOR1 uses an extension
of Goldstein’s solutions [53]. Such a solution also models a rigid helicoidal wake, but for steady flow
and at a much lower computational cost.

A widely used way to account for tip losses is by using the Prandtl tip factor [54]. Prandtl’s solution
replaces the helicoidal vortex sheet with disks, moving with the wake velocity 𝑈∞(1+𝑎). The resulting
tip loss factor 𝐹(𝑟) is given by Equation 2.12, where 𝑅𝑤 is the radius of the wake and 𝑑 the distance
between successive vortex sheets. These two variables are hard to define, so the exponent 𝑓 is usually
rewritten to an expression that is easier to evaluate. Glauert [52] introduced the expression shown in
Equation 2.13, where 𝜙𝑅 is the flow angle at the tip. By replacing 𝜙𝑅 with the local flow angle, the
exponent can be further simplified to Equation 2.14.

𝐹(𝑟) = 2
𝜋 arccos (𝑒−𝑓)

𝑓 = 𝜋 (𝑅𝑤 − 𝑟𝑑 )
(2.12)

𝑓 = 𝐵
2 (

𝑅 − 𝑟
𝑅 ) 1

sin(𝜙𝑅)
(2.13)

𝑓 = 𝐵
2 (

𝑅 − 𝑟
𝑟 ) 𝑊𝑎𝑊𝑡

(2.14)

This tip loss factor can be easily implemented in a BEM code. Using an iterative scheme the equa­
tions can be solved. Prandtl’s tip loss factor shows good agreement with Goldstein’s solution. However,
at high advance ratios the difference increases [55].

2.2.3. Propeller slipstream modelling
To calculate induced velocities from the propeller on a wing, a propeller slipstream model is needed.
The slipstream contains the vortex sheet shed by the propeller, which propagates downstream. The
strength of the vorticity in the wake is determined by the strength of the bound vortex on the propeller
blade. Helmholtz’s theorem says that a vortex can not end in a fluid. Since the bound vortex strength of
the blade is not constant, trailing vortices must emerge. The strength of these trailing vortices is equal
to the difference in the adjacent bound vortices.

Due to the rotation of the blades, this vortex sheet has a helicoidal shape. Furthermore, the vortex
sheet must follow the fluid. Thus, the surface of the sheet is force free, without pressure discontinuity
or normal velocity discontinuity [56]. When the propeller slipstream is modelled as a force free surface,
it is referred to as a free wake model. The induced velocities of the wake are calculated using the Biot­
Savart law, shown in Equation 2.15, where 𝑑𝑙 is an infinitesimal small vortex length and 𝑟 is the radius
from the vortex to a point. Using an algorithm, the system can be solved iteratively with the boundary
conditions imposed. However, calculations for a free wake model are costly. A simpler model is the
frozen wake model, which uses a prescribed axial and rotational velocity to propagate the vortices
downstream. In this model, the vortex surface is not force free anymore. However, in the region close
to the propeller, the shape of the slipstream is very similar for these two models [56]. Only in regions
farther away of the propeller, the vortex sheet will roll up and the frozen wake model loses accuracy
here.
1http://web.mit.edu/drela/Public/web/xrotor/

http://web.mit.edu/drela/Public/web/xrotor/
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𝑑𝑢 = Γ
4𝜋
𝑑𝑙 × 𝑟
|𝑟3|

(2.15)

The free wake and frozen wake model, however, are time­dependent models, so extra steps are
needed to calculate the time­averaged solution. One way to get a time­averaged solution directly is
by using the slipstream tube model [12][28]. This model identifies two sources of vorticity in the wake.
There is axial vorticity 𝛾𝑎, parallel to the axis of rotation. Tangential vorticity 𝛾𝑡 is located on circles
concentric with the axis of rotation, perpendicular to the axial vorticity. Lastly, on the propeller plane
there is the bound vorticity from the blades, 𝛾𝑝. A representation of the slipstream tube model is shown
in Figure 2.8, where 𝛾𝑎 is located on the horizontal lines and 𝛾𝑡 on the circles. The vorticity coming from
the propeller must be averaged, which is shown in Equation 2.16.

𝛾𝑎 =
𝐵
2𝜋𝑟

𝑑Γ
𝑑𝑟

𝛾𝑡 =
𝑛𝐵
𝑈∞

𝑑Γ
𝑑𝑟

𝛾𝑝 =
𝐵
2𝜋𝑟Γ

(2.16)

Figure 2.8: Slipstream tube model [28]

Together these two vorticity elements create rings of vorticity in the wake. By exploiting the geo­
metric properties of these rings the integral in 𝑥 direction can be evaluated analytically. This gives a
solution for streamtubes going from the propeller disk at 𝑥 = 0 to infinite. By integrating the solution
over the radius, the induced velocity can be found at some point with coordinates [𝑥𝑝, 𝑦𝑝, 𝑧𝑝] using
Equations 2.17 and 2.18 for the axial and tangential vorticity respectively. Here 𝜙 is the azimuth angle
of the streamtube.
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𝑢𝑥 = 0

𝑢𝑦 = ∫
𝑅

𝑟ℎ𝑢𝑏
𝑎∫

2𝜋

0

𝑐
𝑏2 + 𝑐2

⎛

⎝

1 +
𝑥𝑝

√𝑥2𝑝 + 𝑏2 + 𝑐2
⎞

⎠

𝑑𝜙𝑑𝑟

𝑢𝑧 = ∫
𝑅

𝑟ℎ𝑢𝑏
𝑎∫

2𝜋

0

−𝑏
𝑏2 + 𝑐2

⎛

⎝

1 +
𝑥𝑝

√𝑥2𝑝 + 𝑏2 + 𝑐2
⎞

⎠

𝑑𝜙𝑑𝑟

with ∶

𝑎 = 𝛾𝑎𝑟
4𝜋

𝑏 = 𝑟 sin(𝜙) − 𝑦𝑝
𝑐 = −𝑟 cos(𝜙) − 𝑧𝑝

(2.17)

𝑢𝑥 = ∫
𝑅

𝑟ℎ𝑢𝑏
𝑎∫

2𝜋

0

𝑏 sin(𝜙) − 𝑐 cos(𝜙)
𝑏2 + 𝑐2

⎛

⎝

1 −
−𝑥𝑝

√𝑥2𝑝 + 𝑏2 + 𝑐2
⎞

⎠

𝑑𝜙𝑑𝑟

𝑢𝑦 = ∫
𝑅

𝑟ℎ𝑢𝑏
𝑎∫

2𝜋

0

− sin(𝜙)

√𝑥2𝑝 + 𝑏2 + 𝑐2
𝑑𝜙𝑑𝑟

𝑢𝑧 = ∫
𝑅

𝑟ℎ𝑢𝑏
𝑎∫

2𝜋

0

cos(𝜙)

√𝑥2𝑝 + 𝑏2 + 𝑐2
𝑑𝜙𝑑𝑟

with ∶

𝑎 = 𝛾𝑡𝑟
4𝜋

𝑏 = 𝑟 sin(𝜙) − 𝑦𝑝
𝑐 = −𝑟 cos(𝜙) − 𝑧𝑝

(2.18)

Conway [57] created a similar model using axial and tangential vorticity. For certain radial velocity
distributions, exact expressions were derived for the induced axial and radial velocity components. In
this analysis the velocity will be constant along the azimuth direction, so velocity will be a function of
𝑟 and 𝑥. In Equation 2.19 the radial velocity distribution for an even polynomial function can be seen.
Here 𝑈𝑎(𝑟, 0) is the axial velocity at the propeller disk, 𝑈𝑎0 is a scaling factor and 𝜇 is an integer. For
this distribution of axial velocity, the induced radial and axial velocity can be written as Equation 2.20
and 2.21 respectively. The solution uses the gamma function Γ(𝑥) and the Bessel function of the first
kind 𝐽𝑛(𝑥).

𝑈𝑎(𝑟, 0) = 𝑈𝑎0 (1 − (𝑟/𝑅)2)
𝜇

(2.19)

𝑈𝑟(𝑟, 𝑥) = −
2𝜇Γ(𝜇 + 1)𝑈𝑎0

𝑅𝜇−1 ∫
∞

0

𝑒−𝑠|𝑥|𝐽𝜇+1(𝑠𝑅)𝐽1(𝑠𝑟)
𝑠𝜇 𝑑𝑠 (2.20)

𝑈𝑎(𝑟, 𝑥) = 2𝑈𝑎(𝑟, 0) −
2𝜇Γ(𝜇 + 1)𝑈𝑎0

𝑅𝜇−1 ∫
∞

0

𝑒−𝑠|𝑥|𝐽𝜇+1(𝑠𝑅)𝐽0(𝑠𝑟)
𝑠𝜇 𝑑𝑠 for 𝑥 ≥ 0

𝑈𝑎(𝑟, 𝑥) =
2𝜇Γ(𝜇 + 1)𝑈𝑎0

𝑅𝜇−1 ∫
∞

0

𝑒−𝑠|𝑥|𝐽𝜇+1(𝑠𝑅)𝐽0(𝑠𝑟)
𝑠𝜇 𝑑𝑠 for 𝑥 < 0

(2.21)
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Furthermore, Conway found that by superposition of axial velocity distributions a solution could be
found for a general distribution. This principle is shown in Equation 2.22.

𝑈𝑎(𝑟, 0) =
𝑁

∑
𝜇=1

𝑈𝑎0,𝜇 (1 − (𝑟/𝑅)2)
𝜇

(2.22)

2.2.4. Propeller in non­uniform flow
Until now the inflow field has been assumed to be uniform and aligned with the propeller rotation axis.
When this is not the case, the steady propeller performance will change. Next to this there are some
unsteady effects that will occur.

A useful case to examine is when the propeller is placed under and angle with respect to the inflow
velocity. This will introduce both time­average and unsteady effects. The time­average effects will be
discussed first. When the propeller is placed under angle of attack, the propeller will generate a vertical
force and yawing moment [58][59]. The angle of attack will lead to a tangential velocity component (𝑈𝑡)
on the propeller blades, as shown in Figure 2.9. On the advancing blade side this tangential velocity acts
in the same direction as the blade rotational velocity, while these velocities are in opposite direction on
the retreating blade side. This difference causes an increase in angle of attack and dynamics pressure
on the advancing blade and a decrease of angle of attack and dynamic pressure on the retreating
blade, illustrated in Figure 2.9. The projection of the difference in thrust and drag on the advancing and
retreating side leads to a force in the direction of the tangential velocity [60], or an upward velocity in
Figure 2.9. Furthermore, the net effect in thrust of the difference on the advancing and retreating side
is positive, thus thrust increases with increasing inflow angle [60][61][62].
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Figure 2.9: Change in angle of attack and dynamic pressure on blade elements due to an inflow angle

Another phenomenon that occurs when the propeller is placed under an angle is the skewing of
the wake axis. Due to the freestream velocity not being aligned with the propeller thrust, the direction
of the wake will not be on the propeller rotation axis [51]. This leads to a skew angle for the wake,
which is smaller than the inflow angle, since axial velocity is added by the propeller. Because of this
the induced velocities will vary at different azimuthal blade positions [63]. This then leads to a second
force, perpendicular to the previously described force. The advancing side provides more thrust, thus
the circulation is higher. So the induced velocity by the wake on the advancing side is also higher
compared to the retreating side. This phenomenon is shown in Figures 2.10 and 2.11 obtained using
CFD and using a lifting line method respectively. In these figures axial induced velocities are shown for
a propeller under angle of attack. While CFD provides high fidelity results, the lifting line provides data
on the aerodynamic principles at play. The region at azimuthal position Ψ = 0∘ is closer to the wake of
the advancing side and shows a higher induced velocity, while the region at Ψ = 180∘ is farther away
from the wake of the advancing side and shows a lower induced velocity. This difference in induced
velocity causes a similar difference in lift and drag as previously shown in Figure 2.9. This will lead to
a force in horizontal direction for a propeller under angle of attack, or to the right in Figures 2.10 and
2.11.
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Figure 2.10: Axial velocities relative to the freestream velocity
for a propeller at an angle of attack obtained using CFD [60]

Figure 2.11: Induced velocities for a propeller at an angle of
attack obtained using a lifting line method [60]

Next to time­averaged effects, there are also unsteady effects when a propeller is placed under an
angle. While the blade is rotating, it will see a changing angle of attack and dynamic pressure. The
result of this are fluctuating forces on the blades, which cause cyclic in­plane forces which are called
1P loads or first­order propeller loads. These forces are important for structural sizing, mainly for static
sizing and for fatigue sizing [60].

The in­plane forces for a propeller under angle of attack can be calculated with the solutions derived
by De Young [61]. However, a propeller that faces an arbitrary inflow can usually not be reduced to
a simple angle of attack problem. This is usually the case when looking at propeller interaction with
the wing or fuselage. Several models exist to calculate the propeller performance and in­plane forces
for any inflow field. Methods that are relatively expensive are unsteady RANS CFD [40] and panel
methods with a full representation of the propeller blade [64]. A more computationally efficient method
has been developed by Van Arnhem, et al. [65] by determining a local advance ratio for each location
on the propeller plane. Using a sensitivity map for a propeller in uniform conditions, the forces on
each location can be calculated, resulting in an estimation of the propeller forces. When this model is
compared to validation data, errors are shown to be ranging from 0.5% to 12%.

2.3. Propeller­wing interaction effects
This section will describe the propeller­wing interaction effects for a tractor configuration. First, the
effects of the wing on the propeller are discussed in Section 2.3.1, followed by the effects of the propeller
on the wing in Section 2.3.2. Finally, the influence of design variables on the propeller­wing interaction
are discussed in Section 2.3.3.

2.3.1. Effects of the wing on the propeller
The main effects of the wing on the propeller in a tractor configuration are due to the circulation and
vortices present from the wing. These will induce velocities upstream on the propeller. The direction
of the induced velocities is determined by the position of the propeller with respect to the wing. Before
the wing the propeller experiences mainly upwash from the bound vortex, and if the propeller is located
inside the span, downwash from the tip vortices. Ribner [66] found that the induced velocities lead to
a non­axisymmetric inflow for the propeller, causing 1P loads. However, from experiments conducted
by Heidelberg and Woodward [67] it was concluded that the wing induced velocities on the propeller
are practically uniform and it can be seen as an increase in angle of attack of the propeller. This is
shown in Figure 2.12. Here the induced velocities for an isolated propeller at 𝛼 = 1.5∘ are plotted on
the left. On the right the induced velocities are shown for the installed propeller. It can be seen that the
differences are very small.

Next to the vortex induced velocities there is blockage. This will lead to a decrease in axial velocity
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Figure 2.12: Comparison between an uninstalled propeller under an angle and an installed propeller in the upwash of a wing
[67]

on the propeller, leading to a decreased advance ratio and increased thrust [39]. Finally, in Figure 2.13
all the sources of induced velocities on the propeller are shown. The blockage effect induces axial
velocities, while the tip vortex induces in­plane velocities. The bound vortex induces a combination of
axial and in­plane velocities. Here it can be seen that the tip vortex effectively decreases the advance
ratio for a wingtip­mounted propeller. However, blockage seems to be the main source of the thrust
increase [39].

Figure 2.13: An overview of all the induced velocities from the wing on a tractor propeller [39]

2.3.2. Effects of the propeller on the wing
In this section the most important effects of tractor propellers on the wing will be discussed. It starts with
describing the main effects of the propeller wake on the wing lift distribution, followed by a description of
swirl recovery. This is followed by some notes on the modelling of swirl recovery in low­order methods,
such as lifting line and VLM models. Finally, some interaction effects specific for wingtip­mounted
propellers are discussed.

Next to these effects on the large scale flow on the wing, there are also effects on the boundary layer.
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The turbulent wake of a tractor propeller could move transition of the wing more towards the leading
edge [68]. The propeller slipstream could also lead to a boundary layer cycling between laminar and
turbulent flow [69]. These boundary layer effects are not further discussed, since they are not relevant
for this research.

Main effects on the lift distribution
In a tractor configuration a part of the wing will be immersed in the propeller slipstream. This leads to
two main effects on the immersed part of the wing: an increase in dynamic pressure due to increased
axial velocity and a change in angle of attack due to in­plane velocities.

In Figure 2.14 it is shown how these two effects affect the wing lift distribution. Firstly, the increase
in axial velocity increases the dynamic pressure. This leads to an increase in lift for the same angle
of attack. Furthermore, the increase in axial velocity is not the same along the span, since it is not
uniform along the propeller blade. At different radial positions, the axial induction factor and thus the
axial velocity is different. In Section 2.1.2 it was already discussed how the wing aerodynamics change
when dynamic pressure increased in a circular jet. The in­plane velocities cause an angle of attack
change. In the case of Figure 2.14, where the propeller center is aligned with the wing, this is due to
tangential velocities only. It can be seen that this causes upwash on the upgoing blade and downwash
on the downgoing blade. The amount of up­ or downwash is dependent on the radius and tangential
induction factor. Thus, the highest magnitude of up­ or downwash is expected close to the blade tip,
but not at the blade tip. Finally, the result of these two effects combined is also shown in Figure 2.14.

(a) Axial (b) Tangential (c) Combined

Figure 2.14: The effects of dynamic pressure and angle of attack on the wing lift distribution due to a propeller [28]

Swirl recovery
The change in angle of attack on the different wing section also leads to a phenomenon called swirl
recovery. Due to swirl recovery the angular momentum in the propeller wake, which is considered
a loss, can be used to generate forward drag. This principle is illustrated in Figure 2.15. Here a
wing at 𝛼 = 0∘ is shown. It can be seen that the down going blade produces downwash and the up
going blade upwash. This leads to a change in the direction of the resultant force. However, the lift
is always perpendicular to the inflow velocity, so this resultant force can be decomposed in a lift and
drag component. Depending on the magnitude of the change in lift and the magnitude of the original lift
vector, this may lead to negative induced drag on one or both sides of the propeller. Still, it can be seen
that even when both positive and negative drag are produced, the net result is negative drag, leading
to a better wing performance.

Modelling of swirl recovery
Due to swirl recovery, there will be less swirl in the wake. Since swirl recovery happens gradually
over the wing, it can be assumed that the swirl will be overestimated when using low­order models.
This would lead to an overestimated lift, which has been observed by several studies [28][71][72][73].
To counteract this problem a Swirl Recovery Factor (SRF) was introduced. However, this SRF has
no physical meaning and even with the SRF included, the analysis tools were still overestimating lift
[71][72]. Using a lifting line method, Nederlof [48] showed that the overestimation of lift, that the SRF
tried to account for, was actually caused by improper modelling of the finite height of the increase axial
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Figure 2.15: Schematic for swirl recovery for a symmetric and cambered wing at zero angle of attack [70]

velocity jet. This has been described in Section 2.1.2. With proper modelling of the finite jet height it
was shown that the lift predicted with a lifting line model agrees with CFD data as shown in Figure 2.16.
Although it can be seen that the lift is still somewhat overestimated. It is thought this can be improved
by also taking into account the finite slipstream height of the swirl velocities, while the effect of swirl
recovery does not seem to play a big role here.

Figure 2.16: Comparison of the lift distribution for a wing in a jet with axial and tangential velocity between a lifting line model
and CFD [48]

Interaction effects for wingtip­mounted propellers
In Section 1.1 it was already mentioned that inboard­up rotating wingtip­mounted propellers have a
beneficial interaction effect with the wingtip vortex. For a tractor propeller, the wingtip vortex will be
moved outboard, leading to an increase in effective aspect ratio and reducing drag [12][13][19][20].
On the other hand an outboard­up rotating propeller moves the wingtip vortex inboard, leading to a
decrease of effective aspect ratio. In Figure 2.17 it can be seen that the inboard­up rotating propeller
gives a more efficient wing. This interaction effect has also been investigated on a Fokker F27 scale
model using windtunnel experiments [29]. The results can be found in Figure 2.18. Here again the
benefit of inboard­up rotating propeller is shown.

One of the driving factors of the interaction is the amount of swirl in the propeller wake. Snyder and
Zumwalt [20] used two different propeller designs to investigate the effect of swirl. They found that a
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Figure 2.17: Lift and drag for a propeller­wing combination for
inboard­up and outboard­up rotating propellers [29]

Figure 2.18: Lift and drag for a Fokker F27 scale model with
inboard­up and outboard­up rotating propellers [29]

higher swirl gives a decrease in drag, which was validated by experimental data. Miranda and Brennan
[12] investigated this effect by using the disk loading. The disk loading is defined as the ratio of thrust
to disk area, which gives an equivalent pressure of the propeller disk. With increasing disk loading, the
swirl in the wake also increases. They found that with increasing disk loading the drag also decreases.
However, Della Vecchia, et al. [74] found that when the propeller diameter becomes too small, drag will
increase with increasing disk loading. This is observed at a low lift coefficient where the strength of the
wingtip vortex is small and will be shed from the edge of the nacelle. Furthermore, the small propeller
vortex is also dissipated by the nacelle. This leads to a scenario where there is basically no interaction
between the propeller wake and wingtip vortex, so no drag reduction is achieved here.

2.3.3. Propeller location
In this section some of the key variables for propeller­wing interaction for a tractor configuration are
discussed.

Propeller streamwise position
Due to slipstream contraction, a wing in the propeller slipstream can experience an induced angle of
attack and dynamic pressure increase due to the relative position with respect to the propeller. This
is shown in Figure 2.19. When the streamwise position between propeller and wing is increased,
the induced angle of attack (due to radial velocity) decreases and the dynamic pressure increases.
Veldhuis [75] found that the net result of these effects is very small. In a more recent study by Veldhuis
[29] an increase in propeller efficiency was found when the streamwise distance between propeller and
wing was increased. Due to the upwash from the wing, the propeller experiences a non­uniform inflow
when near to the wing. This causes velocity distortions in the wake, which affect wing performance.
Furthermore, the dynamic pressure further downstream from the propeller is higher, further improving
wing efficiency.

Propeller vertical position
A change in vertical position of the propeller also affects the wing by a change in angle of attack. This is
due to slipstream contraction as shown in Figure 2.19. A second effect of the propeller vertical position
is the change in wing area affected by the propeller slipstream. The cross section of the high dynamic
pressure region of the propeller slipstream takes the form of a doughnut, due to the presence of the
propeller hub. This is shown in Figure 2.20. When moving the propeller up or down with respect to
the wing, a smaller or larger part of the wing experiences a high dynamic pressure. In an experimental
study by Veldhuis [29] it was found that at high thrust settings, lift can be enhanced by putting the
propeller at an offset in vertical direction. Furthermore, for a high propeller position, the lift can be
increased more than for a low propeller position. This is due to the angle of attack effect. For low thrust
settings, these effects are much less noticeable.
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Figure 2.19: The effect of contraction on the local angle of at­
tack in the propeller slipstream [28]

Figure 2.20: Schematic of the high dynamic pressure region of
the propeller slipstream for a propeller with hub [29]

Propeller spanwise position
The spanwise position of the propeller determines the spanwise lift distribution of the wing due to
increased dynamic pressure and angle of attack change as discussed in Section 2.3.2. Furthermore,
when moving a inboard­up rotating propeller outboard, there is beneficial interaction between the swirl
in the propeller slipstream and the wing tip vortex. This is shown in Figure 2.21. It can be seen that this
effect is the strongest for wingtip­mounted propellers. When propellers are placed inboard, the effects
are barely noticeable.

Figure 2.21: The effect of the propeller spanwise position on lift
and drag [29]

Figure 2.22: The effect of the propeller installation angle on the
lift to drag ratio [29]

Propeller installation angle
When a tractor propeller is installed on the wing, it will see induced velocities from the wing. These
induced velocities are almost equivalent to a negative angle of attack for the propeller. By changing the
propeller installation angle, the propeller inflow can be better aligned, leading to an perpendicular inflow
to the propeller plane [29]. This is beneficial for the propeller, as it reduces unsteady forces. Since the
propeller will be installed at a negative angle, the wing will see increased upwash, increasing the lift.
However, this effect is lower for lower thrust settings. Furthermore, this upwash acts mostly on the wing
leading edge, resulting in more suction on the front of the wing, decreasing drag. The thrust vector will
be directed downwards, decreasing the lift, but this is offset by the gain in wing lift [29]. In Figure 2.22
experimental results are presented for the wing lift to drag ratio at different propeller installation angles.
A more negative installation angle increases the lift, leading to a higher lift to drag ratio.





3
Propeller model

In this chapter the setup of the numerical propeller model will be discussed. In Figure 3.1 a flowchart
can be found for this model. It takes the propeller geometry, the lift and drag polars of airfoils at different
radial stations and an externally induced velocity field as input. The external induced velocity field will
eventually be the induced velocities by thewing. The outputs of themodel are the propeller performance
and propeller induced velocities from the slipstream tube model. The propeller induced velocities will
be used as an input for the wing model. The propeller model itself consists of three main parts. The
BEM model will be discussed in Section 3.1. The non­uniform inflow propeller analysis is described in
Section 3.2. Finally, in Section 3.3 a description of the slipstream model is given.

Propeller geometry
Blade airfoil polars

External induced
velocity field

BEM model
(Section 3.1)

Propeller
performance map

Non­uniform inflow
propeller analysis
(Section 3.2)

Blade circulation
distribution

Slipstream tube
model

(Section 3.3)

Slipstream
contraction

Simplified
slipstream tube model

(Section 3.3.3)

Propeller induced
velocities

Propeller
performance

Propeller model

Figure 3.1: Flowchart for the numerical propeller model

3.1. BEM model
To analyze the isolated propeller without any disturbances in the inflow velocity field, a BEM model is
used. The BEM model used, is based on the graded momentum formulation used in existing codes

25
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by Mark Drela, which includes XROTOR, QPROP and QMIL [76]. The graded momentum formulation
uses the Prandtl tip loss factor. This means that the formulation is somewhat limited in its use, since
this tip loss factor is not valid at higher advance ratios [55].

XROTOR has already been widely used at the TU Delft and the results usually show good agree­
ment with CFD analysis [44][77][78]. However, XROTOR does not take direct airfoil polars as input.
This was seen as a potential source of large errors for a parameterized propeller model. Thus, the
decision was made to develop a BEM model, based on the XROTOR model, which could directly read
airfoil polars.

3.1.1. BEM formulation
The solution for the BEM analysis must be obtained iteratively. To make the iteration faster and more
stable, a dummy variableΨ is introduced. This is the angle of the total velocity vector from the center of
the total inflow velocity. Furthermore, the assumption is made that the induced velocity is perpendicular
to the total velocity. This is only valid for lightly loaded propellers with Goldstein’s circulation distribution,
but this assumption also holds up for most cases [53][76]. Using the velocities presented in Figure 3.2
the velocities can be written as a function of Ψ, as presented in Equation 3.1.

𝑢

𝑈𝑎

𝑈𝑡

𝑊

𝑈

Ψ

𝑊𝑡

𝑢𝑡

𝑊𝑎

𝑢𝑎

Figure 3.2: Definition of the velocities used by the BEM solver

𝑊𝑎 =
1
2𝑈∞ +

1
2𝑈 sin(Ψ)

𝑊𝑡 =
1
2Ω𝑟 +

1
2𝑈 cos(Ψ)

𝑢𝑎 = 𝑊𝑎 − 𝑈∞
𝑢𝑡 = Ω𝑟 −𝑊𝑡

(3.1)

The bound circulation on the blade can be related to the circumferential averaged tangential velocity
𝑢𝑡, using Equation 3.2 [79]. Equation 3.3 gives the relation between the averaged and tangential
velocity at the blade. This is also where the tip loss factor is applied. No root loss factor is applied,
since it is also absent in XROTOR. By combining Equations 3.2 and 3.3, an expression for the circulation
is obtained, as shown in Equation 3.4.

1
2𝐵Γ = 2𝜋𝑟𝑢𝑡 (3.2)

𝑢𝑡 = 𝑢𝑡𝐹√1 + (
4𝑊𝑎
𝜋𝐵𝑊𝑡

)
2

(3.3)
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Γ = 𝑢𝑡
4𝜋𝑟
𝐵 𝐹√1 + ( 4𝑊𝑎𝜋𝐵𝑊𝑡

)
2

(3.4)

From the calculated velocities in Equation 3.1, the velocity and angle of attack seen by the blade
can be calculated. Furthermore, Mach number and Reynolds number can be determined. From a 2D
airfoil analysis the lift and drag coefficient can be obtained. For this 2D analysis XFOIL1 was used, a
panel code with boundary layer formulation that allows for 2D subsonic viscous airfoil analysis. Using
XFOIL, the propeller airfoils were analyzed for different Reynolds numbers. During the analysis the
boundary layer was turbulent, by forcing transition at the leading edge. Furthermore, the analysis is
performed at a Mach number of zero. More information on this analysis will be given in Section 3.1.3.
The lift and drag coefficient obtained with XFOIL are a function of angle of attack and Reynolds number.
Mach number is taken into account by applying the Prandtl­Glauert correction. With the lift known, a
second expression for the circulation is found using the Kutta–Joukowski theorem, shown in Equation
3.5.

Γ = 1
2𝑊𝑐𝐶𝑙(𝛼, 𝑅𝑒)

1
√1 −𝑀2

(3.5)

With the two expressions for Γ from Equations 3.4 and 3.5, the residual ΔΓ can be determined.
Equation 3.6 shows the iterative scheme used to reduce the residual to some small number. In this
case a residual of 10−12 was used, which can typically be reached in a few iterations. It also assures
that the influence of floating point error on the convergence is negligible, since for a 64 bits floating
point number in Python, the machine epsilon is about 10−16. Using the dummy variable Ψ, the iteration
is usually quite stable, however sometimesΨ could become very large in magnitude. The code detects
these values and returns Ψ to an acceptable value based on interpolation between radial stations.

Ψ𝑛𝑒𝑤 = Ψ𝑜𝑙𝑑 −
ΔΓ

𝑑(ΔΓ)/𝑑Ψ (3.6)

3.1.2. Induced velocity calculation
In the BEM model it is assumed that the induced velocity 𝑢 is perpendicular to the total velocity vector
𝑊. This is true if the propeller follows Goldstein’s optimal circulation distribution [76]. To investigate this
assumption a propeller with Goldstein’s optimal circulation distribution is investigated using the BEM
code to see if the assumption holds. In Figure 3.3 the circulation distribution can be seen for a propeller
that closely follows Goldstein’s optimal circulation distribution [53]. Here 𝑤 is defined as the velocity
of the screw surface. However, no good definition for this velocity could be found in the literature and
no velocity value was found that was in the right order of magnitude, so here 𝑤 = 2 m/s is used, as
a scaling factor. This is acceptable, since it clearly shows that the shape of the circulation distribution
matches.

The induced axial and tangential velocities can be found using the BEM code, which uses the
assumption that induced velocity is perpendicular to the total velocity. The induced velocities can also
be calculated using a slipstream tube model, which physically models the circulation of the propeller in
the wake. The results of this comparison can be found in Figures 3.4 and 3.5. It can be seen that both
axial and tangential velocity follow the results of the slipstream tube model closely. Near the root some
differences can be found in mainly the tangential velocity, this could be because no root correction
is applied in the BEM code. When looking at the axial velocity, there is some difference around the
maximum, while there is no difference here for the tangential velocity. This is because in the BEM
code the circulation is highly dependent on the tangential velocity, while the axial velocity plays a much
smaller role. This can be seen in Equation 3.4, where circulation is directly related to 𝑢𝑡, while 𝑢𝑎 has
only an indirect influence through the ratio of 𝑊𝑎/𝑊𝑡. Thus, for the solution to converge for circulation
Γ, the tangential velocity needs to be estimated more accurately, while errors in axial velocity have less
influence on the solution.

Next, a propeller with an arbitrary circulation distribution is presented, which does not follow Gold­
stein’s circulation distribution. This is done to see how the assumption of 𝑢 perpendicular to 𝑊 holds
1https://web.mit.edu/drela/Public/web/xfoil/

https://web.mit.edu/drela/Public/web/xfoil/
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Figure 3.3: Goldstein’s optimal circulation distribution
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Figure 3.4: Comparison of the axial induced velocity by a pro­
peller wake for a propeller with Goldstein’s optimal circulation
distribution
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Figure 3.5: Comparison of the tangential induced velocity by a
propeller wake for a propeller with Goldstein’s optimal circula­
tion distribution

up for an arbitrary propeller. The circulation distribution of the propeller blade is shown in Figure 3.6.
Here again the value of 𝑤 is used for scaling. It can be seen that the circulation distribution does not
follow the Goldstein’s distribution. Next, in Figures 3.7 and 3.8 the axial and tangential induced velocity
distributions are presented. Here the results from the BEM code are compared to the induced velocities
obtained using a slipstream tube model. It can be seen that the two tangential velocity distributions are
very close, with only some deviation near the root. This is again due to the absence of a root correction,
but it is expected to have minimal effect on the propeller performance.

When looking at the axial velocity distribution, it can be seen that the difference here is relatively
large, especially around the maximum. This means that the assumption of perpendicular induced
velocity to the total velocity does not hold anymore when the circulation distribution of the propeller
deviates from Goldstein’s optimal circulation distribution. However, the solution depends mainly on
𝑢𝑡 as can be seen in Equation 3.4. Thus, the solution is relatively insensitive to errors in 𝑢𝑎. It is
approximated that an error of 10% in 𝑢𝑎 for all radial stations, leads to an error of around 2% for 𝐶𝑇 and
𝐶𝑃. Furthermore, the differences in 𝑢𝑎 are larger for higher loaded propellers and larger differences 𝑢𝑡
are found for blades with higher loading near the blade root. Thus, it is concluded that the assumption
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of the induced velocity 𝑢 being perpendicular to the total velocity vector 𝑊 is still usable for propellers
that do not follow Goldstein’s optimal circulation distribution. This means that the BEM solver definition,
as described in Section 3.1.1, can be used to model arbitrary propellers.
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Figure 3.6: Comparison of the circulation distribution of an arbitrary propeller with Goldstein’s optimal circulation distribution

0.2 0.4 0.6 0.8 1.0

0

0.05

0.10

𝑟/𝑅 [­]

𝑢 𝑎
/𝑈

∞
[­]

BEM
Slipstream tube

Figure 3.7: Comparison of the axial inducted velocity calculated
with a BEM code and slipstream tube model for a propeller with
the circulation distribution shown in Figure 3.6
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Figure 3.8: Comparison of the tangential inducted velocity cal­
culated with a BEM code and slipstream tube model for a pro­
peller with the circulation distribution shown in Figure 3.6

3.1.3. 2D airfoil analysis
The BEM model needs 2D airfoils polars to calculate the circulation and forces, as shown in Equation
3.5. These polars can come from any source, like CFD analysis, windtunnel experiments or a 2D
panel method. Since the BEM model is already a lower order model, it makes sense to use a relatively
inexpensive analysis for the airfoils. Thus, XFOIL was chosen to perform the 2D analysis.

XFOIL uses the 𝑒𝑁 method [80] to predict the boundary layer transition. The point of transition
influences the polar and thus the propeller performance. Transition is already hard to predict for the 2D
case and transition models for 3D flow on a propeller blade are not well­established [81]. Experiments
show that transition position is dependent on rotational speed [82] or even suggest that 2D effects
still dominate the transition mechanism [83]. However, incorporating an advanced transition model is
outside the scope of this research and a fixed transition point was chosen. The transition point was
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set as close to the leading edge as possible, so the whole airfoil would be subjected to turbulent flow.
For this purpose 𝑁𝑐𝑟𝑖𝑡 = 1 and 𝑥/𝑐𝑡𝑟𝑖𝑝 = 0.05 for the upper and lower surface were chosen. Finally, a
Mach number of zero was chosen, since a Prandtl­Glauert correction is applied in the BEM solver, as
shown before in Equation 3.5.

3.1.4. Comparison with XROTOR
The goal of the BEM code was to have a propeller analysis tool that would resemble the XROTOR
code. The main difference is that the BEM code can directly read the airfoil polars, while XROTOR
uses parameterized polars. These parameterized polars are described by nine variables, such as
maximum lift coefficient and lift curve slope. Using these parameters, the lift and drag polars can be
approximated at each radial station for a certain Reynolds number. Thus, in the case of XROTOR
the Reynolds number must be assumed a priori, since the induced velocities on the radial stations
are unknown. By running multiple analyses with XROTOR, the Reynolds number can be converged.
Furthermore, XROTOR interpolates between different radial stations. So if the polar parameters are
not smoothly distributed over the blade, XROTOR could find strange polars by interpolating between
the stations. This could be fixed by defining a polynomial function along the blade for each parameter,
which works as a smoothing function.

In Figure 3.9 and 3.10 a comparison can be seen for the polars at a radial station at 𝑟/𝑅 = 0.3
for the previously described ways to define the lift and drag polar. When the parameterized polar is
used, it describes the lift in the linear region accurately, but it fails to describe the polar behaviour in
the non­linear regions. When the smoothing function is applied, it introduces a shift in the lift curve.
This makes sense, since in order to make the distribution of parameters along the blade smooth, the
fit at a specific radial station will deviate from the best fit. When looking at the 𝐶𝑙 − 𝐶𝑑 curve it can be
seen that the parameterized model can not describe the shape properly, even without the smoothing
applied. This is not a big problem, since the drag force is much lower in magnitude than the lift force.
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Figure 3.9: Comparison of lift polars for a propeller radial sta­
tion at 𝑟/𝑅 = 0.3 for 𝑅𝑒 = 82, 500
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Figure 3.10: Comparison of drag polars for a propeller radial
station at 𝑟/𝑅 = 0.3 for 𝑅𝑒 = 82, 500

The difference in propeller performance for these different polar modelling methods can be found in
Figures 3.11 and 3.12. At higher advance ratios the blades are largely operating in the linear regime of
the lift polar, thus there is little difference here between the results of the BEM code and the XROTOR
results without smoothing applied. The smoothing causes quite a shift in the lift polar, thus the results
do not match here. At higher advance ratios larger parts of the blade will be operating in the non­
linear regime of the lift polar. Large differences can be found between the results of the BEM code and
XROTOR. Since the parameterized polar used by XROTOR does not capture the non­linear effects
properly, it is expected that the BEM results should be better. However, it must be noted that predicting
non­linear effects with low­order codes is very hard and the results should not be taken for granted.

Lastly, a comparison is made between the BEM formulation, the graded momentum (GRAD) for­
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Figure 3.11: Comparison of propeller thrust for different ways
of modelling the airfoil polars
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Figure 3.12: Comparison of propeller power for different ways
of modelling the airfoil polars

mulation of XROTOR and the potential (POT) formulation of XROTOR. The BEM formulation must be
similar to the GRAD formulation. The POT formulation calculates induced velocities using a fixed heli­
coidal wake model based using an extension of Goldstein’s propeller solutions [53]. This more complex
formulation should be more accurate than the GRAD formulation at higher advance ratios. Since the
wake model used in the BEM code is based on the GRAD formulation, the results are compared to
the POT formulation, to get a better understanding of the accuracy and limitations of the simpler wake
model.

In Figures 3.13 and 3.14 the performance of the propeller for different formulations is shown. For
fair comparison the BEM code now uses the same polars as XROTOR. It can be seen that there is
little difference between the GRAD and POT formulation, even at high advance ratios. At low advance
ratios there are some spikes in the results of the POT formulation. This is most likely due to bad solver
convergence. It can also be seen that the results from the BEM code match the XROTOR results. Only
at lower advance ratios there is some difference.

To investigate the differences at lower advance ratios, the radial distribution of circulation and blade
angle of attack are plotted in Figures 3.15 and 3.16 for 𝐽 = 0.9. Here again some spikes are found in the
distribution from the POT formulation, again confirming that the differences are caused by bad solver
convergence. When comparing the results of the BEM code and the GRAD formulation of XROTOR,
it can be seen that the results are very close to each other. The small differences can be caused by
some extra correction in the non­linear regime of the polars in XROTOR, however this has not been
confirmed. Since the radial differences are so small, the difference in performance at lower advance
ratios is accepted.

To conclude the comparison of the BEM code with XROTOR, the direct input of airfoil polars in
the BEM code gives presumably more accurate results at low advance ratios, while avoiding the loss
of accuracy when radial smoothing is applied. Furthermore, the graded momentum formulation of
XROTOR is correctly implemented in the BEM code and there seems to be no significant difference
with the potential formulation, making the BEM code suitable for the whole range of usable advance
ratios.

3.2. Non­uniform inflow propeller analysis
To deal with an arbitrary non­uniform velocity inflow field for the propeller, the engineering method
developed by Van Arnhem et al. [65] was used. This method was validated using CFD data. One of
the validation cases was for a propeller under angle of attack, which closely resembles a propeller in
the upwash in front of a wing. For this case the blade loading shows some phase lag, but the integral
thrust and torque nearly coincide with the CFD data. However, for the in­plane forces larger differences
were found, with the error increasing with increasing angle of attack. It is assumed however, that the
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Figure 3.16: Comparison of local angle of attack for different
BEM formulations for 𝐽 = 0.9

contribution of the in­plane forces to the overall forces of the propeller­wing system is small, thus this
error has only a minor influence.

The method starts out with a quasi­steady analysis. The freestream advance ratio 𝐽∞ is assumed
for the whole propeller. At a certain radial and azimuth position there is a velocity disturbance, which
leads to a change in local advance ratio, denoted as Δ𝐽. At this position a local change in load must be
calculated. This is done by assuming that 𝐽𝑒𝑓𝑓 = 𝐽∞ + Δ𝐽 is applied to the full propeller. By comparing
the loads at 𝐽∞ and 𝐽𝑒𝑓𝑓, a difference in loads can be found. This leads to local loading coefficients 𝑑𝐶𝑇
and 𝑑𝐶𝑄 at some local point. This whole concept is shown in Figure 3.17; note that Δ𝐽 in this figure
is negative. By integrating the loads over the propeller disk, the performance for an arbitrary velocity
inflow field can be obtained.

This analysis is applied twice. The local change in velocity disturbancewith respect to the freestream
can be resolved in an axial and tangential component. This leads to a Δ𝐽 in axial and tangential direction.
The corresponding changes in local loading can be found by using a so­called propeller performance
map. These describe the loads on the propeller plane for changing axial or rotational velocity. In this
case these performance maps are obtained using the BEM code. Finally, by superposition of the axial
and tangential changes in load, the total change in load is obtained.
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Figure 3.17: Schematic of the engineering method to analyse propellers in a non­uniform inflow [65]

However, unsteady effects also need to be taken into account. When an airfoil sees a change
in inflow, the change in lift is not instantaneous due to the vorticity that will be shed into the wake
due to a change in bound circulation. This leads to a change in phase and magnitude of the blade
loads. The Sears function is applied to the quasi­steady results to obtain a solution that takes into
account unsteady effects. For a more detailed description of this method the reader is referred to
the corresponding paper by Van Arnhem et al. [65]. Furthermore, a verification case was provided
with vertically varying axial and vertical perturbation velocities, as shown in Figures 3.18 and 3.19
respectively. No velocity perturbations in 𝑦 direction were present. For this verification case the thrust
and efficiency are compared in Figures 3.20 and 3.21 for the results found by Van Arnhem et al. and
the Python code that will be used in the propeller model. These match almost perfectly, so this code is
also verified.
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Figure 3.18: Axial velocity inflow perturbation used for verifica­
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Figure 3.19: Vertical velocity inflow perturbation used for veri­
fication [65]

To calculate the influence of the propeller on the wing, the bound vorticity on the propeller disk must
be known. To do this, the induced velocity of the wake on the propeller is needed, which is again
a function of the bound circulation. Thus, to calculate the circulation it is assumed that the propeller
induced velocity is given by the propeller at 𝐽∞. With the induced velocities known, the local velocities
at the propeller blade are known, so the advance angle can be calculated. Now the blade loads can
be resolved into lift and drag, as shown in Equation 3.7. Furthermore, by summing the forces over the
disk, in­plane forces are calculated if there is any force imbalance. Finally, the circulation is calculated
by applying the Kutta–Joukowski theorem with the local velocity.
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Figure 3.21: Comparison of the change in blade efficiency for
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𝑑𝐿 = 𝑑𝑇 cos(𝜙) + 𝑑𝑄 sin(𝜙)1𝑟
𝑑𝐷 = −𝑑𝑇 sin(𝜙) + 𝑑𝑄 cos(𝜙)1𝑟

(3.7)

This method of calculating the propeller performance has some limitations. The most important one
is the limited range of 𝐽 in the data sets used. This is a problem when the propeller is under an angle of
attack. In Figure 3.22, the Δ𝐽𝑡 is plotted for a propeller under 5∘ angle of attack. It can be seen that near
the hub the largest values are found. Due to the low radius, the original tangential velocity is low, thus
any added tangential velocity causes a large Δ𝐽𝑡 here. When the angle of attack is increased further,
the Δ𝐽𝑡 increases further, as shown in Figure 3.23. Very close to the hub, the Δ𝐽𝑡 exceeds 1. At some
point it will not be possible anymore to estimate the performance at such high or low advance ratios
with the BEM code. Thus, if the Δ𝐽 exceeds the range of available advance ratios, either the results for
the minimum or maximum advance ratio are used. So here the estimated 𝑑𝐿 and 𝑑𝐷 are inconsistent
with the Δ𝐽. However, it is expected that this only affects a small area of the propeller and thus has
limited influence on the total propeller performance for a propeller in non­uniform inflow.

−0.2

0

0.2

0.4

Δ𝐽
𝑡
[­]
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3.3. Propeller slipstream modelling
In this section a description of the slipstream model will be given. In Section 3.3.1 a general description
of the slipstream tube model is given. This slipstream tube model is then enhanced by including an
azimuthal circulation distribution (Section 3.3.2), slipstream contraction (Section 3.3.3) and slipstream
deflection (Section 3.3.4). In Figure 3.24 it is shown how these enhancements are implemented. The
slipstream tube is discretized with respect to 𝑥, 𝑟 and 𝜙 and thus gives elements with 𝑑𝑥, 𝑑𝑟 and
𝑑𝜙. Each element has a corresponding vorticity 𝛾. Furthermore, each element has some coordinates.
There is a horizontal position 𝑥 and vertical position 𝑧 of the slipstream center. At the slipstream center
a disk is placed, where the coordinates can be expressed with polar coordinates 𝑟 and 𝜙. This gives
a total of four coordinates: 𝑥, 𝑟, 𝜙 and 𝑧 for each element. The enhancements affect these properties
of the discretized slipstream tube elements. The azimuthal circulation distribution changes the vorticity
for 𝑥, 𝑟 and 𝜙. Contraction is based on conservation of mass and it changes the radius 𝑟 which varies
with the initial radius 𝑟0 and 𝑥. It also can be seen that to apply this conservation of momentum, axial
velocities are needed, which come from an intermediate model, namely Conway’s model. Slipstream
deflection changes the vertical position of the slipstream centerline, which varies with 𝑥. Finally, induced
velocities are calculated by integrating over all the slipstream tube elements.

Propeller circulation External induced
velocities

Conway’s model
(Section 3.3.3)

𝑢𝑎(𝑥, 𝑟0)

Azimuthal circulation
distribution

(Section 3.3.2)

Contraction
(Section 3.3.3)

Deflection
(Section 3.3.4)

𝛾(𝑥, 𝑟, 𝜙) 𝑟(𝑥, 𝑟0) 𝑧(𝑥)

Slipstream tube
model element
(𝛾, 𝑥, 𝑟, 𝜙, 𝑧)

Figure 3.24: Flowchart for enhanced slipstream tube model

3.3.1. Slipstream tube model
For the propeller slipstream model a modified version of the slipstream tube model [12][28] was used.
While in the original slipstream tube model the properties stay constant in axial and azimuth direction,
for the modified model it was chosen to vary some parameters to better model the propeller slipstream
and increase the fidelity of modelling of propeller­wing interaction. The radius changes in axial direction
to model slipstream contraction, the slipstream centerline vertical position varies in axial direction to
account for wake deflection and the circulation strength varies in azimuth direction to account for non­
uniform inflow.

The traditional way of calculating the induced velocities with the slipstream tube model were given
in Section 2.2.3 in Equations 2.17 and 2.18. For these equations the integral in 𝑥 has been solved
analytically. However, to vary parameters in axial direction, the full equations are needed. The form
of these equations is shown in Equation 3.8. To calculate the induced velocity components at a point
𝑃, there are three sources of vorticity: the axial vorticity 𝛾𝑎, tangential vorticity 𝛾𝑡 and the vorticity on
the propeller disk 𝛾𝑝. Functions 𝑓′𝑎, 𝑓′𝑡 and 𝑓𝑝 are derived from the Biot­Savart law and describe the
relation between this small part of the slipstream and point 𝑃 = [𝑥𝑝, 𝑦𝑝, 𝑧𝑝]. By multiplying these with



36 3. Propeller model

the vorticity, the induced velocity is found and when this is integrated over the entire slipstream, the
total induced velocity by the slipstream is found.

𝑢𝑥(𝑥, 𝜙, 𝑟) = ∫
𝑅
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0
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0
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0
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𝛾𝑝𝑓𝑝,𝑦(𝑃)𝑑𝜙𝑑𝑟
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(3.8)

The integrals in 𝑥 with the form ∫∞0 𝛾𝑓′(𝑃)𝑑𝑥 in Equation 3.8 are stepwise evaluated by using the
exact integral solution 𝛾[𝑓(𝑃)]𝑥+𝑑𝑥𝑥 . The corresponding functions 𝑓 can be found in Equation 3.9. The
averaged circulation values of 𝛾𝑎, 𝛾𝑡 and 𝛾𝑝 can be found in Section 2.2.3 in Equation 2.16. Sub­
sequently, the integrals in 𝜙 and 𝑟 are numerically evaluated using the rectangle rule. Thus, these
integrals become a sum for elements with 𝑑𝑥, 𝑑𝑟 and 𝑑𝜙. By realizing this, properties can be varied
for each element individually, this leads eventually to the enhanced slipstream tube model as shown
in Figure 3.24. Note that the vertical position 𝑧, introduced by the slipstream deflection, is taken into
account in the term 𝑐, similarly to 𝑧𝑝 in Equation 3.9.
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with ∶
𝑎 = 𝑏2 + 𝑐2
𝑏 = 𝑟 sin(𝜙) − 𝑦𝑝
𝑐 = −𝑟 cos(𝜙) − 𝑧𝑝

(3.9)

In order to verify the slipstream tube model, it is compared to the frozen wake model in Figures 3.25,
3.26 and 3.27. The frozen wake model consists of bound vorticity at the propeller plane and vorticity in
the wake, which has a helicoidal shape, since the vorticity from the propeller is propagated downstream
with the rotational speed and free stream velocity. By calculating the induced velocity over different time
steps an average velocity is found. The frozen wake model is considered to model the propeller wake
closer to reality, while the slipstream tube model gives a more simplified representation. However,
calculating the induced velocity using the slipstream tube model is much faster, so it is preferred to use
the slipstream tube model. This comparison will investigate if the frozen wake model can be replaced
by a slipstream tube model and where discrepancies occur, if any.

In Figure 3.25 the axial induced velocity at 𝑥 = 0 is shown. It can be seen that the frozen wake
model shows a much higher axial velocity. This is caused by the influence of the bound vorticity on
the propeller plane, which should be zero according to the slipstream tube model. The non­zero axial
velocity from the vorticity on the propeller plane can be caused by numerical error. The distances at
𝑥 = 0 are very small, thus small errors can cause large differences in induced velocity when using
the Biot­Savart law. Also, small errors are introduced by having a finite timestep, so when the blade
passes the evaluation point, it does so in an asymmetric manner, leaving a non­zero axial induced
velocity when time­averaging. With an infinitesimal timestep this axial velocity will be zero. But, even
without using the vorticity on the propeller plane, there is still some difference towards the tip between
the frozen wake and slipstream tube model. This could be because towards the tip the vortex elements
will be more and more curved, while near the root vortex elements will be more straight. It seems that
the slipstream tube model does not capture this behaviour completely. Something similar can be seen
for the tangential velocity in Figure 3.26. Furthermore, it can be seen that the difference in radial velocity
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Figure 3.25: Comparison of axial induced velocity by the pro­
peller slipstream at 𝑥 = 0 for the slipstream and frozen wake
model
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Figure 3.27: Comparison of the induced velocities by the propeller slipstream at 𝑥 = 2.5𝑅 for the slipstream and frozen wake
model

is quite large. The cause of this is unknown, but the effect of this error is small, since the propeller will
be more or less aligned with the wing in vertical direction. This means that the radial velocity will mainly
act along the span of the wing, not causing any change in angle of attack or dynamic pressure. Thus,
this difference is deemed acceptable.

In Figure 3.27 the induced velocities at 𝑥 = 2.5𝑅 can be found. The results at this distance from the
propeller disk can be regarded as results for far downstream. Thus, it is expected that the axial and
tangential velocities are doubled compared to 𝑥 = 0. This seems to be the case for the slipstream tube
model, while the frozen wake model underestimates the velocity increase a little. Furthermore, radial
velocity is almost zero for both models, which is expected. Again, the largest differences are found
towards the tip of the propeller. These differences are not too large (∼ 2% of 𝑈∞), thus the slipstream
tube model is an acceptable model to calculate propeller induced velocities.

3.3.2. Azimuthal circulation distribution
From the non­uniform inflow propeller analysis, an azimuthal distribution of circulation is obtained. This
azimuthal distribution can be propagated downstream, but rotation must be taken into account. Using
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the rotation speed and freestream velocity, at each 𝑥­coordinate the angle of rotation is determined
by 𝑥𝑖𝜔/𝑈∞, as shown in Figure 3.28. Here the freestream velocity 𝑈∞ is chosen, rather than 𝑈∞ plus
the axial wake velocity, to give the same rotation to all radial stations. Also, 𝜔 was used, without
taking into account the tangential velocity. With the tangential velocity included, the rotational velocity
is increased. This gives a different azimuthal position for a certain 𝑥­coordinate. However, for the
relatively short distance from propeller to wing, it is believed that not including tangential velocity has
negligible effect on the azimuthal position and thus the velocities induced by the slipstream tube model.

𝑥
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𝑧

𝑥𝑖

𝑥𝑖𝜔/𝑈∞

𝑈∞

Figure 3.28: Propagation of the azimuthal circulation downstream

In Figures 3.29 and 3.30 the axial and tangential velocity are compared for a slipstream with an
azimuthally uniform circulation distribution and one with an azimuthal non­uniform circulation distribu­
tion. The azimuthal non­uniform distribution is given by the uniform circulation distribution, with the
circulation on one side reduced with 10%, which is representative for a propeller under an angle of
attack. It can be seen that the development of both the axial and tangential velocity changes due to the
azimuthal circulation distribution. Furthermore, the shape of the velocity development seems similar
when comparing the slipstream tube model and frozen wake model. However, there seems to be a
shift in 𝑥 direction between the two models, where the frozen wake model predicts increases at lower
𝑥 values than the slipstream tube model. It is thought that this is due to the absence of a helicoidal
shape in the slipstream tube model. While the frozen wake uses continuous helicoidal trailing vortices,
the slipstream tube model can only model this using discrete steps. It is suspected that this limitation
becomes more visible when an azimuthal circulation distribution is applied, while it is less noticeable
for an azimuthally uniform circulation distribution.
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Figure 3.29: The effect of azimuthal circulation distribution on
the axial induced velocity at radial station 𝑟/𝑅 = 0.83
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the tangential induced velocity at radial station 𝑟/𝑅 = 0.83
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3.3.3. Slipstream contraction
The slipstream contraction is calculated by applying the conservation of mass to the slipstream. By
assuming constant density Equation 3.10 is obtained, where 𝑟0 and 𝑢𝑎,0 are evaluated at the propeller
plane at 𝑥 = 0. Now the induced axial velocities need to be calculated, which can be done using a
slipstream tube model.

𝑟
𝑟0
= √𝑈∞ + 𝑢𝑎,0𝑈∞ + 𝑢𝑎

(3.10)

However, to evaluate the axial velocity at all the positions in the wake is computationally expensive.
Thus, the analytical solution by Conway [57] is used. By using superposition of analytical solutions,
an analytical expression for the induced velocities can be found for an arbitrary radial distribution. In
Equation 3.11 it can be seen that the axial velocity at the propeller disk needs to be represented using
a number of even polynomial functions. By using a least squares method, the coefficients 𝑈𝑎0,𝜇 are
found for an arbitrary axial velocity distribution for a propeller. In Figure 3.31 it can be seen that by using
eight polynomials, the shape of the axial velocity distribution can be approximated. By increasing the
number of polynomials, the distribution can be better approximated, but high exponents can lead to
large numerical error, or even overflow, when calculating induced velocity.

𝑈𝑎(𝑟, 0) =
𝑁

∑
𝜇=1

𝑈𝑎0,𝜇 (1 − (𝑟/𝑅)2)
𝜇

(3.11)
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Figure 3.31: The representation of a axial velocity distribution at 𝑥 = 0 by even polynomials

In Figure 3.32 a comparison can be seen between the axial induced velocity calculated with the
slipstream tube model and with Conway’s model by using superposition of the solution of eight even
polynomials. It can be seen that the results match, except for the part near the propeller plane at 𝑥 = 0.
Around 𝑥 = 0 a jump can be seen, which is due to the bound vorticity in the slipstream tube model.
Conway’s solution only calculates the induced velocity of the propeller wake, without the bound vorticity
on the propeller blade. When the bound vorticity is discarded in the slipstream tube model, it can be
seen that the results also match near the propeller plane.

With the axial velocity calculated by Conway’s model, Equation 3.10 can be applied. The axial
velocity behaves differently for different radial stations, so the contraction will be different for different
radial stations. This is shown in Figure 3.33. It can be seen that near the root, there is some backflow,
so here there is actually slipstream expansion. Furthermore, towards the tip there is more contraction.
The contraction found by using the axial velocity obtained from Conway’s model can be compared to
the contraction found by Veldhuis [28]. Here a solution is found by applying the conservation of mass
to a uniform actuator disk and by writing a potential function for the slipstream. This solution is shown
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Figure 3.32: Comparison of the axial velocity calculated by the slipstream tube model and Conway’s exact solution at 𝑟/𝑅 = 0.83

in Equation 3.12. The ’mean’ contraction calculated with Conway’s model seems to follow Veldhuis’
solution, they have the same shape and magnitude. Thus, this way of calculating contraction seems
to be usable to calculate the contraction for different radial stations.

𝑅
𝑅0
= √

1 + 𝑎
1 + 𝑎 (1 + 𝑥

√𝑅2+𝑥2 )
with ∶

𝑎 = 1
2 (−1 + √1 +

2
𝜋

𝑇
𝜌𝑈2∞𝑅2

)

(3.12)
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Figure 3.33: Comparison of the slipstream contraction for different radial stations compared to the contraction calculated using
the method of Veldhuis [28]

In Figures 3.34 and 3.35 the axial and tangential slipstream induced velocities are shown at 𝑟/𝑅 =
0.83 for a slipstream with and without contraction. The results are compared to a frozen wake model
with the same slipstream contraction. It can be seen that at this specific radial station the contraction
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decreases both the axial and tangential velocities slightly. Although there is an offset between the
results of the slipstream tube and of the frozen wake model, the amount of change due to contraction is
about the same for both models. This gives confidence that the effects of contraction are well modelled
by the slipstream tube model.
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Figure 3.34: The effect of slipstream contraction on the axial
induced velocity at radial station 𝑟/𝑅 = 0.83
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Figure 3.35: The effect of slipstream contraction on the tangen­
tial induced velocity at radial station 𝑟/𝑅 = 0.83

Lastly, the propeller will have a circulation distribution in both radial and azimuthal direction. How­
ever, Conway’s model is only equipped to deal with radial distributions. To assess the effect of an
azimuthal distribution of circulation, the propeller inflow is placed at an angle of attack of five degrees
from the propeller centerline, while the propeller slipstream geometry remains fixed. This non­axial
inflow causes a maximum difference in circulation in azimuthal direction of 33% (for the same radial
station). The influence of this azimuthal circulation distribution on the induced axial velocity can be as­
sessed with the slipstream tube model, as shown in Figure 3.36. The induced velocities are compared
to a model where there is only radial distribution of circulation, by averaging azimuthally. Here it can
be seen that near the root there are differences of about 0.01𝑟/𝑟0. The same kind of differences are
found at the blade tip, although not shown here. However, since the circulation at these positions is
usually low, the impact will be low. At the other radial stations the difference is practically negligible.
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Figure 3.36: Comparison of the slipstream contraction for a propeller with an azimuthal circulation distribution with 𝛼 = 5∘ and a
propeller with the same circulation, but azimuthally averaged
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To conclude, the slipstream contraction is being modelled by applying conservation of mass. To do
this, axial velocities are needed throughout the propeller slipstream. These axial velocities are calcu­
lated using a superposition of analytical solutions for even polynomials. Using eight even polynomials
the axial velocity distribution at the propeller plane can be approximated. When comparing this to the
slipstream tube model, differences are negligible, except close to the propeller plane. Here bound vor­
ticity is not modelled by Conway’s solution, so the contribution of this axial velocity is not taken into
account when calculating the contraction. Furthermore, even when the propeller has azimuthal varia­
tions in circulation, the contraction can be calculated by averaging azimuthally for each radial station.
This will not lead to major differences in contraction, except at the root and tip, but the influence of this
is very small.

3.3.4. Slipstream deflection
Slipstream deflection is expected to occur due to vertical external induced velocities 𝑢𝑧,𝑖. By calculating
the angle between 𝑈∞ and 𝑢𝑧,𝑖 a deflection Δ𝑧 can be found over a horizontal distance Δ𝑥. This is
shown in Figure 3.37. It was chosen to use 𝑈∞ to calculate the deflection angle, instead of 𝑈∞ plus
the axial velocity in the propeller wake. This choice was made because the axial velocity is different
for different radial stations. This would lead to different deflection angles for different radial stations.
By using 𝑈∞ there is a single deflection angle at each 𝑥­coordinate. This way the geometry does not
become too complex. Since the velocity in 𝑥 direction is underestimated using 𝑈∞ instead of 𝑈∞+𝑢𝑥,𝑖,
the deflection angle is overestimated. The effect of this is expected to be small for the relatively small
distances from propeller to wing. Furthermore, a larger deflection for the part beyond the wing does not
have a significant impact on the induced velocities on the wing, as the influence of vorticity decreases
with increasing distance, according to the Biot­Savart law.

Δ𝑧

Δ𝑥

𝑈∞

𝑢𝑧,𝑖

𝑥

𝑧

Figure 3.37: Schematic of the calculation of the slipstream deflection

In Figures 3.38 and 3.39 the axial and tangential velocities for a straight and deflected wake can be
seen. These velocities are calculated at 𝑟/𝑅 = 0.83. The results are compared to a frozen wake model
with the same deflection. It can be seen that the deflected wake produces slightly higher axial and
tangential velocities when using the slipstream tube model. However, when deflection is applied to the
frozen wake model, oscillations are observed. This is because at different 𝑥 positions, the trailing vortex
lines are just slightly differently oriented with respect to the evaluation point, leading to numerical errors.
However, when looking at the average of this oscillation, still an increase in both axial and tangential
velocity is observed when using the frozen wake model, giving confidence that the deflection is well
represented using the slipstream tube model.

3.3.5. Slipstream numerical interpolation
The slipstream tube model is a numerically discretized model based on vorticity. Furthermore, the
induced velocities are calculated by applying the Biot­Savart law. According to the Biot­Savart law,
the induced velocity is inversely proportional to the circulation value. So in this dicretized model, the
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Figure 3.38: The effect of slipstream deflection on the axial in­
duced velocity at radial station 𝑟/𝑅 = 0.83
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Figure 3.39: The effect of slipstream deflection on the tangen­
tial induced velocity at radial station 𝑟/𝑅 = 0.83

induced velocity will go to infinity when approaching one of the vortices, leading to unreliable results.
To get reliable results from the slipstream tube model, the induced velocity could only be calculated on
control points. These control points are located in the middle of the points where the vorticity is located.
By interpolation the induced velocity can be estimated also on points in between these control points.
This is shown in Figure 3.40. Here the induced axial velocity is shown for different azimuth positions.
The black vertical lines indicate the azimuthal positions of the points where the vorticity is located. It
can be seen that large peaks in induced velocity are found without the interpolation scheme and that
these peaks are caused by the proximity to a vortex. When the interpolation scheme is applied no
peaks are visible and the induced velocity is a smooth line, as expected.
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Figure 3.40: The reduction of numerical error by means of grid interpolation for the slipstream tube induced velocity calculation





4
Wing model

This chapter describes the numerical wing model used. The model is largely based on a VLM model,
which was chosen based on a comparison of different potential flow models by Epema [71], as it pro­
vided a more prediction accurate of the spanwise lift distribution compared to a lifting line code, without
the increased complexity of a panel method. Furthermore, a VLM code has been previously used by
Koomen [84] to investigate the effect of tip­mounted propellers. Figure 4.1 shows a flowchart for the
model. It takes as input the wing geometry, wing airfoil polars and external induced velocities. The
external induced velocities will be due to the propeller. The output will be the wing performance and
wing induced velocities. The wing induced velocities will be an input again for the propeller model.
The VLM solver is discussed in Section 4.1. This is followed by the Trefftz plane analysis in Section
4.2. Since the wing will be dealing with a propeller slipstream, a jet correction is needed, which will
be discussed in Section 4.3. While the VLM model is based on inviscid flow, viscous corrections are
added, as described in Section 4.4. The correction for viscosity is seen in two places in the model: as
a correction for lift and as a correction for drag.

4.1. VLM formulation
In order to take into account the influence of a propeller on the wing, the VLM formulation is changed
from the standard formulation to include external induced velocities. These velocities, 𝑢𝑥 and 𝑢𝑧, in
this case are defined in the wing axis system, where 𝑥 is in chordwise direction, 𝑦 in spanwise and 𝑧 is
the height.

In the VLM code the wing is modelled by a number of panels, both chordwise and spanwise dis­
tributed. The panels are placed in a flat plane at 𝑧 = 0, so they follow the 2D planform shape. This is
also applicable for cambered airfoils, as the camber is taken into account by the boundary conditions
by means of the camberline slope [85]. The implementation of this will be discussed later on. Each
panel has an associated horseshoe vortex, with the bound vortex on the quarter­chord line of the panel
(following the local sweep). Furthermore, each panel has a control point, located on the centerline of
the panel at 3/4­chord. Horseshoe vortices extend from the bound vortex and go to infinity, also on the
same 2D plane as the wing. This geometry is shown in Figure 4.2. With all the vortices and geom­
etry located in one plane, the calculations are greatly simplified. However, it introduces slight errors
when calculating the induced velocities at the control points when the angle of attack is high and when
cambered airfoils are used [45]. Also the assumption of a straight wake, leads to a wake that is not
completely force free. This, however, does not affect the far­field analysis done on the wake, as the
wake is still drag free, since only forces in a direction perpendicular to the vortices can be generated
[86].

The velocity perpendicular to the wing surface must be zero on every panel. In Equation 4.1 the
expression for the normal velocity at panel 𝑖 is given. Small angles are assumed for the angle of attack 𝛼
and the airfoil camberline slope 𝜕𝑔

𝜕𝑥 . The normal velocity has a contribution from the freestream velocity
𝑈∞, the external induced velocities in 𝑥 and 𝑧 direction 𝑢𝑥 and 𝑢𝑧. Finally, the wing induced velocities
of all the horseshoe vortices are present in the last term, where the strengths of the vortices Γ𝑗 are
unknown. Using the Biot­Savart law, the influence of horseshoe vortex 𝑗 can be determined for control

45
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Figure 4.1: Flowchart for the numerical wing model
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Figure 4.2: Schematic of the VLM formulation

point 𝑖. This gives 𝐶𝑗,𝑖Γ𝑗 as induced velocity. By putting the coefficients 𝐶 in an Aerodynamic Influence
Coefficient matrix (𝐴𝐼𝐶), a system can be set up, which can be solved for the circulation strength vector
Γ. This is shown in Equation 4.2, where 𝑈𝑛 consists of the first three terms presented in Equation 4.1.

𝑈𝑛,𝑖 = 𝑈∞ (
𝜕𝑔
𝜕𝑥 − 𝛼) + 𝑢𝑥

𝜕𝑔
𝜕𝑥 − 𝑢𝑧 −∑

𝑗
𝐶𝑗,𝑖Γ𝑗 (4.1)

𝐴𝐼𝐶 × Γ = 𝑈𝑛 (4.2)

With the circulation known, the lift can be calculated using the Kutta–Joukowski theorem. In order
to calculate the final velocity vector, a value is needed for the wing induced velocity. Here the induced
velocity is calculated in the Trefftz plane, where the induced velocity can be calculated using infinite
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trailing vortices [45]. The final velocity vector is given by Equation 4.3, where 𝑢𝑖 is the wing induced
velocity. The lift must be perpendicular to the freestream velocity, which gives Equation 4.4 to calculate
the lift. By integrating the lift on all the panels, the total lift can be obtained. Note that without the
external induced velocities and by neglecting the contribution of 𝑢𝑖, the expression for lift simplifies to
the standard formulation 𝑑𝐿 = 𝜌Γ𝑈∞𝑑𝑦.

𝑈 = [𝑈𝑥𝑈𝑧] = [
𝑈∞ cos(𝛼)
𝑈∞ sin(𝛼)] + [

𝑢𝑥
𝑢𝑧] + [

0
𝑢𝑖] (4.3)

𝑑𝐿 = 𝜌Γ (𝑈𝑥 cos(𝛼) + 𝑈𝑧 sin(𝛼)) 𝑑𝑦 (4.4)

VLM verification
To check the validity of the VLM formulation, verification is done using two different wing planforms. The
first planform used for verification is an elliptical wing. For an elliptical wing there exists an exact solution
for the circulation and induced velocity [1]. These are given in Equations 4.5 and 4.6 respectively. In
these equations Γ0 is the circulation at the center of the wing. Furthermore, the induced velocity has a
constant value along the wingspan. In Figures 4.3 and 4.4 it can be seen that the results of the VLM
code are in accordance with the exact solution. The induced velocity calculated by the VLM code differs
from the exact solution only near the wingtips. This is probably caused by the finite number of vortices
used in the VLM code, which leads to a less accurate prediction of the induced velocity towards the
tip. Furthermore, rounding error might also play a role at the tip. The induced drag is calculated at the
wing quarter chord, but the chord goes to zero at the tip. This makes the calculation prone to rounding
errors.

Γ(𝑦) = Γ0√1 − (
2𝑦
𝑏 )

2
(4.5)

𝑢𝑖 = −
Γ0
2𝑏 (4.6)
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Figure 4.3: Comparison of the circulation distribution of an el­
liptic wing
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tion of an elliptic wing

The VLM code is also compared to existing VLM codes: XFLR51 and AVL2. All codes were given
the same geometry and same panel layout to compare the results fairly. The results are produced for a
tapered swept wing with aspect ratio 10 with a cambered NACA2412 airfoil. In Figure 4.5 the lift curve
1http://www.xflr5.tech/xflr5.htm
2http://web.mit.edu/drela/Public/web/avl/

http://www.xflr5.tech/xflr5.htm
http://web.mit.edu/drela/Public/web/avl/
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is plotted for the different codes. It can be seen that the results are very close to each other. The AVL
results seem to produce slightly higher values for 𝐶𝐿, but this is well within the margin of error expected
for such a low­cost method. Next, the spanwise distribution of the lift is compared in Figure 4.6 for a
wing at 𝛼 = 5∘. The VLM code shows a good match with the XFLR5 data. AVL gives higher sectional
lift coefficients, this is expected since total forces are also higher. This is most likely caused by a slight
difference in velocity vector definition. Thus, the VLM code seems to be working correctly.
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Figure 4.5: Comparison of the lift polar for different VLM solvers
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Figure 4.6: Comparison of the lift distribution at 𝛼 = 5∘ for
different VLM solvers

4.2. Trefftz plane analysis
The drag is calculate using a Trefftz plane analysis. This analysis is based on the derivations by
Katz and Plotkin [45] and Veldhuis and Heyma [87]. For the analysis a control volume is used, which
encloses our object of interest, as shown in Figure 4.7. 𝑆𝑢 is far upstream, while 𝑆𝑑 is far downstream.
𝑆𝑏 follows a streamline. To this control volume, conservation of momentum is applied, as shown in
Equation 4.7. Furthermore, a potential is introduced: Φ = 𝑈∞𝑥+𝜙, where 𝜙 describes the disturbance
velocities. This gives the following boundary conditions:

• at 𝑆𝑢: 𝜙 = 0 and 𝑝 = 𝑝∞
• at 𝑆𝑏: 𝑈 ⋅ 𝑛 = 0 and 𝑝 is continuous

∬
𝑆
𝜌𝑈(𝑈 ⋅ 𝑛)𝑑𝑆 = −∬

𝑆
(𝑝𝑛)𝑑𝑆 + 𝐹 (4.7)

Now Equation 4.7 can be applied to the control volume. This is shown in Equation 4.8. In the final
step the integral is written as an integral of surface 𝑆, which is 𝑆𝑑, since the properties are written as
differences at 𝑆𝑑 compared to the upstream values.

𝐷 =∬
𝑆𝑢
𝑝𝑛𝑥𝑑𝑆 −∬

𝑆𝑑
𝑝𝑛𝑥𝑑𝑆 +∬

𝑆𝑢
𝜌𝑑Φ𝑑𝑥 (∇Φ ⋅ 𝑛)𝑑𝑆 −∬𝑆𝑑

𝜌𝑑Φ𝑑𝑥 (∇Φ ⋅ 𝑛)𝑑𝑆 + 𝑇

=∬
𝑆𝑢
𝑝∞𝑑𝑆 −∬

𝑆𝑑
𝑝𝑑𝑆 +∬

𝑆𝑢
𝜌𝑈∞(∇Φ ⋅ 𝑛)𝑑𝑆 −∬

𝑆𝑑
𝜌(𝑈∞ + 𝜙𝑥)(∇Φ ⋅ 𝑛)𝑑𝑆 + 𝑇

=∬
𝑆
𝑝∞ − 𝑝𝑑𝑆 +∬

𝑆
𝜌𝜙𝑥(𝑈∞ + 𝜙𝑥)𝑑𝑆 + 𝑇

(4.8)

In Equation 4.9 an expression for the difference in pressure is derived. Here Δ𝑝𝑡 is a total pressure
jump. This equation can be substituted into Equation 4.8, which gives Equation 4.10.
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Figure 4.7: Schematic of a general Trefftz plane analysis

𝑝∞ − 𝑝 =
1
2𝜌 (∇𝜙

2 − 12𝜌𝑈
2
∞) − Δ𝑝𝑡

= 1
2𝜌 ((𝑈∞ + 𝜙𝑥)

2 + 𝜙2𝑦 + 𝜙2𝑧 ) −
1
2𝜌𝑈

2
∞ − Δ𝑝𝑡

= 1
2𝜌 (𝜙

2
𝑥 + 𝜙2𝑦 + 𝜙2𝑧 ) + 𝜌𝑈∞𝜙𝑥 − Δ𝑝𝑡

(4.9)

𝐷 =∬
𝑆
𝑝∞ − 𝑝𝑑𝑆 +∬

𝑆
𝜌𝜙𝑥(𝑈∞ + 𝜙𝑥)𝑑𝑆 + 𝑇

=∬
𝑆

1
2𝜌 (𝜙

2
𝑥 + 𝜙2𝑦 + 𝜙2𝑧 ) + 𝜌𝑈∞𝜙𝑥 − Δ𝑝𝑡 + 𝜌𝜙𝑥(𝑈∞ + 𝜙𝑥)𝑑𝑆 + 𝑇

=∬
𝑆

1
2𝜌 (−𝜙

2
𝑥 + 𝜙2𝑦 + 𝜙2𝑧 ) − Δ𝑝𝑡𝑑𝑆 + 𝑇

(4.10)

Equation 4.10 is the final equation for a generic Trefftz plane analysis. Now the propeller and wing
can be added to the control volume, as shown in Figure 4.8. Two areas can now be defined, one
outside the flow captured by the propeller, 𝑆𝑜, and one that is captured by the propeller, 𝑆𝑖. For the
area outside the captured area, there is no total pressure jump and 𝜙𝑥 = 0. This gives Equation 4.11,
which corresponds with the expression that is used for a Trefftz plane analysis of a wing only [45].

𝐷 = 1
2𝜌∬𝑆𝑜

𝜙2𝑦 + 𝜙2𝑧𝑑𝑆 (4.11)

𝑆𝑖 Δ𝑝𝑡 =
𝑇
𝑆𝑝

𝑆𝑜 Δ𝑝𝑡 = 0

𝑆𝑜 Δ𝑝𝑡 = 0

𝑈∞ 𝑇

𝑆𝑝

𝑧
𝑥

Figure 4.8: Schematic of a Trefftz plane analysis with a propeller­wing system
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In the area captured by the propeller, the total pressure jump Δ𝑝𝑡 equals
𝑇
𝑆𝑝
, where 𝑆𝑝 is the propeller

disk area. This leads to Equation 4.12. Now the equation is split into two parts, one for drag and one for
thrust. It can be seen that the conventional expression for drag is found. Furthermore, the expression
for thrust is consistent with the equations derived by actuator disk theory. This can be quickly verified
when the equations 𝜙𝑥 = 2𝑈∞𝑎 and 𝑆𝑝𝑈∞(1 + 𝑎) = 𝑆𝑖𝑈∞(1 + 2𝑎) are applied.

𝐷 =∬
𝑆𝑖

1
2𝜌 (−𝜙

2
𝑥 + 𝜙2𝑦 + 𝜙2𝑧 ) −

𝑇
𝑆𝑝
𝑑𝑆 + 𝑇

𝐷 = 1
2𝜌∬𝑆𝑖

𝜙2𝑦 + 𝜙2𝑧𝑑𝑆

𝑇 =∬
𝑆𝑖

1
2𝜌𝜙

2
𝑥 +

𝑇
𝑆𝑝
𝑑𝑆

(4.12)

In Equations 4.11 and 4.12 the same expressions were found to calculate the drag for both the area
captured and not captured by the propeller. Thus, this expression can be applied to the entire Trefftz
plane. This is shown in Equation 4.13. The potential is written as the sum of the wing and propeller:
𝜙 = 𝜙𝑤 + 𝜙𝑝. After this, the identity in Equation 4.14 is used to rewrite the surface integrals as line
integrals. Then this relation is used for the normal velocity: 𝜕𝜙𝜕𝑛 = 𝑢𝑛. Furthermore, second derivatives
in disturbance velocities are zero far downstream: ∇2𝜙 = 0. Finally, the difference in velocity over
the wake is equal to the circulation: Δ𝜙 = Γ. Equation 4.13 shows three contributions to drag: the
wing induced drag, the propeller­wing interaction effect and the propeller drag. The propeller drag is
ignored, since it is inconsistent with the BEM model that will be used. Thus, the final expression shown
in Equation 4.13 has only two contributions to the drag.

𝐷 = 1
2𝜌∬𝑆𝑖

𝜙2𝑦 + 𝜙2𝑧𝑑𝑆

= 1
2𝜌∬𝑆

𝜙2𝑤𝑦 + 𝜙2𝑤𝑧𝑑𝑆 + 𝜌∬𝑆
𝜙𝑤𝑦𝜙𝑝𝑦 + 𝜙𝑤𝑧𝜙𝑝𝑧𝑑𝑆 +

1
2𝜌∬𝑆

𝜙2𝑝𝑦 + 𝜙2𝑝𝑧𝑑𝑆

= 1
2𝜌∫𝐶

Δ𝜙𝑤𝑢𝑛𝑤𝑑𝐶 + 𝜌∫𝐶
Δ𝜙𝑤𝑢𝑛𝑝𝑑𝐶 +

1
2𝜌∬𝑆

𝜙2𝑝𝑦 + 𝜙2𝑝𝑧𝑑𝑆

= 1
2𝜌∫

𝑏/2

−𝑏/2
Γ𝑤𝑢𝑛𝑤𝑑𝑦 + 𝜌∫

𝑏/2

−𝑏/2
Γ𝑤𝑢𝑛𝑝𝑑𝑦 +

1
2𝜌∬𝑆

𝜙2𝑝𝑦 + 𝜙2𝑝𝑧𝑑𝑆

= 1
2𝜌∫

𝑏/2

−𝑏/2
Γ𝑤 (𝑢𝑛𝑤 + 𝑢𝑛𝑝) 𝑑𝑦

(4.13)

∬
𝑆
𝜙2𝑦 + 𝜙2𝑧 + 𝜙(∇2𝜙)𝑑𝑆 = ∫

𝐶

𝜕𝜙
𝜕𝑛 𝜙𝑑𝐶 (4.14)

This Trefftz plane analysis is compared to the drag calculation done by XFLR5 and AVL for a wing­
only case. In Figure 4.9 the total wing drag is compared for these different codes. The three methods
almost exactly agree with each other, except at very high lift coefficients. Here XFLR5 predicts a
lower drag than the VLM code and AVL. This could be because XFLR5 most likely uses a small angle
approximation, while full trigonometric functions are used in the VLM code. Furthermore, at these high
lift coefficients, it is expected that a VLM code gives a poor prediction, so any numerical errors here are
irrelevant. Next, in Figure 4.10 the spanwise distribution of drag is plotted for a wing at 𝛼 = 5∘. Results
from the VLM code match with the XFLR5 data. Only AVL shows a completely different distribution,
this is because AVL does not calculate drag using a Trefftz plane analysis, so the results presented
here are most likely calculated on the wing. Thus, this is not a fair comparison, since drag forces in
different locations are compared. To conclude, the Trefftz plane analysis implemented in the VLM code
is in agreement with existing codes.
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Figure 4.9: Comparison of the drag polar for different VLM
solvers
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Figure 4.10: Comparison of the drag distribution at 𝛼 = 5∘ for
different VLM solvers

4.3. Jet correction
In the VLM code, when the external induced velocity is applied as a boundary condition, it actually
represents a velocity disturbance uniform in 𝑧 direction. However, a propeller slipstream is finite in
height and this affects the influence of this induced velocity. This phenomenon is mainly visible in
effects of the axial velocity and can be neglected for the tangential velocity [48]. There are 2D methods
that take the effect of a finite slipstream with axial velocity on the lift of an airfoil into account. These
methods are relatively easy to compute and apply, but unfortunately they can not be extended into a
3D method [48]. A method that can be applied to a 3D wing and jet has been developed by Rethorst
[50][49]. This method was developed for a completely symmetrical case, where the jet is located in the
center of the wing.

The solution is based on the geometry shown in Figure 4.11. A circular jet is located in the center
of the wing. Outside the jet there is 𝑈∞ and inside the jet 𝑈𝑗. Furthermore, it is known that on the
jet boundary there must be pressure continuity and slipstream continuity, where slipstream continuity
makes sure that velocities on both sides of the jet are in the same direction. To find the influence of a
vortex somewhere in the domain, two potential functions are created, one that describes the influence
inside the jet and one that describes the influence outside the jet. This gives a solution that consists
of three parts. One part is the regular relation between circulation and position calculated using the
Biot­Savart law. The other two parts are the corrections for the finite jet. To create this correction the
horseshoe vortex is split into a part consisting of two infinite parallel lines, called the even part, and a
part consisting of two semi­infinite opposite horseshoe vortices, called the odd part. This is shown in
Figure 4.12.

The corrections are denoted with 𝐺. If the conventional way to calculate the induced velocity due
to a vortex would be: 𝑢𝑖 =

1
4𝜋𝐶Γ, then the correction is applied as follows: 𝑢𝑖 =

1
4𝜋 (𝐶 + 𝐺)Γ. In the

case of the horseshoe vortex the correction consists of two parts, the odd and even part: 𝐺 = 𝐺𝑜 +𝐺𝑒.
The odd and even correction are derived in a similar manner. There must be a potential for inside the
jet boundary and one for outside the jet boundary. These two must match according to the boundary
conditions. This gives two solutions for the correction, one for when the point being evaluated is inside
the boundary and one for when it is outside the jet. However, the vortex can also be located either
within or outside the jet and this again gives a different solution. Thus, there are four possible cases,
depending on the location of the vortex and the point where the induced velocity is being evaluated.

The four different possible cases for the correction are given in Equation 4.15 and 4.16 for the even
and odd part respectively. Here the first letter of the subscript denotes the position of the point and
the second the position of the vortex. So 𝐺𝑜𝑗𝑒 is the correction of the even part for a point outside
the jet and the vortex inside the jet. Furthermore, some non­dimensional values are used here. The
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Figure 4.11: Geometry used by Rethorst [49][50] to calculate a jet correction
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Figure 4.12: Definition of the even and odd part of a horseshoe vortex

coordinates are 𝜉 = 𝑥/𝑟𝑗 and 𝜂 = 𝑦/𝑟𝑗. 𝜇 = 𝑈∞/𝑈𝑗 is the ratio between the freestream and jet velocity.
The spanwise locations of the horseshoe vortex are given by 𝑐 and 𝑑, which are non­dimesionalized
with the jet radius. The jet radius is given by 𝑟𝑗, which is the only dimensional number used here.
Furthermore, modified Bessel functions of the first and second kind are used, 𝐼 and 𝐾 respectively.
Also, the derivatives 𝐼′ and 𝐾′ are used. The functions are all of order 2𝑝 + 1. And unless specified,
the functions take the argument 𝜆.

𝐺𝑗𝑗𝑒(𝜂) =
1
𝑟𝑗
1 − 𝜇2
1 + 𝜇2 (

1
1/𝑑 − 𝜂 −

1
1/𝑐 − 𝜂 +

1
1/𝑑 + 𝜂 −

1
1/𝑐 + 𝜂)

𝐺𝑜𝑗𝑒(𝜂) = −
1
𝑟𝑗
(1 − 𝜇)2
1 + 𝜇2 ( 1

𝜂 − 𝑐 −
1

𝜂 − 𝑑 +
1

𝜂 + 𝑑 −
1

𝜂 + 𝑐)

𝐺𝑗𝑜𝑒(𝜂) = 𝐺𝑜𝑗𝑒(𝜂)
𝐺𝑜𝑜𝑒(𝜂) = −𝐺𝑗𝑗𝑒(𝜂)

(4.15)
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𝐺𝑗𝑗𝑜(𝜉, 𝜂) =
1
𝑟𝑗
8
𝜋𝜂

∞

∑
𝑝=0
(2𝑝 + 1)2∫

∞

0

𝐾𝐾′𝐼(𝜂𝜆) sin(𝜉𝜆)
1

1/𝜇2−1 − 𝜆𝐼𝐾
′
∫
𝑑𝜆

𝑐𝜆

𝐼(𝜆𝛽)
𝜆𝛽 𝑑(𝜆𝛽)𝑑𝜆

𝐺𝑜𝑗𝑜(𝜉, 𝜂) =
1
𝑟𝑗
8
𝜋𝜂

∞

∑
𝑝=0
(2𝑝 + 1)2∫

∞

0
( 1
𝜇 − 𝜆(1/𝜇 − 𝜇)𝐼𝐾′ − 1)

𝐾(𝜂𝜆) sin(𝜉𝜆)
𝜆 ∫

𝑑𝜆

𝑐𝜆

𝐼(𝜆𝛽)
𝜆𝛽 𝑑(𝜆𝛽)𝑑𝜆

𝐺𝑗𝑜𝑜(𝜉, 𝜂) =
1
𝑟𝑗
8
𝜋𝜂

∞

∑
𝑝=0
(2𝑝 + 1)2∫

∞

0
( 1
𝜇 − 𝜆(1/𝜇 − 𝜇)𝐼𝐾′ − 1)

𝐼(𝜂𝜆) sin(𝜉𝜆)
𝜆 ∫

𝑑𝜆

𝑐𝜆

𝐾(𝜆𝛽)
𝜆𝛽 𝑑(𝜆𝛽)𝑑𝜆

𝐺𝑜𝑜𝑜(𝜉, 𝜂) =
1
𝑟𝑗
8
𝜋𝜂

∞

∑
𝑝=0
(2𝑝 + 1)2∫

∞

0

𝐼𝐼′𝐾(𝜂𝜆) sin(𝜉𝜆)
1

1/𝜇2−1 − 𝜆𝐼𝐾
′
∫
𝑑𝜆

𝑐𝜆

𝐾(𝜆𝛽)
𝜆𝛽 𝑑(𝜆𝛽)𝑑𝜆

(4.16)

Now the correction can be applied to a symmetrical wing. To demonstrate the way the correction is
applied, a wing with five panels is assumed, as shown in Figure 4.13, with a jet present in the center,
the radius is not relevant at this time. Note that for the correction to work, the jet centerline must be in
the center of one the horseshoe vortices and the jet boundary must coincide with one of the horseshoe
boundaries (or trailing vortices). Since Γ1 = Γ4 and Γ2 = Γ5, a system of equations can be written that
solves for a vector containing Γ1, Γ2 and Γ3. This is shown in Equation 4.17. It can be seen here that
the correction is applied by utilizing the symmetric condition of the system of equations that must be
solved.

([
𝐶11 + 𝐶15 𝐶12 + 𝐶14 𝐶13
𝐶21 + 𝐶25 𝐶22 + 𝐶24 𝐶23
𝐶31 + 𝐶35 𝐶32 + 𝐶34 𝐶33

] + [
𝐺11 𝐺12 𝐺13
𝐺21 𝐺22 𝐺23
𝐺31 𝐺32 𝐺33

]) [
Γ1
Γ2
Γ3
] = [

𝑈𝑛,1
𝑈𝑛,2
𝑈𝑛,3

] (4.17)

jet centerline

1 2 3 4 5

𝑥
𝑦

Figure 4.13: Simple geometry used to calculate a jet correction for a jet located at the wing center

To get to a correction that works on a wing where the jet is not located in the center of the wing,
Equation 4.17 must be rewritten to better understand how the correction is applied. In Equation 4.18
the full system is shown, which also includes Γ4 and Γ5. Here it can be seen that the correction has to
be divided over the two symmetric vortex pairs. For example, the correction factor 𝐺11 is applied to Γ1
and Γ5. When 𝐺11/2 is applied to both Γ1 and Γ5, the same equations are obtained in both Equation
4.17 and 4.18. However, it is somewhat arbitrary to divide 𝐺11 equally over both vortices. If 𝐺11 would
be applied to Γ1 only, the same equations, as shown in Equation 4.17, would still be obtained. Note that
there always must be a horseshoe vortex located on the jet centerline, which does not form a symmetry
pair.
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⎛
⎜

⎝

⎡
⎢
⎢
⎢
⎣

𝐶11 𝐶12 𝐶13 𝐶14 𝐶15
𝐶21 𝐶22 𝐶23 𝐶24 𝐶25
𝐶31 𝐶32 𝐶33 𝐶34 𝐶35
𝐶41 𝐶42 𝐶43 𝐶44 𝐶45
𝐶51 𝐶52 𝐶53 𝐶54 𝐶55

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

𝐺11/2 𝐺12/2 𝐺13 𝐺12/2 𝐺11/2
𝐺21/2 𝐺22/2 𝐺23 𝐺22/2 𝐺21/2
𝐺31/2 𝐺32/2 𝐺33 𝐺32/2 𝐺31/2
𝐺21/2 𝐺22/2 𝐺23 𝐺22/2 𝐺21/2
𝐺11/2 𝐺12/2 𝐺13 𝐺12/2 𝐺11/2

⎤
⎥
⎥
⎥
⎦

⎞
⎟

⎠

⎡
⎢
⎢
⎢
⎣

Γ1
Γ2
Γ3
Γ4
Γ5

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑈𝑛,1
𝑈𝑛,2
𝑈𝑛,3
𝑈𝑛,4
𝑈𝑛,5

⎤
⎥
⎥
⎥
⎦

(4.18)

This leads to a method to apply this jet correction to a wing with a jet which is not located at the
centerline of the wing. Firstly, the correction for a jet with the centerline at the wing center must be
calculated. This is done by extending the wing to create a symmetric one, as shown in Figure 4.14,
creating a virtual wing extension. By dividing the correction factor by two, the correction can be applied
to each individual horseshoe vortex. The underlying assumption is that the vortex pairs (horseshoe
vortex pairs that have equal distance from the jet centerline) have approximately the same strength.
Furthermore, the correction of the vortex pairs that have one vortex in the virtual wing extension is still
divided by two, although there is no second vortex that uses the other part of the correction. For these
vortices it is assumed that these vortices are far away from the jet and the correction here has little
effect. For the case shown in Figure 4.14, this means that Equation 4.18 is reduced to Equation 4.19.
The results of this method show a good match with CFD data, as shown in Figure 4.15, which has also
been shown by Nederlof [48]. Here the correction is applied to a single chordwise panel VLM code.
The correction that has been discussed here is called the equally divided correction.

(
⎡
⎢
⎢
⎣

𝐶11 𝐶12 𝐶13 𝐶14
𝐶21 𝐶22 𝐶23 𝐶24
𝐶31 𝐶32 𝐶33 𝐶34
𝐶41 𝐶42 𝐶43 𝐶44

⎤
⎥
⎥
⎦
+
⎡
⎢
⎢
⎣

𝐺11/2 𝐺12/2 𝐺13 𝐺12/2
𝐺21/2 𝐺22/2 𝐺23 𝐺22/2
𝐺31/2 𝐺32/2 𝐺33 𝐺32/2
𝐺21/2 𝐺22/2 𝐺23 𝐺22/2

⎤
⎥
⎥
⎦
)
⎡
⎢
⎢
⎣

Γ1
Γ2
Γ3
Γ4

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝑈𝑛,1
𝑈𝑛,2
𝑈𝑛,3
𝑈𝑛,4

⎤
⎥
⎥
⎦

(4.19)
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Figure 4.14: Simple geometry used to calculate a jet correction for a jet not located at the wing center

The method of dividing the jet correction equally is relatively straight forward. However, other meth­
ods of dividing the correction are possible. When evaluating the normal velocity at the control point of
horseshoe vortex 1, it can be seen that vortex 1 has more influence than vortex 3. This reasoning can
also be extrapolated to the correction factor. So actually 𝐺11 in the first line of Equation 4.18 should
be applied more to Γ1. When the points and vortices are even farther away from the jet centerline,
this effect becomes even stronger. Thus, it can be assumed that the correction factor is only applied
to the vortex that is closest. This leads to Equation 4.20, where the correction is basically applied to
each symmetry side of the jet centerline. For the control point of the center vortex it is arbitrary to which
symmetry side the correction is applied, as long as the vortex strengths are similar. For the case shown
in Figure 4.14, this method results in Equation 4.21. This method also yields good results, as shown in
Figure 4.15, where this method is called the symmetry correction.

⎛
⎜

⎝

⎡
⎢
⎢
⎢
⎣

𝐶11 𝐶12 𝐶13 𝐶14 𝐶15
𝐶21 𝐶22 𝐶23 𝐶24 𝐶25
𝐶31 𝐶32 𝐶33 𝐶34 𝐶35
𝐶41 𝐶42 𝐶43 𝐶44 𝐶45
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⎤
⎥
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⎥
⎦

+
⎡
⎢
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⎢
⎣

𝐺11 𝐺12 𝐺13 0 0
𝐺21 𝐺22 𝐺23 0 0
𝐺31 𝐺32 𝐺33 0 0
0 0 𝐺23 𝐺22 𝐺21
0 0 𝐺13 𝐺12 𝐺11

⎤
⎥
⎥
⎥
⎦

⎞
⎟

⎠

⎡
⎢
⎢
⎢
⎣

Γ1
Γ2
Γ3
Γ4
Γ5

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑈𝑛,1
𝑈𝑛,2
𝑈𝑛,3
𝑈𝑛,4
𝑈𝑛,5

⎤
⎥
⎥
⎥
⎦

(4.20)
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Figure 4.15: Comparison of the lift distribution for a wing with jet with 𝑅/𝑏 = 0.1 at 𝑦/𝑏 = 0.25 [48]
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(4.21)

Now the jet can be placed at the wingtip. When this is done, the wing must be extended again to
calculate the correction for a completely symmetrical case. However, in this case, there is no vortex
on the other side of the jet symmetry line. So in this case it makes sense to use the method where the
jet correction is applied to only one side of the jet centerline. This is basically an extreme case of the
previously described symmetry correction. Again this results in a good match with CFD data, as shown
in Figure 4.16.
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Figure 4.16: Comparison of the lift distribution for a wing with jet with 𝑅/𝑏 = 0.1 at the tip of the wing [48]

For the correction to work, the jet centerline must be in the center of one of the panels and the jet
boundary must coincide with the boundary of one of the panels. As this is not always the case, some
small changes must be made to the jet geometry to calculate the velocity. For the tip­mounted case,
the real jet centerline will coincide with the outer boundary of the tip panel and the jet has a radius 𝑟.
But in the correction the jet centerline is offset by 𝑠0, as shown in Figure 4.17. Furthermore, the radius
is changed so the boundary coincides with a panel boundary, which gives a new radius 𝑟𝑗. With a high
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enough panel density, these changes have little effect on the correction and an even smaller effect on
the wing circulation calculation.

jet centerline
𝑟

𝑠0 𝑟𝑗 𝑥
𝑦

Figure 4.17: The difference in jet radius and position due to panel density

Furthermore, the propeller will not always be exactly at the same height (𝑧­coordinate) as the wing.
Here the correction is not valid anymore. To still calculate a correction in this case, it is assumed that the
induced velocities seen at the wing are due to a propeller located at the same height as the wing. This
gives a difference in the real geometry and the geometry used for the correction calculation, as shown
in Figure 4.18. Here the propeller is located at height 𝑑𝑧 above the wing plane, while the jet correction
assumed that the propeller is located at the same 𝑧­coordinate as the wing. It is assumed that for a
relatively low 𝑑𝑧/𝑟, that this difference in geometry will have a minor influence on the correction, which
will again translate in a very minor influence on the calculated forces on the wing.

𝑥

𝑦
𝑧
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𝑢𝑎

𝑟

𝑑𝑧

Real propeller

for jet correction
Propeller geometry

Figure 4.18: The difference in jet geometry and modelled geometry due to vertical location of the jet

Finally, a real propeller has a distribution of axial velocity, while the correction is written for a uniform
jet. Prabhu [88] showed that for the even part of the correction, superposition could be used to describe
a correction for a jet with an arbitrary (radial symmetrical) velocity distribution. This principle is shown in
Figure 4.19. For each step, a jet can be defined with radius 𝑟𝑖. The correction for this step 𝐺𝑖, can then
be calculated using the velocity difference with the jet at 𝑟𝑖−1, which gives 𝜇𝑖 = (𝑈∞ + 𝑢𝑖−1)/(𝑈∞ + 𝑢𝑖).
Here 𝑟𝑖−1 is one step closer to the wing root than 𝑟𝑖. Then the total jet correction 𝐺 is given by the sum
of all 𝐺𝑖. While this superposition was only applied for a case with infinite vortices, here it is applied
to full horseshoe vortices. Since the odd and even part of the jet correction are based on the same
physical principles, it was assumed that it can also be applied to a case with horseshoe vortices.
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Figure 4.19: Discretization of a jet velocity profile for the calculation of the jet correction

4.4. Viscous correction
The VLM method is an inviscid method, so the lift curve will be completely linear and the viscous drag
is not included. To still model these effects for a relatively low computational cost, two corrections are
added to the VLM code: a viscous correction on the lift and the inclusion of profile drag.

The viscous correction on the lift has been developed by Horsten and Veldhuis [89]. In this method
the inviscid results of the VLM code are corrected by adding a local angle of attack correction based on
the difference between the inviscid and viscous lift. This is shown in Equation 4.22. The effective angle
of attack 𝛼𝑒𝑓𝑓 for a wing section is calculated as usual, it is the geometric angle of attack 𝛼 minus the
induced drag 𝛼𝑖𝑛𝑑. On top of this some extra correction is added to account for the difference between
the viscous and invisicid lift, which is called 𝑑𝛼𝑐𝑜𝑟𝑟.

𝛼𝑒𝑓𝑓 = 𝛼 − 𝛼𝑖 + 𝑑𝛼𝑐𝑜𝑟𝑟 (4.22)

This correction 𝑑𝛼𝑐𝑜𝑟𝑟 is calculated using Equation 4.23. By calculating the lift without any cor­
rections using the VLM code the effective angle of attack at each wing section is obtained. With the
effective angle of attack known, 𝐶𝑙,𝑣𝑖𝑠𝑐 and 𝐶𝑙,𝑖𝑛𝑣 can be obtained at this angle of attack using 2D anal­
ysis. The inviscid lift coefficient 𝐶𝑙,𝑖𝑛𝑣 is obtained using thin airfoil theory, as this is the 2D equivalent
analysis for the VLM code, which also is inviscid without taking the airfoil thickness into account. The
viscous lift coefficient 𝐶𝑙,𝑣𝑖𝑠𝑐 is obtained using XFOIL3. 𝐶𝑙,𝑣𝑖𝑠𝑐 is also dependent on Mach and Reynolds
number, which are obtained from the VLM results. Since XFOIL takes into account thickness while thin
airfoil theory does not, this correction also corrects for the fact that VLM does not take into account
wing thickness. Furthermore, the viscous lift coefficient is dependent on Mach number, thus this also
results in a rudimentary correction for compressibility. Now the change in lift must be translated into a
change in angle of attack, this is done by dividing by the inviscid lift curve slope 𝑑𝐶𝑙,𝑖𝑛𝑣

𝑑𝛼 , which equals
2𝜋 in thin airfoil theory.

𝑑𝛼𝑐𝑜𝑟𝑟 =
𝐶𝑙,𝑣𝑖𝑠𝑐(𝛼, 𝑅𝑒,𝑀) − 𝐶𝑙,𝑖𝑛𝑣(𝛼)

𝑑𝐶𝑙,𝑖𝑛𝑣
𝑑𝛼

= 𝐶𝑙,𝑣𝑖𝑠𝑐 − 𝐶𝑙,𝑖𝑛𝑣
2𝜋 (4.23)

Finally, 𝑑𝛼𝑐𝑜𝑟𝑟 can be used as input for the VLM code and by solving the system of equations again,
the corrected lift is found. In Figure 4.20 the lift curve is plotted when the VLM code is used with and
without this viscous correction on the lift for a wing with aspect ratio 10. It can be seen that in the
linear part slightly higher lift values are obtained when using the correction, this is mainly due to the
effect of thickness. Furthermore, the lift curve remains linear here. Above around 10∘ angle of attack
a decrease in lift is seen due to viscous effects. It can be seen that the lift curve slope decreases with
increasing angle of attack, as expected. In Figure 4.21 the effective angle of attack is shown for the
3https://web.mit.edu/drela/Public/web/xfoil/

https://web.mit.edu/drela/Public/web/xfoil/
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wing at 𝛼 = 18∘. The viscous correction decreases the effective angle of attack. It can also be seen
that for the lower angle of attack values, this decrease is less in magnitude, since here the viscous
effects are less present.
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Figure 4.20: Comparison between inviscid and viscous lift polar
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Figure 4.21: Comparison between inviscid and viscous lift dis­
tribution at 𝛼 = 18∘

Next to the viscous correction on the lift, viscous drag was added to the VLM code. The VLM code
conventionally only calculated the induced drag, as profile drag is not modelled here. Using a 2D drag
polar obtained using XFOIL, the profile drag can be estimated by finding the corresponding profile drag
for the sectional lift coefficient per wing section. If for a certain lift coefficient multiple drag values are
found, then the drag value that best matches the angle of attack is chosen. This is the case for lift
coefficients near and in the non­linear regime. The profile drag is simply added to the inviscid drag,
giving the total drag, as shown in Equation 4.24. The results of this correction are shown in Figure
4.22. It can be seen that at 𝐶𝐿 = 0, the inviscid drag is also zero, as expected. With the viscous case,
profile drag is added and the drag at 𝐶𝐿 = 0 is non­zero. For the other lift coefficients, it can be seen
that the drag with profile drag included, is always higher than the induced drag.

𝐶𝐷,𝑡 = 𝐶𝐷,𝑖 + 𝐶𝐷,𝑝 (4.24)
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Figure 4.22: Comparison between inviscid and viscous drag polar
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For propeller­wing interaction, the wing can be split in to two distinct parts: the part that is inside
the propeller slipstream and the part that is outside the propeller slipstream. The part outside the
propeller slipstream sees the undisturbed freestream velocity. The part inside the propeller slipstream
encounters the propeller wake. This changes the boundary layer behaviour of this part of the wing.
Some experiments have shown that the wing boundary layer in the propeller slipstream sees cyclic
behaviour that goes from laminar to turbulent and back again for two or three bladed propellers [90][91].
A more recent experimental study showed that when the wing is inside the propeller slipstream the
transition point is moved forwards compared to a clean wing [92]. Furthermore, when the number of
blades is increased, the cyclic laminar­turbulent behaviour in the boundary layer is destroyed. Based
on this, it was decided to use fully turbulent airfoil polars for the wing sections inside the propeller
slipstream, since the propellers that will be used have four or six blades. It was also decided to use
fully turbulent polars on the wing sections outside the propeller slipstream, this would be helpful for a
Computational Fluid Dynamics (CFD) study, as the CFD model could also force transition, making the
results comparable. In the end, this CFD study could not be accomplished within the time frame of
this project. Finally, the XFOIL settings used for the fully turbulent airfoil sections were: 𝑁𝑐𝑟𝑖𝑡 = 1 and
𝑥/𝑐𝑡𝑟𝑖𝑝 = 0.05 for both the upper and lower surface.





5
Integration and convergence of

numerical tools
This chapter deals with the integration of the tools described in Chapters 3 and 4. In Section 5.1 it is
described how the different numerical models are integrated to calculate the performance of a propeller­
wing model. Section 5.2 discusses the convergence of the different numerical models. Finally, in
Section 5.3 an indication of the computational time for these numerical models is given.

5.1. Propeller­wing interaction
By integrating the numerical propeller model, described in Chapter 3, and the wing model, described in
Chapter 4, a propeller­wing system can be analyzed. Since the propeller and wing require the output
of one another as input, the system is analyzed using a convergence loop, as shown in Figure 5.1.
First the propeller is analyzed, as it is less dependent on the wing, than the other way around. This
will give a good first estimate of the propeller inputs, which consist of the velocities on the wing and the
velocities in the farfield, needed for the drag calculation. Then the wing is analyzed and using the wing
induced velocities, the propeller inflow is defined and the propeller slipstream deflection is calculated.
Then it is checked if the propeller and wing forces are unchanged (within margin) with respect to the
previous iteration. If not, the loop will be repeated.

Inputs

Propeller model
(Chapter 3)

Update wing
inflow velocities

Update velocities
in farfield

Wing model
(Chapter 4)

Update propeller
inflow field

Update slipstream
deflection

Converged?Propeller­wing
performance NoYes

Figure 5.1: Flowchart for integration of the numerical propeller and wing model
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To have the propeller and wing interact with each other, some coordinate transformations need to
be carried out. The propeller and wing coordinate system both have the same general orientation. The
𝑥 direction is backwards in the horizontal plane, the 𝑧 direction is upwards and the 𝑦 direction is to
the left (when looking from the front) to complete the right­handed system. However, the coordinate
systems are both oriented with respect to their respective angles of attack. Furthermore, the origin of
the wing coordinate system is located at the wing center leading edge, and the origin of the propeller
coordinate system at the propeller midpoint on the propeller plane. This is shown in Figure 5.2. Using
a simple coordinate transformation, vectors and coordinates can be transformed from one to the other
coordinate system. Finally, the forces that are relevant must be defined in a coordinate system aligned
with the freestream velocity. Wing forces are always calculated in this coordinate system, but propeller
forces must still be rotated if the propeller is under an installation angle.

By summing the forces a thrust, lift, drag and power are found for the propeller­wing system. This
is shown in Equation 5.1, with a definition for the thrust and power coefficients in Equation 5.2.

𝐿𝑝𝑟𝑜𝑝−𝑤𝑖𝑛𝑔 = 𝐿𝑤𝑖𝑛𝑔 + 𝑇𝑝𝑟𝑜𝑝 sin(𝛼𝑝𝑟𝑜𝑝) + 𝐹𝑧,𝑝𝑟𝑜𝑝 cos(𝛼𝑝𝑟𝑜𝑝)
𝐷𝑝𝑟𝑜𝑝−𝑤𝑖𝑛𝑔 = 𝐷𝑤𝑖𝑛𝑔 + 𝐹𝑧,𝑝𝑟𝑜𝑝 sin(𝛼𝑝𝑟𝑜𝑝)
𝑇𝑝𝑟𝑜𝑝−𝑤𝑖𝑛𝑔 = 𝑇𝑝𝑟𝑜𝑝 cos(𝛼𝑝𝑟𝑜𝑝)
𝑃𝑝𝑟𝑜𝑝−𝑤𝑖𝑛𝑔 = 𝑃𝑝𝑟𝑜𝑝

(5.1)
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Figure 5.2: Schematic of the different coordinate systems used in the propeller­wing numerical model

5.2. Convergence
In this section the convergence study will be discussed. All the different modules that make up the
propeller­wing analysis model will be tested individually first. The goal is to get the results of the entire
system within approximately 1% of the asymptotic value. However, since the lift, drag, thrust and power
coefficient can all have values around zero, it was chosen to translate this requirement to absolute
values. This gives a maximum deviation of 0.001 for 𝐶𝐿, 0.0001 for 𝐶𝐷, 0.001 for 𝐶𝑇 and 0.001 for 𝐶𝑃,
based on typical values. For the intermediate results a conservative value of maximum 0.5% deviation
from the asymptotic value is chosen, or half of the absolute requirements. At the end it is checked if
this is sufficient for the full integrated model.
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The presented results show a deviation from the results with the most refined point. So if there
is a tool that produces result 𝐹, this 𝐹 can be obtained using different levels of refinement. In this
example, the number of panels determines the refinement. If 𝐹 was evaluated with a maximum of
100 panels, then this 𝐹 is equal to 𝐹0. For a result with 10 panels 𝐹𝑝=10 is obtained and a deviation of
Δ𝐹 = |𝐹𝑝=10 − 𝐹0| can be calculated. This Δ𝐹 could again be divided by 𝐹0 to normalize the result.

5.2.1. Convergence of the propeller model
The BEM code, as described in Section 3.1, uses a number of annular streamtubes along the blade
span. This number is given by 𝑁𝑟/𝑅. In Figure 5.3 it can be seen how 𝐶𝑇 and 𝐶𝑃 converge with 𝑁𝑟/𝑅.
It can be seen that the requirement for 𝐶𝑇 and 𝐶𝑃 is satisfied for 𝑁𝑟/𝑅 above 30, where the deviation
is lower than 0.0005. To have some margin, a radial discretization of 𝑁𝑟/𝑅 = 40 was chosen. This
number will also be used in the subsequent non­uniform inflow model and slipstream model.
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Figure 5.3: Convergence of the propeller performance for the number of radial stations

The non­uniform inflow model was described in Section 3.2. Here it was also shown that for high
propeller angles of attack, the local advance ratio can become very large in magnitude. To eliminate
errors from these large values of Δ𝐽, the non­uniform inflow model convergence was evaluated for a
propeller at 𝛼 = 5∘. The non­uniform inflowmodel requires a propeller performancemap. This gives the
performance of the propeller for a certain range of advance ratios. Between these available advance
ratios, the propeller performance will be interpolated. Since 𝐶𝑇 and 𝐶𝑃 are practically linear in the parts
of the performance map where non­linear effects are not dominating, a low number of points in this
performance map can be used. This is shown in Figure 5.4. Here 𝑁𝑝𝑜𝑖𝑛𝑡𝑠 is the number of points in the
propeller map. It can be seen that with only a few points, the force and power coefficients show little
deviation. Since computational cost is relatively low, 𝑁𝑝𝑜𝑖𝑛𝑡𝑠 = 7 was chosen.

The non­uniform inflow model also uses a discretization in azimuth direction, which corresponds to
timesteps per rotation. This number of azimuthal steps, 𝑁𝜙, is shown to have little effect on the error,
as shown in Figure 5.5. Even with 𝑁𝜙 = 10, the model gives results within the requirements.

Finally, the circulation of the non­uniform inflow model is given to the slipstreamtube model. Thus,
the radial and azimuthal discretization are the same as for the non­uniform inflow model. The conver­
gence for these are given in Figures 5.6 and 5.7. It can be seen that the chosen 𝑁𝑟/𝑅 = 40 leads to a
deviation of less than 0.05% 𝑈∞, well below the requirement. For the azimuthal discretization 𝑁𝜙 = 30
is found to be sufficient, although afterwards a small spike can be seen with a maximum deviation of
0.75% 𝑈∞ for the axial velocity, it is expected that this has minor influence on the overall results and
𝑁𝜙 = 30 should suffice.

Next the discretization in 𝑥 direction is examined in Figure 5.8. Here 𝑁𝑥 shows the number of
steps in 𝑥 direction per rotation. It can be seen that for 𝑁𝑥 = 12 the error is below 0.5%. Since 𝑁𝑥 is
the number of steps per rotation, the total number of steps in 𝑥 direction depends on the freestream
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Figure 5.4: Convergence of the propeller performance for the
number of points in the propeller performance map
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Figure 5.5: Convergence of the propeller performance for the
number of azimuthal stations
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Figure 5.6: Convergence of the propeller induced velocities for
the number of radial stations
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Figure 5.7: Convergence of the propeller induced velocities for
the number of azimuthal stations

velocity, rotational speed and modelled length of the slipstream. This must be kept in mind, since
certain combinations of these variables can lead to an excessively large number of steps in 𝑥 direction,
increasing computational time.

5.2.2. Convergence of the wing model
For the wing model the number of chordwise and spanwise panels is investigated. The results of this
are shown in Figures 5.9 and 5.10. It can be seen that for the 𝐶𝐿 the number of chordwise and spanwise
panels must be about the same. For 𝐶𝐷 the deviation is mainly dependent on the number of chordwise
panels. Here a number of 30 satisfies the requirement of a maximum Δ𝐶𝐷 of 0.0001. This gives a
number of spanwise panels of 26.

Next the convergence of the jet correction is discussed. The jet correction has been discussed in
Section 4.3. The jet correction gives a correction on the Aerodynamic Influence Coefficient (AIC) matrix,
this correction is denoted as 𝐺. Since 𝐺 is a correction on the system to be solved, the influence is
not one­to­one, as shown in Figure 5.11. It seems that a 10% deviation in 𝐺 only leads to about
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Figure 5.8: Convergence of the propeller induced velocities for the number of streamwise steps per rotation in the propeller
slipstream
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Figure 5.9: Convergence of the wing lift coefficient for the num­
ber of chordwise and spanwise panels
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Figure 5.10: Convergence of the wing drag coefficient for the
number of chordwise and spanwise panels

0.7% deviation in circulation. Thus, the convergence of the jet correction has been studied in terms of
influence on the circulation. As the requirement for circulation, a maximum relative error of 0.01 or 1%
was set.

In Equation 4.15 and 4.16 in Section 4.3 the expressions to calculate the jet correction were given.
In Equation 5.3 one of these equations is repeated. It can be seen that there are two sum/integrals to
infinity. And there are two integrals which need to be calculated numerically. Firstly, the upper limit of
the sum determines the number and order of Bessel functions used. The convergence for this is shown
in Figure 5.12. It can be seen that a sum of about 10 functions is enough. Next, there is the integral
over variable 𝜆 with upper limit infinity. In Figure 5.13 it can be seen how the deviation decreases with
increasing upper limit, 𝜆𝑢𝑝. Here an upper limit of around 4 seems sufficient.

𝐺𝑗𝑗𝑜(𝜉, 𝜂) =
1
𝑟𝑗
8
𝜋𝜂

∞
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(2𝑝 + 1)2∫

∞

0

𝐾𝐾′𝐼(𝜂𝜆) sin(𝜉𝜆)
1

1/𝜇2−1 − 𝜆𝐼𝐾
′
∫
𝑑𝜆

𝑐𝜆

𝐼(𝜆𝛽)
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Figure 5.11: Relation between the error in jet correction and the error in circulation
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Figure 5.12: Convergence of the wing circulation for the num­
ber of Bessel functions
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Figure 5.13: Convergence of the wing circulation for the upper
limit of the integral of 𝜆

The integrals from Equation 5.3 were calculated using a midpoint rule scheme. Thus, a step for
𝜆 and 𝜆𝛽 needs to be chosen. The convergence for these parameters is shown in Figures 5.14 and
5.15. In Figure 5.15 𝑑𝜆𝛽 has been normalized with the interval [𝑐𝜆, 𝑑𝜆], which gives 𝑑𝜆𝛽′. To satisfy
the requirements of a maximum deviation of 0.5%, 𝑑𝜆 = 0.1 was chosen. For larger values of 𝑑𝜆𝛽′
some diverging behaviour was found, where the sums and integrals would give values of infinity. Thus,
𝑑𝜆𝛽′ = 0.005 was chosen, which gives results well within the requirements.

5.2.3. Convergence of the propeller­wing model
The values of the numerical settings present in the model have been determined by looking at the
deviation of the intermediate results from the respective asymptotical value. These values can be
found in Table 5.1 in the column Initial value. To determine the convergence of the whole model all
the settings were scaled by a scaling factor 𝑆𝐹. By multiplying or dividing the initial settings by 𝑆𝐹 the
convergence for the whole system is determined. With a higher 𝑆𝐹, the model is more refined. So,
for example, 𝑁𝑟/𝑅 would be multiplied with 𝑆𝐹, while 𝑑𝜆 would be divided by 𝑆𝐹. The results of this
investigation can be found in Figures 5.16 and 5.17, where the settings have been applied to a typical
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Figure 5.14: Convergence of the wing circulation for the nu­
merical integration step 𝜆
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Figure 5.15: Convergence of the wing circulation for the nu­
merical integration step 𝜆𝛽′

wingtip­mounted propeller case. It can be seen that at the initial settings or 𝑆𝐹 = 1, the deviations from
the asymptote are below the defined requirements. Thus, the final settings were chosen at 𝑆𝐹 = 0.8,
which decreases computational time. These final values can be found in Table 5.1.

Table 5.1: Results of the convergence study

Initial value Final value
𝑁𝑟/𝑅 40 32

𝑁𝑝𝑜𝑖𝑛𝑡𝑠 7 7
𝑁𝜙 30 24
𝑁𝑥 12 9

𝑁𝑐ℎ𝑜𝑟𝑑 30 24
𝑁𝑠𝑝𝑎𝑛 26 20
𝑁𝑏𝑒𝑠𝑠𝑒𝑙 10 8
𝜆𝑢𝑝 5 4
𝑑𝜆 0.1 0.125

𝑑𝜆𝛽′ 0.005 0.005

5.2.4. Convergence of the iterative loop
As shown in Figure 5.1, the propeller­wing interaction must be solved iteratively. The iterative loop is
started by a propeller analysis, as the propeller performance is the least affected by the interaction.
When updating the input for the propeller and wing model, a residual can be calculated, which is the
difference between the parameters of the current iteration and the previous iteration. This residual
is will be referred to as the convergence residual. The solution has converged when this residual is
below the constraints of 0.001 for 𝐶𝐿, 0.0001 for 𝐶𝐷, 0.001 for 𝐶𝑇 and 0.001 for 𝐶𝑃. In Figure 5.18
the development of the residual for a typical case can be seen. All parameters show nice converging
behaviour and seem to converge with the same rate. 𝐶𝑇 and 𝐶𝑃 show lower residuals of about an order
of magnitude smaller than 𝐶𝐷, since 𝐶𝑇 and 𝐶𝑃 are less affected by the interaction effects. Thus, 𝐶𝐿 and
𝐶𝐷 are the critical parameters for convergence. It can be seen that convergence is typically reached
within two iterations, which corresponds to three evaluations of the propeller­wing model.

While the iterative loop usually shows converging behaviour, there are some cases where this does
not occur. This typically happens for cases with high thrust. In Figure 5.19 an example is shown of
the behaviour for such a case. While 𝐶𝑇 and 𝐶𝑃 converge, 𝐶𝐿 and 𝐶𝐷 do not show strong converging
behaviour. 𝐶𝐷 shows a great reduction in residual for up to iteration three, but after that no large residual
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Figure 5.16: Convergence of the wing lift and drag by applying
a scaling factor to the numerical settings
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Figure 5.17: Convergence of the propeller thrust and power by
applying a scaling factor to the numerical settings

1 2 3 4 5 6 7 8 910−12

10−10

10−8

10−6

10−4

10−2

𝑁𝑖𝑡𝑒𝑟 [­]

Δ𝐶
𝐿,
Δ𝐶

𝐷
,Δ
𝐶 𝑇
,Δ
𝐶 𝑃

[­]

𝐶𝐿
𝐶𝐷
𝐶𝑇
𝐶𝑃

Figure 5.18: Typical iterative convergence for the propeller­wing model

decrease is observed. The residual of 𝐶𝐿 even seems to be somewhat constant, with little change from
the first iteration. To avoid that the model will try to converge such a non­converging case, the maximum
number of iterations was set to three. This way the cases that show converging behaviour will converge,
while it prevents these non­converging cases to iterate infinitely.

5.3. Computational time
In Figure 5.20 a breakdown is given for the computational time. This analysis was done on a system
with a 2.2 GHz Intel Core i7­8750H processor with 16.0 GB installed RAM. It can be seen that the com­
putational time needed for the propeller model is almost constant for different numerical settings. The
time needed to calculate the induced velocities and analyze the wing model scale almost quadratically
with the scaling factor. With more refined numerical settings, the arrays used become very large, thus
the amount of RAM becomes limiting, which could potentially lead to higher computational times if not
enough RAM is available.

Each evaluation of the propeller­wing model for the chosen scaling factor of 0.8 takes about 40
seconds. In order to converge typically three to four evaluations are needed. Furthermore, some extra
time is needed to read polar files, resulting in a total analysis time of between 150 to 210 seconds.
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Figure 5.19: Non­converging behaviour found for the propeller­wing model at high thrust settings
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Figure 5.20: Breakdown of the computational time of a single evaluation of the propeller­wing model for different numerical
settings based on the average of 25 runs





6
Validation

In this chapter the numerical tools are validated using experimental data. First the isolated propeller
model and isolated wing model will be validated in Section 6.1 and 6.2 respectively. Finally, in Section
6.3 the integrated propeller­wing model is validated.

6.1. Isolated propeller
The first set of validation data is from a series of windtunnel measurements by Sinnige et al. [41]. The
experiments were carried out in the Low­Turbulence Tunnel at Delft University of Technology, with a
turbulence level of around 0.1%. The propeller model is a four­bladed propeller with a diameter of
0.237 m. This propeller is called the PROWIM propeller. The blade pitch is defined at 75% radius
and is set at 23.9∘. The radial distribution of the chord and twist can be found in Figure 6.1. For this
isolated propeller case the propeller was sting mounted, as shown in Figure 6.2. The measurements
were done using an external balance. To not measure the forces acting on the sting, a separately
supported sleeve was put around the sting. Furthermore, the leading edge of the sleeve was 1.5 times
the propeller diameter away from the propeller, practically eliminating upstream effects on the propeller.
The propeller is also attached to a nacelle with a diameter of 0.070 m. To exclude the nacelle effects
in the data, measurements were done with a dummy hub and spinner, which gives a blades­off model.
By subtracting the blades­off forces from the measurements, the isolated propeller forces are obtained,
neglecting the interference components.
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Figure 6.1: Twist and chord distribution of the PROWIM pro­
peller

Figure 6.2: CAD model of the windtunnel setup for the
PROWIM propeller [41]
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In Figures 6.3, 6.4 and 6.5 the propeller performance with changing advance ratio can be found. It
can be seen that the numerical results follow the same trend as the experimental results, but an offset is
seen. By changing the pitch angle in the numerical model by −1.2∘, a much better match is found. This
offset could be caused by a simple geometry modelling error. However, the twist distribution is known
from technical drawings and CAD models, thus a geometry modelling error seems unlikely. The offset
can also be caused by the presence of the nacelle, which is not taken into account in the numerical
model. Although the data is corrected for nacelle forces, the interaction effects are not accounted for.
However, at such a low angle of attack no significant forces are produced on the nacelle [93]. Thus, it
is assumed that there are no vorticity induced velocities of the nacelle on the propeller. There is also
blockage from the nacelle, which is not modelled in the numerical model. However, this will mainly
affect the part of the propeller near the hub, where forces are relatively low, thus it is expected that this
has little influence on the performance of the propeller.

Thus, the offset is most likely caused by errors in the 2D airfoil polars. For the analyzed range
of operating conditions, the Reynolds number on the blade sections are relatively low. Typically, the
maximum Reynolds number of the blade would be between 1 ⋅ 105 and 1.5 ⋅ 105, while the lowest
Reynolds numbers are around 3 ⋅ 104. For lower Reynolds numbers, the importance of viscous effects
increases. This makes it harder for numerical methods to make accurate predictions at lower Reynolds
numbers [94]. This could cause an offset in propeller performance with respect to the windtunnel data.
In the subsequent results of this propeller, this offset of −1.2∘ will be applied to the propeller pitch for
easier comparison of the results.
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Figure 6.3: Propeller thrust coefficient with varying advance ratio for the PROWIM propeller at 𝛼 = −0.2∘ and 𝑅𝑒𝐷 = 620, 000

Next to the offset, some differences in behaviour can be seen. For the thrust, as shown in Figure
6.3, the numerical results seem almost linear, while the experimental data has a wave­like shape. It
is suspected that this is caused by the fact that the non­linear regime of the blade airfoils can not be
modelled accurately by the numerical model. The numerical model relies on 2D airfoil lift and drag
curves to calculate the propeller forces. However, at very low or high advance ratios large parts of
the propeller blade will operate in the non­linear regime. For the parts of the propeller in the non­linear
regime, the propeller forces cannot be accurately calculated by simple 2D panel methods. Furthermore,
3D effects can change the stall behaviour at a radial station [95]. So in these areas the numerical model
will produce inaccurate results. While the differences are quite small for 𝐶𝑇, in Figure 6.4 it can be seen
that the difference in 𝐶𝑃 between numerical and experimental data increases for decreasing advance
ratio.

In Figure 6.6 the effect of Reynolds number can be seen. For the experimental data it is observed
that the thrust coefficient is slightly higher for higher Reynolds numbers. This increase in 𝐶𝑇 is also
seen in the numerical data. However, at higher advance ratios this increase is underestimated. This
could again be caused by inaccuracies of the blade section polar data. At higher advance ratios, the
rotational speed is lower, thus the Reynolds numbers on the propeller blades are also lower. This
would make it more likely that the effect of Reynolds number could not be modelled accurately. Thus,
the effect of Reynolds number on propeller performance is underestimated at higher advance ratios.
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Figure 6.4: Propeller power coefficient with varying advance ra­
tio for the PROWIM propeller at 𝛼 = −0.2∘ and 𝑅𝑒𝐷 = 620, 000
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Figure 6.5: Propeller efficiency with varying advance ratio for
the PROWIM propeller at 𝛼 = −0.2∘ and 𝑅𝑒𝐷 = 620, 000
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Figure 6.6: The effect of Reynolds number on propeller thrust coefficient for the PROWIM propeller at 𝛼 = −0.2∘

The effect of angle of attack is shown in Figure 6.7. Here the thrust coefficient is shown for two
advance ratios. In the experimental data it can be seen that thrust coefficient increases for increasing
angle of attack. But, when the advance ratio is decreased, the magnitude of this effect decreases. It
can be seen that the numerical model also shows an increase of thrust for increasing angle of attack.
This effect does not seem to be captured by the numerical model. This means that the increase in 𝐶𝑇
with increasing 𝛼 is overestimated for low advance ratios and underestimated for higher advance ratios.
This can possibly be explained by the presence of the nacelle, which is not modelled in the numerical
model. Due to the differences in thrust on the propeller blades, a non­axisymmetric pressure field is
created on an axisymmetric nacelle [93]. This pressure field differs from the nacelle pressure field
without propeller and is thus not accounted for in the measurement data. For a propeller under angle
of attack it was found that this pressure distribution generated mainly a side force on the nacelle due
to the difference in thrust on the advancing and retreating (left/right) side of the propeller. This gives a
different dynamic pressure on both sides, which leads to a difference in pressure and a resulting force.
The skewing of the wake axis also creates a thrust difference in top and bottom side of the propeller
[60]. This changes the dynamic pressure and thus pressure distribution on the top and bottom side of
the nacelle with respect to the nacelle without propeller. This increases circulation around the nacelle,
resulting in an added force. This process is shown in Figure 6.8, where a + denotes an increase and
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− a decrease. The resulting force 𝐹 can be decomposed in a thrust/drag and lift component. It is
expected that this creates the difference in 𝐶𝑇 between the numerical and experimental data, as shown
in Figure 6.7.
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Figure 6.7: The effect of angle of attack on propeller thrust coefficient for the PROWIM propeller at 𝑅𝑒𝐷 = 620, 000
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Figure 6.8: Creation of nacelle forces due to the difference in thrust on the propeller

The second set of validation data for the isolated propeller is from a series of windtunnel measure­
ments done at the Open­Jet Facility at Delft University of Technology [96][97][98]. This windtunnel
provides a turbulence level of about 0.5%. The model used, was a TUD­XPROP propeller model with
six blades and a diameter of 0.4046 m. The data used here is for a pitch angle of 20∘ at 𝑟/𝑅 = 0.7.
The corresponding radial distribution of twist and chord are shown in Figure 6.9 and a picture of the
propeller is given in Figure 6.10.

In Figure 6.11 the results can be found for the TUD­XPROP propeller. There are two effects that
can be investigated here. The first one is the change in thrust due to advance ratio. It can be seen
that the numerical model predicts the right trend, but there is an offset with respect to the validation
data. This offset seems to be around the same magnitude as the offset found in the first data set
and could be corrected for by a small change in pitch setting. It can be seen that for high advance
ratios, the difference between experimental and numerical data is increasing. This suggests an effect
of Reynolds number on the propeller blades. At higher advance ratio, the rotational decreases, giving
lower Reynolds numbers on the blades. For these Reynolds numbers it is harder to predict the lift
and drag curves using numerical models. Thus, larger errors are expected at higher advance ratios.
The second effect that is shown in Figure 6.11 is the effect of propeller Reynolds number 𝑅𝑒𝐷. For the
experimental data an increase in 𝐶𝑇 is seen for an increasing propeller Reynolds number. The same is
seen in the numerical data. However, it can also be seen that at the same advance ratio, the difference
between the experimental data and numerical data is lower for higher 𝑅𝑒𝐷. This can mainly be seen
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Figure 6.9: Twist and chord distribution of the TUD­XPROP
propeller

Figure 6.10: Windtunnel model of the TUD­XPROP
propeller [96][97][98]

when comparing the data for 𝑅𝑒𝐷 = 317, 000 and 𝑅𝑒𝐷 = 475, 000 for 0.35 < 𝐽 < 0.5. The smaller
difference at higher 𝑅𝑒𝐷 suggests that the difference between the experimental and numerical data is
caused by modelling errors due to low Reynolds numbers on the propeller blade.
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Figure 6.11: The effect of Reynolds number on propeller thrust coefficient for varying advance ratio for the TUD­XPROP propeller
at 𝛼 = 0∘

To conclude, the propeller model predicts themain trends foundwith varying advance ratio, Reynolds
number and angle of attack. In both the PROWIM and TUD­XPROP analysis an almost constant offset
in 𝐶𝑇 and 𝐶𝑃 was found between the numerical and experimental data. This seems to be caused by
inaccurate modelling of the airfoils polars, since the propellers operate in conditions that give relatively
low Reynolds numbers on the propeller blades. Lower Reynolds numbers increase the importance
of viscous effects, which are hard to model accurately by numerical tools. This gives an offset in the
propeller performance when comparing the numerical model to the windtunnel data. In the case of
the PROWIM propeller a much better match was found by changing the pitch with −1.2∘. Despite the
offset, the numerical model seems to predict most trends accurately, but not for cases where non­linear
effects are significant. This is for high (positive or negative) angles of attack on the blades and for low
propeller Reynolds numbers.
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6.2. Isolated wing
The isolated wing is validated using experimental data from Koomen [84]. The experiments were con­
ducted in the Low­Turbulence Tunnel at Delft University of Technology with a half model. A ground
board is used as a reflection plane at the root of the half wing. The airfoil used by this wing is the
NACA642A015 airfoil, a symmetrical NACA 6­series airfoil with modified trailing edge. Two configura­
tions are available: one with a smooth wingtip fairing and one with a nacelle. It is expected that the
data with the smooth wingtip will provide the best match with the numerical results. However, also the
data with the nacelle are plotted, to get an idea of the influence of the nacelle, since the nacelle is not
modelled by the numerical model. In Figure 6.12 the geometry for the two configurations can be seen.

Figure 6.12: Geometry of the validation wing [84]

Total forces
In Figures 6.13 and 6.14 the results can be found. Here the validation data is obtained using an external
balance. Using the numerical model the wing geometry with and without nacelle is approximated. For
the wing without nacelle, a halfspan 𝑏/2=0.292 m was chosen. Extending the wing to account for the
fairing of 18 mm did not lead to significant change in the results, thus this value was kept. For the
configuration with nacelle, the wing was extended to 𝑏/2=0.362 m. So in the numerical model, the
wing is extended with the span of the nacelle, with the same NACA642A015 airfoil as on the rest of the
wing. The results presented are normalized with the clean wing area, so 𝑆=0.14 m2.
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Figure 6.13: Lift for the validation wing
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Figure 6.14: Drag for the validation wing

First the data for the wing without nacelle is compared. This case is expected to show the best
match with the numerical results. As can be seen in Figure 6.13 the lift matches very well in the linear
part of the lift curve. When approaching 𝐶𝐿,𝑚𝑎𝑥 the lift curve slope decreases a little, which is also well
modelled due to the viscous correction of the numerical model. Finally, after 𝐶𝐿,𝑚𝑎𝑥 the wing stalls and
lift decreases suddenly. This is not captured by the viscous correction, since the flow is fully separated
here, which is not captured well by low­order models. In Figure 6.14 it can be seen that the predicted
drag shows good agreement with the validation data up to 𝐶𝐿,𝑚𝑎𝑥. When the wing stalls, the drag
increases rapidly due to increasing pressure drag. Pressure drag is not modelled by the numerical
model. Furthermore, at 𝐶𝐿 = 0, induced drag 𝐶𝐷,𝑖 = 0. So all the drag in this case is from the viscous
correction. It can be seen that the drag coefficient at 𝐶𝐿 = 0 matches with the experimental data, so
the viscous drag is calculated correctly.

Now the case with nacelle is examined. In Figure 6.13 it can be seen that the lift is very well
approximated by the numerical model. For the case with nacelle some differences were expected, since
the nacelle has a larger chord and a different shape from the airfoil. The lift calculated by the numerical
model shows the same behaviour as for the case without nacelle, so the nacelle can effectively be
seen as an increase of aspect ratio. Again, the same discrepancies are found when the wing enters
stall. When looking at the drag coefficient in Figure 6.14, large errors can be found for the case with
nacelle. However, the error seems to be a somewhat constant offset in 𝐶𝐷. This constant offset is most
likely due to the difference in the estimated profile drag. The cross­sectional shape of the nacelle has
less influence on the induced drag, but profile drag is highly dependent on the cross­sectional shape.
The nacelle in the numerical model has the same cross section as the rest of the wing, while in reality
the chord is longer and the shape is less aerodynamic. This would increase friction drag, thus the
drag predicted by the numerical model is underestimated. So, the numerical model still gives the right
behaviour for lift and drag for a wing with nacelle, but the drag is underestimated. This must be taken
into account when modelling a wing with nacelle.

Spanwise distribution
Next to the external balance data, also pressure data was available, so the spanwise lift distribution
can be compared. This is shown in Figure 6.15. The data is normalized using 𝑏/2=0.292 m for the
case without nacelle and 𝑏/2=0.362 m for the case with nacelle. In Figure 6.15 it can be seen that
the lift is over predicted by the numerical model for the case without nacelle. This is peculiar, since the
external balance data shows a good match with the numerical results. The same holds for the case with
nacelle. There are slight differences in lift distribution, while the external balance measurements are in
accordance with the numerical results. Furthermore, the data for the case with nacelle also seems to
show some noise.

For these pressure measurements it was suspected that the flap present in the wing might not
exactly at zero deflection, which could explain the slight difference in sectional wing lift. The flap is
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located at spanwise position 0.10 < 𝑦/𝑏 < 0.45 for the case without nacelle and 0.08 < 𝑦/𝑏 < 0.36
for the case with nacelle. This could lead to slightly higher or lower lift in this area simply due to the
difference in aerodynamic shape. Furthermore, trailing vortices that originate at the ends of the flap
can influence the lift distribution near the ends of the flap. It is hard to say if this small flap deflection
had a significant influence on the lift distribution, since no datapoints outside this area are available.
This makes the data hard to compare, but it can be seen that the predicted change in lift due to the
wing extension by nacelle has the right magnitude. Since the total forces are predicted correctly, this
builds confidence that the numerical model produces accurate results.

A comparison for the drag could not be made. In the experiment, the spanwise drag distribution
consists of pressure drag. In the numerical model drag can only be split into induced drag and profile
drag, thus no useful comparison could be made here.
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Figure 6.15: Spanwise lift distribution of the validation wing at 𝛼 = 2∘

To conclude the wing validation, the lift and drag are predicted accurately by the numerical model
up to 𝐶𝐿,𝑚𝑎𝑥. Beyond 𝐶𝐿,𝑚𝑎𝑥, the decrease in lift and increase in drag are not captured by the numerical
model. The nacelle is modelled in the numerical model by an extension of the wing, using the same
airfoil profile as the rest of the wing. This gives accurate results for lift, but drag is underestimated
by the numerical model. This is likely because profile drag is underestimated, since the nacelle cross
sectional shape will give a higher profile drag than the airfoil section used in the numerical model.
Lastly, spanwise lift distribution given by the numerical model is close to the one given by experimental
data, but some differences are found in magnitude and shape. These differences seem to result from
errors in the test setup.

6.3. Propeller­wing
With the validation of the propeller model and wing model described in the previous sections, the
propeller­wing system can be validated. This is done using experimental data from Sinnige et al. [41].
The model used, consists of a wing with the NACA 642A615 cambered airfoil of which the dimensions
can be found in Figure 6.16. At the wing tip a nacelle is located with a four­bladed propeller. This
model is the PROWIM propeller as described in Section 6.1. Here again the propeller pitch of the
windtunnel model was set to 23.9∘ at 𝑟/𝑅 = 0.75. The 𝑥­distance from the wing leading edge to the
propeller centerpoint is 0.853𝑅, and the 𝑧­distance is 0.042𝑅. The forces of the propeller­wing system
were obtained using an external balance.

The wing modelled by the numerical model has a span of 2 ⋅ 0.952 ⋅ 0.730=1.39 m. This slightly
lowers the aspect ratio of the wing, but it ensures that the propeller is located in the right place, since
the propeller in the numerical model has to be aligned with the wingtip in order for the jet correction to
be applied. Furthermore, a transition strip was applied to the wing at 𝑥/𝑐 = 0.12, so most of the wing
would see turbulent flow. Thus, it was chosen to use fully turbulent polars for the viscous corrections
of the wing. Since a modelling offset was found in the validation of the propeller, it was chosen to
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correct for this offset, so the validation can focus on the interaction effects. This means the pitch of the
propeller was changed to 22.7∘.

Results are presented for three cases. Firstly, the wing data is presented for the propeller­off (prop­
off) case, where no propeller is installed. Next to this, two cases with an installed wingtip­mounted
propeller are presented: one with 𝐽 = 0.9 and one with 𝐽 = 0.7.

Figure 6.16: Geometry of the propeller­wing system used for validation

In Figure 6.17 the lift polar can be found for the propeller­wing system. It can be seen that in the
prop­off case the numerical model underestimates the lift curve slope. This is probably caused by
the difference in aspect ratio of the two wings. However, these differences are relatively small and
expected for a slight change in aspect ratio. With decreasing advance ratio, or increasing thrust, the
lift increases. This is the case in both the numerical data and validation data. The increase in lift for
the linear part of the lift curve is similar for both the numerical and validation data. It can be seen that
the difference between the prop­off and 𝐽 = 0.9 conditions is very small. For the case with 𝐽 = 0.7 the
change is more pronounced.

For the validation data, the lift curve slope increases from the prop­off to 𝐽 = 0.7. The numerical
model still predicts a curve slope increase, but this increase is underestimated. At higher angle of at­
tacks this leads to a big difference in performance. This difference in lift curve slope could be cause
by a modelling error of the propeller slipstream. When the propeller is at an angle of attack, the slip­
stream will bend downwards, due to added axial velocity, but eventually becomes more aligned with
the freestream velocity. This phenomenon has a great effect on the induced angle of attack on the
wing. Thus, improper modelling here could lead to a difference in lift curve slope. Another influence
on the lift curve slope is the nacelle. There are two ways the nacelle forces change due to propeller
interaction [39]. A propeller under an angle produces different amounts of thrust at different azimuthal
positions. This gives different amounts of dynamic pressure in the propeller wake for different azimuthal
positions. In the case of a propeller under angle of attack, this increases the normal force. The second
phenomenon is the roll up of the propeller hub vortices along the suction side of the nacelle, which
results in a low pressure on the suction side, further increasing the normal force on the nacelle. While
the first effect is captured by the propeller slipstream model, the second is not. Since this effect is both
dependent on angle of attack and thrust, this could explain the discrepancy in lift curve slope.

In Figure 6.18 the system drag is shown for the propeller­wing system, consisting of propeller thrust
and wing drag, as well as smaller contributions from propeller in­plane forces. In the prop­off condition
the drag is underestimated by the numerical model, due to the presence of the nacelle. The part of
the nacelle modelled in the numerical model has an airfoil cross section. In reality the nacelle has
a larger chord than the airfoil and a less aerodynamic shape which increases the friction drag. This
has also been explained in Section 6.2. This difference in friction drag between the experimental and
numerical results would increase with increasing dynamic pressure. When the thrust increases with
decreasing advance ratio, the dynamic pressure over the nacelle is increased, thus the difference in
drag is larger. Furthermore, the modelling of the propeller slipstream deflection, as mentioned before,
could also affect the drag by modelling a slightly different induced angle of attack.

For the spanwise lift distribution experimental data from Koomen [84] was used. The propeller­wing



80 6. Validation

−8 −6 −4 −2 0 2 4 6 8 10 12 14 16

0

0.5

1.0

𝛼 [deg]

𝐶 𝐿
[­]

Numerical Experiment
Prop­off Prop­off
𝐽 = 0.9 𝐽 = 0.9
𝐽 = 0.7 𝐽 = 0.7

Figure 6.17: Lift for the validation propeller­wing system

−0.15 −0.10 −0.05 0 0.05 0.10

0

0.5

1.0

𝐶𝐷 [­]

𝐶 𝐿
[­]

Numerical Experiment
Prop­off Prop­off
𝐽 = 0.9 𝐽 = 0.9
𝐽 = 0.7 𝐽 = 0.7

Figure 6.18: Drag for the validation propeller­wing system

model uses the same wing as shown in Figure 6.12 and it uses the same PROWIM propeller as the
model used by Sinnige et al. [41]. To model the wing a half span of 𝑏/2 = 0.327 m was used, so the
propeller would be in the right position, since the jet correction in the numerical model only works for a
propeller mounted exactly at the wingtip. The results of this comparison can be found in Figure 6.19,
where the results are normalized with 𝑏/2 = 0.327 m. With a propeller diameter of 0.237 m the wing
area directly in the propeller slipstream is bound by 0.31 < 𝑦/𝑏 < 0.5.

When comparing the propeller­off condition, it can be seen that the lift is underestimated due to a
smaller span. The small change in span creates a relatively large error in the lift distribution for such a
low aspect ratio wing. For the cases with propeller­on it can be seen that the magnitude of the lift directly
behind the propeller is predicted closely by the numerical model. Only for 𝐽 = 0.7 a dip in lift force is
seen at the propeller tip (𝑦/𝑏 = 0.31). This could be caused by negative loading near the propeller tip,
which gives negative induced velocities (opposite the freestream velocity) or backflow. This backflow is
also captured by the numerical propeller model, but since the part affected by backflow is rather small,
approximately 5% of the radius, the effect of this on the wing is not fully captured in the numerical
model. It is concluded that the effect of this is rather small and that this effect is over­represented in
the validation data due to the location of the pressure taps.

Finally, the inboard wing section can be compared. Both the experimental and numerical data show
an increase in lift in the propeller­on condition compared to propeller­off. In the numerical model the
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Figure 6.19: Spanwise lift distribution for the validation propeller­wing system

propeller induces still a small velocity on the inboard regions of the wing. This vertical velocity has a
magnitude of about 0.005𝑈∞, but it still increases the angle of attack, which leads to a higher lift. Due
to the presence of the propeller, the strength of the wingtip vortices are reduced and the wing also
sees lower self induced velocities, which further increases angle of attack. The combination of these
effects leads to a substantial increase in inboard lift. In the experimental data the magnitude of this
increase in lift is less than what is predicted by the numerical model. Especially the difference between
propeller­off and 𝐽 = 0.9 is much lower. This can again be explained by a possible small flap deflection,
which has been noticed by Koomen [84]. The flap would start at 𝑦/𝑏 = 0.09, which could explain the
low 𝐶𝑙 here. At the edge of the flap a trailing vortex would form, which induces some velocity on the
nearby wing section. This could lead to a lower 𝐶𝑙.

To conclude, the numerical model can model most major trends for propeller­wing interaction. How­
ever, there are still some differences found when comparing to numerical data. These are expected
to come from modelling errors of the propeller slipstream, which dictates the propeller­wing interaction
in a tractor configuration. Furthermore, at high angles of attack and at very low or very high advance
ratios non­linear effects will have a large effect on the performance. These include viscous effects in
3D, which are not captured by the numerical model.





7
Metamodelling

Metamodelling describes the steps and models used to create an approximate statistical model to
represent the response of a detailed, deterministic computer code. Metamodelling is often also referred
to as Design of Experiments (DOE), modern DOE or Response Surface Methodology (RSM). These
terms however, strictly only refer to a part of the metamodelling process. Firstly, experimental design
is done to sample the design space, this is described by DOE. Furthermore, a choice must be made
for the model used to describe the response surface and then the model must be fitted to the data.
This part is described by RSM. Lastly an optimization or evaluation of the response surface can be
performed.

Now, some basic concepts are introduced. The true data is denoted as 𝑦𝑖, with 𝑦 being the mean.
𝑦𝑖 is the true response for some point in the design space, 𝑥𝑖, which is usually a vector for a multi­
dimensional design space. The response surface 𝑓 can be evaluated at 𝑥𝑖, which gives 𝑓(𝑥𝑖), which
is shortened to 𝑓𝑖. 𝑦𝑖 − 𝑓𝑖 gives the residual. Using the relations in Equation 7.1, the 𝑅2 value can be
calculated. Here three sum of squares (𝑆𝑆) are defined, due to the model (regression, 𝑆𝑆𝑅), due to
residual (error, 𝑆𝑆𝐸) and the total (𝑆𝑆𝑇). In Equation 7.1 it can also be seen that 𝑅2 is a ratio. Thus,
𝑅2 = 0.9 would mean that 90% of the variability of the data is explained by the model. Thus, a higher
𝑅2 means it explains or matches the data better. However, this does not mean that a higher 𝑅2 gives
a more accurate response surface [99]. 𝑅2 will always increase when new degrees of freedom are
introduced to the response surface, but it could lead to poor predictions for new points. While 𝑅2 is the
leading single measure for verifying the accuracy for a model of a deterministic experiment [100], it will
be shown in Section 7.3, that examining 𝑅2 only is often not enough.

𝑅2 = 𝑆𝑆𝑅/𝑆𝑆𝑇
𝑆𝑆𝐸 =∑

𝑖
(𝑦𝑖 − 𝑓𝑖)2

𝑆𝑆𝑇 =∑
𝑖
(𝑦𝑖 − 𝑦)2

𝑆𝑆𝑅 = 𝑆𝑆𝑇 − 𝑆𝑆𝐸

(7.1)

Finally, in order to investigate the propeller­wing interaction using metamodelling, the design param­
eters must be defined. The number of design parameters determines the dimension of the response
surface, which will determine the number of points that need to be evaluated. Thus, the number of
design parameters must be kept to a minimum, while still providing enough information to answer the
research questions, defined in Chapter 1. The choice of design parameters will be described in Chapter
8.

This chapter will give an overview of the theory of metamodelling and of the choices made regard­
ing metamodelling. Firstly, in Section 7.1 information is given on Design of Experiments, concluded
by a choice of sampling method to be used. Next, in Section 7.2 Response Surface Methodology is
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described, concluded with a choice of response surface to be used. Finally, with the chosen sam­
pling method and response surface, it is investigated how the quality of the response surface can be
assessed in Section 7.3.

7.1. Design of Experiments (DOE)
One of the main steps of the metamodelling process is Design of Experiments (DOE) or the sampling
of the design space. DOE aims to get the most information out of a limited set of data points. Classical
DOE is used to collect information from physical experiments, where a random error is present in the
data points. In conventional experiments a one factor at a time approach is usually applied. However,
such a way of conducting experiments does not give inside on interaction effects with other factors,
and it is very costly when the effects of many factors need to be investigated. With classical DOE many
factors can be varied at the same time. It optimizes the use of each data point and it minimizes the
effects of random errors.

The principles of classical DOE can be applied to deterministic computer experiments to optimize
the use of each data point and thus minimize the number of experiments that needs to be run, which
is often referred to as modern DOE. A major difference is that no random errors are present in com­
puter experiments. Thus, experimental designs that have space­filling properties are mostly applied
in modern DOE. This space­filling is needed to minimize bias error [99], or the error between the true
response and the modelled response.

Overview of sampling methods
There aremany ways to approach experimental design, which are also described as samplingmethods.
Factorial designs start out with a number of levels on each design variable. For each combination of
levels a sample is taken, leading to a full factorial design. This means that the number of samples scales
exponentially with the number of dimensions. So for a design space of dimension 𝑛 with 𝑘 levels, the
number of points scales with 𝑘𝑛. Thus, usually a factorial design is used for an initial understanding
of interaction effects. With two levels linear effects can be investigated and with three levels quadratic
effects [100]. To reduce the number of sampling points the fractional factorial design can be used,
which uses a fraction of the points used by the full factorial design, but it still scales exponentially. A
two­level full factorial design can be enhanced by adding center points and star points to each level,
which leads to a central composite design. With this method quadratic effects can be investigated for
less computational cost, since the number of points scales with 2𝑛. The full factorial, fractional factorial
and central composite design for 𝑛 = 3 and 𝑘 = 2 are shown in Figure 7.1.

𝑥1
𝑥2

𝑥3

(a) Full factorial (b) Fractional factorial (c) Central composite design

Figure 7.1: Examples of different sampling methods for 𝑛 = 3 and 𝑘 = 2

While the methods based on factorial designs are useful in some cases, they usually sample mostly
near the boundaries of the design space. To get a good response model for a number of samples, bias
error needs to be minimized by filling the design space. One widely used sampling method is Monte
Carlo sampling. Monte Carlo sampling simply generates a number of random sampling points in the
design space. Implementation of Monte Carlo sampling is relatively easy, but it could leave large parts
of the design space empty. To solve this problem extensions of Monte Carlo sampling have been
developed, such as Stratified Monte Carlo sampling, where the design space is subdivided into bins
and in each bin a random point is chosen. However, this method again scales exponentially with the
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number of dimensions. A Monte Carlo and Stratified Monte Carlo sampling example for 𝑛 = 2 are
shown in Figure 7.2.

Another sampling method that is popular for computational experiments is Latin Hypercube Sam­
pling (LHS), which was developed as an alternative to Monte Carlo sampling [101]. LHS starts out by
specifying a number of levels 𝑘. Using these levels, bins are created throughout the design space,
which leads to 𝑘𝑛 bins, for 𝑛 dimensions. Then bins are chosen for sampling, such that for each one­
dimensional projection of each level only one bin contains a sampling point. This is illustrated in Figure
7.2. It can be seen that in this case 𝑘 = 9, which leads to nine samples. Thus, LHS is very easily
scaleable. Finally, in each chosen bin a point will be placed. This is commonly done at random, but
the point can also simply be placed at the center of the bin. Due to the random nature of the sampling,
there is still a chance that the sampling provides bad coverage of the design space or that points are
highly spatially correlated. There are extensions of LHS that address these problems.

𝑥2

𝑥1
(a) Monte Carlo Sampling

𝑥2

𝑥1
(b) Stratified Monte Carlo

𝑥2

𝑥1
(c) Latin Hypercube Sampling

Figure 7.2: Examples of sampling methods for 𝑛 = 2 [102]

Choice of sampling method
The LHS method was chosen to sample data points, since it provides adequate space­filling and sam­
pling can be generated for any number of points. Since the bins would probably have a small size,
it was chosen to keep the sampling points in the center of the bins, as randomization would not lead
to significant differences and only complicate the sampling algorithm. The algorithm used is shown in
Equation 7.2, where 𝑛 is the number of dimensions, 𝑘 the number of points. Π is a random permutation
of the sequence of integers consisting of 0, 1, ..., 𝑘 − 1.

𝑥(𝑖)𝑗 =
Π(𝑖)𝑗 + 0.5

𝑘
with ∶1 ≤ 𝑗 ≤ 𝑛

1 ≤ 𝑖 ≤ 𝑘

(7.2)

To determine the number of sampling points, some tests can be done. First a look can be taken at
the 𝑅2 value. When adding more points, 𝑅2 will increase, but at some point, adding more points will
lead only to a small increase in 𝑅2. This is shown in Figures 7.3 and 7.4. This 𝑅2 value is based on all
the 100 data points that were available, from which a subset is used to create the response surface.
The error bands give the standard deviation for the 𝑅2 value, since it depends on the random samples
generated using LHS. It can be seen clearly that the 𝑅2 increases for the number of points. Furthermore,
𝑅2 seems to increase asymptotically. Thus, a number of sampling points should be chosen for which
a higher number of sampling points does not provide significantly more benefit. While using LHS, the
areas near the corners can be empty. Thus, corner points were added to increase the accuracy of
the response surface. Figure 7.3 shows regular LHS, while Figure 7.4 is enhanced by adding corner
points. It can be seen that this increases the rate of convergence slightly, thus it was chosen to use
LHS sampling with corner points. In this case, around fifteen points seem to be enough to create a
response surface for this data set. After that only a slight increase in 𝑅2 can be gained.
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Figure 7.3: 𝑅2 for LHS sampling without corner points with 1𝜎
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Figure 7.4: 𝑅2 for LHS sampling with corner points with 1𝜎
error bands

7.2. Response Surface Methodology (RSM)
Response Surface Methodology encompasses the process of choosing and fitting a response surface
to data, with the goal to provide an accurate approximation of the real data.

Overview of types of response surfaces
There are many types of response surfaces. A very basic response surface is a polynomial function.
A polynomial function can be fitted to the data, which gives a smooth, differentiable response surface.
Most frequently linear polynomials are used to find relations between variables or quadratic polynomials
for optimization problems. An alternative way to use polynomials is using splines. Here the design
space is divided in parts, where each part has its own polynomial function. On the boundaries these
polynomials must match. Compared to using a single polynomial function, splines offer more flexibility
to adapt to complex data. A drawback of the use of polynomials is that high order polynomials are not
very robust, due to the way they reduce residuals [103].

A more modern type of response surface comes in the form of neural networks. Neural networks
are complex systems where inputs are converted to outputs by using neurons or nodes. To describe
a response surface, the neural network must be trained by giving it data. Based on this training data,
the neural network will adjust weights associated to the nodes, leading to a good fit. This training of
neural networks can be computationally expensive and the behaviour of the neural network can be
unpredictable [104]. The main benefit of the neural network is that it is highly adaptable.

When using deterministic computer models with no measurement error, the residuals computed
from conventional response surface fitting have no obvious statistical meaning. [105]. Thus, Kriging
was developed. Kriging utilizes a global function and a function for local deviation from the global
function. For a more detailed description of the Kriging model, the reader is referred to the work of
Cressie [106]. A key part of the Kriging model is the correlation function. This correlation function
correlates the semi­variance to the distance between points. Since there are many correlation functions
available, the Kriging model is highly flexible. Furthermore, Kriging provides a response surface that
follows the data exactly and gives an estimation of the covariance throughout the design space. A
downside of Kriging is that it does not produce an explicit function.

Choice of response surface
The Kriging model was the first choice for creating a response surface model for the data, since it
provides an exact fit to a deterministic computer model and it gives an estimate of the covariance. Fur­
thermore, the computational cost is relatively low. However, the data from the propeller­wing model
does contain a convergence residual, as described in Section 5.2.4 of Chapter 5. When this conver­
gence residual is big, it creates local peaks in the response surface, when using Kriging, since the
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response surface will exactly go through each point. For this reason it was chosen to use a polynomial
response surface, to smooth out these local peaks due to convergence residual. Furthermore, it is be­
lieved that noise due to the convergence residual will be averaged out by using a polynomial response
surface. Thus, the response surface would provide an average trend in the data. It is assumed that
modelling errors of the numerical model are random, so averaging can be applied. However, this could
not be verified.

The general form of a multivariate polynomial is given in Equation 7.3. Here 𝑛 is the number of
dimensions or number of variables and 𝑘 is the order of the polynomial. The number of indices 𝑖 is
equal to the number of dimensions and can take any integer value from 0 to 𝑘. To fit the polynomials
to the data points the least squares method is used, which minimizes the residual by solving a system
of equations. With this method also weights can be given to the data points. Since the convergence
residual for the data points is known, less weight can be given to data points with a large convergence
residual. This means that these points are given less significance in determining the shape of the
polynomial. It is expected that this will be enough to smooth out local peaks due to ill­converged
points.

𝑓(𝑥1, 𝑥2, ..., 𝑥𝑛) = ∑
𝑖1+𝑖2+...+𝑖𝑛≤𝑘

𝑎𝑖1 ,𝑖2 ,...,𝑖𝑛
𝑛

∏
𝑗=1

𝑥𝑖𝑗𝑗 (7.3)

The derivation for the least squares method starts with a definition of the sum of squares of residuals
(𝑠𝑠𝑟), as shown in Equation 7.4. Here the value of the data point is 𝑦𝑝 at 𝑥𝑝 and 𝑁 is the number of
available data points. 𝑤𝑝 is the weight given to each data point. In this case, the weights are determined
by the inverse of the convergence residual. Since the generalized equations are becoming hard to read
the rest of the derivation is written for a polynomial with number of dimension 𝑛 = 2 and degree 𝑘 = 1.
This leads to the derivatives in Equation 7.5. The derivatives are taken with respect to the unknown
coefficients 𝑎00, 𝑎01 and 𝑎10. To get the minimum value of 𝑠𝑠𝑟, these derivatives must be zero. This
leads to a system of equations, shown in Equation 7.6, which can be easily solved for the unknown
coefficients.

𝑠𝑠𝑟 =
𝑁

∑
𝑝=1

𝑤𝑝(𝑦𝑝 − ∑
𝑖1+𝑖2+...+𝑖𝑛≤𝑘

𝑎𝑖1 ,𝑖2 ,...,𝑖𝑛
𝑛

∏
𝑗=1

𝑥𝑖𝑗𝑗,𝑝)2

𝑠𝑠𝑟 =
𝑁

∑
𝑝=1

𝑤𝑝(𝑦𝑝 − 𝑎00 − 𝑎10𝑥1,𝑝 − 𝑎01𝑥2,𝑝)2
(7.4)

𝜕𝑠𝑠𝑟
𝜕𝑎00

= −2
𝑁

∑
𝑝=1

𝑤𝑝(𝑦𝑝 − 𝑎00 − 𝑎10𝑥1,𝑝 − 𝑎01𝑥2,𝑝) = 0

𝜕𝑠𝑠𝑟
𝜕𝑎01

= −2
𝑁

∑
𝑝=1

𝑤𝑝𝑥1,𝑝(𝑦𝑝 − 𝑎00 − 𝑎10𝑥1,𝑝 − 𝑎01𝑥2,𝑝) = 0

𝜕𝑠𝑠𝑟
𝜕𝑎10

= −2
𝑁

∑
𝑝=1

𝑤𝑝𝑥2,𝑝(𝑦𝑝 − 𝑎00 − 𝑎10𝑥1,𝑝 − 𝑎01𝑥2,𝑝) = 0

(7.5)

[
∑𝑤𝑝 ∑𝑤𝑝𝑥1,𝑝 ∑𝑤𝑝𝑥2,𝑝

∑𝑤𝑝𝑥1,𝑝 ∑𝑤𝑝𝑥21,𝑝 ∑𝑤𝑝𝑥1,𝑝𝑥2,𝑝
∑𝑤𝑝𝑥2,𝑝 ∑𝑤𝑝𝑥1,𝑝𝑥2,𝑝 ∑𝑤𝑝𝑥22,𝑝

] [
𝑎00
𝑎10
𝑎01
] = [

∑𝑤𝑝𝑦𝑝
∑𝑤𝑝𝑥1,𝑝𝑦𝑝
∑𝑤𝑝𝑥2,𝑝𝑦𝑝

] (7.6)

To choose the degree of polynomial that will be used for the response surface, it must be determined
how well the data is approximated using different polynomials different degrees. An increase in the
number of degrees of freedom will always increase the 𝑅2. Furthermore, a polynomial with too many
degrees of freedom, might result in a bad response surface, with large peaks between the data points
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[103]. By plotting the 𝑅2 against the degree of the polynomial, it can be visually determined which
degree of polynomial suffices. An example of such a plot is shown in Figure 7.5. Here it can be seen
that increasing the degree of polynomial from one to two gives a great benefit. However, with increasing
degree, this gain becomes less and less. In this case a second or third degree polynomial seems to
be a good fit.
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Figure 7.5: An example that shows 𝑅2 increasing with the number of degrees of the polynomial response surface

7.3. Quality of the response surface
In the previous sections it has been discussed that the response surface will consist of a polynomial
function and the data points will be sampled using LHS with corner points. To create a good response
surface, the response surface must follow the data points and predict the values in the design space
with certain accuracy. There are two main factors that determined the quality of the response surface:
the degree of the polynomial and the number of sampled data points. In the introduction of this chapter
the quality of the response surface has been linked to the 𝑅2 value, but here this will be further examined
by a 2D example.

The 2D example consists of the propeller­wing model described in Section 8.1 of Chapter 8, where
𝐴 = 11.5, 𝜃 = 0∘, 𝐷/𝑏 = 0.14, 𝑥/𝑐 = 0.2 and 𝑧/𝐷 = 0. A detailed description of the model is not relevant
at this point. The design variables are the design lift coefficient and design thrust coefficient. The design
lift coefficient is obtained by changing the angle of attack of the wing. The design thrust coefficient
is found by finding the point of maximum efficiency of the isolated propeller for the given thrust, by
changing advance ratio and pitch angle. Note that the thrust coefficient here is non­dimensionalized
using wing parameters, so 𝑇𝐶 is used. 𝐶𝐿,𝑑𝑒𝑠 ranges from 0 to 1.5 and 𝑇𝐶,𝑑𝑒𝑠 from 0 to 0.05. For this
experiment a grid of 10x10 points is evaluated to have knowledge over the whole design space. From
these 100 points subsets can be sampled by using LHS.

7.3.1. Setting up the metamodel
This example case will examine the change in lift, Δ𝐶𝐿, which is defined as: 𝐶𝐿,𝑝𝑟𝑜𝑝−𝑜𝑛 − 𝐶𝐿,𝑝𝑟𝑜𝑝−𝑜𝑓𝑓.
First, the degree of the response surface is determined. This is done by plotting the 𝑅2 for the degree
of the polynomial 𝑁𝑑𝑒𝑔, as shown in Figure 7.6. It can be seen that increasing the response surface
beyond 𝑁𝑑𝑒𝑔 = 3 yields little benefits in terms of 𝑅2. Based on 𝑅2 either 𝑁𝑑𝑒𝑔 = 2 or 𝑁𝑑𝑒𝑔 = 3 seem to
be good options.

In Figures 7.7, 7.8, 7.9 and 7.10 the response surfaces for a 𝑁𝑑𝑒𝑔 of two, three, four and seven
are plotted. It can be seen that even though the 𝑅2 changes little for 𝑁𝑑𝑒𝑔 above three, there are still
changes in the shape of the response surface. However, these changes in shape are not significant,
as according to the 𝑅2 value, they do not provide a better explanation for the data.

The previous results were obtained using all 100 points on the sampled grid. However, for the real
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Figure 7.6: 𝑅2 for different degrees of the polynomial used to describe Δ𝐶𝐿

0 0.5 1.0 1.50

1

2

3

4

5
⋅10−2

𝐶𝐿,𝑑𝑒𝑠 [­]

𝑇 𝐶
,𝑑
𝑒𝑠
[­]

0

1

2

3

4

5

⋅10−2

Δ𝐶
𝐿
[­]

Figure 7.7: Response surface when using a polynomial of de­
gree 2
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Figure 7.8: Response surface when using a polynomial of de­
gree 3

experiment, LHS will be used to sample more efficient amount of points. This is investigated in Figures
7.11 and 7.12 for a response surface of degree two and three respectively. It can be seen that both
response surfaces converge to a value of 𝑅2 with increasing number of points. However, for a response
surface of degree three, this converged 𝑅2 value is higher, as expected from Figure 7.6. On the other
hand, the polynomial with degree two needs less sampling points to reach convergence.

Assume that a polynomial of degree two has been chosen. In this case a number of sampling points
of 20 should suffice, as increasing the number of points does not lead to major benefits. However,
to illustrate the workings of the response surface, a number of 15 sampling points will be used in
the subsequent examples. This leads to a low quality response surface and a high quality response
surface. Both are sampled using 15 points, but the difference in quality is determined by the random
difference in sampling point locations. In the next sections the characteristics of both will be described,

7.3.2. Example of a low quality response surface
The first example is one that results in a low quality response surface, shown in Figures 7.13 and 7.14.
Firstly, the shape of the response surface does not match with Figure 7.7. The 𝑅2 values obtained for
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Figure 7.9: Response surface when using a polynomial of de­
gree 4
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Figure 7.10: Response surface when using a polynomial of de­
gree 7
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Figure 7.11: 𝑅2 for different number of sampling points using
LHS and a polynomial of degree 2
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Figure 7.12: 𝑅2 for different number of sampling points using
LHS and a polynomial with degree 3

this response surface are also relatively low. 𝑅2 = 0.713 was obtained using all 100 data points and
𝑅2 = 0.656 with a standard deviation of 0.200 was obtained using ten random points for validation. Also
points can be defined in low density areas, to get an idea of how well the response surface predicts
the data. For ten points in low density areas 𝑅2 = 0.494 was obtained. When examining Figure 7.14
it can be seen that the maximum residual for the sampled data points is about 0.6 ⋅ 10−2 and about
95% of the points has a residual lower than 0.5 ⋅ 10−2. This would indicate a good fit with the data, but
when another set of data points is used to calculate the residuals, the response surface performs much
worse. When taking the 100 available data points, only 70% has a residual lower than 0.5 ⋅ 10−2 and
this is about 40% for the points in low density areas. In short, the high residuals and low 𝑅2 indicate a
response surface that does not represent the data.

7.3.3. Example of a high quality response surface
Next, a better performing response surface is presented. The results for this response surface are
shown in Figures 7.15 and 7.16. It can be seen that the shape of the response surface matches the
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Figure 7.13: An example of a low quality response surface
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Figure 7.14: An example of cumulative residual plots for a low
quality response surface

one in Figure 7.7 closely. This example has a 𝑅2 = 0.925 for 100 data points. Using ten random
validation points 𝑅2 = 0.907 with standard deviation of 0.055 is obtained. Using ten points in low
density regions 𝑅2 = 0.962 is obtained. These are all relatively high values for 𝑅2, so this already
indicates that this response surface represents the data well. Next, the residuals are examined. In
Figure 7.14 it can be seen that for the sampled data points the maximum residual is about 0.5 ⋅ 10−2.
Using any other subset of data points in the design space gives similar values of residuals, thus the
response surface seems to represent all the data well, based on the residuals.
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Figure 7.15: An example of a high quality response surface
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Figure 7.16: An example of cumulative residual plots for a high
quality response surface

A final test can be done by looking at the correlation between the residual and the value, as shown
in Figure 7.17. If the response surface would be represent all data equally well, then the correlation
between the residual and data should be zero. This correlation is represented by the orange line, which
shows a slight negative correlation. In the ideal case this line would be horizontal on the y­axis. This
negative correlation is introduced by the fact that the polynomial function cannot follow the data well
in some parts of the design space. This could be fixed by using a more complex function. But in this
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case the slope is very low, so the bias is not too strong. Furthermore, it can be seen that the residual
is overall lower than the value it represents, giving confidence that a change in model response is a
significant change.
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Figure 7.17: An example of a residual bias plot for a high quality response surface

7.3.4. Final remarks
It has been shown that 𝑅2 provides some guidance in choosing the right number of sampling points
and the right number of degrees for the response surface. In both cases a number as low as possible is
chosen, where an increase does not provide significant benefit. By examining the cumulative residuals
of different subsets of points, it can be checked if the response surface is accurate outside the sampling
points. In the previous examples a grid of data points was available to validate the response surface,
but this will not be the case for the final experiments. In this case next to the sampled data, which will
be used to construct the response surface, other data sets will be sampled as well. It was decided
to make one set of validation data using random sampling and another set which samples from low
density areas. By comparing the residuals for these data sets the quality of the response surface can
be assessed.



8
Results

In this chapter the results are presented. Three metamodels were made. The first metamodel inves­
tigates the effects of the wing lift distribution and propeller­wing relative position. The results for this
metamodel are presented in Section 8.1. The second metamodel uses the same design parameters
as metamodel 1, but it doubles the thrust, so the influence of thrust can be determined. The results
for metamodel 2 are presented in Section 8.2. Lastly, a third metamodel is presented in Section 8.3.
Metamodel 3 investigates the effects of propeller efficiency and the effect of the relative magnitude of
thrust. Using these three metamodels the research objectives presented in Section 1.2 of Chapter 1
can be answered. Throughout this chapter, trend lines will be seen with shaded bands. Here, the trend
line gives the average trend, while the shaded bands indicate the spread in the data by visualizing 1𝜎
for the data represented on the vertical axis. This spread is caused by variation in variable parameters
that are not included in the graph.

8.1. Metamodel 1: Wing geometry and propeller position
This section describes the results for the first metamodel. Firstly, the design parameters are introduced
in Section 8.1.1. Then some information on the investigated performance parameters is given in Section
8.1.2. After this, data is sampled and a response surface is created. The quality of this response surface
is assessed in Section 8.1.3. Finally, the results from the response surface are presented in Sections
8.1.4 and 8.1.5. Section 8.1.4 deals with the effect of the design parameters on the performance
parameters. Lastly, in Section 8.1.5 it is investigated if there is any correlation between the performance
parameters.

8.1.1. Parameterization
The first metamodel uses five design parameters or design variables. These are: the aspect ratio 𝐴,
wing twist 𝜃, propeller diameter𝐷, propeller horizontal position 𝑥 and propeller vertical position 𝑧. These
are all shown in Figure 8.1. These five parameters change the wing lift distribution and the relative
position of the propeller with respect to the wing. In order to generalize the results, the dimensional
parameters are non­dimensionalized, except the wing twist 𝜃, which is given in degrees. A summary
of the design parameters and their limits can be found in Table 8.1.

• Wing aspect ratio
The aspect ratio of the wing was chosen to be between 7 and 16. The lower limit is based on the
windtunnel models used at Delft University of Technology to investigate propeller­wing interaction.
The upper limit is based on the X­57 Maxwell design [26]. Wing area is kept constant, so aspect
ratio is changed by changing both span and chord.

• Wing twist
The twist added to the wingtip is between 0∘ and 10∘ to change the spanwise lift distribution. A
positive twist was chosen, since it is expected that more outboard loading on the wing would
enhance propeller­wing interaction.

• Propeller diameter
The diameter is divided by the wing span, which gives 𝐷/𝑏 as non­dimensional parameter. 𝐷/𝑏
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Figure 8.1: Definition of the variables used for parameterization for metamodel 1

measures the fraction of the wing surface that is located in the propeller slipstream. However,
when the aspect ratio increases, the span increases, so 𝐷 will be larger. But still the same wing
area will be immersed in the propeller slipstream. The values of 𝐷/𝑏 will be between 0.08 and
0.2, based on the work by Della Vecchia [74]. Outside these values, a change in 𝐷/𝑏 seems to
have little effect on the propeller­wing interaction.

• Propeller horizontal position
The propeller 𝑥 position is non­dimensionalized using the chord 𝑐, which gives 𝑥/𝑐. The chord 𝑐
was chosen here, since 𝑥 and 𝑐 both have the same orientation. Above 𝑥/𝑐 = 1.5 the x­position
seems to have little influence on the propeller and values lower than 𝑥/𝑐 = 0.5 are hard to realise
due to space needed for the nacelle [28][29]. It must be noted that the chord 𝑐 changes with
aspect ratio, so 𝑥/𝑐 is dependent on aspect ratio.

• Propeller vertical position
The propeller 𝑧 position is non­dimensionalized using the propeller diameter, leading to 𝑧/𝐷.
While 𝑧/𝐷 influences the performance significantly for a range of −0.5 < 𝑧/𝐷 < 0.5 [28][29], it
was chosen to limit the range to −0.2 < 𝑧/𝐷 < 0.2. This was done because outside this range it
is uncertain if the interaction would still be modelled properly.

Table 8.1: Design parameters and bounds for metamodel 1

lower bound upper bound
𝐴 7 16
𝜃 0∘ 10∘
𝐷/𝑏 0.08 0.20
𝑥/𝑐 0.1 1.5
𝑧/𝐷 ­0.2 0.2

Next to these variable parameters, there are some other important design parameters that are kept
constant. Firstly, the wing area is 6.5 m2, which is roughly based on the wing area of the X­57 Maxwell
[26]. Furthermore, sweep is set to zero, as it is yet unknown if the jet correction is applicable to swept
wings. Although taper is a convenient way to change the shape of the spanwise lift distribution, the
taper ratio is kept at 1. This is done because when the taper ratio is changed, it changes the area of
the wing in the propeller slipstream, making it hard to compare the data. The number of blades equals
six, based on the TUD­XPROP windtunnel model of a propeller used at Delft University of Technology.
The propeller blade twist and chord distribution are also modelled after this propeller, which are shown
in Figure 6.9 in Section 6.1 of Chapter 6. Furthermore, a freestream velocity of 𝑈∞ = 80 m/s was
chosen at atmospheric conditions at 8000 ft, based on the cruise conditions of the X­57 Maxwell [26].
This gives a freestream Mach number of 0.24, which lies well within the subsonic regime where the
numerical model can make accurate predictions.
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Moreover, 𝐶𝐿 and 𝑇𝐶 are kept constant. It was chosen to have 𝐶𝐿 constant for the propeller­wing
system, while 𝑇𝐶 is constant for the isolated propeller, as little change in thrust is expected due to
interaction effects. This is done to fairly compare the datapoints. Thus, the influence of the magnitude
of the lift is eliminated and the effects of lift distribution can be investigated. A constant 𝐶𝐿 also makes
sense from a design perspective, since the 𝐶𝐿 is a fixed design requirement. A constant 𝐶𝐿 was obtained
by evaluating each propeller­wing design at two wing angles of attack. Note that the propeller is always
aligned with the freestream velocity or 𝛼𝑝𝑟𝑜𝑝 = 0. By assuming a linear lift­curve slope, the wing angle
of attack for the design lift coefficient, 𝐶𝐿,𝑑𝑒𝑠 could be determined. At this interpolated wing angle of
attack, the propeller­wing system is evaluated, which gives 𝐶𝐿,𝑝𝑟𝑜𝑝−𝑜𝑛. Typically the error of 𝐶𝐿,𝑝𝑟𝑜𝑝−𝑜𝑛
with respect to 𝐶𝐿,𝑑𝑒𝑠 is lower than 4%. Furthermore, this error tends to be one­sided only, thus the
spread of 𝐶𝐿 values is relatively small, making the evaluated cases comparable to each other. Based
on a realistic cruise lift coefficient, 𝐶𝐿,𝑑𝑒𝑠 = 0.6 was chosen. As mentioned before, the propeller is
always aligned with the freestream velocity. This means that the lift value is affected by the propeller
vertical in­plane force only and not by the thrust.

As mentioned, it is decided to keep the thrust constant at a 𝑇𝐶,𝑑𝑒𝑠. This 𝑇𝐶,𝑑𝑒𝑠 is the isolated propeller
thrust coefficient 𝑇𝐶,𝑖𝑠𝑜, since it is hard to predict the installed thrust coefficient 𝑇𝐶,𝑝𝑟𝑜𝑝−𝑜𝑛. This gives a
typical difference of 𝑇𝐶,𝑝𝑟𝑜𝑝−𝑜𝑛 of less than 2% compared to the 𝑇𝐶,𝑑𝑒𝑠. When designing the propellers,
a certain thrust requirement is given. This thrust depends on the drag of the wing and the drag of
the rest of the aircraft. Since the drag of the rest of the aircraft is unknown, a value for thrust needs
to be assumed. The 𝐶𝐷 of the clean wing ranges from 0.013 to 0.022, thus it was chosen to operate
at 𝑇𝐶 = 0.05 to include drag from the rest of the aircraft, which translates to a 𝑇𝐶 = 0.025 for each
propeller. It was decided to analyze the system at a constant thrust and not to make the thrust equal
to wing drag. This would also make it harder to compare data points. At a higher 𝑇𝐶, the wing is
also exposed to higher axial and tangential momentum, which drive the interaction. At a constant 𝑇𝐶,
the amount of axial momentum in the slipstream is approximately equal. The tangential momentum
depends on the propeller efficiency 𝜂. For a realistic propeller at cruise, the propeller will operate at
maximum efficiency 𝜂𝑚𝑎𝑥, thus it was chosen to operate the propeller at 𝜂𝑚𝑎𝑥, instead of constant 𝜂.
𝜂𝑚𝑎𝑥 can be achieved by changing the propeller pitch angle and advance ratio. In Figure 8.2 it can be
seen what the effect of different radii is on 𝜂𝑚𝑎𝑥 for 𝑇𝐶 = 0.025 for a single propeller. For the range of
radii shown, there is a range of about 0.15 in 𝜂𝑚𝑎𝑥, and the difference is especially significant at smaller
radii. This must be taken into account when looking at the data, since propellers with a smaller radius
provide more tangential velocity.
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Figure 8.2: The change in maximum propeller efficiency with radius for a single propeller with 𝑇𝐶 = 0.025

8.1.2. Metamodel set­up
In this section the set­up of themetamodel will be discussed. It was decided to create response surfaces
for five performance parameters:
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• Change in drag, Δ𝐶𝐷
The change in drag is defined as the difference between wing drag with propeller and wing drag
without propeller, 𝐶𝐷,𝑝𝑟𝑜𝑝−𝑜𝑛 − 𝐶𝐷,𝑐𝑙𝑒𝑎𝑛. This means that a negative Δ𝐶𝐷 gives a reduction in
drag. This gives an indication of the benefits or drawbacks of wingtip­mounted propeller­wing
interaction.

• Drag, 𝐶𝐷
To evaluate the drag, the value for wing drag with the propeller, or 𝐶𝐷,𝑝𝑟𝑜𝑝−𝑜𝑛, is used. The
change in drag does not indicate if a propeller­wing combination gives a low drag or not, only if
the propeller­wing interaction effect is beneficial or not. Thus, 𝐶𝐷 also needs to be evaluated.

• Change in lift, Δ𝐶𝐿
Since the model is created at a certain system lift coefficient 𝐶𝐿,𝑑𝑒𝑠, only the change in lift is
evaluated by Δ𝐶𝐿, which is defined as 𝐶𝐿,𝑝𝑟𝑜𝑝−𝑜𝑛 − 𝐶𝐿,𝑐𝑙𝑒𝑎𝑛. Here 𝐶𝐿,𝑝𝑟𝑜𝑝−𝑜𝑛 is the propeller­wing
system evaluated at the estimated angle of attack that should result in 𝐶𝐿,𝑑𝑒𝑠. However, since
𝐶𝐿,𝑝𝑟𝑜𝑝−𝑜𝑛 and 𝐶𝐿,𝑑𝑒𝑠 are usually not the same, it was chosen to use 𝐶𝐿,𝑝𝑟𝑜𝑝−𝑜𝑛 to calculate Δ𝐶𝐿.
This is because 𝐶𝐿,𝑝𝑟𝑜𝑝−𝑜𝑛 and 𝐶𝐿,𝑐𝑙𝑒𝑎𝑛 are both evaluated at the same angle of attack and thus
give consistent results. In this case 𝐶𝐿 is the wing lift plus any vertical propeller forces. However,
the majority of the change in 𝐶𝐿 is due to change in wing lift.

• Change in lift­to­drag ratio, Δ(𝐿/𝐷)
All evaluations are done at (approximately) the same 𝐶𝐿, thus the lift­to­drag ratio is determined
by the drag. Since drag is already being evaluated, it would be redundant to also evaluate the
lift­to­drag ratio. However, the 𝐶𝐿,𝑐𝑙𝑒𝑎𝑛 does change for different wing designs, thus the Δ(𝐿/𝐷)
is dependent on both lift and drag and it gives an indication of the change in performance due
to propeller­wing interaction. This parameter is defined as follows: Δ(𝐿/𝐷) = (𝐿/𝐷)𝑝𝑟𝑜𝑝−𝑜𝑛 −
(𝐿/𝐷)𝑐𝑙𝑒𝑎𝑛

• Change in thrust, Δ𝑇𝐶
The thrust of the isolated propeller is kept constant, but due to propeller­wing interaction there is
still come change in thrust. This is being evaluated by Δ𝑇𝐶. This is defined as Δ𝑇𝐶 = 𝑇𝐶,𝑝𝑟𝑜𝑝−𝑜𝑛 −
𝑇𝐶,𝑖𝑠𝑜. It was found that the change in power Δ𝑃𝐶 is proportional to Δ𝑇𝐶, thus it is not included as
a performance parameter.

For the defined response surfaces the degree of the polynomial function and the number of sampling
points need to be determined. This was done by evaluating 1500 points in the design space using Latin
Hypercube Sampling (LHS). Next to this, 150 validation points were sampled, which are used to give
an estimate of the accuracy by evaluating 𝑅2. In Figure 8.3 the 𝑅2 is shown for different degrees of
polynomial. It can be seen that the different parameters show different behaviour. All parameters,
except 𝐶𝐷 show an initial increase in 𝑅2 with increasing degree of polynomial, but after some point it
decreases. It is believed that this is due to the high amount of degrees of freedom of amulti­dimensional
polynomial function for higher degree of polynomial. For example, a polynomial of degree 5 has 252
degrees of freedom. When the data is fitted, the response surface approximates the data well at the
evaluated points, but will show peaks elsewhere. This leads to a lower 𝑅2. For a lower degree of
polynomial, the response surface will give a smooth trend through the data, which gives a better 𝑅2.
Thus, a balance must be found for 𝑁𝑑𝑒𝑔. For Δ𝐶𝐷, Δ𝐶𝐿, Δ(𝐿/𝐷) and Δ𝑇𝐶 polynomials of degree 3, 2,
3 and 3 were chosen. In Figure 8.3 it can be seen that these values give a high 𝑅2, but do not risk
lowering the response surface accuracy by having a high 𝑁𝑑𝑒𝑔. For 𝐶𝐷 is can be seen that the response
is mostly linear. However, adding more degrees does not seem to harm the accuracy, so in the end
𝑁𝑑𝑒𝑔 = 2 was chosen.

Next, the number of sampling points needs to be determined. This is done using Figure 8.4. Here
the 𝑅2 for a certain number of sampling points is divided by the 𝑅2 obtained using 1500 points. It can
be seen that the 𝑅2 initially rises sharply with increasing number of points, but after a certain number of
points only small improvements of 𝑅2 can be obtained. A number of 750 evaluation points was chosen
to be sufficient. It falls well behind the sharp rise for lower number of points, thus this is a somewhat
conservative number of sampling points.

8.1.3. Metamodel quality
The quality of the metamodel is assessed in several ways. In Table 8.2 a summary can be found
of the quality evaluation. The first three columns show the minimum value, maximum value and the
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Figure 8.3: 𝑅2 for different number of degrees of the polynomial response surface for metamodel 1
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Figure 8.4: 𝑅2 for different number of sampling points for metamodel 1

subsequent range of the data. This gives an idea of the differences between data points. Next, the
sampled data points are used to create a response surface of degree 𝑁𝑑𝑒𝑔. This leads to an 𝑅2 value
for the sampled data points. It can be seen that the 𝑅2 for 𝐶𝐷 is very high, meaning that the relation
of 𝐶𝐷 with the design parameters is represented well by the metamodel. The 𝑅2 for Δ𝐶𝐿 and Δ𝐶𝐷 is
relatively low. This is due to the fact that 𝐶𝐿 and 𝐶𝐷 are very sensitive to interaction effects. This gives
uncertainty in the predictions of the numerical model, which manifests as some error in the results. It
is assumed that these modelling errors are random and by fitting a surface through many datapoints,
these errors will be averaged out. However, this means that there will always be a relatively large
difference between the value of the datapoint and the predicted value by the response surface, leading
to a relatively small 𝑅2. To verify this hypothesis, the residual is given in the last column. 90% of the
datapoints has a lower residual than the value shown in Table 8.2. When comparing the residuals to
the range of the data, it can be seen that the residual is typically about 10% of the range, independent
of the 𝑅2 value. This gives confidence that the response surface for Δ𝐶𝐿 and Δ𝐶𝐷 is still useful, but
small changes predicted by the response surface should be evaluated critically.

To further analyse the quality of the response surface, two sets of validation points are used. The
first set is sampled randomly in the design space. The second set is sampled in areas with a low
density of sampling points. In Figure 8.5 the results for Δ𝐶𝐷 can be seen. It can be seen that the
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Table 8.2: Summary of the response surface results for metamodel 1

min max range 𝑁𝑑𝑒𝑔 𝑅2 residual
(90% of points)

Δ𝐶𝐷 ­0.00265 0.00059 0.00324 3 0.710 0.00039
𝐶𝐷 0.0154 0.0297 0.0143 2 0.980 0.00052
Δ𝐶𝐿 ­0.0087 0.0449 0.053 2 0.561 0.0043

Δ(𝐿/𝐷) 0.78 6.54 5.76 3 0.860 0.63
Δ𝑇𝐶 ­0.00068 0.00077 0.00145 3 0.863 0.00008

distribution of residuals for sampled points show the same behaviour as for the randomly selected
validation points. This further builds confidence that the response surface is able to accurately predict
the Δ𝐶𝐷 in the design space. The residual for the low density areas is overall higher, this is expected,
as the response surface has less information here. These low density areas are mainly at the edges
of the design space. Thus, when evaluating data from the edges, it must be taken into account that
results can be inaccurate. Next, in Figure 8.6 the bias of the residuals is evaluated. It can be seen
that there is a positive relation between the data value and the corresponding residual. This gives a
strong indication that the real function of Δ𝐶𝐷 should be more complex and is not fully captured by the
polynomial functions used. When evaluating the data, this means that larger (more negative) values of
Δ𝐶𝐷 should be even larger (more negative), while smaller values should be even smaller (or positive).
Similar results are obtained for the response surface of Δ𝐶𝐿.
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Figure 8.5: Comparison of residuals of Δ𝐶𝐷 for metamodel 1
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Figure 8.6: Bias of residuals of Δ𝐶𝐷 for metamodel 1

The same analysis was done for the other performance parameters. In Figures 8.7 and 8.8 the
results for 𝑇𝐶 are shown. Similar graphs were obtained for the parameters 𝐶𝐷 and Δ(𝐿/𝐷). It can be
seen that the sampled points give a similar residual distribution to the random validation points. While
in the edges of the design space, with low sampling density, the residual tends to be higher. When
examining the bias, there seems to be a slight negative or positive slope, however, the slope is usually
relatively low and seems to be mainly motivated by outliers. This means that for most areas in the
design space, there is little to no bias.

As a final check of the quality of the response surface, some cross sections were evaluated and
plotted against 2D validation data of the same cross section. In this case the cross sections were
taken for varying 𝐴 and 𝜃 and at constant 𝐷/𝑏 = 0.14, 𝑥/𝑐 = 0.8 and 𝑧/𝐷 = 0. By varying only two
parameters, a 2D slice of the data is created, which can be easily visualized. The 2D validation data is
also obtained using 2D LHS and a response surface is constructed using polynomials. However, the
2D data can be sampled at a higher sampling point density, thus it is expected that the 2D response
surface represents the data better. However, the 2D sampled response surface cannot average out
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Figure 8.7: Comparison of residuals of Δ𝑇𝐶 for metamodel 1
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Figure 8.8: Bias of residuals of Δ𝑇𝐶 for metamodel 1

any numerical errors from the other design parameters. Thus, the 2D data should not be taken as an
absolute truth. In Figures 8.9 and 8.10 results for Δ𝐶𝐷 are shown for metamodel 1 (the 5D response
surface) and the 2D validation response surface respectively. It can be seen that the shapes match
somewhat. In the upper left corner the highest values (less negative) of Δ𝐶𝐷 are found and it decreases
generally with both 𝜃 and 𝐴. However, in the 2D response surface it can be seen that Δ𝐶𝐷 decreases
with increasing 𝐴 till it reaches a minimum and then increases again. This is not captured by the 5D
response surface. However, the difference between the data is relatively small, about 2 ⋅ 10−4, which
is in the same range as the expected residual, as shown in Figure 8.5. Thus, this gives confidence that
Δ𝐶𝐷 is modelled correctly.
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Figure 8.9: A cross section of the response surface for Δ𝐶𝐷
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Figure 8.10: Validation data obtained by using a 2D response
surface for Δ𝐶𝐷

Also, a comparison is made for Δ𝑇𝐶. The cross section from the 5D response surface and the 2D
validation response surface are shown in Figures 8.11 and 8.12 respectively. The 5D response surface
predicts the main trends, but the shape of the cross section is slightly different from the shape presented
in the validation data. Especially in the lower left corner, the high Δ𝑇𝐶 area has a very different shape.
However, again the errors are relatively small, about 1 ⋅ 10−4, which is also in the order of the response
surface residual. Thus, it seems that Δ𝑇𝐶 is modelled correctly.
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Figure 8.11: A cross section of the response surface for Δ𝑇𝐶
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Figure 8.12: Validation data obtained by using a 2D response
surface for Δ𝑇𝐶

In this section only a small portion of the data is presented. Δ𝐶𝐷 and Δ𝑇𝐶 are presented, since
they are representative of the other performance parameters. Furthermore, more cross sections of the
data were investigated, also for other design parameter combinations. However, all results were very
similar, thus only the two previously described cross sections were discussed. Thus, it is concluded
that the create response surface can predict the main trends for the chosen performance parameters
in the design space. However, the value of the expected residual must be considered when evaluating
the significance of predicted differences.

8.1.4. Design parameter interaction
In this section interaction between design parameters is investigated. These design parameters are 𝐴,
𝜃, 𝐷/𝑏, 𝑥/𝑐 and 𝑧/𝐷. Interaction is investigated by looking at how performance parameters are directly
related to the design parameters.

Main interaction mechanism
Before analyzing the results, the main propeller­wing interaction mechanism is explained and how it is
modelled by the numerical model. Firstly, two flow regions are defined on the wing. These are shown
in Figure 8.13. Here the wing with propeller (solid lines) is seen. The dashed line shows the propeller
slipstream boundary, which lies inside the propeller boundary, due to contraction. This slipstream
boundary separates the two regions. Region 𝐼 is outside the propeller slipstream and is thus not directly
affected by the propeller slipstream. Region 𝐼𝐼 lies within the propeller slipstream and is thus directly
affected.

Ω

𝐼 𝐼𝐼

Figure 8.13: Definition of the flow regions on the wing

Next, the lift is affected by the change in dynamic pressure and the change in angle of attack. In
Figure 8.14 an overview of the velocities on the wing can be found. It can be seen that the propeller
induces both a horizontal (𝑢𝑝,𝑥) and vertical (𝑢𝑝,𝑧) velocity. The horizontal velocity is mostly dependent
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on the propeller axial velocity and thus the thrust, while the vertical velocity is mostly dependent on the
propeller tangential velocity and thus the swirl. The wing also induces a vertical velocity (𝑢𝑖,𝑤) due to
the trailing vortices in the wake. It can be seen that due to the geometry, dynamic pressure is mainly
affected by 𝑢𝑝,𝑥, while angle of attack is mostly dependent on 𝑢𝑝,𝑧 and 𝑢𝑖,𝑤. In region 𝐼 only 𝑢𝑖,𝑤 will
be present. However, 𝑢𝑖,𝑤 is also affected by the propeller, since 𝑢𝑖,𝑤 depends on the wing circulation
distribution.

Wing
𝑧

𝑥 𝑈∞
𝑢𝑝,𝑥

𝑢𝑝,𝑧
𝑢𝑖,𝑤

𝑈𝑒𝑓𝑓

𝛼𝑒𝑓𝑓

Figure 8.14: Schematic of the velocities acting on a wing section

The effect of propeller­wing interaction on drag is mostly dependent on vertical induced velocities in
the numerical model. Thus, trailing vortices from the wing play an important role. This is schematically
shown in Figure 8.15. Due to the propeller induced velocities on the wing, the lift increases for the
part of the wing in the propeller slipstream. This increased lift actually leads to a larger wingtip vortex,
since spanwise circulation gradients near the tip are higher. This creates more negative wing induced
velocities, but due to the decrease in lift at the propeller slipstream boundary on the wing, a trailing
vortex in opposite direction is created on the wing at the jet slipstream boundary. This further decreases
induced velocities in the part of the wing inside the propeller slipstream, but it induces more positive
velocities on the rest of the wing, region 𝐼. This leaves the part of the wing inside the slipstream, region
𝐼𝐼, with highly negative wing induced velocities. To this the propeller induced velocities are added,
which are upwards (positive) for inboard­up rotating propellers with positive blade loading. This will
counteract the increased negative induced velocities due to the trailing vortices. Figure 8.16 shows an
example of how this looks in practice. Here the vertical induced velocity 𝑢𝑖,𝑧 = 𝑢𝑝,𝑧+𝑢𝑖,𝑤 is plotted. The
propeller slipstream boundary is located at 𝑦/𝑏 = 0.45. At this spanwise position the influence of the
trailing vortex at the slipstream boundary is clearly seen. There is more positive induced velocity on the
outside of the jet and more negative induced velocity on the inside. Within the jet, it can be seen that the
wing induced velocities 𝑢𝑖,𝑤 are more negative compared to the propeller­off case. This is counteracted
by the propeller induced velocities, leaving a part with increased and a part with decreased induced
velocity compared to the propeller off case. Lastly, for the section of the wing outside the slipstream it
can be seen that the induced velocities are less negative, as expected.

Change in drag
The change in drag coefficient, Δ𝐶𝐷 is very sensitive to changes in induced velocities and it seems to
be affected by all design parameters. In Figures 8.17 and 8.18 results are shown for Δ𝐶𝐷 for different
values of 𝑥/𝑐, 𝐷/𝑏 and 𝐴. Firstly, the main effects will be explained by investigating the effect of the
design parameters on the wingtip vortex and propeller swirl interaction.

The magnitude of Δ𝐶𝐷 increases for higher values of 𝑥/𝑐 and it reaches an asymptote as 𝑥/𝑐 in­
creases. This is expected, as the induced velocities change with 𝑥/𝑐. From the propeller plane, induced
velocities increase with increasing 𝑥, until they reach their final asymptotic value. This behaviour clearly
has an influence on the Δ𝐶𝐷. The change in drag is caused by an increase in lift on the part of the wing
inside the slipstream (region 𝐼𝐼). With increasing 𝑥/𝑐 the dynamic pressure increases and tangential
velocities increase. When discussing the change in lift, it will be seen that due to the relative change of
these two, the increase in lift is less for increasing 𝑥/𝑐. Using Figure 8.15, it can be seen that a smaller
increase in lift leads to a smaller upwards induced velocity in the part of the wing outside the jet (region
𝐼). This increases induced drag. However, in the part of the wing inside the jet (region 𝐼𝐼), the induced
velocity is more positive, decreasing induced drag here. Since the drag is calculated in the Trefftz
plane, far downstream, 𝑥/𝑐 has no direct influence on the induced drag, as the vertical induced veloc­
ities are calculated downstream. This means that with increasing 𝑥/𝑐, the propeller induced velocities
stay constant, leading to more positive trailing vortex induced velocities on the part of the wing inside
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Figure 8.15: Effect of the lift distribution on the wing induced
velocities
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Figure 8.16: The effect of the propeller on the total vertical in­
duced velocities on the wing

the propeller slipstream (region 𝐼𝐼). This decreases induced drag. It is concluded that Δ𝐶𝐷 increases
(more negative) with increasing 𝑥/𝑐, due to a decrease in lift on the part of the wing in the propeller
slipstream, which reduces the induced velocities due to trailing vortices on the part of the wing inside
the propeller slipstream. This interaction effect between Δ𝐶𝐷 and Δ𝐶𝐿 will be further explored in Section
8.1.5.

Next to 𝑥/𝑐, 𝐷/𝑏 also has some influence on the Δ𝐶𝐷. With increasing 𝐷/𝑏 a larger Δ𝐶𝐷 is expected.
𝐷/𝑏 is a measure of the relative surface area of the wing that is immersed in the propeller slipstream.
It seems that with increasing affected surface area, the strength of the wingtip vortex can be further
reduced, leading to a lower induced drag, compared to the prop­off condition. It is expected that this
is mainly due to the effect of the induced tangential velocities of the propeller. With a larger part of the
wing in the propeller slipstream, a larger part of the wing sees a lower (more positive) induced velocity,
which decreases induced drag.

Figure 8.17 shows the results for 𝐴 = 8, while Figure 8.18 shows results for 𝐴 = 15. The influence
of aspect ratio on the change in drag is expected to come from two contributions. Firstly, there is a
hidden 𝑥/𝑐 effect. As aspect ratio increases for an equal surface area, the span increases and chord
decreases. This decrease in chord, leads to a lower 𝑥 for the same 𝑥/𝑐. Thus, increasing the aspect
ratio results basically in a shift in 𝑥/𝑐. This should increase the magnitude of Δ𝐶𝐷 for higher aspect ratio.
The second phenomenon is that an increase in aspect ratio decreases the wingtip vortex strength. It
is expected that a small wingtip vortex would lead to less benefit from the propeller­wing interaction,
this should lead to a decrease in the magnitude of Δ𝐶𝐷 with increasing aspect ratio. However, when
comparing Figures 8.17 and 8.18, the magnitude of Δ𝐶𝐷 increases (more negative) with increasing
aspect ratio, thus it is concluded that the main effect of aspect ratio on Δ𝐶𝐷 is due to the effect of
horizontal position. However, it must be noted, that this effect is relatively small for most 𝐷/𝑏 values.
For 𝐷/𝑏 = 0.20 the effect seems the largest. This could be because for a higher 𝐷/𝑏 a larger part of the
wing is affected by the propeller slipstream. Thus, the same change in induced velocity by changing
𝑥/𝑐, should lead to a larger difference in Δ𝐶𝐷 for higher 𝐷/𝑏. However, in the graphs it is seen that for
constant 𝐴, the change in Δ𝐶𝐷 is similar for all 𝐷/𝑏 Thus, it is believed that for 𝐷/𝑏 = 0.20 the change
in Δ𝐶𝐷 due to aspect ratio is over estimated by the response surface. This is likely, since 𝐷/𝑏 = 0.20 is
at the edge of the design space where the largest residuals are expected.

Next, some minor effects on Δ𝐶𝐷 will be discussed. As can be seen in Figures 8.17 and 8.18 there
are still relatively large spread around the trend lines. These effects are mainly due to the vertical
position of the propeller slipstream. In Figure 8.19 it is shown that the propeller horizontal position 𝑥,
the propeller vertical position 𝑧 and the slipstream deflection, determine the vertical position where the
propeller slipstream crosses the wing 𝑧′. Furthermore, the slipstream deflection is dependent on the
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Figure 8.17: The effect of 𝑥/𝑐 and 𝐷/𝑏 on Δ𝐶𝐷 for 𝐴 = 8 and
𝑇𝐶,𝑑𝑒𝑠 = 0.05
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Figure 8.18: The effect of 𝑥/𝑐 and 𝐷/𝑏 on Δ𝐶𝐷 for 𝐴 = 15 and
𝑇𝐶,𝑑𝑒𝑠 = 0.05

wing circulation. 𝑧′ is the relative vertical position from the propeller slipstream center to the wing. It
can be seen that this relative position 𝑧′ determines the influence of the propeller induced radial velocity
𝑢𝑟. If 𝑧′ is negative, with the wing below the mean propeller slipstream line, then 𝑢𝑟 will increase angle
of attack and reduce induced drag. If 𝑧′ is positive, then 𝑢𝑟 decreases angle of attack and increases
induced drag. It must be noted that for the analyzed propeller­wing systems, 𝑧 and 𝑧′ are usually about
the same. 𝑧/𝐷 ranges from ­0.2 to 0.2, while the typical slipstream deflection is about 0.03𝐷 (upward)
at the wing.
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Figure 8.19: Schematic of the effect of slipstream deflection on propeller­wing interaction

Furthermore, the area of the wing affected by the slipstream changes with 𝑧′, as shown in Figure
8.20. Due to the presence of the propeller hub, the propeller slipstream area has a doughnut shape. It
can be seen that the marked area of the wing changes due to a change in 𝑧′. A higher or lower 𝑧′ will
give a larger affected wing area and thus leads to increased lift and decreased lift. A lower or higher 𝑧′
also changes the way how the propeller induced tangential velocity 𝑢𝑡 acts on the wing. It can be seen
that for a low or high 𝑧′, the effect of 𝑢𝑡 on angle of attack will be decreased. This leads to less lift and
more induced drag on the wing. Note that with a higher or lower 𝑧′ also a larger part of the wing sees
increased dynamic pressure, this changes the lift distribution thus also has some effect on drag.

Since Δ𝐶𝐷 is mainly dependent on vertical induced velocities on the wing, the numerical model is
rather sensitive to change in 𝑧′, since there are many ways this influences induced velocities. Thus,
no clear relations are found in the data with respect to these phenomena. It mainly results in spread in
the data, which can be seen in Figures 8.17 and 8.18.

Lastly, the influence of profile drag is discussed. Profile drag is somewhat dependent on angle of
attack. But in the linear regime, the profile drag coefficient is almost constant. This leaves the influence
of dynamic pressure. The propeller increases dynamic pressure on part of the wing. Here, the profile
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Figure 8.20: Change in propeller­wing interaction due to propeller vertical position

drag increases. This leads to an increase in profile drag for all designs. However, this increase is
typically an order of magnitude lower than the decrease in induced drag. Thus, no clear influence of
profile drag is present in the presented data.

Drag
As shown in Figure 8.21, the drag is mainly dependent on the wing parameters. The value of wing
drag is about an order of magnitude larger than that of the change in drag due to propeller­wing inter­
action. This means that the drag for a propeller­wing system is mainly determined by the value of the
clean wing drag, while the beneficial interaction can only provide some improvements. However, these
improvements are relatively low compared to the improvements that can be obtained by changing the
wing parameters. Increasing the aspect ratio decreases induced drag. Furthermore, increasing out­
board twist increases induced drag as well, since the lift distribution will deviate more from the elliptical
lift distribution, as shown in Figure 8.22. This will lead to more prominent wingtip vortices and thus more
drag. So the value of 𝐶𝐷 is mainly determined by the wing design, while propeller­wing interaction can
only add some improvements in 𝐶𝐷 on top of the initial value. This is consistent with data found by
Koomen [84] and Sinnige et al. [41], where for similar 𝐶𝐿 and 𝑇𝐶 values similar changes in 𝐶𝐷 were
obtained.
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Figure 8.21: The effect of 𝐴 and 𝜃 on 𝐶𝐷 for 𝑇𝐶,𝑑𝑒𝑠 = 0.05
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Figure 8.22: Clean wing lift distributions with different outboard
twist for 𝐶𝐿 = 0.6

Change in lift
The change in lift seems to be mostly dependent on 𝑧/𝐷 and 𝑥/𝑐, as shown in Figure 8.23. If 𝑧/𝐷
increases from the lower 𝑧/𝐷 values, Δ𝐶𝐿 increases. Around 𝑧/𝐷 = 0.08, this increase stops. If 𝑧/𝐷
is increased further, Δ𝐶𝐿 will start to decrease. This relation seems for hold for all the data. Since the
maximum Δ𝐶𝐿 only appears for a positive 𝑧/𝐷 and not a negative 𝑧/𝐷 with the same magnitude, it is
believed that the change in Δ𝐶𝐿 with 𝑧/𝐷 is due to radial velocity in the propeller slipstream. In Figure
8.19 it was shown that for a high propeller position, radial velocity causes an increase in angle of attack,
while for a low propeller position, the angle of attack is decreased. The propeller hub was defined at
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𝑟ℎ𝑢𝑏/𝐷 = 0.075. By evaluating the numerical model, the slipstream deflection for different configura­
tions can be found. From this, a typical (positive) slipstream deflection of 0.03𝑧/𝐷 was obtained. This
means that for a value of 𝑧/𝐷 = 0.1, the wing would typically cross the slipstream just below the low
dynamic pressure center of the slipstream, left by the presence of the propeller hub. Thus, it seems
that the maximum increase in Δ𝐶𝐿 is obtained when the wing is immersed in the part of the propeller
slipstream just below the low dynamic pressure area of the propeller hub.

Changing 𝑧/𝐷 also changes the wing area affected by the propeller slipstream. This has been
shown in Figure 8.20. From this it is expected that for a position just below or above the propeller
hub, the maximum increase in dynamic pressure is obtained, which should increase lift and thus Δ𝐶𝐿.
However, changing the vertical propeller position also changes the influence of the propeller induced
tangential velocity. If the wing is not in the center of the slipstream, the vertical component of the
tangential velocity will decrease. This would lead to a decrease in Δ𝐶𝐿. If one of the previous described
phenomena would dominate, a peak would be expected for both positive and negative values of 𝑧/𝐷.
As seen in Figure 8.23, this is not the case. However, the response surface is of order two, so the
response surface can not model such behaviour. However, when increasing the order of the response
surface, no such behaviour was found. Thus, it is concluded that the effect of propeller radial velocity
is the dominating effect of 𝑧/𝐷 on Δ𝐶𝐿.

Next to 𝑧/𝐷, 𝑥/𝑐 seems to have an influence on Δ𝐶𝐿. When investigating Δ𝐶𝐷 it was seen that
an increase in 𝑥/𝑐 increases the vertical induced propeller velocity and thus lowers 𝐶𝐷. An increase
in the vertical induced velocity would mean a greater decrease in drag and a higher increase in lift.
However, the opposite is observed. With a higher 𝑥/𝑐, the Δ𝐶𝐿 decreases. It seems that an increase
in horizontal induced propeller velocity results in a decrease of angle of attack. Figure 8.14 shows that
for an increase in 𝑢𝑝,𝑥 angle of attack will decrease. However, this is dependent on the relative values
of the horizontal and vertical induced velocities. Note that the absolute effect of this is still an increase
in angle of attack, while this gain in angle of attack decreases with increasing 𝑥/𝑐. Figure 8.25 shows
the typical development of the induced velocities with 𝑥. It can be seen that 𝑢𝑝,𝑧 shows a vary rapid
increase with increasing 𝑥, but it quickly reaches its asymptotic value. The rise of 𝑢𝑝,𝑥 is much slower
and it slowly converges to the asymptotic value. Thus, for most 𝑥, increasing 𝑥 leads to a relatively
small increase in 𝑢𝑝,𝑧 and a relatively large increase in 𝑢𝑝,𝑥. This leads to a decrease of angle of attack
with increasing 𝑥.

In Figure 8.24 it can be seen that the spread in Δ𝐶𝐿 at constant 𝑥/𝑐 is mainly caused by 𝐷/𝑏. Again,
with increasing 𝐷/𝑏, the surface area of the wing in the propeller slipstream increases. This results in
a larger area where lift increases, thus a larger Δ𝐶𝐿.
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Figure 8.23: The effect of 𝑧/𝐷 and 𝑥/𝑐 on Δ𝐶𝐿 for 𝑇𝐶,𝑑𝑒𝑠 = 0.05
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Figure 8.24: The effect of 𝑧/𝐷 and 𝐷/𝑏 on Δ𝐶𝐿 for 𝑥/𝑐 = 0.5
and 𝑇𝐶,𝑑𝑒𝑠 = 0.05
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Figure 8.25: The development of horizontal and vertical propeller induced velocities with axial position

Change in lift­to­drag ratio
The change in lift­to­drag ratio Δ(𝐿/𝐷) is dependent on all previously discussed performance parame­
ters: Δ𝐶𝐷, 𝐶𝐷 and Δ𝐶𝐿. However, when analyzing the results, 𝐷/𝑏, 𝐴 and 𝜃 are found to be the main
drivers of Δ(𝐿/𝐷), as shown in Figures 8.26 and 8.27. Thus, it seems that Δ(𝐿/𝐷) is mainly dependent
on the absolute value of drag 𝐶𝐷 and the change in drag Δ𝐶𝐷. The same is found in the performance
parameter interaction study, which will be discussed later. The value of 𝐶𝐷 is important, since for a
lower 𝐶𝐷, the same Δ𝐶𝐷 results in a larger Δ(𝐿/𝐷). In Figure 8.21 it can be seen that for an increasing
aspect ratio 𝐴 and decreasing outboard wing twist 𝜃, 𝐶𝐷 decreases and Δ(𝐿/𝐷) increases. In Figures
8.17 and 8.18 it was shown that Δ𝐶𝐷 increases with increasing 𝐷/𝑏. Thus, Δ(𝐿/𝐷) also increases with
𝐷/𝑏. Finally, the absolute values of 𝐿/𝐷 range from 22 for low 𝐴 and high 𝜃 to 38 for high 𝐴 and low 𝜃.
This gives a typical relative 𝐿/𝐷 increase of about 10%.
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Figure 8.26: The effect of 𝐷/𝑏 and 𝐴 on Δ𝐿/𝐷 for 𝜃 = 3∘ and
𝑇𝐶,𝑑𝑒𝑠 = 0.05
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Figure 8.27: The effect of 𝐷/𝑏 and 𝐴 on Δ𝐿/𝐷 for 𝐴 = 9 and
𝑇𝐶,𝑑𝑒𝑠 = 0.05

8.1.5. Performance parameter interaction
In this section the interaction between performance parameters is investigated. The performance pa­
rameters are: Δ𝐶𝐷, 𝐶𝐷, Δ𝐶𝐿, Δ(𝐿/𝐷) and Δ𝑇𝐶. The relationships found between performance parameters
will be explained using the knowledge obtained from the design parameter interaction study.
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In Figures 8.28 and 8.29, the relation between Δ𝐶𝐿 and Δ𝐶𝐷 is shown. In Figure 8.28 it is shown
that there is a negative correlation between Δ𝐶𝐿 and Δ𝐶𝐷 for constant 𝑥/𝑐. This means an increase in
Δ𝐶𝐿 gives a further decrease in Δ𝐶𝐷. This makes sense, as both Δ𝐶𝐿 and Δ𝐶𝐷 are driven by the amount
of propeller induced velocity. So for more propeller induced velocities, it makes sense that this will be
beneficial for both Δ𝐶𝐿 and Δ𝐶𝐷 in most cases. The interaction effect has been shown in Figure 8.15,
where an increase in lift on the part of the wing in the propeller slipstream leads to a trailing vortex
which induces positive velocities on the part of the wing outside the slipstream. However, the influence
of 𝑥/𝑐 is not mutually beneficial. It can be seen that for higher 𝑥/𝑐, the achievable Δ𝐶𝐷 becomes more
negative, while the achievable Δ𝐶𝐿 decreases. The effect of 𝑥/𝑐 on Δ𝐶𝐿 and Δ𝐶𝐷 has already been
explained in the design parameter interaction study, Section 8.1.4. The interaction between Δ𝐶𝐿 and
Δ𝐶𝐷 is different here, because when changing 𝑥/𝑐, induced velocities change for the lift calculation,
but not for the drag calculation, as a Trefftz plane analysis is used. The net result of this interaction is
then a positive relation between Δ𝐶𝐿 and Δ𝐶𝐷. Thus, for the design of 𝑥/𝑐 a trade­off needs to be made
between gains in lift or drag.

Figure 8.28 has Δ𝐶𝐷 on the horizontal axis and Δ𝐶𝐿 on the vertical axis, while this is flipped for Figure
8.29. Due to the large spread of the data points it would be possible to find an accidental correlation.
However, both graphs show the same behaviour, so the correlation between Δ𝐶𝐿 and Δ𝐶𝐷 seems to
be significant. Only for the 𝑥/𝑐 = 0.1, the correlation found seems to have a different shape in the two
graphs. This is attributed to the response surface error, as 𝑥/𝑐 = 0.1 lies at the edge of the design
space and the same shapes are found for all other values of 𝑥/𝑐.
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Figure 8.28: Correlation between Δ𝐶𝐿 and Δ𝐶𝐷 for constant
𝑥/𝑐 at 𝑇𝐶,𝑑𝑒𝑠 = 0.05
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Figure 8.29: Correlation between Δ𝐶𝐷 and Δ𝐶𝐿 for constant
𝑥/𝑐 at 𝑇𝐶,𝑑𝑒𝑠 = 0.05

In Figures 8.28 and 8.29 it can be seen that for a constant 𝑥/𝑐, there is still some spread in the
data. This is the influence of the design parameters 𝑧/𝐷 and 𝐷/𝑏, as shown in Figures 8.30 and 8.31
respectively. It can be seen that a constant 𝑧/𝐷 gives an almost constant Δ𝐶𝐿. In order words, 𝑧/𝐷
has a much larger impact on Δ𝐶𝐿 than Δ𝐶𝐷. Thus, 𝑧/𝐷 can be chosen to maximize Δ𝐶𝐿 as it does not
affect Δ𝐶𝐷 in a significant way. The opposite is true for 𝐷/𝑏. It can be seen that for a constant 𝐷/𝑏,
Δ𝐶𝐷 is almost constant, so the impact of 𝐷/𝑏 is larger on Δ𝐶𝐷 than Δ𝐶𝐿. Thus, 𝐷/𝑏 should be chosen
to minimize drag.

Figure 8.32 summarizes the findings for the relations between Δ𝐶𝐿 and Δ𝐶𝐷. By varying 𝑥/𝑐 a design
space is chosen. Then, by using 𝑧/𝐷 and 𝐷/𝑏, the Δ𝐶𝐿 and Δ𝐶𝐷 can be maximized. The design point
with maximum benefit from propeller­wing interaction would be in the upper left corner of the design
space. However, this would not necessarily lead to the best system performance. Since lift coefficient
and thrust are constant for the presented data, the best performance would actually be given by the
points with lowest drag. However, it has been shown that the absolute value of drag is mainly dependent
on the wing design parameters 𝐴 and 𝜃, but it would still be beneficial to get the largest (most negative)
Δ𝐶𝐷 to further maximize aerodynamic performance.
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Figure 8.31: Correlation between Δ𝐶𝐷 and Δ𝐶𝐿 for constant
𝐷/𝑏 at 𝑥/𝑐 = 0.5 and 𝑇𝐶,𝑑𝑒𝑠 = 0.05
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Figure 8.32: Schematic representation of the interaction between Δ𝐶𝐿 and Δ𝐶𝐷 and design parameters

In Figure 8.33 the relation between 𝐶𝐷 and Δ𝐶𝐷 is shown. It can be seen that lines of constant 𝐴 and
𝜃 give a linear relation. This is because for the same 𝐴 and 𝜃, the clean wing is the same and thus the
clean 𝐶𝐷. The final value of 𝐶𝐷 is determined by the Δ𝐶𝐷, so this gives a linear relation. Furthermore,
it can be seen that the magnitude of Δ𝐶𝐷 is typically an order of magnitude smaller than 𝐶𝐷, thus the
final value of 𝐶𝐷 mainly depends on the drag of the clean wing, while propeller­wing interaction can
only provide some improvement to this initial 𝐶𝐷.

Next, in Figure 8.34 it can be seen that Δ(𝐿/𝐷) and Δ𝐶𝐷 are linearly dependent for constant 𝐴 and
𝜃. Constant 𝐴 and 𝜃 represents the wing design. Thus, for a certain wing, the gain in wing efficiency is
mainly determined by Δ𝐶𝐷. Furthermore, the slope of the lines change for different 𝐴. It can be seen
that for increasing 𝐴, the slope becomes more negative. This is due to the lower 𝐶𝐷 expected at higher
𝐴, which gives more gain in Δ(𝐿/𝐷) for the same Δ𝐶𝐷. These conclusions are consistent with the results
found in the design parameter interaction study of the previous section.

Lastly, in both the design parameter interaction study and performance parameter interaction study,
the change in thrust coefficient Δ𝑇𝐶 has not been discussed. This is because no correlations were found
between Δ𝑇𝐶 and other design or performance parameters. Furthermore, Δ𝑇𝐶 is relatively small, with a
maximum increase of 2% with respect to 𝑇𝐶.
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Figure 8.34: Correlation between Δ𝐿/𝐷 and Δ𝐶𝐷 for constant
𝐴 at 𝜃 = 3∘ and 𝑇𝐶,𝑑𝑒𝑠 = 0.05

8.2. Metamodel 2: Wing geometry and propeller position with in­
creased thrust

The second metamodel uses the same parametrization as model 1. Design parameters are: 𝐴, 𝜃,
𝐷/𝑏, 𝑥/𝑐 and 𝑧/𝐷, with their bounds given in Table 8.1. Performance parameters are defined as: Δ𝐶𝐷,
𝐶𝐷, Δ𝐶𝐿, Δ(𝐿/𝐷) and Δ𝑇𝐶. Furthermore, all other settings are kept the same, except the design thrust
𝑇𝐶,𝑑𝑒𝑠. While 𝑇𝐶,𝑑𝑒𝑠 = 0.05 for metamodel 1, it was increased to 𝑇𝐶,𝑑𝑒𝑠 = 0.10 for metamodel 2. This
gives 𝑇𝐶 = 0.05 for each propeller. By doing this the influence of the amount of thrust on the parameter
interaction is investigated. With increased thrust there is more axial velocity and swirl in the propeller
slipstream. It is expected that this will enhance wing performance, but it also costs more power to
provide this thrust.

Since the set­up of metamodel 2 is practically the same as for metamodel 1, the set­up of metamodel
2 is not described in detail. For more information on the set­up of the metamodel, the reader is referred
to Sections 8.1.4 and 8.1.2. Section 8.2.1 starts with an assessment of the quality of the produced
response surfaces. This is followed by investigating the influence of design parameters on performance
parameters in Section 8.2.2. Lastly, in Section 8.2.3 interaction between performance parameters is
investigated.

8.2.1. Metamodel quality
The quality of the second metamodel has been checked in the same way as for the first metamodel.
The number of sampled points was 750, based on the analysis of the first metamodel. The number
of degrees of the polynomials has also been kept the same as for the first metamodel, as no major
differences in behaviour were found. A summary of the values found with the second metamodel can
be found in Table 8.3. It can be seen that a lot of the values are very similar to the first metamodel.
The major difference is that the range of Δ𝐶𝐷, Δ𝐶𝐿 and Δ(𝐿/𝐷) has increased. The values of 𝑅2 and
the residual are all approximately the same.

Table 8.3: Summary of the response surface results for metamodel 2

min max range 𝑁𝑑𝑒𝑔 𝑅2 residual 90% limit
Δ𝐶𝐷 ­0.00590 0.00069 0.00659 3 0.691 0.00061
𝐶𝐷 0.0147 0.0286 0.0139 2 0.940 0.00082
Δ𝐶𝐿 ­0.0083 0.0718 0.0801 2 0.487 0.0062

Δ(𝐿/𝐷) ­0.29 11.97 12.27 3 0.799 1.07
Δ𝑇𝐶 ­0.00045 0.00116 0.00161 3 0.869 0.00011
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In Figures 8.35 and 8.36 the residuals for Δ𝐶𝐷 are plotted. Again, two sets of validation data were
used: one with randomly sampled points in the design space and one with points sampled in areas with
a low sampling density. In Figure 8.35 it can again be seen that the behaviour of the residuals for the
randomly sampled validation points is very similar to the residuals of the data. The residuals in the low
density areas are again higher, meaning that the predictions by the response surface are more likely
inaccurate. Again, the low density regions are mostly near the edges of the design space. In Figure
8.36 it can be seen that there is some bias in the residuals. This indicates that the real function of Δ𝐶𝐷
is likely to be much more complex and it can only be approximated with this polynomial function. Lastly,
when compared to its counterpart of the first metamodel, Figure 8.6, it can be seen that for increased
thrust more negative values of Δ𝐶𝐷 are possible. Similar results were obtained for Δ𝐶𝐿 and Δ(𝐿/𝐷),
where more positive values could be obtained at the increased thrust level.
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Figure 8.35: Comparison of residuals of Δ𝐶𝐷 for metamodel 2
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Figure 8.36: Bias of residuals of Δ𝐶𝐷 for metamodel 2

8.2.2. Design parameter interaction
In this section interaction between design parameters (𝐴, 𝜃, 𝐷/𝑏, 𝑥/𝑐, 𝑧/𝐷) is investigated. Further­
more, comparisons with the data from metamodel 1 are made to investigate the influence of thrust on
the propeller­wing interaction.

Change in drag
In Figures 8.37 and 8.38 it is shown how Δ𝐶𝐷 is dependent on 𝐷/𝑏 and 𝑥/𝑐. Figure 8.38 shows results
for 𝐴 = 15. Here the same behaviour is found as when using the first metamodel, as shown in Figures
8.17 and 8.18. Themechanisms of this interaction are explained in Section 8.1.4. However, Figure 8.37
shows different behaviour for 𝐴 = 8. It is expected that Δ𝐶𝐷 is more negative for increasing 𝐷/𝑏, since
this leads to a larger part of the wing affected by the propeller slipstream, but this behaviour is not found
in Figure 8.37. This could be explained by the smaller span of the low aspect ratio wing. This gives
also smaller propeller radii for the same range of 𝐷/𝑏. If the radius of the propeller becomes smaller,
the propeller induced axial velocity must increase to provide the same thrust. The axial velocity scales
linearly with the propeller disk area and thus quadratically with the radius. This means that the increase
in axial velocity due to a reduction in propeller radius is larger in magnitude for smaller propellers. This
is shown in Figure 8.39. Here the average axial velocity on the propeller disk is plotted for different 𝐷/𝑏.
Because the surface area of the wing is constant, a smaller aspect ratio leads to a smaller span and
thus smaller propellers. It can be seen that for 𝐴 = 8 (smaller propellers) the graph is much steeper
compared to the one for 𝐴 = 15. Furthermore, the tangential velocity shows a similar behaviour, as it is
dependent on the axial velocity. Thus, it is concluded that for increasing 𝐷/𝑏, a larger part of the wing
is in the propeller slipstream, leading to a more negative Δ𝐶𝐷. However, when the diameter is small, an
increase in 𝐷/𝑏 again gives a larger part of the wing in the propeller slipstream. However, this effect is
counteracted by a relatively large reduction in propeller induced velocities, since the change in induced
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velocity scales quadratically with diameter. The net effect of this is a more positive Δ𝐶𝐷 for propellers
with small diameter.
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Figure 8.37: The effect of 𝑥/𝑐 and 𝐷/𝑏 on Δ𝐶𝐷 for 𝐴 = 8 and
𝑇𝐶,𝑑𝑒𝑠 = 0.10
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Figure 8.38: The effect of 𝑥/𝑐 and 𝐷/𝑏 on Δ𝐶𝐷 for 𝐴 = 15 and
𝑇𝐶,𝑑𝑒𝑠 = 0.10
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Figure 8.39: Comparison of the rates of change of propeller induced axial velocities with diameter

Drag
In Figure 8.40 the drag coefficient 𝐶𝐷 is plotted for different 𝐴 and 𝜃. It can be seen that the drag
is mainly dependent on the wing variables. Thus, the final drag value is mainly dependent on the
clean wing drag, while the propeller­wing interaction only provides an additional drag reduction. When
comparing this graph to Figure 8.21, it can be seen that the drag is overall lower for a higher thrust
level. This is because with higher thrust, the increase in lift is also higher. This will be shown later.
A higher lift increase means that, for the same design lift coefficient, the wing can operate at a lower
angle of attack. This lowers the initial induced drag value of the wing, which is translated in a lower
total drag when the propeller is installed. In other words, with increased thrust, the wing can achieve
the same lift coefficient at a lower angle of attack, which decreases the drag. However, it is not yet
sure if it is worth increasing thrust to lower the wing drag. This will be further discussed in Section 8.3,
where the total system efficiency will be investigated.
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Figure 8.40: The effect of 𝐴 and 𝜃 on 𝐶𝐷 for 𝑇𝐶,𝑑𝑒𝑠 = 0.10

Change in lift
The results for the change in lift Δ𝐶𝐿 are shown in Figure 8.41 and 8.42. It can be seen that Δ𝐶𝐿 is
dependent on 𝑧/𝐷, 𝑥/𝑐 and 𝐷/𝑏, as already discussed in Section 8.1.4. When comparing Figures
8.41 and 8.42 to Figures 8.26 and 8.27 obtained with metamodel 1, it can be seen that with increased
thrust, Δ𝐶𝐿 increases as well. This is because the propeller induced velocities are larger in magnitude
for higher thrust. Furthermore, for increased thrust, the maximum Δ𝐶𝐿 is obtained at a higher 𝑧/𝐷. This
shift in 𝑧/𝐷 is expected to come from a shift in radial velocity distribution in the slipstream. For higher
thrust it seems that higher radial velocities are found at higher radial positions, shifting the optimal
propeller vertical position for Δ𝐶𝐿 to a higher 𝑧/𝐷. Furthermore, the increased lift on the part of the
wing in the propeller slipstream has little influence on the propeller slipstream deflection. It is expected
that when lift is increased on the part of the wing inside the slipstream, the local circulation increases.
Since the circulation of the outboard part of the wing is the closest to the slipstream, the circulation
here has the most effect on the slipstream deflection. Thus, when outboard circulation is increased at
constant lift coefficient, it is expected that deflection increases, as shown in Figure 8.19. However, for
metamodel 2 a typical deflection of 0.03𝐷 was obtained, similar to that of metamodel 1, indicating that
the change in lift distribution has little influence on slipstream deflection.

Change in lift­to­drag ratio
In Figures 8.43 and 8.44 the influence of 𝐷/𝑏, 𝐴 and 𝜃 on the change in lift­to­drag ratio Δ(𝐿/𝐷) can
be found. Again this shows that Δ(𝐿/𝐷) is mainly dependent on 𝐶𝐷 and Δ𝐶𝐷. Δ(𝐿/𝐷) increases with
increasing 𝐴, with increasing𝐷/𝑏 and decreasing 𝜃. Furthermore, for low 𝐴 and low𝐷/𝑏, these relations
do no longer hold, because for propellers with a small area, the velocities change more rapidly. This
has been explained when discussing the change in drag. When comparing the effect of thrust, using
Figures 8.26 and 8.27 obtained with metamodel 1, it can be seen that increased thrust gives higher
Δ(𝐿/𝐷) values, as expected from the drag and lift analysis.

Change in thrust
In metamodel 1, with low thrust, no correlation of the change in thrust Δ𝑇𝐶 was found with any design
parameter or performance parameter. However, with increased thrust, a negative correlation of Δ𝑇𝐶 with
𝑧/𝐷 was found, as shown in Figure 8.45. This correlation with 𝑧/𝐷 seems to be the result of an angle
of attack effect. The circulation on the wing induces upwash in front of the wing, resulting in an angle of
attack at the propeller disk. However, the wing also induces a horizontal velocity component, as shown
in Figure 8.46. It can be seen that above the wing this horizontal velocity component decreases the
increase in angle of attack 𝛼, while it increases angle of attack below the wing. So, both above and
below the wing there is an increase in angle of attack, but the increase below the wing is greater. At
greater angle of attack, the propeller will produce more thrust, thus the negative correlation in Figure
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Figure 8.41: The effect of 𝑧/𝐷 and 𝑥/𝑐 on Δ𝐶𝐿 for 𝑇𝐶,𝑑𝑒𝑠 = 0.10
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Figure 8.42: The effect of 𝑧/𝐷 and 𝐷/𝑏 on Δ𝐶𝐿 for 𝑥/𝑐 = 0.5
and 𝑇𝐶,𝑑𝑒𝑠 = 0.10
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Figure 8.43: The effect of 𝐷/𝑏 and 𝐴 on Δ𝐿/𝐷 for 𝜃 = 3∘
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Figure 8.44: The effect of 𝐷/𝑏 and 𝐴 on Δ𝐿/𝐷 for 𝐴 = 13

8.45 is found. It seems that because of the increased thrust, the circulation on the part of the wing
inside the slipstream is increased. Only with increased circulation, the wing induced horizontal velocity
component is significant enough to change angle of attack, while this was not the case for metamodel
1. The spread in the data in Figure 8.45 is suspected to be the cause of different 𝑥/𝑐 and different Δ𝐶𝐿
values at constant 𝑧/𝐷. Note that in Figure 8.46, blockage effect from the wing is not shown, as this is
not modelled by the numerical model.

8.2.3. Performance parameter interaction
In this section the interaction between performance parameters is investigated for metamodel 2. The
performance parameters are: Δ𝐶𝐷, 𝐶𝐷, Δ𝐶𝐿, Δ(𝐿/𝐷) and Δ𝑇𝐶, as described in Section 8.1.2.

In Figures 8.47 and 8.48 a correlation between Δ𝐶𝐿 and Δ𝐶𝐷 for constant 𝑥/𝑐 is investigated. There
seems to be a slight negative correlation, similar to metamodel 1. However, it can be seen that the lines
produced by Figures 8.47 and 8.48 have quite a different shape. This indicates that the correlation is
not very strong. Furthermore, in Figures 8.49 and 8.50 results are plotted for constant 𝑧/𝐷 and 𝐷/𝑏
respectively. It can be seen that changes in 𝑧/𝐷 mainly result in a change in Δ𝐶𝐿 and it does not affect
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Figure 8.45: The effect of 𝑧/𝐷 on Δ𝑇𝐶 for 𝑇𝐶,𝑑𝑒𝑠 = 0.10
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Figure 8.46: Schematic showing how the angle of attack in front
of the wing is affected by circulation

Δ𝐶𝐷 significantly. A change in 𝐷/𝑏 mainly changes Δ𝐶𝐷, as was found for metamodel 1. However,
for smaller 𝐷/𝑏 values, also a significant change in Δ𝐶𝐿 is found when changing 𝐷/𝑏. This means that
when 𝐷/𝑏 is small, it can not be chosen independently of Δ𝐶𝐿, while this is the case when thrust is lower.
This is caused by a change in interaction mechanism when 𝐷/𝑏 is lower, which has been explained
in Section 8.2.2. Lastly, when comparing Figures 8.47 and 8.48 to their counterparts for lower thrust,
Figures 8.28 and 8.29, it can be seen that for increased thrust, Δ𝐶𝐿 is higher and Δ𝐶𝐷 is lower (more
negative). This is due to the increased level of propeller­wing interaction with increased thrust. For
drag this mainly influences the change in induced drag, since profile drag increases with increasing
dynamic pressure. However, the change in profile drag is typically an order of magnitude lower than
the change in induced drag, thus induced drag effects are dominant.
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Figure 8.47: Correlation between Δ𝐶𝐿 and Δ𝐶𝐷 for constant
𝑥/𝑐 at 𝑇𝐶,𝑑𝑒𝑠 = 0.10
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Figure 8.48: Correlation between Δ𝐶𝐷 and Δ𝐶𝐿 for constant
𝑥/𝑐 at 𝑇𝐶,𝑑𝑒𝑠 = 0.10

Now, the relations drawn for Δ𝐶𝐿 and Δ𝐶𝐷 in Figure 8.32 can be updated. This is shown in Figure
8.51. Again the design point that gives the maximum benefit from the propeller­wing interaction is
indicated, but this point does not necessarily give the best system performance, as discussed in Section
8.1.5. In Figure 8.51 an arrow is added to indicate the influence of 𝑇𝐶. It can be seen that a higher 𝑇𝐶 is
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Figure 8.49: Correlation between Δ𝐶𝐿 and Δ𝐶𝐷 for constant
𝑧/𝐷 at 𝑥/𝑐 = 0.5 and 𝑇𝐶,𝑑𝑒𝑠 = 0.10
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Figure 8.50: Correlation between Δ𝐶𝐷 and Δ𝐶𝐿 for constant
𝐷/𝑏 at 𝑥/𝑐 = 0.5 and 𝑇𝐶,𝑑𝑒𝑠 = 0.10

beneficial for both Δ𝐶𝐿 and Δ𝐶𝐷. Of course, this is paired with an increase in power and the increase in
thrust is limited, as the aircraft can only produce the amount of thrust needed to overcome drag. Other
design aspects must also be considered when maximizing the thrust at the wingtips, such as structural
design and one­engine out (OEI) condition. Lastly, in Figure 8.51 it can be seen that the influence of
the design parameters remains the same as discussed in Section 8.1.5. Only at high 𝑇𝐶 and relatively
low values of 𝐷, the interaction effects change due to different behaviour of the propeller slipstream
induced velocities. This phenomenon has been discussed in Section 8.2.2.
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Figure 8.51: Schematic representation of the interaction between Δ𝐶𝐿 and Δ𝐶𝐷 and design parameters, revisited for metamodel
2

8.3. Metamodel 3: Lift, thrust and swirl
The third and final metamodel was made to investigate the relative influence of thrust and swirl. This
was investigated to see which designs would lead to a high total system efficiency. By lowering propeller
efficiency, a better wing aerodynamic efficiency could be obtained or vice versa. By evaluating the total
system efficiency it can be quantified if such a trade­off would be beneficial or not. In Section 8.3.1
the design variables of this model are introduced. In Section 8.3.2 the performance parameters are
described. Furthermore, the number of sampling points and degree of the response surfaces are
determined. Subsequently, in Section 8.3.3 the quality of the created response surfaces is assessed.
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Finally, in Section 8.3.4 the results obtained by this metamodel are discussed.

8.3.1. Parametrization
Metamodel 3 consists of four design parameters: the design thrust coefficient 𝑇𝐶,𝑑𝑒𝑠, a swirl multipli­
cation factor 𝑆𝑀𝐹, the design lift coefficient 𝐶𝐿,𝑑𝑒𝑠 and wing aspect ratio 𝐴. These parameters are all
non­dimensional. A summary of the design parameters is given in Table 8.4. Furthermore, the flight
conditions were the same as in metamodel 1. The propeller­wing design parameters were as follows:
𝜃 = 0, 𝐷/𝑏 = 0.14, 𝑥/𝑐 = 0.2 and 𝑧/𝐷 = 0, which gives a conventional and representative propeller­
wing configuration.

• Design thrust coefficient
The design thrust coefficient 𝑇𝐶,𝑑𝑒𝑠 was included to see if absolute and or relative values of lift
and thrust influence the propeller­wing interaction. The lower bound was set at zero, or negligible
amount of thrust. This is to investigate for which amount of thrust the propeller­wing interaction
would result in benefits in performance. Using distributed propulsion, it is always possible to
design wingtip­mounted propellers for less thrust. For the upper bound, 𝑇𝐶,𝑑𝑒𝑠 = 0.12was chosen,
hence slightly above the 𝑇𝐶,𝑑𝑒𝑠 used in metamodel 2. The operational settings for 𝑇𝐶,𝑑𝑒𝑠 are given
by advance ratio and pitch for the highest efficiency at the corresponding thrust level. Highest
efficiency was chosen, since this would be a realistic choice when designing a propeller. The
advance ratio and pitch are obtained for an isolated propeller at maximum efficiency at 𝑇𝐶,𝑑𝑒𝑠
(12𝑇𝐶,𝑑𝑒𝑠 for a single propeller). The 𝑇𝐶,𝑝𝑟𝑜𝑝−𝑜𝑛 typically differs about 1% with respect to 𝑇𝐶,𝑑𝑒𝑠.

• Swirl multiplication factor
The swirl multiplication factor 𝑆𝑀𝐹 changes the amount of swirl in the propeller slipstream. At
𝑇𝐶,𝑑𝑒𝑠, the propeller always operates at maximum efficiency for a given thrust level. To determine
the influence of swirl, the calculated swirl at maximum efficiency is multiplied with 𝑆𝑀𝐹. In reality
a change is swirl is obtained by a change in efficiency and thus power. This would potentially also
change the propeller circulation distribution and thus the swirl distribution. However, this direct
approach of influencing swirl was thought to make it easier to analyze the results. Thus, the 𝑆𝑀𝐹
represents a direct change in propeller power and efficiency. The lower and upper bound of 𝑆𝑀𝐹
are 0.5 and 2 respectively, giving a wide range for the propeller swirl. It must be noted that values
of 𝑆𝑀𝐹 < 1 might be hard, if not impossible, to obtain, since this would effectively call for a very
efficient propeller.

• Design lift coefficient
The design lift coefficient 𝐶𝐿,𝑑𝑒𝑠 was included to see if the effect of thrust is relative with respect
to the lift. 𝐶𝐿,𝑑𝑒𝑠 varies from 0.2 to 0.8. 𝐶𝐿,𝑑𝑒𝑠 is obtained by changing the wing angle of attack
and calculating the lift curve slope for the propeller­wing system and interpolating to 𝐶𝐿,𝑑𝑒𝑠.

• Aspect ratio
Aspect ratio 𝐴 has been included to still slightly change the spanwise lift distribution. The bounds
are 7 and 16, the same as for metamodels 1 and 2.

Table 8.4: Design parameters and bounds for metamodel 3

lower bound upper bound
𝑇𝐶,𝑑𝑒𝑠 0.00 0.12
𝑆𝑀𝐹 0.5 2.0
𝐶𝐿,𝑑𝑒𝑠 0.2 0.8
𝐴 7 16

8.3.2. Metamodel set­up
The performance parameters evaluated using metamodel 3 are largely the same as for metamodel
1 and 2. The performance parameters include: Δ𝐶𝐷, 𝐶𝐷, Δ𝐶𝐿, 𝑇𝐶, 𝜂𝑇 and Δ𝜂𝑇. Here 𝜂𝑇 and Δ𝜂𝑇 are
the total efficiency and the change in total efficiency respectively. Since the thrust and propeller swirl
are design parameters, a measure to evaluate the total system efficiency is needed. For the wing
this measure is the lift­to­drag ratio 𝐿/𝐷 and for the propeller this is the propeller efficiency 𝜂. By
multiplying the two, total system efficiency 𝜂𝑇 is obtained. Furthermore, the swirl multiplication factor is
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included as a multiplier on propeller power. It is assumed that the amount of swirl is proportional to the
propeller power. This is based on the blade element momentum theory, where both power and swirl are
proportional to the tangential induction factor 𝑎′ [51]. This gives the definition of 𝜂𝑇, given in Equation
8.1. To calculate the change in total efficiency Δ𝜂𝑇, an initial value for 𝜂𝑇 must be calculated. To do this
Equation 8.1 is used with the values for the isolated propeller and isolated wing. Note that changes
in thrust and changes in power are proportional to each other, so Δ𝜂 mainly captures the change in
lift­to­drag ratio with the propeller efficiency as multiplication factor.

𝜂𝑇 = 𝜂𝐿/𝐷 =
𝑇𝐶

𝑃𝐶𝑆𝑀𝐹
𝐶𝐿
𝐶𝐷

(8.1)

Next, the degree of the response surfaces 𝑁𝑑𝑒𝑔 and the number of sampling points 𝑁𝑝𝑡𝑠 must be
determined. In Figure 8.52 the influence of the number of degrees of the polynomials on the 𝑅2 is
investigated. It can be seen that for most parameters, 𝑁𝑑𝑒𝑔 = 2 gives the highest value of 𝑅2. For
Δ𝜂𝑇, 𝑅2 will even decrease if 𝑁𝑑𝑒𝑔 is further increased. Only for Δ𝐶𝐿 and 𝜂𝑇, further increasing 𝑁𝑑𝑒𝑔
is beneficial, thus 𝑁𝑑𝑒𝑔 = 3 and 𝑁𝑑𝑒𝑔 = 4 were chosen for these parameters respectively. In Figure
8.53 the convergence of 𝑅2 for the number of sampling points 𝑁𝑝𝑡𝑠 can be seen. 𝑅2 values are divided
by their respective 𝑅2 value for the maximum number of sampling points. It can be seen that for
all parameters, except 𝜂𝑇, about 150 sampling points would already suffice, since the increase in 𝑅2
beyond that is relatively small. The convergence behaviour of 𝜂𝑇 is slower, about 400 points are needed
before an increase in the number of points yields little benefit. Since 700 points were sampled, this is
the number of points that has been used to construct the response surface, which is shown to be more
than sufficient.
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Figure 8.52: 𝑅2 for different number of degrees of the polyno­
mial response surface for metamodel 3
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Figure 8.53: 𝑅2 for different number of sampling points for
metamodel 3

8.3.3. Metamodel quality
In Table 8.5 a summary of the quality evaluation of metamodel 3 can be found. When looking at the
𝑅2 value it can be seen that they are all relatively high. This suggests that there are clear trends in
the data, which can be explained using a polynomial function. The 𝑅2 for Δ𝐶𝐷 and Δ𝜂𝑇 are the lowest,
0.846 and 0.808 respectively. This suggests that the drag prediction contains noise. However, it is
expected that this noise cancels out by fitting a polynomial function through the data and the major
trends in the data are captured. Furthermore, the maximum residual for 90% of the points is typically
an order of magnitude lower than the range of the parameter. This also suggests that major trends in
the data should be captured by the response surface.

Next, the residuals are examined. For most of the response surfaces the residuals show expected
behaviour. An example is shown in Figure 8.54. Here two sets of data are used to validate the response
surface. One is obtained using random sampling throughout the design space, while the second set
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Table 8.5: Summary of the response surface results for metamodel 3

min max range 𝑁𝑑𝑒𝑔 𝑅2 residual
(90% of points)

Δ𝐶𝐷 ­0.0110 0.00209 0.01312 2 0.846 0.00089
𝐶𝐷 0.0037 0.0426 0.0389 2 0.981 0.00116
Δ𝐶𝐿 ­0.0105 0.0718 0.082 3 0.911 0.0066
Δ𝑇𝐶 ­0.00103 0.00132 0.00235 2 0.940 0.00015
𝜂𝑇 ­2.35 60.87 63.22 4 0.882 4.06
Δ𝜂𝑇 ­2.37 22.07 24.44 2 0.808 1.59

samples in areas with a low density of sampling points. It can be seen that the behaviour of all data sets
is very similar. Only the validation data set for low density areas shows a consistent higher residual.
Furthermore, in Figure 8.55 it is shown that there is a slight bias in the residuals, meaning that there
is still some behaviour that could not be explained by the response surface. However, the bias seems
not too concerning, as the slope of the trend line is relatively low.
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Figure 8.54: Comparison of residual of Δ𝐶𝐷 for metamodel 3
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Figure 8.55: Bias of the residuals of Δ𝐶𝐷 for metamodel 3

Only for the change in thrust Δ𝑇𝐶 some unexpected behaviour is found when looking at the residuals.
In Figure 8.56 it can be seen that the response surface is in good agreement with the behaviour found
by randomly sampled points. However, the residual in low density areas is substantially higher. For
the sampling used here, low density areas are mostly found near the edges of the design space. This
is further investigated using Figure 8.57. Here two peculiarities are seen. There is a cluster of points
in the lower left corner. Furthermore, the main cluster of points shows a high positive residual around
Δ𝑇𝐶 = 0. By closer investigation it was found that both phenomena are caused by points sampled for
a low 𝑇𝐶,𝑑𝑒𝑠. The cluster in the lower left corner represents points close to the design space boundary.
The peak in residual is due to points with 𝑇𝐶,𝑑𝑒𝑠 < 0.02. At low 𝑇𝐶,𝑑𝑒𝑠, the model has trouble finding
operating settings for maximum efficiency. Thus, many points with low 𝑇𝐶,𝑑𝑒𝑠 show a low efficiency,
around 20% instead of 80% for higher thrust settings. This leads to different propeller­wing interaction
and thus this behaviour is not well captured by the response surface. This behaviour at low 𝑇𝐶,𝑑𝑒𝑠
values must be taken into account when analyzing the data.

8.3.4. Results
This section presents the results obtained with metamodel 3.
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Figure 8.56: Comparison of residual for Δ𝑇𝐶 for metamodel 3
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Figure 8.57: Bias of the residuals of Δ𝑇𝐶 for metamodel 3

Change in drag
In Figure 8.58 it is shown how Δ𝐶𝐷 is dependent on 𝑇𝐶,𝑑𝑒𝑠 and 𝑆𝑀𝐹. It can be seen that depending on the
amount of swirl, Δ𝐶𝐷 and 𝑇𝐶,𝑑𝑒𝑠 are negatively correlated. The slope of this correlation depends on 𝑆𝑀𝐹,
where the slope becomes more negative with increasing 𝑆𝑀𝐹. This relationship seems straightforward.
Δ𝐶𝐷 is highly dependent on the vertical induced velocities by the propeller slipstream. The vertical
induced velocity is mainly dependent on the tangential velocity, which increases with increasing 𝑇𝐶,𝑑𝑒𝑠
and increasing 𝑆𝑀𝐹. It can be seen that there is still some spread in the data. This is mainly caused by
the design lift coefficient Δ𝐶𝐿, as shown in Figure 8.59. For constant thrust, Δ𝐶𝐷 decreases (becomes
more negative) with increasing 𝐶𝐿,𝑑𝑒𝑠.
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Figure 8.58: The effect of 𝑇𝐶,𝑑𝑒𝑠 and 𝑆𝑀𝐹 on Δ𝐶𝐷

0 0.02 0.04 0.06 0.08 0.10 0.12

−8

−6

−4

−2

0

⋅10−3

𝑇𝐶,𝑑𝑒𝑠 [­]

Δ𝐶
𝐷
[­]

𝐶𝐿,𝑑𝑒𝑠=0.2
𝐶𝐿,𝑑𝑒𝑠=0.4
𝐶𝐿,𝑑𝑒𝑠=0.6
𝐶𝐿,𝑑𝑒𝑠=0.8

Figure 8.59: The effect of 𝑇𝐶,𝑑𝑒𝑠 and 𝐶𝐿,𝑑𝑒𝑠 on Δ𝐶𝐷 for 𝑆𝑀𝐹 =
1.5

Drag
In Figures 8.60 and 8.61 it can be seen that the drag coefficient 𝐶𝐷 and change in drag coefficient Δ𝐶𝐷
are positively correlated. It can be seen that 𝐶𝐷 starts at an initial drag value at Δ𝐶𝐷 = 0 and decreases
with Δ𝐶𝐷. The initial drag value depends on the wing design, which is in this case represented by the
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design lift coefficient 𝐶𝐿,𝑑𝑒𝑠 and aspect ratio 𝐴. The influence of 𝐶𝐿,𝑑𝑒𝑠 is the strongest, giving increasing
𝐶𝐷 with increasing 𝐶𝐿,𝑑𝑒𝑠. This is expected, as tip vortices are stronger for increasing 𝐶𝐿. Finally, with
increasing 𝐴, 𝐶𝐷 will decrease. This is again dependent on the strength of the wingtip vortices. Then,
by increasing 𝑇𝐶,𝑑𝑒𝑠 and 𝑆𝑀𝐹 a more negative Δ𝐶𝐷 can be obtained, as shown in Figures 8.58 and
8.59. However, the effects of this are still relatively low with respect to the effects of wing design.
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Figure 8.60: Correlation between 𝐶𝐷 and Δ𝐶𝐷 for constant
𝐶𝐿,𝑑𝑒𝑠
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Figure 8.61: Correlation between 𝐶𝐷 and Δ𝐶𝐷 for constant 𝐴 at
𝐶𝐿,𝑑𝑒𝑠 = 0.6

Change in lift
In Figures 8.62 and 8.63 the influence of the design parameters on Δ𝐶𝐿 is investigated. It can be seen
that with increasing swirl multiplication factor 𝑆𝑀𝐹 and increasing thrust coefficient 𝑇𝐶,𝑑𝑒𝑠, the change
in lift increases. With increasing thrust, both induced axial and tangential velocity are increased on the
wing, while with increasing 𝑆𝑀𝐹, only induced tangential velocity is increased. Both design parameters
still result in a significant increase in lift. However, it can be seen that after some point, the rate of change
decreases. When increasing 𝑆𝑀𝐹 from 1.5 to 2.0, the gain in Δ𝐶𝐿 is very small. The same holds for
a thrust increase for 𝑇𝐶,𝑑𝑒𝑠 above 0.06. For both high 𝑇𝐶,𝑑𝑒𝑠 and high 𝑆𝑀𝐹, the increased tangential
velocities will lead to a very high angle of attack on the part of the wing inside the propeller slipstream.
This part of the wing enters the stall region and no further increase in lift is predicted with increasing
angle of attack. Thus, increasing 𝑆𝑀𝐹 and 𝑇𝐶,𝑑𝑒𝑠 is beneficial for the gain in lift, until the wing enters
the non­linear regime. This behaviour has not been seen for Δ𝐶𝐷 since the change in drag is driven by
potential flow phenomena in the numerical model. It is expected that in reality, the pressure drag would
increase when wing sections reach high angles of attack, but this is not captured by the numerical
model.

Change in thrust
In Figure 8.64 is can be seen that the change in thrust and design thrust coefficient are almost linearly
proportional to each other. It can be seen that the line does not go exactly through the origin. However,
in Figure 8.57 it was shown that the residual was large and showed strange behaviour for low values
of 𝑇𝐶,𝑑𝑒𝑠. It is believed that this behaviour led to some modelling error in the response surface and that
Δ𝑇𝐶 should be linearly proportional to 𝑇𝐶,𝑑𝑒𝑠. This would mean that the change in thrust scales with
dynamic pressure on the propeller blades. The propeller sees mainly upwash from the wing, which
causes a difference in thrust on the advancing and retreating side of the propeller disk. The net effect
of this is an increase in thrust or positive Δ𝑇𝐶. To increase 𝑇𝐶,𝑑𝑒𝑠, rotational speed is increased, leading
to increased dynamic pressure on the blades. The difference in thrust due to upwash scales with this
dynamic pressure, giving a Δ𝑇𝐶 proportional to 𝑇𝐶,𝑑𝑒𝑠. However, an increase in thrust does not lead to
better propeller efficiency, since it was found that thrust and power scale proportional to each other.
Furthermore, in Figure 8.64 it can be seen that, for the chosen range of 𝐶𝐿,𝑑𝑒𝑠, the Δ𝑇𝐶 is relatively
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independent of 𝐶𝐿,𝑑𝑒𝑠. On a last note, it can also be seen that for a tractor configuration, the impact of
the wing on the propeller is relatively low, Δ𝑇𝐶 is typically in the order of 1% of 𝑇𝐶,𝑑𝑒𝑠.
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Figure 8.62: The effect of 𝑇𝐶,𝑑𝑒𝑠 and 𝑆𝑀𝐹 on Δ𝐶𝐿 for 𝐶𝐿,𝑑𝑒𝑠 =
0.4
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Figure 8.63: The effect of 𝑇𝐶,𝑑𝑒𝑠 and 𝑆𝑀𝐹 on Δ𝐶𝐿 for 𝐶𝐿,𝑑𝑒𝑠 =
0.6
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Figure 8.64: The effect of 𝑇𝐶,𝑑𝑒𝑠 on Δ𝑇𝐶

System efficiency
The definition of the system efficiency 𝜂𝑇 has been given in Equation 8.1. 𝜂𝑇 is dependent on the
thrust, swirl multiplication factor, lift and drag, represented by 𝑇𝐶, 𝑆𝑀𝐹, 𝐶𝐿 and 𝐶𝐷 respectively. The
results of the analysis of system efficiency are shown in Figure 8.65. This figure is independent of 𝐶𝐿,
because it was found that there is no clear influence of 𝐶𝐿 on the behaviour of the system efficiency.
Furthermore, increasing aspect ratio will increase 𝜂𝑇, but this effect is relatively small compared to the
effects of the propeller thrust and swirl. When looking at the effect of thrust on system efficiency, it
can be seen that system efficiency increases with increasing 𝑇𝐶,𝑑𝑒𝑠 up to around 𝑇𝐶,𝑑𝑒𝑠 = 0.03 for this
specific propeller­wing combination. The lift­to­drag ratio keeps increasing with increasing thrust, as
shown in Figure 8.67. The propeller efficiency increases up to 𝑇𝐶,𝑑𝑒𝑠 = 0.03 and decreases after that,
as shown in Figure 8.68. This results in a plateau in 𝜂𝑇 with respect to 𝑇𝐶,𝑑𝑒𝑠 after 𝑇𝐶,𝑑𝑒𝑠 = 0.03. Only
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for 𝑆𝑀𝐹 = 2.0 it can be seen that the increase in 𝐿/𝐷 is larger than the decrease in propeller efficiency.
However, this still results in a lower 𝜂𝑇, compared to lower 𝑆𝑀𝐹 values. With increasing 𝑆𝑀𝐹, it can
be seen that system efficiency decreases. Thus, it is concluded that a propeller operating at maximum
efficiency gives the best system performance.

In Figure 8.66 the results for the change in system efficiency Δ𝜂𝑇 are shown for 𝐶𝐿,𝑑𝑒𝑠 = 0.6. Since
thrust and power scale proportionally, the change in system efficiency Δ𝜂𝑇 is determined by the change
in lift­to­drag ratio scaled with the propeller efficiency. It can be seen that the gain due to propeller­
wing interaction in system efficiency increases with increasing 𝑇𝐶,𝑑𝑒𝑠. Furthermore, increasing swirl
also leads to more benefit from interaction. It can be seen that the slope of the Δ𝜂𝑇­𝑇𝐶,𝑑𝑒𝑠 relation at
constant 𝑆𝑀𝐹 increases with 𝑆𝑀𝐹. Increasing 𝑆𝑀𝐹 decreases propeller efficiency, thus the increase
in lift­to­drag ratio for increasing 𝑇𝐶,𝑑𝑒𝑠 is higher for higher 𝑆𝑀𝐹. In other words, for the same increase
in 𝑇𝐶,𝑑𝑒𝑠, a bigger increase in lift­to­drag ratio is achieved for a higher 𝑆𝑀𝐹. However, increasing 𝑆𝑀𝐹
leads to a worse system performance, as shown in Figure 8.65.
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Figure 8.65: The effect of 𝑇𝐶,𝑑𝑒𝑠 and 𝑆𝑀𝐹 on 𝜂𝑇
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Figure 8.66: The effect of 𝑇𝐶,𝑑𝑒𝑠 and 𝑆𝑀𝐹 on Δ𝜂𝑇 for 𝐶𝐿,𝑑𝑒𝑠 =
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Figure 8.67: The effect of 𝑇𝐶,𝑑𝑒𝑠 and 𝑆𝑀𝐹 on 𝐿/𝐷
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Figure 8.68: The maximum propeller efficiency for different
𝑇𝐶,𝑑𝑒𝑠
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Lift­drag interaction
In Figures 8.69 and 8.70 the effects of 𝐶𝑇,𝑑𝑒𝑠 and 𝑆𝑀𝐹 on the relation between Δ𝐶𝐿 and Δ𝐶𝐷 can be
seen. It can be seen that increasing thrust moves the design space to higher Δ𝐶𝐿 and lower Δ𝐶𝐷. This
is consistent with the findings from metamodel 1 and metamodel 2. Changing the swirl in the propeller
slipstream has the same effect. While increasing 𝑇𝐶,𝑑𝑒𝑠 mainly influences Δ𝐶𝐿, increasing the swirl
mainly influences Δ𝐶𝐿 as well as Δ𝐶𝐷 significantly. This shows that drag is more sensitive to tangential
velocities than to axial velocities.
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Figure 8.69: Correlation between Δ𝐶𝐿 and Δ𝐶𝐷 for constant
𝑇𝐶,𝑑𝑒𝑠 at 𝑆𝑀𝐹 = 0.8 and 𝐶𝐿,𝑑𝑒𝑠 = 0.6
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Figure 8.70: Correlation between Δ𝐶𝐿 and Δ𝐶𝐷 for constant
𝑆𝑀𝐹 at 𝑇𝐶,𝑑𝑒𝑠 = 0.04 and 𝐶𝐿,𝑑𝑒𝑠 = 0.6





9
Conclusions and recommendations

This chapter presents the conclusions based on the conducted research in Section 9.1. This is followed
by recommendations for future research in Section 9.2.

9.1. Conclusions
The research aim and objectives were defined in Section 1.2 of Chapter 1. The aim of the research
was to quantify the sensitivity of the aerodynamic efficiency of the whole propeller­wing system for the
main design parameters for a wingtip­mounted tractor propeller­wing system by means of a low­order
numerical model. This has been achieved by researching sub­objectives. The results of relating to
these sub­objectives will be discussed in the next paragraphs.

Firstly, a numerical model is created to analyze propeller­wing interaction. This model consists of
two parts: a wing model and a propeller model. Both models are based on potential flow methods,
enhanced with viscous polars from 2D airfoil analysis. Since the propeller and wing model are de­
pendent on each other, a solution for the propeller­wing system is obtained iteratively. The numerical
propeller­wing model was validated using experimental data. The main trends in the data could be pre­
dicted by the numerical model, however some discrepancies were found. The propeller performance
showed an offset. This could be corrected for by a adjustment in pitch of 1.2∘. By investigating the
isolated propeller, it was found that this offset was caused by low Reynolds numbers on the propeller
blades. At lower Reynolds numbers, viscous effects are more prominent and thus airfoil performance
is harder to predict using numerical models. Furthermore, the drag of the propeller­wing system was
underestimated. This is believed to be the result of the nacelle. The nacelle is modelled in the nu­
merical model as a wing extension with the same airfoil as the rest of the wing. Since the nacelle will
produce more profile drag than the wing airfoil, the drag is under predicted. Lastly, for the propeller­
wing system the increase in lift curve slope with decreasing advance ratio was under predicted by the
numerical model. Possible causes for this are the modelling of the propeller slipstream and not taking
into account interaction effects with the nacelle in the numerical model.

To investigate the influence of wing spanwise lift distribution on the propeller­wing interaction, the
influence of aspect ratio and outboard wing twist have been investigated. By changing aspect ratio
and outboard wing twist, the strength of the wingtip vortex changes. It was found that this has little
influence on the propeller­wing interaction mechanisms, as the changes in system lift and drag were
largely independent of aspect ratio and outboard wing twist. The wing lift distribution does have a large
influence on the final drag value of the system. Since changes in drag due to propeller­wing interaction
are relatively small compared to the total drag, in the order of 10% of total drag, the total drag is mainly
determined by the clean wing drag, which is dependent on the wing spanwise lift distribution. Thus,
a high aspect ratio and low outboard twist are desired. Furthermore, it was found that the change in
lift to drag ratio is mainly determined by the drag values. With a lower total drag, the same change
in drag, gives a larger change in lift­to­drag ratio. Since the same change in drag is achievable for
all investigated spanwise lift distributions, a wing with low drag would benefit most from propeller­wing
interaction in terms of lift­to­drag ratio.

The influence of the linear and angular momentum distribution of the propeller has been investigated
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by changing the thrust and the propeller swirl. The change of thrust was achieved by changing blade
pitch and advance ratio to obtain maximum efficiency at the desired thrust coefficient. The propeller
swirl was changed by calculating the swirl for the propeller at maximum efficiency and multiplying it with
a factor. It was found that with increasing thrust and increasing swirl, more beneficial propeller­wing
interaction could be obtained. This means a higher increase in lift and a higher (in magnitude) decrease
in drag. This would benefit the lift­to­drag ratio. However, if thrust and swirl are increased beyond a
certain point, it was observed that the change in lift became constant. This has been attributed to
non­linear effects. At these high thrust and swirl values, the angle of attack for the part of the wing
inside the propeller slipstream becomes very large and makes the wing stall. While this behaviour was
not observed for drag, it is expected that in reality pressure drag will increase at high angles of attack,
diminishing the benefit of propeller­wing interaction. Finally, a system efficiency parameter was defined
as the propeller efficiency times the lift­to­drag ratio. It was found that the highest value of this system
efficiency is simply obtained for a maximum propeller efficiency. In other words, the increase in lift­to­
drag ratio obtained by decreasing propeller efficiency is relatively low. To conclude, the propeller should
be designed for maximum efficiency, as added swirl in the propeller slipstream decreases propeller
efficiency and the corresponding increase in wing efficiency is lower in comparison to the decrease in
propeller efficiency.

Next, the main design parameters for a wingtip­mounted propeller system were investigated. These
were: 𝐷/𝑏, 𝑥/𝑐 and 𝑧/𝐷. For 𝐷/𝑏 it was found that it mainly affects the propeller­wing interaction with
respect to drag. A larger 𝐷/𝑏 is beneficial for the drag, since a larger 𝐷/𝑏 results in a larger wing area
with upwash, leading to a decrease in induced drag. This relation no longer holds for small propellers
with high thrust. For these propellers another mechanism dominates. With increasing diameter, the
propeller induced velocities decrease, which usually leads to a small penalty in performance. However,
for small propellers this decrease is more rapidly, since propeller induced velocities scale quadratically
with diameter. Thus, the effect of decreased propeller induced velocity on the wing is dominating and
it leads to less performance benefits. For 𝑥/𝑐 it was found that it influences both the change in lift and
the change in drag. An increase in 𝑥/𝑐 will be disadvantageous for lift, but beneficial for drag. With
increasing 𝑥/𝑐, induced velocities are increased, but the induced angle of attack is reduced, thus less
lift is created. This leads to a weaker wingtip vortex, decreasing the drag. Next, 𝑧/𝐷 influences mostly
the lift. The results suggest that a propeller position where the wing sees maximum radial velocities
is the most beneficial. Thus, high propeller positions are desired and for this high position, the area
of the wing inside the propeller slipstream needs to be maximized. Lastly, if the circulation of the wing
inside the propeller slipstream is relatively strong, then a low propeller position is beneficial for the
thrust. Below the wing the propeller will see a higher angle of attack due to wing circulation. However,
it was found that this does not lead to a better propeller efficiency, as this thrust increase is paired with
a proportional increase in power.

Finally, the interaction between performance parameters has been investigated. It was found that
for a given lift coefficient, clean wing drag should be minimized to get the best system performance.
This is due to the fact that benefits in drag due to propeller­wing interaction are almost an order of
magnitude smaller than the total drag. To get the highest increase in lift due to interaction, 𝑧/𝐷 and 𝑥/𝑐
need to be considered. To get the highest decrease in drag due to interaction, 𝐷/𝑏 and 𝑥/𝑐 should be
used. 𝑥/𝑐 is the one variable that leads to a trade­off between lift and drag. Furthermore, thrust can be
increased to increase lift and decrease drag. However, this only leads to a better system performance
if the change in thrust leads to a higher propeller efficiency, or if the decrease in efficiency leads to
a higher relative increase in lift­to­drag ratio. However, for the used geometry, it was found that if
propeller efficiency decreases when thrust is increased, the magnitude of the lift­to­drag ratio increase
was not sufficient to lead to an increase in system efficiency. Lastly, for a tractor propeller system, the
achievable change in thrust due to interaction is relatively small, about 1% of the total thrust. Again,
this change in thrust is not paired with a change in propeller efficiency.

To conclude, for a tractor propeller­wing system, propeller­wing interaction has mainly effect on the
wing performance. The relative change in drag due to propeller­wing interaction found in this research
was typically around 10%. The relative change in thrust would be around 1% and this would not lead
to a change in propeller efficiency. Furthermore, it was found that for the best propeller­wing system
performance, propeller and wing should both be optimized separately. The wing lift distribution has
little effect on the performance increase due to propeller­wing interaction. Furthermore, decreasing
propeller efficiency would lead to an increase in wing efficiency through interaction, but this increase
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is typically low compared to the decrease in propeller efficiency and leads to an overall lower system
efficiency. Thus, to obtain the best performance, the wing should maximize lift­to­drag ratio and the
propeller should maximize its efficiency. Finally, by fine tuning the relative position and size of the wing
and propeller, performance can be somewhat enhanced by maximizing interaction.

9.2. Recommendations
This research has investigated the aerodynamic performance of a tractor propeller­wing system. How­
ever, there are still aspects of wingtip­mounted propeller­wing interaction that are left to be investigated.
This section deals with recommendations for future work regarding this topic.

• The numerical model could be further improved. During the validation, effects of the nacelle were
found that were not captured by the numerical model and during the numerical experiments, no
nacelle was modelled. By adjusting the wing model, it might be possible to include some effects
of the nacelle. Possibly a potential flow solver is needed to model the nacelle. This would make
the results more representative, since in a practical wingtip­mounted propeller design, a nacelle
must be present.

• The radial distribution of propeller circulation has not been investigated. Fine tuning the propeller
radial distributions for propeller­interaction might lead to enhanced system performance and is
thus worth investigating. However, a metamodel that would thoroughly investigate the effects
of the radial circulation distribution has not been made, as it would require too many design
parameters. This would have increased the number of dimensions of the problem, leading to
high computational times. Creating such a metamodel could not be achieved within the time
constraints of this project.

• The change in drag due to propeller­wing interaction was found not to be dependent on the vertical
propeller position. However, it is also suspected that this could possibly be due to noise in the
data, since the drag is rather sensitive to small changes in propeller deflection, averaging out
any effects due to vertical propeller position. Thus, it is recommended to further investigate the
effects of 𝑧/𝐷, possibly by removing slipstream deflection. This would simplify the interaction and
make the effects of 𝑧/𝐷 more direct, which could lead to better insights of the influence of 𝑧/𝐷 on
drag.
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