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ABSTRACT

Quantitative analysis in combination with fluorescence microscopy calls for innovative digital image measure-
ment tools. We have developed a three-dimensional tool for segmenting and analyzing FISH stained telomeres
in interphase nuclei. After deconvolution of the images, we segment the individual telomeres and measure a
distribution parameter we call ρT . This parameter describes if the telomeres are distributed in a sphere-like
volume (ρT ≈ 1) or in a disk-like volume (ρT � 1). Because of the statistical nature of this parameter, we have
to correct for the fact that we do not have an infinite number of telomeres to calculate this parameter. In this
study we show a way to do this correction. After sorting mouse lymphocytes and calculating ρT and using the
correction introduced in this paper we show a significant difference between nuclei in G2 and nuclei in either
G0/G1 or S phase. The mean values of ρT for G0/G1, S and G2 are 1.03, 1.02 and 13 respectively.
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1. INTRODUCTION

With the advent of sequence-specific DNA probes, the use of fluorescence microscopy in cancer and genetics
research has steadily grown. Continuous improvements in fluorescence microscopy methods (hardware and
software), specific labeling methods (wetware), and better understanding of the genome functions and structure
now enable us to detect almost any DNA sequence, gene or chromosome region with high sensitivity and to
address the central question: ’How do all these different aspects contribute to our understanding of biological
processes?’

As data acquisition (the recording of images) in fluorescence methods is usually based on digital imaging,
quantitative analysis can be used and has, in fact, become a crucial part of the methodologies. These methods,
therefore, require suitable quantitative image analysis procedures and algorithms. As one of the last links in the
chain, the algorithms being used must take into account the whole procedure that is being used including the
optical properties of the microscope and system, nature of the probes and instrument parameters (e.g. numerical
aperture of the objective, wavelength of light) for the acquisition.

The organization of the interphase nucleus has been studied since the late 19th century.1 It is now well
accepted that the position of chromosomes in the nucleus plays an important role in gene regulation.2 Recently,
interest has also focused on telomeres whose importance to genomic stability was recognized as early as in
the 1930s.3 We have developed a method of studying the spatial organization of the genome in the three-
dimensional (3D) interphase nucleus. We analyze digital images of the 3D organization of the telomeres and how
their positions change during the cell-cycle. This method enables us to determine that telomere organization
is cell-cycle dependent with assembly of telomeres into a telomeric disk (TD) in G2 phase. Further, this disk
formation is disrupted in tumor cells.4
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Table 1. Characteristics of the microscope system

FWHMlateral 200 nm

FWHMaxial 400 nm

∆x 106 nm

∆y 106 nm

∆z 200 nm

M 63x

NA 1.4

Filters DAPI, Cy3

Typical image size 200 x 200 x 100

We characterize the TD with a parameter called, ρT .5 Calculation of this parameter is problematic with
a finite number of measurement points. This is the case with telomeres; we only have a finite number. In this
study we concentrate on a correction for this parameter using numerical analysis.

2. MATERIALS AND METHODS

2.1. Cell Preparation

We have studied a mouse B lymphocyte cell nuclei population. The immortalized cells were sorted according
to their DNA content for the determination of G0/G1, S or G2 phase. Cell cycle fractions were quantified
through fluorescent-activated cell sorting analysis.4 Flow analysis were performed on a EPICS AltraTMcytometer
operating under MulticycleTMsoftware (Beckman-Coulter, France). Approximately 10-15 nuclei from each phase
were analyzed for this study, representing a total of 35 cell nuclei.

For measurements of the telomeric disk the cells were first fixed and then telomere fluorescence in situ
hybridization (FISH) was performed as described in Figueroa, et al.6 using a Cy3-labeled PNA probe (DAKO,
Glostrup, Denmark). DAPI was used as a DNA-specific counterstain. Telomere hybridizations were specific and
we verified the correct number of telomeric signals observed at the ends of chromosomes prepared from primary
cells using 2D FISH metaphase spreads. The lymphocytes were fixed in such a way that the 3D structure of the
nuclei was conserved.4

2.2. 3D Image Acquisition

For analysis of the telomere distribution, images were acquired with a Zeiss Axioplan 2 with a cooled AxioCam
HR CCD in combination with a PlanApo 63x/1.4 oil immersion objective (Zeiss). This gives a pixel (sampling)
distance in the lateral plane of ∆x = ∆y = 106 nm. The axial sampling distance between the planes was
∆z = 200 nm. The point spread function (psf) of the objective, which determines the optical resolution, gave a
Full Width at Half Maximum of approximately FWHM = 200 nm in the lateral direction and 400 nm in the
axial direction. Typical image size was 200 x 200 x 100 pixels. Table 1 gives a summary of these values for this
imaging system. Figure 1 illustrates the system resolution. An image of a pair of telomeres relatively far apart
and an image of a pair close together is shown. It is clear that the telomeres at a distance of 1200 nm can be
easily distinguished and telomeres at a distance of 400 nm are just barely separable.

2.3. 3D Image Processing

The 3D digital images were processed to improve the resolution using a constrained iterative maximum likelihood
deconvolution7 which is available in the AxioVision 3.1 (Zeiss) software. This convolution method was chosen
for this work because it has been shown to provide the best results.8 An example of the result of applying this
procedure to telomere images is shown in figure 2. After deconvolution the image is interpolated in the axial (z)
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Figure 1. Demonstration of the spatial resolution of our measurements, Two pairs of telomeres are shown: 1200 nm
apart (top), which can be easily separated, and 400 nm apart (bottom). The inserts show the original image and the
graphs a section through the telomeres.

Figure 2. Demonstration of the effect of deconvolution. The left image is before deconvolution and the right is after
deconvolution. We clearly see that the left image has more blur and has less contrast than the right image. Both images
are shown with a linear intensity contrast stretch.
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Figure 3. Screenshot of the user interface of TeloView. The screen shows the three displays with maxmimum instensity
projections along the three main optical axes. It also shows crosses at the locations where the software identified a
telomere. After automatic identification the user can interactivly add or remove crosses.

direction from ∆z to ∆z′ so that the sampling distance in all three directions is the same: ∆x = ∆y = ∆z′ = 106
nm.

2.4. 3D Image Segmentation and Analysis

Image segmentation and analysis of deconvolved 3D images of cells with labeled telomeres have been per-
formed with a sequence of procedures that we have bundled together and named TeloView. The procedures
themselves are from our image software library DIPImage which is available as public domain software at
<http://www.qi.tnw.tudelft.nl/DIPlib/>. The version of DIPImage used in this development operates under
MatLab (The MathWorks, Natick, MA, USA).

TeloView loads the 3D image and displays a maximum projection along the three main optical axes. While
thresholds and other parameters can be adjusted for display purposes, the analysis is performed on the original 3D
data. After segmentation, the 2D display indicates the location of the automatically found spots for verification.
At this point the user can decide to remove falsely labeled spots or add spots that were not found. A screenshot
of the user interface can be found in figure 3.
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(a) image data (c) smooth (e) threshold

(b) original data (d) tophat (f) erosion

Figure 4. Figure showing the working of the algorithm. First we see the raw ’image data’. A line through the center
of this image gives a line section seen in ’original data’. After we ’smooth’, we perform a ’tophat’ transform. Note that
shading is now removed. We ’threshold’ and end up with two spots. One last ’erosion’ is performed to make sure there
are no remaining noise spikes.

2.4.1. Segmentation

Before starting the segmentation we pre-process the data by smoothing with a 3D Gaussian kernel. Figure 4
shows how the data is transformed during the different steps of segmentation. For segmentation of the individual
telomeres we have chosen an algorithm based on a morphological TopHat transformation.9, 10 The TopHat
transform on an image A with structuring element B is defined as follows11; to find objects with high intensity
(’light objects’):

TopHat(A,B) = A − max
B

(min
B

(A)). (1)

To find objects with low intensity (’dark objects’):

TopHat(A,B) = min
B

(max
B

(A)) − A. (2)

the ’structuring’ element, B, can be a quite general three-dimensional, grey-value object but in our case we have
chosen for the simple case that B is spherical. The size of B should be bigger than the objects that are being
sought but smaller than any shading in the background. For a grey-scale image of telomeres, the telomeres would
be our objects and any non-specific binding of Cy3 uniform spread over the nucleus gives us shading. Thus,
for our case, this translates to a spherical B with radius 742 nm (7 pixels). After the TopHat transform the
resulting image is thresholded with a user chosen value to produce a binary mask. To eliminate noise spikes that
may still remain, we conclude with an erosion. This algorithm gives satisfying results for small telomeres. Using
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Figure 5. The envelope around the telomeres can be characterized by an oblate spheroid. Here, two main axes have
equal length, a = b. The third main axis is shorter, c. The ratio ρT = a

c
gives a measure for the flatness of the spheroid.

the binary image mask from the segmentation, the center of gravity of each dot in the grey-scale image is found.
This gives coordinates (xi, yi, zi) for each individual dot, where i is the index number of the dot.

2.4.2. Analysis

We have shown4, 5 that the envelope shape of the telomeres can be characterized as an oblate spheroid. A
spheroid is a geometric figure, like an ellipsoid, where the two main axes, a and b, are of equal length and the
third main axis, c, has a different length as displayed in figure 5.

To measure the flatness of the spheroid (c < a), we define a parameter, ρT :

ρT =
a

c
. (3)

If ρT ≈ 1, the telomeres are distributed more spherical in a nucleus. If, however, ρT > 1, then the telomeric
territory is more disk-like. We determine ρT by performing principal component analysis12 on the spatial spot
coordinates (xi, yi, zi|i = 1, 2, . . . , N). We do this by calculating the singular values (eigenvalues) of the covariance
matrix of the data points. The three singular values, λ1 ≥ λ2 ≥ λ3, are real, positive and ordered. They are
the variances of the distances from the spots to the new principal axes introduced by the principal component
analysis. The standard deviation for each axes is then given by:

σi =
√

λi. (4)

Now we define ρT as

ρT =
√

σ1σ2

σ3
. (5)

That is, the geometric mean
√

σ1σ2 is taken as the value for a and σ3 is the value for c. Given that we work
with ordered λ’s we have:

ρT ≥ 1. (6)

3. CORRECTION OF ρT BY MODEL FITTING

For an infinite number of spots in a spheroid, the parameter, ρT , would give us the ratio of the length of the
principal axes: a

c . Because we have a finite number of spots, N , this does not hold anymore. We have done
Monte-Carlo simulations to see what the effect is on the observed ρT,o with respect to the real ρT,r and N .
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Figure 6. Figure showing maximum likelihood estimators ρ̂T,r plotted against ρT,o (plusses) and the fitted curve (line).

For this we used MatLab to generate a set of uniformly distributed pseudo-random numbers (x, y, z) in the
interval (−1.0, 1.0). Then we calculate the squared distance to the center of the sphere

r2 = x2 + y2 + (ρT,r · z)2. (7)

Here ρT,r scales the spheroid to a sphere. If
r2 ≤ 1, (8)

we accept the point, because it is inside the spheroid. This process is repeated until N points are accepted. From
this set of coordinates, (xi, yi, zi), i = 1 . . . N , we can compute ρT,o. For every ρT,r we compute 10000 values of
ρT,o. This gives us the probability distribution, p(ρT,o|ρT,r), for a given N . Using Bayes’ rule we can now obtain
the distribution, p(ρT,r|ρT,o), for a given N :

p(ρT,r|ρT,o) =
p(ρT,r)p(ρT,o|ρT,r)

p(ρT,o)
. (9)

Because no information is known about the a-priori probability we assume, for practical reasons, p(ρT,r) to be
uniform. The ρT,r which gives us the maximum of p(ρT,r|ρT,o) is the maximum likelihood estimator, ρ̂T,r. In
figure 6 we can see ρ̂T,r plotted against ρT,o for N = 40.

The next step is to model a curve for a given N . This is done by cutting the curve in two:

̂̂ρT,r = 1 for ρT,o < d,
̂̂ρT,r = ρT,o − ac(d−1)

(ρT,o−b)c for ρT,o ≥ d.
(10)

Here a, b, c and d are the model parameters, where b is dependent on d and a:

b = d − a, (11)

to make the function continues. Now we can model the independent parameters a, c and d as a function of N :

a = γ1,
c = γ2N + γ3,
d = γ4

Nγ5 + 1.
(12)
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Table 2. Results of phase sorted cells.

Phase Mean ρT Stand. dev. ρT

G0/G1 1.03 0.10

S 1.02 0.06

G2 13 3

This gives us the fitting parameters, γi (i = 1 . . . 5), for our model. Next, we fit the model to our data points
using a least squares approach, i.e. we minimize the error:

ε =
∑

ρT,o,N

(̂̂ρT,r(γi) − ρ̂T,r)2, (13)

which gives us γi. In figure 6 we see the result of the model fitting for N = 46.

4. RESULTS

The results of the analysis of the cell-sorted mouse lymphocytes can be found in Table 2. The values of ρT

measured here are a little bit smaller than in Vermolen et al.5 This is because of the correction we did in
section 3. We still see a clear difference in the measurements between G0/G1 and G2 phase and between S and
G2 phase. In other words the telomeres in the G0/G1 and S phases are distributed in a more spherical volume
and the telomeres in the G2 phase in a disk-like volume. Typical distributions can be found in figure 7, where
we clearly see these spherical and disk-like structures.

5. DISCUSSION

We have developed a three-dimensional digital image analysis tool to segment the telomeres in the nucleus. We
also provide an objective parameter, ρT , to describe the volume in which the telomeres are distributed; sphere-
like or disk-like. In this paper we have mainly focused on a statistical correction for ρT . After numerical analysis
we concluded that a correction is necessary and a way to do so is provided. A next step is to give a theoretical
basis for this correction, but this is not given in this paper.

After doing the same measurements as in Vermolen, et al.,5 now with the correction of ρT , we come to the
same conclusions; ρT is significantly higher in nuclei in G2 than in G0/G1 or S.

We have observed4 that telomeres tend to form aggregates, i.e. telomeres are clumped together. Therefore we
are currently developing methods to measure the size of telomeres. This enables us to quantify the aggregates and
correlate this to cancer progress. Because aggregates are usually bigger than individual telomeres the algorithm
for segmentation we have described above is not suitable. We are working on an improved segmentation algorithm.
For future studies, we propose to use live cell imaging to follow and measure the cell-cycle dependent movement
of telomeres.

ACKNOWLEDGMENTS

This work was partially supported by the Delft Research Initiatives Information and Communication Technology,
LifeTech, and Life Science and Technology, by the FOM research program Nano-electrophoresis (99TF13), and
by the Bsik research programs MicroNed and Cyttron. Work in Canada was funded by the Canada Founda-
tion for Innovation (CFI), the Canadian Instituted of Health Research (CIHR) and CancerCare Manitoba. T.
C.-Y Chuang and A. Y.-C. Chuang were supported through a CIHR Strategic Training Program ”Innovative
Technologies in Multidisciplinary Health Research Training” fellowship.

118     Proc. of SPIE Vol. 5699

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use:  http://spiedl.org/terms



Figure 7. Figure showing the two typical distributions of the telomeres. In the upper row we see a nucleus in G0/G1
phase and in the middle row a nucleus in S phase. We can see the telomeres are distributed in a spherical volume. The
lower row shows a nucleus in G2 phase, where the telomeres are distributed in a disk-like volume. The Cy3-stained
telomeres are ’embedded’ on the DAPI-stained nuclei.
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