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CHAPTER 1

INTRODUCTION

1. Preliminary vemarks

Since the introduction of pneumatic tyres, automobiles and
aircraft have suffered from unstable oscillatory swivel mo-
tions. These oscillations exhibited by the steerable wheels,
popularly known as ''shimmy'', may sometimes assume
grave proportions and cause failure of mechanical components
or result in loss of control of the vehicle,

Pneumatic tyres are used primarily for obtaining better
roadholding and comfort. The vertical and lateral elasticity
of the tyre introduce additional degrees of freedom of motion,
which are coupled with the angular motions of the wheel
about the swivel axis. Such a coupling may lead to the oc-
currence of an oscillatory instability of the stationary recti-
linear motion,

Hitherto, many investigators have tried to analyze the
shimmy phenomenon. Their analyses were, however, strictly
linear. The non-linearities occurring in the system, such
as tyre characteristics, dry friction and clearance, are
important factors, which have considerable influence upon
the manner in which shimmy manifests itself. The linear
theories may in most cases indicate the cause of instability,
but they fail to give a correct description of the real phe-
nomenon.,

2. Outline of literature

Fromm [1] (1931) was one of the first investigators who
developed a theory for the shimmy motion of automobiles.
Besides his advanced theoretical work, as a result of which
the gyroscopic coupling between the angular motions about
a longitudinal axis and the swivel axis was believed to be,
the main factor causing shimmy [1, p.10], he has carried
out and described, together with his co-authors Becker and
Maruhn, some tests on a system with rigid front axle.
Also Den Hartog [2] and Rocard [3] have treated this




"gyroscopic shimmy'' for systems with live axles. The
phenomenon was furthermore examined experimentally by
Olley [4].

Another sort of shimmy, occurring both with aircraft and
automobiles equipped with independent front wheel suspensions,
is closely related to the deformability of the tyre. We
should distinguish in this respect the static lateral stiffness
and the so-called cornering stiffness of the tyre. For shim-
my, both these above properties are important. It may be
noted that with the self-sustained hunting movements of
railway vehicles, originally investigated among others by
Carter [5] (1915-16), the influence of the static lateral
stiffness of the steel tyre can be neglected when compared
to the influence of the lateral slip. This means that the slip
phenomenon canbe treated as stationary. This will in general
be permitted when stationary or relatively slowly varying
motions of vehicles are investigated.

Up to now the latter sort of shimmy, to which we refer
here as ''tyre shimmy', has been investigated exclusively
in connection with aircraft. An outline of literature on tyre
theories is given in Sec,II. 1. The stability of simple sys-
tems, such as a wheel equipped with an elastic tyre capable
of swivelling about a king-pin that moves along a straight
line, has been theoretically investigated among others by
Kantrowitz [28] (1937, U.S.A.), Von Schlippe and Dietrich
[34] (1941, Germany), Greidanus [30] (1942, Holland) and
later by Smiley [40]. The experiments carried out by Von
Schlippe and Dietrich [ 34] and Schrode [ 43] substantiate
the theories for the stability of simple systems as described
in references [ 34,40] in qualitative respect. Marstrand
[42] has carried out tests with a 'twin contact" -tyre. By
introducing a tread pattern consisting of two longitudinal
ribs he could prevent shimmy. Schrode obtained the same
tendency by making the tread surface flatter and wider,
In both cases the increase in damping through longitudinal
tread deformations may be responsible for the stabilizing
effect.

De Pater [7] and Van Bommel [8] have recently developed
theories for the non-linear problem of the hunting phenomenon
occurring with railway vehicles. The harmonic balance
method exployed by them for solving the non-linear differential
equations approximately is essentially the same as the one
used here in the non-linear shimmy analysis to be treated
in chapter IV.




3. Outline of thesis

The thesis is mainly concerned with shimmy due to tyre
lateral flexibility, occurring with automobiles. A theory is
developed for the stationary and non-stationary behaviour
of tyres, assuming a finite contact area between tyre and
road. The influences of the elasticity of tread rubber and
of the gyroscopic effect of the tyre are considered., The
tyre is fitted to a wheel, which rotates about a stubaxle;
the latter can swivel about a king-pin which is attached to
a system of which the complexity is gradually increased
during the course of the investigation. The influence of
suspension elasticity, chassis elasticity and of the steering
system are studied. Up to three non-linearities are intro-
duced, viz., degressive tyre characteristics, dry friction
in the king-pin bearings and rotational clearance in the wheel
bearings. The first non-linearity causes limitation of the
shimmy amplitude. The second non-linearity stabilizes the
stationary motion of the vehicle and shimmy may only occur
when sufficient wheel unbalance or other external disturbance
is present. The third non-linear element has a destabilizing
effect and shimmy may arise even without any unbalance
or external disturbance being present.

In order to substantiate theoretical findings, experiments
have been carried out with a test vehicle and a simple scale
model. Full scale tyre tests showed that the tyre theory
developed is essentially correct. The shimmy behaviour of
the test vehicle and of the mechanical model could be ex-
plained with the non-linear theory developed.

Some of the most important results of this investigation
have been published already in condensed form [9,10].




CHAPTER II

THEORY -OF - TYRE BEHAVIOUR

The contact problem of tyre and road may be considered
as a special case of the general problem of two elastic
bodies of revolution pressed to each other with a given
force., The road will be assumed to be a smooth level
boundary surface of an undeformable half space, while the
tyre may be represented by some elastic model. When the
tyre moves over the road, apart from the deformations
due to the vertical force in the static situation, in general,
additional horizontal deformations will occur. When the
wheel moves in such a way that the contact points of an
imaginary tyre, which differs from the real tyre only in
that respect that it does not show horizontal deformations,
do not move with respect to the road, we speak of pure
rolling. When all the contact points of that imaginary tyre
show mutually the same relative velocity with respect to
the road, we speak of longitudinal (fore and aft-) slip
when this velocity and the rolling velocity have the same
direction; we speak of lateral (side-) slip when the relative
velocity is directed perpendicularly to the rolling velocity.
The angle between wheel centre plane (direction of rolling)
and the vector of the velocity of the wheel centre is called
slip angle. When the wheel rotates about a vertical axis
through the wheel centre without showing longitudinal or
lateral slip, we speak of pure spin. A real tyre will show
additional horizontal deformations. In case of dry-frictional
contact, the additional horizontal deformations may cause
regions of adhesion besides regions of sliding. In the fol-
lowing, the terms slip and sliding will always be used in
the sense as expressed above. In the literature on this
subject we find some difference in nomenclature; Kalker [16]
for instance uses the terms slip and overall slip in cases
where we use sliding and slip respectively; other authors
sometimes use the word creep or drift for what we call
slip.




1. Survey of litevature

In the whole complex of theoretical studies on the tangential
contact between tyre and road, one may distinguish two
main groups. The first group deals with investigations of
the steady state behaviour of the rolling body. In that case
the body moves in such a way that a constant slip velocity
in the rolling direction and perpendicular to it occurs,
while in some cases also a constant turning velocity (spin)
is considered. The second group is concerned with the
study of the non-stationary behaviour of the tyre. Here,
the lateral slip and angular motions have a character varying
with time; in most cases sinusoidal variations are con-
sidered,

We notice a fundamental difference in structure of the
mathematical tyre model in the two groups mentioned, In
all theories on the stationary (steady state) motion, a model
consisting of an elastic structure (the carcass) provided
with a greatnumber of elastic blocks (rubber profile elements)
is employed. The profile elements contact the road surface
in the area of contact where a region of sliding may occur
when locally the adhesion limit is exceeded. In the non-
stationary investigations, until now, profile elements have
always been omitted and in addition adhesion has always
been considered in the entire contact area, Instead of
speaking of a contact area entirely being in adhesion, we
may prefer to speak of a contact area where vanishing
regions of sliding occur.

In the first group in principle always an elastically sup-
ported beam is introduced for the representation of the
carcass of the tyre. In the non-stationary investigations,
two different trends exist: sometimes a beam model is
used, but we also encounter the employment of the elasti-
cally supported stretched string model. With the exception
of one case, the non-stationary tyre investigations have
been restricted to models showing point or line contact.

A historical outline of literature on rolling behaviour,
as will be given below, should also mention something of
the work that has been done on the problem of the stationary
rolling and slipping motion of two elastic homogeneous
bodies pressed to each other., In most of these theories
equal elastic constants of the two co-operating bodies are
assumed (steel-on-steel problem).

The two-dimensional problem of two parallel cylinders
slipping only in the direction of rolling was treated by
Carter [11] in 1926 and by Fromm [12] in 1927, the latter
also for unequal elastic constants. Much later (in 1958)
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Johnson (see i,a. [16] for references) developed an approx-
imative three-dimensional theory for rolling balls with an
elliptical contact area in which a similar area of adhesion
is assumed which touches the leading edge of the contact
area for the case of slipping in and perpendicular to the
direction of rolling. The case of infinitesimal slip and spin
where the sliding region vanishes, has been treated in a
later paper by Johnson [13] and more recently by De Pater
[14] and by Kalker [15]. The case of very large slip and
spin in which no adhesion occurs, is investigated by Lutz
and Wernitz (cf, [16]). In 1967 Kalker finally published a
numerical method [16] with which the transmitted force
and couple from one body to the other for any slip and spin
can be calculated together with the stress distribution and
the shape of adhesion and sliding regions in the contact
area,

Concerning the investigation of stationary tyre motion, we
must in the first place mention Broulhiet [18] (1925) and
Fromm (1930) (cf. [19]) who were probably the first to
recognize the important role that lateral slip of tyres plays
in automobile motions. Fromm [19] developed a theory
for the variation of lateral force with lateral slip in which
he neglected the influence of the lateral flexibility of the
carcass of the tyre; however, he did take into account the
elasticity of the profile elements and the possibility of
sliding,

Fiala [20] and later Freudenstein [21] developed theories
in which, as an extension of Fromm's theory, the carcass
is represented by an elastically supported beam of infinite
length. The deflection of the beam was found by assuming
the lateral load acting on the beam in a manner, symme-
tric with respect to the vertical plane through the wheel
axis. Freudenstein also studied the behaviour for pure spin,
i.e. turning without lateral slip. He found that at high values
of spin (circular path with small radius) front sliding also
occurs,

Recently Frank [22] presented an analogue computer
method with which he determined the tyre deflection and
force distribution for constant slip angles, i.e. lateral slip
values, The carcass is represented by a stretched beam
and a comparison is made between the string and beam
model, It appeared from an analysis of Fourier extensions
that the deflection of the string model came closer to that
of a conventional tyre and the deflection of a beam model
more to that of a radial ply tyre.

The combination of lateral and longitudinal slip was
treated by Pacejka [23] for the simple model exhibiting a




8 II

rigid carcass provided with flexible profile elements, In
[24] he introduced the carcass flexibility in an approximate
form. The characteristics obtained for the lateral force
and the aligning torque (i.e. the torque about the vertical
axis) for a given slip angle as a function of longitudinal
driving or braking force were similar to those, obtained
experimentally by Nordeen and Cortese [26]. Bergman
[25] also gave a theory based on different considerations.
His results appear to fit very well for the case of driving
forces,

Recently Savkoor [27] investigated the influence of non-
linear friction coefficients depending on sliding velocity,
temperature and contact pressure. The history of motion
also appears tobe a factor influencing the frictional behaviour.
He could indicate the effect of road surface textures, tread
profile shapes and rubber properties, He studied moreover
the correspondence of tyre models with real tyres. As a
result he could indicate that both the string and beam model
are fair approximations of the real tyre.

In the theories describing the non-stationary behaviour
of tyres one can indicate two trends. One group of authors
assumed a bending stiffness of the carcass and the other
based its theory on the string concept. As said before, no
profile elements and no sliding were considered,

Probable the first investigators who tried to describe the
tyre behaviour mathematically in behalf of the study of
shimmy are Kantrowitz [28] and Wiley [29]. In spite of
their rough and theoretically unsatisfactory assumptions,
their theories, which are similar to each other, resulted
in a fair correspondence with measured values of divergence
of subsequent wheel deflections and frequency of the shimmy
motion, Kantrowitz introduced the term kinematic shimmy,
which is obtained when all inertia effects of the system are
omitted. This sortof shimmy will occur at very low velocities
of travel, where the frequency tends to zero but where the
wavelength remains finite, In this case the non-castered
tyre, i.e, with a vertical swivel axis, shows a symmetrical
or more precisely a nearly symmetrical lateral deformation.
Furthermore, Kantrowitz studied the damping effect of the
gyroscopic couple due to lateral distortion of the rotating
tyre, This effect has not been taken into account by any
other author treating this subject. Smiley [40] predicts
that tyre inertia effects will come into play at a velocity
of the order of magnitude of 270 VR mph, where R denotes
the tyre radius, expressed in feet,

Another theory, apparently inspired by Kantrowitz' work,
was developed in 1942 by Greidanus [30}. Where Kantrowitz'
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work shows features of both the beam and the string,
Greidanus is consistent in applying the bending principle
in his important study, Besides the slope also the curvature
of the peripheral line just in front of the contact point is
important for the further development of the motion. Also
in Greidanus' model a vanishing area of contact was con-
sidered as may be deduced from his way of treatment, A
new aspect introduced by Greidanus is the influence of
camber, i,e, of tilting the wheel plane, on the lateral
deflection of the peripheral line, The influence of camber
considered, however, is not justifiable in our opinion. This
opinion is based on the fact that the points on the peripheral
line of a cambered tyre move parallel to the wheel centre
plane, so that the vertical projection of that line on the
road surface just in front of the region of contact does not
represent the increment in path of the contact points,
Another effect of wheel camber, viz. the accompanying
lateral tyre force (camber thrust), is not taken into account
by Greidanus. We notice furthermore that his theory takes
into account the lateral shift of the point in which the
resultant vertical load is acting, due to lateral tyre dis-
tortion, This effect results in an additional moment about
the swivel axis when this axis is inclined over the caster
angle ¢ with respect to the vertical. It can be shown,
however, that this additional moment amounts to the order
of ¢ multiplied by the aligning torque. For small caster
angles this effect may very well be neglected.

In a discussion on Saito's paper [31] Pacejka has given
the differential equations which govern the kinematical
variations in lateral tyre distortion for the beam type model
with finite contact length, These equations appear to be
identical to those given by Greidanus when the influence of
camber is not considered and the contact length is taken
equal to zero.

In 1962 Saito [31] presented a theory using a tyre model
consisting of an elastic beam of which a finite length makes
contact with the road. The theory is based on an approximative
treatment of the kinematic behaviour of the contact line,
Frequency response curves are given for the force and
moment with respect to lateral and angular motions of the
wheel plane. In order to obtain better agreement with
results obtained experimentally, Saito introduced theoretically
unjustifiable empirical corrections,

Besides this group of investigators which were inspired
by the work of Kantrowitz, another group exists which has
studied the problem with the aid of tyre models more or
less based on the string concept.
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In 1941 Fromm [32] gave a simple theory where this
model (although not mentioned by name) is investigated for
the case of point contact, A similar theory was developed
by Bourcier de Carbon [33] in 1948 together with an ex-
tension, not being very clear, which increases the order
of the system by one.

In 1941 Von Schlippe [34] presented his well-known
theory of the kinematics of a rolling tyre. He introduced
the concept of the stretched string model. For the first
time a finite contact length was considered. In the same
paper Dietrich applied this theory on the shimmy problem.
Mathematical difficulties arose in the form of transcendental
equations due to the retardational effect of the assumption
of a finite contact length. Later on, two papers of Von
Schlippe and Dietrich [ 35, 36 ] were published in which also
the effect of the width of the contact area is considered.
Two rigidly connected co-axial wheels both fitted with a one-
dimensional string type model are considered. The strings
and their elastic supports are supposed to be elastic also
in circumferential direction, In [ 35] this theory is applied
correctly for the case of constant path curvature, In [36]
the influence of tread width is studied for the shimmy
motion, In equation (6) of this article the substitution of
d?y/ds? for 1/R is doubtful. A correct substitution would
be the spin d¢/ds (Von Schlippe notation), The corrective
factor p appearing in the expression of the aligning torque
[36, Eq. (77)] with which the influence of roundness of the
tyre is meant to be expressed, is erroneous, According to
our view this influence is completely cancelled by the torque
exerted by the radial reactive forces due to tension in the
string which is stretched around an imaginary cylinder,
Smiley [40] and Hadekel [37] adopted the same erroneous
corrective factor, In the early forties also Temple developed
a tyre theory similar to that of Von Schlippe. The work
is partly published by Hadekel [37].

Segel [38] derived the correctfrequency response functions

for the one-dimensional string type model and it appeared
that similar response curves arise as those obtained with
Saito's approximate theory for the beam model (see also
[ 31, discussion]).
" A simple, completely different theory is proposed by
Moreland [ 39]. Moreland introduced a time lag term which
illustrates that he failed to recognize that tyre behaviour
is essentially path dependent. For this reason it can be
expected that his theory may be correct for only one value
of forward speed.

Smiley [ 40] gave a summary theory resembling the one-
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dimensional theory of Von Schlippe [34]. He has correlated
various known theories with several systematic approximations
to his summary theory.

In principle, the string theory is simpler than the beam
theory, as with the string model only the deflection of the
foremost point determines the path of the tread for certain
wheel movements, whereas with the beam model also the
slope in the foremost point has to be taken into account as
an additional variable, The latter leads to an increase in
order of the system by one., No or little difference in linear
response appears to occur between string and beam models
when the parameter values are chosen properly.

The tyre theory which will be presented in the subsequent
sections, can be seen as an extension of the theories based
on the string type model. In principle, the tyre model to
be investigated is considered massless and has a contact
area of a finite width and length; a new aspect in investigations
of non-stationary tyre behaviour is that the carcass is
provided with a great number of elastic profile elements.
A correction is made to account for the gyroscopic couple
due to variation of lateral tyre deformation. Subsequently
to the treatment of the stationary tyre behaviour considering
partial sliding, a linear non-stationary theory will be
presented. The frequency response curves will be given and
several approximations discussed. Finally, an approximative
method will be described with which partial sliding in the
contactareainthe case of non-stationarymotion is introduced.

2. Diffevential equations and boundary conditions

Consider an elastic rotationally symmetric body represent-
ing a wheel with tyre rolling over a smooth horizontal surface
representing the road. Fixed to the road a co-ordinate
system (0,x,y,z) is assumed of which the x- and y-axes
lie in the road surface and the z-axis points downwards
(cf. Fig.1). Another co-ordinate system (C,§,n,{) is intro-
duced of which the axes § and n lie in the (x,0,y) plane and
¢ points downwards, The system moves with respect to the
fixed system in such a way that the g-axis lies in the wheel
centre plane and the n-axis forms the projection of the
wheel axis, The body is deformed vertically so that a finite
contact area is present. The centre C travels with a con-
stant speed V over the (x, 0, y) plane. The travelled distance
s equals:

i wTEy . (1)
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Fig.1, Top view of contact area, showing position with respect to co-otdinate system
fixed in space.

where t denotes the time., The tangent to the orbit of C
makes an angle B with the fixed x-axis. With respect to
this tangent the §-axis is rotated with an angle ¥. The
angular deviation of the wheel plane with respect to the x-
axis is denoted by:

y=8+14¢. (2)

For small values of B the following relation with y,, the
lateral co-ordinate of C, holds:

dy,,
- (3)

The horizontal displacements of a contact point with res-
pect to its position in the horizontally undeformed situation
with co-ordinates (§,7n) are indicated by u and v in §- and
n-direction respectively. The displacements are functions
of E,n and the independent variable s or t.

The components in - and n-direction of the sliding
velocity (W) of a point of a rolling body in the contact area
with respect to the road read in general:

} 3 . au _ ou , du
Wy = Wog - nwg = Vog 5z = Voy 5 * Bt °
5 av . 8 L
_ v _ av . v
W, = Wy + Eog = Vot 5§ = Voy o7 * t *

where (Woi ,Wo,q) denotes the vector of the sliding velocity

, cceiall
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of the point C' of the tyre, which coincides with the centre
C at the instant considered, in case that horizontal
deformations would not occur; (Vogs Voy) is the vector of
the rolling velocity with which point C moves relatively to
C' under the same circumstances. Moreover, wy denotes
the angular velocity of the system (C, §, n, £) about the ¢-axis
(yawing velocity):

wg=7v =B+, (5)

We will restrict ourselves to small values of lateral slip,
and assume |¢|« 1, For the system under consideration,
i.e, the tyre, where only rolling in g-direction occurs, the
following relations hold:

V,=V and V_ =0, (6)

3 oy

We will restrict ourselves furthermore to cases where the
longitudinal slip velocity W,g=0, which is approximately the
case in reality when no driving or braking couples are ap-
plied. For the lateral slip velocity we obtain:

Wy = -V . (7)
We introduce the variable ¢ denoting the spin:

e -2 (8)

A A =
The latter part of this relation holds owing to Eqgs. (1) and
(5). We finally obtain the following expressions for the sliding
velocities of a point with co-ordinates (&,n):

& ou ou
We/lV=-ne-g+a -
ov o "
= v
Wy‘/V"‘W"'E?‘a—E‘“"gg.

When the vector of the pressure exerted by the tyre upon
the road is denoted by (pg,py.pg), We obtain the following
relations for the case with finite friction coefficient u. In
an adhesion region, defined as the area where no sliding
occurs (Wg = Wy = 0), the relations

ou _ du N .1
ﬁ'a_s‘='n?:'a_a_-a_z——’w+59:

Vp‘g’ + py<HPE

(10)
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hold, and in a sliding region the relations (9). For the pres-
sure we obtain in vectorial form:

HMPY
(Pg. ) = 7 (Wgs Wy) (11)

where
W=VWwi+wr, (12)

the velocity components Wg, Wy being determined by (9).

For the case that only lateral slip occurs ($=0) and in
addition pg = Wg = 0 throughout the contact area, which
may occur with simplified systems to be treated, the
relations (9), (10) and (11) reduce to:

v _ 9v _ _
ﬁ - _S - w )

in an adhesion region, (13)
| Pyl < upg
av _dv. _, _n
’13 0s v *?

in a sliding region . (14)
P, = HPy sgn W,

The equations above apply in general, Their solutions con-
tain constants of integration which depend on the construction
of the tyre, of which an approximate physical description
will be given now.

The massless ""running band'" model of the pneumatic tyre
to be investigated is shown in figure 2, The carcass is

Fig.2, Top view of tyre model.
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represented by a number of elastically supported parallel
strings under tension, which are connected by cross cords.
The points of connection can move only laterally and their
mutual distance remains the same, When the strings are
deformed laterally the rubber in between will be sheared.
Through the continuous elastic support axial forces dis-
tributed over the length of the band can be transmitted to
the wheel plane. To this band under tension several rows
of an infinite number of elastic blocks representing profile
elements, are attached., In the contact area of length 2a
and width 2b the ends of these elements have contact with
the road surface.

The longitudinal deformationuis assumed to be proportional
to the longitudinal component of the contact pressure. The
following relation holds:

Pg = - c*u , (15)

where pg is the force and c* the longitudinal stiffness of
the profile elements, both per unit area.

" The lateral deflection vis composed by the lateral deflection
of the string v, and the lateral deflection of the profile
rubber Vp!

vEvetv, . (16)
We will consider only the case where v, is constant along
the width of the contact area, as will occur in cases to be
investigated. We assume v, to vary proportionally with Py

as expressed by:

p, = -=¢c,V

K an

where py denotes the force and cp, the lateral stiffness of
the profile elements, both per unif length,

For obtaining an expression for the deflection of the
strings we must consider the equilibrium of an element of
the tyre model as shown in figure 3, where the longitudinal
displacements u, resulting in a second-order effect, are not
considered, In lateral direction the equilibrium of forces
acting on the element with length d§ and full tread width
2b, results in the following equation:

a & +D -D -3 ar - 5 =,
TRy B 0. gy & ~5 50
<avs v, >
8ot aiidl-ds ) « o, (18)
1\ 9k aF.2
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Fig.3. Equilibrium of deflected tyre element.

where ¢ denotes the carcass stiffness ("'pneumatic stiffness'’)
per unit length, S; the longitudinal component of the total
tension force in the strings and D the shear force in the
cross section of the band, The shear force is assumed to
be a linear function of the shear angle, according to the
formula:

A
D= -85y T (19)

With the introduction of the constant S = S; + S; we deduce
from Eq. (18):

= G Ve » (20)

In the part of the tyre not making contact with the road
the contact pressure vanishes so that:

2
9" vy
S—-—aE2 BV, AU for|5|>a_ (21)

For the part making contact we obtain with Egs. (20), (17)
and (16):
0" vy

98>

- BV ® S0V = %) for |g|<a. (22)
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We introduce the tyre constants:

o = S . = S and € = i: = :
- - 2 S B e e T = .
\/cs g \/cs+cp o 1+cy/cg

(23)

With increasing profile rubber stiffness the value of the
parameter € decreases until it vanishes when cp —ew which
represents the case that no profile elements are introduced.

2
g OV
ek p.”/cS s (24)
13
2 82v5
o == ) for |g|>a, (25)
13
9%v
o? Sy, = -(l-€Yy for |£|<a (26)
c aa2 s i

For large values of |§| the deflection v, tends to zero,
Therefore the solution (25) reads:

-E/o
v, = Cye for §>a,
- (27)
v, = C e for < -a,
At the boundaries § = ta we obtain consequently:
_ : ov _
Vs & F6lim == for § = a,
Ela g
(28)
Vg = 0O lim & for § = -a,
ET-a g

Since for § = X a the deflection v and its derivative
9vs /8E vary continuously with &, the latter due to the fact
that no finite concentrated forces can act on the strings
with finite deflection vyand finite stiffness c, (cf.also Egs. (17)
and (20)), in the expressions (28) the limit signs may be
omitted, after which they can be used as boundary conditions
for the solution of equation (26). For the determination of
the integration constants occurring in the solutions of the
first-order partial differential equations (9) the additional
conditions that the deflections v and u vary continuously
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at the leading edge, where § = a, are still needed. That
this continuity does take place can be proved in the follo-
wing way.

For the case which may occur in reality, where u is finite
and the vertical pressure gradually tends to zero at the
leading and trailing edges of the contact area, it will be
obvious that the profile elements show no deflection just
after entering the contact area or just before leaving this
area, The deflections consequently vary continuously in the
neighbourhood of both edges in this case.

For the extreme case where finite shear stresses are
available at the leading and trailing edge of the contact
area (4— o) a finite deflection may occur at these edges.
Figure 4a shows the deflected centre peripheral line for
the case of a very large but finite value of u. Small
vanishing regions of sliding are considered at the edges
with deflections (u,v,) tending to zero for §— ta, Sliding
occurs in the regions a-€;<§<a and -a<§<-a + €3 where ¢€;
and €3 are vanishing quantities, At the boundaries of the ad-
hesion zone the deflection of the profile rubber is denoted by
(u1,vp) at the leading edge and by (ug,vpy) at the trailing
edge.

In figure 4b an arbitrary course of the deflection in the
front region of sliding is assumed, It is easy to recognize
that at least in one point in that region the slope du/8§
obtains the value:

ui
ou _ _ -
. € (29)

At this point all the terms in the right-hand member of
the first equation of (9), except du/d%, will be negligible
with respect to 9u/9% when u, is finite and €;— 0. For
the sliding velocity in longitudinal direction in the point
considered we may write consequently according to the
equations (9):

WEl =V —. (30a)
€1

In an analogous way we obtain for the other component and
for the sliding velocities occurring in certain points at the
rear:

» (30b)
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Wﬁz O (30c)
€
v
p2

W.qz = -V » (30d)
€2

y' n

Fig.4. Probable tyre deformations at vanishing sliding.

a: With profile rubber, b: In vanishing region of sliding (83—0), c: Without
profile rubber.

In the parts of the front- and rear sliding regions where
the deflections u have the same sign as u; and ug respective-
ly, points can always be indicated (cf. Fig.4b) where the
longitudinal components of the sliding velocity have the same

aivas o Lol
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sign as the longitudinal velocity components expressed by
(30a) and (30c) respectively. The horizontal shear force
acting from the road upon a profile element is always
directed opposite to the sense of the sliding velocity of that
element with respect to the road. Consequently there are
points in the front sliding region where the longitudinal
component of the shear force is directed opposite to the
sense of the longitudinal deflections while in the rear
sliding region points occur where the longitudinal com-
ponents of forces and deflections are equally directed. The
first finding is incompatible and the latter is compatible
with the fact that the force must be in equilibrium with the
internal reactive force due to elastic deformation, Similar
findings are obtained for the lateral deflections and forces,
It can be concluded that the leading edge cannot show a
finite deflection in contrast to the trailing edge, where the
sliding velocities can be compatible with the reactive forces
throughout the sliding region,
~ Until now we have considered the case of finite profile
stiffness, We will now turn to the extreme case showing
an infinitely stiff profile rubber which in fact represents
the tyre without profile elements. It should be investigated
now whether the slope 8v /8§ (= 8v/8E) varies continuously
at £ = £ a, In the case of finite friction coefficient and
vertical pressure it is clear that no kink can exist, because
then no concentrated force can be transmitted, The case
of u—w may be investigated by assuming small vanishing
regions of sliding which means that u is taken large but
finite, This principle has been suggested by Kalker [17].
Consider a sliding region a-€;<§(<a where €; — 0 when
u—oo (see Fig, 4c). The sliding velocities are accordingto
equation (4):

for £ =a -¢€;: W.,‘/V -y + ae - (%'%)gq-;] =0,

for £ =a: W, /V

ov ov
" _¢I+a9'(ﬁ_a_s~>5:n' (32)

Because of the fact that the deflection v varies continuously,
we may write:

(V)E=3'¢| = (v)£=i1 +€e; . w (33)
where w is of the order of 8v/d8¢ and is a function of ¢,

and s, We obtain for the sliding veclocity at the lcading edge
(§=2a):
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vV B (BB )

v {(%>E=a-cl B (%) g:aZ' €V % (34)

of which the last term vanishes for €; — 0,
The lateral force acting on the string over the length
a-€;<§<a would be:

=
@

By =.9 g(g—::’)au (%E)aaZ* % Mgl CE

of which the last term tends to zero for €, —0., The force
appears to have the same sign as the sliding velocity and
thus is not compatible with this velocity. But the cor-
responding force and velocity at the trailing edge appear
to be opposite in sign so that they are compatible with each
other, Consequently, a kink may only appear at the trailing
edge. It is shown that the sliding velocity at the trailing
edge does not vanish for u—o, in contrast to the sliding
velocity at the leading edge, which is a result that cor-
responds to findings of De Pater [14, Fig,7] and Kalker
[15, p.148] for the steel-on-steel problem,

Alsoatthe transition between adhesion and sliding regions,
vy and 9v /0 as well as v vary continuously when a con-
tinuous pressure distribution is considered., Complete sets
of boundary conditions will be given with the treatment of
the specific problems in the subsequent sections,

The forces and the moment acting on the tyre may be
computed by integration over the contact area A, The forces
in longitudinal and lateral directions become respectively:

v

= - dA .
[ pgaa i F &p,’ (36)

The moment about the vertical axis reads:
M= [ (pgn - py&)dA . (37)

Here pg and py are both forces per unit area, The longitu-
dinal force will become zero in the cases to be treated in
the subsequent sections. In general this force is negligible
for a freely rolling tyre (no braking or driving torque ap-
plied). The vertical load of the tyre will be denoted by N.

In the case of purely lateral slip the tyre models con-
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sidered do not show longitudinal deformations so that pg=0;
the lateral force and the moment read then:

a

F=-J'p,qu , M=- [p,gde, (38)

&

where p, denotes a force per unit length.

The group of investigators concerned with the steel-on-
steel problem mostly use notations which differ here and
there from those employed above. For the sake of con-
venience we have listed some important relations below;
the symbols shown in each left-hand member correspond to
notations of de Pater [14], Kalker [16] and others:

vy = -¥; T, (<F,) = -T; T, (=F,) = -F; M, = - M. (38a)

3. Stationary behaviour for any slip value

This section deals with the derivation of mathematical
expressions for the deflections of the strings and profile
elements and in addition for the cornering force F and the
aligning torque M as a function of the slip angle ¢ for
stationary rectilinear motions (¢ = 0).

The vertical force distribution per unit length is assumed
to be parabolic along the §-axis, which is a fair approximation
of distributions met in reality (see for instance Martin [45]).
We obtain for the lateral force distribution in regions of
sliding:

Py = Mpy sgn Wy (39)

where
Py = Pgo il - (§/2)%} (40)

with Pro = % denoting the maximum value of py at § = 0.

It is convenient to introduce non-dimensional quantities
shown in table 1, For simplicity we shall henceforth omait
the underlinings indicating the quantities to be non-dimen-
sional,

We shall first investigate the tyre at high slip values (slip
angles), so that no regions of adhesion occur. Next the
slip value will be reduced until adhesion starts in a certain
point, The point where this occurs will be determined for
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Table 1. Non-dimensional quantities.

/1p¢0 @ v § c Gc
Ty = s s, PR, Lo, g §, R,

cga T Ta  a  a a

e c CMm P"l p.q
R el s B it

a cqa ) Toca ”P(o

F F M M N
¥ & =2 5 M % = . § =

1ocsa2 P 'rocsa‘3 upcdaZ pptoa

several configurations, After that we will examine the tyre
moving at even smaller slip values and finally at vanishing
slip.

3A. Total sliding

When total sliding occurs, expression (14) is applicable
over the whole contact length., We shall assume positive
values of the slip angle ¢ so that positive deflections and
negative sliding velocities occur,

The lateral force distribution will be now, according to
(39) and table 1:

py = - (1 - &2). (41)

Equation (24) governing the deflection of the string becomes
consequently in non-dimensional form in the stationary case:

-v, = -1+ g% ; (42)

owing to the boundary conditions (28) the solution becomes:

2 . |

vs=o(o+1)(e T +e c')+1-202-52. (43)

The deflection of the profile rubber becomes with (17),
(23) and (41):

2
. ' S (44)

l-e2
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Hence the total deflection reads according to (16):

14§ -k 2
r o g L=
v = og(oct+t1l)\e + e -20" + = (47)

1 -¢€

The sliding velocity for stationary motions becomes according
to equations (9):

W.,I/V—-\/J-'a-a'. (46)
When the slip angle ¢ is gradually reduced, the sliding
velocity will become zero for the first time in the point
where the slope -98v/8% is maximal, i.e. where 8%v/0§?
vanishes or at the leading edge.
The first derivative of v with respect to § becomes:

d—v=-(a+1)(e° -8 °> AP SR Y

dg 1 -2
The second derivative becomes:
d2v o+ 1 -}15 -I;E 2
o2 e 9 +e ¢ - =
d§ (o} I = e®
Vs 1 - &’.2 €’
= — - —_— - 2 . (48)
o? 02 1 - 62

The point of inflexion appears to have the same { co-or-
dinate as the point of intersection of the deflection curve
n = v, and the parabola n =1 - £2 + 20%¢?/ (1 -€2?), Figure
5a shows the deflection curves of the string for several
values of o and the parabolas for various e€. The points of
inflexion of these curves are shown as well as the points
indicating the &-values where the contact lines have their
maximum slope -98v/8E and where consequently for the
first time adhesion occurs. Only in the case that no points
of inflexion are present, first adhesion will occur at the
leading edge. The parabola for € = 0 coincides with the
deflection curve of the string for o= 0.
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Fig.5a. Graphical method for determining the points of inflexion of the contact line
of the tyre under total sliding conditions,
b. Relation between ¢ and e according to Eq. (48a).

It appears that the point of first adhesion is situated
somewhat behind the leading edge, when the quantity € is
smaller than a certain value depending on o, i.e. when the
stiffness of the profile rubber is greater than a certain
value., This means that when reducing the slip angle further,
two sliding regions will occur: a small region before and a
much larger one behind the adhesion region., The limit value
of € above which first adhesion occurs at the leading edge,
can be calculated by means of the following formula:

2 _1-othg™
R VT (48a)

This relation between € and o, plotted in figure 5b_has
been derived from (43) and (48) by putting £=1and d%v/dg%=0.

3B, Partial- sliding
We shall first examine the case of relatively large €

such that no sliding region at the leading edge can arise,
Afterwards the case of € = 0 will be considered (no profile
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elements), The case of finite € > 0 where also at the leading
edge sliding occurs, is not considered, because of the
greater complexity involved.

Figure 6 shows the deflected tyre model under steady

1 . / ;

T { .- 'l “""'"WL
@ U mgjjjjjyfcb

-

L

Fig.6. The deflected tyre model provided with profile elements showing an adhesion
and a sliding region.

state conditions, A sliding region is assumed from § = a2
until § = -1, Equations (13) and (26) are applicable for the
adhesion region, We obtain:

dv

ﬁ=-¢ (49)
5 for a, <§ <1,

2dvs .

OCF-V5='(1'E)V (50)

Equation (49) shows that the contact line in the adhesion
region is straight and parallel to the direction of motion.
For the sliding region the equations (42) and (44) apply
again when a negative direction of sliding is assumed. In
general form we obtain with furthermore equation (14):

T v Wy /v (51)
2
) 3
Vp=-1-52 (l—E)sgan for -1<g<a, . (52)
" d2vs 5
o e - Y, 0 (1 - §7) sgnWy (53)

d§
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The direction of sliding will be assumed to be negative in
the entire sliding region as a logical consequence of the
behaviour with total sliding., The sliding direction may af-
terwards be checked by means of equation (51).

There are five constants of integration and one unknown
ag, We therefore need six boundary conditions in order to
compute these, The conditions read:

dv, v
E=1 : v,=v(=v)), g5 = -5
dv, \ dv, (54)
£E = a,: lim (—-,v,v>=1im —,v,v>,
®7 gtag \GE T Elag \IE 7 8
dvs v
E:-l: d—£=?_

Integration of equation (49) yields, when the deflection at
§ =1 is denoted by v,:

v=vy +(1-§y¢y for a,<E&<1, (55)
Using the boundary conditions for § =1, we may solve v,

from equations (50). Expressed in terms of v, and ¢ we ob-
tain for ag<§ <1:

1-§ 1-§
v, = [%e {(1+e)eK v i -e)e'?£+ (1 -62)] v, +
Y 1-§ _1-8
_(1-62)[% Uc(e % . e ¢c>-1+g]¢,, (56)

The solution of equation (53) for the sliding region contains
two integration constants, of which one can be computed
with the use of the boundary condition for § = -1, We ob-
tain then for -1< §<ag:

1+
- /
v, = oo+ 1)e ° FOger T % 1= 200 = §510¢ 1BW

For the solution of the three unknowns v;, ag (or ) and
C, we have the three remaining conditions in the point § = ag
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at our disposal., Finally we obtain ¢ as a function of ag:

1 =ag i i =8
+20{a2-c+(o+1)e ¢ %.B+E 2.A
2

2

b = 1 =€ 1 =€ .
A, D¥C,B
(58)
where
o 225
A=2+(1+€)e% + (1 -€)e % ,
Lag Lo
B=-2€+(l+€)e % - (1-¢€)e % ,
l-ag -l-az
C =2(1-ay) + o(l -€?) <2-e"c -e "C) .
D = 26(1-:512)+c(1-€2)(ectc - e °°> .
Once the value of ¢ is known, v; can be calculated:
l-ag
- 2€ 5 + I . @
% @ l1-c¢€
1 B (59)
The constant C, becomes:
_1+a2 l-ag -(:/.:
Cy =lv; +(l -2ay)¢-ofc+1)e ® +20%- e .
§ = ig®
(60)

Insertion of ¢, v; and Cy for given as in equations (56)
and (57) results in the co-ordinates of the string, after
which the shape of the contact line can be calculated with
the use of equations (55) and (52).

For the special case of €=1/7,5 and o = 3,7411, this
has been carried out for a number of values of ay. Figure 7
shows the shape of the string and the contact line for several
slip angles ¢. The obliquely shaded area indicates the sliding
regions, growing with increasing slip angle until the whole
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Ysi= 0073
adhesion region.

Fig.7. The deflected tyre model provided with profile rubber (6*=3, ¢=1/7.5) for
various slip angles. The shaded area indicates the regions where sliding occurs.

contact line slides, Larger slip angles will not alter the
shape anymore.

A check has revealed that the deflection of the profile
rubber in the straight portion of the contact line remains
in the case considered below the maximum possible values,
so that no front sliding will occur, which is in agreement
with findings shown in figure 5b. Also the slope of the
contact line in the sliding region remains smaller than ¢
so that the direction of sliding assumed is correct,

We define the relaxation length o* as the distance between
the leading edge of the contact area and the point of inter-
section of the elongation of the straight portion of the
contact line with the g-axis, The values of o and € men-
tioned above were chosen in such a way that o* tends to
the value 3 for ¢ —0 (cf, Sec. 3C, Eq. (77), Table 2). We
observe, thatthe relaxation length decreases from the value 3
when the sliding region vanishes until a value somewhat less
than 2 when total sliding octurs.

Once the deflection of the tyre model is known, the force
and moment can be calculated. Integration over the contact
length with the use of the expressions (14) and (17) as in-
dicated by equations (38) yields:

1 1
F=F, +F = 5(2+3ag-a5) + (v, +¥) (1-a,) -5 (1-ad)y +
l-ag

1 G,
+§q[{(1+e)v1 —(l—ez)otl/z(l-e _: )+
{1 -evy - (1 -ez)or//}(l -elT"z)]- (61)

slip = adhesion
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1 Dy, e 2 A 1
M= Mg, + M anesion® - 7 (1-283+a3) +5 (vi+¥)(1-a§)-5(1-a3 ) +
L-ag
+ %a[{ (1+€)v, - (l-ez)mﬁE {1+crc -(agta,)e 9c l +
l-ag

(e a-eyou] {10, ~az-0)e * }].(62)

Figure 8 shows the characteristics calculated for the

. e
T —-
X
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Fig.8. Tyre cornering characteristics for the tyre model with profile rubber (¢*=3,
€=1/17.5).

cornering force F and the aligning torque M as a function
of the slip angle ¢¥. The slope of the curves become zero
at the slip angle ¢=¢  where total sliding starts. The shape
is similar to those obtained from experiments or from
calculations in which alternative models are used as those
of Fiala [20], Freudenstein [21] or Pacejka [23].

The phenomenon that in practice the aligning torque ob-
tains a positive value for large slip angles, cannot be ex-
plained with our model. It is probably caused among other
things by the longitudinal forces due to rolling resistance
of which the resultant acts out of the wheel plane due to
the lateral deformation of the tyre and thus forms a couple
about the wvertical axis opposed to the aligning torque,
Another important factor helping the moment to become
positive is the fact that the coefficient of friction is not a
E_:onstant but depends on the sliding velocity (cf. Savkoor

277).

As mentioned before the general case of relatively large
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stiffness of the profile elements, showing an additional
sliding region at the leading edge, will not be studied be-
cause of the great complexity involved, We will treat only
the case of infinite stiffness of the profile rubber (€=0,
o*=g, vp=0, v=v,). Figure 9 shows the simple string model

Fig.9. The deflected tyre model without profile rubber showing two sliding regions.

in deflected situation. Two regions of sliding are expected,
one at the front (a; <§<1) and the other at the rear
(‘1 < E < a2).

In the region of adhesion equation (13) holds. In the
stationary case we obtain:

% = -y for ag<g<a, . (63)

For the sliding regions the following equations apply ac-
cording to equations (14), (24) and (41):

g‘_’ = - - W_-,, (64)
dg v for a;<§<1

v and -1<§<a, .
oz-dg—z-v= (1 - &%) sgn Wy (65)

Equation (63) indicates again that the contact line is straight
in the region of adhesion (d%?v/d&%? = 0). In this region the
following inequality holds according to equations (24), (13),
(39) and table 1:

v<l - §° for Bg < 8., (66)
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which means that the straight 2por‘tlon of the contact line lies
inside the parabola v =1 -§ The points of inflection of
the contact line are located on this parabola when W, <0
in these points, Near the two edges & = £ 1 the available
lateral force tends to zero, Since a finite deflection v>0
is present in these places, the curvature of the string will
be concave (d2v/d{?>0) according to (65).

After these general observations, we shall examine the
shape of the contact line starting from the trailing edge.
In the rear portion of the contact line dv/d& >0, so that ac-
cording to (64) Wy<0, Until the contact line intersects the
parabola, the shape remains concave, Inside the parabola,
however, the curve becomes convex, At § = ag the adhesion
region is entered. At £ = a; the front sliding region is en-
tered. When this latter point of transition lies inside the
parabola, according to (65) the curve must be convex just
in front of that point when the sliding velocity is negative,
This shape, however, leads to an increase in slope, so
that according to (64) the sliding direction becomes positive
in that case, which is in contradiction with the assumption,
In the same way a concave shape can be shown to be im-
possible, The conclusion is that this point of transition
must lie on the parabola. The curve in the front sliding
region can only be concave, so that W,<0. Its curvature
tends to zero when the parabola is approached We may
conclude that throughout the contact area Wy <0 and that no
more than one adhesion reglon can arise.

For the front sliding region the following boundary con-
ditions apply:

e, .3
£_1- dE" o ?
2
E=a: FF=-v, SL=0, (w=1-a). ( O

These conditions suffice to find the solution for the contact
line of the front sliding region and with it the value aj.
It appears that the front part is not affected by the rear
portion., For the adhesion region the condition within
brackets may be employed.

For the rear sliding region in which the deflection does
depend on what happens in the front, the following con-
ditions apply:

§ =ag: v=vy + (a1-agly, g%= -,
dv v (68)

5='12 a?-'-ga




II 33

where v, denotes again the deflection of the foremost point
in the adhesion region. The conditions (68) are needed to
determine the constants of integration and the unknown ag
for the solution in the rear sliding region. Altogether we
have five constants of integration and two unknown lengths
a; and ap, which may be determined with the aid of the
4 + 3 conditions (67) and (68).
The solution for the front sliding region reads:

e a1-§
_ G c [ 2 50
V-0{¢/+(o+1)e -2a1}e + (o + 1)oe +1«-20"-£%";
(69)
together with the condition v; = 1 - a% we obtain:
31'1
w=2{a1+o-(o+1)e"}. (70)

With the numerical method of Newton-Raphson aj can be
solved as a function of ¢, after which v can be calculated
as a function of § for a;<§ <1, The deflection in the ad-
hesion region becomes:

v=v, +(a;-EW =1-2a+ (a; - E)W. (71)
The solution for the rear sliding region reads:

_a2+1 5:32 _g:i
N = o{-¢/+ {orl)e 7 + 2a2ze

® 4 (o+1l)oe % +1-20%-g%,
(72)
The unknown ag can be solved with the aid of the condition

vg=v,+ (a1-ag)y. This condition reads with the use of ex-
pression (72):

agtl a;-1

20(0+1)e " s (o-a2)2 = 20(o+1)e o (o+a1)2+(al-a2+2c)¢/.
(73)

The solution of ag for certain ¥ may again be carried out
by means of the Newton-Raphson method. Equation (72)
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gives then the deflection v as a function of g for -1<g<as,
For the value of the relaxation length o=3 the contact line
has been calculated, Figure 10 shows the results, The

(o]

$y = 0054

| /L tront sliding regions
adhesion regions
rear sliding regions

n

Fig. 10, The deflected tyre model without profile rubber (¢=3, €=0) for various slip
angles, The shaded areas indicate the regions where sliding occurs.

shaded areas indicate the regions of the contact line where
sliding occurs. A part of the parabola shown forms the
boundary between adhesion and front sliding regions. Another
curve forms the rear boundary of the adhesion regions.
These two curves intersect when total sliding starts at a
slip angle ¢4 =0. 054.

When no front sliding would be taken into account, a
solution very close to the real solution will be obtained be-
cause of the fact that the sliding portion of the contact line
at the leading edge is practically straight and short with
respect to the contact length. Another consequence is that
the variation in relaxation length with slip angle will be
very small,

The cornering force and the aligning torque are found by
integrating along the contact line, We obtain:

;2(1 - E2)dE + }1vd5 " J’l(1 -%)dg =

-1 ag a1

F

4 1 .3 1 |
Ftas-arty(a - ay) vy (a - ay) (v + V), (74)
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32 aj 1
M= [ (1-g)gdg+ [ vegdg+ [ (1-g%)gdg =
-] 32 31
= -3 (a} - a}) + z(al - ad) + 3(a; *+ axlarvy - ayvy)
+ % (‘af + aa, + ag) (vi = vg). (75)

The results of the computations carried out with the aid
of a digital computer are shown in figure 11, In contrast

8 —
N -

=041

Pst

0 00 002 003 00t 005 006 007 008 ()—

Fig.11, Tyre comnering characteristics for the tyre model without profile elements
(6=3, &=0),

to the characteristics of the more elaborate model shown
in figure 8, the curves show a discontinuity at a slip angle
where total sliding starts. The model behaves, as far as
the force is concerned, more or less, like a spring in
series with a Coulomb frictional element.

The fact, that both front and rear sliding regions exist
in the case treated above, may lead to the conclusion that
at each edge a concentrated force will act in case of
vanishing sliding. This conclusion is not correct, since
large forces per unit length can be transmitted only in a
portion where a convex deflection of the string occurs. The
latter is the case at the rear, inside of the parabola, only
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so that for ¢¥-0 a concentrated force will occur at the
rear only, We may remark, that according to calculations
not being reproduced here, in the case of a rectangular
pressure distribution no front sliding will occur for the
model considered.

3C. Vanishing sliding

The stationary behaviour in case of vanishing sliding
regions, so for friction coefficients tending to infinity or
slip angles tending to zero (see Figs.12a,b), is the next
problem to be investigated.

Fig,12. The deflected tyre model at vanishing sliding.
a: With profile rubber, b: Without profile rubber.

Along the whole contact line adhesion occurs. Equations
(13) and (26) apply thus for -1<§<1. For §=-1 the solution
of equation (26) given by expression ‘56) has as boundary
condition the last relation of (54). With the aid of this con-
dition the deflection v; can be calculated. Omitting the
detailed calculations, we obtain:

vy =o*y¢y, (76)
where )

o§(1+e)e2/"c F(1-e)e % n}- 4
o* = , (77)
it: eZ/GC + ]1.;:' e—2/dc+ 9
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which is the expression for the relaxation length as defined
before (see Fig.12a)., The relaxation length tends to the
value o when the profile stiffness becomes infinite (see
Fig. 12b).

By using equations (56), (55) and (16) the deflection of
the profile elements can be calculated, after which expres-
sions for the force and moment can be obtained with (17)
and (38). We define:

F=Cy¢ and M= -Cy¥ (78)

with C and C) denoting the non-dimensional cornering
stiffnesses (see for definition Table 1). These coefficients
turn out to obtain the following values:

C = 2(1-62)[0'=:<+1 —-4]-'-(,0-* {(1+€)62/UC + (1-6)8-2/00

- 2} +

+2o%(1-c?) (M0 + /% . 2)],

Bu= 2(1 -62)[%_%0{0;:<(1+€)_0(1 RENTIRR +°c(1-92/°°)}

_%0{0'*(1 -€)-o(1 _52)}{1 +e'2/°c-ac(l-e"“)/"t‘)}]_/
(79)

When the profile elements are omitted (e€-0), these
equations reduce to:

C=2(0+1)2 and C, = 2{0(«“+ 1) + %} , (80)
or in dimensional form:
C=2c,(o+ta)’ and Cy = 2 csa{c(o+a) + 3 afg. (81)

The ratio of Cy and C will be defined as the pneumatic
trail e', which indicates the point in rear of the contact
centre where the resulting lateral force is acting. For a
number of values for o and €, the resulting relaxation
length o* and pneumatic trail e' are listed in table 2.
It is remarkable that the employment of profile rubber
of a relatively very high stiffness (cp/cs = 55) does reduce
o* and e' that much. The model with profile rubber may
give results close to those obtained experimentally (cf,
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Fonda and Radt [41, Figs.25,34]).

Table 2. Influence of model parameters,

tyre data relaxation | pneumatic
tyre model * 5 o
length @ trail e
c e | cp/eg
stretched string 3.7411 0 o 3.7411 0.803
(Von Schlippe) 3 0 © 3 0972
stretched string 1
3.7411 | —— | 66 3 0.49
+ profile rubber 1.5
profile rubber only
o 1 0 0 173
(rigid carcass)

4. Non-stationary behaviour for vanishing slip

In this section we will investigate the non-stationary be-
haviour of a tyre, We will restrict ourselves to linearised
systems where sliding in the contact area does not occur
(4o or y -0 and ¢ -0). The response of the force F and
the moment M with respect to arbitrary variations in ¢ and
¢ will be determined for the model with profile rubber and
for some approximative concepts. We will return to
quantities with dimension.

4A. Exact theory

The contact equations (9) apply when Wg and W, are
taken equal to zero. They read then:

ou ou _
B_E-ﬁ_—n?'

(82)
?rz-g%=-¢+£¢.

These partial differential equations will be solved by using
Laplace transformation. The Laplace transforms are written
in capitals. We will not transform with respect to ‘time,
as is done usually, but with respect to the travelled dis-
tance s = Vt, wherc V is a constant, The Laplace transform
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of a variable quantity, generally indicated by q, is defined
through:

L{as)} = Q) = [e “a(s)ds . (83)

With the initial condition u(§,0) = v(§,0) = 0 at s = 0 we
obtain:

-d—E-psU=-T?<b, (843')
d—EV-pS Ve-ptie. (84b)

The solutions of these ordinary first-order differential
equations read:

1
Uu=cC, ep55+5—sn o, (85a)

= pSE+1_ _1_(1_+
ol e g go . (85b)

The terms CuepsE and CvepsE point to a retardational
behaviour. These terms appear to represent the Laplace
transforms of the co-ordinates of a contact point with
respect to a co-ordinate system fixed in space, with axes
nearly parallel to the §- and n-axes (y<«1l, i.e. powers of
v negligible, cf. Fig.1). For these co-ordinates x, and y,
evidently the following property holds:

AR, ) (v, 8787}, Y8 Y, (v, 0¥ 8= 1), < {08}
where r is ‘some arbitrary value ranging from -a to +a. It
indicates the non-sliding condition of the contact points.

The coefficients C, and Cy are constants of integration.
They are functions of p; and depend on the tyre construction,
expressed i.a. by equation (26) and the boundary conditions
(Egs. (28) and further). The condition at the leading edge:

E=a: uE0.or. Us0 (87)

leads to the following expression for C:

cu"xla—s"""’e"’sa- (88)




40 II

For the determination of C; we turn to equation (26) which
reads in transformed way:

d? Vi
cg——-V—-(l-e2)V (89)
dg 2
With equation (85b) we obtain the differential equation:

2
d"Vv
o2 dzz‘ -V, = -(1 - aﬂ{cv P +iv—;§—( -+ a) «a}- (90)

the solution of which reads:

P

Ce"

V. = eE/°°+C e E/"<=+(1-€2) e 4

s + - 1-02 p2
Cps

1
o m*‘) } (91)

The three constants of integration Cy, C4 and C_ may be
solved with the aid of the three boundary conditions:

5 I
o ey Vig =¥y -alés-'--yé_i or V=V aT _'_O_S'J
(92)
= . 9Vg _ Vv dv _ Vi
g = -al aE - Fs or a—z T "

For the constants C, and C_ we obtain in terms of ¥,® and
C .

v*

- 1¥e Bt m S
Cy~g U [{1 110cps>cv ST RLT ¥
3
{__+a+o(1 +e)} ] 5 (93)
and finally for the constant C_:
Cy =Cy¥+Co0 (94)

where
Cy=-(2+A,+A)/(pA),
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Co=[(2+As+A)/psra(-2+A,+A)+
+of{-2+(1-€e)A,+(L+e)A_}]/(p,A)

with

A+ A_ psa l-Ups -p.a
A =(1+op,) & e +2——e %,

l+ocps 1-0c¢ps l-ngg

11—5 +a_
A, = e” %,

1¥Fe

With the aid of equations (15), (16), (17) and (36), (37) the
forces and the moment can be calculated., In (36) and (37)
instead of pydA, where py is a force per unit area, we
may as well write pyd§ with py denoting a force per unit
length, because of the fact that p, does not vary in axial
direction, as n does not appear in the expressions for the
lateral deflections.

Because of the anti-symmetry of the longitudinal deflections
u (cf. Eqgs. (85a, 88)) we obtain for the Laplace transform
of the longitudinal force and thus also for the longitudinal
force itself:

£{T} =0, T =0, (95)
The Laplace transform of the moment M* due to longitudinal
deflections becomes:
. . 1 e B 9 s p.(E-a)
£{M}=-chndA=-—coJ’r)dn 'f l-e° dg =
ps = =2
A n=-b E=a
= Mgy + Mg @, (96)

with the transfer functions:

97)
wi_- K - _!-__ - a=2pa } (

where the quantity

K =%a2 b 2 (98)
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bic* represents the

is introduced. It may be noted that
small tread element

torsional stiffness per unit length of
of full width,

In the expressions for the force F and the moment M'
due to lateral deformations, formed below, we have in-
troduced the overall stiffness per unit length:

(RN

c=1/(1/cp+1/cs) = € cp = (1-€%) cy. (99)

For the sake of abbreviation we shall moreover use the fol-
lowing constants:

_ : 1+°Ps psa 1 \
By, = -5 0 (lte) e C~ s
$r =732 : v 5 |
| 1£0,p s >
1+ap '
1 s pa 1 1 -
B, =-%0(lte esC——-g-—{a+cl+€}.
o : ; ) liUcp ?ps Ps : :
- H

The Laplace transforms of the force and moment are:
= +
£ {F} F ¥+ Fo o, (101)
M'} = M!
£ (M) =My

The transfer functions used in these expressions read:

foeln? ol .a<Pd
(Ft'w Fv)=° {2%‘(1='r17)+ - pZ — (%' C¢>+
s S 1_0.(2:ps A

y+ Mo, (102)

-
2a/g -2a /6.
( - e )(Bys » Bos) (1 “ % )(B¢_, B, )} (103)
9 o2 ].—()'21')2 eP@ +e-P@ ePs?_ P52
<M";‘M; =c[-§§~(0,1)+ : |a R
" 1-02p? P, p?

2a/e 9a /o o
T e KX (s | ICE IR

~ {a(1+e-2a/dc) -7, (l_o-z’a/ac)} (B¢_, B?_)] . (104)
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The total moment about the {-axis is obtained by adding up
the expressions (96) and (102):

M=M"+M', (105)
The total transfer function becomes:

Ml

¥ @
By transforming back the expressions above, we should be
able to find the deflection, the force and the moment as
a function of s.

As far as the shimmy motion is concerned, we are
interested in the response to sinusoidal motions., The
frequency response functions can easily be found from the
transfer functions by replacing the operator p, by iws (see
among others Effertz und Kolberg [46, p.70]). The reduced
frequency ws has the dimension 1/L, and equals 27/A, where
A denotes the wavelength of the motion, With constant
velocity V, w; is proportional to the frequency w = Vw,.
The variables ¢ and ¢ have the advantage, that the treat-,
ment is completely general and is not restricted to motions
in the neighbourhood of the x-axis. When, however, we are
dealing with sinusoidal motions with the wheelplane only
slightly deviated from the (x,z) plane, it is convenient to
replace ¢ and ¢ by the variables y and y, or B (= dy, /ds
for B«1l) (see Fig.1l). In the actual shimmy analysis ¥ and
yw Will be used. The following relations are applicable (cf.
Egs. (2, 3,8)):

=M! , M_=M +M!' . (106)
Y 9 9

dy dyw
—=9,B(=—)=7v-¥, (107a)
ds ds
or transformed:
I‘=1—O,B(=pY)=1—®—‘l’. (107b)
Py S P

The Laplace transform of the force and moments may be
written now as follows:

L {FYy = FYF'FFBB,
£ {M°} = MyI'+ M3B, (108)
< {M'} = M)T + M B
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The transfer functions with respect to ¥ and 8 written in
terms of the transfer functions with respect to ¢ and ¢
become:

1
= + = = -
F,=Fy+p, Fo, Fy(=5-Fy)=-Fy,
. - . . _1 L -
My =p, M, M; (= P_SNI)'W) =0, (109)
''= ¥ o ' = 2 ' o 1
MY M‘:‘ Py MQ, g = Myw) MS"'

The frequency response functions, F, (iwg) etc., are the
complex ratios between output, F efc., and the input, ¥
etc. For the tyre model treated here (0*=3a, € =1/7,5)
their absolute and phase relationship have been calculated.

In figures 13a,b,c,d the various responses as a ratio to
their steady state values are shown as a function of the
non-dimensional quantity w;a. Figure 13e shows the response
M* divided by the constant k/a, with respect to the value
of which M* approaches when w;—, Also the approximate
responses treated below are shown in these figures.

The phase angles ¢ are taken positive when the output
lags behind the input, which appears to be the case with
the force and moment due to lateral deformations. The
moment due to longitudinal deformations M*, however, ap-
pears to lead in phase., The phase lead of M* causes a
reduction in phase lag of the total moment M with respect
to v, as has been illustrated in the diagram of figure 14,

In the complex plane shown in this figure the response
curves are drawn for the moment M' which applies for an
infinitely thin tyre and for the moment M = M' + M* for a
tyre of finite width with x = Cya. The moments are made
non-dimensional by division by the steady-state value M,.
The curve for a tyre with k = Cya is obtained by vectorial
addition of M' and M*. Curves for other values of k may
be obtained by multiplying the vector of M* by the factor
k/Cya. The calculated behaviour of the linear tyre model
has unmistakeable points of agreement with courses found
experimentally at low values of the swivel frequency (see
Sec. VI.2, p.171), At higher values of the frequency, the in-
fluence of the gyroscopic couple due to tyre deformation,
dealt with in Sec 6, is no longer negligible,

The couple M* w1th mainly a damping effect may suppress
the shimmy, as will be seen later, We may further remark
that above a certain value of k the curve for the total
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couple M/M, will not encircle the origin but will remain
at the right-hand side of this point. This appears to be a
typical property of curves obtained experimentally, which
has not been explained, before, The point of intersection
of the curve for M and the real axis (Fig.14) represents
the point of "kinematic'" shimmy (cf. Kantrowitz [28] and
Saito [31]). This sort of shimmy may occur at very low
values of speed of travel, where the frequency and con-
sequently the moments due to viscous damping and inertia
acting about the king-pin axis become very small.

It may be noted that, taking strictly, we could confine
ourselves to the determination of the stationary response
and the non-stationary response to the angular motion v,
The angular motion of the wheel plane about the vertical
axis through the wheel centre can be composed by two
motions: an angular motion, in magnitude equal to v, about
a vertical axis through the point (§ = o* +a, n = 0) (see
also Fig.12) and a lateral translation y, = (0* + a)y. The
response with respect to the angular motion about the axis
through the wheel centre will consequently be equal to the
sum of the responses with respect to the latter two motions.
The first motion always immediately yields stationary response
because of the fact that the elongation of the stationary
contactline intersects the wheel plane in the point of rotation,
With the use of the quantities C and Cy indicating the
stationary cornering stiffnesses, we obtain:

E. .9 CY + F Yw s

v " R (110)
- '

M;- Y= -CM-‘Y +* Myw -yw:

from which the equations

s = 1
wa 5 P, Py ® TR (F)’-C)’
(111)
— —_—_1
M;’w_ p,Mj =5 +a(l\1; +CM),

can be derived. They show that the calculations of the
stationary and non-stationary responses to the angular
motion v would suffice,.

4B. Approximations

In behalf of the investigation of the shimmy motion where
mostly wavelengths occur relatively large with respect to
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the contact length (of the order of 10 times) it is sufficient
to employ approximations which correspond in response
fairly well with the exact response for values of w; at the
left-hand side of the hatchured band shown in figure 13.

In order to obtain an impression of the usefulness of the
approximations, to be treated below, we shall equalize the
terms containing w; in the zeroth and first degree in the
expanded frequency response functions with respect to v
and y, to each other., This can be realized by considering
same values for the cornering stiffnesses and for the re-
laxation lengths in the successive approximations.

The moment M* due to longitudinal deformations may be
approximated by a pure damping couple of which the char-
acteristics are shown in figure 13e, In the shimmy analysis
we shall make use of the formula:

. d
M"= - kp = - K2, (112)

where k, as defined by (98), is the coefficient of damping
due to longitudinal tread deformations and where furthermore
use has been made of relation (8).

In the development of approximations for the response
functions of force and moment due to lateral tread defor-
mations we shall as a first step investigate a simplified
model without profile rubber and of vanishing width. The
non-stationary response of this model has already been
examined by Segel [38].

The simplified system may be regarded as an extreme
case of the complete model as treated above. For c,—w
we obtain for the string deflection in the region of contact
according to (85b) and (94):

1 [-‘l’+ (o0+a+1/p)o ps(E—a)
Ps s

VeV, == +‘F-(g+1—)o].(113)
1+ op; Ps

At the leading edge the deflection becomes:
V, = o 114
1*T¥op, (y - ao), (114)

or transformed back:

dv, v, dy w dy
Y -ag=Y-—-a—, (115)
ds ds

— T —

ds -
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where use has been made of the relations (2), (3) and (8).
This first-order differential equation may be found im-
mediately from the original partial differential equation
(10), when the condition that for § =a the slope becomes
v
g—;:= —EE is taken into account.

The force and moment response may be found either
directly from the formulae (103) and (104) or by starting
anew from the deflection as given by expression (113). We
obtain the following transfer functions:

op-1  _
(F,,F,) =< [2(o+a)(1,-1->+1— 14 1),
m’}‘ 9 Ps Ps Ps o-ps.;.l
1
.(—1, o+a+t —>:I s (116)
Ps

(M;,’ g Mé) = ;—S[Za {o(c+a) +%a2} (0, -1) +

a(1+e —2psa) +p, {o(o'+ 1) -1/p52} ( 1-e—2psa)

(ops+1) pg

.(*1,g+a+:7s_ﬂ, (117)

from which the transfer functions with respect to v and f
may be obtained by using the relations (109). The response
formulae in the latter form, but in which p, is replaced
by iwg so that frequency response functions are obtained,
are already given by Segel [38]. Figure 13 also shows the
response curves of the simplified model considered (Segel)
for o* = o = 3a. Qualitative differences do not appear.
Quantitatively, the deviation from the response of the
model with profile rubber becomes larger for shorter
wavelengths (larger w;). In the region important for shimmy
analysis at the left-hand side of the hatchured band, very
good correspondence exists., The simplified concept, how-
ever, is still too complicated to be used in the actual shimmy
analysis. We shall therefore consider two approximations
of the response of the simplified model.

A first approximate description of the behaviour of this
simplified model, originates from Von Schlippe [34]. We
shall refer to this approach as approximation I, The con-
tact line is considered to be a straight line connecting the

B
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two endpoints of the real contact line (see Fig,15)., Only
the deflections v; and vy of these points are of importance
now, For the force and moment transformed we obtain with
the aid of expressions (81) and (99):

V;+V,
L {F}=c(o+a)(V+Vy) =C "
2 (o+a)

(118)

V-V

i 2

L (M"Y =c{0(o+a) +-:1,7a2} (V,-V,) =Cy -
a

With the aid of (113) the transfer functions become:

o) 1 1+e-2PSa
(F,, F) = (o+a)—{2(1,-—)+ (-1,0'+a+1/ps)}, (119)
Y ? Ps Ps ops+1
1 2)e 1-¢ 7P
oy, My)={o(o+a)+ 5 a }_{Za(o,-1)+———(-1,o+a+ 1/p))}.
v # Ps opgt1

(120)

The responses with respect to ¥ and B obtained with the
aid of formulae (109) appear to coincide practically with
those obtained from formulae (116) and (117) in the inves-
tigated range of wavelengths (see curves ''von Schlippe or
Segel'' in Figs.13).

Simulation of the Von Schlippe representation by means of
an analogue computer appearedfeasible although complicated.
In this simulation use has been made of equation (115) for
obtaining v; and of the retardational behaviour as expres-
sed by (86) in order to generate vg.

A second approximation (referred to as approximation II)
of the simple string model assumes a straight contact line
which touches the real contact line in the leading point. The
deflection of the string according to the tangent concept is
shown in figure 15,

The deflection v; given by equation (114) is the only
variable upon which the whole-lateral deflection and thus F
and M' depend. The following expressions apply:

£ {F}
£ {M'}

n

2 ¢ (cr+a)2V1 /e =CV,/o,

-2ca {olo+a) +5 a2}V, /o = - CyV, /o, (121)
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Fig.15. The simplified model together with two approximate concepts.

which yields with the use of expression (114):

2 ¢ (o+at)2
) = —— (1, -a), (122)

(Fy, F
N o ps+l

?

2 c a{c (o +a) +é—a2}
(M, MY) = = (1, -a).  (123)
Y o pstl

The characteristics of the response to ¥ and B obtained
with the formulae (109) are shown in the figures 13. The
curves do not show such a good correspondence to the
original characteristics as the preceding approximations do,
The relaxation property, however, is fairly well represented
in case of large wavelengths. The simulation by means of
an analogue computer, using equation (115), is simple and
may be checked by the better representation of Von Schlippe.
In the linear analytical treatment of the shimmy phenomenon
the simplest approximation II will be used only. In the non-
linear treatment the approximations will be employed in
adapted form as will be discussed in the next section.

5. Approximate non-stationary behaviour for finite slip

The very complicated treatment of the complete general
behaviour of the rolling tyre of which the wheel axle exerts
lateral and angular motions, will not be developed here, It does
not appear to be necessary because of the fact that we are
dealing with oscillatory motions with wavelengths many times
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larger than the contact length of the tyre., This implies that
the shape of the deflection of the tyre approaches the stationary
shape, i.e. shows an almost straight contact line in case
of complete adhesion.

~ We will consider the special case of the tyre model without
profile rubber. Sliding at the leading edge will not be con-
sidered, which is very well permissible as we have seen
in Sec. 3B. The part of the model in front of the rear
sliding region will behave then completely according to the
linear theory. The deflection v; will depend, also for
larger amplitudes, on the axle motions according to equation
(115), This will thus only be the case at angles @ = v;/o
(slope at leading edge, cf. Fig.15) not surpassing the slip
angle ¢y where total sliding starts. We shall not exceed
this value in the shimmy analysis.

As pointed out above we can very well suffice with the
simple string model in the shimmy range of wavelengths.,
With increasing slip angles the relaxation length tends to
decrease as appeared from the investigation of the stationary
behaviour of the model with profile rubber, In equation
(115) we could possibly introduce a relaxation length o
depending on the deflection v;. In further analysis, however,
we will take o as a constant because these variations will
not influence the phenomenon essentially, Moreover, it
would cause almost unsurmountable difficulties in the sim-
ulation.

The application of approximation II, i.e. the concept of
the straight contact line touching the real contact line at the
leading edge, suggests the assumption that the force and
moment depend on v; /o according to the stationary tyre
characteristics, This assumption will be applied in the
majority of the non-linear shimmy investigation.

If we want a verification of this simple approximation
with the Von Schlippe theory (approximation I), we have to
adapt also the latter theory to the non-linear circumstances.
In the linear case the force and moment depend on the front
and rear deflections v; and vy only. We can imagine two
axial springs mounted at the ends of the contact region
(see Fig.16). The ends of the springs making contact with

e G i ‘5

@ |
i,

Fig.16, The two-spring tyre model.
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the road follow the path of the contact line as dictated by
the Von Schlippe theory. These two springs with equal
stiffnesses can fully accomplish the force and moment
response according to Von Schlippe,

We shall consider now the non-linear system where the
ends of the springs will slide in lateral direction when a
certain limit of contact force is exceeded. In this way we
can also tackle the non-linear problem at least until total
sliding arises,

The stationary characteristics of the system considered
are shown in figure 17, Three cases are to be distinguished:
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Fig.17, Stages through which the two-spring tyre model with dry-frictional road
contact passes at increasing slip angle,

(A) adhesion in the points 1 and 2; (B) only adhesion in 1;
(C) sliding in 1 and 2. These steady state characteristics,
already resembling the real curves to an astonishing degree,
may be improved by giving the two springs such characteristics
that the cornering characteristics of the '"two-spring' model,
of which the spring ends do not slide now, equal the curves
desired,

We call the spring forces F; and Fy respectively. The
following relations apply:

F=F, +F,and M' =a (F, - Fy) (124)

or inversely:
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(F - M'/a). (125)

F, =< (F + M'/a) and F, =%

L
2

Figure 18 gives an example of the determination of the
functions F;(vy) and Fg(vg) (in non-dimensional form)

{
0041— RS 5 = ! B s T s
1Fw
2C3
v A
02— ———f— ~
“1MWY
2 Ca~
0 4
0 01 02 $ora
0 03 06 v,
0 05 10 A

Fig.18. Method for determining the spring characteristics of the two-spring model
from original cornering characteristics.

where it must be kept in mind that the following relation
exists in the stationary case:

Vi Vo
V=a=— = . (126)
o o+ 2a

The described method has been applied in the investigation
treated in Sec.V.1.2, where use has been made of the
analogue computer and the influence of the retardation term
has been examined. .

The additional moment M* due to longitudinal deformations
will be influenced by partial sliding too. Short wavelengths
and large amplitudes will effect longitudinal sliding at the
rear of the contact area. Taken strictly, longitudinal and
lateral slip can no longer be considered independently from
each other; the one influences the other, The two moments
M* and M', however, will not obtain their maximum at the
same time. A phase difference from %7 to about 37 radians
will occur in the range of wavelengths considered.

It was decided not to consider the sliding in longitudinal
direction because of the nearly unsurmountable difficulties
which the mathematical treatment of the non-stationary case
would give., Thus for simplification the degressive course
of M* with the amplitude of the motion will not be taken
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into account either, again because it will not touch the es-
sence of the shimmy phenomenon.

A component of the motion of the wheel plane not yet
considered is the change in camber angle ¢y, denoting the
deviation of the wheel plane from its vertical position.
This angular motion of the wheel about the line of inter-
section of wheel centre plane and road surface gives
rise to an additional variation in F and also to a much
smaller extent in M.

The main effect is that the radial force, which is a function
of the tyre deflection, obtains a lateral component, being
the camber force, While oscillating about the line of inter-
section mentioned, there is no need for the string of a
thin tyre model to come out of the wheel plane as long as
no sliding occurs, since all motions take place in that wheel
plane.

In the case of a tyre with finite width there will be a dif-
ference in rolling radius between both sides of the tyre in
cambered position, which causes the tyre to produte a
small couple about the vertical §-axis acting on the wheel
in positive sense and thus trying to turn the wheel to the
inside.

The force and moment due to camber will be relatively
small, We confine ourselves only to the linear contribution
to F which assumedly does not influence other forces and
moments:

F,=C, oy (127)

where C.~N, denoting the vertical tyre load. For the total
lateral force we obtain:

F  =F+F_. (128)

to

6. Influence of gyroscopic couple due to tyre deformation

Tyre tests which were carried out in order to measure
the response of tyre force and moment to oscillatory motions
of the wheel axle, have indicated that a certain time effect
exists and that consequently tyre behaviour is not purely
path dependent, The results of the experiments concerning
the response of M, described in Sec.VI.2 (p.169) cannot be
explained fully unless a gyroscopic effect is introduced.
We will do this in an approximative manner,

Figure 19 gives a diagrammatic view of fthe deflected
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Fig.19. The deflected tyre peripheral line.

peripheral line of the tyre, The deflection v is a function
of the co-ordinate § and the time t. For a certain point P
on the peripheral line with lateral deflection v, the relative
lateral substantial velocity, i.e. the velocity with respect
to the wheel centre plane of a material point fixed to the
tyre, reads:

dv _ ov ov dg
at "% e oa - (129)

The relative lateral acceleration of P becomes:

d?v a?%v 9%v dg <Bzv dg 82V> dg

—_—

E . 3 == . Yl:80}
dt at 9toE dt 9E”° dt g at/ dt
Introducing the slope @, the tyre radius R and the angular
velocity 2, satisfying’the relations

ov 9%v dg
Q’€='—", QE = - and RQ = -— (131)
ok 9E ot dt
we obtain:
d?v 8%v 6&5
—=—+ 24 RO -— R22, (132)

dt? - at? § Y4
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In order to estimate the order of magnitude of the in-
fluence of the first term in (132) we shall compare the
elastic force per unit length of the tyre circumference
with the corresponding force due to the acceleration 82v/at2,
The lateral elastic force per unit length f, becomes for a
simple string model:

f,=2€C V. (133)

el
The acceleration force per unit length due to tyre inertia
f;, becomes for a sinusoidal motion with frequency w:

ml
o= m—wlv. (134)
27R
The stiffness c(=cg) follows from relation (81), The ef-
fective mass m' amounts to about 70% of the total tyre mass
m,. With a relaxation length o* = o= 1,8a and additional
tyre data given in tables 3A, B (p.59) we obtain for the ratio
fin/fe for a frequency w= 42,6 rad/s (n= 6.8 c/s):

m'w ?
T —— (135)
27R ¢

fin

fel

In view of this relatively low percentage we will neglect
for simplicity the first term of expression (132).

The laterally deviated tyre element is subjected to both
the lateral acceleration and the centripetal acceleration.
The couple due to tyre inertia, acting about the vertical
axis through the wheel centre, is obtained by integrating
the contributions of the tyre elements along the circum ~
ference. When taking into account the moment due to the
last two terms of (132) together with the moment due to
the centripetal acceleration we find:

da
M, =-[2& Rnginde'+Rsz(R2—E—v) sinfdm!',

in E t gt t
(136)

where 6 = §/R and dm; = m}de/2x, It appears that the last
integral vanishes for deflections v given by the expressions
(113) and (27) which hold for the simple massless string
model in case of non-stationary motions. '
The remaining term represents the gyroscopic couple, This
couple, denoted by ng,, can be written as follows:
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m;RzQ o y 1 2
ngr='———/" aE31n9d9='Ith_t %;lfaasmede
T o o

(137)

where I; denotes the effective fraction of the tyre polar
moment of inertia, The part in between { } indicates the
coéfficient A; of the first odd harmonic Aj;sin 8 of the
Fourier expansion of ag(8). An imaginary peripheral line
having a deflection ay (0) exactly equal to A;sin 6 would lie
in a plane passing tihrough the longitudinal centre wheel
axis., We obtain for the gyroscopic couple:

M,,=-1 QA,, (138)

which is in agreement with well-known expressions for
rotating discs. The value A;R will be approximately
proportional to the maximum lateral tyre deflection or to
the lateral force F divided through the static lateral stiff-
ness of the non-rolling tyre Cy. The value I; is proportional
to m;R? and Q equals V/R. Consequently we may transform
the relation (138) into:

o e V. _F
M, =Cp - m R R o Cg VF, (139)

where the non-dimensional constant cgyr is the product of
the two proportionality factors involved and the constant
Cgyr is related to cyy as follows:

= my
Cayr * Sy T, (140)
With the relations
[} .
V=35, and F=iwF, (141)

the first relation already being introduced in Sec.4A (p.43),
and with F, and M, denoting the stationary cornering force
and moment and e' = -M, /F, = Cy/C denoting the pneumatic
trail, we obtain for (139):

M fut O F
e — (142)
M, w, e F,

The gyroscopic couple considered will not be influenced by
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lateral and angular motions of the wheel plane itself as long
as this plane remains vertical,

For the case uzcgyr a/e' = 0.1 the influence of the
gyroscopic couple on the response curve for k = Cya of
figure 14 is shown in figure 20. The vectors of My are

Fig.20, The influence of the gyroscopic couple upon the response curve for M with
respect to y (6*=3a, €=1/1.5).

directed perpendicularly to the corresponding vectors of
F. The absolute values are proportional to |F|/(F,w;a)
and will consequently tend to infinity for wga—~0 or V — ®
at a given frequency w. The vectors M', M* and Mgy
should be added in order to find the resulting moment:

M=M+M+M_. (143)
gyr

For a given wavelength, thus for a given value of wsa,
according to expression (142) the gyroscopic couple increases
quadratically with the frequency of the swivel motion, A
time influence, approximately similar to what is shown
here, has been observed indeed in practice on the drum

test stand (cf. Sec.VI.2, p.173).
For the system treatedin Sec. V. 2. 2 (p. 155) which represents
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the test vehicle, the following tyre data apply:

Table 3A. Data of test vehicle tyre.

C = 170000 N/rad, a = 0,138 m,

Cu = 3900 Nm/rad, e' =0.62a=0,08 m,
C, = 180000 N/m, ¢*=1.5a=0,21m,
€ = 1/7.5 (estimated), R = 0.5 m.

In order to account for the reduction in relaxation length
with increasing slip angle (cf. Sec. 3B, p.29) o*is taken
somewhat lower than the wvalue 1.8 a, obtained from the
formula:

o =C—--a, (144)

which represents the relaxation length at zero slip angle.
The formula (144) can be derived from figure 12a with the
use of the first formula (78) and the fact that F = Cy
x average lateral tyre deflection (cf, Fonda and Radt [41]).
The reduction ratio 1.5/1.8 is an estimation based on ex-
perimentally obtained response curves for vy, = 0.75° and
6° (cf, Sec.VI?2).

The quantities cgyy and k are derived from drum test
results (Sec. VI, 2). We have made use of formula (98), which
says that the coefficient k depends quadratically on the con-
tact length. The remaining data read:

Table 3B. Data of test vehicle tyre.

0.138\2
kK === 112 = 163 = 0. 2 =0, 2,
(0.115 11 16 122 Ca 2 Cpqa Nm
my = 35 kg,
cgyl’ = 0,12,
- = =5
Cgyr = Cgyr mt/Cy = 2.3 x 107 kgm/N

In figure 21 the response of M with respect to v is shown
in the exact manner for the frequency n = 6.8 c/s (w = 43
rad/s). Together with the exact representation, anapproximate
response curve is shown which is obtained with the aid of
approximation II (tangent concept) with o = 1.5a and the
linear damping concept according to equation gl 12) but with
a much larger value for k, viz. k = 0.6Ca“, A fair ap-

r
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M (exact) 1

" M-,—'._\
M.ngraxnmlhon)

= _l_——- ’O.LS"\_%' (approximation II)

=
% (approx.: pure damping )
L]

Fig.21, Exact and approximate theoretical response curves for tyre of test vehicle.

proximation is obtained in the velocity range 35-85 km /h
as appears from the figure., Inside this range the simulated
vehicle appears to exhibit shimmy. The shimmy frequency,
moreover, remains near the considered value n = 6.8 c/s.

In the case considered (cf. Sec, VI.1), the amplitude 7,
is about 4-5 times larger than the amplitude B, so that a
correction of the response with respect to B, in order to
account for the gyroscopic effect, does not seem necessary.

These considerations and in addition the fact that Mg,
and M* do not vary with amplitude in such a strongly
degressive way as M', do contribute to the opinion that the
approximate representation of the tyre behaviour as described
in the preceding sections is satisfactory in a certain speed
range when k is given an adequate value. A much more dif-
ficult and complicated simulation of the tyre does not seem
necessary in most cases, The application of the approximate
simulation gave excellent results compared with full scale
vehicle tests (cf. Sec.V.2.2).

At velocities higher than ca. 85 km/h the effective dam-
ping will become considerably larger than as predicted
through the approximation. In the case that for a given
wavelength the frequency is appreciably lower than the con-
sidered one (6.8 c?s), the gyroscopic couple is smaller, and
consequently the total effective damping will be a little lower
than according to the approximation. This fact may only be
important in the study of subcritical shimmy of the system
with released steering-wheel, treated in Sec.V.2,2.



CHAPTER III

MATHEMATICAL DESCRIPTION OF THE
VEHICLE

This chapter deals with the derivation of the equations
of motion of a model which is expected to behave, at least
as far as the shimmy motion is concerned, approximately
as the real automobile.

Due to the limited capacity of the analogue computer which
was used, the model employed is largely simplified com-
pared to the more elaborate one developed by Pacejka in
[47]. The latter model represents a four-wheeled vehicle
moving over a smooth horizontal surface; it is equipped
with four independent wheel suspensions, arbitrarily situated
king-pins and wheel planes, an elastic chassis and a steering-
wheel system.

In the theory to be developed here, we confine ourselves
to the description of the motion of only the front part of
the vehicle restricted to small deviations from a rectilinear
path. Due to the assumed symmetry of the vehicle and anti-
symmetry of the motion, this part of the vehicle can ap-
proximately be considered as a one-wheel-system when
suitable parameter values are chosen.,

In order to derive the equations of motion we need an
exact description of the model considered. Since we will
apply the method of Lagrange we have to determine the
kinetic and potential energy of the system as well as the
- generalized forces acting upon it. For this, the geometry,
kinetics and virtual displacements of several system elements
have to be known.,

In the ensuing theory any form of slip property, discus-
sed in chapter II, is admitted as well as any function for
the king-pin friction in which a form of clearance in the
wheel bearings may be considered. For the rest, only
linear terms are admitted in the equations of motion which
means that only terms of up to the second degree in the
displacement quantities will have to be taken into account
in the potential and kinetic energy as well as in the power
of the generalized forces. We will investigate the system
in the most suitable order beginning with a physical des-
cription.
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1. Physical descviption of the model considered

A diagram of the model in rear, side and top-view is
shown in figure 1. With respect to the co-ordinate system
(0,%,y,z) which is fixed with respect to space and of which
the (x,0,y) plane -represents the road surface, a parallel
co-ordinate system (0,)_{,}[,_z_) moves along the x-axis with
a velocity V, representing the speed of travel of the auto-
mobile.

steering wheel

reduction

lateral spring, c;
torsion spring, :;

unsprung mass
wheel axis

[>24

In centre position In deflected position y

g3

Fig.1l. Rear, side and top view of the vehicle model considered.

In the (y, 0,z) plane the mass centre of the part, repres-
enting half the front part of the sprung mass of the vehicle,
is located. It has a mass m and a moment of inertia I,
about a longitudinal axis through the mass centre. The
sprung part can move laterally and it may show a torsion
angle about the longitudinal axis (A), situated parallel to the
x-axis; the restoring torque equals the torsion angle mul-
tiplied by the torsional chassis stiffness cg.

The unsprung par* has a mass m* of which the centre is
located in the wheel centre plane and on the wheel axis.
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The non-swivelling part has a moment of inertia I’: about
the longitudinal axis through the mass centre. The unsprung
part is attached to the chassis in a flexible way through
two springs, one with lateral stiffness c¢* and the other with
torsional stiffness c¥*. The unsprung part may rotate about
a longitudinal axis (B); this centre of torsion can deflect
laterally with respect to the chassis. During the motion
the points A and B and the mass centres remain in the
(y,9,z) plane.

The wheel, which is a part of the unsprung mass,
rotates with an angular velocity £ about its axle, which in
turn is capable of swivelling about the king-pin. The king-
pin axis lies in the wheel plane and intersects the wheel
axis. It is inclined with respect to the vertical by an angle €,
The total swivelling part has a moment of inertia bout the
king-pin axis denoted by I. The moment of inertia of the
wheel about the wheel axis is denoted by I,.

The steering system is attached to the axle in some
mechanical way (dotted line in Fig.1l). The steering system
consists of a steering-wheel with a moment of inertia I
about its axis of rotation, a reduction which reduces the
steering-wheel angle by a factor n, and an elastic element
with torsional stiffness c. For simplicity, damping in the
steering system, exceptking-pin damping, is not considered.

The geometry of the system in the centre position is
shown at the left-hand side of the figure. The co-ordinates
v, @,¥*, 9*,vand ¢y (= n.vg, ) which are necessary to describe
the geometry of the system in some deviated position, are
shown at the right-hand side. Two additional co-ordinates
p and x which are constrained to the six co-ordinates men-
tioned, denote the change in tyre radius and the angle of
rotation of the wheel about its axle respectively.

It will be clear that, with this one-wheel system, for
the values of the masses, etc. and the stiffnesses of the
chassis and the steering system half the values of the mag-
nitudes applicable for a two-wheeled model should be taken.

The forces and moments acting on this system are the in-
ternal couple D, acting about the king-pin and originating
from friction in the bearings, and the external forces and
moments acting in the contact area between tyre and road.
The lateral force F ;K acts in C, which is the point of in-
tersection of the (x,0,y) plane, the vertical plane through
the wheel axis and the wheel centre plane. The vector of
F .o lies in the horizontal plane (x,0,y) and in the vertical
plane through the wheel axis. The moment M acts about a
vertical axis. The force N, which represents the static tyre
vertical load, is supposed to act in C. For the determination
of.Ftot and M we refer to chapter II.




64 111

A longitudinal tyre force and a moment about the lateral
axis, both resulting from rolling resistance, as well as a
couple about a longitudinal axis through C, are disregarded
in this simplified model, as they are very small with respect
to other tyre forces and moments.

The couple M, due to unbalance acts on the wheelabout an
axis fixed to the wheel, lying in the wheel plane and pas-~
sing through the wheel axis (see Fig.1l). The axis about
which M, acts rotates together with the wheel about the
wheel axis and shows an angle X (=Q t + constant) with
respect to the vertical. The horizontal component of the
unbalance couple is M, sin X. The component acting along
the king-pin axis becomes herewith - My, cos (x+€). The
amplitude M, varies quadratically with the forward speed
V and is proportional to the magnitude of the unbalance
masses my, 1,2. The unbalance couple will be introduced
in the mathematical description via the kinetic energy of

the masses m .o

2. Geometrical considervations

In behalf of further analysis the positions of several points
of the model will be determined with respect to the moving
co-ordinate system (0Q, x, y, z). The positions will be denoted

r4

Fig.2. Vectors indicating the positions of important points of the system.
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by means of vectors symbolized by T in general. With
respect to the fixed co-ordinate system (0, x, y, z) the position

reads:
Vt
p= O ft T (1)
o)

Figure 2 shows the vectors defining the positions of several
points of interest. In the centre position (cf. Fig. 1) the
position vectors for the centres of the masses m, m*,
m and for point C are defined as:

cos %
i BoreRI J 5
—h > . siny-1
-cos X
un20—R< 1 >’ Pyo = 0 2 (2)
-siny-1 o

The position of the unbalance masses with respect to the
wheel centre can in principle be chosen arbitrarily; the
location indicated by (2) appears to be convenient for further
treatment. In a deviated situation the positions of the centres
of m and m* become:

e ) o o
7= Ty = ( y |+ o + hp, sing |=
r, o -h, -h, cose
- :
ythpe )
E ’ 3
(- iy (1-392) o
- r% L] s
s (8 hsmq + |y cose |+
re -h cosg y* sin ¢

0
+ [-h] sing’ ) = y+he + y -h'p - (4)
h’ cose’ “-h -h(l-ﬂ,)+y ,+h(1--q )
where only the terms of up to the second degree are regarded.
The determination of the position of the wheel plane and

the location of point C needs deeper consideration. The
position of an arbitrary point of the axle in deflected situation

unl, 2
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is denoted by a vector f with co-ordinates with respect to
the system (0%,x*,y*,z*) having axes parallel to the axes
of the fixed system (0, x,y,z) and origin 0% co_inciging with
the masscentre of m*. In the centre position f = f, When
the unsprung mass is rotated over the torsion angle 9 (the
other displacements remaining equal to zero), the vector can
be represented by:

fF=A".°¢, (5)
Q o
where the transformation matrix R’Q reads:
B i o o)
A=l o cosg —sincp'> . (6)
o sing” cose®

The vector fo has co-ordinates with respect to the system
(0* x9,y¢,z9) which in the centre position coincides with
(0%, x%*, y*,z*) and which is fixed to the steering head, the
non—swivellmg part of the unsprung mass. By multiplication
with the transformation matrix (6) we obtain co-ordinates
with respect to the system (0%, x*,y*, z*). The determination
of the vector after a deflection  about the king-pin will be
done in stages.

With respect to the system (0%, X, yg,2¢) of which the
Ye -axis coincides with the yo -axis but of which the z, -axis
and x¢ -axis are turned about the yp -axis over an angle
€ so that the 2z, -axis coincides with the king-pin axis,
the vector reads:

feo=Ar . T, . (7)
where
_ cose O sine
A,=< o 1 o ) (8)
-sine o cose

The inversed matrix A',' may be obtained simply by sub-
stituting in A, for € its opposite value. When the axle and
with it the system (0%, xy,yy,2y) originally coinciding with
(0%, % ¥os Bg) 18 rotated about the king-pin axis over an
angle v, the vector f reads with respect to the system
(0%, X g, Ygs2Zg):

by ™ Bys Tgyns (9)

where
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_ cosy -siny o
A7= siny cosy O | . (10)
o o 1

Transformed back to the system (0¥, x;‘, y";,zg) the vector
reads:

f9=A‘. f‘r)’ . (11)
Finally we obtain for the vector f with respect to (0%, x%,
y*,z*) i_nstead Of (5)-

f=Ay .fo=Ay. A . A, AT ., =A.f, (12)
? @ ? Y

where

P -8 - - ..
A=Ag. A, . A A7 . (13)
The transformation matrix A reads, when terms are neg-
lected which are of the third or higher degree in the
variables and when furthermore the powers of the constant
quantity € higher than of the first degree are disregarded,
the latter being permissible since only small values of €
will be considered (cf.[48] where €2 has been taken into

account):
1 2
L 1-4+° P T €Y
A = v g “TE ~EE" =597 -fT.Z"P .. |+(14)
Yo'+ zeY ¢ + €y 1~ 40" ~egy

Now suppose that T is a unit vector and is directed along
the wheel axis so that in the centre position, its co-ordinates

are given by:
- o
f,=( 1 ). (15)
(6]

In the disturbed case we obtain:

2 fx . _ a2 i
F=( 1 =K .f, = 1-%72—%9‘2—59‘7 . (18)
£ " + ey

The angles defining the position of the wheel plane are
Y w which denotes the deviation of the line of intersection
of the wheel plane and the road from the x-direction, and
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o»w Wwhich indicates the angular displacement of the wheel
plane about this line of intersection with respect to its ver-
tical position. We obtain (see Fig. 3):

sin ¢, =f, and siny,, = -

. (17)

Fig.3. Angles indicating the positions of the wheel centre plane and of the unbalance
mass.

When applying the aforementioned neglections we obtain:
oy =9 +eyand Yy =7 . (18)

The location of point C with respect to (Q,g_(,x,g) denoted
by the vector T, becomes:

F,=F*+R+7 (19)
The vector R + p reads (see Fig.3):

B sin @w sin Yy
R+ p=(R+p) (-sin ¢, cOSyy | ~
cos o,

(¢ +ey)y 0
= R ~9-ey )+l -9 -ey | (20)
1 -3 -eyg 1




III 69

For the vectors R and p with absolute values R and p res-
pectively we obtain:

~ (¢" +ev)y
R=R -t Y . (21a)
1~ S9'% ~ Yy’

.0
5=p<-9;m>. (21b)

With (4) we obtain for (19):

o R(f+ﬂ” By - (R + 0).(¢ +€7) (22)
—w= e Q - ? {3 .
; (h) ¥h9?+>'9 7 h'e? R(1 2+67})+p>

The condition of constraint saying that the endpoint of T,
lies on road level, which implies that z, = 0, yields the
expression for the change in tyre radius:

and

p=-1he?-y% +3h%"” + R(3¢% +ev9) (23)

which contains only terms of the second degree in magnitude,
because of the anti-symmetry of the motion.

The location of the centres of the unbalance masses m, ; 5
is represented by the vectors:

P =+ R(f+ 1), un2=f'."R(T+a)-' (24)

where f and @ are considered as unit vectors. We introduce
the horizontal unit vector g lying in the wheel plane and
pointed forwards (see Fig.3):
i
. (25)

cos YUy 1
g=| sin ¢w | =
o

_ The vector U becomes expressed in terms of the vectors
R and g:

Owd

=l-RRsinx+g'cosx. (26)

Due to the fact that my; ; and m , o are situated anti-
symmetrically, zeroth order terms containing the factor
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m are expected in the final equations of motion, where:

Myp = Myp 1 ¥ Myp 2 - (27)

Other terms containing this small factor myy, will not be
taken into account in these equations. Therefore we will
neglect in the expressions for T, ;o displacement terms of

the order higher than one. We obtain for r  :

-y +cosx
Fu1 =R (y+he+y*-h")/R+1-(¢" + €y) siny +ycos g
-1+0*+ ey+siny

(28a)
and for T y
un 2
Y - cosy
¥, =R ((y +he +y* - h'") /R-1 + (¢" + €v) siny - v cosy
-1-9¢ - e€y-siny
(28b)

3. Kinematical considevations

The velocity vectors of the mass centres are determined
by differentiating the position vectors (3) and (4) with res-
pect to time. We obtain for the velocity vectors with
respect to the fixed system with (1):

P= +f=|3+hme | (29)

Y Y
(0]
o hghe ¢

. V . V .
pr={ o)+ =y+ne+y-n% . (30)
0 hept y'9+y'e - h*e""

The angular velocity vector for the sprung mass reads:

Wy ¢
o =<wy =l o | (31)

For the non-swivelling part of the unsprung mass the vector

becomes:
w; ?°*
C). = (J.)X = (0] . (32)
w o
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For simplicity the swivelling part is assumed to be
rotationally symmetric about the wheel axis. Therefore
we need to know only the absolute value w, of the angular
velocity vector ®, of the non-rotating part, which lies
in the wheel plane, and the angular velocity w, of the rotating
part, i.e. the wheel, about the wheel axis. We obtain the
following:

wy = 1EI=V#R+2+2 €57, (33)

and with the condition of no slip in longitudinal direction:

wa=(Exa)li=-Q+dysiney x -0+ v(p* + ey) (34)

in which £ denotes the rolling velocity, being the time
derivative of the angle ¥;

Q=% . (35)

The rolling velocity equals the stationary value plus terms
of the second or higher order of magnitude. This is cor-
rect in the considered symmetric one-wheel system where
driving or braking forces are not applied. The non-holonomic
equation of constraint reads:

% = & + order (2). (36)

Since in equations of constraint second-order terms can be
omitted in our first-order theory when the constrained
variable (X) is not earlier eliminated than in the equations
of motion, which is necessary in the case of non-holonomic
constraints, we may consider f = % as a constant and there-
fore the system as holonomic. For the four-wheel system
treated in [47] the non-holonomic equation of constraint
contains first-order terms in the variables which makes
the system non-holonomic.

Apart from the second-order terms we obtain for the in-
tegral of (35):

Qt -7 -€ =y, (37)

through which the relation between x and t is defined in a
convenient way (cf. Fig,1).

The velocity vectors for the centres of the unbalance
masses with respect to the fixed co-ordinate system become
by differentiating (28a,b) with respect to time and by making
use of relations (35) and (1):
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by differentiating (28a,b) with respect to time and by making
use of relations (35) and (1):

. V/R - % - Qsin
pun1=R{ (§+h ¢+y*-h%") /R - (§"+ev+rQ)siny +
¢ +ey+lcos g

PENEPRIING)

. V/R+ 4 + Q sin y
Puwe=R( (§+he+y*-h*%")/R + (" +ey+yQ)siny+
-¢" - €y - Qcos x

+{ (" +€v) Q-7 }cos x). (38Db)

The steering-wheel has an angular velocity about its
axis of rotation equal to the time derivative of the angular
displacement:

W g ='Lst * (39)

4. Virtual displacements

In behalf of the determination of the generalized forces
the virtual displacements of the line of intersection of wheel
centre plane and road surface will be determined.

When the position of the system is varied by a small
amount, the location of point C is changed in a manner as
indicated by the vector 6%, , obtained by varying T, (22),
where only terms of the first degree are needed since in
the centre position no constant horizontal forces are acting
in C upon the wheel. This is correct in the case where
only first-order terms will be taken into account in the
final equations of motion.

0% e o o ,
6T, = 6yw | = 6y +hép +8y" - h'6e - R(69 + €67) |.(40)
0Zyw o]

Actually, we need the co-ordinates of the displacement
vector with respect to the co-ordinate system (C,Xy,Yw,2Zw)
of which the x,-axis coincides with the line of intersection
and the z,-axis is directed vertically. In linear respect,
however, no changes in the co-ordinates occur,

The amount with which the line of intersection is rotated
about the vertical axis, reads (cf. Eq. (18)):
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Sy, =67, (41)

which denotes the virtual displacement of the wheel plane
about the king-pin axis.

5. Dynamical considerations

The kinetic energy is composed by the energies of the
sprung mass, the non-swivelling unsprung mass, the swivel-
ling part, the unbalance mass and the steering-wheel. For
twice the kinetic energy we obtain:

2T = m | B+ Lo ¢ B + 5w L0

+Iaw32 +1Ig wg? + munllbunl|2+ Myp 2 Iﬁun2|2- (42)

While restricting ourselves to terms of up to the second
degree in the variables and the small factor m,, (27) and
furthermore neglecting powers of € higher than of the first
degree, we obtain with the aid of the expressions of section
&

2T =m {V*+ (7 + hpo)®} +19° +
+mr{ V3 (F+h g+ 3" -h%")2} + 157 +

PP+ o2 42 ey + 1, 107 -2 QYo"+ en} + Iudy® +

2
s R

{V2/R*+ Q% + 2 Qysin x+2Q(4 + e¥)cos X} (43)

The change in potential energy of the system, due to de-
flections of the springs and variations in height of the mass
centres, is expressed by

2U=-2mgr;+cg 92 —2m‘gr£+c;, y'2+c; (9°- @)% +

+Cbp2-2Np+c(’Y-%dlst)2 + constant (44)

where N denotes the static vertical load.

Substitution of the expressions for r, (3), r¥ (4) and p
(23) from section 2 yields, when only terms of the second
degree are regarded:

2U = - mgh,, ?2 G5 C¢92 - m.g{h92 +2y%.- h.?.z} i
+¢y ¥y +eg(9¥-9)° - N {- he - 2y’ +h" ¢ +

+ R (Q.: k2 (‘Y?‘)} +C('}/-l-lil//st ):. (45)
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The virtual work done by the external tyre forces and
moments and by the frictional moment D acting about the
king-pin reads:

6 WHFoudye * Mo, ¥Dd vy, (46)

which with the aid of the expressions found in section 4
becomes:

W = Fyo {6y +hép+6y" -h*6¢" - R (6<p‘+eay)} +
+Méy +D 8. (47)

The way in which tyre force F(; and moment M, ap-
pearing in this equation, depend on the variables, has been
treated in chapter II. These relations will be presented
again in the next section where also the moment D will be
defined.

6. Equations of motion

For each of the six independent co-ordinates, determining
the shape and position of the system, i.e.:

Y, @, ¥, 9, vandig (48)

we may determine the equations of motion with the aid of
the Lagrangian method. The equations read for each of the
six variables qj:

_d_aT oT +§y_=Ql (1=1,2, DR 6) (49)
i

where Q1 denotes the generalized force determined by the
equation:

b
6W=.21Qi6q1. (50)
1=

Besides the six second-order differential equations of
motion (49) an additional equation is needed which governs
the lateral deflection of the tyre. In approximate form this
latter equation may be a linear differential equation of the
first order. The total order of the system seems to be then
of the thirteenth order. However, the variable y is cyclic,
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which means that only the first or higher -derivatives with
respect to time of that variable occur in the equations, so
that in total the order of the system reduces to the twelfth
order,

The six equations of motion read after some manipulations,
through which the first equation (51) is obtained by subtracting
the original first and third equation from each other and
furthermore the second equation (652) is obtained hy sub-
tracting the original second and fourth equation from each
other:

for the lateral displacement y:
m(J+hp$) -cyy' - (N-m'gle=0; (51)
for the angular displacement ¢;
(mhy, + m'h) § + (I, + mh,2 + m*h?) $+ m*h (§* - h*%") +
+ {09 +cpt+ (N -mg)h - mghm}v+ (N - m°g) y* +
- C;?' =hFio ; (52)
for the lateral deflection y*:
m*(y +h §+¥° -h%") + (N -m'g) g+ cyy =Fi s (53)
for the angular displacements ¢*:
-m'h'y - m*h’h p- m'B* Y+ (1 + 1) + m'h"?)g + 1 ey +
H 1, Q7 che + {c;, -N(b" +R) + m‘gh'} ¢ +NR ey =
= - (h; + R) Fyo + my, R% 02 siny; (54)

for the wheel deflection v:

I(¥+€§)- 1029 - NR €9’ +c(y-2tg) =
=-Re€F +M+D -my R2Q? cos (x+¢€); (55)

for the steering-wheel deflection ¢ :

w 1" 3
Ist ([/5[ +?1 c (E (//st -'Y) =) H (56)
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for the lateral deflection of the foremost contact point v

1
according to equation II.(115):

—+—1-='y-—-a— (567a)
(o)

or with the time as independent variable:

Vi
\'/1+V——=V'y-yw-a1'/, (57b)
o

The position of the wheel plane is defined by ¢, (18), ¥,
(18) and y, (22):

gw™9 + €Y, (58)
Pee ™Y s (59)
Yw =y +he+y®-h'"-R(e"+ey). (60)

A specification of D, F,,, and M will follow now. For the
damping couple D we restrict ourselves to certain cases,
in general indicated by the function:

D==g(hT s (61)

The case of dry-frictional damping in the king-pin bearing
and a type of clearance as shown in figure 4 which may

YI

Fig.4. The case of dry friction K and clearance & applied to a simplified model.

represent rotational clearance in the wheel bearings, is
described by the following equations:
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D=-Ksgny* (62a)
with a new variable ¥* varying in the range:
7-6§'y‘§ Y+ 6 (63a)
with & denoting half the clearance angle and where applies:
if |4*-vy|<é then ¥* = 0,
if |¥*=-vy|=6 then y* =+,
(63b)
with the additional condition:
if sgny = - sgn (y-y") then ¥ = 0.
The case of dry friction without clearance is described by:
D=-Ksgnvy, (62b)
while the linear representation is given by:

D=-k¥v. (62¢)

For the tyre lateral force F and couple M' we will apply
two approximations described in chapter II. One is based

ton the Von Schlippe theory and the other on the straight

tangent concept, both in modified form when non-linear
cases are considered. For M* we will make use of the
approximation according to Eq.II.(112), We obtain according
to Eqs.II.(127,128,105,112):

Fo.*F+F, (64)
M=M+M, (65)
F. =N g,, (66)
M = - kdy/ds = - G+ . (67)

APPROXIMATION I:

The y co-ordinate of the foremost contact point reads ac-
cording to figure II.15:

Ye1 = ¥w tar+vy . (68)
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According to the second relation II. (86) we obtain for the
last contact point:

Yeo(8) =y (-a,8) =y, (a,s-2a) =y, (s-2a), (69)
The deflection v, at the trailing edge becomes then:
Vg = Y2 - Yw T 2Y. (70)

The force and moment are functions of v; and vg (see
Fig.II.18). They read according to the relations II.(124):

F=F (v;) + Fy(vg) (T1a), M' = a{Fi (v1) - R (v,) } (2a)
or in linear form according to the expressions II.(118):

¥y * ¥g Vi~V
F=3Ce———(71b) , M' = § Cpy ———w, (72b)
o+ a a

APPROXIMATION II:

The force and moment are functions of a according to the
stationary tyre characteristics (see Fig.II.18):

F=F(a) (73a), M' =M' (a) (74a)
or in linear form
F=Ca (73b), M'=-Cya (74Db)

where «a denotes the slope at the foremost contact point
(see Fig.II.15):

ar:vl/c : (75)

7. Non-dimensional quantities

In order to reduce the number of parameters, which is
especially important for the approximative systems of low
order, and furthermore to obtain coefficients in general
being of the order of magnitude of 1, which among other
things is important for the analogue computations, we will
introduce non-dimensional quantities as listed in table 1.
The quantity C denotes the cornering stiffness at zero slip
angle except in Sec.IV.2, where C obtains a more general
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Table 1. Non dimensional quantities.

t =tVcCaa B =1, aAIR)

v =vVyecad B =02 Iy/l

Q@ =aVifca By  =(+Lam'h*d/1=13/1

w =wVi/Ca Bep  =(Igtmh 2+m*h2)/I = Ly/I

Wy = wg a = wa/V=2ma/\ u* = m*a2/I

@yp= Wyp a = a/R i =m a2/1

E-= Ma Bun = Myp a2/1

Aun= MNun/a D = D/(Ca)

k = k/NViCa 8(¥+7) = g(y47)/(Ca)

%® = %/(Cad) F = F/C }analogous for
subscripted

K = M/

K =K/Ca) o e quantities

€ =C/Co N = N/C

Cu = Cu/Co N =(N-mtp/C

c = ¢c/Ca) ® = {M' -eF) /(Gya)

So = cp/ACa) Y  =Yst/n

E; = c;,a/C e’ =e'/a=C)4/(Ca) | analogous for

o = (cg mghp)ACa) s =s/a YoR, e, etc,

meaning. Inthat section we shall replace C in the denominator
of the non-dimensional quantities by the symbol C, denoting
the cornering stiffness at zero slip angle. The quantity g
is the coefficient determining the gyroscopic coupling be-
tween the variables 7 and ¢*.

The equations of motion as stated in the preceding section
read in non-dimensional form after omitting the underlinings,
making use of (37) and writing V/R for the rolling speed Q:

udy +h, %) -c y*-N'e=0, (76)
(Mhm +4 0)§+Bo % + 1 h(y'-h" §°) + (CorCy N h)o+N 'y ~co¥ = h%%
MY+ eyt 0TS + N'g + oy =Py (78)

- ' h* (§+hgty®) + B;'{,‘+eﬁr+ﬁ V- C'?¢ + (c:;a - N'h - NR)g" +

-NR €Yy = - (h‘+R) Ftot - /.lun VZSin (Vt/R = €) ] (79)
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¥+ €p*-BV ¢* -NR €o* + c(y-vst) =

=-ReFe + M+ D + /.tunV2coth/R, (80)
Bst Yo tC (Yst ~q =9y (81)
dv; vy dy, dv
— +—=y-—— -— oOr 9
ds o ds ds (62a]
; vy - ;
V1+V?_V'Y'YW"'Y, (82b)
Pw™ R TEY; (83)
Yo=Yy +hoe+y" -h'9" - R (¢ +ev). (84)

Specification of D, Fmt and M:

D(=-g(7,v))=-Ksgn?¥ (85a) or D=-K sgn ¥ (85b) or D=~ kv (85c)
y=8 & y*S y+ b
if |y* - | <6theny*=0, if|¥" -y |= & then V=¥ (86)

if sgn ¥ = - sgn (y-v*) then y* =0.

P, *F+¥F,, (87)
M=M'+ M, (88)
Fo=Noy. (89)
M* = -k dy/ds = -—%1‘/, (90)
APPROXIMATION 1:
Vel ®* X TT+N, (91)
Ye2 (8) =y (8-2), : (92)
Vo= Ye2 " Ywt 7 (93)
F = Fy (v1) + Fg (vg) (non-lin.), (94a)
Vi + Vo
F = § —— (linear), (94b)

o+ 1
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M' = F; (v1) - Fy (v5) (non-lin.), (95a)
M' =3 e'(vy - vg) (linear) . (95b)
APPROXIMATION II ;
a=vy/o, (96)
F = F (@) (non-lin.), (97a)
F = o (linear), (97b)
M' = M' (a) (non-lin.), (98a)
M' = - e'a (linear). (98Db)

In the subsequent sections the product Re will be replaced
by the symbol e denoting the caster length,

e=Re. (99)
For the sake of simplicity we will omit the underlinings,

indicating the quantities being non-dimensional, in the sequel
too, when confusion is out of the question.




CHAPTER '1IV

ANALYTICAL INVESTIGATION OF
AUTONOMOUS SYSTEMS

More or less drastic simplifications of the system as
described in Secs.III.6, 7 are necessary before the system
can be investigated analytically. Because of this, we have
restricted ourselves in this chapter to the investigation of
systems of up to the seventh order, both linear and non-
linear. The investigation starts with the third-order system:
a wheel with elastic tyre capable of swivelling about a fixed
king-pin. This system is extended to the fifth-order system
showing lateral or torsional elasticity of the suspension.
Finally the steering-wheel is introduced resulting in a
seventh-order system.

The analytical study has been split up into three parts:
the investigation of the system treated as a linear system,
as a weakly non-linear system and finally as a piece-wise
linear system.

The fact that shimmy can occur at all because of self-
excitation, can be explained sufficiently by means of the
linear theory to be treated in Sec.2. Analytical methods
originating from Hurwitz or others enable us to determine
stability boundaries in the parameter space of the approximate
linear system.

Inreality, however, the automobile is a non-linear system.
For a complete description of its behaviour the system has
to be treated as such. At least the most important non-
linear elements directly influencing the shimmy have to be
taken into account. In contrast to problems such as flutter,
it is not possible to restrict oneself to a linear treatment,
as the real system may have both a stable centre position
and a stable limit-cycle; the latter situation being attainable
only through some external disturbance.

The non-linear element, mainly responsible for the be-
haviour near the centre position of the moving vehicle, is
the dry friction in the king-pin bearings. The behaviour
may be changed completely when a clearance in the wheel
bearings is introduced. A third non-linearity to be considered
is that caused by the tyre characteristics; this non-linearity
is responsible for limiting the amplitude of the motion.
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The autonomous non-linear problem could be treated with
the aid of known analytical approximative methods. The
non-autonomous system, however, was too complicated to
solve analytically, so that we have proceeded to use an
analogue computer. Chapter V deals with this latter in-
vestigation.

The analytical approximative method here employed and
described in Sec. 2.1 is based on the method of the harmonic
balance of Krylov and Bogoljubov. Inthis method the non-linear
equations are reduced to equivalent linear equations with
coefficients depending on the amplitude and frequency of the
motion. With this approximative method the amplitudes of
the limit-cycles and their stability can be determined. The
application of a digital computer has increased the usefulness
of this method.

Another analytical method is based on the fact that with
small amplitudes the system can be considered to be piece-
wise linear. In our case this method is useful in particular
for the study of motions near the centre position. In con-
trast to the methods mentioned above, this method enables
us to examine the stability of the centre position of the
moving automobile. In Sec. 3 a single case without clearance
is treated with the used of this method.

For the sake of completeness we refer to [49] where two
graphical methods are given; one for a simplified second-
order system (isocline method) and the other for the third-
order system. With these methods the complete trajectories
towards a stable situation can be constructed in the phase
plane and phase space respectively. The shape and the
magnitude of the limit-cycles can be determined. These
graphical methods, especially the second one, turned out
to take up too much time to compete with the analogue
computer.

1. Determination of the stability of linear systems
1.1.. The Hurwitz criterium for stability

A set of linear differential equations has an asymptotically
stable solution when all the roots of the characteristic
equation of this set have negative real parts, i.e. when
they are located in the left half of the complex plane. The

characteristic equation has the following general form:

e, BN B P haes ta,  p+a, =0, (1)
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when we assume a solution of the differential equations of
the form CeP'. A necessary and sufficient condition for
"monotonous'' stability, that is when all real roots are neg-
ative, is that all coefficients a; (i=0,1,...n) are positive:

a» @ {i=0.1;,,. 0}, (2)

The system is not necessarily asymptotically stable in this
case since occurring complex roots are not yet regarded.
In order to cover the case of '"oscillatory' stability too,
that is the case when the real parts of the complex roots
are negative and where the real roots are left out of con-
sideration, it is necessary to satisfy the classical stability
criterium of Hurwitz [50]. The criterium reads:

H, >0 (j=1.2,... n). (3)

where Hj is one of the so-called Hurwitz determinants. The
j-th determinant has the following general form:

a, a il O ,onnupuns .. 0
By By 81 Bysavssesns s A0 _

Bisila, '8, 84 Byeeevanives, B (31,8, .o DY k%)
Bod P Ye)e Rgpg « 0y

where ajis aj of (1) when 0 €< i < n and aj = 0 when i > n
or i < 0. In addition to the determinants (4) we shall also
need H, and H_; which are defined as:

H =1, H, = l/ao. (5)
The inequalities (3) are necessary and sufficient conditions
for asymptotic stability of the n-th order system. Cremer
[51] has shown that when the conditions (2) are satisfied,
not all the conditions (3) are necessary for asymptotic
stability, but that some are redundant. It is sufficient to
satisfy the conditions (cf. Klotter [52, p.191]):

a; > 0 (120515, s wews. ) o
. 1 (6)
Hn—l—2j >0(j=0,1, ...., E(n'3)) .
where the last condition Hy>0 is redundant when n is even.
The 2 m complex roots of the characteristic equation (1)
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may in general be written as:

P =Ty * iw

k
) (ke = 1525 556wy M) (7)
Proa™ B ~ ug,
and the real roots as:
p‘2m+!=q1 (1=1; - I N n—2m). (8)

It can be shown that (cf. Orlando [53]):

n-2m
S a, (9)
A=
and
m
Hy,~ 1 Ty» (10)
k=1

which indicates that an and Hp-1 change their signs each
time when an additional monotonous and oscillatory instability
respectively occurs. The coefficient ap, consequently, will
be the first to change its sign from positive to negative
when due to a change of some parameter value a domain of
monotonous instability is entered from an asymptotically
stable area. The determinant Hp-; will be the first to be-
come negative when a domain of oscillatory instability is
entered from an asymptotically stable region. The boundary
of the domain where oscillatory instability occurs, is formed
by the part of Hp-1 = 0 where the remainder of the con-
ditions (6) are fulfilled. For this part Bautin (cf. Magnus
[54]) has introduced the notation:

(H._,) =0. (11)

n=-1

Accordingly we may introduce:
(a)) =0 (12)

as the boundary between asymptotically stable and monotonously
unstable regions, which is represented by that part of ag = 0
where the remainder of (6) is satisfied.

The natural frequency occurring at the boundary of os-
cillatory instability can be calculated with the aid of the
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formula (cf. Cremer [55]):
whe, LT (13)

1.2, The third-order system

The simplest system which is capable of showing an un-
stable oscillatory motion is of the third order. In order to
obtain the equation of such a simplified system in which ¥y
and v; are the only variables, the remaining variables:
Y, @, Y* ¥ and ysx must be taken equal to zero. The
equations IIL (80) and III. (82a) are the essential differential
equations of motion for this system. For simplicity, the
rotational stiffness ¢ shall be taken equal to zero in the
case to be considered. Only autonomous systems are con-
sidered, so that yun = O.

The essential variable y denotes the angle of rotation of
the wheel plane about the king-pin, which moves along a
rectilinear path with velocity V. The axis of the king-pin
lying in the wheel plane intersects the road surface at a
distance e in front of the wheel axis. According to III. (99)
this caster length e replaces the value R €, indicating the
caster of a wheel with an inclined king-pin axis, passing
through the wheel axis. :

Figure 1 shows an equivalent system diagrammatically.

Fig.1., Model of the third-order system,

Here a vertical king-pin axis is considered, a configuration
which does not change the differential equations for the third-
order system within the degree of approximation considered
(€2 neglected).

Neglecting the remaining variables of the system described
in chapter III distorts the behaviour of the system more or
less. The studies of more elaborate systems, described in
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Sec.1.3. and for non-linear systems in Secs.2.5 and V.2.,
have revealed, however, that the principal features remain
unchanged. The fact that the sprung mass and the lateral
stiffness of the suspension are relatively large, makes this
understandable,

The tyre will be described with the aid of approximation
II based on the straight tangent conception and governed by
the equations III. (96, 97b, 98b). For the damping couple
D only the linear representation according to equation III.
(85c) is relevant, Withy =9 = y* = @% = yg =¢c = yyp = 0
and the equations III (83, 84, 85c, 87, 88, 89, 90, 96,
97b, 98b, 99) we obtain for the quantities occurring in
equation III. (80):

= = = -g' LI = - k&
Re—e,Ftot—a,M—-ea V‘Y,D k¥

and for the quantities occurring in equation III. (82a):
vy =oa Yy =-eY

The equations of motion in non-dimensional form III.
(80, 82a) reduce to:

o BY dy
Vie——+ (kV + k) — = - (e + &')a, (14)
ds? ds
d
o5Z+a = - (l-e) g-;-'+v. (15)

As independent variable we have introduced here for both
equations: the non-dimensional travelled distance s = Vi,
When we assume the set (14), (15) to have a solution of the
form CePs* the characteristic equation of the third degree
becomes:

vie pf +1v2+ (kV+x)ogpf + 3(e-1)(e+e’)+kV + x‘ Py
+e+e' =0 (16)
The stability criterium reads according to the conditions (6):

a,> 0, a1>0, ag>0, a;>0,

o (17)

H2 = >0, -
ag a9

where the determinant is obtained by putting j = 2 and n = 3
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in expression (4). The following conditions appear to be suf-
ficient in the case considered:

Ve + (kV+:<)c$ 2(e-1)(e+e') + kV + l<$ >V2c7(e+e'), > (18a)

?
e+e' >0, ’ (18b)
The stability boundaries can be found by making equations
of the above inequalities. The first equation indicates the

boundary for oscillatory instability and the second one for
monotonous instability. Figure 2 shows the boundaries in

O+l Vares*0.47 0,25 M0 025 W,,s0.1

Fig.2. Unstable areas for the third-order system (e'=0.5,0=3).

the (V,e) plane for a number of combinations of the two
damping parameters. For the rest of the parameters the
values 0 = 3 and e' = 0.5, normally encountered in prac-
tice, are taken.

The frequency of the vibration on the boundary can be
determined from equation (16), when the quantity ps is
replaced by iws. The symbol ws represents the so-called
reduced frequency or path frequency

27
p)

We = = (19)

=
\%

where A denotes the non-dimensional wavelength of the
motion and w the non-dimensional frequency related to
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time. From the two resulting equations kV + k can be
eliminated. From the final equation the course of curves
for constant ws can be derived. A few curves are shown
in figure 2.

An increase in damping reduces the unstable area until
it vanishes at certain combinations of k and k. For the case
that the damping due to tyre deformations vanishes (k = 0)
the well-known areas of instability (cf. Smiley [40]) are ob-
tained. It appears that a tyre with a k sufficiently large
(K>%(e'+1)2) causes the area to detach itself from the e-axis.
For k>0, closed curves arise in the (V,e) plane (V>o).

Placing a rotational spring about the king-pin results in
a smaller unstable area within the boundary of the system
without this spring. This can be verified rather simply
(cf. Pacejka [48]).

Also when the more exact tyre theory of Von Schlippe
is used the curves can become closed in themselves even
for k = 0, as has been found with the aid of a special
electronical analogue computer circuit treated in chapter V.
For an analytical treatment we refer to the work of Von
Schlippe and Dietrich [34].

As a conclusion we may already draw at this stage of the
investigation that, basically, an increase in value of the
original tyre parameters with dimension: o, a and e', i.e.
the relaxation length, half the contact length and the pneuma-
tic trail, stimulate shimmy. The sum of these quantities in
fact represents the distance between the upper and lower
stability boundaries in figure 2 for the case of zero damping.
The sum o+ a is the coefficient of iws in the second term
of the expanded frequency response functions of F and M'
with respect to v (cf. II. (122, 123, 109)), which indicates
its main responsibility for the phase lag of M' and F with
respect to v. This phase lag may lead to self-excitation.
It may be noted that the sum of relaxation length and half
the contact length o + a in fact equals the quotient of cor-
nering stiffness C and lateral stiffness of the standing tyre
Cy (cf. Eq.IL (144)).

An increase in e will in the first place enlarge the self-
exciting couple about the king-pin but will in the second place
increase the component of F and M' due to purely lateral
motions (yy) in which latter case phase lead occurs. The
increase in damping due to this effect will suppress shimmy
at large values of e.

1.3. The fifth-order system

Two different kinds of extensions of the third-order system




Iv 91

are treated in this section. The intention is to show the
influence of the torsional stiffness cg and of the lateral
stiffness ¢ of the wheel suspension. Compared to the system
of the preceding section the number of variables is in-
creased by one, representing either the torsion angle ¢*
of the king-pin about a longitudinal axis, or the lateral
motion y* of the king-pin.

The following set of equations, corresponding to equations
III. (79, 80 and 82b) describe the system with torsion. They
are obtained in a manner analogous to the way as described
for the third-order system.

B:é“ {c§ + (N-N') h*} ¢*+BVy = - (R+h*) o,
Y+ (k+k/V)y=-BVe*=- (ete')a , (20)

5% + Va = (R+h*) g% - (l-e) 7+ V 7.

Terms containing €, which are small with respect to
neighbouring terms, are neglected, This approximation is
correct for small €, the assumption having been considered
from the outset of the investigation. The system governed
by the above equations is shown diagrammatically in figure 3.

king-pin axis

~
~

% king-pin ax?—*‘_} Sy ~~
. \i\ e

Fig.3. Model of the fifth-order system Fig.4. Model of the fifth=order system
with torsional flexibility. with lateral flexibility.

For a system with lateral flexibility instead of torsional
flexibility of the wheel suspension the equations of motion
become according to equations IIL. (78, 80 and 82b) with
the same approximations introduced as in the previous case:

H* y* + c’;,! y*'=a
Y+ k+k/ V)V =-(e+ea (21)
oa+ Va=-y*- (1l -e)y+ Vy
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The system described through the equations (21) is shown
diagrammatically in flgure 4.

The systems (20) and (21) may be described by the same
set of equations:

Nnﬁ""cnn‘ﬁy‘ Vy =&
Y+ (k+k/V)Y+BqgV =-(e+e')a (22)
ca+Va =-n -(l-e) v+ VY

in which the new quantities have been introduced as listed
in the table below.

Table 1. Introduction of new quantities for the systems
showing torsional and lateral flexibility res~

pectively.
torsional lateral
% = - (R + 1% o* y*
By = B/(R + h*) 0
By ™ By/(R + 1%)2 ue
ey = {c$+(N—N') h*} /(R + h*)2 C;

The stiffness cy in fact denotes the non-dimensional lateral
stiffness of the suspension at road level and wuy the non-
dimensional unsprung mass reduced to a point at road level,
in both cases. The system appears to be determined by
eight parameters. One parameter (R+h%*) has been eliminated
through the manipulations above. The characteristic equation
of (22) becomes:

5 .
3 a;p’=0, (23)
i=0

After multiplication with V the coefficients read:

8 = Hyo, |
a1=u{V+(k+K/Vcr} )
ag = (c,, 0’+1)+H~nV(k+K/V) I—tne+e " (1- e)+B V2 o

ag = c.,,V+(k+I</V)( o+1)+/3,,v -ByV(l+e! )+u,,V(e+e'), (
By * ,‘V(k+x/V)+B~,, 2-c (ete') (1-e) , \
as = Cy V(et+e').

(24)
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As pointed out in Sec.1.1. the system governed by equation
(22) is stable when all coefficients aj and moreover the
Hurwitz determinants Hg and H4 are positive. The deter-
minants read according to (4):

a, a, 0 0
a a & ‘@ a a
1 0 3 2 1 0
H,= ; H,= . (25)
a, a, ag a, ag a,
0 0 a a

5 4

In the (V,e) plane the stability boundaries have been
determined for several cases. On these boundaries Hg equals
zero. Throughout the part of the (V,e) plane considered the
coefficients and the determinant Hy appear to remain positive
in these cases. The calculations are carried out for several
values of the stiffness cy for the cases By = 0 (lateral
flexibility, see Fig.5) and By = 0.1 (torsional flexibility,

9? \ nstable B'q <0

)

W)

—— i -

C‘-O

I

0

Fig.5. Influence of lateral stiffness on the stability areas(e =0, 5, =3, x=1 k=0, 25, y.,ro. 5).

see Fig.6). The influence of variation in gyroscopic coupling
represented by By is shown in figure 7 for cy = 1. The
rest of the parameter values are:
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e'=0,5, 0=3, k=1, k =0,25, H’l=0'5' (26)

The calculations have been carried out with the aid of a dig-
ital computer.

Because of the restriction that in the fifth-order system

|8
"
L=

IUnst;pl;\ Unstable||
+ -
/1 \ z/
4 )r/ ™
¢ N o
X v
> i \
10\\ 2

Fig.6. Influence of torsional stiffness on the stability areas (e'=0,5,6=3,x=1,k=0,25,
#y=0.5).

o

'S

Fig,7. Influence of gyroscopic coupling on the stability areas (e'=0.5, 6=3, x=1,
k=0,25, py=0.5).
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considered the mass centre must lie on the king-pin axis,
large values of e are only of academic interest. The system
would then represent the case where the king-pin remains
vertical but is shifted over a caster length e, while the
mass centre of the swivelling part remains on the king-pin
axis. For automobiles, practical values encountered remain
below the value e = 0.5.

Figure 5 shows that the unstable area increases with
decreasing lateral stiffness of the suspension. Especially
at great values of e and V the situation becomes more
dangerous.

It has been found that the much less realistic system of
the fourth order, fitted with a tyre without relaxation
property (o=a=0) but with lateral slip possibility (C finite)
only shows open curves like those in figure 5 for the cases
cy = 0 and cy = 3 (upper branch). It may be concluded
that the lateral elasticity of the suspension causes instability
in the higher V and e ranges while the lateral tyre elasticity
results in an instability region closer to the origin of the
(V,e) plane.

Introduction of a torsional elasticity in the suspension in-
stead of the purely lateral elasticity results in a considerable
change in the qualitative behaviour of the system. Referring
to figure 6 we note that an entirely new unstable area may
arise below a certain value of torsional stiffness at relatively
high speeds due to the gyroscopic coupling. With decreasing
stiffness cy this new area grows especially towards smaller
values of the speed V, while the original unstable area
situated closer to the origin becomes smaller until it vanishes.

It appears that the oscillation at the boundary of the new
area, referred to as the area of ''gyroscopic shimmy' or
"wobble'", has a frequency greater thanthe natural frequency
of the torsional motion wygo = \/Cnhh)‘ The frequency on the
boundary of the original area, where an oscillation occurs
sometimes referred to as ''tyre shimmy'", is lower than the
natural frequency mentioned. Figure 6 shows the instant-
aneous frequency w in a few points; the natural frequency
wyo in these points equals wy = 2. An analysis of a sim-
plified second-order system treated in [9] makes it under-
standable that gyroscopic shimmy may occur at low values
of the natural frequency

The fact that the gyroscopic shimmy occurs with a low
torsional stiffness of the suspension suggests that this is
the type of shimmy which occurs with live axles when
pneumatic tyres are fitted. This shimmy has especially
been observed with wheels oscillating in vertical direction
so violently that the road contact is lost periodically (see
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Olley [4]). The latter phenomenon may be a condition for
this kind of shimmy to take place, because in that case the
average stiffness of the suspension about a longitudinal axis
reduces, which results in a shift towards lower speed
values of the left-hand boundary of the unstable area.

Figure 7 shows that large values of the moment of inertia
I, of the wheel about its axle, which finds expression in
large By's, may stabilize the system again.

1.4. The seventh-order system

A more realistic model provided with a steering system
may be described by equation III. (81) in addition to the set
(22) describing the fifth-order system. In the second equation
of (22) an additional term will appear according to III (80).
We obtain:

“nﬁ‘*’cnn 'B")V"Y=a s

¥+ le '.).’st s (k+K/V)'i’ + B'ﬂ Vﬁ = -~ (ete') a,
oa+Va =-1n-(l-e)v+ VY,

Bstﬁ/st * C(Yst =%} =0

With the aid of the last equation the variable yg can be
written in terms of y¥ for the case of sinusoidal motions with
frequency w:

(27)

Ye "B, V-° (28)
1-—c-w2

This expression substituted in the second equation of (27)
suggests the introduction of an equivalent moment of inertia
about the king-pin axis:

Ieq = I(1+E.St_) (29)

in which the quantity A is defined by:

2

A i) (30)

where
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denotes the natural frequency of the steering system.

Now the set of equations (22) also appear to apply for
the extended system when the non-dimensional parameters
Bn, Mw k and V, all of them depending on I (cf. Table
III. 1 (p.79) and Table 1 (p.92)) are replaced by the para-
meters B"leq' Mmeqs keq and Veq respectively, the new quan-
tities depending in the same way upon I.q. The following
relations hold:

B, = & 7 . . k : 1 —B =
. i k= —— .y = \/ & A
- "4 4 By o 1+ B Vea™ V

1-1
(32)

1-2 12 ok

For each assumed value of A the stability boundaries and
the frequencies occurring on the boundary can be calculated
in the same way as has been done for the real fifth-order
system. The frequency w.q obtained is related to the actual
frequency w as follows:

w2, =W’ (1 +%) (33)

from which expressmn the actual frequency can be calculated.
The quantity w? has to be compared with the assumed value
Mw2q,. The point on the boundary where the two values
are equal is a point of the boundary of the system with
steering-wheel. By repeating the calculation for a great
number of values of A the boundary for the system with
steering-wheel may be determined.

In figure 8 the stability boundaries for the super and
subcritical case of steering oscillations (A>1 and A<1
respectively) are shown for a certain configuration. The
unstable area for cy = 4 shown at the left-hand side of
figure 6 appears to be replaced by a larger area where A<l
and inside of it a smaller area where two pairs of roots
of the characteristic equation of the seventh-order system
give rise to instability and consequently a vibration occurs
composed by a subcritical (A<1) and a supercritical (A>1)
unstable motion. This result should be clear because of the
fact that the effective rotational stiffness about the king-pin
is positive for XA > 1 and negative for A<1, which makes
the area smaller and larger respectively (cf. Sec.1.2). The
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area of gyroscopic shimmy at the right-hand side of figure 8
is only slightly reduced compared to the corresponding area
in figure 6.

subcritical (A<1)
supercritical (A>1)

= Y-fcombination
o} lof two modes

NN
\\\ unsta 'E_?I )[s}ablej

N\ J
g 1q 20 3 Vv =
I I

7

7027
Zlunstable

Fig.8. The unstable areas of the fifth-order system extended with a steering-wheel (total
Tth-order) (ﬁ-n-O.1,c1,=4,u-n-0.5.pst=0.’l.cto.4.0-43,e'=0.5.k=0.25,x=1).

2. Investigation of non-linear systems with the aid of equiv-
alent linear equations

2.1. Determination of "limit-amplitudes"

In this section the method given by Magnus [54,46] for
the investigation of motions near a limit-cycle is followed
in principle. The largest value obtained by some represen-
tative system variable during the motion on a limit-cycle,
a closed curve in the phase space which is followed when the
motion has a periodic nature, will be designated by the
term 'limit-amplitude'’. Magnus' method permits a relatively
simple analytical treatment of the non-linear problem. It is
based on the theory of the harmonic balance of Krylov and
Bogoljubov.

The accuracy of the approximate solution of the non-linear
differential equations cannot be judged in an analytical man-
ner. It is known, however, that the approximation is good
when the oscillations, performed by the non-linear system,
have one predominant harmonic. This is the case when the
non-linearities are not too strong and when the stationary
solution of the equivalent linear system represents a motion
of only one frequency. Experiments with a shimmying auto-
mobile showed that the system vibrates with one predominant
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frequency. It seems permissible therefore to apply the princ-
iple of the harmonic balance to this non-linear system. The
results obtained by means of this analytical method may be
compared with analogue computer solutions.

For the general description of the method an n-th order
non-linear system is considered, which is described by a
set of differential equations containing non-linear terms.
The restriction has been made here that each non-linear
term is governed by only one variable and its time derivative.

The n first-order differential equations can be written in
the form:

n

- Ei {a'u'xj + byyky + £y (x5, 5‘1)} (i=1,2, ..., n)(34)

where xj is one of the co-ordinates of the n-th order system,
denoting either the displacement or the velocity of a part
of the system. The sum I fj; represents the non-linear part
of the i-th equation. In cases normally encountered fij
vanishes when xj denotes a velocity and consequently xj an
acceleration. There are several possibilities for writing
the equations in the form (34). In general it will be tried
through transformations to obtain as few terms fj; as pos-
sible.
The equations (34) are replaced by the linear system:

n
Xﬁﬁ (o =, * Bk " 1,9, -opn) (35)

with coefficients a§ and b§ which in general are functions
of the amplitude of a variable and the frequency of the
motion. These functions are chosen in such a way that,
when xj is varied sinusoidally, the first harmonic of the
part of equation (34) governed by xj (and Xj) equals the
corresponding part in equation (35).

Say x; is thought to vary like

x; = Aj sin 8, , where 6; = wt + ¢, (36)
so that
X =A wcos 6. (37)
i j
The coefficients afj and bjj of the equation (35) are made

equal now to the Fourier coefficients of the first harmonic
of the part between { } on the right-hand side of equation
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(34) in which (36) and (37) are thought to be filled in:
1 2
aﬁ, = m j; ;ainj +bijxj+fij (Xj » Xj )% sin 8; dej =

i 2m ) (38)
- 8 +ﬁ}fo f,; sin@;de;,

S5 = 1 2m % o _
b;j Yy fo ;aij x; +hy; %+ (x5, x4 )% cos 6;d8; =
39
=b;;+ __1_1’2"1‘-- cos ©;de; . el

ij rrwAj : 1 J ]

In general the integrals are functions of the amplitude Aj
and of the frequency w.

For stationary oscillatory motions the ratio of the am-
plitude Aj and some reference amplitude A of reference
co-ordinate x can be found in principle as a function of the
frequency. The coefficients afj and bjj can thus be expressed
as functions of only A and w. We assume that these
relations approximately hold for almost stationary oscillatory
motions too.

The characteristic equation of the equivalent linear set of
equations (35) reads:

n
n-k - 0 (40)
k2=% a, p :

For the system to vibrate in a limit-cycle a solution of
(35) in the form

xj=Aj sin (w t+<pj)‘ (41)

must exist. The system has such a solution when the char-
acteristic equation (40) has one pair of imaginary roots and
for the rest roots with a negative real part, which causes
the rest of the solutions to die out. The condition for this
to occur is expressed by the formula (11) which reads:

(H )=0 (11)

n-1
indicating that part of Hp-; = 0 where the rest of the con-
ditions (6) are fulfilled. The absolute values of the two
imaginary roots which represent the frequency of the motion
on the limit-cycle, can be calculdted with the aid of the
formula (13):
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7 g - gy (13)

Consider the case that m equivalent coefficients afj(A, w)
and bn(A w) occur in the system (35). In the coeff1c1ent
space an m-dimensional surface can be constructed on which
(Hp-1) vanishes. For each of the points on this surface the
frequency w can be calculated with formula (13). With the
aid of the formulae (38) and (39) for au(A w) and bf(A,w)
the m values of the amphtude A belonging to each of the m
coefficient values au and b} can be calculated. We can cal-
culate A for each of the points of the m-dimensional surface
mentioned. The m amplitude surfaces of the m-th dimension
which arise in this way, may be plotted in the coefficient
space with one of the coefficient axes also acting as am-
plitude axis. The m amplitude surfaces may have a few dis-
crete points in common. These points represent the am-
plitudes of the limit-cycles.

The procedure may be simplified when m-1 equivalent
coefficients contain a parameter which can be considered
as an unknown quantity. For each point on the surface
where (Hp.;) = 0, the amplitude of the limit-cycle can now
be calculated with the aid of the remaining coefficient. The

b, w
(@',b") ,eq.(11)
asw),eq.(13)
x q
w
a.
0 8%z
(a* A)
A
F3
A (Z.A)

Fig.9. Determination of the limit-amplitude A for a certain value of coefficient b*,
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values of the unknown parameters in the other m-1 coef-
ficients, necessary to obtain the limit-cycle, may be com-
puted afterwards. As an illustration a two-dimensional case
with two equivalent coefficients, say a* and b* (subscripts
omitted) is shown in figure 9. Coefficient a* is a function
of A, w and an unknown parameter z, while b* is only a
function of A and w. In figure 9 a certain value of b* is
chosen and the corresponding value of a* required on a
limit-cycle is determined with the aid of formule (11). With
formula (13) the frequency w is calculated after which the
amplitude A can be calculated from b* = b*(A,w) (Eq.(39)).
Once A is known the value of z can be computed from a*
= a*(A, wz) (Eq.(38)). By repeating the procedure for
several values of b* the amplitudes of the limit-cycle and
the frequency are known as a function of z (see curve (z,A)
in Fig.9).

2.2. Stability of limit-cycles

When the coefficients ajj and bfj do not depend upon the
frequency or when the frequency remains constant with
varying amplitude, it is possible to construct a curve in
the coefficient space according to which the coefficients
change with varying amplitude A. In the general case where
the coefficients depend on both amplitude and frequency, not
being a constant, it is not easy to determine the curve
which is followed in the coefficient space, even in the
neighbourhood of the limit-amplitude.

The points of intersection between this curve and the
surface where (Hp-1)=0 indicate the amplitudes of the limit-
cycles. As for (Hp-1) < 0 the amplitude tends to increase,
it may be understood that a limit-cycle is stable when the
surface is crossed by the curve with increasing amplitude
from the part of the space where (Hp-1)<0 to the part where
(Hp-1)>0 and vice versa.

The rate of change of the Hurwitz determinant with am-
plitude in the neighbourhood of the limit-cycle is represented
by:

oH_ . dw
_ n-1 i n-1 . (42)
dA d0A Jdw dA

In [59] we have studied the stability of certain systems
with the aid of a method, not being reproduced here, in
which the influence of the variation-of w (last term of Eq.
(42)) has been taken into account. For weakly non-linear
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systems, to which the use of the method of the harmonic
balance is restricted, this last term will be of the second
order of magnitude in the small non-linear parameter; be-
cause second-order terms are disregarded in the harmonic
balance method, calculation of this last term would not make
sense. In the cases considered, however, a noticeable im-
provement in the results has been obtained by introducing
this additional term. In Sec.2,3C an illustration of the in-
fluence of taking into account the variation of w, resulting
from the above mentioned study, will be given,

When we restrict ourselves to first-order terms, we may
adopt the simple qualitative criterium of stability postulated
by Magnus [54]):

limit-cycle stable if 8H _,/8A >0,

(43)
limit-cycle unstable if 8H _,/8A <O .

We shall transform this qualitative criterium into a
quantitative one, from which also the degree of stability of a
limit-cycle can be judged. We will not exclude the effect
of the last term of (42). Consider again the polynomial (40):

n

REO ay p“'k =0, (40)

In the neighbourhood of a limit-cycle this equation has no
longer purely imaginary roots. The roots become then:

p=ér+iw, (44)
where §r denotes the real part of the root and w the frequency
in the deviated situation. A new quantity p; is introduced
now:

p,=p=-br. (45)

When 6aix denotes the variation of ax due to a deviation
from the limit-cycle we obtain for (40) after substitution of
p=p; + ér:

n
](2.0 {ak.o + éa, + (n-k+1) ak-l'oér} p,"*=0  (46)

where a;, denotes the value of a; on the limit-cycle and
a.;,o = 0. Products of variations éay and ér are neglected.
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Equation (46) has one pair of purely imaginary roots, the
absolute value of which represents the frequency w of the
deviated motion. Hence, the (n-1)-th Hurwitz determinant
Hp-1 of the polynomial (46) should be zero. We may write:

B =M, #6H  +héprnl, (47)
Since on the limit-cycle
r B =
oLl S L (48)
we obtain from (47):
GBI - %~ BaB, (49)

where b is a constant and 6 Hp.; is a linear function of
dagy...6ap,. We obtain from (49):

dr
=-b__ . (50)
dA dA

dH

n-1

We have not yet succeeded in proving in general that b
must be a positive quantity but this has turned out to be the
case in all the special problems we have investigated. It is
expected to be positive because evidently the following con-
ditions apply:

limit-cycle stable if S < 0, 51
limit-cycle unstable if S > 0 , o
in which is introduced the 'stability value'" S of the limit-
cycle;

A, dr
D 2 e = 5 (52)
w, dA

where A, and w, denote the amplitude and the frequency on
the limit-cycle respectively; dr/dA is the derivative on the
limit-cycle of the real part of the root of (40), the latter
being purely imaginary when the motion is exactly on the
limit-cycle. Instead of using the total derivative shown above,
the partial derivative with respect to the amplitude A may
be taken with w kept constant; in this case the conditions
(51) correspond to (43) indicated by Magnus.

In fact, the stability value S has a practical meaning. The
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stability value appears to represent the rate of change of
the increase in amplitude with the amplitude as illustrated
in figure 10. This relation may be derived in the following

stable limit-cycle

unstable limit-cycle

trajectories

Fig.10. Signification of the stability value S.

way. Consider the solution of co-ordinate x in the neigh-
bourhood of a limit-cycle:

x=A e®rt+y) sin (wt+e;). (53)

where A; represents the amplitude at the i-th crossing with
the x-axis shown in figure 10. For t = tj we have chosen:

wt;+ @ =7 7,
i i (54)
ért, +¢, =0,
so that then
X =85 .
A motion close to the limit-cycle is considered, so that:
A = i (55)

The variation of the amplitude is governed by:

i = Ai e(artfq;i) . ! (56)
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Herewith we obtain for the amplitude at the (i+1)-th cros-
sing:

2m
3 —
w

A, =A e (57)

in' which for ér and w their average values in the cycle
considered may be taken. Expression (57) results in the
increment in amplitude:

2m
& —
- - 2
DA=A -A =A (e “ -1 =A06r£ for 6r —» 0 ,(58)
The rate of change with amplitude of this increment be-
comes:

dAA Ao dr
= 2— — =S, (59)
dA w, dA

which is identical to the stability value (52).
2.3. The third-order system

The non-linear equations of the third order are obtained
similarly to the way in which the linear equations (14) and
(15) are derived from the original equations III (80, 82a).
Instead of applying the equations III. (85c, 97b, 98b) we will
now use the equations IIL (85a, 85b, 97a, 98a). The two equa-
tions of motion read in general form:

T {7 =~ n), % (60)
o+ Va = - (1-e)v+ Vv,
where
f* (@) =-M'+eF, (61)
g* (1,7) =g (V.7) +xk7/V . (62)

The tyre non-stationary behaviour is described again through
approximation II. The term f*(a) represents the total couple
about the king-pin axis due to lateral tread deformations and
g*(y,v) the damping couple due to friction in the king-pin
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bearings and tolongitudinal tread deformations in the contact-
area.

The linear equivalent set of equations has the following
form:

¥ +k¥y+cy=-Cta,

ca+Va=-(l-e)v+Vy,) e

They are obtained from (60) by replacing g*(y,y) by k*y+cy
and f*(a) by C*a. In the linear case, C* would be equal to
e + e' (cf. Eq.(14)). The coefficients k*, c¢ and C* are
now not considered as constants but as functions of a ref-
erence amplitude, say of v, and of the frequency w of the
motion.

In order to determine these functions we consider the
sinusoidal variation:

Y =%, sin 6 , where 6 = wt (64)
so that
Y =Y, w cos.0 . (65)
The second variable @ becomes then:
@=a sin (6 - 9) (66)
or
@ =@ sin 7, where 7=8 - g. (66a)
The terms k*y+cy and C*a are to be made equal to the
first harmonics of g*(y,y) and f*(a) respectively. This is

realized with the aid of the following integrals over one
period of the oscillation. The equivalent quantities become:

2om

1 )
= s
S T | g*(1.7) cosBdE, (67)
1 2r
e, % (~ y
b o,f g*(¥,7) sin®d o, (68)
1 om
ey Ta, o,f f* (@) sin Td T . (69)
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The equivalent cornering stiffnesses C and Cy, cor-
responding to the linear stiffnesses introduced in II. (78),
are related to the total equivalent stiffness C* as follows:

CM+eC = C#* (70)

and become accordingly:

om

A
;10 of M'(e) sinTd T and C = wio 0jF(af) sin 7dT.(71)

M 7

In order to investigate a practical case we shall consider
dry friction in the king-pin bearings and rotational clearance
in the system as shown in figure III.4 (p. 76). A clearance
as considered might occur approximately when play exists
in the bearings of the swivelling wheel. The dry-frictional
couple is denoted by K and the total clearance angle by 26.

arccos (1-,2Y—? )

.'Y Ty 26
//——-\\
//,/ Ig \\‘
W Z YL
Y

Fig.11, Course of the function g(y,y) with 6.

Figure 11 shows how the couple g(y,y) varies with time
for a sinusoidally changing v. Expression (67) becomes with
(62):

3
2m P
1 - K 2 2 .
K= o D e =
k= [ g (17) cos 040 =G+ 2o |7 g (F.7)c0s0d 0
(o] 3 m
2 7 4
K K K 6
= + - = = - —
7 wwvof (-K) cos 8 d 8 V+1rm'o (1 Yo) ,

$m+arccos(1-28/y,)

which denotes the equivalent coefficient of damping about the
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king-pin. The equivalent coefficient of damping only due to
friction in the king-pin bearings becomes then:

4K )
= k¥ - _K g T (N,
k V" ror, ( 'Yo) (72)

Expression (68) for the equivalent rotational stiffness be-
comes:

3
. > 2
n ik . ) - . " 3
™ ’f (¥,v) sin6d e ™, 'f g (v,vy)sin®6d6
™

1r
_ 4K
= — - (= 73
=/ 2N - (73)
§1r+a rccos(1-28/ )3

The third integral (69) for the moment about the king-pin
due to tyre lateral deformations has to be determined
graphically, as the tyre characteristics are given in the
form of curves. The integral reads:

2m in
f* (@, sin 7) sin 7d 7 =4 f f* (@, sin 7) sin 7d7T =
o ?:%1[ o
=-4 J' f* (¢, sin 7) d cos T. (74)
T=0
The function f*(@) = f*(@osinT) may be transformed into

a function f*(aocosT) as shown in figure 12. For each

fMeF _  ORIGINAL C” EQUIVALENT
002 /—\ \ 002| e 05
001 001 02
bl - :‘n = o 02 G..G.,Sin't 025 ﬂscm x 10 [X] 02 a,

Fig,12, Transformation of original tyre cornering characteristic to equivalent charac-
teristic,

amplitude q,the variation of f* with cosT can be constructed.
The integral
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1:&‘" T=!“
s f* (@, sinT) dcos T - /‘ * (@, cosT)dcos T =
=0 1 T=0

= j’ f* (a, cos 7 dcos T (75)

o

can easily be determined for a number of values of ao for
instance by means of a planimeter. After multiplication by
the factor 4/ma, the equivalent stiffness C* is obtained. The
C* values may be collected as a function of the amplitude
a, ina graph, representing the equivalent tyre characteristic.
In programs for digital computations the procedure is auto-
mized so that, starting from the original characteristic ,
the equivalent characteristic is obtained, with which further
calculations are carried out.

The characteristic equation of the system (63) becomes:

op? + (V+0k™) p? + ik*V+ co-(1-e) C*f p+V(c+C*) =0.
(76)

This equation shows a pair of purely imaginary roots when
the second Hurwitz determinant vanishes. This criterium
leads to the following relation between the parameters k¥,
c and C* for given values of ¢ and V:

(V + ok*) {k*V +co - (1-e) c*} = oV (c+C*). (77)

The frequency of the periodic motion, which occurs when
the relation (77) holds, can easily be found when in (76) p
is replaced by iw = iwgV:

Gt o (CX

SARCHA SRS v =ys 2 Vi

Moreover the ratio of the amplitudes yo and @, as a function
of the frequency is needed. From the second equation (63)
we obtain for sinusoidal motions:

-(l-e)iw -V (79)

a
% ciw+V

and hence

a, (l-e)2¢,.J2+V2
—_— . (80)

Yo o*a? +y?
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2.3A. The limit-amplitude as a function of
viscous and dry damping

First of all the system with only one non-linear element,
the tyre cornering characteristic, will be discussed. Clearance
is not taken into account and the damping is supposed to
be linear. Consequently, the coefficient k* is a constant
now and the stiffness c equals zero. A graph can be made
which gives C* as a function of k* according to formula
(77) which gives the condition for periodic motions. For
each value of k* the value of C* belonging to the limit-cycle
can thus be found. The equivalent characteristic shown in
figure 12 may then be employed in order to find the am-
plitude a, of the slip angle which produces the value of C*
needed. After the calculation of w with (78) the corresponding
value of vy, follows from equation (80). When a number of
k* values are taken, a graph of the amplitude of the limit-
cycle vy, may be plotted against the applied damping k*.

It appears to be convenient to combine the graphs in a
manner as shown in figure 13. The upper right graph shows

[Eq.(77))

\\

DRY ™\
(Eqcan)
AL
\

_______ - —ed e —a=d

Fig.13, Determination of the limit-amplitudes y, (V=6,66, 0=3, e=0, k=0, 8 =0),

C* and was a function of k* according to the criterium where
the Hurwitzian vanishes. The upper left quadrant gives the
equivalent tyre characteristic and the lower left diagram
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shows the frequency response of ap with respect to yo. In
the fourth quadrant the variation of the limit-amplitude o
with k* is shown as the final result. The graphs of figure 13
hold for the combination of parameter values: V = 6,66,
6 = 3 and & = U

The step from viscous to Coulomb damping is rather a
simple extension of this procedure. Equation (72) with 6 = 0
gives the relation between k and K. It reads:

_ 4K s
k = S or K vy kw v, . (81)

The dry-frictional couple K giving the same amount of
damping as the viscous damping with constant k=k¥*-k/V
follows from this last formula. In the fourth quadrant of
figure 13 the course of 7o as a function of K is shown as a
dotted line for the case kK = 0. The influence of k is treated
in Sec. 2. 3D.

It is noted from the fourth quadrant of figure 13 that for
a given value of K, below a certain maximum, two limit-
amplitudes (points B and C) occur, while with viscous dam-
ping only one limit-cycle can arise (point E). The linear
theory, which holds for small amplitudes in the case of
viscous damping, reveals that the system is unstable for
values of k* less than a certain critical value (point P).
Above that value the system is stable. With the non-linear
system of which the centre position is unstable, the deflection
of the motion increases until the limit-amplitude (point E
in figure 13) is reached. This final situation is expected
to be stable.

The case of dry friction shows a more complex situation.
It is difficult to establish the stability of the stationary
motion and the two limit-cycles (points A, B and C). A
rigorous treatment of the motions with small amplitudes fol-
lows in Sec. 3. The stability of the limit-cycles is examined
in Sec.2.3C. As a logical consequence of the situation with
viscous damping we may anticipate that the largest am-
plitude is stable again. The centre position (A) is expected
to be stable too, because of the fact that the equivalent coef-
ficient of damping tends to infinity when the amplitude be-
comes zero. Consequently we may expect that the small
limit-cycle (B) situated in between the two stable situations
is unstable.

It appears thus that the motion dies out, in the case of
dry friction, when the amplitude is smaller than that of the
unstable limit-cycle. On the other hand the amplitude in-
creases with time when the amplitude of the unstable limit-
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cycle is exceeded by some external disturbance. When starting
with an amplitude beyond the amplitude of the large stable
limit-cycle the amplitude of the motion decreases until the
stable limit-cycle is attained.

An investigation with the analogue computer reveals the
more exact conditions the initial values of @, ¥ and ¥ have
to satisfy in order to obtain one of the two stable situations
(A or C) (cf. Sec.V.1.3 and Fig.V.6). It appears from this
study that the amplitude of the unstable limit-cycle (B) in-
dicates approximately the point of transition for the starting
value of 5, when the other initial values of @ and ¥ are
taken equal to zero.

2.83B. The influence . of clearance

The introduction of clearance gives rise to an additional
parameter c¢ depending on the amplitude of the motion.
Figure 14 shows in its first quadrant the relation between

Ctwzon s 3 2 %r.i.l (ea.82)) 128

(Fig.12

.
k=01 N 7)

[+ 7 a2 01

Wl ) = O O

S e

01

[Eq.80)+
gz 1" quadrant]

ol
i

y.

Fig.14, Determination of the limit-amplitudes for the system showing clearance
(V=6,66,0=3,e=0,%=0),

the parameters k*, c¢ and C* for which the condition (77)
is satisfied. The stiffness c is chosen as the abscissa be-
cause of the simple linear relationship between C* and c.
The coefficient of damping k* acts as a parameter in the
diagram. Moreover, curves for constant w are shown
in the first quadrant; they are found by eliminating k*
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from Egs.(77) and (78). For given k in each point of the
diagram the values of w, c¢ and k (72) are known. The
curves for constant y,/6 can be found now by making use
of the expression:

kw

C=W’ (82)

which can be derived by eliminating K from the equations
(72) and (73). In the case considered k is taken equal to
zero, so that k = k*,

The second quadrant remains unchanged. The third quadrant
shows the amplitude relations for several values of v,/6.
For given vo/6 the amplitude relation can be obtained from
formula (80), after that for w the value given along the
curve for ¥, /6 considered in the first quadrant is substituted.

In the fourth quadrant the course of y, for a number of
values of the clearance § is shown. It may be found in the
following way (see Fig.14). Choose a value of yo and deter-
mine the ratio y,/6 for the & value considered. From the
point on the v, /6 line in the third quadrant follow a vertical
line until the curve in the second quadrant is reached. Fol-
low now a horizontal line until the curve in the first quadrant
for the yo/6 value considered is attained. In this last point
the values of ¢ and w can be determined. With the aid of
formula (72) or (73) the value of K may then be calculated
after which K can be plotted in the fourth quadrant against

0-

It is noted from the fourth quadrant that in a certain range
of K and for not too much clearance three limit-cycles may
occur. In the figure such a case is indicated (points A, B,
C and D). D indicates the presumedly stable large limit-
amplitude and C the consequently unstable smaller limit-
amplitude. B represents the amplitude of the small stable
limit-cycle, which appears to arise in the case of clearance.
A 1is the unstable centre position of the system. Other
situations with only one possible limit-cycle, either large
or small, may arise when the friction is decreased or in-
creased respectively (points E and F). For given K, the in-
troduction of a sufficient amount of clearance causes the
large shimmy amplitude to occur without the necessity of
an external disturbance. Clearance obviously has a desta-
bilizing effect, as has often been observed in practice.

Systems with and without clearance are also investigated
with the aid of an analogue computer. The results are given
in V.1.3. Figure V.5 shows the amplitude curves which
are in very good agreement with the curves found here
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through approximate analytical means.

Figure 15 gives an overall picture of the behaviour of the
cases considered successively for a certain value of for-
ward speed. Also the projection of the limit-cycles on the

phase-plane (y,y) are shown.
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Their shape is known from

the analogue computer studies and from the graphical

solutions

49] .

tyre
characteristic

linear

king - pin
damping

4%

linear

Limit-

amplitudes

Limit-
cycles

stability

Sttable) or Ulnstable)

S or U-S

S o S-U-S

U-Sor U-SUSor U-S

Fig.15. Overall picture of the behaviour of systems considered. Besides linear behaviour,
new aspects due to introduction of a number of non-linear elements are

shown,

Referring to this figure the following conclusions may be

drawn:

1. The degressive shape of the tyre characteristic causes
the amplitude to have a finite limit.
2. The introduction of dry friction results in the necessity
of an external disturbance in order to initiate shimmy.
3. For both viscous and dry-frictional damping an upper
limit of the damping factor exists above which no shim-

my can

4. Clearance

occur.

has a destabilizing effect.

With sufficient

clearance it is possible that, in spite of the dry friction,
large amplitudes may be attained without an external
disturbance.
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2.3C. The stability of the limit-cycles

The method described in Sec.2.2 will be used in order
to determine the stability of the limit-cycles, the amplitudes
of which being found in the preceding sections.

The characteristic equation of the third-order system has
the following general form:

a (v, w) PP+a, (v,w) P2 +a, (v,w) p+a; (v, w) =0 (83)

which has a pair of purely imaginary roots in case we are
on the limit-cycle. In a situation slightly deviated from
the limit-cycle, the polynomial with the new characteristic
root p, = p - ér reads after neglection of products of in-
crements according to (46):

3 2
(a0.0+ ba,)p, "+ (al.o+ 6ay 3ao,06r) Pyt (az,o + 6a2+2a1'0 ér)p,+

+(ag tbagta ,0r) = 0. (84)

2,
The vanishing second determinant of Hurwitz of this char-
acteristic equation reads after neglection of products of
increments:

Hy =H, +8H,+bsr=0, (85)
where

Hy o™ Bo8p o =8 s 05,50, (86)

6Hy=a, ;6 a +a; ,6a,-a, 6a,-aggéa, , (87)

b =2 (ai0 ta & ). (88)

As expected the constant b is a positive quantity. For sim-
plicity we will henceforth omit the additional subscript o
denoting that the value on the limit-cycle is meant. According
to (85) and (86) we obtain:

dr dr 1 dH,
— B ein B o . (89)
dA d7, b dv,

For the stability values S (52) we obtain with (87) and (88):

A dr T Yo /W, da; . da, dag da,
S=27r__=-____(a_+a1_ - 8, - ag )
w, dA af +a a, L dv, dy, dy,

(90)




v

35

in which according to (43) partial derivatives may suffice
instead of total derivatives.
The coefficients of the characteristic equation become ac-

cording to (76):

o,

Ve RS

k*V +cao - (l-e)
V(c + C*),

S (91)

where k*,c and C* are functions of y, and w. The partial

derivatives of the coefficients ay

da

— 0 5

Oy

da, ok
= o‘ —_— »

2%, Y,

daq ok* oc
=V + 0 —

7, 3o &,

da g ac oC*
= V(—- ba ) 3

7, oYy Mg

With the aid of the
tain for the partial

ok*

ayo
oc

a'yo
aC*

oy

expressions (72),
derivatives of k¥,

.

WY S

4K 6
el

2.

(o}

2K 3-48/v,

A )
dCc* da, dC* a
da a'yo dao i &

-(l-e) —,

).

with respect to vy, read:

N

oCx* i

7,

J

(73) and (80) we ob-
c and C*,

N

(93)

From figure 12 which shows the equivalent tyre charac-
teristic, dC*/da, can be determined.
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For the system considered in figure 13 and 14, the
stability value S has been calculated for some combinations
of dry friction (K) and clearance (6). In figure 16 the results

unstable

| “stability HELB L o
K value's *! _’E‘:
6=0.01
e TITIT
0.009 e .
0.008- \\ \ ] a e
~ e
0.007 y o "
~N
Vi > \\
i yS=0 e S
0.0045 N
— —— - 8Nalogue computer
— @Nalytic approximati

0 0.05 0. 015 AzY,

Fig.16, Comparison of stability values obtained.

of two analytical methods, one using the partial derivative
and the other the total derivative (for details see [59]),
are shown together with results obtained from analogue com-
putations using the method as indicated in figure 10. Ac-
cording to the total derivative method in which the influence
of the frequency rate of change is taken into account, the
signs of the stability values obtained are everywhere as
expected. Also quantitatively the results correspond very
well with the analogue computer results. The method nor-
mally used, in which the partial derivative is applied, ap-
pears to give a qualitatively correct answer in most cases.
It may be noted, however, that at the top of the curve for
6=0, where S should be zero, this simpler method predicts
an appreciate stability value. In this respect, the more
complicated total derivative method is preferable.

2.3D. The limit-amplitudes as a function of
forward speed; the self-excitation area

In order to study the influence of the speed V, it is neces-
sary to repeat the calculations dealt with in Sec.2.3A for
a number of values of V. The area in the (V,yo) plane in-
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Fig.17. Three stages for the determination of the limit-amplitudes as a function of
speed V (6=8, e=0.1),
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side which self-excitation occurs, will be called self-ex-
citation area. From now on the clearance will be disregarded,
which implies that ¢=0. Parameters will be: the damping
couple K due to dry friction and the damping coefficient k
due to longitudinal tread deformations. The calculations are
carried out for two values of caster: e = 0.1 and e = 0.
Concerning the tyre, we take again for the non-dimensional
relaxation length 0=3 and for the non-dimensional pneumatic
trail at zero slip angle e' = 0.5.

Figure 17a shows the diagram for e=0.1, which is ana-
logous to figure 13 but which is extended now for several
values of V, The first quadrant contains the curves for the
equivalent cornering stiffness C where the Hurwitzian be-
comes zero and the curves for the reduced frequency ws
belonging to them. The parameter k*V has been chosen as
abscissa, which appears to be advantageous when the in-
fluence of k is going to be examined. The second quadrant
shows the equivalent tyre characteristics produced in stages
from the original characteristics as shown in figure 18 (cf.

[ cos T 0 [X] [] [N
y ORIGINAL EQUIVALENT
- ¢
o828, 3
-A' %ct Lu“ 0 o @ a,

Fig.18. Determination of equivalent tyre cornering characteristics from original char-~
acteristics,

Egs.(71)). Via the amplitude relation for several values of
V, shown in the third quadrant, the limit-amplitude yo is
found which is plotted in the fourth quadrant as a function
of the applied value of k*V,

In order to investigate the influence of k, according to
Eq.(72) » the v -axis may be shifted to the right over a
distance Ak*V = k. The figure shows the positions of the
axis for the cases k =0, 0.5, 1.0, 1.5 and 2. The rest of
the equivalent coefficient of viscous damping at the right-
hand side of the axes, kV = k*V - k, should be realized
through a dry-frictional couple K the value of which may be
calculated with the aid of the second formula (81) and plot-
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ted in graphs shown in figure 17b for several values of k.
From the curves of figure 17b the course of the limit-
amplitudes in the (V,vyo) plane may be derived for given
values of K and k. Figure 17c shows the areas inside which
self-excitation occurs and outside which the amplitude de-
creases with time until a stable situation of equilibrium

7
////

0 ol

Fig.19, An area of self«excitation and the influence of choosing the initial values of y.

Yo

- 20

f-——————— 0

f o s analty
p———--0
s

Figure 19 shows such a self-excitation area. The upper
boundary represents the course of the stable shimmy am-
plitude, while the lower boundary indicates the unstable
limit-amplitude as a function of forward speed V. The con-
cept of self-excitation area is of great value. It gives al-
most immediately a nearly complete insight in the behaviour
of the system. The location of the area indicates the speed
range where shimmy may occur; the size gives an idea of
the degree of self-excitation; the height of the lower bound-
ary determines the amount of disturbance needed in order
to start shimmy; the upper limit indicates the amplitude of
the shimmy motion. This upper boundary is followed when
the speed is varied. When one of the two points where the
tangent becomes vertical is passed, the motion dies out.

The area becomes smaller for greater values of K and
k. For small values of k the curves are open at the left-
hand side, which means that no lower limit of the speed
range exists. At low values of V, where the wavelength of
the motion becomes too small relatively to the contact
length (i.e. ws too large, see Fig.17a) the simple tyre theory
is no longer realistic.

With the aid of an analogue computer both the simple and
the more elaborate tyre model have been simulated(see Sec.
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V.1.4). The computer study with the simple model gave a
very good correspondence with the results found here. The
system provided with the more exact tyre model appeared to
be more stable especially at low velocities, which resulted
in a reduction in self-excitation area at the left-hand side
of the figure (see Fig.V.10).

Y.

0.154

SRR

U= 05

—— Nt

0.14

U.OSW

0 5 10 Vv

Fig. 20, Self-excitation areas (0=3, e=0).

Figure 20 shows the self-excitation areas for the case
that e=0, Compared with figure 17 this little decrease in
caster causes a considerable reduction in self-excitation area
for the same values of damping, which illustrates the
destabilizing effect of an increase in caster as has been
established already in the linear treatment.

A three-dimensional graph in the (V, e, y,) space would show
for finite K and sufficient k a pear-shaped body in which
self-excitation occurs, floating in between the planes v,=0,
V=0, e=-e' and e=1+0 (see also Fig.2).

The influence of the moment of inertia I of the swivelling
part about the king-pin axis follows clearly from the fact
that in the case of dry friction I appears only in the non-
dimensional expression for the speed of travel V = V Vi/Ca3
(underlinings introduced again). The conclusion is that with
dry friction the same phenomenon will take place at velo-
cities proportional to the reciprocal value of the square root
of the moment of inertia I.

The influence of the introduction of & rotational spring about
the king-pin with stiffness ¢ (cf. Eq.IIL (55)) can easily be
found by .introducing an equivalent mgment of inertia Ieq =
I-c/(ws?V?). In dimensional form e =IV2—c/w52 should be
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constant for the same phenomenon to take place. This leads
to the conclusion that by means of an increase in ¢ the speed
range of shimmy is raised; a similar effect thus as a decrease
in I

The influence of changing tyre parameters is basically the
same in the linear case which has been discussed in Sec. 1. 2.

2.4. The fifth-order system

This higher order system ‘will also be treated with the
aid of equivalent linearisation. Again the characteristic
equation is needed containing the equivalent linear parameters
similar to those occurring in the third-order system. The
equivalent stiffnesses C and Cym will be introduced again.

The non-linear system is described by the non-dimensional
set of equivalent linear equations, analogous to the equations
(22) of the linear system:

.U'qﬁ T CyNl - BnV‘)'/ =Cor
¥+ kxy+ anﬁ =-(Ce+Cy)a, (94)
odt Ve s ~ i ={l-e)y ¥y ,

The coefficients of the characteristic equation

5
> a, p> =0 (95)

i=0 i
which is analogous to equation (23), read:
8o = HyO,
a; = uy(V + k¥o) ,
ay = (cyo+ C) + 1,V kX - uy(Ce + Cy) (1-¢) + B3 V0,
ag = CqV + k*(cnc42-C)+B%V3-BnV(C+CM)+u,,V(Ce+CM) :
ag = cqgVk*¥+B,V C-cy(Ce+ Cy)(l-e),

a: =c.V (Ce +C..).
S M (96)

The non-dimensional equivalent stiffnesses C and Cm
are functions of the amplitude @o as shown in figure 18.
The non-dimensional equivalent coefficient of damping k* =
k + k/V depends on the amplitude vy, and the frequency w ac-
cording to equation (72) with 6=0, as no clearance will be
considered in this section. The remaining parameters are
given quantities.
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Fig.21. Self-excitation areas as a function of lateral (torsional) stiffness ) and
gyroscopic coupling factor By. (c=3.e=0.1,p-n=0.5.x=1).
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The method of Newton-Raphson has been used in order to
find the curves, analogous to those shown in the first
quadrant of figure 17a, which give k* as a function of C
for vanishing Hurwitzian Hy. When for these combinations
of k* and C all the coefficients of (95) and the lower deter-
minants are positive, only one pair of imaginary roots exists
and for the rest roots with a negative real part. The cal-
culations are carried out completely with the aid of a digital
computer.

Since for all cases investigated the values of Hg and Hg
and of the coefficients remain positive in the relevant part
of the first quadrant, no double frequency motions are ex-
pected. With the electronical analogue computer indeed
only mono-frequency oscillations were observed with the
autonomous system,

Figure 21 shows the area of self-excitation for a number
of combinations of the gyroscopic coupling factor By and
the stiffness cy. Two values of the dry-frictional couple K
are considered. The rest of the parameters have the fol-
lowing values:

c=3,e=0.1, u,)=0.5,n=1. {97)

For B, = 0 (purely lateral stiffness, no rotation about
longitudinal axis) the area becomes larger for decreasing
lateral stiffness c,. At a stiffness c, = 1 the areas, how-
ever, are not appreciably larger than with the third-order
system where cq—w.

A finite By may cause the appearance of a new phenomenon.
A new area of self-excitation arises at the right-hand side
of the shrunk original area. In the new area shimmy occurs
due to gyroscopic coupling. There is no or a very high upper
limit~-amplitude because of the fact that in the mathe-
matical model the rotational motion about a longitudinal axis
is not restricted by stops.

At increasing values of the coupling factor B, the area
of gyroscopic shimmy extends to lower speeds V while the
area of tyre shimmy reduces and finally vanishes. The
lower the stiffness cy,the more effect the gyroscopic coupling
has. Very high values of B, (not shown in Fig.21 for all
cases) turned out to cause the gyroscopic shimmy to vanish too.
The manner in which the area vanishes is completely different
for stiff and soft systems.

2.5. The seventh-order system

For the examination of the influence of connecting a steering-
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Fig.22, Self-excitation areas for the system with steering-wheel (0=3,e=0.1, ;51=0.5.

0,,=4.Bst-0.7.c=0.4.x=0. 002,%=1),

wheel to the system,

the same procedure is followed as in

the linear analysis (cf. Sec.1.4). The same linear extensions
but now of the system treated in Sec.2.4 are applied.
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For a great number of A values the areas of self-excitation
are calculated for the equivalent fifth-order system and in
each point the instantaneous frequency is compared to the
assumed one. Through interpolation the limit-amplitudes for
the system with steering-wheel are found.

Figure 22 shows areas of self-excitation for several
values of By. The parameter values of the considered sys-
tem are:

n

K=0.002, k=1, 0=3, e =0.1,
(98)

1
My=0.5, By =0.7, c,‘=4, c =0.4.

Comparison with figure 8 shows a qualitative change in
behaviour with respect to the linear system. While with the
linear system the supercritical tyre shimmy occurs within
the subcritical speed range, here specific super and sub-
critical ranges occur which may overlap each other partly.
The areas of high frequency supercritical tyre shimmy al-
ways occur at higher speeds than the areas of low frequency
subcritical tyre shimmy.

An increase in gyroscopic coupling (B8y) results in a
reduction in the tyre shimmy areas and may cause the ap-
pearance of the gyroscopic self-excitation area. In the lat-
ter area supercritical frequencies occur with respect to the
natural frequencies of both the steering-wheel system (ws)
and the suspension system (wyo).

How the exact course of the motion will be, especially in
the overlapping areas, has not been studied analytically owing
to the great complexity involved. The study with the anal-
ogue computer reveals, that indeed such sort of overlapping
areas exist. No combined stationary oscillations take
place. Either the supercritical or the subcritical upper
boundary is followed depending on initial conditions. When
decreasing the velocity, the supercritical motion jumps
over to the subcritical mode in the overlapping area, whereas
the subcritical motion dies out when its area is exceeded
through a variation in V (cf. Fig.V.16).

The low frequency subcritical shimmy may easily be sup-
pressed by the driver. The higher frequency supercritical
shimmy cannot be suppressed in most cases, even by locking
the steering-wheel. This because of the antiphase of the
motion of the road-wheel and the steering-wheel in the
supercritical case.
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3. Application of the theory for piece-wise linear system

As has been stated before, due to the occurrence of dry
friction in the real system, the linear treatment, described
in Sec.1l, cannot give a realistic view of the behaviour of
the system near the centre position. Also with the method
of the harmonic balance, we were not able to judge the
stability of the centre position, i.e. of the stationary mo-
tion. It is because of these that we proceed to treat the
system as a piece-wise linear system, which fortunately is
possible here, and which enables us to give a rigorous des-
cription of the motion near the position of rest. The method
can also be used for approximately finding the small un-
stable limit-cycle of which the amplitude and the stability
have already been determined in Sec.2.3 with the aid of
the method of equivalent linearization. As will be seen, a
good agreement with the latter findings has been obtained.

For motions with only small deflections with respect to
the undisturbed rectilinear motion, the tyre characteristic
may be considered as a linear function of the slip angle.
In that case the dry friction is the only remaining non-linear
element and the motion can be considered as linear in suc-
cessive time intervals. Owing to the complexity of the treat-
ment of more elaborate systems we will restrict ourselves
to the investigation of the third-order system with damping
due to dry friction only; clearance will not be considered.

With the use of the relations (61), (62) and III (85b,
97b, 98b), for k = e = 0 the equations (60) can be reduced
to:

¥y+Ksgny=-e'a,
O"af+Va=—‘?+Vy,} (99)

For this special case new variables and parameters are in-
troduced:

e! 1 2

The underlinings will be omitted henceforth. The equations
(99) read now, when, in addition, the independent variable
is replaced by the travelled distance s = Vt:

d‘2
Cas—;'y+sgn-g—sz=-a, (101)
da d

da =_9Y
ol tr. (102)
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For the description of the motion in the phase space
(v, g%' a) the introduction of the new variable

alo
a3

v = (103)

is convenient. The equations (101, 102) reduce to two first
order equations:

tv%+sgnv=-a, (104)
da
oVgyte=-v+tr. (105)

8.1 Stability+of the stationary motion

In the investigation of the stability of the position of rest
the motion of the system should be examined after a small
arbitrary disturbance of the determining components v, v and
a. When the deviation from the original situation remains
within certain limits, the stationary motion will be stable.

The system is in equilibrium (i.e. performs a stationary
motion) when all derivatives with respect to s (except the
forward velocity V) equal zero. When taking into account the
property of dry friction, viz. that in state of rest the fric-
tional couple can be smaller than its maximum value, we
obtain from (101) and (102):

lalsl,;

& =iy

(106)

Equilibrium occurs on the line piece (y=a, v = 0, |a|<1)
indicated in figure 23. The stability of the extreme positions

v

trajectory

4
=1 Ye 1

positions of equilibrium

a

Fig,23. The phase-space with positions of equilibrium.
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of equilibrium < =+1 will not be examined owing to the
greater complexity involved.

We consider the position of equilibrium (v = vYe, @ =@e = Ye,
v =ve =0), where |ve|<1. Small motions in the neighbour-
hood of this position of equilibrium will be indicated by

v, v and a. The following relations hold:

Y=Y,

V=

)

2T 4 (107)
SV T

+ o+ o+
<A =

QA

Ve
= a,

These expressions inserted in equations (104) and (105) yield:

- dv P - 108
(vﬁ+sgnv--(ae+a), ( )

da@ . - . o (109)
ov—d7+a v+¥.

The values of the variables after a disturbance at s = 0 are
given by the quantities:

1
1 3 (110)

<l <
nounoou
QA <1 2

QA
I

1

These quantities are assumed to be much smaller than the
value sgn v + @e. In that case we can neglect @ in equation
(108). This equation becomes then:

Ev

Q-lQ..
<A<l

+sgn¥+a, =0, (111

In the half space where ¥V keeps its initial sign, we can in-
tegrate this equation:

{92 =-2(sgnV+a)7+A, (112)
where according to (110)

A=CT +2(sgn¥ +a,) 7, . (113)
This inserted in (112) yields:

g (72 - ¥3) = - 2(sgn ¥ + @) (Y - 71). (114)
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This solution represents two collections of half parabolas
with the y-axis as axis of symmetry. Figure 24 shows the

v

Fig.24. Projection of trajectories leading towards positions of equilibrium.

projections of the trajectories on the (v,v) plane in the
neighbourhood of the line piece where equilibrium can exist.
The radius of curvature of trajectories projected on the
(v, v) plane, near the 7y-axis, amounts:

d27 -1
P =-< ) = (sgn ¥V +ae)/t " (115)

dv?
With the use of this expression we obtain for ¥y with (114):
F=7+3E1 -/, (116)
The slope of the projected trajectories reads:

(<0) (117)

Q..IQ..
<=
o|<

Due to the fact that in the half space v > 0, the points will
move to the right in figure 24 and in the other half space
v < 0 to the left, it is obvious that the points move to-
wards the (y,a) plane. This plane cannot be crossed be-
cause of the opposite direction of motion which occurs on
the other side of the (y,«) plane. Once the (y,a) plane is
attained, the point remains on that plane. The final values
for v and ¥ read consequently:

v, =0,

T x Pl © € (118)
Ye =71tz Vi/Py

It can be stated that the trajectory of the disturbed motion
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remains in the limited space:

;%|v§/p\ g WL

By making use of the solution for y (116) we obtain for
a the following solution of (109):

a = 351 + (1+0) (op + 7;) —71% (e ®° -1) +

+ @, +(140) (3, - M+ 1T - /e, (120)

which holds for V# 0. At the instant s = s; when the point
reaches the (vy,a) plane, a obtains the value:

o = Z‘?'f = 3&1 + (1+0‘) (Gp + '\71) = »71$ (e _V]./cp_l) 3
+@ + (140) 7y + 1 73 /p . (121)

For s < s; thus for v # 0 the variable @ remains in be-
tween limits expressed by:

|‘7|<,51 + (1+o) (op+ 7)) - 7| e-"l/ﬂ*_ll "

+|a1 l + (1+0) |vll +1

Vf/pl " (122)

For s » sf we have: v = ¥f and v = 0. By making use of
these expressions and the relations (103) and (107) we find
for the solution of the differential equation (102) for s > si:

$—§ f

= (7' - -—U—+ v . (123)

G=(@ -7 ¥

The final value of o becomes for s — oo
& =% =7, +3vi/p. (124)

It appears from (123) that for s > sf the variable @ remains
in the range:

|a]<|a] + |7 | et}

From the expressions (118) and (124) it is noted that the
disturbed motion (@, ¥, v) does not tend to zero for s — c.
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New positions of equilibrium (af, ¥s, V¢) are attained after the
disturbance (ai,791,V1). The fact that the disturbed motion
remains in between limits, the magnitudes of which being
determined by the disturbance in such a way (119, 122, 125)
that for any given value € a value 6(€) can be indicated so
that for any |@1|<$é,|¥1|<6é and |vy|<$é the solution will be
such that |a&|<e, |‘y|<e and |V|<€ after the disturbance,
gives rise to the conclusion that the positions of equilibrium
(v = 0, a =v, |a|<l) are stable. However, they are not
asymptotically stable as not each of the variables a, ¥ and
v tend to zero for s— oo.

3.2. The small limit-cycle

We shall now proceed to determine the small limit-cycle.
The result will be an approximation owing to the fact that
in reality the tyre characteristic is non-linear.

Due to the symmetry of the system, the limit-cycle is
expected to be situated symmetrically with respect to the
origin in the (y,v,a) space. We will derive expressions for
the trajectories in the half space v > 0. The trajectory
which has crossings with the (v, o) plane, located symmetrically
with respect to the origin, represents the limit-cycle. The
equations of motion which hold for v > 0, read according
to (101) and (102):

d2vy
4 g tl=-a,
o s (126)
da = T B
o ag +a = ds + Y S
It is convenient to introduce the new variables:
ad=a+l, Y =7v+1, vi=v. (127)
This means that the origin is shifted to the extreme position
of equilibrium (y = -1, @ = -1). The equations (126) become
now:
dz‘y'
4 g el
ds > (128)

das [ g 2 \
s el +ds-7'_0'
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The characteristic equation of this set of equations reads:
3 4 2 _ £ A &
ofp P, *P #AL=0. (129)
The solution of this equation reads in general:
Pra®® L1y,

ps3=z‘

(130)

With the use of (127) and the first equation of (128) we
obtain for vy, v and a the following expressions:

VA

vy=-1+Ae™ +(Bsinys +C cos ys) e*s,
ve-zAe®+(Bsinys+Ccos ys)xe*+
+ (B cos ys - C sin ys) y eXs, (131)

a=-1-2gAe™-2¢ (Bcosys-Csinys)yxe®+
+¢ (B sin ys + Ccosys) (y2? - x?) e*s,

The constants of integration A,B and C are to be deter-
mined from the initial conditions at s = 0:

Yep.vul,a"q,. (132)
Half a wavelength later (s = 3 A), when the (y,a) plane is
crossed again, the following relations are valid in case we
are on a limit-cycle:

Y=-7%,ve0,a=-a_ (133)

These values inserted in (131) result in the three equations
for the unknows 7vo,, @o and A. After elimination of v, and
a, one equation may be obtained in A alone. This complicated
equation will not be reproduced here.

We will examine the case already studied before (cf.
Fig. 13):

c=3, e =0.57, ¢ =V>/e' =6.662/0.57 =78 . (134)
For the solution (130) we obtain in that case:
x = 0,.0208, y = 0.105, z = 0.375. (135)

Numerically the following solution for y,, a@o and A has been
found with the underlinings introduced again:
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Yoe' i i
=-3.37, g = =-2,88,1=—— = 60.032, (136)
K K w

5"

The maximum value of y equals |70|; the maximum value
of @, however, will be somewhat greater than laol. For
various values of the dry-frictional couple K the table
below shows the results according to the piece-wise
linear method, compared with those obtained with the aid
of the approximate equivalent linear theory (cf. Fig.13)
where, in contrast to the theory above, a non-linear tyre
characteristic is considered.

Table 2. Comparison of amplitudes and frequencies ac-
cording to two methods.

piece-wise equivalent
" [7o] . |70l s
0,002 0.0118 0.697 0.0118 0.706
0,0045 0.0266 0.697 0,0278 0.695
0,007 0.0414 0.697 0.0504 0,657

We note that a good agreement exists in the low amplitude
range. For higher amplitudes the non-linearity of the tyre
characteristic causes the wvalues of |'y°|, obtained with the
equivalent linear theory, to deviate from a linear variation
with K.

8.8, Stability. of: the ;gmall limit-eycle

We are interested in the stability of the limit-cycle, i.e.
of the orbit in the phase space. We wil consequently, not
use the stability criterium of Ljapunov but that of the or-
bital stability (cf. Stoker [56. p.253]), often called the
Poincaré criterium of stability.

A disturbed motion will be considered, which is governed
by the equation (99) and of which the trajectory intersects
the (y,a) plane at a certain instant in a point (yo+Avyi, @o+Aai)
situated near the limit-cycle (see Fig.25). For given
deviations (Ayi, Aaj) the deviations at the subsequent crossing
(Avi+1, Aai+1) can be calculated. Comparison of both
pairs of deviations may lead to a decision about the stability
of the limit-cycle. Expressions (131) form the solution of
the motion. The constants A, B and C as well as A will be
changed somewhat with respect to their values on the limit-




136 Iv

\
Limit-cycle
AYl
I disturbed
" ! motion
I 4
| % 4 1
1 87
1
X
\ AYia
\\ \ /7’/[ -‘aid
a W\ g
NN 7t
NN s/
N /l//
R e

Fig.25, Trajectories in the phase-space.

cycle. Their increments will be denoted by AA, AB, AC
and AX respectively. At the crossing we choose s = 0,
The following equatmns obtained from (131) hold for the
deviations at the i-th crossing:

Avi = AA + AC ,
0 = -zAA + yAB + xAC , (137)
Aa;= ¢ { 2%AA + 2 xyAB - (y%-x?) AC L.

The increments AA, AB and AC can be calculated from the
equations above. The deviations at the (i+l)-th crossing
where s = 3 (A+A)) follow from linearized equations which
are obtained from (131):
0 =a,AA + byAB + C,AC + d AN, (138)
Da;,, =agAA + bgAB + c3;AC + dzAN .

The increments AA can be eliminated from these equations,
after which two equations arise which are of the following
form:

Ay, =a Ay tayda, )

139
D,y = ag) Ay + agy Aa; us

The very complicated expressions for the coefficients a; will
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not be reproduced here. For the special case considered
(0=3, €=78) we obtain:

a

(140)

;== 1.756, , a, = -0.087,§

ag; = -1.865 , age=-0.100.

Because of the coupling between the equations (139) we can-
not draw a conclusion yet about the stability from these
equations. We shall therefore introduce new variables AX
and AY which are related to Ay and A« in such a way that
we can write for (139):

Eises ™ PN - 2 (141)

AYi+1 = Bz AYi .

It can be shown that B; and B3 are the two different roots
of the equation:

a,-B ap

=0 . (142)
81 g9 -B
We find for the case considered:
Bl =0.007 , (143)
By = -1.863 .

Owing to the fact that the absolute value of at least one of
the roots is greater than one, the deviation will increase
after each crossing of the (y,a) plane. The limit-cycle will
consequently be orbitally unstable.




CHAPTER ¥

INVESTIGATIONS WITH THE AID
OF AN ELECTRONICAL COMPUTER

For a more detailed study of the autonomous third-order
system and for the investigation of the non-autonomous
third-order system provided with unbalances, and the
elaborate tenth and twelfth-order systems we have proceeded
to use an electronical analogue computer.

New aspects of the behaviour of the system such as the
influence of the application of the more exact tyre theory
of Von Schlippe, the appearance of domains in the phase
space from where the motion must start in order to attain
the limit-cycle, and synchronous response and combination
oscillations in case of the application of unbalances will be
discussed in this chapter.

1. The thivd-order system
1.1. Circuit diagrams

For the formulation of the machine equations it is necessary
to introduce a time scale factor @;,. The machine time T
is then related to s in the following way:

‘r=s/art. (1)

The third-order system is governed by the equations III.
(80, 82b) until III.(98b) when the variables y, ¢, y*, ¢*
and 7Yy are made equal to zero. The equations given be-
low are derived in a similar way as displayed in Secs.IV.1.2
and IV.2,3. In contrast to the presentation in chapter IV,
we will regard now both tyre approximations I and II and
an impressed couple due to unbalance. Concerning the
damping couple g(¥,v) again the three possibilities III.
(85a, b, c) will be applied. As before, the rotational stiffness
¢ is not taken into account.

The equations III. (80, 82b, 91, 92, 93, 94a, 95a) become,
when dots refer to derivations with respect to the machine
time T: )
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APPROXIMATION II
_ o+ 2
VoFf——< V1’ (f)

F =F, (v;) +F, (vy), (g)

M|

F, (v;) - F (v). (h)

5 ()

/

Through equation (2f) we have realised, in fact, the straight
tangent concept of approximation II. The original equations
I11.(96, 97a, 98a) are replaced by (2f,g,h) which leads to
the same result, but which has the advantage that the same
pair of function generators can be used for either approxi-
mation, so that a more accurate and easier way of com-

parison is obtained.

Fig.1. Analogue computercircuit for the third-order system with possibility of introducing
retardation term (tyre approximation I: switch § in horizontal position).




&

141

k
Y
a g.kv%%
._q_o_.owvcu
3,
P @ 3 9
A 2 -b K-
g v ROMr) _(>_'Ero| .
y E R i
| =K
1 R,(R) EE,. characteristic
) > obtained
g:=Ksgn'y iir.

L GO 10vout

gsKsgny®

c
ReAL

+x A2

A B )— 10Volt
Y

0 {@
e
k : Ii
e
(ct.Fig.2b)
Yl - 5
SIMULATED

Fig.2. Circuit diagrams for generation of damping term g(4,y),
a: Linear damping,
b: Dry friction,
c: Dry friction with clearance.
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For generating the retardation term y.; (7-2/a;) we made
use of a tape recorder by means of which a constant time
delay can be achieved. The time delay must have the fol-
lowing value:

0 = 2/a,. (3)

It is the difference in time between recording and repro-
ducing. The scale factor @, is determined by the fixed time
difference 8 through (3). In our case we have chosen for
the value of the scale factor: a;r = 5.6. It appeared further-
more to be convenient for obtaining a proper voltage level
to multiply equation (2a) by the factor 10 and equation (2b)
by the factor @,. The machine unit is 10 Volt.

Figure 1 shows the circuit for the case that approximation
Iis employed., The function generators generate the functions
F, and F,, which are obtained in a way as shown in figure
I1.18. Through switch S we may disconnect the tape recorder
and thereby obtain approximation II. "The block denoted by
g is a general indication of the element generating the
damping term in equation (2a); input ¥ is used only in the
case with clearance. In figure 2 three possibilities for the
damping term g are shown. Figure 2a shows the linear

representation g = _aY; k v. For easier manipulation another

construction shown at the right-hand side, which fits in the
circuit of figure 1, is used. The speed can be varied con-
tinuously with the aid of the coupled potentiometers. Figure
2b shows block g in the case of a dry-frictional couple.

g=+K g=0 g=~-K g=0 g=+K
Y 25
y y
X ) 2¢ 6 P’W
g, - &
..»-»’"’J \ ‘ "8 ¥
w"”” - N""'-‘..__
>>>5 Y Y
S refer to
—————— numbers
in fig. 2¢

Fig.3. Variation of voltages occurring in circuit of figure 2c.
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The actual characteristic obtained appears to differ slightly
from the ideal characteristic due to the finite values of the
resistances R; and R. Figure 2c gives the elaborate scheme
necessary for the simulation of clearance and dry friction
in series. In figure 3 the variations of several signals oc-
curring in this scheme are shown. The small voltages €
are used for controlling two relays shown in the centre
of the diagram of figure 2c.

For the simulation of the linear third-order system both
function generators for the tyre characteristics should be
replaced by linear elements; in addition, the linear repre-
sentation of the damping term should be used. When in-
vestigating the autonomous system, where the unbalance
couple vanishes, the sine generator should be disconnected.

1.2. Stability of the linear system

The boundaries of the speed region where instability oc-
curs for a certain configuration of the system, may be
found by varying the position of the coupled potentiometers
for 1/V. Those positions should be chosen where the self-
excited motion remains stationary in amplitude.

In figure 4 a diagram is shown indicating areas of in-
stability in the (V,e) plane. As before we have chosen the
values 0 = 3, e' =0,5. In order to obtain a clearer picture
of the influence of the retardation term (approximation I of
tyre behaviour), the damping coefficient k is not taken into
account in this section. The caster length e may again be
obtained by varying the position of the king-pin either by
shifting or by inclining, where we must bear in mind that
the theory holds only for small values of the caster angle €.

In the graph of figure 4, the results for both approximations
of tyre theory are shown. The curves for approximation II
(i.e. switch S of Fig.l in position II) correspond to those
of figure 1IV.2. AlSo the curves for constant reduced
frequency applicable for approximation II are drawn. As
expected, it appears that at high values of wy approximation
II does not longer follow the more exact approximationlI,
Above w, = 0.2 the decrease in self-excitation due to the
retardational effect becomes appreciable (cf. Fig.II,13a).
The stability boundaries which are open at the left-hand
side for each value of the damping coefficient k when ap-
proximation II is employed, may become closed for higher
values of k in the Von Schlippe representation (approximation
I). It is noted that the simple approximation II fortunately
leads to conclusions which are on the safe side.
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Fig.4. Unstable areas of the third-order system showing influence of retardation term
(approximationI) withrespect to simplified system (approximation II) (e'=0.5,0=3).

1.3. The phase space for the non-linear system

The motion of a system with parameters characterized
through a point in the unstable area of figure 4 would al-
ways increase in amplitude when the system is considered
to be linear. For the case that non-linear elements are in-
troduced, it appears, as has been found already analytically,
that one or more limit-cycles may appear. The trajectories
from or towards such limit-cycles can only be presented
in complete form in a three-dimensional space with co-
ordinates 7y, ¥ and a.

A detail study has been carried out for a given system
travelling with a certain speed, in which the limit-cycles
and the conditions necessary for approaching a stable
situation are determined.

For the sake of comparison with results obtained analytical-
ly, we have chosen the same parameter values as used in
figure IV.13 and 1IV.14:

c=3,e=0, k=0, V=6.66.

The tyre characteristic to be used again is shown in figure
IV.12 (original curve). In the point considered in the grapn
of figure 4 it makes practically no difference whether ap-
proximation I or II is used, because of the low value of
ws occurring in that point. This frequency will become even
lower at increasing amplitude due to the decrease in equi-
valent cornering stiffnesses. It is very well permissible to
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use approximation II for this detail study. The tape-recorder
is disconnected in that case which makes the manipulation
a lot simpler.

Figure IV.15 giving an overall picture of analytically ob-
tained results appears to apply for the analogue computer
results as well. The variation of the limit-amplitude with
viscous and dry damping for certain values of clearance as
found with the aid of the analogue computer, is shown in
figure 5. The agreement with the analytical results shown

—— dry damping (K)
, @ @ T iscous damping (k)
015 | @ @
1
04
\\
\.\\
e
005 \]\
520 L“ﬂl e %
/ AT i T |
\ *
01 02 AL
. — T 0015 002 K

Fig.5. Limit-amplitudes as a function of damping for a number of values of clearance §
(V=6.66, 6=3, e=0, %=0).

in figure IV.13 and IV.14 is very good. Due to the con-
siderable deviation from an elliptical shape of the limit-
cycle at large amplitudes, the difference in amplitude be-
comes relatively larger in that region of amplitudes.

We notice that in the case of viscous damping the limit-
cycle is the only possible stable situation when the centre
position is unstable, i.e. when a point in an unstable region
of figure 4 is regarded. From each point in the phase space
(v,v,@) this limit-cycle will be reached in that case. In
the case of dry friction, however, it is not at all sure to
which stable situation, centre position or limit-cycle, the
trajectory will go when the motion starts with some arbi-
trary set of initial values of v,v and a.

For the dry-frictional couple K = 0,0035 and two cases of
clearance &6 = 0 and 6 = 0,0027 this problem is examined
more closely. In the case without clearance two limit-cycles
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occur of which the smaller is unstable; the centre position
is stable. In the case with clearance three limit-cycles are
found of which the second one is unstable; the centre position
is unstable.

By trying out a large number of combinations of initial
values of 7, ¥ and «, it is found that in the case without
clearance (6=0) a 'limit-surface' in the shape of a curved
tube exists in the phase space, situated symmetrically with
respect to the origin (see Fig.6). It appears, that from its

)
¥
stable centre position

unstable limit-cycle

stable limit-cycle /‘

Fig.6. The limit-surface of initial values and the limit-cycles with trajectories
starting form the unstable limit- cycle in the case of dry friction and absence
of clearance (V=6, 66,6=3, e=0, x=0, K=0,0035, §=0).

interior always the stable centre position on the line piece
(vy=a, 7¥=0,|v|¢K/e') is reached (cf. Sec.IV.3). When
starting outside the tube, the stable limit-cycle is attained.
When starting from a spot on the tube, the point travels
over the limit-surface towards the unstable limit-cycle
which is a closed curve situated on the limit-surface. When
starting not exactly on this limit-surface the point will tend
towards either the centre position or the stable limit-cycle
after having circulated a few times in the neighbourhood
of the unstable limit-cycle, It may be noted that the amplitude
Y, of the unstable limit-cycle can be indicated approximately
by the point of intersection of the tube wall and the vy-axis;
this value of ¥ has to be exceeded in order to reach the
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stable limit-cycle when the other initial values (v, a) are
taken equal to zero. It appears that this approximation ap-
plies fairly well in general.

When regarding the case with clearance, it is obvious
that for a complete representation of the solution a fourth
dimension is needed owing to the additional variable y* (see
Fig.III.4)., We will confine ourselves to the initial wvalue
'y* = 0, The limit-surface and the projection of the three
limit- cycles upon the ‘three-dimensional space (7v,Y,@) are
shown in figure 7. The limit-surface is symmetric with

v
A

0.01

N
- = \
02 unstable limit-cycle
stable limit-cycles
unstable

04  centre position

Fig.7. The limit-surface of initialvalues and the limit-cycles in the case of dry friction
and clearance (V=6,66, v=3, e=0, x=0, K=0,0035, 8=0.0027).

respect to the origin in the case considered (y*=0)., From
its interior, the stable small limit-cycle is always reached.
When starting outside the limit-surface, the trajectories
will tend to the stable large limit-cycle. It may be noted
that in general the unstable limit-cycle does not lie on the
three-dimensional surface but intersects it in a few points.
This limit-cycle does lie completely on the four-dimensional
limit-surface.

As an illustration, figure 8 shows the projection of the
limit-cycles and some trajectories leading to them for the
case 6 = 0,01 and K = 0,009 (cf. Fig.5).
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Fig.8. Limit-cycles and some trajectories in the case of dry friction and clearance
(Fig.s. case 2).

l,4. The self-excitation area

With the use of the simple approximation II of the tyre
theory, which has been employed throughout the analytical
investigations, we have found, also withhigher-order systems,
self-excitationareas very similar to those obtained analytical-
ly. As mentioned in Sec. 1.3 the limit-amplitudes appear
to be somewhat larger than would be predicted analytically.
As a consequence, also the boundaries (especially the upper
one) of the self-excitation area will rise a little, which
results in an increase in area.

For e = 0, o = 3 and the original tyre characteristics
as shown in figure IV, 18, curves are obtained as presented
in figure 9, together with curves for constant reduced
frequency. They may be compared with the analytical results
shown in figure IV, 20,

We now consider the case of switch S (Fig.1l) in position
I so that the tape-recorder is cqQnnected and thereby the
more exact approximation I comes into pldy. Figure 10
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Fig.9. Self-excitation areas according to approximation II (¢=3, e=0).
v, = = — with taperecorder (appr. I)
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Fig. 10. Comparison of self-excitation areas calculated with approximation 1 and II
(0=3, e=0).
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shows the curves obtained together with the boundaries ac-
cording to approximation II for some combinations of dam-
ping. We find, as expected, less self-excitation at low
velocities V or in other terms at high values of w,. The
left-hand boundaries of the areas are shifted a little towards
higher values of speed, which means that according
to approximation I the shimmy will die out, while slowing
down, at a somewhat higher speed than would be predicted
with the simpler tyre theory according to approximation II,
This effect owing to the retardation term in the equations
does not influence the nature of shimmy and will therefore
be disregarded in the sequel,

1,5. The response to unbalance torque

When connecting the sine generator in the analogue com-
puter circuit of figure 1, the non-autonomous system is
simulated. For several values of unbalance moment coef-
ficient u,, and the reduced excitation frequency wy, = 1/R,
stationary response characteristics are produced. Figure 11
shows the curves for different values of u,, and wy, for
a given combination of damping. The area of self-excitation
of the autonomous system is indicated by a dashed curve.
Figure 12 illustrates the effect of varying the damping.

The full thick lines (curves 1 and 3 in Fig. llc) designate
the amplitude response in the case that a synchronous motion
occurs, which implies that the motion is periodic with the
same frequency as the frequency of excitation by unbalance.
Synchronous response will occur when the frequency of ex-
citation is close to the frequency of the autonomous system
(Fig.9) at the amplitude level occurring in the non-autonomous
case, When the difference in these frequencies becomes
too great, the synchronous oscillation may pass into a
motion with a beat character. Combined oscillations occur
then, one with the frequency of the unbalance moment and
the other with a frequency close to that of the autonomous
system. The shaded areas (4 and 5 in Fig,llc) indicate
the speed ranges where combined oscillations occur; the
boundaries of these areas represent the upper and lower
limit in between which the amplitude of the stationary motion
varies.,

A similar phenomenon of synchronous motions and com-
bined oscillations has been treated in an approximate ana-
lytical way by Stoker [57, p.166] for the second-order
system of Van der Pol provided with a forcing member.
He shows that when the system is excited with a frequency
near the frequency of the free oscillations, synchronous
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Fig.1l. The response to unbalance torque for various values of unbalance Ky and
wheel radius R (6=3, e=0, x=0.5, K=0,006).
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response occurs. Beyond a certain degree of detuning the
synchronous motion appears to become unstable; a transition
takes place to combined oscillations., It appears that the
response of our third-order system and, as we shall see
later, also of more elaborate systems basically show the
same features,

At low values of wheel radius or damping, subharmonic
response may occur. In such a case the frequency of the
motion is a fraction of the frequency of excitation. In figure
11 this occurs at a reduced frequency of excitation wy, =
0.22 and in figure 12 at the combination of damping k = 0.5,

= =1
Y, %=05 Y,

01 @ 01 @

K=0009

Y

o

vl

01

%

%/

. N

10

Fig.12. The response to unbalance torque for various combinations of damping (6=3,
e=0, u, =0.00025, w =0.13).

K = 0.003. For the periodic motions, represented by the
full thick lines, the fractions are indicated.

These general considerations will be followed now by a
more detailed discussion of the course of things in the figures
11 and 12, The way in which the motion changes is indicated
by means of arrows. The system will get into motion as
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soon as the velocity and consequently the unbalance moment
has exceeded a certain critical value depending on the dry-
frictional couple K. It may happen (Fig.lla,b,c,d,f) that
in the first instant a synchronous curve is followed on low
amplitude level (curve 1 in Fig,llc), after which the motion
jumps over to a high amplitude level (curve 3) sometimes
via a combined oscillation (area 2); on this high level the
motion is synchronous in most cases. At decreasing values
of wun (larger R) the synchronous region shifts more to the
right where the influence of self-excitation decreases and
the moment due to unbalance increases so that due to both
reasons a more extended synchronous region arises.

When a sufficient amount of self-excitation is present, the
synchronous character may pass into a combined oscillatory
type when the speed is changed sufficiently. It is shown
that the correspondence of the combined oscillations, repres-
ented by the left-hand shaded area (4 in Fig.llc), with the
autonomous motion (dashed curve) becomes closer at de-
creasing values of the velocity of travel. At low values of
Wyy, and My, it may occur that this area of combined oscil-
lations is isolated and cannot be attained through the un-
balance alone, The arrow in between brackets (Fig.lla) in-
dicates a possible jump towards such an isolated area when
the forward speed is lowered in short time. Of course a
single external impulse may also cause entrance in this
area, At somewhathigher values of w,, and my, (Fig.1llb,c,d)
the area may become isolated only in the direction towards
the synchronous region. The area can then be reached in
the normal manner but cannot be left in the same way.
When varying the velocity from the point where the beat
area is reached, the combined oscillation will continue until
it dies out or is passed into a synchronous oscillation of
low amplitude level.

When subsequently the velocity is increased sufficiently,
the synchronous response with high amplitude level (3 in
Fig.llc) will be reached again. A further increase in
speed may lead to a second non-synchronous response as in-
dicated by the right-hand shaded areas (5 in Fig.llc).
The difference between maximum and minimum amplitude
increases rapidly with speed until in some cases (Fig.1llg)
the minimum amplitude becomes zero which results in
vanishing of the motion, The latter behaviour can occur
alone, when at that value of speed the unbalance is not
large enough to excite the motion from the situation of rest.
The high amplitude shimmy is isolated completely in that
case. Due to unbalance alone the system will vibrate only
at high velocities and then mostly with very low amplitudes.
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In most cases this motion will be synchronous. In the other
case (Fig.lle) where the high amplitude shimmy is not
isolated, the combined oscillatory motion will not die out at
increasing speed but may pass into a synchronous motion of
low amplitude level when M, is not too large. ,

A complicated response picture, showing the occurrence
of subharmonic responses, arises at the high value of ex-
citation frequency w , = 0,22 (Fig.11i,j,k). For u, = 0.001
the subharmonic response shows a fraction of even 1:3. In
figure 12e a more regular response occurs at the low dam-
ping combination k = 0,5, K = 0,003. Figures 12a,b,d show
the influence of high damping where no area of self-excitation
exists and where a forced vibration can occur alone., A
peculiar situation arises at the combination ¥k = 1 and
K = 0.003 (Fig.l12f). In spite of the existance of a small
self-excitation area the non-autonomous response does not
behave as in cases with larger areas where the left-hand
part of the boundary is followed closely.

2. The tenth- and twelfth-order system
2,1, Mathematical description

In the elaborate system shown in figure III. 1, to be studied
now, approximation II will be applied for the tyre simulation
(cf.Sec.Il. 6)and adry-frictional couple for the representation
of the damping couple -D, The system will be simplified by
making h* and h equal to zero, After the elimination of some
variable quantities and the introduction of the time scale ay,
the non-dimensional equations IIL (76) to IIL. (99) transferred
into machine equations read:

\
V2
, 3 R _ 1, =
u - (3 + hmqp) ny* N'e =0, (a)
ay
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The terms underlined, which are small with respect to
neighbouring terms in the case considered (calculations
revealed that amplitude ratios are of the order of 1%), are
omitted in the ensuing calculations. Some of these terms,
containing N and N', which were easy to introduce in the
circuit have afterwards been checked with the computer; they
indeed appeared to have no visible effect on the motion. The
second terms in equations_(4d,e) accomplish a coupling
of the order of magnitude €“ between ¢* and %, which will
be very small indeed for the case to be considered (€ =~ 0,01),
In equation (4d), furthermore, the impressed couple (last
term) is negligible with respect to RF (a).

2.2, Simulation of test vehicle

The system described in the preceding section will be
examined now for parameter values close to those applicable to
the test vehicle. The experiments on the road, carried out
with the test truck, are discussed in chapter VI. The results
from this experimental investigation may be compared with
the results obtained here through simulation.

The parameter values based on measurements on the
vehicle are listed intable 1 (for definition of non-dimensional
quantities cf, TableIIl.1, p. 79 ). For distinction, the symbols
indicating non-dimensional quantities are underlined again.
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Table 1. Parameters values of test vehicle

WITH DIMENSION NON-DIMENSIONAL
TYRE (cf. Sec., II.6)
(9.00-16 in; p;=1.75 bar = 25 1b/in? = half of normal pressure)
F(a) and M'(o): cf. Fig.13
C = 70000 N/rad
e' =0,08 m e' = 0,62
a = 0,138 m
4 =¢* =0.2lm g =15
R =0.5m R = 3.6
x =810 Nm? x =0.6
N = 10000 N N =0.143
WHEEL /STEERING SYSTEM

€ = 0,0094 € = 0,0094
( = 0,0047 m e =0,034
K =44 Nm K = 0,0045
8 = ( 8 =0
& _ )6700 Nm/rad (locked st.syst.) & = 0.69

3750 Nm/rad (released st,syst.) = 0.39
1 = 5,4 kgm?
15 = 5.3 kgm? B =0,27
n“ly = 3.8 kgm? By = 0.7
myp = 0,11 kg Hyp = 0.00038
Ayy =8.15m My =2mR = 28

Wyn = 1/R = 0,274
UNSPRUNG MASS /SUSPENSION
¢* =2 x 106 N/m ¢ =3,95
c2 = 2,7 x 105 Nm/rad gg = 28
m® = 170 kg B = 0.6
L, =10 kgm? By = 1.85
SPRUNG MASS

cp =8 x 105 Nm/rad cp =80
m = 850 kg 4 =30
Ip = 350 kgm? Bp = 65
hm = 0,4 m hy =29
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Fig.13. Cornering characteristics of tyre of test vehicle.

Furthermore the following relations hold (cf. Table III. 1):

V= =587
w = 42.4

wyg = 17.25
Won ™ 7,26
XL E 40, 138
o= 0,138

V (m/s) = 21 V (km/h)
W grad/s))= 6.75 w (c/s)
: d
gun =ra'l7.21§/l:_{ (rad/m) (5)
A (m)
A, = 0.87 R (m)

The results of the analogue computations will be given in
dimensional form. Since most features are similar to those

found in the lower order systems,

discussed before, we

may restrict ourselves to a short treatment of the results.

(n=6.4css) o
A=17 6
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Fig.14, The area of
self- excitation.

700 V. W0km/h
The influence of
releasing the

steering system.

Fig.15. The response to Fig.16.

unbalance torque.
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Figure 14, qualitatively corresponding to figure 9, shows
the area of self-excitation of the 10th-order system with
the steering system clamped at the node (ys¢ =0, ¢ = 0.69).
The instantaneous frequencies are indicated along the stable
part of the curve.

Figure 15, qualitatively corresponding to for instance figure
lle, shows the non-autonomous response of the same system.
The dotted curve indicates again the area of self-excitation
of the autonomous system. The predominant frequency varies
approximately according to values indicated in figure 14,
A remarkable agreement with results obtained experimentally
appears to exist (cf, Fig. VI.4). The speed at which shimmy
starts, the synchronous response, the beating area, the
amplitude level, the order of magnitude of the frequency
and the speed at which shimmy dies out appear all to be
in agreement with the actual behaviour. It may be noted that
in contrast to the third-order system (Fig.llc) the am-
plitude decreases here rather sharply at higher speeds
which is a result of the gyroscopic action.

Figure 16 illustrates for the autonomous system the ef-
fect of releasing the steering system (vqy # 0, ¢ = 0.39).
The additional area of self-excitation, predicted in the
analytical study (see Fig.IV.22), indeed appears. The
area for supercritical shimmy is nearly unchanged with
respect to that of figure 14. The motion jumps over from
this area to the left-hand area where subcritical shimmy
occurs. A way back does not appear to be possible. When
varying the velocity V the motion will follow the upper
boundary of the subcritical area until it dies out as in-
dicated in the figure. It appears that a stable stationary
oscillation of both modes combined is not possible. Only a
transient combination of the two oscillations has been
observed at the transition from one vibration to the
other. Due to the fact that at lower frequencies and velocities
the gyroscopic couple due to tyre deformations decreases,
the amplitudes are expected to become somewhat larger in
reality in the subcritical range than as predicted with the
aid of the approximate tyre simulation employed (cf.Sec.
II.6). The qualitative correspondence with the behaviour of
the mechanical model was very good (cf.Sec.VI.3). By
loosely holding the steering-wheel, the driver may very
easily suppress the subcritical oscillations,

2.,3. Influence of changing parameter values

The influence of changing tyre quantities, damping and
caster will not be discussed again. An influence similar
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to that of the third-order system as discussed in Secs.IV.1,2
and IV,2,3D has been found.

How the non-autonomous response is influenced by a
reduction in self-excitation, in this case due to an increase
in k, is shown in figure 17, the first part of which being
identical to figure 15, The self-excitation area vanishes
and the amplitudes become smaller and occur only at high
speeds.

Y.
=08 =08 U=t =12
6] 1
i ;
| I
i i i i
0 50 V 100 km/h 0 50 V 100km/h 0O 50 V100 km/h 0 50 V 100km/h

Fig.17. The influence of more damping (x) upon the response to unbalance torque.

A small change in wheel radius has almost no influence
on the area of self-excitation. It, however, does influence
the unbalance frequency directly. The latter effect is shown

in figure 18. A change in wavelength of the unbalance tor-

* Y.

228

0 0 50 vV 00 km/h

Fig.18. The influence of changing the wavelength of unbalance torque Ay upon the
response.

que (i.e. the wheel circumference) from A,;, = 23 (original
value, Fig.15) to Ay, = 20 (@, = 0.274 to 0,315) which
corresponds to a decrease in wheel radius to the same
ratio, results in an isolation of the self-excitation area
and in an amplitude course of the forced vibrations on a
very low level. For the unbalance mass considered the
high amplitude shimmy may only be reached through an ex-
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ternal disturbance. An increase in unbalance wavelength to
Aun =28 (wWup = 0,.225) also causes isolation of the self-
excitation area, which illustrates that the required wheel
radius for attaining self-excited shimmy is rather critical

Yo

0 50 vV 100 km/h 0 50 vV 00  km/h

0 50 v 100 km/h 0

Fig.19. The influence of some parameters upon the area of self-excitation,
a: Lateral suspension stiffness c
b: Torsional suspension stiffness c?v

c: Torsional stiffness of steering system c.

d

: Moment of inertia of steering-wheel I (steering system released).
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in this case. It appears that in the case of Aun = 28 the
amplitude can reach high values but only in a narrow band
at higher speeds, where resonance occurs., )

How the area of self-excitation is influenced by the para-
meters cf, c¥, c and Iy is shown in figure 19. On the
curves, points are indicated (dashes), where the wavelength
of the motion equals 17 times half the contact length., The
parameter values are given as a ratio to the original values.

An increase inc¥, i,e. alateral stiffening of the suspension,
causes a decrease in area of self-excitation. Finding that
an increase in torsional stiffness c& stimulates shimmy
results from the reduction in stabilizing effect due to
gyroscopic coupling.. When c¥—w we find nearly the same
curve as that obtained in the case that both terms, denoting
the gyroscopic coupling (B), are omitted in the equations (4).
A sharp decrease in torsional stiffness may cause gyroscopic
shimmy, a phenomenon which has been discussed before.
The amplitude of the gyroscopic shimmy does not appear
to be limited with the model simulated since no stops re-
stricting the torsional motion are employed.

The torsional stiffness ce of the chassis appears to have
an influence similar to that of the suspension c*. A decrease
in sprung mass m, furthermore, causes the area to reduce
in size. At about one tenth of its original value the area
vanishes, '

Again referring to figure 19 we note that with a clamped
steering system an increase in stiffness c of the steering
system causes the area to shift to the right and finally
to vanish due to gyroscopic action. The points representing
a certain wavelength shift at practically the same amount,
which means that the variation in shimmy frequency occurs
almost proportionally to the shift in area. By changing the
stiffness it is obviously not possible to get the frequency
of excitation out of the area of self-excitation. The phe-
nomenon takes place only in another velocity range.

How a change in moment of inertia of the steering-wheel
Ig influences the system can only be found with the aid of
the 12th-order system, thus with the released steering
system., As figure 19d shows, it appears that at a suffi-
ciently low or high moment of inertia the two areas separate
from each other. Finally one of the areas will vanish., The
two extreme cases,viz. blocked steering-wheel or I —co,
and no steering-wheel or I =0, are indicated.

A picture similar to figure 19d arises for the released
steering system when c is varied. Concerning the super-
critical motion, the area varies similarly to the variations
shown in figure 19c. In general it is found that an increase
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in the moment of inertia Iy has an effect opposite to the
influence of an increase in the stiffness ¢ which indicates
that in fact the natural frequency of the steering system is

of basic importance,




CHAPTER. V1

EXPERIMENTAL INVESTIGATIONS

In order to substantiate the preceding theories developed,
we carried out a series of full scale tests with an automobile
on the road, full scale tyre experiments on the drum test
stand and experiments with a small mechanical model
capable of showing shimmy. In the subsequent sections,
these investigations will be described.

1. Full-scale experiments with test vehicle on the road

With a one-ton weapon carrier tests have been carried
out on a two mile long landing strip. The truck, equipped
with independent front and rear wheel suspensions (trailing
arms) was driven through its rear wheels. The tyres were
provided with NATO terrain profile (blocked pattern with

Fig.1l. Test-vehicle equipped with measuring apparatus.
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centre rib). The parameter values of the vehicle have been
enlisted in section V.2,2. Figure 1 shows the vehicle with
apparatus for measurements and a special device for pull-
ing off the unbalance from the front wheel during running.
In figure 2 a diagrammatic view of the vehicle is shown;

fifth wheel Y, lateral acceleration of wheel centre
¥.¥, lateral acc. of chassis frontard rear
Vv i“'L vertical acc. of unsprung masses

$*  angular acceleration of unsprung mass
$.8, angular acc. of chassis front and rear
Y., swivel angles about king-pin

¢, angular displacement of steering-wheel

Yo =50 =} izR'iz =
[ 2 ( B "’2)

i
|

Lol

b o V=i =
( )’wtl'-l)’wb,ip-) 2. HIEH}E’D‘zm 2, =

5 . © Ywe - £4 52
® 2.-2 o
g | o | -Ywb
A

Fig.2. Diagrammatic view of test vehicle showing signals registered.

arrows indicate signals measured by means of accelerometers
and potentiometers. In addition to the signals shown in the
figure, also the period of revolution of the right front wheel,
measured by means of an inductive pick-up situated opposite
to the unbalance mass, and the moment of removing the
unbalance were registered on a magnetic tape.

A series of tests were carried out in order to find the
amount of unbalance mass on both front wheels capable of
initiating shimmy. As a result of these tests, unbalance
masses of 600 gram on each of the front wheels, which
corresponds to the value uy, = 0.38 x 10-%, were chosen
for the subsequent experiments with which the influence of
varying several parameters such as suspension stiffnesses,
unsprung- and sprung mass, damping, tread pattern and in-
flation pressure, was investizgated. The normal tyre in-
flation pressure of 551b/in“ was reduced to 40 lb/in” and
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finally to 25 1b/in2, the latter normally being used under
off-road conditions. The pressure of 251lb/in? effected a
violent self-excited shimmy motion and is taken as the
basic value for the investigation of the influence of the
remaining parameters and for the analogue computations.

The time history of the shimmy motion for three cases
of inflation pressure, p; = 55, 40 and 25 lb/in2, where the
degree of self-ex01tat10n increases with decreasmg p;» is
shown in figure 3a,b,c. In the graphs are shown: the curve
for the amplitude v, "of the right front wheel, the variation
in forward speed V as well as the periods of the swivel
motion Ty and of the revolutions of the right front wheel
Ty; all values are shown as functions of time. The situation
of the unbalances left and right with respect to each other,
are also indicated in the figures. The phase lead ¢,y of the
shimmy motion with respect to the wheel revolutions, i.e.
to the unbalance moment, of the right front wheel are shown
in separate diagrams.

In the figures 3a,b a slowly increasing and dying out of
the wheel motion in periods of about 15 seconds in noted.
This feature of slow beats is the result of a small dif-
ference in effective rolling radius left and right, which
causes the unbalances to vary their relative position con-
tinuously and thereby causes the resulting unbalance moment
to vary periodically in amplitude. This amplitude will at-
tain its maximum when the unbalance masses are situated
opposite in phase and the amplitude will be reduced to zero
when the unbalance masses are in phase (cf. indications in
the figures). These beats are closely connected to systems
showing no or little self-excitation. In the case shown in
figure 3c this sort of beats does not occur, which points
to the existence of sufficient self-excitation.

When driving carefully, with a speed at which the system
is most sensitive for the initiation of shimmy, it appears
that also in the former two cases, a and b, rather large
amplitudes may be reached. Even a tendency to exert a
self-sustained motion, thus not depending on unbalances, is
shown to exist in these cases (cf. differences in courses
of Ty and Ty curves). In the case of figure 3a, with p; = 55
1b/1n2 the component of the shimmy motion whlch tries
to sustain itself, is suppressed immediately as soon as the
unbalance moment differs too much in phase with respect
to the motion, One period of the motion T, suddenly be-
came large in duration (note peak), thereby causing the
motion to get in its original phase again, The shimmy
motion does not appear to be able to sustain itself under
the action of the unbalance moment. Various tests where
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the unbalance mass is pulled off during the violent oscil-
lations, reveal furthermore that the motion under the cir-
cumstances of figure 3a always dies out directly or within
short time after that the unbalance mass has been removed.
In the case of figure 3b with p, = 40 lb/in?, obviously a
greater degree of self-excitation occurs. During the second
beat the speed has the most sensitive value and the shimmy
motion is able to get ahead in phase a few times 27 radians
with respect to the wheel revolutions; this in contrast to the
former case where the motion returns to its original phase.
The drop in speed during the violent oscillations might have
been the reason that the motion did not sustain itself. Pulling
off the unbalance at the right instant probably might have
resulted in a self-sustained oscillation.

In the case of figure 3c the inflation pressure is reduced
to 25 1b/in? which results in a real self-sustained shimmy
motion. Figure 3c is transformed to the amplitude - velocity
graph of figure 4, which may be compared with the graph
of figure V.15 obtained with the aid of the analogue com-
puter. We notice a very good correspondence between the
two. It appears that shimmy occurs in a velocity range be-
tween 75 and 40 km/h. It is always required, however, to
raise the speed of travel first, until the unbalance moment
becomes large enough to start the vibration. When the
frequency of the forced oscillation approaches the natural
frequency of the system, larger amplitudes arise and the
motion may sustain itself from that instant on, owing ta the
fact that then the lower amplitude range, where the dry
friction has predominant influence, has been exceeded.
When the speed is lowered again, it is seen that after some
time the periods of the wheel revolution and of the shimmy
motion obtain courses completely different and independent
of each other, which strengthens the opinion that here the
motion sustains itself, From the phase diagram (Fig. 3c)
it is seen that a peak of the amplitude occurs each time
when the phase difference amounts to an integer times 27.

For the same case (p; = 25 1b/in?) another test has been
carried out with an unbalance mass attached to the right
front wheel alone. After the violent shimmy oscillations had
started, the unbalance mass was removed from the wheel.
From then on the wheels were completely in balance. The
shimmy appearedto continue without showing much difference
in amplitude course with respect te the case with unbalance
as shown in figure 3c. This experiment formed the final
proof that the shimmy observed was a self-sustained
oscillation. The phase and amplitude relationships measured
at an instant shortly after the unbalance was removed,
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are plotted in vectorial form in the complex plane as shown
in figure 5. The vectors rotate counter-clockwise with an

Im

wi

————— according to theory

scale:
WL — 2 1°0r 2 mm deflection

z

Fig.5. Phase diagram of signals according to Fig.2.

angular velocity w. The dashed vectors originate from
analogue computer results for the case shown in figure V. 14,
A fair correspondence has been found considering the fact
that the measurements of the phase relationships for both
analogue computer and full scale test results are rather
inaccurate.

A change in unsprung and sprung mass of 10 - 20 % ob-
tained by attaching weights to the respective parts did not
show an essential difference in behaviour. The same results
arose with a nearly locked steering-wheel and in the case
of locking the vertical springing action of the suspension
arms relatively to the chassis., A lateral stiffening of the
suspension by a ratio of about six through the introduction
of cross arms resulted in an improvement in behaviour.
Only a forced oscillation with an angular wheel deflection
of about two degrees occurred within the speed range of
70 - 80 km/h., This result has been predicted indeed theoret-
ically; the maximum resonance amplitude found with the
analogue computer, however, was of the order of 4°. A
hydraulic steering-damper which acts on the steering-rod
connecting the two wheels, influenced the behaviour in a
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similar way, as has been expected. The employment of
tyres with a special tread pattern consisting of three longi-
tudinal ribs and with a somewhat shorter contact lenght
resulted in a complete disappearance of any tendency to
shimmy. The effect may be explained by the fact that
through the stiff longitudinal ribs and the shorter contact
length (the latter resulting in a smaller cornering stiffness
Cwm) the ratio k/Cpya is increased with respect to the cor-
responding value for the original tyre (cf. Sec.2), so that
arelatively higher damping by longitudinal tread deformations
is obtained. These results correspond to those obtained by
Marstrand [427] who carried out experiments whithaircraft
fitted with two-rib tyres.

2. Tyre frequency vesponse tests on votating dvum

The tyre response to sinusoidal inputs could not be
measured on the road since no adequate equipment was
available for that purpose. In order to obtain an idea of
the qualitative aspects of the response we have carried
out tests on a rotating drum (2,5 m diameter) which
replaces the road surface. Similar experiments with a
small model tyre have been carried out by Saito [31].

Owing to the curvature of the drum surface and the
difference in tangential contact properties we may expect
a quantitative difference between the response on the drum
and on the road. As an illustration, the stationary charac-
teristics of the original tyre with blocked tread pattern and
with an inflation pressure of 25 1lb/in?, as measured on
the drum shown in figure 7, may be compared with the
characteristics shown in figure V.13 which resulted from
road measurements.

The frequency response experiments have been carried
out with the aid of an excitation test stand shown in figure
6. The wheel is swivelled, as it rolls over the drum, to-
gether with the whole structure in which the wheel axle is
mounted. The structure is excited against four coil-springs
in the resonance frequency, so that only a small force of
excitation is needed. A special measuring device mounted
in the wheel (cf. Van Eldik Thieme [44]) gives the elec-
trical signals from which the resulting forces and moments
acting in the contact area can be derived. Because of the
fact that the mass of the wheel distorts the signal, a cor-
rection needs to be applied to account for this.

A number of experiments have been carried out in which
the swivel amplitude and frequency are kept constant, but
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spring

7.

tyre with
measuring
device

Top view of test stand

Fig.6, Shimmy excitation test stand for measuring tyre frequency response.

where the drum speed is varied and consequently the wave-
length is changed proportionally with the speed. The block
patterned tyre is compared with the ribbed tyre and the in-

|
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Fig.7. Tyre data according to measurements on drum test stand (9.00-16 in; pi=25
1b/in?%),
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fluence of amplitude and frequency is studied for the original
block patterned tyre. The prints of the contact patches and
the cross-sections of the tyres together with the stationary
tyre characteristics and tyre constants at zero slip angle
are shown in figure 7. The relaxation length 0* is com-
puted again by means of the formula II. (144).

The frequency response curves measured for both tyres
are shown in figure 8. The moment and force are divided

Im

ns1C/s
Y, = 075

o 800 0 Y/ Yo 3 Re
80
s04s0 PLock
F 40 ‘go
%
/Fo 20 0 rib
20
20/ p /
- V (km/h) — % v (km/h)

Fig.8. Experimentally obtained tyre response curves to sinusoidal inputs.

by their respective stationary values M, and F, (w;—0),
The experiments are carried out with an amplitude v, = 0. 75°
and a frequency n = 1 c/S., In figure 9 theoretically ob-
tained curves are shown for o* = 2,4a and € = 1/7.5; the
gyroscopic effect of the tyre is neglected here (cf. figure
II.14 where o* = 3a). We note the similar shape of the
theoretical and experimental curves. The speed values, in-
dicated along both sets of curves, agree very well with
each other, Comparison between the theoretical curves and
the experimental curve Ior the block patterned tyre leads
to the estimation k = 0.25Ca = 112 Nm?, The relation
between velocity and frequency for a given wavelength is
governed by the equation:

V = w/wg = 27 n/ws = nA
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Fig.10, The influence of the amplitude of the motion upon the response (experimental).
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already being introduced in Sec.Il. 4A,

In figure 10 the influence of an increase in amplitude is
shown. The moments and forces are again divided by their
stationary values. We notice that the velocity values, in-
dicated along the curve for the moment at y, = 6°, are
shifted slightly counter-clockwise with respect to those for
Y = 0.75°, This may point to the existence of a lower
average value of the relaxation length, already predicted
theoretically (cf. Sec.IL 3B, p.29). We have estimated that
the effective relaxation length is reduced from o* = 2.4 for
vanishing amplitudes to o* = 2 when the amplitude is in-
creased to vy, = 62 The fact that the final point of the
moment for V=0 is located further to the right at higher
amplitudes, is due to the property that the cornering char-
acteristic has a more degressive shape than the torsion
characteristic of the non-rolling tyre.

Figures 11 and 12 show the influences of the frequency

o= N w1, €IS
—+— n=216c/s
—bo— nask c/S
—e— n=8 c/s

Y:075"

Fig. 11. The influence of the frequency of the motion upon the response (experimental).

of the swivel motion. The curves obtained experimentally
(Fig.11) show clearly that a time influence exists. With in-
creasing frequency the curves rise inthe lower right quadrant.
This phenomenon is explained theoretically by introducing
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Fig.12. The influence of the frequency of the motion upon the response (theoretical).

the gyroscopic effect in the tyre theory (cf. Sec.IL. 6).
Theoretically obtained curves are shown in figure 12, We
have made use of the value « = 0,25 Cy a and of the tyre
data listed in figure 7 for the block patterned tyre; the value
Cgr =2.5x 10-5 sec?, furthermore, appeared to fit best.
With a tyre mass m; = 35 kg and a lateral stiffness C,6 =
165000 N/m we obtain for the non-dimensional quantity Cgyr
the value Cour = 0.12; from this value it can be derived
that about 175 of the tyre polar moment of inertia takes
part in producing the gyroscopic couple,

The end points where V=0, shown in figure 11, appear
to get situated farther to the right and somewhat lower at in-
creasing frequencies. This may be explained by means of
the visco-elastic property of tyre rubber, which shows larger
stiffness and less damping at higher frequencies (cf. Van
Eldik Thieme [ 44]). The amplitude of the force appears to
increase with increasing frequency, while the phase lag
remains about constant for a given wavelength, This property
has not yet been explained theoretically. The influence of a
larger force amplitude has been tried out in the simulation
of the test vehicle; it appeared to be negligible.
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3. Experiments with mechanical model

Figure 13 shows a model capable of showing shimmy.

Fig, 13, Model capable of showing shimmy.

The miniature wheel with a 123 - 2% in tyre rolls over a
drum driven by an electric motor, The caster can be varied
by changing the angle of inclination of the king-pin. The
lateral stiffness of the king-pin suspension can be adjusted
by varying the effective length of the two leaf-springs which
are clamped at the ends. The king-pin bearings, which are
practically frictionless, can be provided with adjustable
damping with the aid of a dry-friction element. The steering
system is simulated by a thin leaf-spring mounted on top of
the king-pin, carrying two masses at its ends. An unbalance
mass can be attached to the wheel. Provision has been made
for removal of the unbalance mass during running.

The test results were found to be in good agreement with
the theory. In figure 14 an example of the response to un-
balance torque is shown. The synchronous response to-
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Fig.14, Test results of mechanical model with clamped steering system. The response
to unbalance torque.

gether with the adjoining regions of combination oscillations,
found in chapter V (Figs.V.11,15), were also observed with
this model., Other characteristics of the motion, such as
the dying out of the shimmy below a certain speed and the
decrease of the amplitude at higher speeds, also occurred.
When the steering-wheel was released, indeed an additional
range of low frequency shimmy at lower speeds arose. As
anticipated, the limited change in lateral stiffness of the
suspension showed a relatively small effect on the shimmy
motion. The variation of the wheel caster, however, in-
fluenced the behaviour considerably. Pulling off the unbalance
mass during running did not affect the shimmy deflection
appreciably; the beat phenomenon, however, did disappear
as anticipated. Apart from the excitation with unbalance
masses the shimmy could also be initiated by an imparting
Jerk,
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CONCLUDING REMARKS

The theory presented gives an adequate description of
the observed shimmy phenomenon in both qualitative and
quantitative respect. The close agreement obtained es-
pecially owes its success to the introduction of non-linear
elements.

Concerning the theoretical analysis we may state the fol-
lowing. The method of equivalent linear equations is a useful
tool in solving the non-linear differential equations. When
used in connection with the digital computer, it gives
reasonably accurate results in a relatively short time. The
analogue computer, however, allows for an investigation of
the system in much greater detail; transient motions and
the influence of an exciting couple can be examined.

Concerning the results of this investigation we may con-
clude that shimmy is caused either by a relatively low
lateral stiffness of the tyre, sometimes in combination with
the suspension, or by the gyroscopic coupling when the
wheel system has a very low natural frequency about a
longitudinal axis (live axle, especially when the wheels
bounce off the road). Shimmy gets initiated only when suf-
ficient external excitation such as a moment due to wheel
unbalance is present,

The principle factors which influence shimmy, are listed
below (items 2 and 4 have not been investigated in detail).
Numbers in between brackets refer to sections in which the
influence is investigated.

1. Increase of the following quantities stimulates tyre shimmy:

a) Pneumatic trail e', which is a function of tyre con-
struction, contact patch length 2a, inflation pressure
p;, wear, etc, (IV.1, IV.2,3D).

b) Caster length, i.e. the mechanical trail e (IV.1.2).

c) Tyre relaxation length o*, effected by the same factors
as mentioned in la (IV.1.2).

d) The reciprocal value of the lateral stiffness of the
suspension 1/c¢¥* (IV.1,3, IV.2.4).

e) The stiffness oi( the wheel system about a longitudinal
axis c>=9=(IV. 1.8, IV.2.49%
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f) Wheel bearing play & (IV.2.3B).

2.Increase of the following quantities stimulates gyroscopic

shimmy:

a) The reciprocal value of camber torsional stiffness
l/cg (IV.1.3, IV.2.4).

b) Certair)l range of gyroscopic coupling I,/I (IV,1,3,
Iv.2.4).

c) The height of longitudinal axis of rotation above road
level R + h* (IV.1.3, IV.2.4).

3. Increase of the following quantities reduces tyre shimmy:
a) King-pin viscous damping coefficient k (IV.1.2).
b) King-pin dry-frictional couple K (IV.2,3A).
c) Coefficient of damping due to longitudinal tread defor-
mation k (IV.2,3D).
d) Tyre mass m, (IL6).
e) Natural frequency of steering system Ve/n2I; (V. 2. 3).

4. Increase of the following quantities reduces gyroscopic
shimmy:
a) Damping about longitudinal axis by shock absorbers
(most likely).
b) Quantities 3 a, b and c (IV.2,4).

5. Quantities causing shift of shimmy speed range:

a) The moment of inertia of the wheel assembly about
the king-pin I. Increas(ing I brings down speed range
and shimmy frequency (IV.2,3D).

b) Natural frequency of steering system ‘Vc/n21“. In-
creasing natural frequency raises speed range and
shimmy frequency (V. 2.3).

6. Quantities which control the initiation of shimmy:

a) Wheel unbalance. For eliminating shimmy this should
be less than a certain critical value, depending on the
maximum speed and the king-pin dry-frictional couple
(Vslsb, V.2.8).

b) Wheel rolling circumference. This wavelength of shim-
my excitation is significant in relation to the wavelength
of shimmy motion (V.1.5, V.2.3).

c) Road irregularities, wheel and tyre non-uniformities
and sudden steering inputs (VI. 3).

As a final remark we may state that the theory presented
does not lay claim to be a complete answer to the problems
which arise in connection with the shimmy phenomenon,
A few points to which attention may be paid in future work
are the following:
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a)

b)

c)

d)

e)

f)

g)

h)
i)

179 -

Non-stationary tyre response at finite values of slip,
taking into account the possibility of both partial sliding
in longitudinal and in lateral directions (IL 5).

Exact influence of tyre inertia and hysteresis on non-
stationary tyre response (IL 6).

More general analogue simulation of tyre considering
the effect of longitudinal deformation and of gyroscopic
coupling at vanishing values of slip (II.4, II 6).
Behaviour of total vehicle with more realistic layout -
of wheel assembly, which may be analyzed by means
of the mathematical description given in [47] (III).
Solving the non-linear differential equations of motion
by means of numerical integration.

Analytical treatment of combination oscillations occur-
ring with the non-autonomous system and with the system
with released steering system (V.1.5, V.2,2),
Influence of second-order terms on limit-cycles and
their stability; the latter particularly in relation to the
influence of the rate of change of frequency with am-
plitude (IV.2,2).

Influence of limiting stops and shock absorbers on the
gyroscopic shimmy (IV.1.3, IV,2.4),

Influence of road irregularities causing amongst other
things variations in dry friction in king-pin bearings,
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(For non~dimensional quantities cf, Tables II.1 (p.23), III.1 (p.79) and
IV.1 (p.92)).

A amplitude of reference variable

A amplitude of reference variable on the limit-cycle

A transformation matrix

a half of contact length

a ., £ co-ordinates indicating boundaries of adhesion region

g coefficient of characteristic equation

a;‘ﬁj equivalent linear coefficient (stiffness)

bi’;.‘ equivalent linear coefficient (damping)

b half of contact width

c origin of co-ordinate system (C,§,n,{), contact centre

C = 9F /3y, cornering stiffness, Eqs. II.(78-81); equivalent
cornering stiffness (non-dim.), Eq. IV, (71)

Sy = - 9M'/d¢, cornering stiffness, Eqs. IL (78-81); equi-
valent cornering stiffness (non-dim.), IV.(71)

Cy static lateral stiffness of non-rolling tyre

C, =9F/da at zero slip angle (a=0)

L = -OM'/da at zero slip angle (@=0)

C* = C,,+eC, equivalent total cornering stiffness about king-
pin (non-dim.)

Cu = dF_/de, =N, camber stiffness of tyre

ngr tyre constant for gyroscopic action, Sec.II. 6

c half of torsional stiffness of steering system; equivalent
stiffness (non-dim, )

c =1/(1/c, + 1/c,), overall lateral stiffness of tyre per
unit length

Co half of torsional chassis stiffness

c* lateral suspension stiffness

c: torsional suspension stiffness

Cp lateral stiffness of profile element per unit length

c lateral stiffness of carcass (string + elastic support)

per unit length
(il longitudinal stiffness of profile elements per unit area
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non-dimensional tyre constant for gyroscopic action,
Sec. IL 6.

frictional couple about king-pin acting on wheel, Egs.
111, (62a, b, c, 85a, b, c)

= Re, caster length

= Cy/C, pneumatic trail

lateral force acting from road on tyre in point C in
n-direction

camber force acting from road on tyre in n-direction
= F+F., total lateral tyre force
stationary cornering force

lateral forces acting on leading and trailing edge,
Figs,II, 16,18

= -M'+eF (non-dimensional)
acceleration due to gravity

= - D, frictional couple, function of ¥ and 7y, Egs.
II1. (62a,b, c, 85a,b,c)

= gv,7) + k7/V

Hurwitz determinant, Eq.IV. (4)

cf. Sec.lV.l.1

cf, Fig.Ill.1

moment of inertia of swivelling part about king-pin axis
moment of inertia of wheel about wheel axis

half of moment of inertia of steering-wheel about its
axis

half of moment of inertia of front part of sprung mass
about longitudinal axis through its mass centre

moment of inertia of non-swivelling part of unsprung
mass about longitudinal axis through its mass centre

= I +mh? +m*h®, half of moment of inertia of front
part of sprung mass about axis of rotation ()

= [+I%+m*h* 2, moment of inertia of unsprung mass about
longitudinal axis of rotation (g*)

dry-frictional couple about king-pin axis

constant of viscous damping about king-pin axis, equi-
valent coefficient of damping (non-dim.)

=k+k/V, equivalent totalcoefficient of damping (non-dim.)

= M'+M#, total moment acting from road on tyre about
vertical axis

moment acting from road on tyre due to lateral tyre
deformations
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stationary aligning torque M

moment acting from road on tyre due to longitudinal
tyre deformations

moment acting on wheel due to unbalance, Fig.IIl.1

gyroscopic couple due to lateral tyre deformations,
Sec.II. 6

half the mass of front part of sprung mass, Fig.IIL. 1
mass of unsprung part, Fig.IIl.1
tyre mass, Sec.IL.6

unbalance masses on wheel (right and left of wheel
plane), Fig.IIl.1

= my, 1 + m,, 5, total unbalance mass

vertical tyre load (static)

reduction factor of steering systems; frequency (c/s)
origin of co~ordinate system (0, x,y, z) fixed to the road
unknown of characteristic equation

operator; unknown of characteristic equation
components of pressure acting from tyre on road
inflation pressure

vector indicating position of point with respect to the
system (0,x,y,z), Fig.IIL 2

generalized force

general co-ordinate

wheel radius

real part of complex root

vector indicating position of point with respect to moving
system (0,x,y,2z), Fig.IIL2

= 5,+Sy, tyre constant; stability value
travelled distance

kinetic energy

time

potential energy

displacement of contact point in g-direction due to tyre
deformations

forward velocity

displacement of contact point in n-direction due to tyre
deformations; dy/ds

deflection of point on string in n-direction
deflection of profile element in n-direction
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lateral tyre deflection at leading and trailing edge res-
pectively

virtual work; sliding velocity
sliding velocities in §- and n-direction respectively

longitudinal co-ordinate with respect to system fixed
to road; reference variable

x co-ordinate of contact point

lateral co-ordinate with respect to system fixed to road
lateral displacement of chassis, Fig.III.1

y co-ordinate of contact point

y co-ordinate of point C

lateral deflection of suspension, Fig,III 1

vertical co-ordinate with respect to system fixed to road
=V /o, slope of peripheral line at leading edge

time scale factor

amplitude of @ on the limit-cycle

angle between velocity vector of C and x-axis, Fig.IL 1;
cf. Tables III.1 and IV,1

= B4/, angle between §- and x-axis; swivel angle about
king-pin

amplitude of ¥ on the limit-cycle

additional variable in case of clearance, Fig.Iil.4
=g /n

symbol denoting- increment

variation symbol; half clearance angle

caster angle; e€=o./o, tyre constant

vertical co-ordinate with respect to system moving with
wheel plane; ¢ = V2/e', Eq.IV.(100)

lateral co-ordinate with respect to system moving with
wheel plane; cf. Table IV.1

=wt, non-dimensional time; 0 = 2/‘11» time delay
constant of damping due to longitudinal tyre deformations
wavelength of motion; A=(w/wg, I

= 2wR, wavelength of exciting couple due to unbalance

coefficient of friction between road and tyre; cf. Tables
III.1 and IV.1

longitudinal co-ordinate with respect to system moving
with wheel plane

change in tyre radius
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<=
a

Subscripts

o
1
2
un
st

tyre constant, Eq.IL (23); relaxation length of tyre with~
out profile elements

tyre constant, Eq.II (23)

relaxation length of tyre

I=I wlt-q;, non-dimensional time; machine time; cf. Table

= dvy/ds,
Fig. 1L 1

angle between wheel plane and vertical (camber angle),
Fig, IIL. 3

angular displacement of unsprung mass about longitudinal
axis, Fig.IIl. 1

= Ot-7-€, angle between vector of My, (fixed to wheel)
and vertical plane through wheel-axis, Fig.IIl. 1

spin; phase angle; torsion angle of chassis,

angle between §~axis and velocity vector of C, Fig.IL 1
angle of rotation of steering-wheel

between x-axis and line of intersection of wheel
and road surface, Fig,III,3

= V/R, rolling velocity of wheel about its axle

angle
plane

frequency; angular velocity

=w/V=27/), reduced frequency

natural frequency; frequency on limit-cycle

natural frequency of steering system, Eq.IV.(31)
natural frequency of torsional motion of unsprung mass

reduced frequency of exciting couple M,, due to un-
balance

stationary; natural; amplitude; on limit-cycle
leading edge; right-hand side

trailing edge; left-hand side

unbalance

steering system
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SUMMARY

The phenomenon of the violent self-excited vibrations exerted by
the steerable wheels of a road vehicle about the almost vertically
situated swivel axes, popularly known as wheel shimmy, occurs
both with automobiles and aircraft on the runway. In grave cases
shimmy can attain amplitudes of about six degrees at a frequency
of for instance seven cycles per second.

Various factors can give rise to instability of the stationary motion
of the vehicle. These factors are: (1) a small lateral stiffness of the
tyre and (2) of the wheel suspension, or (3) the gyroscopic coupling
between rotations of the wheel about its swivel axis and about a
longitudinal axis., For aircraft, the combination of the first two
factors is presumed to be responsible for the occurrence of shimmy.
For automobiles provided with a live axle at the front, the
gyroscopic coupling is most likely the cause of the violent self-
sustained oscillations. Automobiles with independent suspensions
appear, however, to exhibit shimmy as well. It is a shimmy which
corresponds to the phenomenon occurring with aircraft, and is to
be attributed to the first factor or to a combination of the first two
factors. It is the latter sort of shimmy in particular to which attention
has been paid in this thesis.

As far as the author is aware of, theoretical investigations so far
described in the literature on the subject are based exclusively on
linear models. Several non-linear elements such as tyre charac-
teristics, dry friction in the king-pin bearings and clearance in the
wheel bearings, appear to have a considerable influence on the be-
haviour. This influence is studied analytically with the aid of an
approximative method based on the principle of the harmonic balance.
This method of the equivalent linear equations for the determination
of the amplitudes of the limit-cycles and of the stability of these
periodic motions, is enunciated at length and in a general sense.
For checking and for extending the results obtained along analytical
lines, investigations are carried out with the use of an analogue com-
puter. More realistic and complicated systems as well as non-
autonomous systems excited by unbalances could be examined by
means of the analogue computer,

Before the actual shimmy analysis is started, a mathematical des-
cription of the moving vehicle is given. Much attention has been paid
to tyre behaviour, which plays the most important role in the shimmy
phenomenon considered., Partial sliding in the contact area between
tyre and road has been taken into account. In principle, the tyre
is considered massless; a correction has been introduced, however,
to account for the gyroscopic couple due to the rate of change of
lateral tyre deflections with time., The theoretical tyre response to
swivel oscillations shows good correspondence with experimentally
obtained results.

The mathematical model of the vehicle in its most extended form
is of the twelfth order and has seven degrees of freedom, viz.: the
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lateral tyre deformation, the rotation of the wheel about the king-
pin, the lateral deformation and the torsion about a longitudinal axis
of the wheel suspension, the lateral deformation and the torsion of
the front part of the chassis and finally the rotation of the steering-
wheel.

The investigation shows that for certain combinations of values of
parameters such as caster, lateral tyre stiffness, damping and speed
of travel, self-excited oscillations may occur, In the case of viscous
damping about the swivel axis, the stationary motion may become
unstable and a stable limit-cycle will be attained due to the degres-
sive shape of the tyre cornering characteristics. In the case of dry
friction in the king-pin bearings the stationary motion is always
stable. Two limit-cycles may, however, still arise in that case. The
smaller limit-cycle will be unstable and the larger one will be
stable. Through an external disturbance or by means of unbalances
the stable limit-cycle may be attained, By introducing clearance in
the wheel bearings the stationary motion becomes unstable and the
large shimmy amplitude may be reached without an external disturbance,
The influence of varying certain parameter values has been examined,

The results obtained theoretically have been substantiated by ex-
periments carried out with a test vehicle equipped with independent
front wheel suspensions and in addition with a simple mechanical
model,



SAMENVATTING

Het verschijnsel van de heftige, zich zelf in stand houdende slinge-
ringen uitgevoerd door de bestuurbare wielen van een wegvoertuig
om de nagenoeg vertikale zwenkassen, kortweg aangeduid met "shim-
my', komt zowel bij automobielen als bij vliegtuigen op de landings-
baan voor. In ernstige gevallen kan een amplitude van omstreeks 6°
bij een frequentie van bijvoorveeld 7 Hz bereikt worden.

Verscheidene factoren blijken aanleiding te kunnen geven tot het
ontstaan van instabiliteit van de "hoofdbeweging" van het voertuig.
Deze zijn: (1) een kleine zijdelingse stijfheid van de band en (2) van
de wielophanging, of (3) de gyroscopische koppeling tussen de rotaties
van het wiel om zijn zwenkas en om een langas, Bij vliegtuigen wordt
de combinatie van de eerste twee factoren verantwoordelijk geacht
voor het optreden van shimmy. Bij niet van onafhankelijke voor-
wielophanging voorziene auto's (stijve as) is de gyroscopische kop-
peling waarschijnlijk de oorzaak van het ontstaan van heftige zich-
zelf in stand houdende slingeringen., Automobielen voorzien van on-
afhankelijke voorwielophangingen bleken echter eveneens een shimmy,
overeenkomend met het bij vliegtuigen voorkomende verschijnsel, te
kunnen vertonen, hetgeen toe te schrijven is aan de eerste factor
of een combinatie van de eerste twee factoren. Deze laatste soort
shimmy krijgt in het bijzonder de aandacht in dit proefschrift.

Voor zover bekend vond het in de literatuur beschreven theoretisch
onderzoek tot nu toe uitsluitend plaats aan gelineariseerde modellen.
Verscheidene niet-lineaire elementen, zoals bandkarakteristieken,
droge wrijving in de lagering van de zwenkas en speling in het sys-
teem, blijken het gedrag in hoge mate te beinvloeden. In dit proef-
schrift is de invloed van de genoemde niet-lineariteiten langs ana-
lytische weg volgens een benaderingsmethode, gebaseerd op het
principe van de harmonische balans, onderzocht. De gevolgde methode
der equivalente lineaire vergelijkingen, ter bepaling van de ampli-
tude der grenskringlopen en van de stabiliteit van deze periodische
bewegingen, wordt uitvoerig en in algemene zin uiteengezet. Ter con-
trole en ter uitbreiding van de met behulp van analytische methoden
verkregen resultaten zijn onderzoekingen verricht met gebruikmaking
van een analoge rekenmachine. Uitgebreidere, meer met de werke-
lijkheid overeenkomende systemen, alsmede niet-autonome, van on-
balanzen voorziene systemen konden hiermede onderzocht worden.

Aan het eigenlijke shimmyonderzoek gaat een beschrijving van
het mathematische model van het bewegende voertuig vooraf. Hier-
bij wordt aan het gedrag van de band, die de voornaamste rol bij
het beschouwde shimmyverschijnsel speelt, veel aandacht besteed,
Zowel stationaire als niet-stationaire wielbewegingen worden in de
beschouwing betrokken, Parti&le slip in het contactvlak tussen band
en wegdek wordt in rekening gebracht. In beginsel wordt de band
massaloos verondersteld; een correctie in de vorm van het gyros-
copisch koppel tengevolge van zijdelings uitbuigen van de band wordt
echter wel ingevoerd. De theoretische bandresponsie op zwenkoscil-
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laties komt goed overeen met de gemeten responsie.

Het wiskundig model van het voertuig is in zijn meest uitgebreide
vorm van de twaalfde orde en heeft zeven graden van vrijheid, te
weten: de zijdelingse bandvervorming, de rotatie van het wiel om
zijn zwenkas, de zijdelingse vervorming en de torsie om een langsas
van de wielophanging, de zijdelingse verplaatsing en de torsie van
het voorste deel van het chassis en tenslotte de rotatie van het
stuurwiel.

Het onderzoek laat zien dat bij bepaalde combinaties van waarden
van zekere parameters zoals wielnaloop, zijdelingse bandstijfheid,
demping en rijsnelheid, zichzelf in stand houdende bewegingen kun-
nen bestaan. In het geval van visceuze demping om de zwenkas kan
de hoofdbeweging labiel worden in welk geval een stabiele grens-
kringloop bereikt zal worden tengevolge van het degressieve verloop
van de bandkarakteristieken. In het geval van droge demping in de
zwenkaslagering is de hoofdbeweging weliswaar stabiel, maar kunnen
er twee grenskringlopen bestaan, waarvan de kleinste labiel en de
grootste stabiel is. Door een storing van buitenaf of tengevolge van
onbalanzen dient, ruwweg gezegd, de beweging buiten de labiele
grenskringloop gebracht te worden om de stabiele shimmyamplitude
te kunnen bereiken. Door toepassing van speling in de wiellagers
wordt de hoofdbeweging labiel en kan de grote shimmyamplitude in be-
paalde gevallen zonder storing van buitenaf bereikt worden. De in-
vioed van het veranderen van een aantal belangrijke parameters is
onderzocht, De theoretisch verkregen resultaten worden gestaafd door
experimenten, uitgevoerd met een van onafhankelijke voorwielop-
hangingen voorzien proefvoertuig en bovendien met een eenvoudig
mechanisch model.
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