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Summary 
The provision of safe drinking water is essential in every society since it determines people’s health and 

well-being. Drinking Water Distribution Networks (DWDN) are vital for this purpose but are susceptible 

to pathogen contamination and outbreaks due to cascading events after infrastructure failures, main 

repairs, human errors, or malicious attacks. When a contamination event occurs in the DWDN, the 

preservation of health of the public should be the top priority in every emergency response mechanism. 

Exposure to contaminated water can cause significant health risks by introducing pathogens such as 

enterovirus, Campylobacter, and Cryptosporidium. For this reason, DWDNs are nowadays considered 

critical infrastructures, recognized by USA's Presidential Policy Directive 21 and the European Union's 

Directive (EU) 2022/2557.  

During contamination events in the DWDN, water utilities need to act quickly, make informed decisions, 

assess the threat, and effectively mitigate the event. The central objective of this thesis was to generate 

knowledge to help address the growing challenge of waterborne pathogen contamination in DWDNs 

and develop applications that can enhance decision-making and immediate actions in such emergencies. 

Tools and methodologies were developed and evaluated focusing on two main pillars. The first pillar 

involves understanding the event based on historical knowledge. Innovative approaches were developed 

and assessed for Artificial Intelligence-based information extraction and question-answering using 

scientific publications, enabling rapid access to up-to-date pathogen characteristics, historical 

information on contamination events, and control actions. The second pillar focuses on predicting and 

managing the specific contamination event in real-time. Advanced modeling tools were created to 

simulate contamination events in DWDNs, providing realistic representations of hydraulics and water 

quality dynamics, predicted health impacts, and support for real-time decision-making during 

emergencies.  

Chapter 2 describes the development of an Artificial Intelligence (AI)-based model that extracts 

specific pathogen information from the scientific literature. By leveraging Natural Language Processing 

(NLP) and Deep Learning (DL) techniques, the study evaluated the feasibility and performance of an 

Information Extraction model to extract both qualitative and quantitative information from scientific 

publications about the waterborne pathogen Legionella. For the development of the model, a 

combination of supervised and rule-based techniques was adopted. The evaluation metrics showed a 

satisfactory performance for extraction of both qualitative and quantitative information with an overall 

F-score of 85% and 95% for the supervised and rule-based technique respectively. The model was also 

compared with a human extraction, returning similar results and indicating that the extracted information 

is of high quality. The results showed that the model can be used to rapidly extract critical information 

from text documents and be a useful tool for water utilities, enabling faster and more informed decision-

making during the early stages of contamination. 

Chapter 3 systematically assesses the performance of various open-source Large Language Models 

(LLM), including Llama 2, Mistral, and Gemma (and their variations) in a question-answering task 

related to pathogen contamination events of drinking water. The evaluation metrics included Precision, 

Recall, F1 score, Automated Accuracy, and Empty Score. The model with the highest performance on 

a set of 23 questions using 188 scientific publications was then manually evaluated by a human (Human 

Evaluation). The results showed that all models performed reasonably well with an average F1 score 

ranging from 81% to 87%. After considering all the evaluation metrics, the Llama 2 model was the most 

reliable model with an average Automated Accuracy of 86%. However, the hallucination effect of Llama 

2 was evident. The Gemma model had a lower Automated Accuracy score but was less prone to 

hallucination. The Human Evaluation showed that the Llama 2 model delivered correct answers when 

the questions were clear and straightforward. However, when the question required further 

interpretation, the model often struggled. Overall, the study demonstrated that the use of LLMs in 

automated information extraction tasks show great potential for time-critical applications, such as 

processing large volumes of (historical) data in real-time thereby making it feasible to make historical 

information available in near real-time in case of emergencies.   
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Building on the response to a pathogen contamination event in the DWDN, Chapter 4 presents the 

BeWaRE benchmark testbed, a comprehensive model. This testbed went beyond the state-of-the art and 

integrated all current relevant knowledge on pathogen transport and fate, bulk and wall chlorine decay, 

fast and slow chlorine reactions with TOC, TOC degradation, stochastic water demands, hydraulic 

uncertainty, and individual consumption patterns to calculate pathogen exposure and infection risk 

following the steps of Quantitative Microbial Risk Assessment (QMRA). A large wastewater 

contamination in different locations in a chlorinated and non-chlorinated network was simulated using 

three pathogens: Campylobacter, enterovirus, and Cryptosporidium. The results of this study showed 

that in non-chlorinated DWDNs, the modeled wastewater contamination event led to 11-46% infection 

risk in the total population, depending on the contamination location, but irrespective of the selected 

pathogen (due to the high pathogen concentration). On the other hand, in chlorinated DWDNs, the same 

scenarios resulted in lower infection risk for the pathogens that are susceptible to chlorine; 0.78-2.1 % 

for Campylobacter and 7.8-26.6 % for enterovirus. Moreover, the enterovirus infection risk was higher, 

despite the concentrations in the contamination source being lower, due to the lower susceptibility to 

chlorine than Campylobacter. While chlorination aids mitigation, large contaminations can still lead to 

infections due to chlorine resistance (for Cryptosporidium) and chlorine depletion at the contamination 

point. Finally, the varying levels of pathogen susceptibility to chlorine, the contamination location and 

duration, influenced the infection risk, while the response window to reduce the health impact was short; 

in these scenarios 5-10 hours post-contamination. The study provided a novel approach to assessing 

health risks, offering critical insights for water utilities to optimize their response during emergencies. 

Chapter 5 further explores the added value of using modeling tools to support decision-making during 

emergencies in the DWDN. This was demonstrated through PathoINVEST, an analytical tool that 

utilizes the BeWaRE benchmark methodology, which was presented in the previous Chapter, to support 

water utilities in modeling contamination events in the DWDN. A case study was conducted with the 

aim of comparing a traditional approach (representing the status quo of current practices of water 

utilities) with a model-based approach (use of real-time modeling tools) during an emergency response 

to a contamination event in the DWDN. The model-based approach was shown to be more efficient than 

the traditional approach in identifying the source of contamination (1.3 versus 3.7 hours), requiring 

fewer samples (4 versus 11) and resulting in lower infection risk by the time the source was identified 

(12% versus 20%) in this case study. Moreover, the model-based approach was more effective in finding 

the best valves to close in the network (as mitigation measures) since it resulted in a 3%-point infection 

risk reduction. However, some actions taken in the traditional approach, such as the rapid closure of 

valves (cutting the network in half and thus limiting further spreading) before the contamination source 

was identified, were critical in mitigating the contamination. Another key finding was the importance 

of having an up-to-date overview of valve settings in the DWDN schematization to provide reliable 

results on source identification since any discrepancies between the actual network and the model can 

lead to inaccurate infection risk estimates when using modeling tools to support decision-making. 

Overall, this case study showed that integrating modeling tools in the current practices of water utilities 

provides a robust framework for improving water contamination management and decision-making 

processes, thus safeguarding public health during emergencies. 

A concluding viewpoint is offered in Chapter 6, which considers whether the initial research questions 

from Chapter 1 were successfully answered. The implications of this research for water utilities are 

examined, providing information on how the proposed methodologies can be (and have been) used in 

real-world scenarios, facilitating a faster decision-making and contributing to effective mitigation of 

emergencies. Finally, the perspectives and future research are discussed, emphasizing the role of AI and 

the advancements in modeling tools. AI has shown significant potential in enhancing situational 

awareness and rapid information extraction during emergencies. Water utilities should explore the 

integration of AI into their standard operating procedures to further enhance emergency responses and 

routine management. Regarding the use of modeling tools during emergencies, future research should 

address key gaps, such as the complex dynamics when wastewater interacts with chlorine, the 

competition between chlorine-reducing agents, and the validity of hydraulic modeling assumptions such 

as perfect mixing. Accounting for cumulative health risks (multiple pathogens) and refining dose-

response models to differentiate between infection and illness probabilities can provide insights for 
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effectively managing risks to vulnerable populations. Moreover, the incorporation of metrics like 

Disability-Adjusted Life Years (DALYs) into modeling efforts could enable better communication of 

health impacts and evaluation of mitigation strategies. Finally, Digital Twins and real-time microbial 

sensors are identified as transformative technologies that can provide real-time insights into network 

dynamics. These advancements can shift water utility management from reactive approaches to 

proactive, data-driven strategies, significantly enhancing public health protection, operational 

efficiency, and resilience. 
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Samenvatting 
Het leveren van veilig drinkwater is essentieel in elke samenleving, omdat het de gezondheid en het 

welzijn van mensen bepaalt. Drinkwaterdistributienetwerken (DWDN) zijn van vitaal belang voor dit 

doel, maar zijn vatbaar voor besmetting met ziekteverwekkers en uitbraken als gevolg van 

opeenvolgende gebeurtenissen na infrastructuurstoringen, hoofdreparaties, menselijke fouten of 

kwaadaardige aanvallen. Wanneer er een besmettingsgebeurtenis plaatsvindt in het DWDN, moet het 

behoud van de volksgezondheid de hoogste prioriteit hebben in elk noodresponsmechanisme. 

Blootstelling aan besmet water kan aanzienlijke gezondheidsrisico's veroorzaken door de introductie 

van ziekteverwekkers zoals enterovirus, Campylobacter en Cryptosporidium. Om deze reden worden 

DWDN's tegenwoordig beschouwd als kritieke infrastructuren, erkend door de Presidential Policy 

Directive 21 van de VS en de Richtlijn (EU) 2022/2557 van de Europese Unie. 

Tijdens besmettingsgebeurtenissen in het DWDN moeten waterbedrijven snel handelen, weloverwogen 

beslissingen nemen, de dreiging beoordelen en de gebeurtenis effectief beperken. De centrale 

doelstelling van de studie van dit proefschrift was om kennis te genereren om de groeiende uitdaging 

van besmetting met watergedragen pathogenen in DWDN's aan te pakken en toepassingen te 

ontwikkelen die besluitvorming en onmiddellijke acties in dergelijke noodsituaties kunnen verbeteren. 

Er werden hulpmiddelen en methodologieën ontwikkeld en geëvalueerd met de focus op twee 

hoofdpijlers. De eerste pijler omvat het begrijpen van de gebeurtenis op basis van historische kennis. Er 

werden innovatieve benaderingen ontwikkeld en beoordeeld voor op kunstmatige intelligentie 

gebaseerde informatie-extractie en vraagbeantwoording met behulp van wetenschappelijke publicaties, 

waardoor snelle toegang tot actuele kenmerken van pathogenen, historische informatie over 

besmettingsgebeurtenissen en controleacties mogelijk werd. De tweede pijler richt zich op het 

voorspellen en beheren van de specifieke besmettingsgebeurtenis in realtime. Er werden geavanceerde 

modelleringshulpmiddelen gecreëerd om besmettingsgebeurtenissen in DWDN's te simuleren, die 

realistische representaties van hydrauliek en waterkwaliteitsdynamiek, voorspelde gezondheidseffecten 

en ondersteuning voor realtime besluitvorming tijdens noodsituaties bieden. 

Hoofdstuk 2 beschrijft de ontwikkeling van een op kunstmatige intelligentie (AI) gebaseerd model dat 

specifieke pathogeeninformatie uit de wetenschappelijke literatuur haalt. Door gebruik te maken van 

Natural Language Processing (NLP) en Deep Learning (DL)-technieken, evalueerde de studie de 

haalbaarheid en prestaties van een Information Extraction-model om zowel kwalitatieve als 

kwantitatieve informatie te halen uit wetenschappelijke publicaties over de watergedragen pathogeen 

Legionella. Voor de ontwikkeling van het model werd een combinatie van supervised en rule-based 

technieken gebruikt. De evaluatiemetrieken lieten een bevredigende prestatie zien voor extractie van 

zowel kwalitatieve als kwantitatieve informatie met een algehele F-score van respectievelijk 85% en 

95% voor de supervised en rule-based techniek. Het model werd ook vergeleken met een menselijke 

extractie, wat vergelijkbare resultaten opleverde en aangaf dat de geëxtraheerde informatie van hoge 

kwaliteit is. De resultaten lieten zien dat het model kan worden gebruikt om snel kritieke informatie uit 

tekstdocumenten te halen en een nuttig hulpmiddel kan zijn voor waterbedrijven, waardoor snellere en 

beter geïnformeerde besluitvorming mogelijk is in de vroege stadia van besmetting. 

Hoofdstuk 3 beoordeelt systematisch de prestaties van verschillende open-source Large Language 

Models (LLM), waaronder Llama 2, Mistral en Gemma (en hun variaties) in een vraag-en-antwoordtaak 

met betrekking tot pathogene besmettingsgebeurtenissen van drinkwater. De evaluatiemetrieken 

omvatten Precisie, Herinnering, F1-score, Geautomatiseerde nauwkeurigheid en Lege score. Het model 

met de hoogste prestatie op een set van 23 vragen met behulp van 188 wetenschappelijke publicaties 

werd vervolgens handmatig geëvalueerd door een mens (Menselijke evaluatie). De resultaten toonden 

aan dat alle modellen redelijk goed presteerden met een gemiddelde F1-score variërend van 81% tot 

87%. Na overweging van alle evaluatiemetrieken was het Llama 2-model het meest betrouwbare model 

met een gemiddelde Geautomatiseerde nauwkeurigheid van 86%. Het hallucinatie-effect van Llama 2 

was echter duidelijk. Het Gemma-model had een lagere Geautomatiseerde nauwkeurigheidsscore, maar 

was minder vatbaar voor hallucinaties. De menselijke evaluatie toonde aan dat het Llama 2-model 

correcte antwoorden gaf wanneer de vragen duidelijk en eenvoudig waren. Echter, wanneer de vraag 
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verdere interpretatie vereiste, had het model vaak moeite. Over het geheel genomen toonde de studie 

aan dat het gebruik van LLM's in geautomatiseerde informatie-extractietaken een groot potentieel heeft 

voor tijdkritische toepassingen, zoals het verwerken van grote volumes (historische) data in real-time, 

waardoor het haalbaar wordt om historische informatie in near rea-time beschikbaar te maken in geval 

van noodgevallen. 

Voortbouwend op de respons op een besmettingsgebeurtenis met een pathogeen in het DWDN, 

presenteert Hoofdstuk 4 de BeWaRE benchmark testbed, een uitgebreid model. Deze testbed ging 

verder dan de state-of-the-art en integreerde alle huidige relevante kennis over pathogeentransport en -

bestemming, bulk- en wandchloorverval, snelle en langzame chloorreacties met TOC, TOC-afbraak, 

stochastische waterbehoeften, hydraulische onzekerheid en individuele consumptiepatronen om 

blootstelling aan pathogenen en infectierisico te berekenen volgens de stappen van Quantitative 

Microbial Risk Assessment (QMRA). Een grote afvalwaterverontreiniging op verschillende locaties in 

een gechloreerd en niet-gechloreerd netwerk werd gesimuleerd met behulp van drie pathogenen: 

Campylobacter, enterovirus en Cryptosporidium. De resultaten van deze studie toonden aan dat in niet-

gechloreerde DWDN's de gemodelleerde afvalwaterverontreiniging leidde tot een infectierisico van 11-

46% in de totale populatie, afhankelijk van de besmettingslocatie, maar ongeacht de geselecteerde 

pathogeen (vanwege de hoge concentratie pathogeen). Aan de andere kant resulteerden dezelfde 

scenario's in gechloreerde DWDN's in een lager infectierisico voor de pathogenen die gevoelig zijn voor 

chloor; 0,78-2,1% voor Campylobacter en 7,8-26,6% voor enterovirus. Bovendien was het 

enterovirusinfectierisico hoger, ondanks dat de concentraties in de besmettingsbron lager waren, 

vanwege de lagere vatbaarheid voor chloor dan Campylobacter. Hoewel chlorering helpt bij het 

verminderen, kunnen grote besmettingen nog steeds leiden tot infecties vanwege chloorresistentie (voor 

Cryptosporidium) en chlooruitputting op het besmettingspunt. Ten slotte beïnvloedden de verschillende 

niveaus van vatbaarheid van pathogenen voor chloor, de locatie en duur van de besmetting het 

infectierisico, terwijl het responsvenster om de gezondheidsimpact te verminderen kort was; in deze 

scenario's 5-10 uur na besmetting. De studie bood een nieuwe benadering voor het beoordelen van 

gezondheidsrisico's en bood cruciale inzichten voor waterbedrijven om hun respons tijdens noodsituaties 

te optimaliseren. 

Hoofdstuk 5 onderzoekt verder de toegevoegde waarde van het gebruik van modelleringshulpmiddelen 

ter ondersteuning van besluitvorming tijdens noodsituaties in het DWDN. Dit werd aangetoond via 

PathoINVEST, een analytisch hulpmiddel dat gebruikmaakt van de BeWaRE-benchmarkmethodologie, 

die in het vorige hoofdstuk werd gepresenteerd, om waterbedrijven te ondersteunen bij het modelleren 

van besmettingsgebeurtenissen in het DWDN. Er werd een case study uitgevoerd met als doel een 

traditionele aanpak (die de status quo van de huidige praktijken van waterbedrijven vertegenwoordigt) 

te vergelijken met een op modellen gebaseerde aanpak (gebruik van realtime 

modelleringshulpmiddelen) tijdens een noodrespons op een besmettingsgebeurtenis in het DWDN. De 

op modellen gebaseerde aanpak bleek efficiënter te zijn dan de traditionele aanpak bij het identificeren 

van de bron van besmetting (1,3 versus 3,7 uur), waarbij minder monsters nodig waren (4 versus 11) en 

het infectierisico daalde op het moment dat de bron werd geïdentificeerd (12% versus 20%) in deze case 

study. Bovendien was de op modellen gebaseerde aanpak effectiever in het vinden van de beste kleppen 

om te sluiten in het netwerk (als mitigerende maatregelen), omdat het resulteerde in een vermindering 

van het infectierisico met 3%. Sommige acties die in de traditionele aanpak werden ondernomen, zoals 

het snel sluiten van kleppen (het netwerk doormidden snijden en zo verdere verspreiding beperken) 

voordat de bron van de besmetting werd geïdentificeerd, waren echter cruciaal bij het beperken van de 

besmetting. Een andere belangrijke bevinding was het belang van een actueel overzicht van 

klepinstellingen in de DWDN-schematisering om betrouwbare resultaten te bieden bij het identificeren 

van bronnen, omdat eventuele discrepanties tussen het werkelijke netwerk en het model kunnen leiden 

tot onnauwkeurige schattingen van het infectierisico bij het gebruik van modelleringshulpmiddelen ter 

ondersteuning van de besluitvorming. Over het geheel genomen toonde deze casestudy aan dat het 

integreren van modelleringshulpmiddelen in de huidige praktijken van waterbedrijven een robuust 

raamwerk biedt voor het verbeteren van het beheer van waterverontreiniging en 

besluitvormingsprocessen, waardoor de volksgezondheid tijdens noodsituaties wordt beschermd. 
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Een afsluitend standpunt wordt geboden in Hoofdstuk 6, waarin wordt bekeken of de initiële 

onderzoeksvragen uit Hoofdstuk 1 succesvol zijn beantwoord. De implicaties van dit onderzoek voor 

waterbedrijven worden onderzocht, waarbij informatie wordt verstrekt over hoe de voorgestelde 

methodologieën kunnen worden (en zijn) gebruikt in real-world scenario's, wat een snellere 

besluitvorming mogelijk maakt en bijdraagt aan effectieve mitigatie van noodsituaties. Tot slot worden 

de perspectieven en toekomstig onderzoek besproken, waarbij de nadruk ligt op de rol van AI en de 

vooruitgang in modelleringshulpmiddelen. AI heeft een aanzienlijk potentieel getoond bij het verbeteren 

van situationeel bewustzijn en snelle informatie-extractie tijdens noodsituaties. Waterbedrijven moeten 

de integratie van AI in hun standaardwerkprocedures onderzoeken om noodresponsen en routinematig 

beheer verder te verbeteren. Met betrekking tot het gebruik van modelleringshulpmiddelen tijdens 

noodsituaties moet toekomstig onderzoek belangrijke hiaten aanpakken, zoals de complexe dynamiek 

wanneer afvalwater interageert met chloor, de concurrentie tussen chloorreducerende middelen en de 

geldigheid van hydraulische modelleringsaannames zoals perfecte menging. Rekening houden met 

cumulatieve gezondheidsrisico's (meerdere pathogenen) en het verfijnen van dosis-responsmodellen om 

onderscheid te maken tussen infectie- en ziektewaarschijnlijkheden kan inzicht bieden in het effectief 

beheren van risico's voor kwetsbare bevolkingsgroepen. Bovendien kan de opname van statistieken zoals 

Disability-Adjusted Life Years (DALY's) in modelleringsinspanningen betere communicatie van 

gezondheidseffecten en evaluatie van mitigatiestrategieën mogelijk maken. Tot slot worden Digital 

Twins en realtime microbiële sensoren geïdentificeerd als transformatieve technologieën die realtime 

inzicht kunnen bieden in netwerkdynamiek. Deze ontwikkelingen kunnen het beheer van waterbedrijven 

verschuiven van reactieve benaderingen naar proactieve, datagestuurde strategieën, wat de bescherming 

van de volksgezondheid, operationele efficiëntie en veerkracht aanzienlijk verbetert. 
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Abbreviations 
AI= Artificial Intelligence 

BattLeDIM =Battle of the Leakage Detection and Isolation Methods 

BERT= Bidirectional Encoder Representations from Transformers 

BeWaRE= Benchmark for Water network and Risk Evaluation 

CFU= Colony Forming Units 

CRA= Chlorine-reducing agents 

CRF= Conditional Random Fields 

CSI= Contamination Source Identification 

DL= Deep Learning 

DW= Drinking Water 

DWDN= Drinking Water Distribution Network 

EHR= Electronic Health Records 

EU= European Union 

FRA= Fast reducing agents 

GA= Genetic Algorithm 

GPT= Generative Pre-trained Transformer 

IE= Information Extraction 

IK= Information Keywords 

IWS= Intermittent Water Supply 

LLMs= Large Language Models 

MeSH= Medical Subject Headings 

ML= Machine Learning 

NCWS= Non-Community Water Systems 

NER= Named Entity Recognition 

NLP= Natural Language Processing 

NOM= Natural Organic Matter 

PathoCERT= Pathogen Contamination Emergency Response Technologies 

PathoINVEST= Pathogen contamination INVESTigation decision support system 

PFU= Plaque forming units 

POC= Proof of Concept 

PRISMA= Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

PSO= Particle Swarm Optimization 
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PWS= Public Water Systems 

QA= Question-answering 

QMRA= Quantitative Microbial Risk Assessment 

RCT= Randomized Control Trials 

Regex= Regular expressions 

RNN= Recurrent Neural Networks 

RPTB= Response Protocol Toolbox 

RT-PCR= Reverse Transcription Polymerase Chain Reaction 

SRA= Slow reducing agents 

STREaM= Stochastic Residential water End-use Model 

SVM= Support Vector Machine 

TM= Text Mining 

TOC= Total Organic Carbon 

UMLS= Unified Medical Language System 
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1.1 Introduction 

1.1.1 Drinking water networks and contamination events 

The provision of safe drinking water (DW) is essential in every society since it determines people’s 

health and well-being. Drinking Water Distribution Networks (DWDN) are vital for this purpose but are 

susceptible to pathogen contamination and outbreaks due to cascading events after natural disasters, 

infrastructure failures, main repairs, human errors, or malicious attacks (Hrudey and Hrudey, 2004; 

Fewtrell et al., 2011; Cann et al., 2013; Blokker et al., 2018). 

A study by Risebro et al. (2007) indicated that DWDN deficiencies (mainly backflow and cross-

connections) can significantly contribute to waterborne outbreaks, indicating their severe impact. In 19 

of the 61 outbreaks analyzed, these deficiencies were typically solitary but catastrophic due to the 

absence of barriers between the incident and the consumers. They concluded that emphasis should be 

made to enhanced monitoring, maintenance, and effective communication between relevant 

stakeholders to reduce the risk of such incidents. 

When a contamination event occurs in the DWDN, the preservation of health of the public should be 

the top priority in every emergency response mechanism (Erickson et al., 2019). The exposure to 

contaminated water bodies can cause significant health risks by introducing pathogens such as 

enterovirus, Campylobacter, and Cryptosporidium into the water supply. 

Notable incidents highlight the vulnerability of those systems to contamination. For example, the 

Milwaukee cryptosporidiosis outbreak (Mac Kenzie et al., 1995) affected more than 400,000 people. In 

Nokia, Finland a wastewater contamination resulted in 8,453 cases (Laine et al., 2011). The 

cryptosporidiosis infection in the town of Skellefteå, Sweden had 27,000 cases (Bjelkmar et al., 2017). 

Additionally, an outbreak in Antwerp, Belgium by surface water infiltration during firefighting (Braeye 

et al., 2015) resulted in 222 cases, while wastewater infiltration events in Italy (Giammanco et al., 2018) 

and in Denmark (Kuhn et al., 2017) resulted in 25 and 63 cases respectively. Finally, recently (August 

2024) there have been reports of suspected tampering with the water supply at a military base in 

Germany1. For this reason, they are nowadays considered critical infrastructures, recognized by USA's 

Presidential Policy Directive 21 and the European Union's Directive (EU) 2022/2557. 

There are different types of DWDN settings with different types of water sources around the world. For 

example, in the United States, the system is categorized into Public Water Systems (PWS), including 

Community Water Systems (CWS) and Non-Community Water Systems (NCWS) with more than 91% 

of these systems using groundwater as their primary water source (Craun and Calderon, 2001). While 

CWS serves the same population all year long, NCWS serves temporary populations such as schools 

and factories. On the other hand, in Europe, excluding small-scale water supplies typically found in rural 

areas (WHO, 2011), a more centralized and uniform approach is taken, with a balanced water source 

usage. For example, in the Netherlands the water source usage is 60% groundwater versus 40% surface 

water (Geudens and Grootveld, 2017). Regardless of the DWDN setting, or the water source, numerous 

waterborne disease outbreaks associated with DWDN deficiencies have happened over the last 50 years 

both in Europe (Table 1.1) and in US (Table 1.2) with multiple illness cases and hospitalizations. 

 

 

 

 

 
1 Nostlinger and Lau (2024, August 14). German authorities suspect water supply sabotage on military base. 

https://www.politico.eu/article/water-supply-sabotage-military-bases-germany-nato-cologne-geilenkirchen/ 
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Table 1.1 Overview of microbiological contamination events in the DWDNs of Europe. Table modified from Tangena, 2018. 

Location Year Cause Cases Hospitalizations Deaths 

Rotterdam, NL 1981 human error 609 0 0 

Leidsche Rijn, NL 2001 human error 37 0 0 

Haarlemmermeer, NL 2007 technical failure 0 0 0 

Freuchie, SCH 1995 human error 765 5 0 

Greater Belfast,NlE 2001 human error 306 41 0 

Santa Maria de 

Palautordera,ES 

2002 
human error 756 14 0 

Bergen, NO 2004 technical failure 2,500 0 0 

NW Wales,GB 2005 technical failure 231 0 0 

Oslo, NO 2007 technical failure 0 0 0 

Nokia, Fl 2007 human error 8,453 204 0 

Galway,IE 2007 technical failure 304 40 0 

Northamptonshire 2008 technical failure 422 0 0 

Adliswil, CH 2008 human error 180 0 0 

Ostersund, SE 2010 technical failure 27000 51 0 

Koge, DK 2010 technical failure 409 0 0 

Hemiksem/Schelle, BE 2010 human error 603 6 0 

Copenhagen, DK 2011 naturally 0 0 0 

Ronse/Kluisbergen, BE 2013 unknown 0 0 0 

Lancashire, GB 2015 technical failure 2 0 0 

Praag, CZ 2015 technical failure 150 0 0 

 

Table 1.2 Waterborne disease outbreaks in PWSs caused by DWDN deficiencies and water system sources for the period 

1971–1998 in the USA. *Outbreaks per 10000 water systems. ** Milwaukee, Wis., cryptosporidiosis outbreak (403,000 

cases; 440 hospitalizations; 50 deaths) excluded from this analysis. Table modified from Craun and Calderon, 2001. 

 Groundwater Surface water 

System 

type 

Outbreaks Rate* Outbreaks Rate Cases Cases/Outbreak Hospitalizations Deaths 

CWS** 36 9 33 62.6 17220 193.5 488 13 

NCWS 17 1.6 1 5.4 3838 159.9 10 0 

PWS 53 3.4 34 26.2 21058 186.4 498 13 

1.1.2 Water utilities and emergency response 

A meta-analysis of a systematic literature review of 188 scientific publications related to pathogen 

contamination events and outbreaks of drinking water (DW) worldwide revealed that 86% of the time, 

the contamination was detected only after a critical window of opportunity, typically through unusual 

increases in hospitalizations2. Figure 1.1 shows that only 7% of the outbreaks were identified as the 

event was unfolding from water utilities due to customer complaints.  

 
2 The systematic literature review was performed for the purposes of the publication in Chapter 3. 
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Figure 1.1 Results of the meta-analysis of the literature review regarding how pathogen contamination events and outbreaks 

have been detected. 

In the Netherlands, several contaminations per year are detected after routine water quality monitoring 

in DWDNs. Although a boil water advice is following, these events are not recorded as outbreaks. This 

indicates that the actual number of contamination events is much higher than the reported outbreaks. As 

shown in Table 1.1, several contaminations have happened without recorded illness cases. Similarly, 

Craun and Calderon (2011) reported that only 10-30 % of US waterborne disease outbreaks are reported, 

highlighting the variability in outbreak detection and reporting. 

These statistics (Figure 1.1) highlight the imperative need to develop tools for real-time water quality 

monitoring of DWDNs. Moreover, the low 7% detection through complaints (during the event) 

highlights the importance of not missing the rare opportunities to respond rapidly. In these occasions, 

water utilities need to act quickly, make informed decisions, assess the threat, and effectively mitigate 

the event.  

The type of questions typically formed during an emergency response focus on specific, actionable 

information that can directly inform and ideally improve decision-making and immediate actions. These 

questions can be grouped into two main pillars that reflect the critical needs of water utilities during 

such events (Figure 1.2): 

1. First Pillar: Understanding the event based on historical knowledge 

2. Second Pillar: Predicting and managing the specific incident in real-time 

 

Figure 1.2. The different types of questions a water utility has during a pathogen contamination event in their network. 

1.1.2.1 First pillar 

Status quo 

When water utilities experience pathogen contamination events in their network, the available 

information on what they are facing at that time is often limited. They typically rely on established 

operational procedures and existing knowledge, which may not include the up-to-date information and 

global knowledge on pathogens and past -similar- contamination events. Since contamination events are 

(fortunately) rare, experience in contamination event response at utility level is usually limited. 

86%

7%
7% Unusual increase in the

number of hospitalizations

Consumer complaints

Water quality analysis
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Although every situation is unique and a tailored response is necessary, the knowledge that is available 

from past outbreaks and contamination events can be highly beneficial to deduce a knowledge-based 

response. This information needs to come fast to respond adequately and protect public health. The type 

of information needed includes pathogen characteristics (e.g., incubation time, symptoms, fate), 

potential impacts (e.g., expected hospitalizations and deaths from similar past events), and mitigation 

measures (e.g., chlorination, boil water advisories). Traditionally, acquiring any type of information 

involves time-consuming literature reviews that are not only slow but also require specific expertise.  

The lack of access to up-to-date information and the need for prompt responses underscore the necessity 

of developing specialized tools that can be used from the very beginning of a pathogen contamination 

event in the DWDN. Artificial intelligence (AI), providing rapid data processing and information 

extraction capabilities, could provide a robust solution for rapidly accessing information from a 

constantly increasing volume of text and scientific publications on pathogens and contamination events 

in the DWDN. 

1.1.2.2 Second pillar 

Status quo 

When it comes to the tailored, specific response to a pathogen contamination event in a DWDN, the 

affected water utility wants to assess health impacts and respond quickly and effectively. Traditional 

decision-making during these crises has been predominantly guided by past experience, standard 

operating procedures, emergency response protocols, and expert judgment based on (limited) available 

information on the contamination event and knowledge of network characteristics. Experts using 

network modeling tools may be consulted, but with the current state of the network modeling of 

contamination events, their input often comes after a critical window of opportunity (sometimes after 

24 hours have passed since the event detection). They frequently have to rely on outdated network 

characteristics and slower, generic (not dedicated to pathogen contamination events) models, without 

being able to rapidly model the propagation and infection risk of contamination. Since the response 

cannot wait, actions will be taken by the utility response team, but without the proper intelligence and 

models, this can lead to inefficient and ineffective actions that unintendedly increase the health impact 

of a contamination event. 

A realistic representation of contamination type and site, demand-driven hydraulics, understanding of 

contaminant transport, and the effect of a residual disinfectant and valve manipulation as mitigation 

measures are crucial for a comprehensive risk assessment and rapid, efficient response. Moreover, the 

integration of new (real-time) modeling tools in their current (traditional) practices can enhance 

responses and reduce the negative impacts of a contamination event. 

1.1.3 The need for change 

Despite already established protocols and tools for emergency response, pathogen-related contamination 

events in the DWDN continue to affect communities. Communication gaps and the underutilization of 

available technologies play an important role in this.  

Artificial intelligence shows a great potential for addressing these challenges, specifically by enabling 

rapid information extraction at the early stages of an emergency. Additionally, real-time modeling tools 

show good promise in better predicting pathogen fate, transport, health impact, and in supporting event 

management (e.g., source tracking, selection of sampling locations, and mitigation options). 

Combining the benefits of recent developments in AI information/data extraction, and modeling tools 

to support decisions on how to minimize the negative impact of a contamination event could lead to 

fewer casualties and improve response in terms of operation, time, and coordination. It could also lead 

to reduced financial costs, better informing the public (improving trust), and better allocation of 

resources.  

The activities of this research were part of the EU-funded PathoCERT (Pathogen Contamination 

Emergency Response Technologies). This project aimed to enhance the situational awareness of first 
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(and second) responders by developing tools to support decision-making during pathogen contamination 

events.  

1.2 Background 

1.2.1 Artificial Intelligence and information extraction processes 

Throughout the years, there have been many definitions of Artificial Intelligence (AI). In 1955, the 

Dartmouth Research Project first described the concept of AI as an effort of "making a machine behave 

in ways that would be called intelligent if a human were so behaving" (McCarthy et al., 1955). Nearly 

a decade later, scientist Marvin Minsky defined AI as "the science of making machines do things that 

would require intelligence if done by men” (Minsky, 1968). Given that both definitions are clear but 

somewhat generic, a more recent and elaborate definition focuses more on the practical aspect of AI, 

defining it as a "system’s ability to correctly interpret external data, to learn from such data, and to use 

those learnings to achieve specific goals and tasks through flexible adaptation" (Kaplan & Haenlein, 

2019). 

AI has been applied in many fields and disciplines, including finance3, education4, computer science 

(Russell & Norvig, 2002) and biomedical sciences. AI algorithms have been developed for healthcare 

practices such as disease diagnosis and imaging (Dilsizian & Siegel, 2014), drug interactions 

(Christopoulou et al., 2020), radiology (Jha & Topol, 2016), and Electronic Health Records (EHR) 

(Mehta, & Devarakonda, 2018). As the volume of healthcare data grows, it has become increasingly 

difficult for healthcare practitioners and researchers to keep up. This is where AI applications became 

essential, as algorithms can "learn" features and identify patterns from large volumes of documents using 

Text Mining (TM) techniques and three basic subsets of AI, Machine Learning (ML), Deep Learning 

(DL) and Natural Language Processing (NLP).  

1.2.1.1 Text mining 

Text mining is a multidisciplinary scientific field that intersects with ML, statistics, NLP and linguistics. 

It is described as the process of extracting important patterns from textual data to gain knowledge and 

information. TM is often coupled with NLP (sometimes using ML techniques) for processing and 

analyzing textual information (Talib et al., 2016). A variety of fields associated with TM are displayed 

in Figure 1.3.  

Particularly in the healthcare sector, where vast amounts of EHR and biomedical literature are available, 

text mining is extensively applied and is known as biomedical text mining. This specialization focuses 

on the application of text mining techniques to textual data and medical literature within biomedical 

domains, aiming to extract relevant information (Cohen, 2005). However, conventional text mining 

techniques that rely on large, annotated corpora5 are typically unsuitable for biomedical text mining, as 

they do not inherently contain the specialized biomedical terminology needed by practitioners. The 

development of specialized corpora was therefore considered necessary to identify features and patterns 

from biomedical text (Ohno-Machado et al., 2013). For this purpose, the National Library of Medicine's 

Unified Medical Language System (UMLS) is the most common domain that provides controlled 

vocabularies and ontologies such as Medical Subject Headings (MeSH) (Lipscomb, 2000; Bodenreider, 

2004). 

 
3 https://www.investopedia.com/terms/a/algorithmictrading.asp 
4 https://elearningindustry.com/artificial-intelligence-in-the-classroom-role 
5 In linguistics, a structured set of texts (which can nowadays be stored and processed electronically) is named corpus (plural corpora). 

Source: Wikipedia. 

https://www.investopedia.com/terms/a/algorithmictrading.asp
https://elearningindustry.com/artificial-intelligence-in-the-classroom-role
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Figure 1.3. Venn diagram of Text mining and its interconnections with other fields. Source: Talib et al., 2016. 

1.2.1.2 Machine learning 

While AI broadly aims to mimic human behavior, ML is the scientific field that uses algorithms and 

statistical models to perform specific tasks by recognizing patterns, classifying data, and drawing 

conclusions from datasets without explicit human instructions. ML is a dynamic process that builds 

mathematical models using sample data. This can be either training6 or testing7 data and based on these, 

predictions can be made without requiring additional human interventions (Bishop, 2006). These models 

utilize supervised and unsupervised learning techniques. Supervised learning techniques apply functions 

that use training data to map a set of inputs to labeled outputs. In contrast, unsupervised learning 

techniques, as the name suggests, do not use pre-labeled outputs. Instead, these techniques require the 

algorithm to infer the structure of the data on its own, with minimal to no human supervision (Kaplan 

& Haenlein, 2019). 

Many researchers have successfully used ML techniques to extract information related to study 

characteristics, such as disease-drug associations, from EHR, clinical studies, and Randomized Control 

Trials (RCT) (Chen et al., 2008; Uzuner et al., 2010; Kang & Weng, 2019).  For example, Kiritchenko 

et al., 2010, developed ExaCT, an IE system that extracts 21 key trial characteristics from publications 

and helps curators review (using a user interface) and collect information from RCT. Their approach 

combined ML techniques involving both supervised and unsupervised methods, utilizing a Support 

Vector Machine (SVM) model for sentence classification along with rule-based techniques to extract 

exact values from text segments. Similarly, Patrick & Li, 2010, employed a multistage ML-based 

method using two different statistical classifiers -SVM and Conditional Random Fields (CRF) -along 

with rule-based methods, achieving nearly optimal results compared to other participants for automated 

extraction of medication information from clinical notes. 

1.2.1.3 Deep learning 

Deep learning is a subset of ML, under the broader umbrella of AI as Figure 1.4 suggests. It is 

characterized by models known as neural networks that mimic the structure and function of the human 

brain (LeCun et al., 2015). DL automates much of the feature extraction part of the data processing, 

which traditionally requires human intervention, allowing these models to learn high-level abstractions 

from data through multiple layers of processing. This means they can recognize and understand complex 

patterns in the data without being explicitly programmed to look for specific features. Typically, when 

DL is applied in text processing tasks, the model starts with individual characters or words, then learns 

to recognize phrases, and ultimately understands complex sentence structures, context, and semantics 

(Devlin et al., 2018). 

 
6 A set of examples used to fit the parameters of a model. The model is trained on this training dataset using a supervised learning method.  
7 A dataset used to provide an unbiased evaluation of a final model fit on the training dataset. 
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Figure 1.4. Interconnection between NLP and ML. NLP: Natural Language Processing, NLG: Natural Language 

Generation, NLU: Natural Language Understanding, ML: Machine Learning, DL: Deep Learning. Source: 

https://www.retresco.com/how-to-ai-natural-language-processing/ 

A significant architecture within DL for processing sequential data like text is the Transformer model, 

which uses self-attention mechanisms to dynamically weigh the importance of different inputs (Vaswani 

et al., 2017). This architecture is foundational in modern language processing tasks, including question-

answering tasks (Rajpurkar et al., 2016). For example, DL techniques use models that can digest large 

volumes of text (structured or unstructured) and provide answers to questions (prompts) by 

understanding context and relevance. 

Building on this over the last years, Large Language Models (LLMs), such as GPT (Generative Pre-

trained Transformer) and BERT (Bidirectional Encoder Representations from Transformers), represent 

an advanced step of the Transformer architecture (Vaswani et al., 2017; Devlin, 2018). LLMs are trained 

on -very- large datasets to generate coherent text based on the patterns they have learned. These models 

significantly enhance the capabilities of AI systems in tasks such as conversation, information 

extraction, and even generating entirely new content, demonstrating the practical applications of DL in 

natural language processing (Brown et al., 2020). 

LLMs have shown remarkable capability in question-answering tasks, particularly when interacting with 

complex (unstructured) content often found in text documents such as PDFs. These models can read and 

interpret the content and then generate accurate answers to user queries. This functionality has been 

notably beneficial across various domains, including scientific research. For example, LLMs are used 

to extract and summarize findings from lengthy scientific papers, aiding researchers in quickly 

understanding study outcomes without reading the entire document (Lee et al., 2023, Liu et al., 2023). 

One of the main disadvantages of using LLMs for question-answering tasks is the tendency to 

hallucinate and generate fictitious responses (Yao et al., 2023). 

1.2.1.4 Natural Language Processing 

Natural Language Processing is another subset of AI focused on facilitating interactions between 

computers and humans, with the ultimate goal of enabling machines to understand, analyze, manipulate, 

and generate natural language. It combines linguistics and AI to facilitate machines to process natural 

human language. NLP is incorporated in several fields and applications including machine translation, 

user interfaces, speech recognition, ML, TM and broader AI disciplines (Chowdhury, 2003). Figure 1.4 

illustrates the interconnectedness of NLP, ML, and DL, highlighting areas of overlap where ML/DL 

techniques are frequently employed in NLP tasks, particularly in data mining and information extraction. 

1.2.2 State of the art in modeling substances in the drinking water network 

EPANET, a widely used public domain software for hydraulic and water quality modeling, has improved 

the understanding of how (chemical) substances behave both in the water column and on pipe walls of 

DWDNs (Rossman, 2000). Over the last 25 years, it has been established as the de facto standard tool 

https://www.retresco.com/how-to-ai-natural-language-processing/
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for water operators allowing them to simulate various “what-if” scenarios, and for researchers to develop 

and apply algorithms to tackle a plethora of research challenges in the DWDN. 

Recognizing its limitations in modeling only single-species chemical dynamics, Shang et al. (2008b) 

developed an improved version known as EPANET-MSX (Multi Species Extension). This new tool 

allowed for the simulation of the reaction and transport dynamics of multiple interacting species, 

providing insights into the fate and transport of physical, chemical, and biological species. 

Advancing the state of the art, Eliades et al. (2016) introduced the EPANET-MATLAB Toolkit, an 

open-source software that integrates EPANET (and EPANET-MSX) with MATLAB, a high-level 

programming environment. The toolkit allows the user to exploit MATLAB’s extensive computational 

and visualization capabilities while having access and enabling modifications to all the various aspects 

of a DWDN, such as executing direct calls to the EPANET library, running multi-species simulations, 

and creating or modifying networks. 

1.2.2.1 Modeling pathogens and chlorine decay in the DWDN 

Considerable research has been done on trying to model pathogen transport and chlorine dynamics in 

DWDNs, focusing on understanding microbial intrusion and chlorine decay mechanisms under various 

contamination scenarios.  

Earlier work by Propato and Uber (2004) modeled a microbial intrusion incident in a chlorinated 

network. Their approach had simplifying assumptions such as that every node has an equal chance of 

being contaminated, and that intrusions were modeled as continuous. For the inactivation kinetics, the 

Chick-Watson equation was used: 

𝑑𝑁

𝑑𝑡
= −𝑘𝐶𝑛𝑁 

 

1 

Where 𝑁 is the number of organisms, 𝑘 the inactivation rate constant, and 𝐶 the disinfectant 

concentration raised to the power of 𝑛 which represents the reaction order with respect to the 

disinfectant. 

For the chlorine decay, simple first-order kinetics were used using the equation below: 

dC

dt
= −𝑘𝐶 

 

2 

Where 𝑘 is the disinfectant decay rate constant. 

In 2008, Betanzo et al. attempted to model the impact of microbial intrusion on chlorine levels within a 

DWDN by considering water quality parameters such as pH and temperature, using Giardia and 

Escherichia coli 0157:H7 as the pathogens. They employed a simple first-order equation for chlorine 

decay without distinguishing between bulk and wall reactions. The inactivation kinetics followed again 

the Chick-Watson equation.  

Helbling and VanBriesen (2009) tried to model the residual chlorine response to a microbial 

contamination event in a DWDN, using a parallel first-order model and incorporating a slow and fast 

chlorine reaction: 

dCfast

dt
=  −k1Cfast 

 

3 

dCslow

dt
=  −k2Cslow 

 

4 

Where: 𝐶𝑓𝑎𝑠𝑡 is the fraction of chlorine that reacts rapidly with the contaminant (𝑚𝑔𝐶𝑙 − 𝑒𝑞𝑢𝑖𝑣 ∗ 𝐿−1), 

𝐶𝑠𝑙𝑜𝑤 is the fraction of chlorine that reacts slowly with the contaminant (𝑚𝑔𝐶𝑙 − 𝑒𝑞𝑢𝑖𝑣 ∗ 𝐿−1), 𝑘1and 

𝑘2 (1/𝑡𝑖𝑚𝑒) are the reaction rates for the fraction of chlorine reacting rapidly and slowly respectively. 
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The microbial contaminants they used were Escherichia coli, Staphylococcus epidermidis, and 

Mycobacterium aurum. They concluded that the unique system architecture, the species-specific 

reaction kinetics, the demand patterns, as well as the initial chlorine concentration are factors that affect 

the chlorine demand signal propagation.  

Further exploring the complexity of chlorine decay, Blokker et al. (2014a) studied the influence of 

stochastic water demands and temperature on residual chlorine modeling. They used a combined model 

from Vasconcelos et al. (2007) and Clark et al. (2011) with the assistance of EPANET-MSX which 

describes the chlorine decay as: 

dC

dt
= −k20 ∗ exp (

−
E
R

∗ (20 − Twater)

(273 + 20) ∗ (273 + Twater)
) ∗ C − kr ∗ C − d ∗ kmt

e ∗ C 5 

Where C is the concentration of free chlorine (𝑚𝑔𝐶𝑙/𝐿), 𝐾20 is the base value at a reference temperature 

of 20 °C, 𝐸/𝑅 is the activation coefficient (K), 𝑇𝑤𝑎𝑡𝑒𝑟 is the temperature of the drinking water in the 

DWDN (°C), 𝐾𝑟 is the stagnant decay rate (1/𝑠), 𝑑, 𝑒 are parameters in the net wall decay function, and 

𝑘𝑚𝑡 is the coefficient of mass transfer to the pipe wall (𝑚/𝑠). 

Their hypothesis was that a detailed hydraulic network model using stochastic water demands will 

exhibit different levels of chlorine residual than a conservative transport model that uses standard 

demand patterns. They concluded that the selection of the right chlorine decay model is more important 

than the stochastic demand model in calculating the chlorine residual levels. Another remark was that 

at certain locations of the DWDN, the inclusion of wall chlorine decay had a significant impact on the 

predicted chlorine residual. Finally, temperature can have a significant impact and should not be 

overlooked. 

Pelekanos et al. (2021) used a parallel first-order model for both bulk and wall chlorine decay to evaluate 

the vulnerability of a water network to deliberate contamination attacks, focusing on nominal water 

demands. They demonstrated how the contamination location impacts the size of the exposed 

population. 

Finally, Fisher et al. (2017) employed a two-reactant chlorine decay model that distinguished between 

fast and slow reacting agents, incorporating temperature because of its significant impact on bulk 

chlorine decay. The selected equations are given below: 

dCf

dt
 =  − kfCfC 

 

6 

dCs

dt
 =  − ksCsC 

 

7 

dC

dt
 =  

dCf

dt
+

dCs

dt
 

 

8 

Where 𝐶 is the concentration of free chlorine (𝑚𝑔𝐶 ∗ 𝐿−1), 𝐶𝑓 and 𝐶𝑠 are the concentrations of fast and 

slow reducing agents (𝑚𝑔𝐶 − 𝑒𝑞𝑢𝑖𝑣 ∗ 𝐿−1), 𝑘𝑓 and 𝑘𝑠 are fast and slow reaction rate coefficients 

(𝐿𝑚𝑔𝐶−1ℎ−1). 

1.2.2.2 Applications of risk assessment in DWDN modeling 

Earlier work by Lieverloo et al. (2007) investigated the risk associated with fecal contamination in the 

DWDN. They calculated pathogen concentrations by using data from outbreak and non-outbreak 

contamination events, employing pathogen-to-coliform ratios. Those ratios were used to estimate fecal 

indicator concentrations and calculate the risk of infection. This approach highlighted the absence of 

hydraulic modeling to calculate and simulate more accurately pathogen concentrations in the DWDN, 

before assessing the risk of infection due to contamination.  
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Regarding the infection risk, besides calculating the number of contaminated nodes, or the total 

contaminant mass entering a node, a more detailed risk assessment that considers various factors (e.g. 

pathogen type, duration, and dose) exists, allowing for prediction of health risk with higher resolution 

(e.g. predict number of infections). This form of risk assessment is called Quantitative Microbial Risk 

Assessment (QMRA), and it has received attention over the last 2 decades. It has also been embedded 

in the WHO water-related guidelines (WHO, 2017). QMRA is a mathematical framework for evaluating 

infectious risks by combining scientific knowledge about pathogens (fate, transport, route of exposure, 

and health effects of human pathogens) with the effect of physical/mechanical barriers and mitigation 

actions (WHO, 2016). There are 4 steps associated with QMRA, summarized in Table 1.3. 

The most common dose-response models (Step 3 from Table 1.3) used in QMRA are the Beta-Poisson 

model, its approximation, and the exponential model where each one has different characteristics, and 

it is suitable for specific cases. The Beta-Poisson model includes the hypergeometric function, and it is 

often used when there is variability in host susceptibility (Teunis et al., 2002). This model accounts for 

differences in immune response of each individual, which leads to more precise but also more 

computationally complex results. The approximation of Beta-Poisson is a simplified version of the 

hypergeometric model, retaining the core elements, while discarding the heavy computations. This 

model is usually chosen when the complexity of the hypergeometric function is not necessary, and it is 

suitable for low doses (Haas, 1983). Finally, the exponential model is the simplest since it assumes that 

there is uniform susceptibility among individuals (Haas, 1999). It is used when limited data is available, 

or when the host response to the pathogen is considered uniform.  

The choice of the dose-response model depends on the pathogen type, the availability of data, and the 

level of precision required. 

Table 1.3. Steps of QMRA. Adapted from WHO. Guidelines for Drinking-water Quality," 4th Edition, 2017. 

Steps Description 

1. Hazard 

identification 

Identify hazards associated with drinking water. 

2. Exposure 

assessment 

Determine the route, magnitude, and duration of exposure as well as the size and nature 

of population exposed.  

3. Dose-response Characterize the relationship between exposure and incidence of health effect with dose-

response models. 

4. Risk 

characterization 

Integrate information from exposure and dose-response to estimate the risk.  

Although most studies focus on applying QMRA to treated wastewater or contaminated bodies such as 

surface water (Owens et al., 2020), some research also examines the risk of microbial contaminants 

entering the DWDN. Microbial contaminants can enter the DWDN for multiple reasons including 

intermittent water supply (IWS), or intentional contamination. IWS happens when the delivery of water 

is not continuous, leading to periods of low (even no or negative) pressure in the pipes of a network, due 

to DWDN deficiencies, pipe breakages, or inadequate access to water (Bivins et al., 2017). 

IWS can lead to pressure transients (low or negative-pressure periods allowing contamination ingress). 

The work from Besner et al. (2010), highlighted the implications of negative pressure events in a full-

scale DWDN. The authors combined field pressure monitoring, hydraulic and transient analysis, and 

microbial characterization of external contamination sources. They used a leakage rate approach and 

orifice equations to estimate the contamination intrusion volumes, considering also factors such as 

external head pressure and orifice diameter. 

The same group (Besner et al., 2011) reviewed microbial intrusions in DWDNs, aiming to understand 

the current methodologies for evaluating health risks. They discussed the use of transient analysis and 

hydraulic modeling (using EPANET) to simulate the transport of pathogens from entry points to 

consumer taps. The authors presented a conceptual QMRA model that includes causes of low and 

negative pressure events, pathways for contaminant entry, and the occurrence and transport of 

pathogens. 
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Although transient analysis in DWDNs can be considered as a specialized aspect of hydraulic modeling, 

modeling pressure transients can be combined also with conventional hydraulic modeling. For instance, 

Teunis et al. (2010) used both conventional hydraulic modeling with EPANET-MSX and transient 

analysis with a surge model (InfoSurge) to assess the risk from a virus intrusion in a DWDN caused by 

negative pressure transients using a hydraulic model and Monte Carlo simulations for random entry and 

dilution of the virus. They included inactivation kinetics and chlorine decay in their model, taking into 

account specific values for pH and temperature, while using a beta probability distribution for the dose-

response. They also considered the coincidence of virus presence with the use of tap water. Their 

findings suggested that the likelihood of a consumer drinking contaminated water is low and that the 

spatial distribution of infection risk is largely uniform. As expected, the presence of chlorine residual in 

the DWDN reduced the infection risk. 

Another effort described by Yang et al. (2011) involved surge modeling and hydraulic simulations to 

model a virus intrusion in a DWDN again due to pressure transients. The authors employed EPANET-

MSX to integrate a Chick-Watson model that accounted for the inactivation kinetics of selected 

pathogens and chlorine decay, while their dose-response model was characterized by a beta-probability 

distribution of infectivity for a single norovirus particle. They concluded that the factors influencing the 

risk of viral infection were the duration of the negative pressure event and the number of affected nodes, 

without incorporating stochastic water demand or other water quality parameters. 

Blokker et al. (2014b, 2018) developed a QMRA model to assess the risk from contamination events 

following main repairs in the DWDN, including the coincidence of opening the tap as the contaminant 

passes. They modeled the presence of pathogens like Giardia, Campylobacter, Cryptosporidium, and 

enterovirus, using the hypergeometric function distribution for the calculation of the dose-response, 

while applying stochastic water demands in the network. Their findings highlighted that the 

contamination concentration is the primary factor determining the ingested dose, while the chosen 

pathogen dose-response relationship significantly influences the infection risk. They did not account for 

chlorine decay modeling since usually no chlorine residual is applied in the Netherlands. 

Schijven et al. (2016), evaluated exposure scenarios of intentional microbiological contamination in an 

unchlorinated DWDN using EPANET-MSX. Specifically, they investigated the effects of duration, 

concentration, exposure pathway, and pathogen infectivity on exposure and infection risk using the 

exponential dose-response model. They concluded that if the pathogen concentration is 106pathogens/L 

or more, the infection risk per event is close to 1, while a longer duration of an event leads to increased 

probability of exposure.  

Vinas et al. (2022) developed a framework for estimating the risk of infection from cross-connection 

and backflow events in DWDNs. Their reference pathogens were Campylobacter, norovirus, and 

Cryptosporidium, using the Beta-Poisson dose-response model, including the hypergeometric function. 

For modeling the pathogen transport they used EPANET, while nominal water demands were applied. 

They applied QMRA integrating a Fault Tree Analysis approach for the estimation of contamination 

probabilities and infection risks in DWDNs. They found that the daily infection risk in Swedish DWDNs 

often exceeded acceptable levels, highlighting the importance of using local data for accurate 

assessments, while showcasing the usefulness of combining QMRA with the Fault Tree Analysis 

approach. 

The same group, this time led by Odhiambo et al. (2023), estimated infection risks from pipe breaks and 

IWS in DWDNs. Once again, the Beta-Poisson distribution (hypergeometric function) for the 

calculation of dose-response was used, as well as nominal water demands, combining hydraulic 

modeling (EPANET) with QMRA to evaluate the intrusion of the same pathogens in a Swedish DWDN. 

They used multiple contamination scenarios using pathogen concentrations from field studies to assess 

intrusion volumes and pathogen entry in the DWDN. Their conclusion was that the pathogen 

concentration and the duration of contamination are the most influential factors of infection risk. 

Shakibi (2022) applied QMRA to microbial intrusions during low-pressure events in DWDNs. Once 

again, the pathogens Campylobacter, norovirus, and Cryptosporidium were used, applying hydraulic 

modeling to simulate multiple scenarios (e.g. pump shutdowns, and pipe repairs) using nominal water 
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demands in the network. For the QMRA, the approximation Beta-Poisson dose-response model was 

used to estimate the infection probabilities. The author concluded that the contamination duration and 

the location of the low-pressure events highly influence the volume of intrusion, while pump shutdowns 

pose a greater risk than pipe repairs. 

Hatam et al. (2019) combined QMRA with pressure-driven hydraulic analysis (EPANET) to assess the 

health impact of accidental intrusion (low-pressure conditions) in a full-scale DWDN. The authors 

modeled various concentrations of Cryptosporidium from raw sewage under multiple intrusion scenarios 

of different durations using the hypergeometric function distribution for the calculation of the dose-

response. They performed Monte Carlo simulations to account for customer water consumption 

behavior (coincidence of passage of contaminants at the tap). Their results suggested that the infection 

risk increases as soon as the duration and concentration increase, highlighting the need for rapid 

responses. 

1.2.2.3 Overview of studies focusing on modeling inactivation kinetics, chlorine, and QMRA 

Literature suggests that many researchers have used EPANET-MSX to model pathogen inactivation 

kinetics and chlorine decay in a DWDN, while hydraulic modeling has also been combined with QMRA 

to estimate infection risks under different conditions. Table 1.4 provides an overview of studies that 

have focused on modeling pathogens, chlorine decay, and applying QMRA in DWDNs, all using 

different combinations of relevant aspects. 
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Table 1.4. An overview of studies that focused on modeling pathogens, chlorine decay, and QMRA in the DWDN. 

P=Pathogen modeling, C= Chlorine decay modeling, Q= QMRA modeling. 
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1.2.3 Finding the contamination source 

Over the last 20 years, there has been an increased effort on using data from ad hoc and/or routine 

sampling or sensor signals at nodes within a DWDN, to identify both the source and the time of a 

contamination (Adedoja et al., 2018). Often, scientists and experts try to model a -conservative- 

chemical rather than a microbial contaminant (Shang et al., 2002; Propato et al., 2010; Yang et al., 2014). 

The contamination source identification problem (CSI) is mainly considered a deterministic inverse 

problem where hydraulic calculations are used to track the path of water parcels to find the 

contamination source (Jerez et al., 2021). It is considered a challenging problem due to the 

computational burden associated with hydraulic calculations, and the non-uniqueness of the solutions in 

identifying the source. The 4 main reasons for non-unique solutions are: 

1. The multiple paths water can take to reach a set of nodes (sampling) or sensors. 

2. The absence of specific water quality sensors, which results in a lack of essential information 

about the reaction dynamics and the magnitude of the contamination. 

3. The possibility of multiple sources (nodes) of contamination within the network. 

4. The start and duration of contamination. 

Therefore, any approach on CSI should be able to identify a potential area (multiple upstream 

contamination nodes), taking into account the associated inherent uncertainties on hydraulics, valve 

settings uncertainty, reaction dynamics (in case of chlorination), as well as false alarms triggered by 

nonspecific water quality sensors (Yang and Boccelli, 2014; Jerez et al., 2021). 

1.2.3.1 Particle Backtracking 

The first attempts on CSI were focused on the particle backtracking approach. Shang et al (2002) used 

a particle backtracking algorithm based on a Lagrangian8 model where the contaminants were 

considered as particles that run in reverse time from the detection node to the source of contamination.  

De Sanctis et al (2010), used a modified particle backtracking algorithm to identify the source of 

contamination by using binary sensor information. Although their results were promising, the model 

assumed perfect sensor accuracy and disregarded hydraulic uncertainties, which are critical in real-world 

applications.  

Another simplified version of the particle backtracking approach, described by Eliades and Polycarpou 

(2012), computed pairs of nodes and times indicating where and when the contamination may have 

occurred. Their methodology was based on decision trees, expressing conditional statements such as if-

then-else rules, to return a sequence of nodes for manual sampling.  

1.2.3.2 Simulation-Optimization techniques 

Simulation-optimization techniques9 have also been broadly used to deal with the CSI problem. Laird 

et al (2005) developed an origin tracking algorithm that applied nonlinear, infinite-dimensional 

optimization, subject to differential constraints. Their method, tested on a small network of 469 nodes, 

highlighted the scalability challenges inherent in handling up to 210,000 variables, suggesting that such 

complexity could hinder real-time application in larger networks due to the computational burden.  

Preis and Ostfeld (2008), combined the hydraulic and water quality software EPANET with a genetic 

algorithm (GA) to solve the CSI problem. Their objective function was to minimize the difference 

between measured and calculated concentration, and although they showed promising results, it required 

excessive computation using parallel computing. Yan et al (2017) attempted to mitigate the 

computational burden by using a cultural algorithm but yet again, there were uncertainties with respect 

to water demand and computational resources.  

 
8 The process of tracking particles through the integration of motion equations in given flow fields, providing insights into particle dispersion 

and turbulent flow dynamics (Ouellette and Bodenschatz, 2006).  
9 “The process of finding the best input variable values from among all possibilities without explicitly evaluating each possibility. The 
objective of simulation optimization is to minimize the resources spent while maximizing the information obtained in a simulation 

experiment” (Carson and Maria, 1997). 
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Despite significant advancements, a consensus on the optimal CSI methodology remains unclear 

(Adedoja et al., 2018). The field continues to face challenges related to computational demands, 

especially for real-time applications in extensive network settings. As noted by Rasekh and Brumbelow 

(2021), while simulation-optimization techniques offer a more sophisticated approach, they still face 

substantial obstacles due to the intensive computational time required for hydraulic calculations. 

1.2.4 Network operational intervention 

Water utilities are responsible for providing safe drinking water even when the integrity of their system 

is compromised. For this reason, a lot of research has been made regarding network operational 

interventions to better monitor and control, and restore DWDNs, and ensure that clean and safe water 

reaches consumers' taps. 

1.2.4.1 Valve manipulation 

Regarding network operational interventions in the DWDN, the most common is that of valve 

manipulation (opening or closing of valves) and it is used for various purposes. For example, Poulin et 

al (2008) proposed a heuristic approach to define isolation strategies, and thus identifying the valves to 

be closed by response teams in the field to tackle a drinking water contamination in the network. 

Although they presented promising results in two real-world DWDNs, their approach was based on a 

set of simplifying assumptions and needed to be further validated with other networks. 

Another example of valve manipulation is presented in Abraham et al (2018) in an attempt to maximize 

the self-cleaning capacity of a DWDN by controlling the diurnal peak flow velocities in the pipes. The 

authors proposed an algorithm that enabled favorable changes in the flow velocities and thus maximized 

the self-cleaning capacity by identifying a set of isolating links to form a more branched network. 

Mahmoud et al (2018) presented a methodology for the isolation of failure events (pipe burst or 

equipment failure) followed by operational interventions. It included a multiobjective optimization with 

the aim to minimize the negative impact on the customers and the corresponding number of interventions 

(a surrogate for operational costs). The results obtained (after applying the methodology in a real-world 

DWDN), demonstrated the effectiveness of the approach by highlighting Pareto optimal intervention 

strategies. 

Vrachimis et al (2020) proposed an active contamination detection scheme by manipulating valves to 

drive flows from specific parts to designated nodes within a DWDN, thus enabling sensors to monitor 

water quality during contamination. The objective function in this study was to minimize the impact to 

the population by detecting the contaminant as fast as possible. 

Finally, Moghaddam et al (2022) used a Particle Swarm Optimization (PSO) algorithm for the strategic 

closure of pipes within a DWDN to mitigate a (chemical) contamination event. Their approach included 

both pipe closures and hydrant activations and a combination of those two, while their objective function 

was to minimize the number of contaminated nodes. 
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1.3 Identified knowledge gaps 
The literature review has shown that despite considerable research conducted by scholars on AI-based 

information extraction, modeling pathogen propagation and chlorine decay in a network, identifying the 

contamination source, manipulating valves, and assessing the risk of infection under the framework of 

QMRA, significant gaps remain that present opportunities for further research. 

1.3.1 1st knowledge gap 

1.3.1.1 AI-based information extraction 

Although AI-based information extraction is becoming an established method in the biomedical 

sciences, the creation of similar applications to extract information about pathogen characteristics from 

the scientific literature is still largely unexplored. To streamline the process of acquiring fast information 

at the early stages of a pathogen contamination event, an automated approach could be highly beneficial. 

AI could rapidly extract and collate necessary information from the growing volume of scientific 

publications, but accuracy of the extracted information is key to support effective decision-making. 

1.3.1.2 Evaluating LLMs 

Besides relying on the traditional and efficient methods of ML and DL techniques to extract information 

on pathogen characteristics, a paradigm shift has emerged with the use of LLMs. Although many newly 

developed LLMs have shown remarkable capabilities, they often face difficulties when used for 

question-answering tasks in scientific publications due to their limitations in understanding context and 

adaptability. These models can struggle to grasp the detailed and specialized context of scientific texts 

(in our case related to environmental microbiology literature), leading to responses that may seem 

correct but are actually irrelevant or incorrect (hallucination) (Yao et al., 2023). Additionally, LLMs 

might not effectively adapt to new scientific knowledge that emerges after their training data was 

compiled, which could result in outdated or incomplete answers. Moreover, their application in 

answering questions related to historical information on contamination events has not been explored. 

Evaluating the performance of these models is crucial to ensure they can accurately handle complex 

scientific information and remain reliable and useful for scientific applications, especially considering 

they are increasingly viewed as the most effective approach for current and future information 

extraction/question-answering tasks. 

1.3.2 2nd knowledge gap 

Regarding modeling efforts in the DWDN, the literature review shows that there are still limitations in 

the way existing studies address pathogen contamination events. While different combinations of 

relevant aspects, such as pathogen propagation, bulk chlorine decay, and infection risk assessment, have 

been explored (as Table 1.4 suggest), critical elements like hydraulic uncertainty, stochastic water 

demands, and wall chlorine decay are often overlooked or inadequately addressed. The infection risk is 

typically calculated using relatively small pathogen concentrations (pressure transients). Furthermore, 

these aspects are rarely integrated comprehensively in a single study. Practical challenges, such as 

computational burdens and limited real-world applicability of existing approaches, further complicate 

the situation. The following sections focus on specific areas that require further attention. 

1.3.2.1 Pathogen and chlorine modeling 

Although many researchers have modeled the interaction of chlorine with pathogens in chlorinated 

DWDNs, not all the important modeling parameters have been considered together. With respect to 

hydraulics, most studies have been performed under nominal water demands in the DWDN. 

Additionally, the inactivation kinetics and chlorine decay have been described only under specific water 

quality parameters. Some of the studies were based on assumptions such as continuous pathogen 

intrusion, no wall chlorine decay, and no total organic carbon (TOC) degradation, using simplifications 

like first-order chlorine decay equations. Therefore, there is a need for an in-depth and comprehensive 

representation of the different reactions that take place in a DWDN, including chlorine decay and TOC 

degradation, as well as the associated hydraulics and pathogen transport. This should include integrating 

all current relevant knowledge on the transport and fate of pathogens, bulk and wall chlorine decay, fast 
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and slow reactions of chlorine with TOC, TOC degradation, temperature variations and their influence 

on inactivation rate, and various pathogen inactivation kinetics using stochastic water demands instead 

of nominal. 

1.3.2.2 QMRA and hydraulic modeling 

The literature suggests that few studies have applied QMRA while considering all of the inherent 

complexity of hydraulic modeling, pathogen and chlorine dynamics. The infection risk of wastewater 

contamination (high pathogen and TOC concentrations) has not been covered sufficiently in the 

literature since most studies focus on the risks associated with pressure transients in the DWDN. The 

majority of them have used first-order chlorine decay focusing mainly on the bulk phase of pipes without 

considering the additional chlorine demand of wall phase and organic compounds, while for the 

calculation of dose-response, the approximation Beta-Poisson model has been mainly used. It is 

expected that using the hypergeometric function, along with incorporating stochastic water demands 

and isolating the tap water use while using a daily consumption distribution per person to calculate 

exposure to a wastewater contamination event, will provide a higher resolution. Additionally, a realistic 

representation of inactivation kinetics and chlorine decay (both bulk and wall, both fast and slow), and 

the consideration of TOC degradation will influence the fate and transport of pathogen concentration. 

This, in turn, could affect the exposure assessment and dose-response steps of QMRA. 

1.3.2.3 Source identification during contamination 

Although various approaches address the CSI problem, the inherent computational burden of hydraulic 

calculations remains a critical drawback, especially considering the need for immediate response during 

emergency events. Even in studies where computational time is minimized and authors have delivered 

promising results, these approaches are based on many assumptions, including the exclusion of 

hydraulic uncertainties (e.g., valve settings uncertainty), simplifications of water demand, and small-

scale networks. The applicability of these methods in real-time emergency situations is still 

questionable, as water utilities cannot rely on them for decision-making, particularly since they usually 

do not use real-time contaminant detection sensors for source identification. This is why water utilities 

still depend on their experience and intuition to determine potential contamination locations and use 

simple generic models to estimate the contamination area. Therefore, there is a need to address the 

inherent hydraulic uncertainties in the CSI and apply a modeling approach that doesn’t require heavy 

computations, is not heavily dependent on valve settings uncertainty and uses efficient sampling to 

iteratively narrow down the potential contamination area(s). 

1.3.2.4 Valve manipulation 

There are many approaches to improving water quality and protecting customers by manipulating valves 

to isolate or direct contamination through the DWDN. Most studies in the literature use simplifying 

assumptions in small-scale networks and focus on evolutionary algorithms for their optimization 

problems. Their primary goal is to minimize the number of interventions- as a surrogate for operational 

costs-, the mass injection rate of chlorine, or to minimize the impact by redirecting the contamination to 

sensors for faster detection (and thus faster mitigation measures). However, the objective of minimizing 

infection risk, as calculated from QMRA, has not been sufficiently covered. 

When managing a drinking water contamination event, water utilities usually do not rely on the 

approaches mentioned above. Instead, they proceed based on their intuition and knowledge of network 

characteristics to close valves. This approach can be prone to errors, which can have significant 

implications for health risks. If the wrong pipes are closed, the contamination plume could be directed 

into areas where contamination would not have occurred otherwise. Therefore, there is a need for a 

comparison between current (traditional) and model-based approaches regarding managing a real-time 

pathogen contamination event in the DWDN. 
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1.4 Research Objectives and Questions 
This thesis has two main objectives, and it will generate knowledge and methodologies to bridge the 

two identified knowledge gaps. 

1.4.1 First objective 

At the early stages of a contamination event, water utilities could enhance their emergency response by 

adopting AI-based information extraction techniques instead of manual literature reviews to get access 

to information. The first objective of this thesis is to develop a method that accurately extracts specific 

information on pathogen characteristics from scientific publications using AI and to evaluate various 

LLMs for their effectiveness in extracting information from scientific publications about pathogen 

contamination events of DW through a question-answering task. By integrating knowledge of pathogen 

characteristics and insights from similar past contamination events, including potential impacts and 

mitigation measures, water utilities can quickly assess exposure risks and gain a better understanding at 

the early stages of contamination. Therefore, the research question of the first objective to bridge the 1st 

knowledge gap can be described as: 

“Is it feasible to use an automated approach to extract accurate information on waterborne 

pathogens and pathogen contamination events from the literature?”  

Additionally, the following sub questions are formulated to explore the potential of applying AI-based 

information extraction to pathogen characteristics from the environmental microbiology literature, and 

to evaluate the performance of LLMs in answering questions about pathogen contamination events of 

DW. 

Sub-question 1 

“Can we use an AI-based model to extract accurate waterborne pathogens-associated information 

from the scientific literature?” 

Chapter 2 answers this question by developing a model that extracts both quantitative and qualitative 

information from scientific publications about the waterborne pathogen Legionella using Deep Learning 

and Natural Language Processing techniques. Seven information keywords about Legionella were 

selected as general, explicit, and reproducible (waterborne) pathogen characteristics of both a qualitative 

and a quantitative nature. Fifty peer-reviewed scientific publications about Legionella were manually 

selected from the search engine PubMed and used for the implementation of the model. Besides using 

the evaluation metrics of precision, recall and F-score, a human evaluation was performed to evaluate 

the performance of the model. 

Sub-question 2 

“How effectively do LLMs answer questions related to health risks and mitigation measures about 

drinking water contamination events, found in the scientific literature?” 

Chapter 3 answers this question by systematically assessing the performance of multiple open-source 

LLMs specifically on a question-answering task related to drinking water pathogen contamination 

events. A corpus of 188 scientific articles was compiled and relevant information was extracted for 

manual annotation. Using 23 questions related to pathogen contamination events of DW, the LLM with 

the highest performance (using specific evaluation metrics) was selected. A manual evaluation of the 

top-performing model’s answer was conducted. 

1.4.2 Second Objective 

During a pathogen (wastewater) contamination event in the DWDN, the primary goal of a water utility 

is to execute a minimal yet effective set of actions rapidly to mitigate the incident and restore normal 

operations in real-time. The second objective of this thesis focuses on the response actions of a water 

utility during an emergency. Specifically, it aims to develop modeling tools that realistically simulate 

pathogen (wastewater) contamination events in a DWDN, assess the health impact (QMRA), and 

compare current (traditional) and model-based approaches to find the source of contamination (using 
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sampling results for guidance) and proceed to mitigation measures (valve manipulation). To achieve 

this, an open access water quality benchmark model is created. The benchmark model integrates current 

relevant knowledge regarding the transport and fate of pathogens in chlorinated systems, chlorine decay 

(bulk and wall) and its reaction with TOC, inherent hydraulic and valve configuration uncertainties, 

stochastic water demands as well as health impact calculations through QMRA. Therefore, there are two 

research questions to bridge the 2nd knowledge gap: 

Research question 1 

“What is the health impact of a wastewater contamination in the DWDN considering factors such 

as chlorine disinfection, hydraulic uncertainty, initial pathogen concentration, pathogen 

inactivation rate, contamination duration, and contamination location? 

Sub-question 1.1 

“How does chlorine disinfection influence pathogen concentration and infection risk?” 

Sub-question 1.2 

“What are the differences in infection risk between a chlorinated and a non-chlorinated network?” 

Sub-question 1.3 

“What is the impact of hydraulic uncertainty on infection risk?” 

Sub-question 1.4 

“What is the impact of initial pathogen concentration, inactivation rate, and contamination duration on 

infection risk?”  

Sub-question 1.5 

“Does the contamination location in a DWDN play a role in the infection risk?”  

Chapter 4 addresses all those questions by presenting BeWaRE (Benchmark for Water network and Risk 

Evaluation), an open-access benchmark testbed that enables water utilities to prepare and respond 

effectively to such contaminations. The testbed integrated all current relevant knowledge on pathogen 

transport, bulk and wall chlorine decay, fast and slow chlorine reactions with TOC, TOC degradation, 

stochastic water demands, and hydraulic uncertainty. The health impact was calculated using QMRA 

focusing on three waterborne pathogens: Enterovirus, Campylobacter, and Cryptosporidium. Synthetic 

household-level water demand time series were used to model the individual water consumption timing 

and calculate the infection risk (exposure via ingestion). The role of contamination location in infection 

risk was addressed. A nominal range sensitivity analysis was performed for the initial pathogen 

concentration, inactivation rate, and contamination duration. 

Research question 2 

“What is the added value of using modeling tools to support decision making during wastewater 

contamination events in the DWDN?” 

Sub-question 2.1 

“Can real-time pathogen sampling information be effectively utilized to identify the source of 

contamination in the DWDN?” 

Sub-question 2.2 

“What are the comparative advantages of applying model-based tools over traditional methods for 

handling wastewater contamination events in the DWDN?” 

Sub-question 2.3 

“How do evolutionary algorithms compare to expert judgment in determining the most suitable valve 

closure sequence for contamination mitigation?” 
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Sub-question 2.4 

“To what extent does maintaining an up-to-date representation of the DWDN's valve configuration, 

impact the efficacy of finding the contamination source using modeling tools?” 

Chapter 5 answers these questions by presenting a case study in the Netherlands as part of the EU-

funded PathoCERT project. The objective was to systematically compare the efficacy of traditional and 

model-based decision-making in responding to wastewater contamination events in the DWDN when 

the source is unknown. The current approach on finding the contamination source was compared with 

the analytical tool named PathoINVEST (Pathogen contamination INVESTigation decision support 

system), a tool that integrates a QGIS plugin with the software EPANET-MATLAB Toolkit and the 

BeWaRE benchmark testbed. The comparison metrics regarding the source identification included the 

duration to find the source, the number of samples required, and the infection risk of the urban population 

at the time the source was identified. Regarding mitigation measures, the current (traditional) approach 

on closing valves based on expert judgement, was compared with one of the PathoINVEST features that 

uses evolutionary algorithms to find the optimal combination of closure valves. The problem of valve 

configuration uncertainty was also addressed.  



Chapter 1- Introduction 

 
42 

References 
Abraham, E., Blokker, M., & Stoianov, I. (2018). Decreasing the discoloration risk of drinking water 

distribution systems through optimized topological changes and optimal flow velocity control. Journal 

of Water Resources Planning and Management, 144(2), 04017093. 

Besner, M. C., Ebacher, G., Jung, B. S., Karney, B., Lavoie, J., Payment, P., & Prévost, M. (2010). 

Negative pressures in full-scale distribution system: Field investigation, modeling, estimation of 

intrusion volumes and risk for public health. Drinking Water Engineering and Science, 3(2), 101-106. 

Besner, M. C., Prévost, M., & Regli, S. (2011). Assessing the public health risk of microbial intrusion 

events in distribution systems: Conceptual model, available data, and challenges. Water research, 45(3), 

961-979. 

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 

738). New York: springer. 

Bivins, A. W., Sumner, T., Kumpel, E., Howard, G., Cumming, O., Ross, I., ... & Brown, J. (2017). 

Estimating infection risks and the global burden of diarrheal disease attributable to intermittent water 

supply using QMRA. Environmental science & technology, 51(13), 7542-7551. 

Bjelkmar, P., Hansen, A., Schönning, C., Bergström, J., Löfdahl, M., Lebbad, M., ... & Lindh, J. (2017). 

Early outbreak detection by linking health advice line calls to water distribution areas retrospectively 

demonstrated in a large waterborne outbreak of cryptosporidiosis in Sweden. BMC Public Health, 17, 

1-10. 

Blokker, M., Smeets, P., & Medema, G. (2014b). QMRA in the drinking water distribution 

system. Procedia Engineering, 89, 151-159. 

Blokker, M., Smeets, P., & Medema, G. (2018). Quantitative microbial risk assessment of repairs of the 

drinking water distribution system. Microbial Risk Analysis, 8, 22-31. 

Blokker, M., Vreeburg, J., & Speight, V. (2014a). Residual chlorine in the extremities of the drinking 

water distribution system: the influence of stochastic water demands. Procedia Engineering, 70, 172-

180.  

Bodenreider, O. (2004). The unified medical language system (UMLS): integrating biomedical 

terminology. Nucleic acids research, 32(suppl_1), D267-D270. 

Braeye, T., De Schrijver, K., Wollants, E., Van Ranst, M., & Verhaegen, J. (2015). A large community 

outbreak of gastroenteritis associated with consumption of drinking water contaminated by river water, 

Belgium, 2010. Epidemiology & Infection, 143(4), 711-719. 

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). 

Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-

1901. 

Cann, K. F., Thomas, D. R., Salmon, R. L., Wyn-Jones, A. P., & Kay, D. (2013). Extreme water-

related weather events and waterborne disease. Epidemiology & Infection, 141(4), 671-686. 

Carson, Y., & Maria, A. (1997, December). Simulation optimization: methods and applications. 

In Proceedings of the 29th conference on Winter simulation (pp. 118-126). 

Chen, E. S., Hripcsak, G., Xu, H., Markatou, M., & Friedman, C. (2008). Automated acquisition of 

disease–drug knowledge from biomedical and clinical documents: an initial study. Journal of the 

American Medical Informatics Association, 15(1), 87-98. 

Christopoulou, F., Tran, T. T., Sahu, S. K., Miwa, M., & Ananiadou, S. (2020). Adverse drug events 

and medication relation extraction in electronic health records with ensemble deep learning 

methods. Journal of the American Medical Informatics Association, 27(1), 39-46. 



Chapter 1- Introduction 

 
43 

Cohen, A. M., & Hersh, W. R. (2005). A survey of current work in biomedical text mining. Briefings in 

bioinformatics, 6(1), 57-71. 

Craun, G. F., & Calderon, R. L. (2001). Waterborne disease outbreaks caused by distribution system 

deficiencies. Journal‐American Water Works Association, 93(9), 64-75. 

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional 

transformers for language understanding. arXiv preprint arXiv:1810.04805. 

Dilsizian, S. E., & Siegel, E. L. (2014). Artificial intelligence in medicine and cardiac imaging: 

harnessing big data and advanced computing to provide personalized medical diagnosis and 

treatment. Current cardiology reports, 16(1), 441. 

Eliades, D. G., & Polycarpou, M. M. (2012). Water contamination impact evaluation and source-area 

isolation using decision trees. Journal of Water Resources Planning and Management, 138(5), 562-570. 

Fewtrell, L., Kay, D., Watkins, J., Davies, C., & Francis, C. (2011). The microbiology of urban UK 

floodwaters and a quantitative microbial risk assessment of flooding and gastrointestinal illness. Journal 

of flood risk management, 4(2), 77-87. 

Fisher, I., Kastl, G., & Sathasivan, A. (2017). A comprehensive bulk chlorine decay model for 

simulating residuals in water distribution systems. Urban Water Journal, 14(4), 361-368. 

Geudens, P. J. J. G., & Grootveld, J. (2017). Dutch drinking water Statistics 2017. VEWIN: Den Haag, 

The Netherlands. 

Giammanco, G. M., Bonura, F., Urone, N., Purpari, G., Cuccia, M., Pepe, A., ... & De Grazia, S. (2018). 

Waterborne Norovirus outbreak at a seaside resort likely originating from municipal water distribution 

system failure. Epidemiology & Infection, 146(7), 879-887. 

Haas, C. N. (1983). Estimation of risk due to low doses of microorganisms: a comparison of alternative 

methodologies. American journal of epidemiology, 118(4), 573-582. 

Haas, C. N., Rose, J. B., & Gerba, C. P. (1999). Quantitative microbial risk assessment. 

Hatam, F., Blokker, M., Besner, M. C., Ebacher, G., & Prévost, M. (2019). Using nodal infection risks 

to guide interventions following accidental intrusion due to sustained low pressure events in a drinking 

water distribution system. Water, 11(7), 1372. 

Hrudey, S. E., & Hrudey, E. J. (2004). Safe drinking water. IWA publishing. 

Jha, S., & Topol, E. J. (2016). Adapting to artificial intelligence: radiologists and pathologists as 

information specialists. Jama, 316(22), 2353-2354. 

Kang, T., Zou, S., & Weng, C. (2019). Pretraining to recognize PICO elements from randomized 

controlled trial literature. In MEDINFO 2019: Health and Wellbeing e-Networks for All (pp. 188-192). 

IOS Press. 

Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the 

interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25. 

Kiritchenko, S., De Bruijn, B., Carini, S., Martin, J., Sim, I., 2010. ExaCT: Automatic extraction of 

clinical trial characteristics from journal publications. BMC Med. Inform. Decis. Mak. 10. 

https://doi.org/10.1186/1472-6947-10-56 

Kuhn, K. G., Falkenhorst, G., Emborg, H. D., Ceper, T., Torpdahl, M., Krogfelt, K. A., ... & Mølbak, 

K. (2017). Epidemiological and serological investigation of a waterborne Campylobacter jejuni outbreak 

in a Danish town. Epidemiology & Infection, 145(4), 701-709. 

https://doi.org/10.1186/1472-6947-10-56


Chapter 1- Introduction 

 
44 

Laine, J., Huovinen, E., Virtanen, M. J., Snellman, M., Lumio, J., Ruutu, P., ... & Pirkanmaa Waterborne 

Outbreak Study Group. (2011). An extensive gastroenteritis outbreak after drinking-water 

contamination by sewage effluent, Finland. Epidemiology & Infection, 139(7), 1105-1113. 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. 

Lee, Y., Lee, K., Park, S., Hwang, D., Kim, J., Lee, H. I., & Lee, M. (2023, July). QASA: advanced 

question answering on scientific articles. In International Conference on Machine Learning (pp. 19036-

19052). PMLR. 

Lieverloo, J. H. M., Blokker, E. M., & Medema, G. (2007). Quantitative microbial risk assessment of 

distributed drinking water using faecal indicator incidence and concentrations. Journal of Water and 

Health, 5(S1), 131-149. 

Lipscomb, C. E. (2000). Medical subject headings (MeSH). Bulletin of the Medical Library 

Association, 88(3), 265. 

Liu, J., Jin, J., Wang, Z., Cheng, J., Dou, Z., & Wen, J. R. (2023). Reta-llm: A retrieval-augmented large 

language model toolkit. arXiv preprint arXiv:2306.05212. 

Mac Kenzie, W. R., Schell, W. L., Blair, K. A., Addiss, D. G., Peterson, D. E., Hoxie, N. J., ... & Davis, 

J. P. (1995). Massive outbreak of waterborne Cryptosporidium infection in Milwaukee, Wisconsin: 

recurrence of illness and risk of secondary transmission. Clinical Infectious Diseases, 21(1), 57-62. 

Mahmoud, H. A., Kapelan, Z., & Savić, D. (2018). Real-time operational response methodology for 

reducing failure impacts in water distribution systems. Journal of Water Resources Planning and 

Management, 144(7), 04018029. 

McCarthy, J., Minsky, M., Rochester, N., & Shannon, C. (1955). A proposal for the dartmouth 

summer research project on artificial intelligence, august 1955. URL: http://raysolomonoff. 

com/dartmouth/boxa/dart564props. pdf. 

Mehta, N., & Devarakonda, M. V. (2018). Machine learning, natural language programming, and 

electronic health records: The next step in the artificial intelligence journey?. Journal of Allergy and 

Clinical Immunology, 141(6), 2019-2021. 

Minsky, M. 1968, Semantic information processing. Cambridge, Mass. 

Moghaddam, A., Afsharnia, M., Mokhtari, M., & Peirovi-Minaee, R. (2022). Management and health 

risk assessment of chemical contamination events in water distribution systems using 

PSO. Environmental Monitoring and Assessment, 194(5), 362. 

Odhiambo, M., Viñas, V., Sokolova, E., & Pettersson, T. J. (2023). Health risks due to intrusion into the 

drinking water distribution network: hydraulic modeling and quantitative microbial risk 

assessment. Environmental Science: Water Research & Technology, 9(6), 1701-1716. 

Ohno-Machado, L., Nadkarni, P., & Johnson, K. (2013). Natural language processing: algorithms and 

tools to extract computable information from EHRs and from the biomedical literature. Journal of the 

American Medical Informatics Association, 20(5), 805-805. 

Ouellette, N. T., Xu, H., & Bodenschatz, E. (2006). A quantitative study of three-dimensional 

Lagrangian particle tracking algorithms. Experiments in Fluids, 40, 301-313. 

Owens, C. E., Angles, M. L., Cox, P. T., Byleveld, P. M., Osborne, N. J., & Rahman, M. B. (2020). 

Implementation of quantitative microbial risk assessment (QMRA) for public drinking water supplies: 

Systematic review. Water research, 174, 115614.  



Chapter 1- Introduction 

 
45 

Patrick, J., & Li, M. (2010). High accuracy information extraction of medication information from 

clinical notes: 2009 i2b2 medication extraction challenge. Journal of the American Medical Informatics 

Association, 17(5), 524-527. 

Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100,000+ questions for machine 

comprehension of text. arXiv preprint arXiv:1606.05250. 

Risebro, H. L., Doria, M. F., Andersson, Y., Medema, G., Osborn, K., Schlosser, O., & Hunter, P. R. 

(2007). Fault tree analysis of the causes of waterborne outbreaks. Journal of water and health, 5(S1), 1-

18. 

Russell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach. 

Schijven, J., Forêt, J. M., Chardon, J., Teunis, P., Bouwknegt, M., & Tangena, B. (2016). Evaluation of 

exposure scenarios on intentional microbiological contamination in a drinking water distribution 

network. Water research, 96, 148-154. 

Shakibi, M. (2022). Hydraulic Modeling and Quantitative Microbial Risk Assessment of Intrusion in 

Water Distribution Networks Under Sustained Low-Pressure Situations. 

Talib, R., Hanif, M. K., Ayesha, S., & Fatima, F. (2016). Text mining: techniques, applications and 

issues. International Journal of Advanced Computer Science and Applications, 7(11), 414-418. 

Tangena, B. (2018). Het gaat bijna altijd goed: Drinkwaterincidenten- statistieken, analyses en 

anekdotes. Het Boekenschap. https://www.hetboekenschap.nl/product/drinkwaterincidenten/ (ISBN: 

9789083126609) 

Teunis, P. F., Chappell, C. L., & Okhuysen, P. C. (2002). Cryptosporidium dose‐response studies: 

variation between hosts. Risk analysis, 22(3), 475-485. 

Teunis, P. F. M., Xu, M., Fleming, K. K., Yang, J., Moe, C. L., & LeChevallier, M. W. (2010). Enteric 

virus infection risk from intrusion of sewage into a drinking water distribution network. Environmental 

science & technology, 44(22), 8561-8566. 

Uzuner, Ö., Solti, I., & Cadag, E. (2010). Extracting medication information from clinical text. Journal 

of the American Medical Informatics Association, 17(5), 514-518. 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). 

Attention is all you need. Advances in neural information processing systems, 30. 

Viñas, V., Sokolova, E., Malm, A., Bergstedt, O., & Pettersson, T. J. (2022). Cross-connections in 

drinking water distribution networks: Quantitative microbial risk assessment in combination with fault 

tree analysis and hydraulic modeling. Science of the Total Environment, 831, 154874. 

World Health Organization. (2011). Small-scale water supplies in the pan-European region: 

background, challenges, improvements. World Health Organization. Regional Office for Europe. 

World Health Organization. (2016). Quantitative microbial risk assessment: application for water safety 

management. 

World Health Organization. (2017). Guidelines for drinking-water quality: first addendum to the fourth 

edition. 

Yang, J., LeChevallier, M. W., Teunis, P. F., & Xu, M. (2011). Managing risks from virus intrusion into 

water distribution systems due to pressure transients. Journal of water and health, 9(2), 291-305. 

Yao, J. Y., Ning, K. P., Liu, Z. H., Ning, M. N., & Yuan, L. (2023). Llm lies: Hallucinations are not 

bugs, but features as adversarial examples. arXiv preprint arXiv:2310.01469  



Chapter 1- Introduction 

 
46 

  



 

 
47 

Chapter 2 



 

Published as original research article in the International Journal of Hygiene and Environmental 

Health, 245,114018. Paraskevopoulos, S., Smeets, P., Tian, X., & Medema, G. (2022). 

https://doi.org/10.1016/j.ijheh.2022.114018 

Using Artificial Intelligence to extract information 
on pathogen characteristics from scientific 

publications 
  



Chapter 2- Artificial Intelligence to extract information on pathogen characteristics from scientific 

publications 

 
49 

Abstract 

Health risk assessment of environmental exposure to pathogens requires complete and up to date 

knowledge. With the rapid growth of scientific publications and the protocolization of literature reviews, 

an automated approach based on Artificial Intelligence (AI) techniques could help extract meaningful 

information from the literature and make literature reviews more efficient. The objective of this research 

was to determine whether it is feasible to extract both qualitative and quantitative information from 

scientific publications about the waterborne pathogen Legionella on PubMed, using Deep Learning and 

Natural Language Processing techniques. The model effectively extracted the qualitative and 

quantitative characteristics with high precision, recall and F-score of 0.91, 0.80, and 0.85 respectively. 

The AI extraction yielded results that were comparable to manual information extraction. Overall, AI 

could reliably extract both qualitative and quantitative information about Legionella from scientific 

literature. Our study paved the way for a better understanding of the information extraction processes 

and is a first step towards harnessing AI to collect meaningful information on pathogen characteristics 

from environmental microbiology publications.  

Keywords: Artificial intelligence; Information extraction; Exposure assessment; Scientific 

publications; Legionella 
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2.1 Introduction 
Human exposure to pathogens in the environment poses risks to public health (Hrudey and Hrudey, 

2004). Health risk assessments are used to prevent or manage these risks and support decisions, for 

example on safe system design or emergency response. Exposure assessment is a first step in which 

knowledge about pathogen characteristics and their exposure routes are combined to estimate the 

exposure of the population to pathogens. With the fast-growing rate of scientific publications, such 

information is contained in a constantly increasing volume of text and journal articles.  The conventional 

way is to generate review papers and meta-analyses to collate the published information, analyze the 

body of information in a comprehensive and integrated manner, and conduct such meta-analyses in an 

increasingly structured framework (Page et al., 2021). This process is time-consuming, labor-intensive 

and requires an expert that knows where to look and what to search for.  The increasing rate of those 

publications has created a need for more efficient and extensive methods to collect all meaningful 

information for health risk assessment from various sources.   

In recent years, automated approaches using Artificial Intelligence (AI) have been explored to 

systematically extract structured information from the ever-expanding body of scientific publications. 

Experts and curators in the field of biomedical sciences have been using AI and in particular Information 

Extraction (IE) techniques to extract information from Electronic Health Records (EHR) and 

Randomized Control Trials (RCT) (Cohen and Hersh, 2005; Meystre et al., 2008). Using text mining 

techniques (and consequently IE), Machine Learning (ML) and Natural Language Processing (NLP), 

experts extract information related to study characteristics such as disease-drug associations from EHR 

and RCT (Chen et al., 2008; Chung and Coiera, 2007; Kang et al., 2019; Uzuner et al., 2010). 

Kiritchenko et al. (2010), provided ExaCT, an IE system that extracts 21 key trial characteristics from 

publications and helps curators review and collect information from RCT (using a user interface). Their 

approach was based on ML using a Support Vector Machine (SVM) model for their sentence 

classification as well as rule-based techniques to extract exact values from segments within a text. A 

similar approach was adopted by Patrick & Li, 2010, who used a multistage ML-based method with 2 

different statistical classifiers namely SVM and Conditional Random Fields (CRF) and rule-based 

methods, they achieved an almost-optimal result (relative to other participants) for automated extraction 

of medication information from clinical notes. Although in the field of biomedical sciences, using such 

techniques (AI, IE, ML, and NLP) to extract information from text documents has become a well-

established approach; the development of similar applications in the field of environmental microbiology 

is still lagging and more complex because of the arbitrary and diverse form and structure in which the 

information is contained in case studies, reviews, and publications. The desired information is more 

scattered, and complex compared to the structured information often contained in RCT and EHR. The 

less structured organization of the information requires an improved AI system that unravels the 

complexity of words and sentences by "understanding" and capturing the syntactic and semantic context 

of their surrounding words prior to the classification task. 

This study aimed to evaluate the feasibility and performance of using an IE model to extract both 

qualitative and quantitative information about the waterborne pathogen Legionella from scientific 

publications. Legionella was selected since it is frequently associated with outbreaks via different water 

sources, many (types of) publications are available, and scientists and experts would like to have as 

much high quality information as possible to support decision making (van Heijnsbergen et al., 2015; 

Walser et al., 2014) and risk assessment (Papadakis et al., 2018).   

To capture the information on Legionella as it is arbitrarily expressed in scientific literature, Deep 

Learning approach was developed in this study (instead of using the conventional classifiers used in 

ML), coupled with a rule-based technique. The quality of the extracted qualitative and quantitative 

information on Legionella was assessed using the evaluation metrics of precision, recall and F-score  

(Kiritchenko et al., 2010), along with a comparison between the system extraction and a human (manual) 

extraction. 
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2.2 Materials and method 

2.2.1 Information keywords 

The desired information (hereafter referred to as “information keywords”) about Legionella was selected 

as general, explicit, and reproducible (waterborne) pathogen characteristics of both a qualitative and a 

quantitative nature (Table 2.1). 

Table 2.1. The desired extracted information (Information Keywords) from scientific publications regarding the waterborne 

pathogen Legionella. The incubation period is quantitative information whereas the rest information keywords are 

qualitative. 

Information keywords Description 

Incubation period The time elapsed between exposure to a pathogenic organism and symptom onset 

Symptoms The change in normal functions of a person indicating the presence of a disease 

Clinical manifestations The medical conditions of a patient after infection by the pathogen 

Sources of exposure Places or objects that spread the pathogen 

Route of transmission Route via which an individual became exposed to the pathogen 

Environmental habitat  The environment/water system in which the pathogen grows 

Species Unit of classification and taxonomic rank of an organism 

 

2.2.2 Selection of publications 

50 peer-reviewed scientific publications about Legionella were manually selected from the search engine 

PubMed and used for the implementation of the IE task. We specifically aimed to extract information 

from peer-reviewed scientific publications, since these better warrants the quality of the text that we use 

for data extraction. The type of selected publications includes both scientific reviews and case studies 

on waterborne outbreaks, covering the different aspects of research on Legionella. A systematic review 

of the literature was performed adopting the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) guidelines (Liberati et al., 2009). The selection of publications was made 

considering their relevance to Legionella as well as their maximum possible reference to the desired 

Information Keywords (IK). The list of selected publications, the search terms, along with the flow 

diagram that describes the search process and the exclusion criteria can be found in the supplementary 

material. 

2.2.3 Template filling 

Template filling is an efficient approach (especially when the content of a text document describes an 

event or a situation) to extract information in a comprehensive, structured form. The process of template 

filling includes identifying and locating predefined entities and filling in their template slots. Table 2.2 

depicts an example of template filling. The algorithm behind the template filling should be able to fill 

in the slots for both qualitative and quantitative information. However, not every slot can always be 

filled since it is possible that some IK might not be addressed in the text document. The IK vary in terms 

of their structure. Some consist of straightforward information such as “incubation period”, and others, 

such as “Route of transmission” or “Environmental habitat” consist of lengthy, vaguer, and free text 

information. 
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Table 2.2. Example of template filling extracting information from a scientific publication. 

Information keywords Results 

Species Legionella pneumophila  

Incubation period (days) 2-14 

Symptoms Headache, myalgia, asthenia, anorexia, fever, cough, chills, dyspnea, arthralgia 

Route of transmission Inhalation, micro aspiration, direct contact with surgical wounds 

Environmental habitat Aquatic habitats, water distribution systems 

Clinical manifestation Legionnaires' disease, atypical pneumonia, Pontiac fever 

Source of exposure Water supply, infectious aerosols, cooling towers, hot tubs, potting soil 

2.2.4 Information Extraction task 

2.2.4.1 Labeling and training the data 

The first step of the IE task was to manually label the scientific publications. The labeling of data is part 

of the custom-trained NER model that requires a token-level classification, and it helps assess whether 

a specific world within a sentence is relevant to a specific IK. Relevant words are those who are assigned 

to one of the IK labels, whereas irrelevant tokens are those who have no meaning to the labeling process 

and are assigned the label “O”10. Figure 2.1 serves as an example of the labeling process. 

 

 

Figure 2.1. Example of the labeling process. The labels “Env. Habitat”, “Clin. Manifestation”, and “Symptoms” are assigned 

to their respective words, whereas the remaining irrelevant words have been assigned to the label “O”.  

Next, the training and classification of labeled data was necessary so that the system will learn to 

correctly assign the right labels to words within sentences. This step was implemented using Python 

programming language (Van Rossum and Drake Jr, 1995) and the Spacy library (Honnibal, M., & 

Montani, 2017). The selection of Spacy library was made mainly because this tool is suitable for NLP 

tasks utilizing word embedding methods as well as Recurrent Neural Networks (RNN) for multiclass 

classification.  

2.2.5 Overall architecture 

Fitting the overall architecture into a general workflow resulted in the following process (Figure 2.2). 

 

Figure 2.2. The workflow of the IE task starts with the input of publication. Next, the publication gets converted to text, cleaned, 

and tokenized as part of the pre-processing step. The next part includes supervised and rule-based techniques for the extraction 

of information. Finally, the output of this process gets filled in a template as part of the post-processing step.  

 
10 The choice of the word "O" is a default option, and it means that all the words irrelevant to the IK are automatically assigned to the label 
"O". 
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2.5.1 Text pre-processing 

Although scientific publications come in various document standards and formats, the 50 selected 

scientific publications were extracted from the PubMed search engine in a PDF format. The first step of 

the preprocessing process was the conversion of PDF files to text files so that they can be recognized 

and processed as raw data. Next, all the sections from the text documents that are irrelevant to the IE 

task were removed automatically. That includes references, editors’ notes, and acknowledgments. It was 

decided that the summary of publications should also be excluded since the contained information can 

be found in the remaining sections of the text. To detect these sections (“References”, 

“Acknowledgements”, and “Summary”) we assumed a consistency in the way the headings were 

expressed in the scientific publications before applying a rule-based keyword matching technique to 

filter them out. The cleaning process also included the conversion of all uppercase letters to lowercase, 

and removal of punctuation. The last step was the tokenization of words to facilitate the labeling process 

as well as the implementation of the model itself. 

2.5.2 Rule-based techniques 

For the IK “incubation period”, regex pattern-matching was selected using a specific module embedded 

in Python (Kuchling, 2002). The information is in numeric form and follows a certain pattern in the text 

(e.g., “the incubation period was 2 to 14 days”, “the incubation ranges between 2 to 14 days prior to 

symptom onset”). After isolating the sentences containing the word “incubation” from the text, a set of 

regular expressions was applied to every sentence for the extraction of digits or a range of digits that 

correspond to the number of days of the incubation period. For IK “symptoms” and “species”, a pool 

parsing technique was adopted. Since the results of these 2 IK are finite and known, a pool with all the 

potential symptoms and species associated with Legionella was created. Then, during parsing of unseen 

text, several n-grams were matched each time to the pools to determine if any of the potential symptoms 

and species of the pool can also be found in the text document of interest. For the creation of the 

symptoms and species pool, all the potential symptoms and species (both pathogenic and non-

pathogenic) associated with Legionella and Legionnaire’s disease were collected after exploring the 

literature. 

2.5.3 Supervised technique  

For the remaining of IK, a supervised technique was used since the information to be extracted was 

neither confined within a finite set nor could be represented in a certain pattern of strings (as in the case 

of IK “incubation period”, “symptoms”, and “species”). The extraction of such information was 

therefore only possible by understanding the semantic pattern and relationship of the tokens11 within a 

text document. Specifically, a custom-trained NER model using word embedding and RNNs was 

implemented. During the training process, after embedding the tokens (words) into a sequence of vectors 

(numerical representation of text), bidirectional RNNs were used to take the semantic context into 

consideration by encoding the vectors into a context-sensitive sentence matrix. Next, to improve the 

power of the model the system used an attention mechanism where the previously produced matrix was 

reduced to a sentence vector by selecting the most “appropriate” information (after applying weights to 

every token based on their importance). In the last step, after all text was converted to a single vector, 

the system was able to predict the classes of every token. This four-step formula named: “Embed, 

encode, attend, predict” is the fundamental approach adopted in Spacy library for NER and more 

documentation can be found in Honnibal (2016). 

2.5.4 Post-processing of results 

After the supervised and rule-based techniques had completed their task, the extracted information filled 

the slots of a pre-defined template comprised of the desired IK. The extracted information might consist 

of repeated words or words that have the same semantic meaning but differ in the length of characters 

in the text. For example, the slot of IK “Clinical Manifestation” may have both “Legionnaires Disease” 

and “Legionnaire’s disease” in the template. Although the semantic meaning is the same, the two 

extracted sequences differ slightly (apostrophe). Therefore, to avoid extracting duplicate information, 

we used the Levenshtein distance, a string metric that measures the pattern similarity -or to put it 

 
11 In a sequence of characters within a text document, tokenization is the process of chopping up the sequence into pieces (words), named 
tokens (Webster and Kit, 1992). 
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differently- the differences between words and/or sequences of words (Levenshtein, 1966). Using the 

Levenshtein Python C extension module, the system decided whether or not to keep the extracted similar 

words in the template (Necas, D., Ohtamaa, M., Haapala, 2014).  

2.2.6 Evaluation of the performance 

The last step was the evaluation of the model output. To get an unbiased performance of the model, a 5-

fold cross-validation method was implemented. After the system was trained by feeding it with 40 text 

documents (80% of total publications), the NER model was tested by using a set of 10 “unseen” testing 

data (20% of total publications). This process was repeated 5 times, each time with a separate set of 

training and testing data. For every iteration, the manually labeled values were compared with the 

predicted values for every IK in a so-called confusion matrix. Next, the evaluation metrics of precision, 

recall, and F-score were calculated to describe the performance of the model for that particular fold of 

data, and the metrics of all the folds were averaged to get the overall performance of the model. 

The analytic approach of precision, recall, and F-score was adopted (Kiritchenko et al., 2010) and it was 

applied both to the system and to every IK separately after averaging the values through every fold (5 

iterations). When it comes to classification tasks, precision is a metric that quantifies the number of 

correct positive predictions from all returned positive predictions. It is therefore the number of true 

positives divided by the number of true positives plus false positives (Equation 1).  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (1) 

 

Recall, on the other hand, is a metric that quantifies the number of correct positive predictions made of 

all positive predictions that could have been made by the system. Specifically, it is the number of true 

positives divided by the number of true positives plus false negatives (Equation 2). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (2) 

 

The F-score (Equation 3) is the harmonic mean of precision and recall. It is a way to combine both 

analytic metrics into a single score that captures both properties (Olson and Delen, 2008).  

 

𝐹 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (3) 

Choosing the right number of scientific publications for the training of the model was an important 

decision to make. Usually, the amount of data required to build a good DL model depends on the 

complexity of the problem (in our case extracting words and excerpts of information from unstructured 

scientific publications) and the quality of the training data. Regarding DL, the hypothesis is that the 

more quality data used to train a model, the higher is the performance (Mitsa, 2019). The impact of the 

number of publications used for training the IE model on the quality of the results was investigated. We 

created 5 folders containing 10, 20, 30, 40, and 50 publications randomly selected from the 50 papers 

that had been selected previously and performed a 5-fold Cross-validation in every folder. 

Another form of evaluation was to select new publications (beyond the 50 that were used before) and 

compare the system’s performance on IE with a manual extraction process (the conventional way where 

a human extracts information from text documents). We selected a set of 10 new scientific publications 

related to Legionella and incorporated them in the IE module. The same publications were processed by 

a human expert for manual extraction of the IK and the results were compared to assess the usefulness 

of the proposed approach on extracting information from Legionella scientific publications.  
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2.3 Results 

2.3.1 Influence of the number of publications on evaluation metrics 

Figure 2.3a shows that by increasing the number of publications, all metrics improved and the standard 

deviation of cross-validation regarding precision in Figure 2.3b decreased overall (the standard deviation 

for recall and F-score can be found in the supplementary material). That means that by increasing the 

number of training data (publications) the model generalizes and thus, there is a smaller variation in its 

performance. These 2 interpretations go in line with the original hypothesis and since the standard 

deviation of precision remained constant for 3 consecutive increments of publications, we decided that 

50 publications were an adequate and feasible starting point for the creation of the model. All further 

results were generated using 50 publications to train the model. 

  

Figure 2.3. a) System performance under varying numbers of publications. b) System performance and standard deviation for 

precision under varying numbers of publications. 

2.3.2 Evaluation of the supervised and rule-based extraction 

For the supervised technique with custom-trained NER, the information on “Clinical manifestations”, 

“Environmental habitat”, “Route of transmission” and “Source of exposure” was extracted from the 50 

publications. After performing a 5-fold cross validation to test the model, Table 2.3 shows the results of 

the 1st folder in a confusion matrix. The confusion matrix compares the actual with the predicted IK 

labels, indicating that the custom-trained NER technique was able to correctly predict the labels in the 

majority of the tokens. The only label that seemed to have mislabeled many features was the label "O" 

(which contains all the irrelevant words in a document). That "confusion" was expected to a certain 

extent since there was an imbalance between the label "O" and the rest of the IK (15897 tokens assigned 

to label "O" versus 2404 assigned to the rest of the IK) in the testing data. Considering that the desired 

information was generally organized in a complex and sparse manner within the text, it was expected to 

see false negatives. The label “O” affected and captured some of the words that should have been 

assigned to other labels. Another set of IK mislabeling their tokens were the "Source of exposure" and 

"Environmental habitat". This "confusion" was also expected since in many scientific publications the 

meaning of these two IK was often mixed and misinterpreted (i.e. "The source of exposure of Legionella 

was 2 cooling towers", " Legionella can grow and survive in cooling towers"). We see in this example 

that cooling towers can be labeled both as “Source of exposure” and “Environmental habitat” and 

therefore it was difficult for the system to always make correct predictions.  
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Table 2.3. Confusion matrix of the custom-trained NER performance. 

Predicted labels 

A
ct

u
a

l 
la

b
el

s 

Information 

keywords 

Clin. Man/on Env. 

habitat 

O Route of 

transmission 

Source of 

Exposure 

Clin. Man/on 637 0 88 0 0 

Env. habitat 3 207 58 0 9 

O 32 31 15517 2 91 

Route of transmission 1 0 20 92 1 

Source of Exposure 2 19 273 1 984 

 

For the extraction of the information on “Incubation period”, “Species”, and “Symptoms” with rule-

based techniques, almost all of the tokens were correctly labeled to their respective IK (Table 2.4). One 

IK that mislabeled some tokens, resulting in false negative results, was the “Incubation period”. Looking 

into the testing dataset, this happened because in some publications, although the authors were 

describing the incubation period, they did not mention specifically the word "incubation" and therefore 

the regex rules did not apply. Another IK that mislabeled some tokens was the “Symptoms”. Out of 521 

tokens describing symptoms, 20 of them were not assigned correctly, probably because during the pool 

parsing technique, the respective pool did not contain those specific symptoms. 

Table 2.4. Confusion matrix of the rule-based techniques. 

Predicted labels 

A
ct

u
a

l 
la

b
el

s 

Information keywords Incubation period O Species Symptoms 

Incubation period 70 20 0 0 

O 0 46226 0 2 

Species 0 1 1011 0 

Symptoms 0 20 0 501 

 

The classification reports in Tables 2.5 and 2.6 give an overview of the evaluation metrics of the system 

for the supervised and rule-based techniques. For the custom-trained NER in Table 2.5, the overall score 

of the system has a precision, recall, and F-score of 0.91, 0.80, and 0.85 respectively. While the precision 

score is high for IE tasks, the recall score of 0.80 leaves room for improvement (Patrick & Li, 2010; 

Kiritchenko et al., 2010). As explained earlier, the label “O” influenced to a certain extent the recall 

score of all individual IK (too many False Negatives for all IK), which resulted in a low overall score. 

The IK with the lowest metrics (both precision and recall) is the “Environmental habitat”. This is because 

sometimes the environmental habitat of Legionella can also be presented as its source of exposure and 

vice versa. For the remaining IK, both precision and recall scores are high numbers. 

Table 2.5. Classification report on the system’s performance for the custom-trained NER. 

Classification report Precision Recall F-

score 

Total number of actual 

labels 

Clinical 

Manifestation 

0.95 0.88 0.91 725 

Environmental 

habitat 

0.81 0.73 0.77 286 

Route of 

transmission 

0.97 0.81 0.88 114 

Source of exposure 0.91 0.79 0.85 1279 

Average  0.91 0.80 0.85 - 

 

For the rule-based techniques, as was expected, the evaluation metrics for all IK are high with an overall 

precision and recall of 1 and 0.91 respectively. 
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Table 2.6. Classification report on the system’s performance for the rule-based techniques. 

Classification 

report 

Precision Recall F-

score 

Total number of actual labels 

Incubation period 1 0.78 0.88 90 

Species 1 1 1 1012 

Symptoms 1 0.96 0.98 521 

Average  1 0.91 0.95 - 

 

2.3.3 Alternative evaluation with new publications 

2.3.3.1 Improving the regex rules 

After comparing the IE results with the human extraction, we identified a few setbacks on the proposed 

rule-based technique. Specifically, during the extraction of IK “Incubation period”, the system could not 

distinguish the semantic difference between the actual incubation period of Legionella in patients prior 

to symptom onset, and the number of days required for the growth of colonies on solid media in a 

laboratory environment (a scientific publication can include both, i.e. “L. gormanii and L. wadsworthii 

isolates resulted in no visible growth after 96 h incubation in BYE broth”). Although both instances 

describe incubation period, their semantic is different. Therefore, a new set of rules was added that would 

exclude all mentions of Legionella associated with laboratory results.  

2.3.3.2 Comparing the system with a human extraction 

The alternative evaluation of the model (input of 10 new publications into the model and comparison 

with a human extraction) shows that the model returned results similar to the human extraction and 

extracted most of the IK from the text document. The classification report in Table 2.7 supports this 

argument. Although the sample is small and conclusions cannot be drawn, the evaluation metrics of both 

precision and recall are high. Table 2.8 depicts the extraction of information (and comparison) for 2 

publications as an example. The rest of the comparison tables can be found in the supplementary 

material.  

Table 2.7. Classification report of the custom-trained NER on the 10 new publications. 

Classification report Precision Recall F-score 

Clinical Manifestation 0.76 0.91 0.81 

Environmental habitat 0.63 0.92 0.71 

Route of transmission 0.66 0.89 0.72 

Source of exposure 0.68 0.87 0.75 

Incubation period 1 0.75 0.83 

Species 1 1 1 

Symptoms 1 0.72 0.82 

Average  0.82 0.87 0.81 
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Table 2.8. Comparison between the system’s performance and manual extraction of IK from 2 publications. Red highlighted 

shade= erroneous results. Red bold font= Missed result (either by the IE model or by the manual extraction). 
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2.4 Discussion 

2.4.1 Evaluation of the IE model 

The proposed IE model demonstrated very good performance on a set of 7 information keywords and 

extracted both quantitative and qualitative information regardless of the complexity of the targeted 

information. After testing it with 50 testing publications (10 publications per 5 folds of cross-validation) 

from various aspects of research on Legionella (scientific reviews and outbreak reports) the system was 

able to extract meaningful information. For the set of IK, both supervised and rule-based techniques 

were needed. The results of the evaluation metrics showed that the IE approach can adequately extract 

the desired information from scientific publications regarding the waterborne pathogen Legionella. 

Overall, the IE system identified and extracted the targeted IK with high precision (0.91) and provides 

proof of concept for automated extraction of this type of information from scientific publications. The 

lower recall score (0.80) indicated that the IE model missed some of the information. While the system’s 

performance was not perfect and there is room for improvement, it is comparable with other IE tasks 

from biomedical sciences. In Kiritcenko et al. (2010), the results of precision and recall were 0.93 and 

0.91 respectively whereas in Patrick & Li, (2010), their precision had a score of 0.89 and recall 0.82. 

Finally, although not focused on NER, an IE task from tables in biomedical literature had 0.94 score for 

both precision and recall (Milosevic et al., 2019). 

The alternative evaluation of the IE model confirmed the validity of our approach: when comparing the 

system’s results with the manual extraction in 10 new publications on Legionella, the IE system returned 

similar results for all 7 IK. Although in some cases the IE model extracted irrelevant information for 

some of the IK, considering the complexity of the desired information, the results of the proposed IE 

model were of sufficiently high quality. 

2.4.2 Limitations and recommendations 

Although the proposed approach showed promising results, it is accompanied by limitations. The main 

limitation stems from the very nature of the study’s objective. IE tasks have not been implemented for 

data extraction on waterborne pathogens from scientific publications before. Therefore, there is still no 

relevant work to allow for a comprehensive comparison with the results of the proposed IE model. 

Although the proposed approach is based on similar work applied to biomedical data extraction using 

ML approaches, an established open-access benchmark dataset related to waterborne pathogens data 

extraction utilizing DL methods is missing. Considering the plethora of methods available in the 

literature for AI-data extraction using ML and DL methods, it is recommended that other approaches 

should also be tested. 

Considering the proposed approach, the complexity of some of the IK is another limitation which 

resulted in missing some of the information (lower recall score). It was relatively easy to extract 

straightforward information, but when the desired information was unstructured, lengthy, or vague, the 

system sometimes failed to correctly identify its label. For example, for the IK “Clinical manifestation”, 

the system would potentially have to target and extract words such as “Legionnaires’ disease”, “Pontiac 

Fever”, and “pneumonia”. The problem, in this case, is that the targeted fragment of words can be 

mentioned anywhere in a text document, each time in a different semantic context. Another limitation 

was the choice of pool parsing technique for the IK "Symptoms". Although the pool of symptoms 

included a variety of symptoms (more than 40), it was limited only to the symptoms collected manually 

from the literature. That means that there could be symptoms that the IE model would fail to recognize 

simply because they were not included in the respective pool. To tackle this limitation, an enrichment 

of the symptoms pool is recommended by incorporating all symptoms listed in the National Library of 

Medicine’s Unified Medical Language System (UMLS) associated with the waterborne pathogen 

Legionella (Bodenreider, 2004). Finally, although the choice of regex rules showed good results, it also 

presented some difficulties in the information extraction process. The inability of the IE model to extract 

the incubation period in sentences where the word "incubation" is not mentioned, indicated the need for 

a slightly different approach. Instead of first isolating the word "incubation" from the whole text prior 

to applying the regex rules, it is recommended to first perform a sentence-level classification, extracting 
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the sentences that contain the relevant information, and then apply the regex rules in the sentences that 

have been classified correctly. Doing that can ensure that all the values of the IK "Incubation period" 

can be extracted from the text. 

2.4.3 Potential applications of IE tasks  

Experts can use the IE model to extract high quality information in substantially less time (compared to 

the conventional way) for meta-analysis purposes. A meta-analysis can help recognize patterns, enrich 

the knowledge on Legionella (or other pathogens), and/or generate hypotheses. For example, by 

gathering information from multiple scientific publications (reviews and/or outbreak reports) regarding 

the incubation period of Legionella, it would be possible to create a distribution curve of the incubation 

time. Other examples are to collect and categorize various transmission pathways, or to identify the most 

common symptoms based on their frequency in Legionella outbreaks. Finally, by measuring the 

frequency of reported Legionellosis (the clinical manifestation of Legionella infection) case studies 

associated with exposure events, it is possible to estimate the likelihood of sources of exposure. All of 

these meta-analysis examples demonstrate the potential and importance of using AI and specifically IE 

tasks to automatically extract high-quality information from scientific publications. 

2.4.4 Future research 

Future research should focus on improving the overall performance of the proposed approach. A  hybrid 

system (a combination of the proposed DL method with another discriminative classifier such as CRF 

or SVM) could potentially improve the system’s overall performance as previous research has shown 

(Lê, T., & Burtsev, 2019; Patrick and Li, 2010). For example, assigning the NER task to the custom-

trained NER developed here and then coupling it with another classifier to classify relationships between 

entities could potentially further unravel the complexity of some of the IK. Another approach would be 

to consider using another DL approach, namely the Bidirectional Encoder Representations from 

Transformers (BERT). Based on the so-called Transformer neural network, this technique has gained 

attention and has become a ubiquitous baseline in NLP tasks, since it examines the context of words in 

both directions within a sentence (Kalyan et al., 2021). 

2.4.4.1 Extrapolate the process to other pathogens and/or fields 

Although this Chapter is focused on the waterborne pathogen Legionella, the IK are generic for 

waterborne pathogens. The good results with Legionella indicate that the IE model could also be 

successful for other waterborne pathogens, although many of those are not uniquely waterborne, but also 

spread via other matrices (food) or via person-to-person contacts, adding more complexity. The ability 

of DL methods (coupled with rule-based techniques) to unravel the complexity of information found in 

scientific publications enables experts to create more custom-train NER models using sufficient and 

representative training data from other waterborne pathogens publications. The proposed approach also 

enables scientists from different scientific domains to explore the power of using AI to extract complex, 

qualitative, or quantitative information from scientific publications. For example, the use of IE could be 

tested for the ability to extract functions such as inactivation rates (at different temperatures), 

disinfection kinetics, or log removal values of pathogens from various treatment processes found in 

scientific case studies. 

2.5 Conclusions 
This Chapter aimed to evaluate the feasibility and performance of a newly developed IE model to extract 

both qualitative and quantitative information from scientific publications about the waterborne pathogen 

Legionella. For the IE model, we adopted a combination of supervised (custom-trained NER model) and 

rule-based (regex pattern-matching, and pool parsing) techniques. The evaluation metrics showed a 

satisfactory performance for extraction of both qualitative and quantitative information: the custom-

trained NER model had an overall F-score of 0.85, and the rule-based techniques had an F-score of 0.95. 

The IE model returned similar results with the manual extraction indicating that the extracted 

information is of high quality, and it can be further used by experts who seek to extract meaningful 

information from scientific publications using AI. 
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Overall, this study indicates that IE can provide an efficient and adequate approach for extracting 

qualitative and quantitative information on waterborne pathogen characteristics from the complex body 

of environmental microbiology literature. Scientists and experts can therefore begin to harness the power 

of Artificial Intelligence and Deep Learning techniques in this science field.  
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Supplementary material 
 

Table S2. 1 Total number of scientific publications and the combination of search terms. 

Search 

engine 

Search terms Searched 

fields 

Number of 

publications 

New 

publications 

P
u

b
M

ed
 

(Legionella) AND (outbreak) AND (emergency) All fields 140 140 

(Legionellosis) AND (outbreak) AND (emergency) All fields 129 35 

(Legionella) AND (emergency) All fields 391 251 

(Legionella) AND (incubation) AND (source of 

exposure) 

All fields 

10 9 

(Legionella) AND (incubation) AND (source of 

exposure) AND (transmission) 

All fields 

4 0 

(Legionella) AND (incubation) AND (transmission) All fields 23 19 

Total number of scientific publications 

454 

 

 

Figure S2. 1 Flow diagram on the selection of scientific publications adopted by the PRISMA guidelines. 
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Table S2. 2 List with the 50 selected scientific publications related to Legionella. 

Title Reference 

A case of legionella pneumonia caused by home use of continuous positive airway pressure (Schnirman et al., 2017) 

A cluster of legionnaires' disease and associated pontiac fever morbidity in office workers, 

Dublin, June-July 2008 

(Ward et al., 2010) 

A community outbreak of Legionnaires' disease in Geneva, Switzerland, June to September 

2017 

(Zanella et al., 2018) 

A large outbreak of Legionnaires' disease at a flower show, the Netherlands, 1999 (Den Boer et al., 2002) 

A pilot study of rapid whole-genome sequencing for the investigation of a Legionella 

outbreak 

(Reuter et al., 2013) 

Air-conditioner cooling towers as complex reservoirs and continuous source of Legionella 

pneumophila infection evidenced by a genomic analysis study in 2017, Switzerland 

(Wüthrich et al., 2019) 

An outbreak of travel-associated legionnaires disease and pontiac fever: The need for 

enhanced surveillance of travel-associated legionellosis in the United States 

(Benin et al., 2002) 

An unusually long-lasting outbreak of community-acquired Legionnaires' disease, 2005-

2008, Italy 

(Scaturro et al., 2014) 

Antibiotic susceptibility of Legionella strains isolated from public water sources in Macau 

and Guangzhou 

(Xiong et al., 2016) 

Automobile windshield washer fluid: A potential source of transmission for Legionella (Schwake et al., 2015) 

Barrow-in-Furness: A large community legionellosis outbreak in the UK (Bennett et al., 2014) 

Outbreak Investigations and Identification of Legionella in Contaminated Water (Lee, S., & Lee, 2013) 

Community-acquired pneumonia: Role of atypical organisms (Cosentini et al., 2001) 

Confirmed and Potential Sources of Legionella Reviewed (van Heijnsbergen et al., 

2015) 

Could it be Legionella? (Darby and Buising, 2008) 

Legionella pneumophila and Other Legionella Species Isolated (Amemura-Maekawa et 

al., 2018) 

Detection and identification of Legionella species from groundwaters (Brooks et al., 2004) 

Epidemiology and clinical management of Legionnaires' disease (Phin et al., 2014) 

Existence and control of Legionella bacteria in building water systems: A review (Springston and 

Yocavitch, 2017) 

Lessons From an Outbreak of Legionnaires’ Disease on a Hematology-Oncology Unit (Francois Watkins et al., 

2017) 

Compost and Legionella longbeachae : an emerging infection? (Currie and Beattie, 2015) 

Legionella longbeachae detected in an industrial cooling tower linked to a legionellosis 

outbreak, New Zealand, 2015; possible waterborne transmission? 

(Thornley et al., 2017) 

Cutaneous Legionella longbeachae Infection in Immunosuppressed Woman, United 

Kingdom 

(Harris and Battersby, 

1990) 

Legionella occurrence in municipal and industrial wastewater treatment plants and risks of 

reclaimed wastewater reuse: Review 

(Caicedo et al., 2019) 

Legionella pneumophila levels and sequence-type distribution in hospital hot water samples 

from faucets to connecting pipes 

(Bédard et al., 2019) 

Legionella: A reemerging pathogen (Herwaldt and Marra, 2018) 

Legionella: From environmental habitats to disease pathology, detection and control (Atlas, 1999) 

Legionellosis acquired through a dental unit: a case study (Schönning et al., 2017) 

Legionellosis on the rise: A review of guidelines for prevention in the United States (Parr et al., 2015) 

Legionellosis outbreak associated with asphalt paving machine, Spain, 2009 (Coscollá et al., 2010) 

Legionnaires' disease (Cunha et al., 2016) 

Legionnaires' disease at a Dutch flower show: Prognostic factors and impact of therapy (Lettinga et al., 2002) 

Legionnaire's Disease in Compromised Hosts (Lanternier et al., 2017) 
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Legionnaires' Disease in Hotels and Passenger Ships: A Systematic Review of Evidence, 

Sources, and Contributing Factors 

(Mouchtouri and Rudge, 

2015) 

Legionnaire's Disease Since Philadelphia: Lessons Learned and Continued Progress (Cunha and Cunha, 2017) 

Legionnaires’ disease in Europe, 2011 to 2015 (Beauté, 2017) 

Microbiological diagnosis and molecular typing of Legionella strains during an outbreak of 

legionellosis in Southern Germany 

(Essig et al., 2016) 

Microbiology and Epidemiology of Legionnaire's Disease (Burillo et al., 2017) 

Multiple sources of the outbreak of legionnaires’ disease in Genesee County, Michigan, in 

2014 and 2015 

(Smith et al., 2019) 

New approach to environmental investigation of an explosive legionnaireś disease outbreak 

in Spain: Early identification of potential risk sources by rapid Legionella spp 

immunosensing technique 

(Cebrián et al., 2018) 

Outbreak detection and secondary prevention of Legionnaires' disease: A national approach (Den Boer et al., 2007) 

Outbreak of Legionnaires' disease associated with cooling towers at a California state 

prison, 2015 

(Lucas et al., 2018) 

Outbreak of Pontiac fever due to Legionella anisa (Fenstersheib et al., 1990) 

Outbreaks of Legionnaires’ Disease and Pontiac Fever 2006–2017 (Hamilton et al., 2018) 

Results from the national Legionella outbreak detection program, the Netherlands, 2002–

2012  

(Den Boer et al., 2015) 

Huhumidifier-associated paediatric legionnaires' disease, Israel, February 2012 (Moran-Gilad et al., 2012) 

Legionella contamination in warm water systems: A species-level survey (Dilger et al., 2018) 

Legionella infection and control in occupational and environmental health (Fujii and Yoshida, 1998) 

Legionella longbeachae and legionellosis (Whiley and Bentham, 

2011) 

Severe Pneumonia Caused by Legionella pneumophila (Chahin and Opal, 2017) 

 

 

Figure S2. 2 System performance and standard deviation for Recall (left) and F-score (right) under different number of 

publications. 
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Table S2. 3 Comparison between the system’s performance and manual extraction of IK from 10 new publications. Red 

highlighted shade= erroneous results. Red bold font= Missed result (either by the IE model or by the manual extraction). 
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Abstract 

During pathogen contamination events of drinking water, water utilities want access to the scientific 

literature, providing them with information and insights derived from actual (past) contamination events 

so they can rapidly assess the situation and respond accordingly. The need for rapid access to information 

suggests that manual literature reviews might not be sufficient and necessitate the use of Artificial 

Intelligence and specifically Large Language Models to gather such information from text documents. 

This study systematically assessed the performance of multiple open-source Large Language Models, 

including Llama 2, Mistral, and Gemma (and their variations) in a question-answering task related to 

pathogen contamination events of drinking water. The evaluation metrics included Precision, Recall, F1 

score, Automated Accuracy, and Empty Score. The model with the highest performance on a set of 23 

questions (prompts) using 188 scientific publications was then manually evaluated by a human. 

The results showed that all models performed reasonably well with an average F1 score ranging from 

81% to 87%. After considering all the evaluation metrics, the Llama 2 model was the most reliable 

model with an average Automated Accuracy of 86%. However, the hallucination effect of Llama 2 was 

evident, unlike the Gemma model, which although it had a lower Automated Accuracy score, it was less 

prone to hallucination. The Human Evaluation showed that the Llama 2 model delivered correct answers 

when the questions were clear and straightforward. However, when the question required further 

interpretation, the model often struggled. The use of LLMs in automated information extraction tasks 

shows great potential for time-critical applications, such as processing large volumes of (historical) data 

in real-time thereby reducing the time required for manual literature reviews in case of emergencies.  

Further development of hybrid models that can combine strengths from multiple LLMs could lead to 

robust, high-accuracy information extraction tools for emergency management and decision-support in 

the drinking water sector. 

Keywords: Contamination events; Large Language Models; Information Extraction; Question-

answering; Emergencies  
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3.1 Introduction 
During pathogen contamination events of drinking water (DW), water utilities want to ensure the safety 

of drinking water and rapid restoration of the water supply system since human exposure to pathogens 

poses serious health risks (Hrudey and Hrudey, 2004). Accurate and timely information is crucial during 

such crises to rapidly assess and respond. As serious contamination events of DW are rare, water utilities 

have limited experience with how such an event unfolds, what the health impact (and impact on customer 

trust) can be, what effective mitigation strategies are etc. The initial information at the onset of an event 

is generally limited, while the need to respond is urgent. There are response protocols in place, but there 

is little access to the scientific literature that would allow to gather information and insights derived from 

actual (past) pathogen contamination events. These insights often cover the cause and source of 

contamination, the associated pathogens and their typical concentrations, the number of people exposed, 

sick, or deceased, as well as any monitoring and prevention measures implemented by the responsible 

authorities, and how effective they have been.  

The need for a timely response, the diverse nature of pathogens, and the complexity of how pathogen 

contamination events are reported in the scientific literature suggest that traditional methods, such as 

manually performing literature reviews and meta-analyses, might not be sufficient (Paraskevopoulos et 

al., 2022) when decision-makers need instant access to information. Artificial Intelligence (AI), which 

provides rapid data processing and information extraction (IE) capabilities, can revolutionize responses 

to emergencies related to pathogen contamination events in drinking water supply. 

Over the past two decades, AI has emerged as a powerful tool for automating information extraction. 

Biomedical sciences, in particular, have leveraged AI-driven Information Extraction techniques, 

especially for extracting data from Electronic Health Records and Randomized Control Trials. Common 

approaches, include Machine Learning (ML), Deep Learning (DL) and Natural Language Processing 

(NLP) as illustrated by studies like Cohen and Hersh (2005), Meystre et al. (2008), Kiritchenko et al. 

(2008), Patrick and Li (2010). Paraskevopoulos et al. (2022) tested the extraction of water pathogen 

information from the scientific literature using DL, NLP and rule-based techniques and developed a 

model that could efficiently extract such information with sufficient accuracy.  

In the scientific literature of outbreaks and pathogen-related emergencies in drinking water supply, the 

complexity and unstructured information in text presents a challenge for IE and QA tasks that traditional 

techniques (in ML and DL) cannot properly handle. 

A significant architecture within DL for processing sequential data, like text, is the Transformer model, 

which uses self-attention mechanisms to dynamically weigh the importance of different inputs (Vaswani 

et al., 2017). This architecture is foundational in modern language processing tasks, including question-

answering (QA) tasks (Rajpurkar et al., 2016). For example, DL techniques use models that can digest 

large volumes of text (structured or unstructured) and provide answers to questions (queries) by 

understanding context and relevance. Historically, Transformer architectures, such as BERT 

(Bidirectional Encoder Representations from Transformers), have been influential in the field of NLP. 

Developed by researchers at Google AI and introduced in 2018 through the paper "BERT: Pre-training 

of Deep Bidirectional Transformers for Language Understanding" (Devlin, 2018), BERT marked a 

significant advancement in how machines understand human language.  

Large Language Models (LLMs) are a type of transformer, based on a Decoder architecture, created to 

understand and generate human language from raw text. They are considered "large" because they can 

process vast amounts of text data and have architectures that include billions of parameters. LLMs can 

handle various language tasks, such as translation, summarization, question answering, and text 

generation, often with minimal task-specific adjustments. Recently, LLMs have become crucial for IE 

and QA tasks excelling in interpreting complex medical texts and retrieving accurate information from 

diverse sources (Kartchner et al., 2023; Chen et al., 2023). 

The shift from BERT-like models to contemporary LLMs has been characterized by increasing the 

model size (more layers, more parameters), expanding training data (more diverse, larger datasets), and 
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enhancing versatility (capable of more varied tasks). This progression reflects a broader trend in AI 

towards building more powerful, efficient, and adaptable systems. 

Given the impressive performance of LLMs in performing IE and QA tasks across general and 

biomedical sciences corpora, there is a promising potential for their application in the environmental 

microbiology scientific field. Although LLMs have been successfully used in the water sector to improve 

environmental predictions (Li et al., 2024b), or simplify complex analytical processes (Liang et al., 

2024), their performance on QA tasks in environmental microbiology has not been tested. 

This Chapter aims to fill that gap by systematically assessing the performance of multiple open-source 

LLMs, including Llama 2 (7b), Mistral (7b), and Gemma (2b and 7b) on a QA task related to pathogen 

contamination events of drinking water. The goal of this Chapter is to identify the LLM with the highest 

performance using multiple evaluation metrics and to manually evaluate the top-performing model's 

answers on a set of 23 pathogen-related questions (prompts), to determine what information can be 

extracted with sufficient accuracy. 

3.2 Methodology 
To evaluate the performance of different LLMs on a QA task, we first gathered scientific publications 

related to outbreaks and pathogen-related contamination events of DW. After collecting the data, we 

processed and formatted the publications to ensure consistency. The data was then annotated for the QA 

task applied to each LLM. Figure 3.1 provides the flowchart of this QA task. All the evaluation results 

along with the questions and raw data can be found in our Github repository (Ribalta, 2024). 

 

Figure 3. 1 The flowchart of the QA task including the steps, the actions, and the description. 
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3.2.1 Data gathering 

The scientific publications were collected through a systematic review of the literature using the search 

engine PubMed. The full list of the search query can be found in Figure S3.1 of the supplementary 

material. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines (Liberati et al., 2009) was adopted. The selection of publications was based on their relevance 

to pathogen contamination events occurring in drinking water and their ability to answer the maximum 

number of questions in the QA task. The publications were evaluated based on specific criteria such as 

topic comprehensiveness of the information, and clarity on the desired information. Ultimately, a total 

of 188 publications were selected addressing outbreaks, infrastructure failures, and accidents that 

eventually led to pathogen contamination events in drinking water, as well as their associated response 

measures. The entire flowchart of the PRISMA guidelines can be found in Figure S3.2 of the 

supplementary material. 

3.2.2 Data processing 

A manual check was performed on a set of publications to ensure consistency in section headings across 

all publications. Based on these checks, we assumed consistency and used rule-based keyword matching 

techniques to automatically remove sections irrelevant to the QA task, including the methodology, 

discussion, conclusion, acknowledgements, and references sections. This approach ensured that the 

filtering process was reliable, despite any minor inconsistencies. The relevant information, such as cause 

and source of contamination, pathogen concentrations, number of people exposed, sick, or deceased, 

and mitigation measures were typically found in the abstract, introduction and results sections. 

The extracted information from each publication was then converted into .txt format to be processed as 

raw data. Subsequently, the processed publications were further segmented to keep only the sentences 

and content relevant to the desired information. This way the model does not have to parse unnecessary 

text in the abstract and introduction sections. Figure S3 in the supplementary material shows an example 

of this process, highlighting sentences with relevant information within the introduction section of a 

publication. 

3.2.3 Data annotation 

In this step, an annotated dataset containing each publication, the associated questions and their 

corresponding answers, was created. This annotated dataset served as the basis for evaluating and 

comparing the performance of different LLMs in the QA task. 

To ensure consistency, clear annotation guidelines were set including how to identify the correct 

information in the text, handle ambiguous cases, and deal with overlapping information. For example, 

if a question cannot be answered directly from the text, it is up to the annotator (an expert) to find 

relevant text that indirectly answers the question or to decide whether there is no information at all. 

Additionally, in cases where the text is ambiguous and the annotator is not sure of what is factually 

correct versus what is explicitly stated in the text, the annotator should prioritize what humans would 

perceive as correct, rather than trying to anticipate what the model might interpret as correct.  

We then developed 23 questions related to pathogen contamination events in drinking water. These 

questions were designed to test different aspects of the LLMs' comprehension and retrieval capabilities. 

Some of them were simple questions with straightforward answers such as: "What was the date of the 

event?", and "What was the location of the event?". Other questions were more ambiguous in the sense 

that sometimes it would be difficult even for a human to find an answer in the text segment. Some of 

these questions include: "What was the cause/source of contamination?", and "What were the mitigation 

measures?". Table 3.1 provides the entire list of 23 questions along with a description of each one of 

them and 4 main topics of questions. As can be seen, certain questions instruct the model not to infer 

answers. This is because, due to the model’s tendency to hallucinate, some questions had to be redefined 

after we observed that the answers were vague, or the model provided irrelevant responses. 



Chapter 3- Extracting information about drinking water contamination events from the scientific 

literature: performance evaluation of Large Language Models 

 
81 

Table 3.1. The list of questions (prompts) to be answered by the LLMs. 

Topic Questions 

E
v

en
t 

d
et

a
il

s 

1. When did the contamination event occur? 

2. Where did the contamination event take place? 

3. Can you provide a summary of the contamination event? 

4. In the text, what triggered the contamination event? Do not infer an answer. 

5. What was identified as the origin of the contamination? 

6. How was the contamination event first discovered? 

7. Over what period did the contamination event span? 

Im
p

a
ct

 

8. How many individuals were exposed to the contaminant? Don't write the illness count. 

9. What was the number of people who fell ill due to the event? 

10. What is the ratio of individuals who became ill to those who were exposed? 

11. How many fatalities were associated with the contamination event? 

12. What symptoms were associated with the contamination? 

13. What are the age demographics of the individuals mentioned within the text? 

In
v

es
ti

g
a

ti
o

n
 

14. What pathogens were found in the collected samples? 

15. What were the initial actions taken to investigate or inspect the event? 

16. Can you describe the detailed investigation or inspection? 

17. What is the case definition used? 

18. Which risk factors were identified during the investigation? 

19. What types of water analyses methods were performed during the monitoring phase? 

20. Name the contaminants detected using water sampling analysis. Do not infer positive 

detections. 

M
it

ig
a

ti
o

n
 

21. What immediate actions were taken to mitigate the effects of the contamination? 

22. What steps were taken to restore the system after some time passed? Only say those 

mentioned in the text. 

23. What measures have been implemented to prevent future contamination events? 

 

The manual annotation was then performed by reading through the segmented text (Data processing 

step) from each publication where for each question, the annotator identified and highlighted the relevant 

answer.  

Finally, all the annotated data were gathered into a single JSON file, where each entry contained the 

publication ID and title, the relevant text segment (usually one or two sentences), the question, and the 

annotated answer. The JSON file containing this structured dataset was then used in the QA task, 

providing a reliable basis for evaluating the LLMs' performance. 

3.2.3.1 (Re)defining prompts 

As can be seen in Table 3.1, certain questions instruct the model not to infer answers. This is because, 

due to the model’s tendency to hallucinate, some questions had to be redefined after we observed that 

the answers were vague, or the model provided irrelevant responses. Hallucination refers to the 

generation of text that is factually incorrect or nonsensical but presented in a manner that appears 

plausible and coherent. 

The hallucination effect was also tackled in the creation and optimization of the prompt for each LLM. 

Figure 3.2 shows the final prompt that was used to feed each LLM model before the QA task. It is 

divided into different parts, one per line: 
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• First line: Instruct the model to use the provided information to answer the given 

question. 

• Second line: Instruct the model on how to proceed if there is no relevant response 

in the context. 

• Third line: Specify the text of the file that must be extracted. 

• Fourth line: State the specific question out of the 23 needed. 

• Fifth line: Remind the model not to generate any invented answers. 

• Sixth line: Guide the model to start answering directly, ensuring it does not include 

an introductory part in the response and answers without added syntactic sugar.  

 

Figure 3.2. The final prompt before each QA task for all LLMs. 

3.2.4 LLM QA task 

3.2.4.1 LLM selection 

Although existing benchmarks of the most prominent LLMs provide insights into their performance 

under generic conditions, their relevance and effectiveness specifically within the environmental 

microbiology field remain to be determined. To select the most suitable LLMs for the QA task, various 

pre-trained models were evaluated. It was essential for the models to meet computational requirements 

that would allow for local storage within an organization. This criterion was established to avoid reliance 

on cloud services, which typically operate on a pay-per-subscription or pay-per-use basis. 

The chosen LLMs are among the most well-known in the state of the art, with similar performance 

benchmarks. Different sizes were chosen for each type of LLM to compare performance under different 

computational costs. The selected LLMs are: 

• LLaMa 2 7b12 (Touvron et al., 2023): LLaMa is a series of models developed by Meta. It is 

known for its versatility and robust performance in multiple NLP benchmarks, and it is suitable 

for a variety of NLP tasks such as text generation, translation, summarization, and question-

answering. The “7b” in LLaMa 2 7b denotes that the model has 7 billion parameters. 

• Mistral 7b13 (Jiang et al., 2023): Developed by the Mistral AI team, it is claimed to outperform 

the LLaMa 2 13b model across all benchmarks. Released under the Apache 2.0 license, it 

provides a strong performance with an emphasis on efficiency and open-source accessibility. 

• Gemma 7b14 (Team et al., 2023): Part of the Gemma family models developed by the Google 

Gemini team. This model is also claimed to be superior to LLaMa 2 13b in all benchmarks. It 

offers advanced capabilities in NLP tasks, benefiting from Google’s extensive research and 

development in AI. 

 
12 https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main 
13 https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/tree/main 
14 https://huggingface.co/mlabonne/gemma-7b-it-GGUF/tree/main 

https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main
https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/tree/main
https://huggingface.co/mlabonne/gemma-7b-it-GGUF/tree/main
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• Gemma 2b15 (Team et al., 2023): Another model from the Gemma family, also developed by 

the Google Gemini team. As one of the first models to compete at the state of the art with only 

2 billion parameters, it was included to understand the potential impact of smaller models on a 

possible growing trend. 

LLMs can be slightly modified to decrease their computational cost with a small loss in performance. 

For this, the computational cost of the models was checked and reduced when Quantization was applied. 

Quantization involves converting the floating-point numbers (typically 32-bit or 16-bit) used in model 

weights and activations to lower bit-width representations, such as 8-bit integers. The main goal of 

quantization is to make the model more efficient in terms of memory usage, computational power, and 

energy consumption, while maintaining an acceptable level of accuracy. The variations of the models 

used in the study were limited to those available: Gemma 7b Q8 (8-bit integers Quantization), Mistral 

7b Q8, and Llama 2 7b Q8 and Q4 (4-bit integers Quantization). 

3.2.4.2 Evaluation metrics 

The performance of the various LLMs was evaluated considering two important factors: that the answer 

is contextually correct, and that the model does not hallucinate. A correct context means that even though 

the model’s answer is written differently than in the annotated text, the meaning is the same. 

Hallucination has already been explained in Chapter 3.2.3.1. The evaluation metrics used to evaluate 

these two factors are: 

• BERT score (Precision, Recall, F1): A metric that uses the pre-trained contextual embeddings 

from BERT to evaluate the quality of text generation by comparing it with a reference 

(annotated) text using cosine similarity. More information on how the BERT score works can 

be found in Zhang et al. (2019). 

o Precision: Measures how many tokens (or embeddings) from the predicted text are close 

matches (semantically similar) to tokens in the reference text (quality of prediction). 

o Recall: Measures how many tokens from the reference text are captured by the predicted 

text (reference coverage). 

o F1 score: The harmonic mean of precision and recall. It balances the two metrics, 

providing a single number that considers both how much of the predicted text matches 

the reference and how much of the reference is covered by the prediction. 

• Empty score: The 23 questions cannot be answered across all 188 scientific publications simply 

because the relevant information is not present in all of them. Models should recognize this and 

indicate that the document does not contain any answer. This metric measures how many times 

(percentage) the model accurately identifies such instances. Only this and the Human Evaluation 

metric (see below) assess the model’s ability to correctly predict empty responses when there is 

no information available. The remaining metrics (BERT Score, Automated Accuracy) focus 

solely on the extraction of information. 

• Automated Accuracy: This metric automatically measures how often the model being evaluated 

correctly answers a question. The process uses a voting system where the prediction accuracy 

of the model being evaluated (evaluatee), is assessed by the remaining models (evaluators). Each 

LLM evaluator is asked with a prompt to vote with a simple “Yes” or “No” on whether the 

predicted answer contains the same contextual information as the annotated answer, and the 

majority vote determines the final decision. Below is a chunk of the code that generates the 

prompt for the voting system. The full implementation of the voting system can be found in the 

GitHub repository16: 

 

 

 

 
15 https://huggingface.co/google/gemma-2b-it/tree/main 
16 https://github.com/Applied-Artificial-Intelligence-Eurecat/PathoTHREAT-data-retrieval/blob/main/src/auto_accuracy/evaluate.py 

https://huggingface.co/google/gemma-2b-it/tree/main
https://github.com/Applied-Artificial-Intelligence-Eurecat/PathoTHREAT-data-retrieval/blob/main/src/auto_accuracy/evaluate.py
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prompt=""" 

I will provide two text strings below. Do these two strings have the same contextual 

information? 

After your analysis, respond with 'yes' if they share the same context, or 'no' if they do not. 

 

String 1: {candidate} 

String 2: {reference} 

Answer only yes or no. Further wording is useless. 

The answer is: 

""" 

• Human Evaluation: The real accuracy of the best-performing model is then calculated manually. 

This metric is the manual measurement of the percentage of times the top-performance model 

correctly answers a question. For every question, the prediction is reviewed manually by a 

human, one by one, for each of the 188 scientific publications. Due to the time-intensive nature 

of this manual activity, it is performed only for the best-performing model, which is selected 

based on the other three metrics: BERT Score, Empty Score, and Automated Accuracy. 

3.3 Results 

3.3.1 LLM evaluation 

Table 3.2 presents the performance of each LLM on the QA task for a specific publication. Although 

only five questions and answers are shown here, the responses to all questions for all 188 scientific 

publications for each model are available in the GitHub repository (Ribalta, 2024). As can be seen, there 

is high variability in how each LLM responds to the questions. While these results are limited to a single 

publication and conclusions cannot be drawn, it is interesting to observe the differences in the reasoning 

capabilities of each model. 
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Table 3.2 Examples of responses from each LLM to selected questions in the QA task. The selected publication was from 

Martin et al. (2006). 
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Continuation of Table 3.2 Examples of responses from each LLM to selected questions in the QA task. The selected 

publication was from Martin et al. (2006). 
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The results of evaluating the different models can be seen in Figure 3.3 where the models have an 

average F1 score ranging from 81% to 87%. Various observations can be made from these results, such 

as the small differences between the models in the Precision, Recall, and F1 metrics. When comparing 

these metrics with the Automated Accuracy, we notice discrepancies that are not reflected in the metrics 

provided by the BERT Score metric. Specifically, the Gemma models perform significantly worse than 

the Llama or Mistral models. Another notable observation is that while the Gemma models effectively 

predict instances where the answer is not included in the documents (76-80%), this ability is not observed 

in the Mistral and Llama models (12-25%). It is visually evident that models with better Automated 

Accuracy perform worse in predicting empty records. This happens because both Mistral and Llama 

models tend to hallucinate more frequently compared to the Gemma model when faced with unclear 

prompts. Therefore, when a question cannot be answered (because there is no apparent answer in the 

text), these models will provide a plausible yet incorrect answer. 
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Figure 3.3. The performance of each LLM in the QA task. 

3.3.1.1 Best LLM selection 

To choose the best model, all metrics have been considered. Despite Llama 2 quantized to 8 integers 

having the worst performance in the Empty Score metric, it was selected for manual evaluation because 

it achieves the best results in the remaining evaluation metrics, including an F-score of 87% and an 

Automated Accuracy of 86%. While other models may perform better in the Empty Score metric, they 

do not achieve the same level of Automated Accuracy and BERT Scores as Llama 2 7b Q8. Given that 

we prioritize the ability of a model to extract information over empty identification, Llama 2 stands out 

as the best choice. 

3.3.2 Human Evaluation of the best LLM 

The evaluation metrics of the Llama 2 7b Q8 model are presented in Table 3.3 including the "Human 

Evaluation" metric, for each of the 23 questions.  It is worth noting that the Empty ratio indicates the 

number of empty answers that were correctly predicted compared to the total dataset. For example, 

question 4 has an Empty ratio of 24/70 indicating that out of the 70 scientific publications that did not 

have any answer to question 4, Llama 2 7b Q8 was able to correctly predict an empty answer 24 times. 

One notable factor contributing to the difference between the Automated Accuracy and Human 

Evaluation for Llama 2 7b Q8 in the scoring is the variation in their scoring calculation. The Automated 

Accuracy metric does not consider "empty" answers during the evaluation, whereas the Human 

Evaluation takes all types of answers into consideration, including the empty ones. Therefore, the 

Human Evaluation provides a more comprehensive representation of the model’s general behavior for 

each question. 

Regarding the individual assessment of each question for the Human Evaluation, we can discern which 

questions are easier to be answered and which are more challenging. For example, question 1, a 

straightforward question regarding the date of the contamination event, is correctly answered 94% of 

the time. On the other hand, question 8, which asks about the number of people exposed to the 

contamination), is correctly predicted only 34% of the time. It is considered a complex question because 

it requires the model to accurately distinguish between exposure, illness, or number of cases. 

Additionally, the difficulty of predicting the absence of an answer varies depending on the nature of the 

question. For example, question 11 (number of fatalities) is considered a straightforward question and 

that is why it is correctly predicted as empty 100 times out of 138. However, questions that are 

ambiguous or open to interpretation even for a human, often lead the model to hallucinate a response 

when it should not.  Such a question is number 17, related to the case definition of the event, being 

correctly predicted as empty only 3 out of 84 times. The inherent complexity and ambiguity of such 

questions make it challenging for the model to correctly provide an answer. 
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Table 3.3. The results of the Human Evaluation (along with all the other metrics) for each of the 23 questions while 

evaluating Llama 2 7b. 

Question Precision Recall F1 Empty Empty ratio Automated accuracy Human evaluation 

1 0.89 0.86 0.88 0 0/1 0.92 0.94 

2 0.90 0.90 0.90 - - 0.83 0.83 

3 0.89 0.86 0.87 - - 0.91 0.94 

4 0.89 0.89 0.89 0.34 24/70 0.80 0.66 

5 0.87 0.84 0.85 0 0/11 0.7 0.59 

6 0.89 0.85 0.87 0 0/28 0.76 0.52 

7 0.89 0.86 0.88 0.16 4/25 0.89 0.78 

8 0.84 0.82 0.83 0.15 18/116 0.66 0.34 

9 0.83 0.82 0.82 0.14 2/14 0.86 0.82 

10 0.88 0.83 0.85 0.11 10/87 0.91 0.52 

11 0.86 0.82 0.84 0.72 100/138 0.72 0.87 

12 0.89 0.85 0.87 0 0/11 0.88 0.87 

13 0.9 0.84 0.87 0.51 43/84 0.94 0.76 

14 0.92 0.89 0.9 0 0/3 0.96 0.97 

15 0.87 0.83 0.85 0.33 1/3 0.87 0.73 

16 0.88 0.84 0.86 0.11 1/9 0.91 0.87 

17 0.91 0.88 0.90 0.03 3/84 0.86 0.49 

18 0.9 0.85 0.87 0.03 3/80 0.90 0.52 

19 0.87 0.83 0.85 0.03 1/27 0.85 0.70 

20 0.87 0.87 0.87 0.02 1/46 0.79 0.65 

21 0.89 0.85 0.87 0 0/58 0.95 0.66 

22 0.9 0.86 0.88 0 0/81 0.91 0.53 

23 0.9 0.86 0.88 0.02 2/86 0.92 0.48 

Average 0.88 0.85 0.87 0.13 - 0.86 0.7 

 

3.3.2.1 Observations in Human Evaluation 

During the Human Evaluation, two key observations became quickly apparent. First, as discussed in the 

previous section, some questions were difficult even for a human to provide a proper answer. For 

example, in the following text (both sentences are from the same scientific publication) it is challenging 

for the annotator to decide what is considered as source of contamination (question 5): “Epidemiological 

and environmental evidence suggested mains repair as the source of contamination. The wide 

geographical distribution of cases and preliminary interviews with patients suggested drinking water as 

the source of the outbreak.” As can be seen, both main repairs and the drinking water are mentioned as 

sources in the text. Based on the annotation guidelines (Chapter 3.2.3), the annotator prioritizes 

annotating based on what humans would perceive as correct (the source of contamination of drinking 

water cannot be the drinking water itself), rather than trying to anticipate what the model might interpret 

as correct, which can lead to inconsistencies with the predicted answer of the model. For instance, the 

annotator might decide that the mains repair is the source, while the model predicts that drinking water 

is the source. 

Second, there were instances where the model would provide an answer that was better than the 

annotated response given by the human annotator (refer to Chapter 3.2.3). For example, in response to 

question 3, “Can you provide a summary of the contamination event?”, the annotator’s answer was: “A 

large outbreak of cryptosporidiosis affected 43 cases in the community of Talent, Oregon. The outbreak 

was associated with the drinking water system in the area.”. In contrast, the model provided a more 
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detailed response: “The contamination event was an outbreak of cryptosporidiosis that occurred in 

Talent, Oregon from January to June 1992. The outbreak was associated with mechanical and 

operational deficiencies at one of the city's water filtration plants, which resulted in poor raw-water 

supply conditions and 43 cases of cryptosporidiosis. Correction of the deficiencies in the filter plant led 

to substantial improvement in treated water quality, which coincided with the end of the outbreak.” As 

can be seen, the model was able to provide a more comprehensive answer not only summarizing the 

incident, but also including key details and outcomes. Another example can be seen in question 15, 

“What were the initial actions taken to investigate or inspect the event?” The annotator’s response was: 

“1-l sample was collected from the pumping station”. In contrast, the model’s response was: “Collected 

three samples from the water distribution system, one sample from the tank, and one sample from the 

pumping station on the first day after the outbreak had been recognized (11 October 1996).” Here, the 

model not only provides a more detailed response regarding the number and location of samples 

collected, but also includes a specific timeline, enhancing the response with temporal context. 

Third, in some questions, there is a notable discrepancy between Automated Accuracy and Human 

Evaluation, which at first seems unusual. For example, question 17 has a high Automated Accuracy 

score (86%) but a relatively low Human Evaluation score (49%) across the 188 publications. This major 

difference can be explained by examining the Empty score and specifically, the Empty Ratio. Question 

17 has a low Empty score of 3% (with an Empty Ratio of 3/84). Since Automated Accuracy does not 

take into account the Empty score, while Human Evaluation does, the latter has a lower score than the 

former. 

3.3.2.2 Performance analysis across topics of questions 

Figure 3.4 provides an overview of how each of the 23 questions (along with the 4 main topics of 

questions) scored during the Human Evaluation. In other words, how easy (or difficult) was for the 

Llama 2 7b Q8 model to answer the 23 questions in each of the 188 scientific publications. 

 

Figure 3.4. An overview of the Human Evaluation score of the 23 questions over the 188 scientific publications. 

In the Event Details topic, questions 4, 5, and 6 score very low. These questions are related to the cause, 

the source, and the first detection of a contamination event. Therefore, a low score is somewhat expected 

because it is difficult for the model to distinguish between the cause and the source of contamination, or 

to understand the nuances between causality that leads to contamination detection versus increases in 

hospitalizations that trigger contamination detection. 
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In the impact topic, questions 8 and 10 yield the lowest score. These questions are related to the exposure 

and attack rate. Again, here the model struggled to differentiate between exposure, illness, and 

sometimes even fatalities. As for the attack rate, it is an inherently complex concept that sometimes is 

challenging even for humans to extract from the publication. 

Regarding the investigation topic, questions 17 and 18 scored close to 50%. These questions are related 

to case definitions and risk factors. These questions were challenging for the model because it was not 

always clear from the text whether a case definition was explicitly provided. Furthermore, risk factors 

were often not clearly labeled as such in the text, leading the model to hallucinate and generate answers 

that, while logically correct based on the content, were not explicitly stated in the provided text. As a 

result, the model's answers were considered wrong, even though they were contextually plausible. The 

same applies to questions 22 and 23 from the mitigation topic. Those questions were related to the 

restoration and prevention measures taken by responsible authorities. It was difficult for the model to 

determine whether a measure was a restoration or a prevention measure, leading sometimes to the same 

answer for both questions. 

3.4 Discussion and Recommendations 
In this study, certain metrics were prioritized over others while comparing the performance of the 

models. The predicting ability of providing information was the primary focus (both the BERT Score 

and the Automated Accuracy), as it allowed us to select the model with the greatest ability to predict the 

correct answer for each question. However, metrics such as the Empty Score are also of great 

importance, as they reflect the model’s tendency to hallucinate or generate incorrect information. 

This behavior is evident in the performance of the various models. The Gemma models are effective at 

avoiding hallucinations by providing an empty response when no answer is evident in the text, which is 

desirable in uncertain situations. Other studies have also found Gemma to be a robust model for 

minimizing erroneous outputs (Nadeau et al., 2024; Li et al., 2024a). However, their overall Automated 

Accuracy is notably low, having incorrect predictions on answering questions 40-50% of the time. On 

the other hand, the Llama model demonstrates higher Automated Accuracy in its predictions but is more 

prone to hallucination, often generating plausible yet incorrect answers when no clear answer is present 

in the text. In this study, the Llama 2 7b Q8 model was selected as the best model (having an average 

Automated Accuracy of 86%) primarily because the objective was to be able to extract all types of 

answers from the scientific publications. It was preferable to incorrectly predict one category (Empty 

Score metric) rather than have a model with generally low predicting ability on answering questions. 

However, it's important to note that in other cases, such as those requiring robust answers when the 

answers are not present within the provided text, the Gemma models might be a better fit, depending on 

the specific task requirements. 

The Human Evaluation metric showed that the Llama 2 7b Q8 can provide correct answers when the 

question (prompt) is clear, straightforward, and easy to identify in the text (e.g., “there were 5 deaths”). 

However, when the question requires further interpretation or when it is relatively difficult to identify 

the answer in the text, the model often did not provide a correct answer. This challenge is also addressed 

in Nadeau et al. (2024), which examines the hallucination tendencies of Llama2, Mistral, and Gemma, 

finding that Llama2 tends to hallucinate more in comparison to the other LLMs, making it more difficult 

to control its behavior with prompt engineering. This underscores the importance of proper prompting 

and highlights the need for high-quality, well-structured, clear, and consistent information in the source 

text to ensure reliable information extraction during QA tasks. 

At present, there are two main approaches to using LLMs: deploying open-source models on local 

systems, which typically have lower capacity, or using cloud services that offer larger, more 

computationally intensive models on a pay-per-use basis. In our study, we chose the first option, utilizing 

models with lower capacity but significantly reduced costs. Open-source models like Llama 2 offer 

practical, cost-effective, and scalable solutions for domain-specific tasks. However, their performance 

is comparable to more advanced models like OpenAI GPT (e.g., ChatGPT). Proprietary models like 

ChatGPT are known for their excellent reasoning capabilities, which stem from extensive training and 
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scalability. This makes them particularly effective at handling complex queries or generating detailed 

insights. However, their reliance on subscription-based APIs and higher operational costs can make them 

less accessible, especially for organizations with limited budgets or those focusing on highly specialized 

tasks. Ultimately, this creates a trade-off: while models like ChatGPT are more flexible and capable of 

advanced reasoning, open-source alternatives can be fine-tuned for specific applications, such as 

answering questions related contamination events of drinking water. Furthermore, the potential in 

developing open-source hybrid models that combine the strengths of multiple architectures, offers high 

accuracy and adaptability for emergency decision support systems. 

3.5 Conclusions 
This study introduced an automatic information extraction approach through a QA task solution that 

diverges from traditional NLP techniques and the recently popular encoding-based transformers, such 

as BERT. The objective was to assess the performance of various LLMs on a QA task related to pathogen 

contamination events in drinking water. The results demonstrate that solutions based on decoder-based 

transformers have significantly advanced the current state of the art in information extraction. 

Among the models evaluated, the Llama 2 model emerged as the best performer for general information 

extraction tasks. However, its inability to reliably predict empty answers -when no relevant information 

is present in a document- highlights an area for further research and refinement. In contrast, the Gemma 

model performed exceptionally well at identifying empty registers but exhibited frequent wrong 

predictions in other information extraction tasks. This underscores the need for complementary 

approaches or hybrid models that can combine strengths from both models to ensure robust performance 

across different dimensions of the task. 

These advancements in automated extraction of information show potential for time-critical 

applications, such as processing large volumes of (historical) data in real-time thereby reducing the time 

required for manual literature reviews in case of emergencies. Therefore, further development of hybrid 

models could lead to robust, high-accuracy tools for emergency management and decision-support in 

the drinking water sector. 
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drinking water AND outbreak AND 
norovirus 

All fields 150 46 

drinking water AND outbreak AND 
Campylobacter 

All fields 190 23 

outbreak AND waterborne AND E coli All fields 384 14 

 

 

Figure S3. 1 The full list of the search query for the systematic review. 

Figure S3. 2 The flowchart of the PRISMA guidelines 
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Figure S3. 3 An example of the data processing step highlighting the relevant information within the introduction section of 

a publication. 
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Abstract 

Pathogen intrusion in drinking water systems can pose severe health risks. To better prepare in planning 

and responding to such events, computational models that capture the intrusion and health impact 

dynamics are needed. This study presents a novel benchmark testbed that integrates current knowledge 

on pathogen transport and fate in chlorinated systems and can assess infection risk from contamination 

events. The model considers organic matter degradation, chlorine decay mechanisms, pathogen 

inactivation kinetics, as well as stochastic water demands.  

We studied modeling of wastewater intrusion events that can occur anywhere within a chlorinated and 

non-chlorinated network. We applied the Quantitative Microbial Risk Assessment framework focusing 

on three pathogens: enterovirus, Campylobacter, and Cryptosporidium, and their respective dose-

response models. Synthetic household-level water demand time series were used to model the individual 

water consumption timing and calculate the infection risk (exposure via ingestion).  

Model outcomes indicate that while chlorination aids mitigation, larger contaminations can still lead to 

infections due to chlorine resistance (for Cryptosporidium) and chlorine depletion at the contamination 

point. In our example scenarios, chlorine-susceptible pathogens infected 0.78-26.6 % of the downstream 

population, while chlorine-resistant ones infected the entire downstream population. Enterovirus 

infection risk is higher, despite the concentrations in the contamination source being lower, due to the 

lower susceptibility to chlorine than Campylobacter. In non-chlorinated networks, the modeled 

wastewater contamination events led to 11-46 % infection risk in the total population, depending on the 

contamination location. Hydraulic uncertainty had a limited influence on infection risk. Furthermore, 

Campylobacter’s infection risk is more sensitive to the initial concentration in the contamination source 

whereas enterovirus infection risk to the inactivation rate. The model further indicates that the time 

window for effective mitigation of the magnitude of a waterborne outbreak is short (within hours). 

Keywords: QMRA; Wastewater contamination; Drinking water network modeling; Pathogens; 

EPANET-MSX 
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4.1 Introduction 
Safe drinking water is crucial for society, impacting health and well-being. Drinking water distribution 

networks (DWDN) are critical infrastructures, recognized by USA's Presidential Policy Directive 21 and 

the European Union's Directive (EU) 2022/2557. This requires plans to enhance water suppliers' 

resilience against natural, accidental, and malicious threats (Teixeira et al., 2019). One such threat is 

when wastewater intrudes into the DWDN. This can expose thousands to contaminated tap water, 

causing acute health effects from pathogens (Hrudey and Hrudey, 2004). Proper DWDN operation and 

maintenance ensures hygiene and hydraulic integrity, preventing pathogen intrusion (Medema et al., 

2013). In systems with residual disinfectants, high disinfectant concentration can maintain safety when 

standard conditions are not met (Lechevallier, 1999). However, outbreaks have been linked to fecal 

contamination in (chlorinated) networks, often due to cross-connection between sewage- and drinking-

water pipelines or intrusion during main breaks (Craun and Calderon, 2001; Hrudey and Hrudey, 2019). 

Specifically, van Lieverloo et al. (2007) note that 26% of the outbreaks in the UK from 1911 to 1995 

were caused by failures in the DWDN. Additionally, 18-20% of outbreaks in Nordic countries from 

1975 to 1991 and 18% of outbreaks in the USA from 1971 to 1998 were attributed to similar failures. 

Notable incidents such as the wastewater contamination in Nokia, Finland with 8453 cases (Laine et al., 

2011), or the wastewater infiltration events in Italy (Giammanco et al., 2018) and in Denmark (Kuhn et 

al., 2017) resulting in 25 and 63 cases respectively, highlight the vulnerability of those systems to 

contamination. During a contamination event, authorities must assess health impacts and respond 

quickly and effectively. Accurate representation of contamination type and site, demand-driven 

hydraulics, understanding of contaminant transport, and the effect of a residual disinfectant as a 

mitigation are crucial for a comprehensive assessment and rapid, efficient response. 

An approach to assess the risk during contamination in the DWDN is to perform a Quantitative Microbial 

Risk Assessment (QMRA). This estimates customers' exposure to enteric pathogens through ingestion. 

Studies have combined hydraulic modeling and QMRA for evaluating health risks after wastewater 

intrusion in DWDNs. For instance, Teunis et al. (2010) examined the risk of norovirus intrusion from 

sewers into DWDNs due to negative pressure transients. They used the EPANET-MSX hydraulic model 

and Monte Carlo simulations for random virus entry and dilution estimation. Their study considered the 

coincidence of virus presence and tap water usage, finding that this factor significantly affects the 

calculated infection risk level and distribution in the population. Another effort described by Yang et al. 

(2011) involved surge modeling and hydraulic simulations to model a virus intrusion in a DWN again 

due to pressure transients. The authors employed EPANET-MSX to integrate a Chick-Watson model 

that accounted for the inactivation kinetics of selected pathogens and chlorine decay. They concluded 

that the factors influencing the risk of viral infection were the duration of the negative pressure event 

and the number of affected nodes, without incorporating stochastic water demand or other water quality 

parameters. Blokker et al. (2018) developed a QMRA model for contamination events after main repairs 

in non-chlorinated DWDNs. They discovered that pathogen concentration greatly influences the 

ingested dose and that the infection risk varies notably between pathogens due to different dose-response 

relationships. 

Controlling pathogens in the DWDN heavily relies on residual disinfectants. Over the past 25 years, 

there's been increasing interest in modeling chlorine (Cl) transport and decay due to reactions with total 

organic carbon (TOC) in DWDNs. Frankel et al. (2023) assessed the uncertainty of drinking water 

quality in DWDNs, specifically focusing on monochloramine decay. They focused on quantifying the 

effects of hydraulic and chemical uncertainties on water quality predictions. They conducted a sensitivity 

analysis and Monte Carlo simulations to identify the most influential chemical parameters and explore 

the impact of both chemical and hydraulic uncertainty. Their findings were that monochloramine 

uncertainty is significantly influenced by hydraulic variability and increases as water age increases. 

Their study emphasized the importance of accounting for these uncertainties to make accurate model-

based decisions for managing water quality in DWDNs. Pelekanos et al. (2021) applied a parallel first-

order bulk and wall chlorine decay model to evaluate a network's vulnerability to deliberate 

contamination attacks, using nominal water demands. They found that contamination location 

significantly affects the size of the exposed population. Abhijith et al. (2021) examined a chlorinated 

(and chloraminated) network's response to arsenic contamination using second-order kinetics, based on 
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competing reactions in water. This study emphasized the critical role of disinfectant residual. Lastly, 

Fisher et al. (2017a) used a two-reactant model with fast and slow agents, incorporating temperature as 

it greatly affects bulk chlorine decay.  

Eliades et al. (2023) provided a detailed review of contamination event diagnosis tools, emphasizing the 

need for realistic physical and virtual testbeds to simulate contamination emergencies and assess their 

impact, considering uncertainties. However, most models use generic contamination approaches, 

lacking tools to accurately represent pathogen dynamics- and failing to consider all important modeling 

parameters together. To the best of the author’s knowledge, there has not been any other attempt to 

model all the different reactions that occur in a DWDN simultaneously during a wastewater 

contamination event, while also using stochastic water demands and assessing the infection risk using 

QMRA. 

In line with this, to enable responsible authorities to prepare for and respond effectively to 

contaminations, we have developed a novel, open benchmark testbed named BeWaRE (Benchmark for 

Water network and Risk Evaluation). This testbed integrates all current relevant knowledge regarding 

the transport and fate of pathogens in chlorinated systems in one model and is capable of estimating the 

health impacts of such events. With BeWaRE, responsible authorities can model various contamination 

events. These events vary from minor, where negative pressure transients cause slight wastewater entry, 

to major accidents with significant wastewater influx. The benchmark can be used for developing new 

software and decision support tools for monitoring, control, and management of contamination 

emergencies, as well as creating datasets for machine learning research.  

BeWaRE integrates the findings of previous studies, accounting for bulk and wall chlorine decay, 

various pathogen inactivation kinetics, TOC degradation, and realistic water demands and consumption 

distribution, incorporating QMRA.  

The contributions of this work are summarized below: 

• Introduction of an open-access testbed designed for comprehensive simulation of contamination 

by waterborne pathogens under various disinfection regimes. 

• Integration of realistic household consumption profiles improving daily consumption pattern 

accuracy and health impact calculations for waterborne pathogens using QMRA.  

• Investigation of a wastewater contamination event and evaluation of the importance of the input 

parameters. 

Specifically, this Chapter presents a benchmark hydraulic and water-quality model to assess the health 

impact following a large wastewater contamination in a chlorinated and non-chlorinated network and 

evaluate chlorine's mitigating effect. The model was tested using a modified version of L-Town, a 

benchmark network from the BattLeDIM (Battle of the Leakage Detection and Isolation Methods) 

competition (Vrachimis et al., 2022), featuring 782 junctions, 905 pipe segments, and serving 

approximately 28,000 citizens. In our example, we investigated a single contamination event originating 

from three distinct locations using Campylobacter, enterovirus, and Cryptosporidium as reference 

pathogens. Hydraulic uncertainty was addressed to account for the dynamic, uncertain nature of water 

demands and examine their influence on the model outcome. Water quality uncertainty was included to 

examine the effects of variability of input parameters on the model outcome. The model outcome is the 

expected health impact over time and space, expressed as the expected number of infections, and the 

infection risk, following the QMRA steps. 

4.2 Benchmark model development 
The benchmark model developed is depicted in Figure 4.1. The hydraulic modeling includes stochastic 

water demands that determine the hydraulics of the entire network. This involves modeling different 

water end-uses, from which we isolate the tap water end-use. As shown in the figure, we generate 

individual tap water consumption events that will later be used for the risk assessment. The hydraulic 

modeling is also integrated with the water quality modeling component. The water quality modeling 

includes simulating reactions between different agents of interest, eventually leading to the calculation 
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of pathogen concentration. This concentration, combined with the volume calculated from the 

consumption events, is used to determine the dose. The dose is then integrated into the QMRA part to 

assess the infection risk. All the different components of the BeWaRE model are described in detail in 

the following sections. 

 

Figure 4. 1 The flowchart of BeWaRE model with the integration of all components. 

4.2.1 Network graph 

The topology of the DWDN is modeled by a directed graph denoted as 𝒢 = (𝒱, ℰ). Here, 𝒱 is the set of 

nodes such that 𝒱 ⊂ 𝑍 × Θ𝑣. The set 𝑍 = {1, ⋯ , 𝑛𝑣} indicates the positive integers representing the 

index of the 𝑖-th node, 𝑣𝑖 ∈ 𝒱, and |𝒱| = 𝑛𝑣 is the total number of nodes. Nodes represent pipe junctions 

and consumer (water demand) locations, reservoirs, and tanks. The set Θ𝑣 associates each node with 

parameters (real numbers) detailing the network's physical properties that affect water flow and quality, 

such as node elevation. Each node 𝑣𝑖 is associated with a time-varying consumer water demand, denoted 

by 𝑑𝑖(𝑡). The set ℰ  represents edges (links) defined as ℰ ⊂ 𝒱 × 𝒱 × Θ𝑒. An edge 𝑒(𝑖,𝑗) ∈ ℰ connects 

nodes 𝑣𝑖 and 𝑣𝑗 where 𝑖, 𝑗 ∈ 𝑍 and 𝑖 ≠ 𝑗. The total link count is |ℰ| = 𝑛𝑒. Links represent pipes, pumps, 

and valves, with pumps and valves being the main hydraulic control elements in a DWDN. The set Θ𝑒 

associates the edge with its parameters (real numbers). Depending on the edge type, parameters vary. 

For instance, a pipe might have length, diameter, and roughness as parameters, while a pump's 

parameters might be polynomial coefficients defining its characteristic curve. In this work, both Θ𝑣 and 

Θ𝑒 parameters are considered time-invariant since they refer to characteristics of pipes and nodes that 

may change slowly over time (e.g., years), while we consider wastewater contamination events lasting 

from hours to days. 

4.2.2 Consumer demand modeling 

The main driver of water network hydraulics is consumer demand at nodes (demand-driven analysis), 

represented as 𝑑𝑖(𝑡) for the time-varying demand at node 𝑣𝑖. Typically, demand is modeled by an 

average or base demand component, multiplied by a daily or weekly consumption pattern. 

Approximations of base demand data can be deduced from the utility's billing records, while patterns 
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are usually rough approximations (Vrachimis et al., 2019). We employ the STochastic Residential water 

End-use Model (STREaM) tool, to generate synthetic household-level water demand time series. 

STREaM uses a large dataset with observed and disaggregated water end-uses from over 300 single-

family U.S households (Cominola et al., 2018). The associated water end-uses are toilet, faucet, bathtub, 

clothes washer, and dishwasher. Each water end-use has distinct consumption patterns and probability 

distributions for water use volume, use duration, daily frequency, and time of use during the day. This 

gives a realistic residential demand profile for the L-Town network, ignoring non-residential demands 

such as industries. To derive a daily demand time-series 𝑑𝑖(𝑡) per node, we use the L-Town network's 

base demand to calculate the population associated to node 𝑣𝑖, defined as 𝑃𝑜𝑝(𝑖), assuming an average 

consumption of 150 𝐿/𝑑𝑎𝑦 per person. Multiple simulations of the STREaM tool are employed with 

different household occupancy to allow for variations in consumption patterns until the total occupancy 

equals 𝑃𝑜𝑝(𝑖). The demand profile for node 𝑣𝑖, indicated by 𝑑𝑖(𝑡), is the combined household 

consumption at each time instant. Note that, using this demand modeling approach, different daily tap 

water end-uses per individual can be distinguished at each node and used in the exposure assessment 

(part of QMRA as discussed in Chapter 1.2.2.2). 

4.2.3 Hydraulic dynamics 

The key hydraulic quantity associated with each node 𝑣𝑗 is the hydraulic head, denoted by ℎ𝑗. The main 

hydraulic quantity associated with a link 𝑒(𝑖,𝑗) is the water flow, denoted by 𝑞(𝑖,𝑗) (Boulos et al., 2006). 

The overall hydraulic state 𝑥ℎ ∈ 𝑅𝑛ℎ of a DWDN is defined by the head at nodes and flow in links, thus 

𝑛ℎ = 𝑛𝑣 + 𝑛𝑒. These states are calculated using a hydraulic model of a DWDN, which is a set of 

equations derived from the laws of (i) conservation of mass; and (ii) conservation of energy in the 

network. In this work, we use the EPANET modeling software (Rossman, 2000) to solve these 

equations, which uses the pipe formulation as proposed by Todini (1987). 

4.2.4 Water-quality dynamics 

Water quality characterizes the concentration of key variables in water, while water quality dynamics 

describe changes in the concentration of physical, chemical, and biological agents within the DWDN 

over time and space. Agents in DWDN either react with others altering concentration over time or 

maintaining a constant concentration. Both types of agents are diluted and transferred within the water, 

thus their concentration at a particular network location change over time. 

Let 𝑊 ∈ 𝑅𝑛𝑤 be a vector indicating the concentration of 𝑛𝑤 agents of interest in a DWDN, at a certain 

location and time, with 𝑤(𝑖) being the 𝑖-th agent. We focus on certain agents because they either need 

to be controlled or because they may react with these controlled agents. 

Reaction dynamics explain how agent concentrations change due to reactions or decay.  Single-species 

reaction dynamics, commonly used in water quality modeling literature, describe the decay rate of an 

agent (Clark et al., 2010), representing the concentration of a single agent, 𝑤(𝑖), while neglecting others. 

This simplification is convenient since we typically don't know all reactions and agents present in water. 

During normal operation, hydraulic dynamics in a water network influence the water quality dynamics 

through agent transport along pipes and dilution at pipe junctions. The change in agent concentration 

over time 𝑡 and space, coupled with reaction dynamics in bulk water and on pipe surfaces (axial 

dispersion neglected for simplicity), is represented by a first-order hyperbolic partial differential 

equation (Eliades et al., 2023): 

𝜕𝑊(𝑖,𝑗)(𝑧, 𝑡)

𝜕𝑡
+

𝑞(𝑖,𝑗)(𝑡)

𝛼(𝑖,𝑗)

𝜕𝑊(𝑖,𝑗)(𝑧, 𝑡)

𝜕𝑧
= 𝑓𝑟(𝑊(𝑖,𝑗)(𝑧, 𝑡), 𝛩𝑟) + 𝐵(𝑧)𝑢(𝑖,𝑗)(𝑧, 𝑡) + 𝐵(𝑧)𝜙(𝑖,𝑗)(𝑧, 𝑡) 1 

where 𝑊(𝑖,𝑗)(𝑧, 𝑡) is the agent concentrations vector in water at continuous time 𝑡 and at distance 𝑧 along 

a pipe corresponding to the edge 𝑒(𝑖,𝑗), with water flow 𝑞(𝑖,𝑗)(𝑡) and pipe cross-sectional area α(𝑖,𝑗) ∈

Θ𝑒. The function 𝑓𝑟(⋅) denotes concentration changes due to reactions with other agents in the water or 

οn pipe walls, considering the pipe parameter vector Θ𝑟. The function 𝑢(𝑖,𝑗) ∈ 𝑅𝑛𝑤 represents controlled 
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agent input (e.g., disinfectant addition). The function ϕ(𝑖,𝑗)(𝑧, 𝑡) ∈ 𝑅𝑛𝑤 corresponds to the uncontrolled 

injection of contaminants that can occur at any location in a DWDN (e.g., wastewater intrusion). The 

matrix 𝐵(𝑧) specifies the injection location and agent type. Note that, if a new agent is added to the 

network, this needs to be included in 𝑊, and suitably modify function 𝑓𝑟(⋅) if this reacts with other 

agents.  

In general, this hyperbolic partial differential equation cannot be solved analytically, however, a 

numerical solution is possibly by using a suitable discretization method. One approach is to segment the 

network into finite volumes, and model multi-species reactions (Shang et al., 2008a) as coupled sets of 

differential and algebraic equations solved for each finite volume of the network, summarized by:  

dW(t)

dt
= fr(W(t), Θr) 

 

 

2 

fg(W(t), Θg) = 0 

 

3 

where 𝑊 is a vector of average concentrations of 𝑛𝑤 agents of interest within a finite volume, 𝑓𝑟(⋅) is a 

vector field denoting concentration change due to decay reactions between agents, 𝑓𝑔(⋅) corresponds to 

the algebraic equations for mass balance, and Θ𝑟, Θg are the coefficients of the reaction kinetics.  

In this work, we used EPANET for hydraulic modeling and EPANET-MSX for multi-reaction modeling, 

chosen for their open-source tool ecosystem, for instance, the EPANET-MATLAB Toolkit for effective 

scenario simulations in MATLAB (Eliades et al., 2016). Regarding advection dynamics, this benchmark 

model employs the EPANET-MSX simulator with the following core assumptions: 

a) Advective transport in pipes: agents move with the fluid's average velocity and interact with 

other species and pipe walls. 

b) Mixing at pipe junctions: Inflows from multiple links are assumed to mix completely and 

instantly. 

c) Mixing in storage nodes: all inflows to tanks mix completely with existing contents, subject to 

possible bulk phase reactions, with alternative schemes available to model plug flow. 

4.2.5 Agents of interest during wastewater intrusion 

Water quality dynamics largely depend on the chosen agents 𝑊 and the differential equations 𝑓𝑟(⋅) that 

describe their reactions. For example, contaminants may react with disinfectants, reducing disinfectant 

concentration.  

Table 1 lists the reference pathogens that were modeled, each representing a pathogen group (bacterium, 

virus, protozoon) with varying Cl resistance and infectivity. The selection of these pathogens is primarily 

due to their frequent occurrence in wastewater, differences in chlorine resistance, and high infectivity. 

Their data availability and use in existing literature, offers a comparative and well-established basis for 

their inclusion in our analysis (Betanzo et al., 2008, Laine et al., 2011, Odhiambo et al., 2023). For 

modeling, we denote pathogens as the agents of interest, represented by 𝑤(1) = 𝐶𝑃  (organisms/L). They 

enter drinking water during a large wastewater intrusion event, i.e., the first contaminant input ϕ(1) =
𝑃 (organisms). 

Table 4.  1 Waterborne pathogens and their significance in water supplies. Adapted from WHO. Guidelines for drinking 

water quality (World Health Organization, 2017). 

Pathogen Health 

significance 

Persistence in 

water supplies 

Chlorine 

resistance 

Relative 

infectivity 

Campylobacter High Moderate Low Moderate 

Enterovirus High Long Moderate High 

Cryptosporidium High Long High High 
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Cl (mg) is a key agent of interest, as it impacts pathogen concentration. We denote the concentration of 

chlorine as 𝑤(2) ≡ 𝐶𝐶𝑙 (mg/L), while the injected concentration of chlorine is a controlled input 𝑢(1) ≡
𝐶𝐶𝑙 (mg/L). Wastewater carries organic and inorganic compounds reacting with chlorine in a 

chlorinated network. We designated TOC as an indicator of all chlorine-reducing agents (CRA) in water 

that includes both Natural Organic Matter (NOM), typically considered as slow chlorine-reducing agents 

(SRA), and the inorganic compounds (such as ammonia and iron), that are typically fast chlorine-

reducing agents (FRA), as seen in other studies (Vieira et al., 2004; Monteiro et al., 2014; Fisher et al., 

2017a).  The use of TOC as an indicator is convenient since it is measurable, however, it is important to 

note that not all TOC contributes directly to chlorine demand, since it includes both reactive and non-

reactive compounds. FRA and SRA from wastewater are denoted by 𝑤(3) ≡ 𝐶𝐹𝑅𝐴(mgCl-equiv/L), 

𝑤(4) ≡ 𝐶𝑆𝑅𝐴(mgCl-equiv/L), and modeled as contamination inputs ϕ(2) ≡ 𝐹𝑅𝐴 (mgCl-equiv), ϕ(3) ≡
𝑆𝑅𝐴 (mgCl-equiv). CRA is found at lower levels in drinking water than in wastewater and mostly 

consists of SRA. We account for this by inserting additional SRA at DWDN entry points, denoted by 

𝑢(2) ≡ 𝐶𝑆𝑅𝐴(mgCl-equiv/L). 

The complete state, control input, and contamination input vectors for this benchmark model are then 

given by: 

𝑊 = [𝐶𝑃 , 𝐶𝐶𝑙 , 𝐶𝐹𝑅𝐴, 𝐶𝑆𝑅𝐴]⊤, 𝑈 = [𝐶𝐶𝑙, 𝐶𝑆𝑅𝐴]⊤, Φ = [𝑃, 𝐹𝑅𝐴, 𝑆𝑅𝐴]⊤ 4 

4.2.6 Modeling reactions 

The water quality dynamics cover concentrations of four agents: Chlorine 𝐶𝐶𝑙 (mg/L), fast and slow 

reducing agents 𝐶𝐹𝑅𝐴, 𝐶𝑆𝑅𝐴 (mgCl-equiv/L) , and various reference pathogens 𝐶𝑃𝑖
 in Colony Forming 

Units (CFU/L), plaque-forming units (PFU/L) and oocysts/L, all assumed viable/infectious at intrusion. 

Figure 4.2 shows processes in a pipe during wastewater intrusion into the DWDN. Chlorine decay is 

modeled in both the bulk water and near the pipe wall. In the bulk phase, chlorine reacts with SRA at 

DWDN entry points. From the intrusion point (in the DWDN), it reacts with both FRA and SRA, causing 

bulk chlorine decay. In the wall phase, chlorine reacts with the biofilm on the network pipe walls, leading 

to further chlorine decay. The equation for bulk and wall chlorine decay is described as: 

𝑑𝐶𝐶𝑙

𝑑𝑡
= 𝑓𝐶𝑏(𝐶𝐹𝑅𝐴, 𝐶𝑆𝑅𝐴, 𝐶𝐶𝑙) + 𝑓𝐶𝑤(𝐶𝐶𝑙) 5 

where 𝐶𝐶𝑙  is the total chlorine concentration (mg/L) at time 𝑡 (time notation omitted for simplicity), 

𝑓𝐶𝑏
(⋅) and 𝑓𝐶𝑤

(⋅) are functions describing chlorine (mg/L) reactions in the bulk and wall phase 

respectively. The reaction of chlorine with FRA, SRA, and pathogens 𝑃, results in the degradation of 

the first two, and the inactivation of the latter. 

 

Figure 4. 2 Schematic showing processes during wastewater intrusion. P (𝜙(1)), FRA (𝜙(2)) and SRA (𝜙(3)) are the 

pathogens, the fast and the slow reducing agents respectively entering from wastewater intrusion. Cl (𝑢(1)) and SRA (𝑢(2)) 

are the controlled chlorine input and the slow reducing agents respectively entering through entry points. 
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The proposed model was applied on a real network, on which the L-Town benchmark was based. The 

parameters of chlorine decay (see following sections) were calibrated using real chlorine measurements 

from sensors installed in that network. Parameters that could not be validated from the calibration 

process were based on the literature. More details on the calibration process are provided in the following 

sections and in the supplementary material. 

4.2.6.1 Bulk chlorine decay 

The parallel second-order model is commonly used for bulk chlorine decay, accounting for fast and slow 

reactions with reactants (Monteiro et al., 2014; Fisher et al., 2017a). In the fast phase, chlorine reacts 

with inorganic compounds and highly reactive organic compounds, represented as FRA. In the slow 

phase, it is consumed by less reactive organic compounds, modeled as SRA. Chlorine's reactions with 

pathogens are insignificant compared to those with FRA and SRA, thus they're neglected. The two-

phase equation is shown below: 

𝑓𝐶𝑏(𝐶𝐹𝑅𝐴, 𝐶𝑆𝑅𝐴, 𝐶𝐶𝑙)  =   − 𝑘FRA𝐶FRA𝐶𝐶𝑙   −  𝑘SRA𝐶SRA𝐶𝐶𝑙 6 

Where 𝑘𝐹𝑅𝐴, 𝑘𝑆𝑅𝐴 (L/mgh) are the decay rate coefficients for fast and slow reactions respectively. 

We adopted chlorine decay parameter values from Monteiro et al. (2014) as they also examined chlorine 

decay in a DWDN under similar conditions of water temperature, organic material, and chlorine levels 

to our contamination scenario. For the value of slow reaction decay rate coefficient (𝑘𝑆𝑅𝐴), we verified 

that the predicted values of chlorine concentration aligned with the observed sensor data.  The high value 

of fast reaction decay rate coefficient (𝑘𝐹𝑅𝐴) reported by Monteiro et al. (2014) is assumed to be suitable 

for our model, since high concentrations of ammonia and other inorganic compounds are expected in 

wastewater. 

4.2.6.2 Wall chlorine decay 

We followed the work of Monteiro (2020) where the authors used the EXPBIO wall decay model by 

Fisher et al. (2017b) to study chlorine decay from biofilm activity in a full-scale DWDN, using first-

order kinetics: 

𝑓𝐶𝑤(𝐶𝐶𝑙) = −
4

𝐷
(

𝐴𝑒−𝐵𝐶𝐶𝑙

1 + 𝐴𝑒−𝐵𝐶𝐶𝑙/(𝑘𝑚)
𝐶𝐶𝑙) 7 

where  𝐷 is the pipe diameter (dm), 𝑘𝑚 the mass transfer coefficient (dm/h), 𝐴 an amplification factor 

(dm/h), and finally 𝐵 the rate coefficient (L/mg). 

In the real network (the basis of L-Town), six chlorine sensors were installed to record chlorine 

concentrations at five-minute intervals. To calibrate the proposed water quality model, the network with 

calibrated hydraulics and known chlorine input was first simulated for one week. The wall decay 

parameters A and 𝐵 were then adjusted to minimize the error between the model predictions and actual 

measurements from the chlorine sensors and ensure that the simulated chlorine residual closely 

resembles reality. After calibration, the parameter 𝐵 was held constant at 14 (L/mg) while the A value 

ranged between [0.01,1], as it is related to the pipe material. Specifically, we linked 𝐴 values to pipe 

roughness, since it is expected to correlate with the level of biofilm formation (Douterelo et al., 2016). 

The amount of biofilm differs across pipes, with areas that have high biofilm thickness exhibiting high 

chlorine demand, and areas with low thickness having lower chlorine demand. PVC pipes with 

roughness coefficient > 140 (Hazen-Williams), less prone to biofilm, got 𝐴 = 0.01. Cast/galvanized 

iron pipes with roughness < 140, more prone to biofilm formation and wall chlorine decay, got 𝐴 values 

between [0.01,1], with 𝐴 ∈ 𝑅. 

4.2.6.3 CRA degradation 

A CRA concentration of 140 mg/L based on TOC concentration in wastewater was taken from (Metcalf 

et al., 1991), representing all chlorine-reducing agents. Based on Fisher et al. (2017a), the concentrations 

of chlorine-reducing agents that react fast (FRA) is approximately 40% of the total chlorine-reducing 

agents’ concentration (expressed as mgCl-equiv/L) while SRA constitute around 60%. Similarly, in the 
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paper of Vieira et al. (2004), chlorine decay follows a similar 40%-60% pattern, indicating that the 

fraction of chlorine that reacts fast is approximately 40%, while the rest is 60%.  This approximation 

serves as a practical baseline for modeling the reactive fractions of CRA. To estimate the amount of 

CRA entering the DWDN at its entry points, we used the SRA concentration from Monteiro et al. (2014). 

This refers to the CRA naturally present in the DWDN. The formula that describes the degradation of 

FRA and SRA is given by Monteiro et al. (2014): 

𝑑𝐶FRA

𝑑𝑡
= −𝑘FRA𝐶FRA𝐶𝐶𝑙 9 

𝑑𝐶SRA

𝑑𝑡
= −𝑘SRA𝐶SRA𝐶𝐶𝑙 10 

4.2.6.4 Pathogen inactivation 

Pathogen inactivation by chlorine is commonly modeled as Chick Watson kinetics (Teunis et al., 2010; 

Betanzo et al., 2008): 

dC𝑃

d𝑡
= −𝑘𝑝(𝑇)𝐶𝑃𝐶𝐶𝑙 11 

where 𝐶𝑃 is pathogen concentration (CFU or PFU or oocysts/L) at time 𝑡 (time notation omitted for 

simplicity), 𝑘𝑝(𝑇) is the temperature-dependent inactivation rate (L/mg h), and 𝑇 is the temperature in 

degrees Celcius. The inactivation rate for Campylobacter was taken from Betanzo et al. (2008), as they 

also modeled microbial intrusion in a chlorinated network. Enterovirus inactivation rates were derived 

from Rachmadi et al. (2020), who studied chlorine inactivation of coxsackie virus, using the rate 

calculated from required CT values of 4 log inactivation at 5 degrees Celsius. 

Temperature dependence 

Using the Arrhenius equation, we defined the pathogen inactivation rate 𝑘𝑝(𝑇) for enterovirus and 

Campylobacter at a given temperature: 

𝑘𝑝(𝑇) = 𝐴𝑒(−𝐸𝑎/𝑅(𝑇+273)) 12 

where 𝐴 is the frequency factor (L/mg h), 𝐸𝑎 the activation energy (J/mol), and 𝑅 the gas constant (J/K 

mol). For Cryptosporidium, we assumed a zero-inactivation rate due to its chlorine resilience. We used 

inactivation rates at two different temperatures to calculate 𝐴 and 𝐸 (Betanzo et al., 2008; Rachmadi et 

al., 2020). 

4.3 Quantitative Microbial Risk Assessment 

4.3.1 Exposure assessment 

We assume that exposure to pathogens occurs only through the ingestion of tap water. We also assume 

that an individual person consumes 1 L of drinking water per day, divided into several consumption 

(exposure) events of 0.25 L or less. From all the end-uses generated by the stochastic demand generator, 

we isolated the tap water end-use (faucet), and considered the opening of the kitchen tap as the event 

that people drink water. Figure 4.3 illustrates an example of multiple daily consumption events by 126 

individuals in a node, where each rectangle represents an individual consumption event, while the color 

indicates the volume of water consumed. The plot shows cumulative tap water consumption for the day. 

From this, the variability and distribution of tap water consumption behavior throughout the day for each 

individual is evident. Some individuals drink 1 L using only four consumption events, while others use 

six or seven consumption events. This variability reflects the different levels of exposure of each 

individual throughout the day. Pathogens ingested per consumption event are found by multiplying 

consumed water volume with pathogen concentration at each timestep. The daily dose per individual 

sums up the number of pathogens from all daily consumption events. 
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Figure 4.3 The individual daily tap water consumption and the total tap water consumption for a specific node in L-Town. 

Each rectangle in the heatmap represents an individual consumption event, while the color indicates the volume of water 

consumed. 

 

4.3.2 Health effects assessment 

Each pathogen is characterized by a unique dose-response, reflecting their individual levels of 

infectivity. Dose response of enterovirus (coxsackie) is commonly calculated with an exponential model 

utilizing a value of 0.14772 for the probability of microorganism survival 𝑟 (Chigor et al., 2014). For 

Campylobacter and Cryptosporidium, we follow Teunis et al. (2018) and Sterk et al. (2016), using the 

Beta-Poisson dose-response model with the hypergeometric (1F1) function for the probability of 

infection from outbreak studies. The parameters 𝛼 and 𝛽 are 0.38 and 0.51 for Campylobacter, and 0.106 

and 0.295 for Cryptosporidium respectively. 

4.3.3 Risk Characterization 

Integrating exposure and health effects data, we can calculate the infection risk for a specific 

contamination scenario. The infection probability is first calculated per individual 𝑖𝑛𝑑, at a node 𝑣𝑖, at 

each time step 𝑘, considering a number of exposure events 𝐸𝑖𝑛𝑑 for each individual. Following WHO's 

approach (World Health Organization, 2016), we calculate infection probability from multiple exposure 

events over time as follows: 

𝑃𝑖𝑛𝑓(𝑖𝑛𝑑) = 1 − ∏ (1 − 𝑃𝑖𝑛𝑓(𝐸, 𝑖𝑛𝑑))

𝐸𝑖𝑛𝑑

1

 13 
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where 𝑃𝑖𝑛𝑓(𝑖𝑛𝑑) is the infection probability of a single individual over the course of the contamination 

scenario given 𝐸𝑖𝑛𝑑 exposure events, and 𝑃𝑖𝑛𝑓(𝐸, 𝑖𝑛𝑑) is the probability of infection from a single 

exposure event 𝐸 ∈ {1, … , 𝐸𝑖𝑛𝑑}, derived from the dose-response function of the relevant pathogen. Note 

that exposure events vary per individual. The number of expected infections per node 𝑣𝑖 is then given 

by the sum of probabilities of infection for each individual at the node: 

𝑁𝑖𝑛𝑓,𝑖 = ∑ 𝑃𝑖𝑛𝑓(𝑖𝑛𝑑)

𝑃𝑜𝑝(𝑖)

𝑖𝑛𝑑=1

 14 

The infection risk for the total population in the network, given a contamination scenario, is the ratio of 

the total expected infected population to the total population 𝑃𝑜𝑝 = ∑ 𝑃𝑜𝑝(𝑖)
𝑛𝑣
𝑖=1 , as follows: 

𝑅 =
1

𝑃𝑜𝑝
∑ 𝑁𝑖𝑛𝑓,𝑖

𝑛𝑣

𝑖=1

 15 

In addition, we also evaluate the infection risk for the population at the downstream nodes of the 

contamination source. Let 𝑃𝑜𝑝𝑒𝑥𝑝 < 𝑃𝑜𝑝 be the number of individuals at contaminated nodes; then, the 

infection risk of the exposed population 𝑅𝑒𝑥𝑝 is: 

𝑅𝑒𝑥𝑝 =
1

𝑃𝑜𝑝𝑒𝑥𝑝
∑ 𝑁𝑖𝑛𝑓,𝑖

𝑛𝑣

𝑖=1

 16 

 

4.4 Contamination scenarios 
Both chlorinated and non-chlorinated networks began the contamination at 08:00 AM with a temperature 

of 12 °𝐶. A constant SRA injection of 1.85 mgCl-equiv/L was introduced from the entry points. The 

chlorinated network also received a constant chlorine injection of 0.5 mg/L from the entry points.  

Initial pathogen concentrations were selected as mean values based on typical concentrations in raw 

wastewater assuming all culture-based data represent infectious pathogens (Pitkänen and Hänninen, 

2017; Betancourt and Shulman, 2016; Betancourt, 2019). The contamination duration was set at 8 hours, 

with a wastewater injection rate of 100 L/h to represent large contamination, while dilution was 

calculated from the water flow at the node where the intrusion of wastewater was modeled. 

4.4.1 Contamination location 

The study expects contamination location to significantly impact health risks, as network nodes have 

varying hydraulics and affect different population levels over time (Pelekanos et al., 2021). We divided 

the network into three zones, choosing three contamination locations for the main scenario (Figure 4.4) 

based on their downstream population. The first location could affect about 50% of the population (Loc-

L), the second around 30% (Loc-M), and the third a smaller segment at 10% (Loc-S). 
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Figure 4. 4 The three selected contamination locations for the main scenario with small (Loc-S), medium (Loc-M) and large 

(Loc-L) potential impact on the population. 

4.4.2 Hydraulic uncertainty 

Most modeling studies simplify water network hydraulics by using nominal demands, overlooking the 

dynamic, uncertain nature of water demands.  To address this, we vary the average (base) demand of 

each node randomly between ±10% of the nominal value and then generate a stochastically determined 

water demand for every node using STREaM. This procedure is reiterated 100 times generating 100 

unique demand profiles for each node. The goal is to ascertain whether hydraulic uncertainty influences 

the model outcome for each of the three contamination locations using the pathogen Cryptosporidium. 

4.4.3 Quality dynamics variability and uncertainty 

Modeling quality dynamics requires considering input parameter variability or uncertainty. For both 

enterovirus and Campylobacter, various inactivation rates and concentrations exist in wastewater under 

different conditions. To understand the impact of these uncertainties on the model outcome, we 

conducted a nominal range sensitivity analysis on 1) Pathogen inactivation rate (using only lower rates 

as higher rates eliminate all pathogens), 2) Initial contaminant concentration (considering only the 

highest reported concentration), and 3) Contamination duration (ranging from 2 to 24 hours). Table 4.2 

summarizes the quality parameters and initial conditions for the contamination scenario and sensitivity 

analysis. 
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Table 4. 2 Quality parameters and initial conditions incorporated into the benchmark model. 

Parameter Units Contamination 

scenario 

Sensitivity 

analysis 

Notes Reference 

𝐶𝐶𝑙  (𝑢(1)) mg/L 0.5 0.5 Initial chlorine concentration - 

FRA (𝜙(2)) mgCl-equiv 0.4𝑇𝑂𝐶 0.4𝑇𝑂𝐶 Fast-reducing agent Fisher et al., 

2017a 
SRA (𝜙(3)) mgCl-equiv 0.6𝐶𝑅𝐴 0.6𝐶𝑅𝐴 Slow chlorine-reducing agent Fisher et al., 

2017a 

𝐶𝑆𝑅𝐴 (𝑢(2)) mgCl-

equiv/L 
0.6𝐶𝑅𝐴 0.6𝐶𝑅𝐴 Slow chlorine-reducing agent 

from reservoir 

Fisher et al., 
2017a 

𝑘𝐹𝑅𝐴 L/mgh 0.28 0.28 decay rate coefficients for fast 

reactions 

Monteiro et 

al., 2014 

𝑘𝑆𝑅𝐴 L/mgh 0.007 0.007 decay rate coefficients for slow 

reactions 

Monteiro et 
al., 2014 

𝑇 Celsius 12 5 (Correlated 

with inactivation 

rate) 

Temperature - 

𝐶𝑃1
(𝜙(1)) PFU/L 1.39𝑒 + 06 2.08𝑒 + 07 Enterovirus initial concentration Betancourt 

and Shulman, 

2016 

𝐶𝑃2
(𝜙(1)) CFU/L 9.02𝑒 + 06 6.2𝑒 + 07 Campylobacter initial 

concentration 

Pitkänen and 
Hänninen, 

2017 

𝐶𝑃3
(𝜙(1)) oocysts/L 3.54𝑒 + 07 5.4𝑒 + 08 Cryptosporidium initial 

concentration 

Betancourt, 
2019 

𝑇𝑂𝐶 mg/L 140 250 TOC concentration in wastewater Metcalf et 

al., 1991; 
Henze et al., 

2002 

𝑘𝑝1 L/mg h 92.3 -/19.4 Enterovirus inactivation rate Rachmadi et 
al., 2020 

𝑘𝑝2 L/mg h 265.8 -/157 Campylobacter inactivation rate Rachmadi et 

al., 2020 

𝑘𝑝3 L/mg h 0 0 Cryptosporidium inactivation rate - 

Duration Hours 8 2/24 Contamination duration - 

𝐴 dm/h 0.01 − 1 0.01 − 1 Amplification factor Monteiro et 

al., 2020 

𝐵 L/mg 14 14 Rate coefficient Monteiro et 

al., 2020 

𝐾𝑚 Ft/h 1.5826𝑒 − 04
∗ 𝑅𝐸(0.58/𝐷) 

1.5826𝑒 − 04
∗ 𝑅𝐸(0.58/𝐷) 

Mass transfer coefficient Shang et al., 
2008b 
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4.5 Results and discussion 

4.5.1 Chlorinated network 

Figure 4.5 shows the average chlorine distribution in the L-Town network. A chlorine concentration of 

0.5 mg/L is added at the two entry points, to maintain adequate residual chlorine. While this goal is 

mostly achieved, a concerning area arises in the northwest where chlorine levels drop critically. This 

area is characterized by a flow-controlling pump that fills a tank during nighttime hours, which is then 

used for the morning water demand, affecting the chlorine levels. 

 

Figure 4. 5 The chlorine residual in the L-Town network under normal operation. 

Table 4.3 evaluates contamination scenarios in the chlorinated network. At the Loc-L and Loc-M 

locations, near the chlorinated entry points of the DWDN, chlorine residual hinders pathogen spread, 

resulting in fewer infections and lower infection risk for both Campylobacter and enterovirus. 

Table 4. 3 The results for the three pathogens in the chlorinated network. 𝑁𝑖𝑛𝑓 is the total infections, 𝑅 is the infection risk 

for the total population, and 𝑅𝑒𝑥𝑝 is the infection risk of the downstream affected population. 

Source Location Loc-L Loc-M Loc-S 

Pathogens 𝑁𝑖𝑛𝑓 𝑅 𝑅𝑒𝑥𝑝 𝑁𝑖𝑛𝑓 𝑅 𝑅𝑒𝑥𝑝 𝑁𝑖𝑛𝑓 𝑅 𝑅𝑒𝑥𝑝 

Campylobacter 318 0.95% 2.1% 83 0.25% 0.78% 3724 11.2% 100% 

Enterovirus 1158 3.5% 7.8% 2793 8.4% 26.6% 3724 11.2% 100% 

Cryptosporidium 15002 45.1% 97.2% 10268 30.9% 97.9% 3705 11.1% 99.6% 

Despite the higher Campylobacter concentration in wastewater compared to enterovirus (Table 4.2), the 

infection risk from enterovirus is higher in both Loc-L and Loc-M. This is due to Campylobacter’s 

higher inactivation rate, reducing its concentration (upon chlorine reaction) more than enterovirus. This 

occurs even though the dose response relationship suggests that Campylobacter is more infectious than 

enterovirus when both are present at the same concentration (Figure 4.6).  
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Figure 4. 6 The dose-response of the three reference pathogens. 

At the Loc-S location, low chlorine levels are due to both bulk and wall decay.  Extended travel time 

causes more chlorine decay before chlorine reaches Loc-S. During wastewater intrusion, less dilution 

leads to higher FRA levels entering the network causing rapid chlorine decay. Simultaneously, less 

diluted pathogen concentrations increase the number of initial and surviving pathogens, raising exposure 

to all pathogens downstream. This is causing a higher number of infections and infection risk.  Figures 

S4.2-S4.7 in the supplementary material show a 24-hour chlorine residual profile along with 

Campylobacter and enterovirus concentration for a node downstream of each of the three contamination 

locations. Among the three pathogens, Cryptosporidium poses the greatest risk, showing the highest 

infection risk in Loc-L and Loc-M locations. This elevated risk profile can be attributed to 

Cryptosporidium's resistance to chlorine disinfection, showing chlorine provides no protection against 

chlorine-resistant pathogens. 

Figure 4.7 shows the infection risk over 24 hours since contamination. For pathogens Campylobacter 

and enterovirus, the infection risk primarily emerges from the Loc-S location. The identical Loc-S 

infection risk profiles for these two pathogens is due to their high concentrations, infecting the entire 

population. 

 

 

Figure 4. 7 The distribution of the infection risk in the chlorinated network for pathogens Campylobacter (a), enterovirus (b) 

and Cryptosporidium (c). The dashed red line indicates the end of the contamination. 
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The infection risk for Cryptosporidium differs significantly from the other two pathogens. In the Loc-L 

location, infection risk rapidly escalates to 25% within the first 8 hours of contamination, leveling off 

just above 40% by early next morning (04:00 AM). The rise after 04:00 AM is due to increased water 

demand as people start their (next) day, causing residual pathogens to spread and infect more individuals. 

The Loc-M and Loc-S locations show somewhat similar infection risks (at 15% and 10% respectively) 

in the first 8 hours but follow different trends. The differing risk profiles are due to variations in dilution 

and pathogen spread to downstream nodes. The Loc-M location, having higher dilution in certain areas 

and a longer path for pathogens to reach downstream nodes, experiences a gradual risk increase. 

Conversely, the Loc-S location has less dilution and quicker pathogen reach to downstream nodes, 

resulting in a more immediate surge in the infection risk. The dilution factor also influences the infection 

risk profile of enterovirus for Loc-L. This is due to higher contaminant dilution, as locations near the 

reservoir serve more downstream nodes and thus have increased flow. Consequently, the contaminant 

dose is reduced, leading to a lower infection risk compared to the Loc-M contamination location.  

4.5.2 Non-Chlorinated network 

Table 4.4 shows the contamination scenario without chlorine in the network. As expected, 

Campylobacter and enterovirus present a different profile than in the chlorinated scenario, while 

Cryptosporidium's results remain the same. 

Table 4. 4 The results for the three pathogens in the non-chlorinated network. 𝑁𝑖𝑛𝑓 is the total infections, 𝑅 is the infection 

risk for the total population, 𝑅𝑒𝑥𝑝 is the infection risk of the downstream affected population. 

Source Location Loc-L Loc-M Loc-S 

Pathogens 𝑁𝑖𝑛𝑓 𝑅 𝑅𝑒𝑥𝑝 𝑁𝑖𝑛𝑓 𝑅 𝑅𝑒𝑥𝑝 𝑁𝑖𝑛𝑓 𝑅 𝑅𝑒𝑥𝑝 

Campylobacter 15439 46.4% 100% 10467 31.45% 99.7% 3724 11.2% 100% 

Enterovirus 15041 45.2% 97.4% 10304 31% 98.2% 3724 11.2% 100% 

Cryptosporidium 15002 45.1% 97.2% 10268 30.86% 97.9% 3705 11.13% 99.6% 

Campylobacter shows slightly more infections and higher infection risk in the Loc-L and Loc-M 

locations compared to enterovirus, as seen in Figure 4.8. Although Campylobacter and enterovirus seem 

similar initially, they diverge after 7 hours. This behavior can be attributed to the initial concentration 

and dilution. Campylobacter has an initial concentration nearly 10 times higher than that of enterovirus, 

resulting in higher doses in the dose-response (Figure 4.6). Regarding dilution, it takes approximately 7 

hours for the contaminated plume to mix with clean water originating from the network's east side. After 

this interplay, dilution occurs, which reduces the dose. Referring to Figure 4.6, it is evident that when 

the dose shifts to the left, the probability of infection from Campylobacter exceeds that of enterovirus at 

the same dose. 

 

Figure 4. 8 The distribution of pathogens Campylobacter (a), enterovirus (b) depicting the infection risk in the non-

chlorinated network. The dashed red line indicates the end of the contamination. 
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4.5.3 Hydraulic uncertainty 

Figure 4.9 presents the temporal progression of the infection risk over a 24-hour period for the pathogen 

Cryptosporidium, as analyzed across 100 hydraulic scenarios. The influence of hydraulic uncertainty on 

the estimated infection risk is highlighted in all three locations. Specifically, both the Loc-L and Loc-M 

locations show approximately 3% variability, whereas the Loc-S location’s variability remains under 

1%. This 3% variability represents a difference of about 1000 infections. Had we incorporated a larger 

degree of population uncertainty before calculating water demand we expect to have seen more 

variability. 

 

Figure 4. 9 Progression of the infection risk through a 24-hour period for the 100 hydraulic profiles. The dashed red line 

indicates the end of the 8-hour contamination. 

4.5.4 Nominal range sensitivity analysis 

Figure 4.10 shows the infection risk profile of Campylobacter and enterovirus in the Loc-L location for 

the 3 parameters of the sensitivity analysis. Figure S4.1 in the supplementary material presents the 

sensitivity analysis outcomes for all three locations.  

 

Figure 4. 10 The sensitivity analysis infection risk of Campylobacter (a) and enterovirus (b) in the Loc-L location. The solid 

and dashed red lines indicate the end of the 8-hour and 24-hour contamination respectively. We see that Campylobacter’s 

infection risk is more sensitive to the initial high concentration, while enterovirus, to the low inactivation rate. 

The reason the two pathogens have different impactful parameters is due to their inherent characteristics 

in the initial contamination scenario. For example, at the Loc-L location, despite high initial 

Campylobacter concentration, chlorine’s quick inactivation leads to a lower dose, thus lower infection 

probability as shown in Figure 4.6. However, when the initial concentration increases even more, so 

does the dose and infection probability, putting a larger population at risk and leading to a significant 

rise in infection risk. For enterovirus, although subjected to chlorine inactivation in the original scenario, 

it caused more infections than Campylobacter due to its slower inactivation rate. A further decrease in 

this rate allows more contaminants into the network, substantially increasing the infection risk. 

Recognizing the potential variability of these parameters is crucial. Pathogen concentrations in 

wastewater vary, contamination events can last varying durations, and factors like temperature affect 

pathogen inactivation rates. 
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4.5.5 Role of chlorination 

The results of the contamination scenarios emphasize chlorine’s role in controlling waterborne 

pathogens in DWDN. With adequate chlorine residual, the spread of Campylobacter and enterovirus is 

greatly reduced, irrespective of contamination location as the infection risk for downstream population 

is only 0.78%-26.6%. However, areas far from chlorination points may lack sufficient residual chlorine. 

In wastewater contamination, pathogens, especially viruses with low inactivation rates, pose a notable 

risk. Chlorine-resistant pathogens like Cryptosporidium also present a threat. This demonstrates the need 

for a prompt response to such events, as within 5-10 hours post-contamination, 10%-35% of the entire 

population could be infected. 

Exploring a non-chlorinated network offers a contrasting image, where the infection risk escalates, 

specifically with pathogens like Campylobacter that have typically high concentrations in wastewater. 

A contamination event in a non-chlorinated network could infect 97%-100% of the downstream affected 

population. 

4.5.6 Role of contamination location 

In both chlorinated and non-chlorinated networks, different contamination locations exhibit unique risk 

profiles. Contaminations in larger zones, especially in non-chlorinated networks, bear more infection 

risk over time due to more contaminated downstream nodes. Conversely, contaminations in smaller 

zones have lower infection risk but are prone to immediate risk surges due to rapid pathogen spread to 

downstream nodes. Dilution also matters; contamination near the reservoir may lead to more dilution, 

reducing the contaminant mass per node, while contamination at the network’s periphery may result in 

less dilution and higher contaminant mass. This demonstrates how the network’s structural 

characteristics influence the infection risk. 

4.5.7 Limitations and recommendations 

Our risk estimation relies on specific dose-response models. Using different dose-response models could 

alter results, showing that the computed risk is tied to the chosen dose-response model. A limitation is 

the study’s focus on individual pathogen infection risk. Realistically, wastewater carries multiple 

pathogens at different concentrations. Future work should explore cumulative infection risk, considering 

the dose response of all pathogens together for a holistic infection risk assessment, especially in networks 

with low to no chlorine residual. 

One form of limitation is the assumption that exposure to pathogens occurs only through kitchen tap 

water ingestion since exposure can also happen via showering, brushing teeth. Although our proposed 

methodology for the distribution of daily tap water consumption provides adequate variability of 

drinking water consumption over time as evidenced in Figure 4.3, exploring variability of individual 

consumption volumes of tap water (e.g., 0, 0.2, 0.5, 2, 3 or 4 L/p/d) could capture even more variability 

in individual water consumption behavior. 

Another limitation is the absence of real data for CRA concentrations in wastewater. Our analysis uses 

approximations made in the literature that consider TOC concentration as representative of CRA, 

assuming chlorine mainly interacts with inorganic substances (and some organic) during the fast phase, 

and mainly organics in the slow phase.  

The calibration of the BeWaRE testbed was carried out using network-specific data that enhanced the 

accuracy of a model. Several components of the BeWaRE testbed are transferable and can be applied to 

different networks (with different types of water systems), e.g., the water quality model component, or 

the QMRA component. However, if water utilities want to use those components in their network, they 

would first need to calibrate the parameters to get realistic results.  
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4.5.8 Operational changes in water management and policy 

The proposed model can potentially influence operational changes in water management since it 

emphasizes the necessity of advanced modeling tools to effectively mitigate pathogen contamination 

events in the DWDN. Not many people are exposed to incidents but when they are affected by an 

incident, their exposure to pathogens (or infection risk) is high and there is a small window of 

opportunity for meaningful interventions. We believe that our tool can also influence policy. Once again, 

the results of our contamination scenario highlight the need to integrate Water Security Plans into 

existing Water Safety Plans and to develop Standard Operating Procedures for contamination emergency 

responses. Finally, using such computational models to estimate (with high resolution) health impact 

and adopting the use of such technologies for decision support can optimize response strategies and 

improve system resilience. 

4.5.9 Application to real case studies 

BeWaRE has been applied to real case studies in the context of the EU-funded PathoCERT (Pathogen 

Contamination Emergency Response Technologies) project. The aim of the project was to enhance the 

coordination capabilities of first responders during pathogen contamination emergencies. BeWaRE was 

integrated into a decision-support tool named PathoINVEST (Paraskevopoulos et al., 2022) and was 

applied in three European case studies, each featuring distinct characteristics. In Spain and Cyprus, it 

was used to assist the response to earthquakes that led to sewage infiltration into the DWDN. In the 

Netherlands, it was employed to investigate suspected intentional contamination following customer 

complaints. In each case study, emergency response teams comprising individuals from all relevant 

sectors (water utilities, civil protection, and health care). These teams incorporated their own network 

data into BeWaRE, having an accurate representation of the contaminant transport, as well as health 

impact analysis. 

4.6 Conclusion 
This study introduced BeWaRE, an open-access testbed, featuring an integrated hydraulic and water 

quality model that can be seamlessly incorporated into any DWDN model once properly calibrated. It 

brings together key factors -chlorine decay (bulk and wall), fast and slow reactions, CRA degradation, 

and stochastic water use patterns- into a single model within a QMRA framework. By integrating these 

elements, it provides a more realistic and reliable way to assess infection risks during contamination 

events, addressing limitations of previous models that relied on simplified assumptions. Its applicability 

was demonstrated by analyzing the health impacts of wastewater contamination in a DWDN and 

evaluating the role of chlorination in mitigating risks from different enteric pathogens. Key findings 

include: 

• In non-chlorinated DWDN, the modeled wastewater contamination events led to 11%-46% 

infection risk in the total population, depending on the contamination location, but irrespective 

of the selected pathogen (due to the high pathogen concentration).  

• In chlorinated DWDN, the same scenarios resulted in lower infection risk for the pathogens that 

are susceptible to chlorine; 0.78%-2.1% for Campylobacter and 7.8%-26.6% for enterovirus. 

Enterovirus infection risk is higher, despite the concentrations in the contamination source being 

lower, due to the lower susceptibility to chlorine than Campylobacter.  

• In chlorinated DWDN, the modeled contamination scenarios yielded infections as a result of 

Cryptosporidium, due to its high chlorine resistance. Contamination location plays a significant 

role in terms of impact, due to the size of the affected population, but also due to the level of 

dilution of the contamination in the DWDN. 

• The response window after a contamination event to reduce the health impact is short; in these 

scenarios 5-10 hours post-contamination. 

• Campylobacter’s infection risk is more sensitive to the initial concentration in the contamination 

source whereas enterovirus infection risk to inactivation rate. 
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This testbed can serve as a baseline for future studies, potentially exploring different inactivation 

kinetics, alternative pathogens, varied water consumption patterns, or calibrating the model for real-

world drinking water systems. This study illuminates the profound health implications of a large 

wastewater contamination in drinking water networks. While chlorination plays an essential defensive 

role, a comprehensive understanding of pathogen behavior is crucial for enhancing protection against 

potential outbreaks and ensuring a safer water supply. 
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Supplementary material 

4.2.6 Modeling reactions 

The L-Town benchmark network utilized in this study is based on a real District Metered Area (DMA) 

network located in Cyprus. In the real network, six chlorine sensors are installed: one at the inlet (since 

the network has only one inlet) and five within the network itself. 

To calibrate and validate our water-quality model, we first utilized the hydraulic model of the real 

network, which was recalibrated using the available flow and pressure data. The water-quality model 

parameters were then calibrated to minimize prediction error using one week of chlorine concentration 

data recorded at five-minute intervals from the six sensors. Specifically, we adjusted the chlorine decay 

parameters, including the reactions with Slow Reacting Agents (SRA), the wall reaction amplification 

factor, A, and the rate coefficient B. This process ensured that the water-quality model was tailored to 

the specifics of the real network used, and in extension L-Town. Figure S1 shows the real and estimated 

chlorine levels at the six chlorine sensor locations. The model performed well in predicting both chlorine 

concentration levels and complete chlorine depletion at the monitoring nodes, which is crucial for the 

contamination impact study. Some mismatches in chlorine concentration, particularly on the first day, 

can be attributed to the initial uncertainty in chlorine concentration across the network and the inherent 

variability in hydraulic modeling. 

 

Figure S4. 1 Comparison of real and simulated chlorine concentration in the original case study network, after the proposed 

quality model calibration. Node R-133 is the DMA inlet node, while the rest of the nodes are locations with installed chlorine 

sensors. 
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4.5.1 Chlorinated network 

 

 

Figure S4. 2 The chlorine residual profile along with Campylobacter concentration for a node downstream of the Loc-L 

location. 

 

Figure S4. 3 The chlorine residual profile along with enterovirus concentration for a node downstream of the Loc-L location. 

 

Figure S4. 4 The chlorine residual profile along with Campylobacter concentration for a node downstream of the Loc-M 

location. 
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Figure S4. 5 The chlorine residual profile along with enterovirus concentration for a node downstream of the Loc-M 

location. 

 

Figure S4. 6 The chlorine residual profile along with Campylobacter concentration for a node downstream of the Loc-S 

location. 

 

Figure S4. 7 The chlorine residual profile along with enterovirus concentration for a node downstream of the Loc-S location. 
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4.5.4 Nominal range sensitivity analysis 
Table S4. 1 Results of the nominal range sensitivity analysis. The values represent the percentage change of infection risk 

relative to the initial contamination scenario. 

 Campylobacter Enterovirus 

 Loc-L Loc-M Loc-S Loc-L Loc-M Loc-S 

Duration: 𝟐 hours −67.7% −76% −6% −77.3% −85% −5.9% 

Duration: 𝟐𝟒 hours +790% +2252% - +277% +31% - 

High concentration +861% +3715% - +477% +95% - 

Low inactivation rate +255% +3220% - +576% +137% - 
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Abstract 

Rapid and effective decision-making is crucial during drinking water contamination events to ensure 

public safety. This Chapter examines a case study where a water utility, responding to customer 

complaints, suspected wastewater contamination in its network. We compare the traditional expert 

judgement approach to a model-based approach using the PathoINVEST tool. The tool performs 

simulations of contamination events informed by sensor measurements, identifies contamination sources 

using sampling results, and suggests optimal valve closures for mitigation. 

Our findings show that the model-based approach significantly enhances response efficiency and 

accuracy. It identified the contamination source with four samples in 1.3 hours, compared to 11 samples 

in 3.7 hours for the traditional approach, and resulted in a lower infection risk (12% vs. 20%) at the time 

of source identification. Regarding valve closure, the model-based approach performed better, resulting 

in a 3%-point reduction in infection risk compared to the traditional approach. Modeling uncertainty is 

addressed by considering valve settings uncertainty; despite a 0.7% discrepancy in valve settings 

compared to the model, the tool accurately pinpointed the contamination vicinity 75% of the time. 

These findings support the claim that integrating modeling and sensor tools into emergency response 

protocols for drinking water contamination events can improve early identification and mitigation, 

potentially safeguarding public health in urban water supply systems. 

Keywords: Drinking water contamination modeling; source identification; emergency response; water 

utility; valve manipulation 
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5.1 Introduction 
Ensuring the safety of drinking water is a primary concern of water utilities worldwide. Contamination 

events in the drinking water network (DWDN) can arise from human error, infrastructure failures, main 

repairs, or malicious attacks (Winston et al., 2003; Hrudey and Hrudey, 2004; Blackburn et al., 2004; 

Arnone and Walling, 2007; Fewtrell et al., 2011; Laine et al., 2011; Cann et al., 2013; Lendowski et al., 

2015; Blokker et al., 2018) directly impacting public health and well-being (Kunz, 2024). Advancements 

in monitoring and remediation technologies have enhanced our ability to respond to such events 

(Erickson et al., 2019), yet there remains a challenge in effectively using real-time modeling tools to aid 

responsible authorities (Eliades et al., 2023).  

Despite already established protocols and tools for emergency response, pathogen-related contamination 

events in the DWDN continue to affect communities. Communication gaps and the underutilization of 

available technologies play an important role. Rapid and effective decision-making is crucial during 

such events; delays or inaccuracies in addressing these situations can lead to more people affected, 

escalated health risks, economic losses, and prolonged recovery periods (Laursen et al., 1994; Corso et 

al., 2003; Ailes et al., 2013; Chyzheuskaya et al., 2017; Gude and Muire, 2021). Moreover, repeated or 

mismanaged events erode public trust in the safety of drinking water, which is a foundation of urban 

living and public health (Anadu and Harding, 2000). 

Currently, when a DWDN is contaminated by wastewater, water utilities activate their crisis 

management procedures, to find the suspected contamination source and minimize as soon as possible 

the impact of contamination through mitigation measures (USEPA, 2003). Traditional decision-making 

during the crisis management procedure has been predominantly guided by past experience, best practice 

industry protocols, and expert judgment based on (limited) available information on the contamination 

event. Regarding the knowledge of the network characteristics, water utilities rely on solvers (e.g., 

EPANET, WATERGEMS, etc) to model the hydraulics and water quality dynamics. While experts using 

those modeling tools are consulted, their input often comes after a critical window of opportunity 

(sometimes after 24 hours have passed). They frequently rely on outdated network characteristics and 

slower, generic (not dedicated to wastewater contamination events) models, without being able to model 

the health impact of a contamination. Therefore, in this study, a traditional approach represents the status 

quo of current practices in water utilities (expert judgment, past experience, offline generic modeling), 

while a model-based approach uses real-time modeling tools for pathogen propagation based on 

stochastic water demands, health risk assessment, and support in decision-making. Hence, the 

hypothesis of this study is that the integration of modeling tools (model-based approach) with current 

practices (traditional approach) can enhance responses and reduce the negative impacts of contamination 

events.  

Recently an analytical tool named PathoINVEST (Pathogen contamination INVESTigation decision 

support system) (Paraskevopoulos et al., 2022) was developed as part of the EU-funded PathoCERT 

(Pathogen Contamination Emergency Response Technologies) project to support decision-making 

during emergencies. It is built as a QGIS plugin and it uses the software EPANET-MATLAB Toolkit 

and a benchmark hydraulic and quality model incorporating various factors (e.g., pathogen 

concentrations in contamination sources, pathogen inactivation and chlorine demand kinetics, and 

stochastic water demands) (Eliades et al., 2016). This tool not only simulates contamination events and 

their health impact realistically but also suggests potential sampling locations to identify the suspected 

source of contamination and optimal valve closure strategies for mitigation strategies. 

This Chapter addresses the challenge of rapidly finding the contamination source and minimizing the 

population's health risk through mitigation measures, aiming to improve traditional methods by 

incorporating modeling tools in the decision-making. Our objective is to systematically compare the 

efficacy of traditional and model-based decision-making in responding to wastewater contamination 

events in the DWDN when the source is unknown. We focus on understanding how decision-making 

can be enhanced with the integration of real-time modeling tools and sensors. For the source 

identification, the comparison metrics include the duration of time needed to find the source, the number 

of samples required, and the infection risk of the urban population at the time the source was identified. 
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For the mitigation measures, we focus on valve manipulation so that the contamination plume can be 

isolated or reduced, and the comparison metric is the risk of infection. We also address the problem of 

uncertainty when using modeling tools. Specifically, we assess how valve settings uncertainty in the 

DWDN can potentially provide misleading results for decision-making (using the model-based 

approach). We demonstrate a fictional contamination case study, observing how responsible authorities 

from a water utility in the Netherlands respond to suspected wastewater contamination in their DWDN. 

The main contributions of this study are: 

1. Demonstration of a realistic contamination case study, revealing the actual steps water utilities 

take in emergencies. 

2. Demonstration of a software tool that simulates real-time contamination events in DWDN and 

provides decision support for water utilities during an emergency. 

3. A comparison between traditional and model-based decision-making for source identification 

and mitigation measures. 

4. Evaluation of valve settings uncertainty in the DWDN and how it influences the accuracy of 

decisions during emergencies. 

5. Quantification of the health protection and operational efficiency benefits of using a model-

based approach during emergencies. 

5.2 Methodology 

5.2.1 Overview of the PathoINVEST tool 

While a detailed description of the PathoINVEST tool can be found in Paraskevopoulos et al. (2022), 

for completeness, we note here some key characteristics: 

1. The tool incorporates up-to-date waterborne pathogen data from contamination sources and 

inactivation kinetics including for enterovirus, Campylobacter, and Cryptosporidium. 

2. Stochastic water demands are being used to provide a more thorough understanding of the 

hydraulics and isolate the water end-use of tap water to calculate the risk of infection. 

3. For understanding the potential health impact, the tool employs the principles of Quantitative 

Microbial Risk Assessment (QMRA). 

For decision-making, the tool features various methods, including sampling location suggestion, to help 

identify the contamination source and optimal valve closure recommendation, to mitigate the infection 

risk by ensuring fewer people are infected. 

5.2.2 Emergency response 

In the event of a contamination emergency, the primary goal of a water utility is to rapidly execute a 

minimal yet effective set of actions to mitigate the incident and restore normal operations. We followed 

the US EPA Response Protocol Toolbox (RPTB) which includes a list of recommendations on actions 

following such an event: a) detection of contamination; b) source identification; and c) consequence 

management (USEPA, 2003; Afshar and Najafi, 2014). Contamination can be detected either through 

complaints, manual samplings, or water quality sensor signals. The next step involves identifying the 

suspected source of contamination. This typically involves determining strategic locations for sampling. 

Current microbiological testing protocols, such as culture or RT-PCR (Reverse transcription polymerase 

chain reaction), necessitate that samples be transported to a laboratory for analysis. Typically, the time-

to-result is approximately 4 hours (RT-PCR) to 18-24 hours (culture). The positive results from one or 

multiple samples provide a preliminary indication of the potential origin of the contamination. At the 

same time, water utilities commonly issue a ``boil water'' advisory in the potentially affected area as an 

initial step to mitigate the health impact. Modeling the contamination (once the contamination source 

has been identified) provides insights into how the contamination propagates over time. As a result, 

authorities can issue a boil water advisory to specific areas within the network and strategically close 

certain valves. This action effectively isolates the contaminated area, preventing further spread 

(consequence management). Besides valve closure, integral parts of the consequence management step 
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are flushing and chlorination (Poulin et al., 2008), but this Chapter focuses on the initial response. 

Following these steps in an emergency event enables a rapid and efficient response to safeguard public 

health and restore the integrity of the water supply system. 

5.2.3 Case study 

The case study was simulated using L-Town's DWDN as the water utility's network data was restricted 

due to sensitive information. L-Town is a modified network from the BattLeDIM (Battle of the Leakage 

Detection and Isolation Methods) competition (Vrachimis et al., 2022). L-Town is a benchmark network 

comprising 782 junctions and 905 pipe segments, providing water to an estimated population of 30,000. 

For this case study, we modeled the waterborne pathogen enterovirus, a common pathogen found in 

wastewater in high concentrations, for a continuous contamination of 24 hours starting at 8:00 a.m. The 

water supplied in the network was unchlorinated since this is a common practice in the Netherlands. The 

demands of the network were generated using the STochastic Residential water End-use Model 

(STREaM) tool (Cominola et al., 2018). This tool simulates household water end-uses, each having 

distinct consumption patterns and probability distributions for water use volume, use duration, daily 

frequency, and time of use during the day. This gives a realistic residential demand profile for the L-

Town network.  

An emergency tabletop exercise was conducted in which a response team dealt with a contamination 

scenario provided by a supervisor. The supervisor, responsible for running the simulations, was the only 

one aware of the actual source of contamination. The supervisor provided feedback (e.g., sampling 

results, visualization of contamination propagation, health impact) on the proposed activities by the 

response team (e.g., sampling locations, valve manipulation) while recording the time that would be 

required for any action. The response team was provided with data on water age and daily average flow 

directions in the network (Figure S5.1 in the supplementary material). The scenario consisted of multiple 

customer complaints (Figure 5.1) at 9:30 a.m., which led to a response from the team. The response team 

included an incident commander, a communications manager, advisors specializing in water quality and 

crisis management, and a modeler. The incident commander implemented a structured decision-making 

approach, consisting of the following steps: observe, assess, and decide. After reviewing the provided 

information on water age and flow direction, the response team decided that the contamination likely 

began around 8:00 a.m. in the network's eastern part. Additionally, two subgroups were formed to focus 

on sectioning the network and identifying potential sampling locations. Instead of using the current RT-

PCR method (Heijnen et al., 2024), the sampling procedure was undertaken using another PathoCERT 

tool named PathoTESTICK, a mobile sensor that offers rapid on-site screening of Escherichia coli, in 

less than 5 minutes (Canciu et al., 2022). For the purposes of this case study, it was assumed that 

PathoTESTICK can detect wastewater contamination with sufficient sensitivity. Each sampling iteration 

was estimated to last approximately 20 minutes, which included the time needed for the field team to 

reach the location, set up the sampling equipment, await the results, and communicate them back. 

In response to the potential health risks posed by the contamination, the water utility's emergency 

response aimed to rapidly locate the source of contamination by deciding on sampling locations, and 

contain its spread by closing valves, thereby mitigating the infection risk. For the traditional approach, 

these decisions were based on the response team's expertise, while for the model-based approach, these 

decisions were guided by the PathoINVEST tool. 

5.2.4 Source identification 

5.2.4.1 Traditional approach 

After discussing with the response team and based on the insights of Figure S5.1 (average flow direction, 

water age), the incident commander initiated two sampling rounds and designated 11 strategic sampling 

locations for the field team across the network (Figure 5.1). The incident commander had to wait for the 

results of the first designated sample before deciding on the next sampling location and the first sample 

was taken at 10:30 a.m., approximately 1 hour after the complaints. The objective was to leverage the 

information obtained from the samples (indicating either the presence or absence of contamination) in 
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each round, thereby leading to the exclusion of segments of the network and finally, the identification 

of the contamination source. 

 

Figure 5. 1 The proposed sampling locations in two rounds (light blue and dark blue), along with the customer complaints 

(smartphone). 

5.2.4.2 Model-based approach 

PathoINVEST employs a methodology based on a simplified version of the expanded sampling concept 

(Eliades and Polycarpou, 2012), for the identification of contamination sources in drinking water 

networks. Their methodology was based on decision trees, expressing conditional statements such as if-

then-else rules, to return a sequence of nodes for manual sampling. Our approach involves analyzing 

potential contamination sources and the strategic selection of sampling locations, each marked with a 

binary signature dependent on the outcome, positive (1) or negative (0). A positive binary signature at a 

sampling location signifies that a given contamination source's trajectory has intersected that point, 

suggesting that any sample retrieved from a field team at this site would yield a positive result. Therefore, 

the first step for the model-based approach was to identify potential contamination sources. This was 

achieved by finding any upstream node from the location of the complaints (Figure 5.2). The desired 

outcome was obtained using an additional feature of the tool, a function 𝑓(𝒢, 𝑠, 𝑑) able to identify 

potential upstream contamination nodes in a network. This function finds all nodes within a graph 𝒢 =
(𝒱, ℰ), where 𝒱 and ℰ represent the nodes and edges, respectively. Specifically, it locates nodes within 

an infinite distance 𝑑 from a specified node 𝑠 (the complaint node), effectively capturing any node in 

the network that could contribute to upstream contamination of 𝑠. 

 

 

Figure 5. 2 The upstream potential contamination sources (orange circles) using the complaints as a starting point, and the 

20 most probable contamination sources (yellow labels). 

After identifying and highlighting all the potential sources of upstream contamination, 20 strategic 

locations were selected as the most probable contamination sources by the response team (Figure 5.2). 

The next step was to select strategic locations for sampling. All the potential upstream contamination 

sources from Figure 5.2 were also considered sampling locations (243 nodes in total). Again, the time-

to-result of the PathoTESTICK tool was used.  
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To find the suspected contamination source, the hydraulics and quality dynamics of the DWDN were 

simulated for 20 scenarios, representing all 20 contamination sources. This enabled the generation of 

binary signatures for all sampling locations corresponding to the simulated contamination trajectories 

(Table 5.1). The simulation of the 20 contamination scenarios was approximately 5 minutes. 

Consequently, after accounting for a 25-minute discussion with the team regarding the 20 strategic 

locations, the binary signatures and hydraulics were successfully computed by 10:00 a.m. The temporal 

dynamics of contamination play a critical role in this process. For instance, a node, say 𝑁220, may not 

be associated with a contamination source at 10:00 AM but may become contaminated by 11:00 AM 

due to the progression of contamination. 

Table 5. 1 The simulated binary signatures of a snippet of the sampling locations for each of the 20 contamination sources at 

10:00 a.m. Node 𝑛241 is the selected sampling location based on the entropy results. Red rows indicate the scenarios that are 

not consistent with the sampling result. The result was positive (1), therefore the red highlighted scenarios can be discarded. 

Scenario 

𝒏
𝟐

𝟐
𝟎
 

𝒏
𝟐

𝟐
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𝟑
𝟎
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𝟐

𝟑
𝟐
 

𝒏
𝟐

𝟑
𝟓
 

𝒏
𝟐

𝟑
𝟖
 

𝒏
𝟐

𝟑
𝟗
 

𝒏
𝟐

𝟒
𝟎
 

𝒏
𝟐

𝟒
𝟏
 

𝒏
𝟐

𝟒
𝟒
 

𝒏
𝟐

𝟒
𝟓
 

𝒏
𝟐

𝟒
𝟖
 

𝒏
𝟐

𝟒
𝟗
 

𝒏
𝟐

𝟓
𝟎
 

S1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

S2 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S4 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 0 0 0 

S5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

S6 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0 0 

S7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

S8 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 

S9 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 

S10 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 0 0 

S11 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 

S12 0 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 

S13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

S15 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

S16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S17 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 1 1 

S18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S19 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0 0 

S20 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 

After the generation of binary signatures in all sampling locations for each of the 20 contamination 

scenarios, the tool indicated the first sampling location. To prioritize the optimal sampling location the 

tool utilizes the theory of entropy, which measures the uncertainty or unpredictability in a system. In our 

context, each sampling location can either be contaminated (1) or not contaminated (0). We calculate 

the probabilities 𝑝1 and 𝑝0 based on the frequency of positive and negative outcomes from the 20 

contamination simulations. The entropy 𝐻 at each node 𝑣, is computed using the formula: 

𝐻(𝑣) = −𝑝(0) log2(𝑝(0)) − 𝑝(1) log2(𝑝(1)) 

where 𝑝(0) log2(𝑝(0)) and 𝑝(1) log2(𝑝(1)) represent the information content or uncertainty when the 

location is not contaminated and when the location is contaminated respectively. 

High entropy indicates a high level of uncertainty about the contamination status at a location, meaning 

it is equally likely to be contaminated or not. Sampling at locations with high entropy maximizes the 

informational yield, reducing uncertainty most effectively. By focusing on high-entropy sampling 

locations, this methodology aims to maximize the informational yield from each sample and thus, 

efficiently narrow down the possible contamination sources.  

After entropy analysis, node 𝑛241 exhibited the highest entropy, signaling it as the prime candidate for 

sampling (Table 5.2). In cases where multiple locations displayed equivalent maximum entropy, the 

selection of the next sampling site was deferred to the discretion of the user. 

Table 5. 2 Results of entropy for the selected snippet of sampling locations. 
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𝒏
𝟐

𝟒
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𝒏
𝟐

𝟒
𝟖
 

𝒏
𝟐

𝟒
𝟗
 

𝒏
𝟐

𝟓
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𝑷(𝟏) 0.5 0.55 0.55 0.55 0.55 0.55 0.55 0.6 0.4 0.6 0.35 0.25 0.25 0.25 0.2 0.18 0.15 0.15 0.15 0.15 

𝑷(𝟎) 0.5 0.45 0.45 0.45 0.45 0.45 0.45 0.4 0.6 0.4 0.65 0.75 0.75 0.75 0.8 0.85 0.85 0.85 0.85 0.85 

𝑯 1 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.97 0.97 0.93 0.81 0.81 0.81 0.72 0.6 0.6 0.6 0.6 0.6 

The field team was instructed to take the first sample in the designated location (node 𝑛241) at 10:00 

a.m. The result was positive and that allowed for the exclusion of simulated contamination scenarios 

that do not align with this outcome (Table 5.1). This iterative process continued until the set of potential 

contamination sources was sufficiently narrowed, facilitating the identification of the actual source of 

contamination. The remaining procedure (identification of the sampling node with the highest entropy 

and exclusion of simulated contamination scenarios can be found in the supplementary material). 

5.2.5 Valve manipulation 

Based on the network topology and discussions with the team, the incident commander proceeded to the 

closure of valves at strategic locations. The first mitigation action (for both traditional and model-based 

approaches) was the closure of valves 𝑉1 and 𝑉2, located near the complaint site (Figure 5.4b), at 10:40 

a.m. and 10:45 a.m., respectively (Action 1). This action was aimed at preventing further contamination 

spread to the network's western part even though the contamination source was not found yet. This was 

considered an appropriate action because it would keep the water supply intact for all customers while 

separating the network into two parts. Each part would be supplied by its own water source, preventing 

contamination from moving between these two sections of the network. As soon as the contamination 

source was identified, the second mitigation action from the water utility (again for both traditional and 

model-based approaches) was to immediately close the pipes surrounding the source to prevent further 

spreading (Action 2). 

5.2.5.1 Traditional approach 

Although the traditional Action 2 stopped the contamination source at 2:00 p.m., pathogens were still 

spreading in the eastern part of the network. Therefore, the water utility decided to implement Action 3, 

which involved closing an additional three valves. Subsequently, valves 𝑉3, 𝑉4, and 𝑉5 were closed at 

2:20 p.m., 2:25 p.m., and 2:30 p.m. respectively to contain the spread in the network's eastern part. At 

this point, it was time to run a model simulation to evaluate the performance of the traditional approach. 

The identified contamination source was incorporated to calculate the risk of infection (defined as the 

percentage of people being infected) and assess whether the health impact was mitigated. This 

simulation specifically factored in which valves to close (spatial resolution) and the timing of their 

closure (temporal resolution). 

5.2.5.2 Model-based approach 

For the model-based approach, Actions 1 and 2 are identical to the traditional approach. The model-

based Action 2 occurred earlier at 11:30 a.m. since the source was identified earlier. This time the 

additional closure of three valves (model-based Action 3), was suggested by the PathoINVEST tool. The 

PathoINVEST methodology on valve manipulation expands the work of Moghaddam et al. (2022) 

focusing particularly on the application of Particle Swarm Optimization (PSO) for the strategic closure 

of pipes within a DWDN to mitigate a contamination event. Diverging from their original model, which 

includes both pipe closures and hydrant activations, we refined our approach to solely concentrate on 

pipe closures with a primary objective of minimizing the infection risk, rather than minimizing the 

number of contaminated nodes. The PSO algorithm is fine-tuned to identify optimal pipe closure 

strategies that effectively reduce the infection risk once the contamination source is known. By 

simulating the movements of particles within a swarm, each particle represents a potential solution. 

Through iterative refinements and adjustments to particle positions and velocities, our modified PSO 

model searches for the most effective configuration, emphasizing the minimization of infection risk 

while also incorporating a penalty function to ensure system pressures are maintained above critical 

thresholds. Another modification compared to the original work of Moghaddam et al. (2022) is that we 

restricted the PSO algorithm to recommend closing only three pipes in response to real-time 

contamination events. This limitation aims to increase realism and feasibility for water utilities, 
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recognizing the practical challenges of implementing extensive infrastructure modifications during an 

emergency. Moreover, by narrowing the potential actions to three pipe closures, we significantly reduce 

the solution space, which, in turn, decreases computational demands and time. This adjustment not only 

aligns with the operational capabilities of water utilities but also reduces the significant computational 

resources typically required by evolutionary algorithms, including the need for advanced processing 

power and significant memory capacity to efficiently manage iterative optimizations. After the 

PathoINVEST feature recommended the three most suitable valves for closure, another simulation was 

conducted with the new valve settings to assess the risk of infection. 

5.2.6 Valve settings uncertainty 

In hydraulic modeling, the fidelity of the network representation is very important. When the aim is to 

model contaminations, predict realistic outcomes, find the contamination source, and suggest adequate 

mitigation actions, there must be an accurate representation of the most current network configurations, 

including valve settings. Inaccurate or outdated models can produce misleading results, making them 

unreliable for decision-making processes. This unreliability is particularly pronounced in scenarios 

where valve settings vary significantly between the actual network and the model (e.g., a valve is open 

in reality but closed in the model). These discrepancies can drastically change the simulated hydraulics 

and flow directions, thus providing inaccurate results. Previous studies highlight that there can be 

discrepancies of up to 0.7% between the model and actual valve settings (Mesman et al., 2016). 

To explore the potential effect of this inherent uncertainty in valve settings, we developed an approach 

involving the generation of multiple hydraulic profiles. Specifically, we created 1000 distinct hydraulic 

profiles for L-Town, each incorporating a different 0.7% variation in closed valve settings (6 out of 905 

valves). These profiles were then used to simulate a contamination scenario with a known contamination 

source. This approach generated 1000 unique uncertainty scenarios ensuring that both hydraulic and 

pressure requirements of the system were met. For each scenario, we calculated the risk of infection, 

allowing us to quantitatively assess the impact of valve uncertainty on the overall risk of infection and 

compare them with the base scenario (the scenario that was used in the pilot case study without any 

mitigation action). Furthermore, we evaluated the impact of valve uncertainty, as represented by the 

1000 uncertainty scenarios, on the efficacy of the model-based approach in identifying the contamination 

source using the expanded sampling, as detailed in Chapter 5.2.4.2. 

5.3 Results and Discussion 
Figure 5.3 shows the contamination source (𝑆7) and the potential contamination propagation to its full 

extent by midnight (14.5 hours after the complaints were received) without any action by the water 

utility. The figure also displays the sampling times and results for both approaches (traditional and 

model-based). 

 

Figure 5. 3 The identified source, contamination propagation, and sampling results for both traditional and model-based 

approaches. 
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5.3.1 Source identification 

Table 5.3 compares the traditional and the model-based approach, detailing the number of samples and 

the time needed to find the contamination source. In addition, it assesses the estimated infection risk 

starting from the onset of contamination (8:00 a.m.) until the moment the contamination source was 

finally identified both with and without the closing of two valves (Action 1). As a point of reference, we 

also calculated the infection risk using the RT-PCR method (4 hours) instead of the PathoTESTICK, 

which yields results in 20 minutes. Although considerably faster than the culture-based approach, the 

RT-PCR approach would still mean that the field team would face a 4-hour wait for each round of results. 

Since two sampling rounds were performed, this would result in a total waiting time of at least 8 hours. 

The model-based approach is more efficient and rapid in locating the source, as it takes only 4 samples 

and 1.3 hours, compared to 11 samples and 3.7 and 8 hours for the traditional approach, using the 

PathoTESTICK and RT-PCR respectively. Calculating the risk of infection until the time the 

contamination source was identified (and any potential mitigation measures could have started) for all 

three approaches we see that the model-based approach is again better here as the risk of infection is 

12% compared to 20% and 27% for the traditional approach with the PathoTESTICK and RT-PCR 

respectively. Finally, a key observation is the (moderate) reduction of the health impact of the 

contamination by the water utility's rapid action on closing the first two valves (Action 1) compared to 

the base scenario (Table 5.3 and Figure 5.4a). 

Table 5. 3 Comparison between traditional and model-based approaches to find the source of contamination. 

 No of 

samples 

Time to find the 

source (hours) 

Infection risk 

with Action 1 

Infection risk 

w/o Action 1 

Traditional (RT-PRC) 11 8  27 % 33 % 

Traditional (PathoTESTICK) 11 3.7 20 % 22 % 

Model-based (PathoTESTICK) 4 1.3 12 % 12 % 

5.3.2 Valve manipulation 

5.3.2.1 Traditional approach 

For the traditional approach, the closure of two valves identified as 𝑉1 and 𝑉2 (Action 1), at 10:40 a.m. 

and 10:45 a.m. respectively, effectively reduced the infection risk, as shown in Figure 5.4a. However, 

since the contamination was initiated at 8:00 a.m., a certain extent of contaminant spread had occurred 

before Action 1 was implemented. As a result, the valve closures, while appropriate, were late, leading 

to considerable contamination in L-Town's western region. Additionally, the traditional Action 3 

inadvertently redirected the contamination plume, reaching previously unaffected zones. This 

misdirection increased the potential risk of infection as can be seen in Figure 5.4a. 

5.3.2.2 Model-based approach 

Utilizing the modified PSO algorithm, the model-based approach identified the optimal three valves, 𝑉6, 

𝑉7, and 𝑉8, for closure after identifying the contamination source at 11:20 a.m., as shown in Figure 5.4b. 

These pipes were closed around noon, considering the travel time for the field team and the time needed 

for valve closure. As shown in Figure 5.4a, the model-based Action 3 reduced the infection risk when 

compared to the base scenario as well as the traditional Action 3. However, the infection risk remains 

relatively high. Due to the timing of this action, those at risk had likely already been exposed. 
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Figure 5. 4 a) Risk of infection comparison between the base scenario, and the mitigation Actions 1-3. b) Closure of valves 

(Actions) by the water utility and PathoINVEST. 

5.3.3 Importance of rapid response 

Figure 4a shows that the infection risk although reduced, remained high regardless of mitigation actions 

from the water utility. This indicates that to significantly minimize the infection risk, interventions 

should have been earlier. A re-evaluation of the event timeline, featuring an alternative simulation of the 

same contamination scenario where actions were initiated one hour earlier, sheds light on the importance 

of rapid response. In this revised scenario, valves 𝑉1 and 𝑉2 were closed at 9:40 a.m., immediately 

following the customer complaints, as a `no-regret' preventative mitigation action. Using PathoINVEST 

to select the sampling locations also moved subsequent mitigation Actions 2 and 3 to one hour earlier. 

This quicker response led to a significant decrease in the infection risk (a 17%-point reduction in total 

infection risk), indicating that immediate valve closure after contamination detection (or even suspicion) 

can significantly contain the contamination (Figure 5.5). This highlights the importance of strategic 

sensor placement, rapid response actions (automated valve closures), and sensors that offer screening of 

fecal contamination during such emergencies. 

 

Figure 5. 5 Risk of infection comparison between the base scenario and the mitigation Actions 1-3 in the alternative 

contamination simulation where all actions are advanced by an hour. 

5.3.4 Valve settings uncertainty 

5.3.4.1 Infection risk uncertainty 

To evaluate the potential impact of valve settings uncertainty, Figure 5.6a demonstrates the infection 

risk across 1000 uncertainty scenarios with the green line representing the base scenario. The 0.7% 

uncertainty in valve settings yields variability in the projected infection risk. Figure 5.6b shows the 

infection risk difference of the 1000 uncertainty scenarios from the base scenario. The histogram 

indicates that about 80% of the uncertainty scenarios are within the range of -5% to +5% from the base 

scenario infection risk. Also, the majority of the 1000 uncertainty scenarios cluster around the base 

scenario. This suggests that modeling with a 0.7% uncertainty in valve settings generally does not result 

in significantly different or underestimated infection risk outcomes.  
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The scenarios with significantly lower infection risk (below 10%) are observed when one or more pipes 

downstream of the eastern reservoir are actually closed, or in cases where pipes located immediately 

downstream of the contamination source are closed. These scenarios effectively limit the spread of 

contamination, thereby significantly reducing the infection risk. 

 

Figure 5. 6 a) Risk of infection for the 1000 uncertainty scenarios and the base scenario (green line). b) Histogram showing 

the difference between the 1000 uncertainty scenarios in infection risk compared to the base scenario. 

5.3.4.2 Source identification uncertainty 

Valve settings uncertainty may also impact the reliability of the PathoINVEST contamination source 

identification feature. Figure 5.7 showcases how a 0.7% uncertainty in valve settings influenced the 

performance of the model-based approach in identifying the contamination source. This analysis was 

conducted for each of the 1000 uncertainty scenarios, following the expanded sampling methodology 

detailed in Chapter 5.2.4.2 for the 20 potential contamination sources. The results indicate that, despite 

the valve settings uncertainty, the model successfully identified the exact source of contamination, 𝑆7, 

in 57% of the uncertainty scenarios. The next most frequently identified source was 𝑆6 with 18%, which 

is adjacent to the exact source, 𝑆7. This implies that even if PathoINVEST incorrectly pinpoints 𝑆6 as 

the contamination source, it would still guide the investigation toward the correct vicinity for further 

inspections. Considering this, the effectiveness of PathoINVEST source identification feature in 

correctly identifying the source of contamination stands at 75%. 

 

Figure 5. 7 Frequency of the 1000 uncertainty scenarios in identifying the contamination source using PathoINVEST. 

5.3.4.3 Valve manipulation under valve settings uncertainty 

The influence of valve settings uncertainty on valve manipulation was evaluated only for Action 1. 

Figure 5.8 shows the mean (derived from the 1000 uncertainty scenarios) total infection risk associated 

with 10 of the potential 20 contamination sources, comparing the base scenario (no action) with the 

original closure of two pipes (𝑉1 and 𝑉2) by the water utility (Action 1). This comparison demonstrates 

that, regardless of the contamination source and its accurate identification by the PathoINVEST source 

identification feature (due to any potential valve settings uncertainty), the strategic closure of two pipes 

(Action 1) consistently reduced the relative risk of infection, ranging from 23.8% (𝑆7) to 62.4% (𝑆8) 

reduction. This outcome highlights the effectiveness of strategic valve closure during a contamination 

event. 
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Figure 5. 8 Comparison of the mean infection risk (derived from 1000 uncertainty scenarios) between the base scenario (no 

action) and Action 1 for the most frequently identified contamination sources by PathoINVEST. 

5.3.5 Approach assessment 

Assessing traditional and model-based approaches to managing such emergencies allows identifying 

their respective strengths and weaknesses. 

5.3.5.1 Traditional approach 

The decisions made in the traditional approach rely heavily on the experience and intuition of the 

response team whereas the need for a good understanding of the network characteristics is imperative. 

This approach, while it doesn't possess the sophistication of advanced technologies, offers reliability and 

independence from modeling tools, which is important in situations where such technologies may be 

unavailable or slow. We saw that the response team's quick decision to close the two valves at the 

beginning of the event (Action 1), led to a reduction in infection risk. However, this approach tends to 

be more time intensive. This is demonstrated by the 11 samples required to identify the contamination 

source, compared to just 4 from the model-based approach, resulting in an additional 2 hours and 20 

minutes. During this time, there was an additional 8%-point infection risk. It can also sometimes lead to 

mistakes, such as the wrong closure of the remaining three valves (traditional Action 3) which resulted 

in a 3%-point higher infection risk compared to both Action 1 and model-based Action 3. The lack of 

predictive capabilities inherent in this approach often results in slower decision-making processes, 

extensive response times, and mitigation measures of diminished efficacy. This issue becomes even 

more pronounced when considering current detection and sampling methods (such as RT-PCR), which 

require considerably more time to deliver results, further slowing down the decision-making process 

during emergencies. 

5.3.5.2 Model-based approach 

Having an on-site mobile device capable of detecting pathogens in water with 20 minutes time-to-result 

is extremely valuable and important during emergencies. The model-based approach demonstrates 

significant improvements in response speed since it takes 2 hours and 20 minutes less to find the source 

in the presented case study. Being able to simulate multiple real-time contamination events, propose 

sampling locations for source identification, and suggest valve closures to mitigate the event offers 

valuable insights to a water utility resulting in more effective decision-making. Nonetheless, the model-

based approach also has limitations. First of all, in this work we focus on an unchlorinated network, 

which means the E. coli sensor is effective. However, in a chlorinated network, E. coli would be 

immediately inactivated, making the sensor essentially useless. This is a limitation that highlights the 

need for pathogen-specific sensors for broader applicability. Moreover, the accuracy of a model is 

heavily dependent on the quality and current state of network data. An inaccurate or outdated network 

can compromise the model's outputs, leading to potentially flawed decision-making by the response 

team. Additionally, these tools require constant updates and maintenance, which requires commitment 

of resources. The deterministic nature of models also presents a limitation, as they might not fully 

capture the complexity and variability of real-world scenarios. While the application of PSO for valve 

manipulation demonstrates an efficient outcome, it may not represent the optimal approach. Alternative 
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metaheuristic algorithms (e.g., multiobjective evolutionary algorithms) could potentially offer improved 

results for valve closure (Nouiri 2017; Quintiliani et al. 2019). The constraint within our PSO 

application, specifically to close only three valves, introduces another layer of limitation. However, the 

primary aim of this work was to investigate the added value of using modeling tools and rapid sensors 

during emergencies. Further improvements in the sensor and the presented methodology (source 

identification, valve manipulation) can enhance the benefits of using mobile devices for on-site 

contamination screening and models in the decision-making of crisis scenarios. 

5.4 Conclusions 
This study compared traditional and model-based approaches in managing DWDN contamination 

events, revealing several key insights: 

1. The water utility's rapid response action to close the first two valves (traditional approach), 

despite not knowing the contamination source, effectively prevented the spread of 

contamination and reduced the health impact. 

2. The model-based approach was shown to be more efficient than the traditional approach in 

identifying the source of contamination (1.3 versus 3.7 hours), requiring fewer samples (4 versus 

11) and resulting in lower infection risk by the time the source was identified (12% versus 20%) 

in this case study. 

3. The model-based approach was more effective in finding the best valves to close in the network 

since it resulted in a 3%-point infection risk reduction. 

4. Having up-to-date valve settings in the DWDN schematization is important to provide reliable 

results on source identification. Discrepancies between the actual network and the model can 

lead to inaccurate infection risk estimates when using modeling tools to support decision-

making. 

5. Rapid actions and decision-making are crucial upon detecting contamination in the DWDN, as 

a 1-hour faster response from the water utility can lead to a 17%-point reduction in total infection 

risk. One example of such rapid actions is the use of mobile rapid testing devices for on-site 

contamination screening, as they deliver immediate results and enable quicker responses. 

This study underscored the potential advantages of integrating modeling and sensor tools for managing 

DWDN contamination events. It demonstrated improvements in efficiency and speed of model-based 

approaches, dependent on the network model's accuracy and effective management of uncertainties, 

such as valve settings. Furthermore, the study highlighted the essential value of traditional knowledge 

and human intuition in emergency responses, illustrating how quick expert decisions remain critical. 

The deployment of mobile devices for rapid on-site contamination screening represents a significant 

advancement, facilitating immediate response actions. By combining model-based strategies with 

traditional expert insights, our approach provides a robust framework for improving water contamination 

management and decision-making processes, thus ensuring public health during emergencies. The 

development of real-time modeling tools such as PathoINVEST further exemplifies this approach, 

showing great potential for promoting operational improvements in drinking water crisis management. 

Our case study showed that when a contamination event unfolds, the window of opportunity for 

meaningful interventions is small (within a few hours), while the risk of infection can be quite high since 

many people can be exposed to pathogens. 
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Supplementary material 
 

 

Figure S5. 1 Daily average flows (left) and water age (right) of L-Town. 

Table S5.1 The selected sampling location (green color) based on the entropy results for the second iteration. Red rows 

indicate the scenarios that are not consistent with the sampling result. The result was positive (1) therefore the red 

highlighted scenarios can be discarded. 
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S2 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

S4 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 0 0 0 

S6 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0 0 

S7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

S8 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 

S9 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 

S10 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 0 0 

S14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

S19 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0 0 

S20 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 

 

Table S5.2 The selected sampling location (green color) based on the entropy results for the third iteration. Red rows 

indicate the scenarios that are not consistent with the sampling result. The result was positive (1) therefore the red 

highlighted scenarios can be discarded. 
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𝒏
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𝟒
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𝒏
𝟐

𝟓
𝟎
 

S2 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

S6 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0 0 

S7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

S8 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 

S19 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0 0 

 

Table S5.3 The selected sampling location (green color) based on the entropy results for the fourth iteration this time at 

11:00 a.m. The red row indicates the scenarios that are not consistent with the sampling result. The result was negative (0) 

therefore the red highlighted scenario can be discarded. 

Scenario 
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𝒏
𝟐
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𝒏
𝟐

𝟕
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𝒏
𝟐

𝟕
𝟐
 

S2 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 1 0 

S7 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 0 
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6. Concluding Chapter 

6.1 General remarks 
The overall objective of this thesis was to address the growing challenge of waterborne pathogen 

contamination in DWDNs and develop applications that can enhance decision-making and immediate 

actions in such emergencies. DWDNs are vital for providing safe drinking water but they are also 

vulnerable to contamination due to various factors such as infrastructure failures, natural disasters, and 

even malicious attacks. The thesis developed and evaluated innovative approaches for AI-based 

information extraction, and advanced modeling tools to help water utilities answer critical questions 

during an emergency response. Specifically, the questions were related to rapid access to up-to-date 

information on pathogen characteristics, historical information on contamination events, realistic 

representation of hydraulics and quality dynamics, predicted health impact, and enhanced decision-

making for management and mitigation of a pathogen contamination event. This Chapter summarizes 

the key findings of this research through answering the research questions, discusses the implications 

for water utilities, provides examples of practical applications of the proposed methodologies and offers 

perspectives for future research. 

6.2 Answering the research questions 
The research questions and objectives outlined in Chapter 1 were systematically addressed through the 

research studies as presented in Chapters 2-5. Each Chapter contributed unique insights to the 

overarching challenge of rapid response to contamination events in the DWDN. 

6.2.1 First Objective 

The research question with title “Is it feasible to use an automated approach to extract information 

on waterborne pathogens from the literature?” was addressed in Chapters 2 and 3, each chapter 

focusing on a specific sub-question.  

Sub-question 1 

“Can we use an AI-based model to extract accurate waterborne pathogens-associated information 

from the scientific literature?” 

Chapter 2 developed and evaluated an AI-based methodology to extract specific pathogen information 

from the scientific literature. By leveraging NLP and DL techniques, the study demonstrated that AI can 

indeed be used to rapidly extract critical information from scientific publications and be a useful 

approach for water utilities, enabling faster and more informed decision-making during the early stages 

of a contamination. The study highlighted the potential of AI to reduce reliance on time-consuming 

manual literature reviews in environmental microbiology scientific publications. 

Sub-question 2 

“How effectively do LLMs answer questions related to health risks and mitigation measures about 

drinking water contamination events, found in the scientific literature?” 

Chapter 3 assessed the capacities of open-source LLMs in processing and interpreting complex scientific 

publications on pathogen contamination events of drinking water through a question-answering task. 

The evaluation metrics focused on the ability of these models to correctly predict an answer with and 

without content, as well as their adaptability to answer difficult questions. The results indicated that 

while LLMs can significantly enhance the information extraction process and provide rapid responses 

when the question is straightforward, they also face challenges such as hallucinations and generating 

incorrect answers when questions are complex or difficult even for humans to interpret correctly. Hybrid 

models that can combine strengths from multiple LLMs could further enhance IE activities. The study 

demonstrated that when it comes to rapid information extraction approaches during emergencies, LLMs 

are indeed a proven and effective solution having an average F1 score ranging from 81% to 87%. 
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6.2.2 Second Objective 

The first research question “What is the health impact of a wastewater contamination in the DWDN 

considering factors such as chlorine disinfection, hydraulic uncertainty, initial pathogen 

concentration, pathogen inactivation rate, contamination duration, and contamination location?” 

was addressed in Chapter 4. To answer this question, the BeWaRE benchmark testbed was presented, 

integrating all current relevant knowledge on pathogen transport and fate, bulk and wall chlorine decay, 

fast and slow chlorine reactions with CRA, CRA degradation, stochastic water demands, hydraulic 

uncertainty, and individual consumption patterns to calculate pathogen exposure and infection risk 

following the steps of QMRA. A wastewater contamination in different locations in a chlorinated and 

non-chlorinated network was simulated using three pathogens: Campylobacter, enterovirus, and 

Cryptosporidium. The findings in this Chapter demonstrated that while chlorination aids mitigation, 

large contaminations can still lead to infections due to chlorine resistance (for Cryptosporidium) and 

chlorine depletion at the contamination point and the distal part of the DWDN. Moreover, the 

contamination location and duration, along with varying levels of pathogen susceptibility to chlorine, 

significantly influence the infection risk, while the response window to reduce the health impact a is 

short; in these scenarios 5-10 hours post-contamination. The study provided a novel approach to 

assessing health risks, that can be translated to a valuable decision-support tool for water utilities to 

optimize their response during emergencies. 

The second research question “What is the added value of using modeling tools to support decision 

making during wastewater contamination events in the DWDN?” was addressed in Chapter 5. In 

this Chapter, a traditional approach was compared with a model-based approach (using PathoINVEST 

which incorporates the BeWaRE benchmark testbed) for managing a contamination event in the DWDN. 

Using a case study, the research demonstrated that the model-based approach offers substantial 

improvements in response times, number of samples needed, and efficiency in terms of contamination 

source identification. Moreover, regarding mitigation measures, again the model-based approach was 

better since it provided an optimized valve closure sequence, yielding a lower infection risk than the 

traditional approach. Finally, it was shown that an up-to-date representation of the DWDN’s valve 

settings is important to support the decision-making of a water utility. 

6.3 Scientific contributions of this Thesis 
The scientific contributions of this thesis can be summarized as follows: 

• AI-Based Information Extraction: An AI-based model was developed and evaluated for 

extracting both qualitative and quantitative pathogen characteristics from scientific 

publications. The results showed a satisfactory performance, indicating that water utilities can 

leverage such models for rapid access to critical information during the early stages of a 

pathogen contamination event. 

• Assessment of Large Language Models (LLMs): A systematic evaluation of various open-

source LLMs was performed for their ability to perform a question-answering task related to 

contamination events of DW. The results showed that LLMs have the potential to support 

decision-making during emergencies since Llama 2 was able to provide answers to simple 

questions. The main limitation was the hallucination effect. A hybrid approach, combining the 

strengths of multiple open-source LLMs (e.g., high accuracy, low hallucination tendency) 

shows great potential for developing robust, high-accuracy tools for emergency management 

and decision-support in the drinking water sector. 

• BeWaRE Benchmark, QMRA integration, and Decision-Support Tool: The open-access 

BeWaRE benchmark testbed was created, integrating comprehensive knowledge on pathogen 

transport, chlorine decay, CRA degradation, stochastic water demands, and health impact 

assessment. This testbed utilized the QMRA framework by incorporating detailed exposure (via 

stochastic tap water consumption patterns) and dose-response models for wastewater 

contamination scenarios in both chlorinated and non-chlorinated DWDNs, offering a realistic 

representation of network dynamics and health outcomes. These efforts were translated into the 

PathoINVEST tool, a decision-support tool built on BeWaRE, enabling water utilities to manage 
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and model contamination events in real-time, find the source of contamination, and optimize 

mitigation strategies to improve public health. 

• Model-Based Emergency Response: Traditional and model-based approaches were compared 

for managing a contamination event in a DWDN. This thesis demonstrated the applicability of 

PathoINVEST in a Case Study and showed that real-time modeling tools can improve 

contamination source identification (by reducing both the time required and the number of 

samples needed), optimize mitigation measures (via valve manipulation), and enhance decision-

making during emergencies. 

6.4 Implications for water utilities and practical applications 
The research conducted and the methodologies that were developed in this thesis have implications for 

water utilities and offer practical applications that can improve emergency response and management 

of pathogen contamination events in DWDNs. During the PathoCERT project the AI-based 

methodology (Chapters 2 and 3) was translated into a web-based tool called PathoTHREAT1718. 

Additionally, the BeWaRE benchmark testbed (Chapter 4) was incorporated into the PathoINVEST tool 

(Chapter 5).  

6.4.1 Implications for water utilities 

Improved decision-making  

The use of an AI-based information extraction tool (PathoTHREAT) and a real-time modeling tool 

(PathoINVEST) enables water utilities to make faster and more informed decisions during emergencies. 

These tools significantly reduce the time needed to collect all relevant information about the emergency. 

Pathogen contamination events are (fortunately) rare, however, having key information on pathogen 

characteristics and earlier contamination events readily available is invaluable. Such key information 

includes the type of pathogen and their relevant symptoms, expected cases and hospitalizations, routes 

of exposure, and control options. It also improves the situational awareness of water utilities providing 

a better understanding of contamination spread, expected infection risk, and helping them to act quickly 

to mitigate risks by closing valves or isolating affected areas, which is crucial in minimizing the infection 

risk. 

Operational efficiency 

The incorporation of AI-based information extraction and modeling tools in the emergency response of 

water utilities significantly enhances their operational efficiency during contamination events. 

• The AI-based information extraction tool eliminates the need for manual time-consuming 

literature reviews on similar historical contamination events, giving access to up-to-date 

information and saving water utilities valuable time during the critical early stages of 

contamination.  

• Modeling tools such as PathoINVEST enables water utilities to: 

o Visualize the expected contamination propagation. 

o Focus on specific areas by guiding sampling locations and valve closures. 

o Reduce the number of valves required to close. 

o Reduce the number of samples required to find the contamination source. 

o Minimize the time needed to identify a contamination source in their network. 

o Minimize the time needed to decide on effective control options. 

This approach can increase the overall efficiency, saving both time and costs during emergencies, 

reducing the health impact and number of people affected. 

 
17 https://github.com/Applied-Artificial-Intelligence-Eurecat/PathoTHREAT 
18 https://youtu.be/NTdF_aLsYL4?si=Czk5lC00aB31KKE1 

https://github.com/Applied-Artificial-Intelligence-Eurecat/PathoTHREAT
https://youtu.be/NTdF_aLsYL4?si=Czk5lC00aB31KKE1
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Transferability 

PathoTHREAT is applicable in any emergency situation that involves drinking water contamination. It 

provides a comprehensive overview tailored to effectively address a wide range of contamination events. 

PathoINVEST tool is designed to be adaptable since any DWDN with a suitable Geographical 

Information System and hydraulic modeling can support its use, regardless of network structure, or water 

system.  

Integration into Standard Operating Procedures (SOPs) 

Both PathoTHREAT and PathoINVEST can be smoothly integrated into the existing SOPs of water 

utilities, enabling them to adopt advanced decision-support systems without causing any disruptions to 

their current practices.  

Sustainability 

The functionalities and applicability of the PathoINVEST tool enable safe drinking water for the 

population, increasing trust in water supply and reducing reliance on bottled water. The rapid detection 

and isolation of contamination help minimize the affected area, leading to less water wasted during 

network flushing and disinfection. The tool can assist in minimizing the chemicals used for disinfection 

and streamlining decision-making to optimize resource allocation. In combination with efficient 

decision support, these features can contribute to less water loss and improved resilience against 

contamination events. 

6.4.2 Practical applications 

The above implications can be translated into practical applications in real-world contamination 

scenarios. Through the EU-funded PathoCERT project, three case studies of (hypothetical) 

contamination were conducted to showcase the usefulness and relevance of the developed tools during 

a contamination emergency.  

PathoTHREAT 

The web-based PathoTHREAT tool enables the user to import the extracted (AI-based) information in 

a database and using a User Interface to have comprehensive overview of pathogen characteristics and 

historical data of contamination events that are related to the current emergency, providing a rapid (high 

level) health and threat assessment. The tool was tested in all three case studies of the PathoCERT 

project, enabling relevant authorities to have a rapid assessment of their own contamination event and 

providing them with important information at the early stages of the emergency. 

PathoINVEST19 

The tool was applied in three European case studies (Spain, Cyprus, the Netherlands), each featuring 

distinct characteristics. In Spain and Cyprus, it was used to assist the response to earthquakes that led to 

sewage infiltration into the DWDN. In the Netherlands, it was employed to investigate suspected 

intentional contamination following customer complaints20. In each case study, emergency response 

teams comprising individuals from all relevant sectors (water utilities, civil protection, and health care) 

used PathoINVEST alongside their standard operating procedures. 

Spain 

In Spain, the water utility used the pathogen evolution forecasting feature to identify areas of concern 

within the network. Once they had a clear picture of the spreading, they used the PathoINVEST tool to 

identify sampling locations and verify the contamination. They also estimated the impact of 

contamination and proceeded with mitigation measures (valve manipulation) using the PathoINVEST 

feature to test different scenarios until they found the optimal valve closure combination. The 

responsible authorities noted that they could easily redeploy to new locations within such a short time 

 
19 Besides the features presented in Chapter 5 (sampling location suggestion, identify the contamination source, and optimal valve closure 
recommendation), the PathoINVEST tool includes another important feature, that is pathogen evolution forecasting. 
20 Part of the activities in this case study is presented in Chapter 5. 
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frame under proper communication. They also mentioned that it is a powerful tool that can be easily 

integrated into their standard operating procedures and in the hands of an expert, they can effectively 

mitigate any future contamination event in their network.  

Cyprus 

In Cyprus, after several locations in the DWN were considered as potential contamination sources, the 

PathoINVEST tool was used to suggest sampling locations to find the suspected source of 

contamination. Again, the feature of impact calculation was used once the source was identified to 

estimate the magnitude of the contamination after the earthquake. Finally, they were able to effectively 

restrain the contamination plume by strategically closing valves, as suggested by PathoINVEST. The 

responsible authorities acknowledged that their situational awareness and response had improved 

significantly compared to previous experiences, since they were able to immediately identify the source 

and prioritize effective mitigation measures.  

Netherlands 

In the Netherlands, customer complaints of water taste and odor were used as a starting point to identify 

the contamination source. This rapid identification enabled the water utility to respond faster and more 

efficiently. Their feedback was that in such situations (suspected intentional contamination), having a 

tool that models in real-time pathogen propagation and identifies the contamination source gave them a 

significant head start as it is crucial to act quickly. They also recognized the need for further training to 

effectively incorporate the tool into their standard operating procedures.  
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6.5 Perspectives and future research 

6.5.1 Artificial Intelligence and LLMs for decision-making 

The use of AI for information extraction has demonstrated significant potential for improving the 

situational awareness of responsible authorities during emergencies. The use of LLMs in QA tasks in a 

growing number of scientific fields (e.g., education, healthcare) is gradually becoming a necessity (He 

et al., 2023; Sajja et al., 2024; Yu et al., 2024). Being able to rapidly extract important information from 

scientific publications (asking a model using a prompt and receiving a response) instead of performing 

time-consuming literature reviews is considered extremely beneficial.  

With respect to future research, translating AI-based methodologies for rapid information extraction into 

user-friendly tools that can be used from water utilities without requiring substantial training, represents 

a natural next step for real-world emergency management. Additionally, great attention should be paid 

to the responsible and domain-specific application of LLMs. In particular, their applicability to the 

domain of environmental microbiology requires careful investigation and necessitates human 

supervision (i.e., human-in-the-loop). Furthermore, there is an imperative need for improved 

documentation of contamination incidents. Currently, many events are either underreported or not 

documented as contamination events or outbreaks. And even when incidents are reported, the 

information is often not properly structured, making the application of AI for information extraction a 

difficult task. If incident reporting were more structured and made accessible in the public domain, AI 

could play an even greater role in harnessing and analyzing this information, similar to what is already 

happening in the biomedical domain. Although the rapid progression of AI and specifically LLMs show 

great potential and is already impacting our lives, there is also a risk that society, including experts, may 

struggle to fully harness their potential. An example is the hallucination effect as mentioned in Chapter 

3, where LLMs generate plausible yet wrong answers, highlighting the importance of addressing these 

challenges to ensure a responsible and efficient use of AI. It is important to emphasize that AI is not 

meant to replace human decision-making but to support and enhance it. Finally, the digitalization of the 

water sector is already underway, with AI being an integral component of this transformation. 

Integrating AI into the standard operating procedures of water utilities seems not only a logical but a 

necessary next step. 

6.5.2 Modeling tools for decision-making 

The literature review has shown that while a lot of progress has been made in modeling the various 

reactions that take place in a DWDN, existing efforts have predominantly focused on specific aspects 

of hydraulic and quality dynamics modeling, often relying on assumptions and simplifications. This 

thesis demonstrated that it is feasible to develop a holistic representation of all the reactions occurring 

within a network, by utilizing state-of-the-art methodologies and developing a new benchmark testbed. 

The proposed approach integrates key factors -chlorine decay, reaction kinetics, CRA degradation, and 

stochastic water consumption patterns- into a single testbed, offering a more realistic and comprehensive 

alternative to traditional models that often oversimplify or isolate these dynamics. This integration 

enables users (water utilities) that have a hydraulic network to realistically simulate any contamination 

event and assess its impact (through the framework of QMRA). This thesis also showed that the use of 

real-time modeling is beneficial, as delayed responses can hinder any meaningful mitigation measures 

during an emergency in the DWDN. 

The ability to realistically simulate a contamination event in the DWDN, while having information in 

real-time about the pathogen propagation, the potential infection risk, as well as a proposal for sampling 

and the optimal closure of valves for mitigation is invaluable for a water utility. The current approach 

regarding emergency management in the DWDN is highly dependent on experience and human intuition 

rather than what is actually happening in the network as the contamination event unfolds (use of real-

time data). Chapter 5 underscored the added value of integrating modeling tools to enhance the current 

practices of water utilities, shifting decision-making from assumption-driven to data-driven approaches. 
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The strengths of modeling tools have been clearly demonstrated in this thesis, but there are also 

weaknesses that need to be addressed in the future. For instance, future research should focus on 

understanding the dynamics within a DWDN when chlorine-reducing agents found in wastewater (e.g., 

organic/inorganic compounds and pathogens) “compete’’ for chlorine. Key questions include: What are 

the actual disinfection kinetics when wastewater enters a chlorinated network? Which reactions occur 

first, and which follow? Do these reactions happen simultaneously, or sequentially? Is it valid to assume 

that individual disinfection kinetics can simply be combined? Additionally, current hydraulic modeling 

relies on the perfect mixing assumption within pipes. Is this assumption accurate, or does it oversimplify 

the real behaviour within the network? And does this influence the accuracy of the predicted health 

impact or is the effect of the assumption negligible? Addressing these questions using experimental 

designs will be crucial for advancing the reliability and applicability of these modeling tools in real-

world scenarios. 

A better understanding of contamination dynamics also requires access to real data on chlorine-reducing 

agents in wastewater during contamination events. To address this gap, future research should focus on 

pilot case studies to provide experimental data, enabling the calibration of the BeWaRE testbed with 

real DWDN data. These experimental studies could explore various hydraulic and water quality 

conditions, emphasizing the interactions between chlorine and chlorine-reducing agents across different 

phases (fast and slow). Additionally, more attention should be paid to wall chlorine decay dynamics, as 

these vary significantly between networks depending on the pipe material, age, and condition. 

Regarding the health impact, as discussed in Chapter 4, the infection risk estimation needs to be more 

comprehensive by exploring a cumulative infection risk from multiple pathogens during a wastewater 

contamination event. To be able to do this properly, more data on the concentration of infectious 

pathogens in different DWDN contamination sources is needed. Additionally, for a holistic QMRA 

implementation, the exposure via showering and brushing teeth should be taken into account.  

To further improve the accurate outputs of the BeWaRE testbed, different pathogens and dose-response 

models could also be explored as well to better capture the potential infectivity of a wastewater 

contamination event. The difference between the probability of infection and the probability of illness 

should be explored since these two are distinct concepts in dose-response modeling, each representing 

different outcomes after pathogen exposure. While the first represents the likelihood that an individual 

will be infected after pathogen exposure (and after a specific dose), the latter refers to the likelihood that 

an infected individual will become ill after exposure. Infection is a prerequisite for illness, but infection 

does not guarantee illness. This means that the probability of illness is lower than the probability of 

infection. This distinction could help refine risk management strategies by enabling responses to be 

tailored to vulnerable groups of the population (e.g., prioritize mitigation measures such as valve closing 

or re-chlorination in areas with hospitals). This differentiation could also have implications to the 

refinement of dose-response models, separating infection and illness probabilities for critical pathogens 

and vulnerable groups. Subsequently, the inherent uncertainty of transitioning from infection to illness 

could be incorporated and taken into account when combining QMRA with hydraulic modeling. 

Additionally, the Disability-Adjusted Life Year (DALY) metric could also be explored and integrated 

into future studies combining modeling and health risk assessment. The DALY framework combines 

the years of life lost due to premature mortality and the years of living a life with disability due to a 

disease, providing a quantitative metric of health burden associated with contamination. Incorporating 

DALYs when modeling health risk could enhance the dissemination of such critical information to water 

utilities. It could also allow for better comparison of health risks between different pathogens, but also 

assess and communicate the long-term effects of a contamination, providing a better understanding of 

the trade-offs between different mitigation strategies. 

A shift in the status quo of DWDN management (both for routine operations and emergencies) is 

essential to address limitations in current practices, such as delayed detection of issues and reactive 

responses. The digitalization of the water sector offers a powerful means to achieve this transformation. 

Digital Twins, for example, can monitor water quality in real-time, identifying critical locations and 

vulnerabilities within a network, thus enabling a more proactive and effective management (Karmous-

Edwards et al., 2019). Increasing the detection frequency of contamination events and outbreaks in the 
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DWDN as they unfold and not after a critical point, as discussed in Figure 1.1 (Chapter 1), is extremely 

important. Literature review showed that only 7% of contamination cases are detected through customer 

complaints, another 7% via water quality analysis, and 86% through unusual increases in 

hospitalizations. Future emergency water management should consider deploying online sensors that 

can detect microbial contaminants in real time throughout the DWDN, to enable rapid responses (Raich, 

2013; Gunnarsdottir et al., 2020; Canciu et al., 2022). Building on this rationale, findings in these BTO 

reports (Blokker et al., 2017a, 2017b, 2018a, 2018b) highlight the imperative need for developing 

automatic, online microbial sensors in the DWDN. While this research has shown that online microbial 

sensors can be very beneficial in exceptional situations (e.g., wastewater contamination in the DWDN), 

they can also be beneficial in routine operations (e.g., main repairs) since they can reduce the 

contamination detection time (e.g., 1-4 hours post-repair compared to 12-24 hours). Although online 

sensors are considerably more expensive, they can significantly improve detection probabilities (from 

5% with conventional sampling to 65% when using online sensors). Additionally, under specific 

conditions these sensors can lead to a 94% reduction in contaminated areas and a 50% reduction in the 

contamination duration. Therefore, future research should prioritize evaluating whether the benefits of 

deploying online sensors outweigh their additional costs, in terms of improved public health protection 

and operational efficiency. 

The development of Digital Twins is beneficial for water utilities since they enable real-time network 

hydraulics monitoring, scenario planning, and modeling (Karmous-Edwards et al., 2019). Ensuring 

these systems reflect the accurate status of the network characteristics (having an up-to-date network), 

including the state of valves, is essential; modeling tools are only as reliable as their input data. 

Ultimately, reaching to a point where experts have full situational awareness over their critical 

infrastructure (DWDN) -including interconnections and interdependencies with transportation, power, 

communication and other essential systems- will transform water utility operations and emergency 

responses for the better.  
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