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Abstract

In this thesis, a simulated annealing algorithm is implemented to optimize the efficiency of a
tandem solar cell. The efficiency of a tandem solar cell is approximated by the current of the
tandem solar cell. This current is determined by the simulation program GenPro4. Firstly,
the general concepts of simulated annealing is described. After understanding these concepts, a
simulated annealing algorithm is implemented for our specific problem. This algorithm includes
the handling of discrete variables which describe the structure of the solar cell. The results
contain multiple variants of the newly implemented simulated annealing algorithm, which differ
in the used temperature schedule. Finally, a conclusion is made that a temperature schedule
with a slower convergence gives the best results. However, one should consider a slightly faster
convergence whenever there is a need to reduce the computational time. Moreover, one should
write their own implementation of a simulated annealing algorithm when dealing with discrete
variables, thus not use the provided function of MATLAB.
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We have here, the bachelor thesis “Optimization of the efficiency of tandem solar cells using sim-
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1 Introduction

Sustainable energy is a trending topic, much research has been done or is ongoing in
the area of sustainability. These studies are mainly about the efficiency when generating
energy. Solar energy is one of such areas in which much research is ongoing. In solar
energy, the efficiency takes mainly place in the solar cells. There is a demand for the
development of better and more efficient solar cells. This demand led to the development
of a new and better solar cell, namely a tandem solar cell. A regular solar cell consists
of multiple layers of different materials. This new and better tandem solar cell has two
absorb layers instead of one, one perovskite and one silicon absorb layer. In a solar cell,
the efficiency is dependent on various factors, namely, the choice of materials, design
parameters, such as thickness of layers and coatings and the fabrication [8]. There are
computer models that simulate an optic model of solar cells. These models have the
materials and design parameters as input, and will calculate the efficiency with these
inputs. To assemble these inputs, optimization algorithms are used to approximate the
optimal matching of these dependencies.

1.1 Problem Definition

The tandem solar cell we are considering consists of a silicon substrate layer of a fixed
thickness of 200 ym. On this layer, there are approximately 10 other layers of different
materials installed. All of these layers have a significantly smaller thickness, which lies
between 5 and 500 nm. The limited accuracy of the manufacturing methods can result
in deviation of approximately +£10% from the desired layer thickness. In order to make
the solar cell most efficient, the optimal combination of layer material with the according
thickness has to be found. A change of material, or the smallest change in layer thickness
can lead to a big change in the efficiency. The calculation of the efficiency is done in a
10-dimensional solution space. In this space, there are 4 of the 10 variables that determine
the structure of the solar cell, whereas the other 6 determine the thickness of the layers in
the solar cell. Therefore, there are multiple different structures possible, that each have
their own optimal thickness of layers. One can imagine that there are a lot of different
possibilities, and each of those possibilities can be calculated. All these calculations have
a relatively long calculation time, hence finding an optimal solution with trial and error
is not doable. Here is where optimization algorithms are coming into the picture. In
this study, we use the simulated annealing optimization algorithm in order to save a
considerable amount of computational time. The simulated annealing algorithm helps us
to approximate the highest possible current, and thus the highest efficiency of the tandem
solar cell.

This problem can be defined as an optimization problem, more specific a combinatorial
optimization problem. In such problem, we search for an optimum object in a finite
collection of objects [12]. In our problem, the highest efficiency is the optimum object,
and the materials, structure and layer thickness are the finite collection. GenPro4 is a
simulation tool that determines the current of the solar cell [18]. It simulates the tandem
solar cell as a multi layer system and it is an optical model for simulations of solar cells.
This function is based on another method, namely the extended net-radiation method,
in which ray optics and wave optics are combined in a computationally efficient way.
The output of GenPro4 consists of the reflectance, absorptance of each layer and the



transmittance as a function of wavelength. Another important note is that the result of
GenPro4 can vary for the same input values. This happens due to the random nature of
the simulation itself, which is caused by the use of Monte-Carlo simulation. Combating
this randomness will not only provide a more accurate result, it also makes the algorithm
run more rapid. More details on GenPro4 can be found in [18].

In this study, we are given some fixed materials, of which some have a fixed thickness.
The others may vary in thickness considering certain constraints, moreover, some layer
materials may vary in material and thickness. The aim of the study is to search the
answer to the question: Can a simulated annealing algorithm be implemented with the
use of MATLAB in order to determine which materials, and their according thickness,
and structures contribute to a close to optimal current?

1.2 Structure of a (Tandem) Solar Cell

It is important to understand what the structure of a tandem solar cell is, such that we
recognize what we can optimize within in a solar cell. In order to understand the struc-
ture of a tandem solar cell, we firstly consider the structure of a general solar cell. The
general device structure of a solar cell can be seen in Figure 1. There are 3 main layers in
this solar cell: layer 1 is the Electron Transport Material (ETM), layer 2 is the absorber
layer and layer 3 is the Hole Transport Material (HTM). Besides these layers, there are
also two contact points. A layer can consist of several materials, and for each layer, there
exists an optimal matching of materials such that the highest efficiency is reached.
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Figure 1: Device structure of general solar cells [3]
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In order to find this matching, we first have to explain what a tandem solar cell consist
of in terms of layers, and why certain optimization factors are important to be taken



into account. Firstly, the structure of tandem solar cell, a tandem solar cell has two
absorber layers instead of one as in the regular solar cells. We consider that the tandem
solar cell has two areas, the area of the perovskite layer, and the area of the silicon layer.
We refer to these, respectively, as bottom and top half of the cell. In our problem, the
layer thickness for these absorber layers are fixed. Now, we shortly explain the difference
between ‘thin” and ‘thick’ layers. In order to describe this importance, interference has
to be described. Whenever the coherence length of incident light on a layer is greater
than the layers optical thickness, an observable interference is caused, these layers are
called coherent layers. Much thicker layers for which this does not hold are called inco-
herent layers [17]. GenPro4 treats these thin coherent layers as ‘coating’, the two thick
incoherent layers as just ‘layers’. In GenPro4, ‘layers’ are considered as incoherently and
do not produce interference whereas ‘coatings’ are considered coherent and do produce
interference. A small change in thickness in these coatings can lead to a great change
of the current, hence, optimizing these coatings has to be done very carefully. GenPro4
uses equation (1) to calculate the current, around this equation, a brief explanation on it
is given. Moreover, GenPro4 only calculates the current, hence not the voltage, thus we
cannot conclude the efficiency. We already mentioned that the tandem solar cell consists
of two absorbers, however, both of these absorbers have their own current that has to be
calculated. The goal is to maximize both of these currents, nonetheless, these values of
the currents have to be close to each other. This has to be the case because the maximum
current of the solar cell is the minimum of both the currents of the bottom and top cell,
more on this is described around equation (2).

Having explained all of this, we describe our problem in more detail. In the problem, we
vary the thickness of six of these coatings, remember, in these variables small changes of
10nm can make a notable difference in the current due to interference. These coatings are
continuous variables in our problem, and can vary between 40nm and 500nm. Addition-
ally, our problem has four discrete variables, two of these are on the choice of material
in the ETM and HTM. The other two discrete variables are structural variables, one is
to add an extra coating, namely, an Anti-Reflective(AR)-coating and the other one is the
option to add a pyramid structure on the interfaces, which are the separation between
layers. There are two possible interfaces on which pyramid structures can be applied.
There are three interface models included in GenPro4, these are models for interfaces with
no, small and large textures. With these models, most types of silicon solar cells can be
simulated accurately.

1.3 Thesis Outline

The goal of this thesis is to use the simulated annealing optimization algo-
rithm, determine a high current of a tandem solar cell with a limited number
of function evaluations. First, in Chapter 2, a previous literature is reviewed and
discussed. Furthermore, in order to understand the simulated annealing algorithm more
thoroughly, a deep explanation of the origins and the works of simulated annealing is
given. Then, in Chapter 3, the methods used in order to implement a simulated an-
nealing algorithm in MATLAB that fits our problem are provided. Next, the results are
displayed and analysed for a case study in Chapter 4. Lastly, the overall results and con-
clusion on the methods used are given in Chapter 5, with an additional recommendation
on Chapter 6.



2 Literature Review

In this chapter, we describe previous research on optimization methods and algorithms
in order to achieve the highest efficiency in tandem solar cells. The analysis of previous
optimization methods will show us that it is important to implement a simulated annealing
algorithm for this problem. Furthermore, a brief explanation is given on what optimization
methods exactly are with a more detailed view on the optimization method we are going
to study, simulated annealing.

2.1 Previous Research

Jager et al. [2] uses simulated annealing and the GenPro4 program in MATLAB. In the
introduction of the article, they explain how the optimization of a tandem solar cell is im-
proving one step at the time, and that they are building on previous research. They state
that, optical optimization based on trying out different material stacks which are relevant
and layer thickness combination are promising to increase the efficiency in tandem solar
cells. The building piece for efficiency that this study aims to provide is to extend the
previous optical optimization of the top-cell layer thickness of a perovskite-SHJ tandem
solar cell. This is the main difference in the research that we are conducting, since we
consider a change in other layers as well.

Now, to extend this optimization, in the study, they consider multiple architectures. They
compare an inverted architecture with a regular architecture. In the inverted architecture,
the top and the bottom cells of the perovskite-SHJ tandem solar cells are flipped with
respect to their layers. Both the top perovskite and the bottom silicon cells are flipped
upside down. In Figure 2, the regular and inverted layer stack are represented.
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Figure 2: Regular and inverted layer stack architecture types [2].

As mentioned, the MATLAB program GenPro4 was used to calculate the absorption pro-
files, a discussion on GenPro4 will be given later on in more detail. These calculations are
done for both the regular layer stack, and the inverted layer stack. In the domain of the
simulation, the layer stack is enclosed by incoherent infinitely-thick air and silver layers.
The high thickness of the silicon layer is more than the coherence length of sunlight, hence
this layer is treated incoherently. Since the other layers are considerably more thin, they
can be treated coherently. Furthermore, they consider that the interfaces are optically



flat, hence they do not scatter any incoming light. Equation (1) is used for the calculation
of the absorption profiles of each layers current densities.

1200nm
Toni = —e / A, (NN (1)
3

50nm

Here is e the elementary charge, A; the absorption spectrum of the i-th layer, A denotes
the wavelength and @ is the photon flux according to the AM1.5G solar spectrum [1]. The
absorption spectra of the perovskite and silicon layer are used to calculate the reachable
optimum for the current densities in their area. The current densities of the other layers
are considered losses due to parasitic absorption. Now, for the 7 layers around the per-
ovskite top cell, the layer thickness optimization is conducted for both the architectures.
This is done with the most basic implementation of the simulated annealing algorithm.
With this algorithm, they want to achieve a maximum of the current density, i.e.,

TP Jpte™) — max . (2)

min (
During this optimization, the thicknesses of the bottom cell were kept constant. A good
remark that they made is that the simulated annealing algorithm did not find the global
optimum. This is true due to the pseudo-random nature of the algorithm. However, it
finds solutions in its close proximity and is more accurate whenever the duration extends,
in other words, the simulated annealing algorithm converges to the global optimum [4].
This only happens in theory, since the the running time of the algorithm is finite.
Their result showed the following for the two different architectures. In the regular stack
layer, they achieved an optimum of J,;, = 17.6 mA/cm? and the inverted stack layer
had a optimum at J,, = 19.0 mA/cm?. Furthermore, they also concluded that the full
performance potential of perovskite-silicon tandem solar cells can only be exploited if the
devices are optimised from an optical perspective. The result they have presented is of an
optimization in layer thickness for planar inverted architecture. The parasitic absorbance
in the front layers of the top cell is greatly decreased since the support layers of such an
inverse architecture can be manufactured much more thinly. Hence, there is a potential
that an additional cumulative of ~ 2.8 mA /cm? can be generated in the inverse architec-
ture in comparison with the regular one.
The most important differences this study has in comparison with the study that we now
conduct are, firstly, that they consider a different type of architecture change. They con-
sider two options, a regular and an inverted layer stack, whereas, we consider a regular or
a pyramid structure. Secondly, the simulated annealing algorithm that they implemented
is from the MATLAB Global Optimization Toolbox, this will be the same algorithm that
we use, however, we use more of the optional inputs. Next, a small detail, their silicon
layer is fixed on 250um, ours is fixed at 200um. And as last, we consider multiple mate-
rials for different coatings, with the potential addition of an extra layer.
In Baloch et al. [3], they introduce and deploy a full space material-independent opti-
mization with the aim to increase the maximum possible conversion efficiency and focused
functionalisation for any given layer by means of opto-electrical simulations. They made
sure of this full-space optimization by only having essential physical constraints. There
are many reports that optimize a cell design by determining the properties of the optimal
matching materials for a given absorber, however, they do not span the full possible space.
The full-space device design optimization in [3] is composed of two parts. The first part
is the device simulation module and the second module is a numerical optimization tool.



For the first module. they use the Solar Cell Capacitance Simulator (SCAPS), which is
a one dimensional device simulation. This simulation calculates the efficiency given two
input vectors v € RY, where N is the number of parameters that need to be optimized
and a € RM, where M is the number of fixed parameters. In the simulation, it solves
the optically excited charge generation problem, transport equation, 1D Poisson’s equa-
tion, and continuity equation and calculates the efficiency n(v,a). The second module
maximizes the objective function n(v,a) numerically by varying v based on some phys-
ical constraints. This optimization is carried out by using toolboxes of MATLAB. The
objective function is here the efficiency, and it is to be maximized as follows,

Nmae = Max n(v,a). (3)
where 7 is
VocJscF'F
- A @

Here, v, and vy are lower and upper bounds derived from acceptable physical ranges,
Voc the open circuit voltage, Jso the short circuit current, F'F' the full factor and P,
the input power. In this work, they used initial guesses to start the optimization pro-
cess which is iterative, with the convergence of the objective function within a tolerance
of 107% as stopping criteria. The process outputs an optimized vector v, and together
with a it composes the optimal material data set for each layer in their design. In order
to select the best suitable optimization algorithm, they compared seven different local,
global and hybrid optimization methods. One last note before we can observe the results,
in the study they considered two cases. The first one is a consideration of a solar cell
without defects, in this case only inherent recombination properties are considered. And
in the second case, several defects are introduced based on literature. For in the case
without defects, the local gradient based method (one of the local optimization methods)
had the fewest number of function evaluations, and obtained a nearly as good of an ef-
ficiency compared to the methods with the best efficiency, namely, 26.70%. In the case
with the defects, the same holds, now with an efficiency of 23.42%. The point on which
our study will be novel in comparison to this one is firstly the use of GenPro4 instead of
SCAPS. The difference in this is that with the use of SCAPS an opto-electrical simula-
tion is considered in order to achieve a high efficiency. Whereas, GenPro4 is only optic
and not electrical, thus only the highest current in the solar cell is calculated. In other
words, our approach is limited to optical modelling of the current, and does not include
electrical modelling of the voltage. This can be seen as a downside of GenPro4. However,
the optical model in GenPro4 is more advanced, since it can handle optic effects like the
interference and scattering of light. This makes GenPro4 an overall better simulation. As
last, they did not consider simulated annealing as one of the global optimization methods.

In El-Naggar et al. [11], a simulated annealing based approach is proposed for an op-
timal estimation of solar cell model parameters. This is done for different models of solar
cells, namely single diode, double diode, and photovoltaic, but not for the tandem solar
cell. The developed technique is used to solve a function that controls the current to volt-
age relationship of a solar cell. Several cases are investigated to validate the consistency of
their parameter estimation. Additionally, other methods and models are used to test the
outcomes. The parameters that are optimized are the photon current, diode saturation
current, series resistance, shunt resistance, and diode ideality factor. We are interested in



their development of the simulated annealing algorithm. Their proposed method is a 10
step procedure, which contains the standard steps op a simulated annealing algorithm.
The accuracy of the results for the implemented simulated annealing algorithm was eval-
uated with the statistical root mean square error criterion. In the results, they compared
simulated annealing to three other models from other literature, namely, the Newton
model modified with Levenberg parameter, genetic algorithm (on the exact same prob-
lem), and a method with the Lambert W function.

They conclude that simulated annealing has the potential to be a valuable tool to estimate
parameters for a system. This conclusion is made because simulated annealing relieves
system modeling from the normal oversimplifying assumptions by other traditional esti-
mation techniques.

As mentioned, in the reviewed study, they did not consider the tandem solar cell, more-
over, they had a different methodology in order to achieve their results. However, the
result that simulated annealing has been having its successes when used to optimize pa-
rameters in other types of solar cell, reveals how promising the algorithm can be.

2.2 Simulated Annealing

In this section, we describe the ideas and theory behind simulated annealing. Simulated
annealing is an optimization method that we use in order to maximize the efficiency in a
tandem solar cell. Before we describe our specific optimization method, we describe what
an optimization method is and what the differences are among optimization methods.

2.2.1 Optimization Methods

In many fields of study, optimisation methods are used to find optimal solutions for
a function where a certain objective function is maximised or minimised in a specific
parameter space. Such as, minimizing the costs of a product or service, or in our case,
maximizing the electric current in a solar cell [16]. Usually, one refers to a minimization
problem, since a maximization problem on a function g(x) can simply be considered as
a minimization problem on the function f(z) := —g(z). One can classify optimization
methods into two types, global or local optimization methods. To understand why we
want to use a global optimization method, we need to learn the differences between global
and local methods. For this purpose, we consider the simple case that is illustrated in
Figure 3. In this figure, there are three local minima of which one is a global minimum.
When considering a local optimization method, having start point 1 as initial value will
provide us with the minimum in the middle. With starting point 2 as the initial value,
the global minimum will be reached. From this, we can conclude that it is possible with
a local optimisation method to reach the global optimum.

However, whenever a domain gets more complex, i.e. more local optima, it is very
unlikely that the global optimum will be reached. In contrast, a global optimization
method will reach the global optimum value for more initial values than local methods.
This makes a global optimization method distinguishable from local optimization, since
its focuses on finding the optimum over the given set, as opposed to finding local optimum
values. Finding an arbitrary local minimum is relatively straight forward by using general
local optimization methods. The global minimum of a function is far more difficult to find.
With analytical methods, it is very straight forward to find one local optimum. For global
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Figure 3: A graph with global and local minima [9].

optimization, analytical methods are able to find the global optimum in explicit optimal
control problems, for which an analytic solution must exist for the objective. However,
for our problem, there is no analytical solution for the objective function GenPro4. Thus,
numerical optimization methods must be included. Finding an optimal solution with
numerical methods can often be a very challenging task.

Translating the previous to our problem, we want to find the optimum value of the
objective function provided by GenPro4. In our 10-dimensional parameter space, there
are many local optima. If we use a local optimisation method, the probability of finding
the global optimum, or a local optimum that is close enough to the global optimum, is
small. Therefore, we want to use a global optimization method, where the technique of
simulated annealing comes into play.

2.2.2 Simulated Annealing Algorithm

In order to get a better understanding of simulated annealing, we firstly discuss how an
annealing process occurs in nature and physics, which is also referred to as real annealing.
Here, physicists modify the state of a material with temperature as adjustable variable.
Annealing is a technique where an optimum state can be approximated by controlling this
temperature. The technique of annealing consist of heating a material to a high energy
state, followed by a graduate slow cooling of the material, by maintaining at every state
a temperature of adequate duration. At the start, thus high temperature, a material has
many different optional states to which it can transform, which is proportional to the
entropy of the material. In statistical thermodynamics, Boltzmann describes the entropy
as being proportional to the logarithm of the number of possible microstates of the system
that could cause the observable macrostates of the system. The Boltzmann constant (kg),
provides the rate of the proportion between these states [13].

Whenever the decrease in temperature is too fast, some faults may occur, which should
be removed by local extra input. This system will lead to a stable state of the material,
which corresponds to a minimum of energy. This idea of using the annealing technique



in order to deal with optimization problems in physics led towards the technique of sim-
ulated annealing.

In simulated annealing, an introduction of a control parameter is utilized, which plays the
role of the temperature in the physical case. This temperature of the simulated system
must be analogous to the temperature of the psychical system: it must determine the
number of available states and. In the psychical system, this means that the temperature
determines the number of energy states. Whereas, in the simulated system, the temper-
ature determines the number of solutions, which are analogous to the energy states, that
can be reached in the solution space. Moreover, it should result to the optimal state or
solution. If the temperature is gradually and slowly lowered, as in the case of annealing,
the entropy is rather the same, in simulated annealing entropy is a measure of disorder
present in a system. In order to further convert this technique to its simulated version,
an broadened analogy must be established between the optimization problem and the
physical system. This analogy is represented in Table 1. This analogy is a comparison of
simulated annealing and real annealing.

Having discussed this, we can dive deeper into the simulated annealing algorithm. Simu-
lated annealing is a stochastic method and is based on two results of stochastic physics.
Firstly, we conclude that the probability of an energy E that is given for a physical system

is proportional to the Boltzmann factor: e*s7, where T is the absolute temperature and
kg denotes the Boltzmann constant. This is only the case whenever an entropy equi-
librium is reached at a certain temperature. Whenever this is the case, the distribution
at that temperature of the iteration for the energy states is the Boltzmann distribution.
This Boltzmann constant will only occur in nature, in simulated annealing, we do not use
the Boltzmann constant because we only need the form of the Boltzmann distribution.
This distribution happens to capture the idea of accepting new worse solutions, provided
that they are not extremely worse than the current solution. In theory, one can use other
(similar) distributions.

Secondly, to further simulate the physical system, the Metropolis algorithm is utilized [15].
Now, with a certain given composition, the system is subjected to an elementary pertur-
bation. Whenever the objection function decreases with this new result, it is accepted,
otherwise, if it causes an increase, it can still be accepted, however with a probability

—AFE . . . o .

e T , where AFE is the change of energy between two states. To realise this condition, a
uniformly distribution on the interval [0, 1] is considered, and the objective function is ac-
cepted when this distribution is less than or equal to e~T". Repeating this Metropolis rule
of acceptance, a sequence of configurations is generated, which leads us to a Boltzmann
distribution of the objective function at this temperature. At the initially high temper-
ature, e~T" is close to 1, therefore almost every move is accepted and the algorithm
becomes equivalent to a simple random walk in the parameter space. This is important

Table 1: Analogy between an optimization problem and a physical system [14].

Optimization problem Physical system
objective function free energy

find a “good” configuration | find the low energy states

variables of the problem coordinates of the particles

entropy; disorder of system | entropy; disorder of particles




because now practically any move can be accepted, which creates the possibility for the
algorithm to explore the entire parameter space. Contrary, at low temperature, T is
close to 0, now the majority of moves resulting in an increase of the objective function
are the only ones that are going to be accepted. At a temperature in a middle state of
the algorithm, the algorithm has a decent chance to accept a move that lowers the value
of the objective function. This makes that the algorithm leaves a field for the system to
be dragged out of a local optimum.

This previous provides knowledge on how the algorithm terminates and how it can escape
some local optimal values. Knowing this, we can give a step by step representation of the

simulated annealing algorithm [7].

e Step 1 Start with an initial solution s = Sy, which has to be a solution inside the
solution space of the objective function. Moreover, set the initial temperature Ty.
Calculate the objective function (f) of the initial solution, f(Sy).

e Step 2 Set a cooling factor o and fix k to 1.

e Step 3 For the current iteration k, loop N times through Step 4, after this loop,
decrease the temperature 7} to the new temperature 7}, according to the tem-
perature schedule and the initiated cooling factor a.. Break this loop whenever the
stop conditions are satisfied, mostly either a good enough solution is found, or the
algorithm has cooled down sufficiently.

e Step 4 Pick one solution from a randomly selected neighbourhood of solution N (s),
and calculate the difference in the objective function between the old and the new
solution.

e Step 5 If the difference in the objective function between the old and the new
solution is greater than 0, we accept it, moreover, we now compare it to the best

found solution. If it is less than or equal to 0, then we compare it to an = Unif|0, 1]
—Af(s)

and accept it if e~ 7~ > 1 holds.

Step 1 and 2 are initial steps and do not need any further explanation. In step 3 it is
at first sight not fully clear how the decrease of temperature takes place. To elaborate
a little more on this decrease, we consider multiple laws of decrease for the program of
annealing. Ahead at the bullet point “Cooling schedule”, an elaboration of these choices
for these laws will be described. In step 4, we consider a neighbourhood of solutions N (s),
which are the solutions around s that are reachable with the random perturbation func-
tion used to create the new solution. These random perturbations must be a size that fits
the problem. For example, for a problem on a small interval, they have to be considerably
small. In step 5, the overall best solution is stored, moreover, it considers the rules of
acceptance, which is the principle of simulated annealing. An occasionally acceptance of
an increase in the objective function of the current state enables the solution to be pulled
out of a local minimum. At low temperature, the rate of acceptance becomes very low,
which makes that the method becomes slowly ineffective. This is a common problem in
simulated annealing.

Since we have now finished describing the steps of the algorithm and know what happens
at each iteration, we can begin to think about how the code should be implemented and
what should be taken into consideration when doing so. In [14], an example of simple
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practical suggestions for implementing a simulated annealing algorithm is given. Fur-
thermore, these suggestions are adjusted to make more sense when considering certain
MATLAB functions.

e Definition of the objective function: The problem is formulated by an objective
function of many variables, which are subjected to several constraints, which can
have several origins. For example, they can be integrated from the objective function,
and other from the parameter space and limitations of the problem itself.

e Choice of the neighbourhood of solutions: The choice of a neighbourhood must be

precise, it cannot contain the current solution. Moreover, the calculation of the dif-
ference in objective functions must be as quick as possible.
In MATLAB, a neighbour solution is chosen by an annealing function. One can use
one of the two standard functions, or implement a custom one. With the standard
ones, the new solution is generated based on the current solution and the current
temperature using multivariate normal distribution. Moreover, MATLAB uses cer-
tain seeds for randommness, which makes it important to check whether or not our
random neighbourhood is indeed always random. In order to make this certain, one
can use the code line seed(‘shuffle’) to ensure randomness.

e Initial temperature Ty: the initial temperature is important, whenever it is too high,
the run time of the algorithm can be unnecessary long, contrary, if it is too low, the
algorithm will focus too quickly on a certain area of the parameter space. A good
rule of thumb when implementing the initial temperature is, that it has to be chosen
in a way that the acceptance probability is close to a fixed value. In Ben-Ameur
et al. [5], there is a description of several different methods to determine a fitting
initial condition:

— Method 1: set Ty = (Af)maz, where (Af)ae is the maximum difference in the
objective function in the neighbourhood of solutions. This is a good indication
for the upper bound of the initial temperature.

— Method 2: calculate a number of strictly positive, hence worse, transformations

of the objective function, and determine the average of the objective functions
f. Then, an educated guess of the initial temperature is Ty = —%, where
xo is the desired initial acceptance ratio. For example, o = 0.8 whenever we

desire an acceptance of 80% at the start of the algorithm.

o Acceptance rule of Metropolis: Let n be a uniformly distributed random variable
—Af(s)
on the interval [0, 1]. Solution s is accepted if n < e 7« , where T}, is the current

temperature and A f the difference between the old and current objective function.
In MATLAB, a variation of the Metroplois rule of acceptance is used as default.

There, a worse solution is accepted if n < m holds. One should determine
exp(=p~

which acceptance rule fits their problem the most.

e Change in temperature stage: happens as soon as one of the following conditions are
satisfied during the temperature stages, with N, as the number of variables of the
problem, i.e., the length of the vector simulated annealing is running on:
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— a - N, neighbourhood solutions accepted

— b N, neighbourhood solutions attempted
Here, a and b are integers, with a < b.

The MATLAB function has no options for this choice, thus, it should be implemented
if used.

e Cooling schedule: is based on a cooling factor a which leads to a decrease of tem-
perature that can be carried out according to multiple laws of decrease.

— Geometrical reduction law: Tj,; = « - Ty. This is a widely used one, because
of its simplicity.

— Adaptive geometrical reduction law: Ty = (1)) - T, here, (T}) is defined
as in equation (5). This reduction law is potentially more effective than the
previous one, since the new temperature only decreases when the new average
of the objective function is less than or equal to the old average. The biggest
drawback of this law is that can be very slow in practice [19].

_ 1 if (Ui < (U
(T’f)—{ o if (Ui > (U (5)

(U); is the average of the objective functions at the i*® iteration.

— Linear reduction law: Tj,; = T, — «, which has a low entropy production
rate at the beginning (high temperatures), which then grows rapidly at lower
temperatures [10].

In MATLAB, the default used function decreases every iteration according to a
variant of the geometrical reduction law, where the cooling factor a. get closer to 1
each step. A choice has to be made from the various laws proposed in literature on
the initiation of the temperature.

e Stop criteria: The program can be terminated on several occasions. In the MATLAB
function for simulated annealing, there are some build in options that decide the
termination, which can also be altered. These are:

— Function tolerance and max stall iterations: The function tolerance is a small
value, standard z;,, = 1079, and max stall iteration is a value which is standard
Tmsi = D00 - N, where N is the number of variables in the problem. A program
is terminated whenever an average change in the value of the objective function
OVEr X,,s iterations is less than z,.

— Max time: Standard on infinity, whenever the running time of the algorithm
exceeds the max time, the program is terminated.

— Max iterations or function evaluations: Program terminates whenever the max-
imum number of iterations or maximum number of function evaluations is ex-

ceeded.
o Most important verification during the initial executions of the algorithm:

— different results of different executions should not differ considerably, moreover,
they should be still close whenever:
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x different random number generators and seeds are used,
x different initial conditions are used.

e Parallelization of the simulated annealing algorithm: Computation time can become
a drawback. In order to reduce the computation time, a parallelization of the al-
gorithm can help. This consists in simultaneously carrying out several calculations
necessary for its realization.

e Handling of discrete variables: The implementation of discrete variables has to be
done carefully. The convergence of the continuous variables must coincide with the
method of handling the discrete variables.

13



3 Methodology

In this chapter, the method used to implement the simulated annealing algorithm in
MATLAB to our specific problem is discussed. Firstly, a discussion on why the general
simulated annealing algorithm in MATLAB does not suffice to our problem, moreover,
what needs to be implemented in order for it to be. Secondly, the methods on how we
have improved this general algorithm, with an explanation of the implementation of these
improvements. Moreover, during the descriptions of the improved algorithm, references
towards the codes are made. The pseudo code is provided in parts during the methodology.

3.1 MATLAB’s General Algorithm

In order to understand why the most simple general function of simulated annealing is
lacking, we first describe this function and how it operates. The MATLAB function
for simulated annealing is called simulannealbnd. To initialize this function, an objective
function and a starting solution have to be provided. Moreover, if the problem is bounded,
a lower and upper bound must be given. Additionally, more options can be provided,
whenever one decides to leave this empty, the default settings are used. Several settings
can be provided, namely, the temperature function, acceptance function, how to determine
a new solution, the stop criteria and more. Using this algorithm with some of the default
MATLAB settings will not give the best results for our problem. The main reason for this,
is that our problem contains some discrete variables and there is no standard function for
creating a new solution in the simulated annealing algorithm in MATLAB that handles
discrete variables. Moreover, plenty of other tweaking of the function has to be done in
order to make the algorithm viable for our variable space.

3.2 Improvements to the Algorithm

The pseudo code of the algorithm is divided in three parts, Algorithm 1, is the description
of the temperature function. Algorithm 2 describes the process of the creation of a new
solution. As last, Algorithm 3 describes some of the initialization and the general structure
of the algorithm, such as when to call certain functions. MATLAB gives the option to
implement your own functions instead of the standard ones. Now, we briefly explain the
new types of functions which have been implemented.

As acceptance function, the acceptance rule of Metropolis is implemented. The default
function of MATLAB uses a variation of this rule. In the default function, a worse solution
has a maximum chance of 50 percent to be accepted for every temperature. In result, this
should not differ with the general Metropolis rule. However, in our method the initial
temperature has to be decided on forehand. At high temperature, an acceptance of 80% is
requested, this because we practically want to allow almost any movement in the solution.
Thus, we choose the Metropolis rule of acceptance, even though the end results of both
can be close to optimal.
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1 Function Temperature_Fcn is

2 if N iterations have passed then

3 ‘ Lower the temperature as follows: Ty = aTk;

4 end

5 N and « depend on the current state of the algorithm
6 end

Algorithm 1: Temperature Function: Simulated Annealing Algorithm

The standard MATLAB temperature function is a variation of the geometrical re-
duction law. The temperature is decreasing every iteration, however, every iteration it
decreases a little less. Even with this slower decrease, the temperature decreases too fast
for our variable space. The bounds in our solution space are very small, but the standard
MATLAB functions are made for general problems. The size of our solution space and the
standard MATLAB functions will be a repeating conflict in our problem. Now, as stated
in the literature review, the temperature should decrease every N, iterations. Moreover,
at low temperatures, the same current temperature should be maintained on even more
iterations to ensure a better convergence. In the new temperature function, Algorithm
1 Line 1, the regular geometrical law of reduction is implemented with a cooling factor
«. Additionally, N is dependent on the current state of the algorithm. For example,
whenever the temperature is above 1, the temperature gets reduced after a certain N
amount iterations, if the temperature is less than or equal to 1, the temperature should
decrease slower, thus N becomes larger. Moreover, « also differs in both of these cases as
described in Algorithm 1 Line 5 of the pseudo code.

Our relatively small-bounded variable space is a problem for the general functions in
MATLAB that create a new solution. In the MATLAB function, a random vector is cre-
ated and multiplied by the current temperature. In the general function, nearly always
the addition of this resulting factor to the current solution exceeds the boundaries of our
problem because the temperature is too high, or the random elements of the vector are
too big. Although those exceeded values will be properly scaled with another function,
it is better for the algorithm to not almost always have new solutions that exceed the
boundaries. Hence, a new function to generate new solutions has been written. Note that
in this function also the discrete variables are decided. In our problem, a solution is a
vector with 10 variables, of which 4 are discrete. The generation of a new solution is the
same idea, however, we scale the resulting addition vector down. First we consider how
the continuous variables are decided. A random vector with elements which are normally
distributed with the standard deviation dependent on the boundaries is created, in the
general MATLAB function a standard normal distribution is used. In order to make the
perturbation vector smaller, the root of the temperature is taken before we multiply it
with this perturbation vector, as last, we add this new perturbation vector to the old solu-
tion. The formula is given in Algorithm 2 Line 2 of the pseudo code. Now for the discrete
variables, since the function for the algorithm itself only handles continuous variables,
the discrete variables are first some continuous variables which are later on rounded. The
discrete variables are uniformly distributed such that after they are rounded the chance
to choose any discrete variable is the same for every discrete variable. In a later stage of
the algorithm, most of the discrete variables are redundant to be checked still, later on
an explanation on how this problem is tackled will be provided.

For all the additional options, these are implemented in order to test the algorithm. These
are for example, when and what the algorithm should plot as information and if the result
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after a certain step should be compared to another optimization method. The only one
worth mentioning is the stop criteria. The only stop criterion that is important to include
is the Max Stall Iterations, which is described in the literature review. Other stop criteria
can have a negative contribution to the result of the algorithm. Other stop criterion can
lead to a premature stoppage of the algorithm. For example, the use of ‘Max Function
Evaluation’ or ‘Max Time’ can both lead to this early stoppage. Additionally, we are not
interested in a maximum objective function value stop criterion, since we search a high
as possible objective function value, which is unknown. Note that some of these option
could be of value while experimenting with algorithm.

1 Function create_new_Solution is

2 create a random addition vector y, and set y = ﬁ to scale it down, the new
solution is created with the following formula: x,c., = Teurrent + Y - (Tk)%;

3 if Manual_Reannealing == False then

4 ‘ Discrete variables chosen equally random;

5 else

6 Discrete variables are chosen equally random or will be set to the current
best whenever a > b, where a is a uniformly random distributed between
0 and 1, and b a fixed point based on the current temperature Tj;

7 end

8 end

Algorithm 2: New Solution: Simulated Annealing Algorithm

There are still some important implementations of the algorithm that have to be
mentioned. These implementations partly have some code outside of the algorithm its
main function simulannealbnd.

The first additional implementation is the calculation of the initial temperature. The
method used is described in the literature review as Method 2. In order to get a better
accuracy, this method has been conducted several times, and the average of these initial
temperature has been chosen as the main initial temperature.

In order to explain the second implementation, a new definition has to be explained,
namely, reannealing. Normally, reannealing starts whenever the algorithm has accepted a
certain number of new solutions. Reannealing raises the temperatures, which is a method
to avoid being caught in a local minima. In our until now described algorithm, the
discrete variables will always be chosen with the same probability. In the later parts
of the algorithm, this will be counter productively. Because, the continuous variables
have already been cooled down and settled in, but still every discrete variable will be
tested with equal probability which leads to a lot of unnecessary testing of clearly worse
solutions, since the algorithm in this state has an idea which discrete variables are the
best candidates for the best discrete variables. To counter this, we introduce a manual
reannealing that happens once. Our algorithm now has two parts, one before the manual
reannealing, and one after. In the part before, a relatively rapid convergence takes place.
Here, the discrete variables are still random with the same chance to be chosen, Algorithm
2 Line 4. This is done until the algorithm reaches a temperature of 0.05. At this time,
the current best solution has the highest probability to contain the best combination of
discrete variables compared to other combinations. Now, the manually reannealing occurs,
we set the temperature high again, and we implement a code that gives the algorithm
a probability to choose the at that time best found discrete variables, instead of some
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randomly chosen variables. This probability depends on the temperature at that time,
the lower the temperature, the higher the probability to choose the best found discrete
variables, thus the discrete variables now converge in probability, Algorithm 2 Line 6.
Note that whenever a new best solution is found, its discrete variables also become the
new best found.

Run one simulation and save scatter matrices;

Initialize Temperature Tj and starting solution z;

Calculate func_val(zy);

while Stop conditions == False do

[uny

2
3

4

5 iteration <— iteration +1;

6 Call function create_new_Solution() to create xy;

7 | Calculate func_val(zy);

8 if current solution is better then

9 Accept the solution;

10 if Manual_Reannealing == True & System cooled down sufficiently then
11 if accepted solution is better than best solution then

12 | Calculate func_val(zy) a number of times and take the average;

13 end

14 end

15 Check to update best found solution;

16 else

17 ‘ Metropolis rule of acceptance;

18 end

19 | Call function Temperature_Fen();
20 end

Algorithm 3: Initialization & Structure: Simulated Annealing Algorithm

As last, a method to handle the randomness of the GenPro4 simulation must be
implemented. In order to tackle this problem, whenever the algorithm is sufficiently cooled
down, and finds a new best solution, this new best solution is tested several times and the
average is taken as the objective function value of that solution. Trivially, whenever this
average is better than the current best, it will become the current best, and if it is not, the
solution will be accepted according to the rule of acceptance, which happens in Algorithm
3 Line 10. For an additional method to combat the randomness of the simulation, one
can reuse the scatter matrices that are calculated. In both of the interfaces, every time
the regular GenPro4 function is called, a scatter matrix is calculated and these differ from
the previous one, even if they have the same input variables due to the randomness of the
simulation. Theoretically, only when some changes in the coatings of the interfaces occur,
the scatter matrix must be recalculated. In the second interface, the only changes we
make are the choice whether or not we use a pyramid structure. This means that before
the algorithm, we need to run the simulation twice to calculate the scatter matrices,
once with and once without the pyramid structure. These scatter matrices can now be
reused in each iteration of the algorithm. Moreover, this first calculation can be done with
more accuracy, since the calculation time is less of an important factor, because we only
calculate them once. Additionally, while reusing the scatter matrices, especially when the
pyramid structure is used, the duration of each iteration is decreased by a considerable
amount. This is because most of the iteration is spend calculating the scatter matrix, and
again, especially for a pyramid structure.
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4 Results

In this chapter, we describe the results of optimizing the current in a tandem solar cell
by using the simulated annealing algorithm as described in Chapter 3, on the objective
function GenPro4, which is on itself a simulation of a tandem solar cell. The code of the
implementation of the algorithm and its initialization can be found in a external file [6].
The results conclude the best settings for the simulated annealing algorithm, where we
also consider whether or not a loss in accuracy is worth the time that is won in computa-
tion time. In our results, a super computer has been used, here every iteration only takes
1 to 2 seconds. However, when using a computer with a considerable weaker processor,
the computation time can take up to 30 seconds each iteration. To achieve this conclu-
sion, the initialization must be conducted carefully, and multiple temperature schemes in
different stages of the algorithm must be compared.

In the objective function, the optimization takes place in a 10 dimensional solution space.
Six of these variables are continuous and four are discrete. The implemented objective
function is an abridgement for a tandem solar cell, which calculates the current of the
tandem solar cell. The solar cell consists of 1 thick layer, and 10 thinner layers named
coatings, with an additional option for an extra coating. The bottom half of the cell
contains the thick silicon substrate layer and 3 coatings which all have a fixed thickness,
hence do not require optimization. However, the coatings of the bottom half form the
second interface, for which we do consider whether or not to use the pyramid structure.
This is the only optimization factor of the bottom half of the cell. The top half of the
cell consists of the first interface and contains 7 coatings. The thickness of 5 of these
coatings have to be optimized. Moreover, this interface also contains the more important
coatings, the HT'M and ETM. The optimization of these coatings do not only require an
adjustment in thickness, but also material. As last, in the top half of the cell, one can
choose if an extra coating should be implemented, which also has a variable thickness. In
Figure 4, a representative structure of what needs to be optimized in a tandem solar cell
is provided. The coatings that need to be optimized are coloured, the blue colour implies
that both the material and the thickness must be optimized, and for the yellow only the
thickness. Again, in the bottom half no thicknesses are optimized, and only the choice to
use a pyramid structure is optimized.

There are three coatings that only differ in thickness, and three coatings that additionally
differ in material. The first coating that differs in material is the extra anti-reflective
coating. The choice here is slightly different than the choice for the other materials, since
we choose here whether or not we use the extra coating. If we do not use the extra coating,
the material is set to be air, and if we do us it, the material is set to magnesium fluoride
(MgF3). For the ETM, three different materials are to be tested, namely, spiro-OMeTAD,
fluorine doped tin oxide (FTO) and titanium dioxide (TiO2). For the last material vari-
able coating, the HTM, there are two material choices, poly(triaryl amine) (PTAA) and
nickel oxide (NiO). The last variable that needs to be optimized is the discrete choice for
using a pyramid structure or not.

These 10 variables are represented in the objective function. The first six variables deter-
mine the thickness of the first 6 coatings of Figure 4, respectively. The seventh to ninth
variable determine the materials of the ETM, HTM and anti-reflective coating. And the
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Figure 4: Structure of variables that need to be optimized

final, the tenth variable decides the use of the pyramid structure.

4.1 Initialization

In order to get reliable results from the simulated annealing algorithm, some initialization
has to take place. The first initial calculation that has to take place is that the two scatter
matrices have to be calculated, which is done by running the simulation GenPro4 once.
As standard, the result of the scatter matrix is stored in the workspace of MATLAB.
However, when inside a function, specifically our objective function, the workspace can
not be reached.

Secondly, the initial solution has to be decided. With simulated annealing, the best found
solution should not be dependent on different initial solutions. We generally do not want
to have a close to optimum initial solution. Taking these factors into account, the contin-
uously variables are chosen at random. In theory, the discrete variables can also be chosen
at random. And multiple random initialisation variables have been tested prior to these
end results. However, in the results, we use the same initial solution for all the cases,
in order to have a completely fair comparison of the temperature schedules. Here, the
continuous variables are set around middle of each boundary interval, the initial solution
with the initial objective function value can be found in Table 2.

Next, the initial temperature must be calculated, here the scatter matrices and initial
solutions are already to be used, hence it is important to calculate them beforehand. The
initial temperature must be recalculated after every major change in the implementation
of the algorithm. Remember that the initial temperature is determined from the average
of the objective functions of 100 strictly worse solutions after one step and the initial
acceptance rate of 80%. In the later states of the study, every calculation of the initial
temperature has been close to 13.
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4.2 Results of Different Temperature Schedules

Here, we provide the resulting choices of the temperature schedules. The temperature
schedules contribute a crucial factor towards the end results of a simulated annealing
algorithm. The consideration of the schedules is a careful process in which some trial and
error can be used. Remember that the temperature schedules consist of a temperature
function, and a step size which decides whenever, after how many iterations, the tem-
perature should be changed. First, we consider certain schedules before reannealing, and
conclude which schedules fits our problem the best. After this, we consider some tem-
perature schedules for the part of the algorithm after the reannealing. The temperature
schedules determine how quickly and accurate the algorithm converges.

4.2.1 Temperature Schedules Before Reannealing

Remember, the aim of this part of the algorithm, before the next reannealing, is to find
a candidate for the best discrete values. This part must be relatively quick because it
decides whenever we start the reannealing process. However, more importantly, it has to
be accurate since ideally the optimal discrete values have to be found. Reannealing takes
place whenever the temperature reached a value of 0.05 for the first time, this values
is chosen since at a temperature of 0.05, the algorithm has decently converged. Thus,
combined with a fitting temperature schedule, the algorithm has a good idea on what
a candidate for the best discrete variables could be. Hence, the following schedules run
until the temperature reaches this value. Understanding what result we are aiming to
achieve, we test the following temperature functions. All of these temperature schedules
have been tested 6 times in order to get a first glance on how good the methods are. We
analyse the methods which use these temperature schedules and we reject two obvious
dropouts, and the two remaining are tested further. The first schedule consists of a slow
convergence, the second of a medium convergence, and the third of a fast convergence.
Additionally, a schedule which decreases every iteration is implemented, here, the cooling
factor is tweaked such that the last iteration is around the same as the one from the
temperature schedule with a medium convergence speed.

1. Thew = 0.95 - T4 decreases every 10 iterations
2. Thew = 0.95 - T,y decreases every 7 iterations
3. Thew = 0.95 - T, decreases every 5 iteration
4. Thew = 0.9935 - T4 decreases every iteration

Firstly, a very slow decreasing temperature schedule is tested, namely T, = 0.98 - T4
with a decrease every 20 iterations. This is done in order to conclude whether or not the
discrete values of the other schedules are close to optimal. This very slow schedule gives a
fairly accurate estimation on what the discrete variables should be. From now on, we refer
to this schedule as the Test-Schedule. Figure 5 depicts the results of the Test-Schedule,
it indeed shows a very slow convergence, where even in the tail every discrete variable is
tested equally. It is assumed that the discrete values of the best found solution are close
to optimal, and probably even optimal.
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Figure 5: The Test-Schedule: A very slow convergence. Left: the objective function value at
each iteration. Right: the current best found objective function value.

Temperature Schedule 1 is represented in Figure 6, here, a) displays the objective
function value at each iteration, and b) the current best found objective function value,
this will be the case for all schedules. In this schedule the desired convergence is slowly.
When compared with the upcoming schedules, one will see that the convergence is indeed
slow. Because the method with this schedule has found the same discrete variables as the
Test-Schedule on every run, the chances of finding a good candidate are high. If, however,
there is a faster method that has a similar result, this method becomes redundant.
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Figure 6: Temperature Schedule 1: A decrease every 10 iterations according to the following
function: T, = 0.95 - Ty4. Left: the objective function value at each iteration. Right: the
current best found objective function value.

Temperature Schedule 2 is represented in Figure 7, in this schedule the convergence
is more rapidly than in the previous schedule, because the temperature decreases faster.
Now, one could argue that this will influence the accuracy of the schedule used. To counter
this, the best methods will be tested more thoroughly. This schedule has always found
the same discrete values as the Test-Schedule, thus it, for now, performs better than the
previous one.
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Figure 7: Temperature Schedule 2: A decrease every 7 iterations according to the following
function: Thpew = 0.95 - Tyq. Left: the objective function value at each iteration. Right: the
current best found objective function value.

Temperature Schedule 3 is represented in Figure 8, this schedule did not find the same
values for the discrete variables as the Test-Schedule in 1 of the 6 tests. The figure displays
a test which did not find them, here one can clearly see that the objective function value
is much lower than the other methods, the wrong discrete variables influence this error
heavily.
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Figure 8: Temperature Schedule 3: A decrease every 5 iterations according to the following
function: Thpew = 0.95 - Tyq. Left: the objective function value at each iteration. Right: the
current best found objective function value.

Temperature Schedule 4 is represented in Figure 9, this schedule is much alike schedule
2 in comparison. They both end around the same iteration, and both found the best
solution in every test of the 6.
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Figure 9: Temperature Schedule 3: A decrease every iterations according to the following func-
tion: Thew = 0.9935 - Tyq. Left: the objective function value at each iteration. Right: the
current best found objective function value.
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As noticed, the third schedule is clearly not good enough, thus this schedule can not

be a candidate for the schedule of the algorithm part before reannealing. The first one
is probably the most accurate, however, until now, the other tested schedules have never
gotten a different result than the Test-Schedule. The second and the fourth schedule have
been tested more thoroughly, if they showed that they made too many errors, the first
schedule can still be chosen.
After testing both the second and the fourth iteration more than 20 times each, we can
make a conclusion on which schedule we can use. The second schedule always found the
same discrete values as the Test-Schedule, and the fourth was once one variable off. This
does not automatically decides that the second schedule is better, however, the second
schedule does fit our method better anyways since it makes use of a type of schedule which
is used also after reannealing, that is, a decrease after a certain number of iterations.
Thus, the second schedule is chosen to be the schedule of the part of the algorithm before
reannealing.

4.2.2 Temperature Schedules After Reannealing

In the second part of the simulated annealing algorithm, a fitting temperature schedule
has to be implemented as well. It is assumed that the part before reannealing has given us
a good candidate for the optimum discrete values, however, we cannot assume that these
are already the best discrete values, thus, they cannot be considered as fixed values. The
MATLAB function for simulated annealing, has an option input in which several opti-
mization options can be given, this function optimizes a provided objective function. The
algorithm runs with the previously decided temperature scheme before the reannealing.
Here, three runs of the algorithm will be compared with each other. These algorithms
have been each been ran three times, the results of the best runs are included. Addi-
tionally, a short comparison with the previously used Test-Schedule is made, in order to
show that the manual reannealing does provide some benefits. The results are also more
in depth, in addition to the figures on the behaviour of the algorithms, the exact values
of the continuous and discrete variables are provided in tables.

Then, firstly, the adjusted simulated annealing algorithm as described in the methodology
with a slow decreasing temperature schedule is conducted. In this temperature schedule,
when the temperature is above 1, the following schedule holds, T;,.., = 0.95 - T,;4 with a
decrease every 7 iterations, otherwise, T, = 0.97 - T,;4 with a decrease every 12 iter-
ations. In order to stop the algorithm at a certain point, we set the function tolerance
at 1072 and the MaazStalllterations at 2000. This means, that whenever the best found
solution does not vary more than 10~2 in 1500 iterations, the program will be terminated.
Before running this optimization algorithm, we expect to see a lot of function evalua-
tions due to the slow decrease of the temperature. However, we do expect a very close
to optimal solution. All of the methods are represented in a figure, which displays the
behaviour of the algorithm, and a table in which the exact values are given. In Figure
10, the behaviour of the algorithm is displayed in a similar style as seen before, the part
before and after reannealing are very distinctive of each other. First note that, if these
results are again compared with the Test-Schedule of the previous part, it shows that the
manually reannealing helps in shortening the running time of the algorithm, additionally,
the accuracy also increases. All of this happens because the discrete values now converge
in probability as well, whereas before, they only converged in their contribution to the
value of the objective function. This happens because in the Test-Schedule, at any point
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in the algorithm all of the discrete variables had the same probability to be chosen when
creating a new solution.
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Figure 10: Algorithm’s behaviour with a slow decreasing temperature schedule after
reannealing. Left: the objective function value at each iteration. Right: the current best found
objective function value.

In Table 2, the results of this algorithm are represented as follows, the first column repre-
sents the variable names, the second column the values of the initial solution, and in the
last column the final results of the optimal found solution. The optimal found solution
is here 21.0308, and it is found in 6160 iterations. The program was terminated because
the best found objective function value did not change more than 1072 in 1500 iterations.
In comparison with the Test-Schedule, this program concluded its optimum value in less
than half the iterations, moreover, the optimum value is considerable better.

Table 2: Results of the slow converging temperature schedule.

Variables Initial solution | Best found solution
Pyramid texture yes yes
Anti-reflective coating material air MgF,
ETM material TiO9 TiO4
HTM material PTAA NiO
Anti-reflective coating thickness [pm] | 0.15 0.1011
ITO thickness [pm] 0.15 0.0569
ETM thickness [pm] 0.15 0.1541
Perovskite thickness [pm] 0.3 0.3829
HTM thickness [pm] 0.15 0.1731
a-SiOx thickness [pm)] 0.15 0.0721
Total current [mA /cm?] 16.1471 21.0308
Function evaluations 6160

In the second case, we use the same objective function, but with different settings, the
scatter matrix used in both cases are the same to make the comparison of the schedules
most legitimate. Here, we test a medium speed convergence, the best way to do this is
to change the temperature function to a faster decrease. In this temperature schedule,
when the temperature is above 1, the following schedule holds, T;,., = 0.95 - T,;4 with a
decrease every 5 iterations, otherwise, 7)., = 0.97-T,,4 with a decrease every 8 iterations.
The function tolerance is kept at the same value, 10~2 with the same MaxStalllterations.
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Again, the behaviour of the algorithm is represented with Figure 11.
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Figure 11: Algorithm’s behaviour with a medium speed decreasing temperature schedule after
reannealing. Left: the objective function value at each iteration. Right: the current best found
objective function value.

In Table 3, the results of this slightly slower converging algorithm are given, which has
the same representation as the previous table. The most important values to examine
are the Total current and the Function evaluations. In this method, the algorithm had
a slightly worse best function value, namely 20.9926, however, the program terminated
after iterations 5163, which is almost 1000 iterations earlier. Furthermore, comparing the
two tables, some values are fairly close to each other, and some are far apart. In the case
of the slightly faster convergence the algorithm possibly got stuck in one local optimum.

Table 3: Results of the medium speed converging temperature schedule.

Variables Initial solution | Best found solution
Pyramid texture yes yes
Anti-reflective coating material air MgFs
ETM material TiO9 TiO9
HTM material PTAA NiO
Anti-reflective coating thickness [pm] | 0.15 0.1026
ITO thickness [pm] 0.15 0.0564
ETM thickness [pm] 0.15 0.3124
Perovskite thickness [pm] 0.3 0.3827
HTM thickness [pm] 0.15 0.5000
a-SiOx thickness [um] 0.15 0.0777
Total current [mA /cm?] 16.1471 20.9926
Function evaluations 5163

Lastly, a temperature schedule with a more rapid convergence is implemented, again
on the same scatter matrix, and with the same temperature schedule for the part be-
fore reannealing. In this temperature schedule, when the temperature is above 1, the
following schedule holds, T},., = 0.95 - T4 with a decrease every 5 iterations, otherwise,
Thew = 0.97 - T4 with a decrease every 3 iterations. The stopping criterion is again the
same, and the behaviour of the algorithm is represented in Figure 12. Note that there is
indeed a fast convergence, since the best found function value at iteration 2000 does not
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differ much from the best found function values at the end.

Current Function Value: -20.7886
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Figure 12: Algorithm’s behaviour with a fast decreasing temperature schedule after
reannealing. Left: the objective function value at each iteration. Right: the current best found
objective function value.

Table 4, presents the results of the temperature schedule with a fast convergence. The
best function value is 20.7886, and the algorithm terminated in 3974 iterations. This
result is considerably worse than the last two found solutions.

Table 4: Results of the fast converging temperature schedule.

Variables Initial solution | Best found solution
Pyramid texture yes yes
Anti-reflective coating material air MgF9
ETM material TiO9 TiO9
HTM material PTAA NiO
Anti-reflective coating thickness [pm] | 0.15 0.1017
ITO thickness [pm] 0.15 0.0536
ETM thickness [pm] 0.15 0.1783
Perovskite thickness [pm] 0.3 0.3639
HTM thickness [pm] 0.15 0.4310
a-Si0x thickness [pum)] 0.15 0.4762
Total current [mA /cm?] 16.1471 20.7886
Function evaluations 3974
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5 Conclusion

In this research, a simulated annealing algorithm is implemented to optimize the efficiency
of a tandem solar cell. The goal of this research was to find the best implementation of
the simulated annealing algorithm to a specific problem, namely, the optimization of the
current in a tandem solar cell. There are different settings that ought to be fine-tuned
during the implementation in order to make the simulated annealing algorithm find a
close to optimal solution. Not only the best result in function value is considered, but
also how rapid the algorithm can conclude this result. This was important to be taken
into account, since the computation time of the objective function is high. The aim was
to find a perfect matching of result and computation time.

Some attention has to be shed on how and where the simulated annealing algorithm was
implemented. The objective function is GenPro4, this function is a simulation of a tandem
solar cell which has the total current as output. GenPro4 is implemented in MATLAB,
hence the simulated annealing algorithm is easiest to be implemented in MATLAB as
well. MATLAB has a function that runs a simulated annealing algorithm, namely sim-
ulannealbnd. Firstly, some light is shed on the creation of a new solution. The default
setting of simulannealbnd is developed to handle a broad range of problems, thus also on
large intervals. In our problem, the variables are on relatively small intervals, and while
using the default setting of the function, some inefficiencies will occur. In the newly im-
plemented function for the creation of new solutions, the solutions are created with more
respect towards the boundaries of the intervals. Secondly, the function simulannealbnd
only allows a smooth objective function. This conflicted with our objective function Gen-
Pro4, since it has some discrete variables. The solution to this problem is to handle the
discrete variables first as continuous variables, which are later rounded to discrete val-
ues. The discrete variables were at first chosen at random, this made it that they are
never converging in probability. In order to combat this, a manual reset of temperature
is implemented, which is called reannealing. This reannealing takes place whenever the
temperature reaches a value of 0.05 for the first time. After this reannealing, the chance of
using the best found discrete variables is higher and converges to 1 when the temperature
lowers.

Next, the temperature schedules used have the greatest impact on the result of the simu-
lated annealing algorithm. We consider two temperature schedules, since the reannealing
divides the algorithm in two parts, one part before, and one part after the manual rean-
nealing. In the part before reannealing, a temperature schedule which converges rapidly,
but accuratly has to be implemented. Some cases have been considered, the result of the
best temperature schedule was the one with a decrease each 7 steps using the following
function: T, = 0.95-T,4.

Finally, it rests to decide the best temperature schedule after reannealing, in combination
with the part before reannealing, this provides the end result. Temperature schedules that
conduct a slow, medium and fast convergence were tested, multiple times, the best found
results are shown. The temperature schedule with the slower convergence had the best
result, a total current of 21.0308 mA /cm? had been found in 6160 iterations, it concluded
its end results always around 6000 iteration and always found an objective function value
higher than 21. A slightly faster temperature schedule resulted in a slight loss of total
current, the result was 20.9926 mA /cm? in 5163 iterations. Here, the algorithm most of
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the time ended around 5000 iterations, and always found a best objective function value
higher than 20.90 The temperature schedule that resulted in a fast convergence had a
best found value that was diverged too much to be considered. At last, the considera-
tion whether or not the reduction of the optimal current found in the faster temperature
schedule is worth the decrease of 1000 iterations depends on a couple of factors. These
factors are the computational speed for calculating the objective function, a computer
with a low computational speed could desire the 1000 less iterations, since it could save
plenty of time. Additionally, one must consider the significance that should be attached
to a slightly better objective function value.
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6 Recommendation

In this research, a simulated annealing algorithm has been implemented in order to opti-
mize the objective function GenPro4, which calculated the current of a tandem solar cell.
There are several recommendations for future research on the use and implementation of
the simulated annealing algorithm to this topic specifically. Firstly, the most important
recommendation is to not use the MATLAB function simulannealbnd. Despite the fact
that this function is well written and works very good in the right circumstances with
the right settings, for this problem, and any problem with unique constraints, such as
discrete variables, it should be recommended to write a new implementation of a simu-
lated annealing algorithm. Studying the code of the simulannealbnd forges a good idea
on the structure of a simulated annealing algorithm, and when using discrete variables,
the method described in this study can be implemented.

Moreover, if one decides to make use of the manual reannealing as described in this study,
the part before the reannealing could be considered separately in an algorithm from the
part after. Whilst running our algorithm with no real stopping criterion the following
goes unnoticed, however, when the maximum stall iteration stopping criterion is imple-
mented, the part before reannealing can lead to a premature stoppage of the algorithm.
This happens because there is a probability that a close to optimum solution is found in
the part before reannealing, and whenever the part after does not find a better solution in
the provided max stall iteration amount, the program will terminate prematurely, which
leads to a considerable amount of time wasted.
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