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Abstract

In the Netherlands Dutch pension funds perform the feasibility test. This test is originally
designed for DB pension schemes. Nowadays DC pension schemes are getting a more prominent
role in the Dutch pension system. Therefore an improved design of the feasibility test for DC
pension schemes would be beneficial. In this research we search for a new definition for the
pension result in DC pension schemes. The pension result is an important part of the feasibility
test. We prefer to stay close to the concept of pension result in DB schemes and we conclude
that a pension result based on indexed pension entitlements is an appropriate definition for DC
pension schemes since it measures the maintenance of purchasing power similar to how it is
done in the current feasibility test. We investigate how robust this new definition of the pension
result is by considering an alternative premium policy, an alternative investment strategy, an
alternative pension payment policy and an extension of the financial market model. All factors
have an influence on the pension result. The pension result is calculated using economic scenarios
which are based on the financial market model from Koijen, Nijman and Werker (KNW model).
The pension result is highly sensitive to the interest rate and inflation rate development during
the pension accrual period and the retirement period. Historical data give a motivation for the
use of a jump diffusion model for both the interest rate and inflation rate. These variables are
modeled as diffusion only in the KNW model. An extension of the KNW model is proposed in
which jumps are added to the interest rate process and the inflation rate process. The addition
of jumps influences the pension result in DC schemes.
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Chapter 1

Introduction

The Dutch government has started a discussion about renewing the pension system and is con-
sidering to revise the current use of pension schemes. The currently most common contracts
are Defined Benefit contracts (DB), in these contracts the pension participant has the right to
receive a predetermined pension benefit; the pension goal. The revision would be to assign a
more prominent role to Defined Contribution schemes (DC). In DC schemes the social partners
only make an agreement about the premium. They usually do not formulate a pension goal
which means that the pension payments in the retirement period are uncertain. DC pension
schemes are getting more popular since employers prefer to be exposed to less risk associated
with pensions. Moreover, DC pension schemes allow for more customization and freedom of
choice for pension participants, which in most cases does not hold for DB pension schemes.

With the introduction of the nFTK (nieuw Financieel Toetsingskader)1 in 2015 Dutch pension
funds are required to yearly perform the feasibility test. This feasibility test is an important
instrument for pension funds, as it gives insight in the financial design of the pension fund, in
the expectations about the pension payments and the associated risks.
The feasibility test cannot be applied to most DC pension schemes because, from a legal point of
view, there are no ’pension rights’ or pension entitlements (the right that one receives a certain
amount pension capital during retirement) in a DC scheme during the accrual period that can
serve as a norm in the same way as in a DB scheme. The existence of pension entitlements in a
pension scheme are crucial for the application of the feasibility test. The feasibility test which
pension funds use for DB schemes can be used for some DC schemes, but it can only be applied
to DC schemes in which the accumulated capital will be converted into DB pension benefits at
retirement. As a result, the feasibility test is only applied to the retirement period. Therefore
it ignores the exposure to risk during the pension accrual period.

From the point of view of the pension participants however it is useful to know what risks
one’s pension capital gets exposed to when using a DC pension scheme. A design for the fea-
sibility test for DC schemes is beneficial to give insight in the pension development for social
partners, the board of the pension fund and for the supervisor (DNB). The feasibility test for
DC schemes, which are converted into DB pension benefits at retirement, would get a more
powerful meaning if we involve the accrual period of DC schemes as well. For other DC schemes
we need to introduce a form of a feasibility test for both the accrual and retirement benefit
period. The main research question we will address in this research for De Nederlandsche Bank
is:

1new Financial Assessment Framework
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How can the feasibility test for DC pension schemes be improved?

This question can be further refined using the following subquestions:

1. How should we define the pension result in DC pension schemes?

An important element in the current feasibility test is the calculation of the pension result. We
can give content to our main research question by addressing whether we can give the feasibility
test in DC schemes a similar set up with a meaningful definition of the pension result in it. From
here this first subquestion rises; what is a proper definition for a pension result in DC schemes?
In this research will mainly focus on the pension result and we analyze definitions for a pension
result in variable annuity DC schemes2. The definitions of pension result will be tested and we
draw conclusions about the quality and appropriateness of the definitions.

2. What is the relation between the risk attitude and the life-cycle investment
strategy?

Pension providers must determine their risk attitude3. For DB schemes there exists a link
between the risk attitude and the feasibility test given a certain investment strategy. For DC
schemes there does not exist a link since the feasibility test is not required for and applicable to
all DC schemes. We will investigate how we can make a link between the risk attitude for DC
schemes and the feasibility test. After designing the feasibility test for DC schemes we analyze
what values of the pension result based on a certain investment strategy we accept given the
risk attitude of the pension funds.

3. Can we define the pension result in a general way such that it applies to
all types of pension schemes?

In order to make the set up of the feasibility test easy and practical to use it would be beneficial
to have one general form of the pension result in each type of pension scheme (i.e. DB and all
types of DC schemes).

4. How robust is the pension result?

We will do several sensitivity analyses for the pension result. We will first analyze how sensitive
the pension result is for several changes in the DC pension set up in the accrual period. We test
the sensitivity for the way in which we set the premium payments and the investment strategy.
Afterwards we look at the sensitivity for changes in the retirement period. We analyze how
sensitive the test is to a fixed decrease in pension payments in a variable annuity. As a final
analysis we look at both the accrual and the retirement period. We check if we see significant
changes in the pension result when we make a different set of financial market scenario’s; the
scenario set. We change the way in which the financial market data is generated by extending

2Apart from variable annuities there exist DC pension schemes which are converted into DB benefits at
retirement. Pension participants can also buy a fixed annuities at an insurance company at retirement. We do
not include this forms of DC pension schemes in this research since the new definitions of pension result can be
applied easily to these schemes as well.

3The risk attitude is the extent to which the group of participants is willing to take investment risk to
realize the goals of the pension fund and the extend to which they are able to take investment risk given the
characteristics of the pension fund. The pension provider determines the risk attitude. The risk attitude is
reflected in the maximum acceptable deviation of the expected pension in the bad weather scenario relative to
the expected pension in the expected scenario. The definition of the risk attitude is stated as ‘Risicohouding’ in
article 1a, paragraph 1, 2 and 3, ’Besluit financieel toetsingskader pensioenfondsen’.
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the underlying model for the financial market parameters. With this adapted model and the
new scenario set that it generates we analyze whether the pension result is highly sensitive to
the financial market model. In this research we will make two changes in the model for the
financial market parameters. We add a jump process in the interest rate and we add a jump
process tot the inflation rate. We analyze the influence of the two extensions on the pension
result.

Outline

The main focus of this research is formulating a new definition for the pension result in DC
schemes. Figure 1.1 illustrates the outline of this thesis and highlights the links between the
different chapters. Three different layers are distinguished. In the first layer we will introduce
a more detailed description of DB pension schemes in chapter 2. In chapter 2 also gives a
motivation for why the feasibility test is used and it gives a description of the current feasibility
test and the pension result in DB schemes. Chapter 3 gives a more detailed description of DC
pension schemes and it gives the mathematical background for the simulation of a DC pension
capital. We introduce the KNW model, which is the financial market model that is used in the
feasibility test. We introduce the investment strategy, other assumptions that are made and we
describe the process of the premium payments and the pension payments.
The second layer involves the quantitative research for DNB. It starts in chapter 4 were we
discuss new definitions for pension result which are applicable for DC schemes. We state the
results of the definitions, elaborate on which definition suits best in the feasibility test for DC
schemes and we analyze the best definition with several robustness checks.
The third layer is the mathematical extension of the research. The mathematical extension is
part of the robustness checks. We start the mathematical extension with chapter 5 in which
theory about jump processes is provided. In chapter 6 we change the financial market model
by adding jumps to the interest rate and the inflation rate. In chapter 7 we will discuss the
parameter estimation methods that are used for the jump process and we will discuss the results
with respect to the pension result. In chapter 8 we conclude the research and finish the thesis
with some points of discussion.
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Figure 1.1: Graphic representation of the thesis outline
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Chapter 2

Pension result in DB schemes

In this chapter we address the feasibility test and the pension result in DB schemes. First we
explain how DB pension schemes work. Afterwards we will describe what the feasibility test is
and we look at the functions of the ’feasibility test’ to give the motivation for why pension funds
use it and why the test is useful for the supervision of DNB. We then explain how the feasibility
is used in DB pension schemes and how pension result is defined in DB schemes.

2.1 Defined Benefit pension scheme

In a Defined Benefit (DB) pension scheme pension participants have a right on a pension ben-
efit that is independent of the investment results of the pension fund. The pension benefit is
determined by the number of years worked and the average salary of the beneficiary. In DB
pension schemes the pension fund bears the investment risk, the longevity risk and the interest
rate risk. Investment risk is the risk that the invested pension capital will be worth less than
expected because of unfavorable developments in the financial markets. Longevity risk is the
risk that pension participants get older than expected. We can distinguish between micro and
macro longevity risk. Micro longevity risk results from non-systematic deviations from an in-
dividuals expected remaining lifetime, i.e. the risk that an individual gets older or dies earlier
than expected. Macro-longevity risk results from the fact that survival probabilities change over
time, i.e. the risk that the whole population gets older than expected [1]. Interest rate risk
is the risk that changes in the interest rate will have an unfavorable effect on the value of the
pension payments.

In order to pay out the promised pension benefits in the future pension funds have a few vari-
ables that they can change during different circumstances. These variables are the premium,
the investment policy and the indexation policy. In most DB schemes the participants have a
nominal claim which, if the financial position of the fund allows for it, will be adapted to the
inflation. We call this indexation. Indexation can only be applied if the coverage ratio is high
enough1. The coverage ratio is the ratio between the value of the assets and the value of the
entitlements of the pension fund.

The indexation policy is part of the financial design of a DB pension scheme. The financial
design can be explained by the pension triangle in Figure 2.1. The first vertex is the amount of
premium the employers and the pension participants pay. The second vertex is the risk attitude
of the pension fund and the third vertex of the pension triangle is the pension ambition. The

1Article 15, ’Besluit financieel toetsingskader pensioenfondsen’.
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Figure 2.1: Pension triangle

Premium Risk attitude

Ambition

ambition reflects the goals and the expectations that pension funds and pension participants
have. The triangle represents that each aspect influences the other two. The key fact here is
that a pension fund can never optimize all three vertexes. Improving with respect to one vertex
means that the financial design will deteriorate with respect to the other vertexes. For instance,
if the amount of premium is low and the participants are very risk averse, than the ambition
cannot be high.

2.2 The feasibility test

The feasibility test is a tool used by pension funds to provide information about their per-
formance to government institutions, pension participants and to themselves. This test is an
important part of the monitoring of pension funds. DNB checks if the pension funds correctly
apply the feasibility test. According to the Dutch pension law2 it is mandatory for every pension
fund to perform the feasibility test. In the first feasibility test (the commencement feasibility
test) that a pension fund performs, the quantitative boundaries are set (see section 2.4). After-
wards the test should be performed on an annual basis with respect to the boundaries which
are set in the commencement feasibility test. The feasibility test test whether the pension fund
meets the set boundaries. The feasibility test should be performed in between the yearly tests
in case of a significant adaption. We talk about a significant adaption if for instance the pen-
sion scheme is adjusted, the financial assessment framework is adjusted or if there has been an
adjustment of the parameters for the underlying models. There will be a clear signal for the
fund when, in bad economic conditions or in times of deficit, the fund can no longer meet the
boundaries from the commencement feasibility test.
It is determined that each fund uses the same scenario set when performing the Feasibility
test. This scenario set is based on the KNW [4] model by Kooijman, Nijman an Werker. The
scenario set is delivered by DNB to the pension funds and consists of 2000 different scenarios
for the development of the financial market over a time horizon of 60 years.
The feasibility test gives insight into the financial design of the pension fund. This design can
be explained, as mentioned before, by the pension triangle in Figure 2.1. The feasibility test can
be used to argue why the pension results and the possible policy choices are based on a balanced
consideration of the interest of all the pension participants. For instance, in a downfall in the
economy, pension funds should equally distribute the consequences of the downfall on all age
groups. It also tests whether the goals of a pension fund can be realized. It works as a warning
signal whenever pension funds do not meet their chosen boundaries. It also performs as a way
of communication to inform the pension funds board and the individual participants about the
financial position of the pensions.

2Article 22, ’Besluit financieel toetsingskader pensioenfondsen’.
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2.3 Pension result

The main focus of the feasibility test is the calculation of the expected pension result. The
expected pension result gives insight in how the expectation of the pension benefit, during its
lifetime, quantifies itself in comparison to the maintenance of purchasing power. The feasibility
test tests whether the expected pension result is in line with the set boundaries of the com-
mencement feasibility test and the ambition of the fund. In the current feasibility test there is
only a definition for the pension result that is applicable for all DB schemes. For DB schemes
the feasibility test is performed during the period of accrual and the retirement period. For
both periods the pension result is calculated. The pension result in DB schemes is by the Dutch
law defined per scenario as a quotient in terms of a percentage. In the numerator we take the
sum of all the benefits of all the retirement pensions and the survivor pensions in the future. In
the denominator we take the sum of all the benefits of the retirement period and the survivor
pension, both completely corrected for price inflation.

Definition 2.1. Pension result in DB schemes
Let Qit be the nominal and let rQit be the real pension benefit in scenario i on time t according to
the pension fund policies. The real benefit is equal to the nominal benefit corrected for inflation.
Let rdQ

i
t be the nominal and let rdQ

i
t be the real benefit in scenario i in the case that indexation is

always applied and benefits are never reduced. Let PD be the pension date; the first day of the
retirement period. Let T the date of death and let PD ≤ T . Then we can define the nominal
and the real pension result at time s in a DB scheme as follows:

PRit = 100% ·
∑T

s=PDQ
i
s∑T

s=PD
dQis

1s≥t (2.1)

rPRit = 100% ·
∑T

s=PD
rQis∑T

s=PD
r
dQ

i
s

1s≥t (2.2)

The denominator represents the ideal situation of the development of a pension since all pension
benefits are completely compensated for inflation and face no benefit reduction. The pension
result gives insight in the maintenance of purchasing power.

2.4 Risk attitude

Another function of the feasibility test is the quantification of the risk attitude3 of the pension
fund. The risk attitude is part of the agreement between social partners and the pension fund
in order to execute the pension scheme. The pension fund and the social partners together
should specify two quantitative criteria in the commencement feasibility test which will serve
as boundaries for the following feasibility tests. These two quantitative criteria are a lower
bound and a maximum deviation. The lower bound is represented by the 5th percentile of the
pension result in the commencement feasibility test. The maximum deviation is defined as the
difference between the median of the pension result and the 5th percentile of the pension result.
Both boundaries, the lower bound and the maximum deviation, are set in the commencement
feasibility test. Pension funds with for instance a large risk appetite choose a larger maximum
deviation. The risk attitude is expressed as the combination of the lower bound and the max-
imum deviation. Based on the results of the annual feasibility tests conclusions can be drawn
whether the pension fund still meets their expectations. If not the pension fund can decide to

3Article 1a, ’Besluit financieel toetsingskader pensioenfondsen’.
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either change the premium, the investment strategy, cut the pension benefits 4 or the fund can
decide to change the lower bounds and with that the expectations. The risk attitude forms the
starting point for the board of the pension fund to discuss with other pension fund bodies how
to set the investment strategy.

4Pension funds can only cut pension benefits as a last resort, whenever the financial position cannot be
improved in any other way. Cuts in the pension benefits are applied based on the funding ratio.
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Chapter 3

Pension capital simulation for DC
pension schemes

In this chapter we will describe how we will set up the model for the simulation of DC pension
capital and the computation of the associated pension results. We will start with the description
of DC pension schemes, then we give an introduction of the model we use to generate the financial
market scenarios. Afterwards we will explain how we chose the investment strategy. We will first
shortly explain why in general pension capital is invested according to the life cycle principle
and we will derive the life cycle which we will use in the simulation. In the final section we will
give a detailed description of the remaining model assumptions.

3.1 Defined Contribution pension scheme

In a Defined Contribution (DC) scheme the pension participants bear most of the pension risks
such as investment risk and macro longevity risk. The premium is fixed i.e. the premium does
not change based on the financial situation of the pension fund, and the premium differs per
age. Indexation does not exist in DC schemes because the participant does not have a pension
right. An important advantage of DC pension schemes is that the investment strategy can be
tailored to the individual preferences of the pension participant. Tailoring the investment strat-
egy can for example be done by using a life cycle investment strategy. A life cycle investment
strategy is an investment strategy in which the amount of investment risk depends on the age
of the participant. The life cycle determines how we invest the accrued pension in risky assets.
Studies have shown [11] that it is beneficial to take more investment risk at young ages than at
older ages and that it is beneficial to let the investment risk decrease while the participants ages.

There are several types of DC schemes. In this thesis we will focus on the variable annuity
DC. In a variable annuity the pension capital is not converted into pension benefits. The pen-
sion capital will be partly payed out and partly invested from the pension date on, which results
in a variable payout during the retirement period due to variable investment returns and the
survival probabilities. Restriction here is that the payouts must be a life long payout guarantee.
This differs form the DB scheme since there the payouts are benefits and fixed from the pension
date on.
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3.2 Financial market model: the KNW model

In order to calculate the pension result we need to make a prediction for the development of
pension capital in all sorts of representative scenarios of the financial market. For the feasibility
test it is legally stated that pension funds must use the same scenario set generated and provided
to the funds by DNB [6]. This scenario set consists of 2000 scenarios for 60 years. To generate
these scenarios DNB makes use of the so-called KNW [4] model, since the Parameters committee
[5] advises to use this model.

The KNW model is an affine factor model for the term structure were we assume a complete
market. An affine factor model is a type of financial market model that relates zero-coupon
bond prices to a spot rate model. The financial market model contains relations between key
financial risk factors of pension funds. The simulated portfolio consists of a stock index St,
long-term nominal and real 1 bonds which are respectively denoted as Pt(N) and rPt(N). The
simulated portfolio also has a nominal money account. We state the equations that are used in
the KNW model below (and with that the relations between the risk factors). All variables that
are vectors or matrices will denoted in bold in this chapter.

• Unobserved states
The number of states in this model is 2. The two state variables Xt have an influence on
the real interest rate, the inflation rate, the prices of risk and the bond price. The time
series for interest rate and inflation rate have a high first order auto correlation, so small
changes now can have significant impact on the capital in the future i.e. for any t Xt is
highly dependent on Xt−1. So for the interest rate and the inflation rate the values in
the near past are of great importance. The stochastic differential equation of the state
variables is defined as:

dXt = −KXtdt+ ΣX
′dZt.

With Xt ∈ R2, K ∈ R2×2 is a lower triangular matrix and

ΣX
′ =

[
1 0 0 0
0 1 0 0

]
.

Zt ∈ R4 is a vector of independent Brownian motions driving the uncertainty in the
financial market. Four sources of uncertainty can be identified; uncertainty about the real
interest rate, uncertainty about the instantaneous expected inflation, uncertainty about
the unexpected inflation and uncertainty about the stock return.

• Instantaneous real interest rate
The uncertainty and dynamics in the instantaneous real interest rate rt are modeled using
the two state variables. The interest rate is assumed to be affine in all factors.

rt = δ0r + δ′1rXt.

With δ0r ∈ R and δ1r ∈ R1×2.

• Instantaneous expected inflation
The uncertainty and dynamics in the instantaneous expected inflation πt are also modeled
using the two state variables. The inflation is assumed to be affine in all factors.

πt = δ0π + δ′1πXt.

1With real we mean that the referred asset is compensated for inflation, so we translated the expected future
value in terms of the value of the used currency today.
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With δ0π ∈ R and δ1π ∈ R1×2. Any correlation between the real interest and inflation
rate is modeled using δ′1r and δ′1π.

• Price index
For the relative return of the price index process (cumulative inflation) Πt we assume a
Geometric Brownian motion.

dΠt

Πt
= πtdt+ σΠdZt.

With σΠ ∈ R4 and Π0 = 1. σΠ(4) = 0 such that the price index is independent of the
random shocks from the stock return.

• Stock index
For the stock index St we assume a Geometric Brownian motion. The relative stock returns
are modeled as follows:

dSt
St

= (0Rt + ηS)dt+ σ′SdZt.

With σS ∈ R4, S0 = 1 and ηs the equity risk premium. We will derive the formula for 0Rt
in subsection 3.2.2.

• Bond returns
For the relative bond returns we assume the following SDE:

dPBt (N)

PBt (N)
= (0Rt +B(N)′ΛtΣ

′
X)dt+B(N)′Σ′XdZt.

The formula for B(N) will be derived in section 3.2.1 where we will derive the bond price
of the KNW model.

• Prices of risk
The time-varying price of risk Λt is affine in state variables Xt.

Λt = Λ0 + Λ1Xt.

With Λt,Λ0 ∈ R4 and Λ1 ∈ R4×2. The prices of risk will depend on the risk aversion of
the investor. It is imposed here that the price of unexpected inflation risk, which cannot be
identified using nominal bond data, equals zero i.e. the row in Λ1 representing the price of
unexpected inflation will contain zeros. This assumption is imposed since inflation-linked
bonds have been launched in the US only as of 1997, the data available is insufficient to
estimate this price of risk accurately [4].

Λ1 =


Λ1(1,1) Λ1(1,2)

Λ1(2,1) Λ1(2,2)

0 0
Λ1(4,1) Λ1(4,2)


• Nominal stochastic discount factor

For the nominal stochastic discount factor dφt
φt

we assume a Geometric Brownian motion.
The stochastic discount factor gives the marginal utility ratio between consumption today
and in the future. So it displays how much we value to consume capital today or save
capital for tomorrow. The marginal utility ratio is for everyone the same in case of complete
markets (see theorem 3.2) .

dφt
φt

= −0Rtdt−Λ′tdZt.
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3.2.1 The bond price in the KNW model

Bonds are fixed-income products. The theoretical fair value of a bond is the present value of
the stream of cash flows it is expected to generate. Hence, the value of a bond is obtained by
discounting the bond’s expected cash flows to the present using an appropriate discount rate. If
we assume that a bond terminates at maturity N , pays yearly discrete coupons or dividends D
and has the face value M at maturity then the equation for the price of the bond at time t Pt
is as follows:

Pt =
D

1 +Rt+1
+

D

(1 +Rt+2)2
+ ...+

D

(1 +Rt+N−1)N−1
+

M

(1 +Rt+N )N

=

N−1∑
n=1

D

(1 +Rt+n)n
+

M

(1 +Rt+N )N

The simplest fixed-income instrument is a zero-coupon bond. A zero-coupon bond is an agree-
ment to pay one dollar (a nominal bond) or one unit of the consumption good (a real bond) on
a specified date (maturity). The pricing of a zero coupon bond with discrete compounding and
maturity N is therefore:

Pt =
1

(1 +Rt+N )N

If we have a continuous discount factor we must divide the time intervals in n intervals with
limn→∞. For the discount factor of the bond we then observe:

lim
n→∞

(
1 +

R

n

)nt
Now we make the change of variables n = mR and we observe

lim
m→∞

(
1 +

1

m

)mRt
=

(
lim
m→∞

(
1 +

1

m

)m)Rt
= eRt

So when we assume continuous compounding we compute the zero coupon bond price without
maturity by:

Pt = e−Rt

To get to the bond price of the KNW model we use the fact that the KNW model is an affine
term structure model. In an affine term structure model bond prices are affine.

Definition 3.1. Affine term structure models
Affine term structure models are a special class of interest rate models in which it is assumed
that the interest rate is affine and the term structure is affine. The interest rate is of the form:

dRt = (αt − βtRt)dt+
√
δt + γtRtdZt

Where Zt is a standard Brownian motion. In the KNW model it holds that:

dRt = R′1dXt = −R′1KXtdt+R′1Σ′XdZt.

Therefore the interest rate is affine in the state variables. The term structure i.e. the bond prices
are of the following form:

P (t, T ) = eA(N)+B(N)′Xt

where A(N) and B(N) are deterministic functions.
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In order to solve the bond price of the KNW model we use the basic pricing equation [16] (see
theorem 10.2). To get to this equation we go back to non zero coupon bonds which pay dividends
D. We now assume that the dividend payout is continuous. Let a generic bond security have
price Pt and dividends Dt at each time t. The instantaneous total return at each time t is then
the change in the bond price Pt plus the payed out dividend Dt times the change in time:

dPt
Pt

+
Dt

Pt
dt

Since we model risky assets as diffusion, our relative change in the bond price will be modeled
according to the Bacheliers type:

dPt
Pt

= µdt+ σdZt

Where Zt is a standard Brownian motion.

Theorem 3.2. The basic pricing equation is:

EQ
t

[
dPt
Pt

]
−Rtdt = −EQ

t

[
dPt
Pt

dφt
φt

]
Proof. Let φt be the stochastic discount factor at time t. If we buy a security today the payoff
next period will be the security price plus the dividend. So we know that the price of the bond
security will be accordingly:

Ptφt = EQ
t

[∫ ∞
0

Dt+sφt+sds

]
So the price at Pt+∆t equals:

Pt+∆tφt+∆t = EQ
t+∆t

[∫ ∞
0

Dt+∆t+sφt+∆t+sds

]
Taking the difference of both we find:

Ptφt − Pt+∆tφt+∆t = EQ
t

[∫ ∞
0

Dt+sφt+sds

]
− EQ

t+∆t

[∫ ∞
0

Dt+∆t+sφt+∆t+sds

]
⇒

Ptφt − Pt+∆tφt+∆t = EQ
t

[∫ ∆t

0
Dt+sφt+sds

]
+ EQ

t

[∫ ∞
∆t

Dt+sφt+sds

]
− EQ

t+∆t

[∫ ∞
0

Dt+∆t+sφt+∆t+sds

]
⇒

Ptφt − Pt+∆tφt+∆t = EQ
t

[∫ ∆t

0
Dt+sφt+sds

]
+ EQ

t

[∫ ∞
0

Dt+∆t+sφt+∆t+sds

]
(3.1)

− EQ
t+∆t

[∫ ∞
0

Dt+∆t+sφt+∆t+sds

]
⇒

Ptφt = EQ
t

[∫ ∆t

0
Dt+sφt+sds

]
+ EQ

t [Pt+∆tφt+∆t]⇒

Ptφt ≈ Dtφt ·∆t+ EQ
t [Pt+∆tφt+∆t]⇒

Ptφt ≈ Dtφt ·∆t+ EQ
t [Ptφt − Ptφt + Pt+∆tφt+∆t]⇒

0 ≈ Dtφt∆t+ EQ
t [Pt+∆tφt+∆t − Ptφt] with ∆→ 0⇒

0 = Dtφtdt+ EQ
t [d(Ptφt)] (3.2)
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We rewrite d(Ptφt) using Ito’s Lemma:

d(Ptφt) = Ptdφt + φtdPt + dPtdφt

then (3.2) becomes:

0 = Dtφdt+ EQ
t [Ptdφt + φtdPt + dPtdφt]⇒

0 =
Dt

Pt
dt+ EQ

t

[
dφt
φt

+
dPt
Pt

+
dφt
φt

dPt
Pt

]
(3.3)

Now we can interpreted 1 euro cash as a security that has a constant price equal to 1 and pays
the interest rate as a dividend.

dPt
Pt

= Rt

Applying (3.3) to cash gives us:

0 = Rtdt+ EQ
t

[
dφt
φt

]
We can rewrite (3.3) as:

EQ
t

[
dPt
Pt

]
+
Dt

Pt
dt = Rtdt− EQ

t

[
dPt
Pt

dφt
φt

]
(3.4)

The holding period return of a bond with maturity N can be expressed as:

hpr =
Pt+∆t(N −∆)− Pt(N)

Pt(N)

=
Pt+∆t(N −∆)− Pt+∆t(N) + Pt+∆t(N)− Pt(N)

Pt(N)
.

Taking the limit we find:

hpr =
dPt(N)

Pt
− 1

Pt

∂Pt(N)

∂N
dt.

The fundamental pricing equation applied to the hpr, given maturity N , becomes:

EQ
t

[
dPt
Pt

]
−
(

1

Pt

∂P (N, t)

∂N
+Rt

)
dt = −EQ

t

[
dPt
Pt

dφt
φt

]
(3.5)

we assume that all the time dependence of the bond price comes through the state variables

Xt of KNW. We use Ito’s lemma to rewrite the terms EQ
t

[
dPt
P

]
and EQ

t

[
dPt
P

dφt
φ

]
from the

fundamental pricing equation (3.5). For expectation of the relative change in the bond price
EQ
t

[
dPt
P

]
we find according to Ito’s lemma:

EQ
t

[
dPt
P

]
= EQ

t

[
1

P

∂Pt
∂Xt

dXt +
1

P

1

2

∂2Pt

∂X2
t

(dXt)
2

]
EQ
t

[
dPt
P

]
= EQ

t

[
1

P

(
∂Pt
∂Xt

µX +
1

2

∂2Pt

∂X2
t

σ2
X

)
dt+

1

P

∂Pt
∂Xt

σXdZt

]
=

1

P

(
∂Pt
∂Xt

µX +
1

2

∂2Pt

∂X2
t

σ2
X

)
dt.
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With µX = (−KXt) and σ2
X = Σ′XΣX .

For expectation of the relative change in the bond price times the relative change in the stochastic

discount factor EQ
t

[
dPt
P

dφt
φ

]
we find:

EQ
t

[
dPt
P

dφt
φ

]
= EQ

t

[
1

P

((
∂Pt
∂Xt

µX +
1

2

∂2Pt

∂X2
t

σ2
X

)
dt+

∂Pt
∂Xt

σXdZt

)
(−Rtdt− (Λt)dZt)

]
=

1

P

∂Pt
∂Xt

σ′XΛtdt.

When we plug the new expressions for EQ
t

[
dPt
P

]
and EQ

t

[
dPt
P

dφt
φ

]
into (3.5), we get a another

expression for the basic pricing equation:

∂Pt
∂Xt

µX +
1

2

∂2Pt

∂X2
t

σ2
X −

∂P

∂N
−RtPt =

∂Pt
∂Xt

σ′XΛt. (3.6)

Recall that the log price of the bonds are linear in the affine KNW model:

P (N,Xt) = eA(N)+B(N)Xt (3.7)

with the boundary condition: P (0,Xt) = 1, so A(0)−B(0)′Xt = 0⇒ A(0) = 0 and B(0) = 0.
We denote the derivative of A(N) andB(N) with respect to the maturity N with a dot notation:

Ȧ(N) =
∂A(N)

∂N

Ḃ(N) =
∂B(N)

∂N

with this we can deduce that:

1

Pt

∂Pt
∂Xt

= B(N) (3.8)

1

Pt

∂2Pt

∂X2
t

= B(N)B(N)′ (3.9)

1

Pt

∂Pt
∂N

= − 1

Pt

∂Pt
∂N

= −Ȧ(N)− Ḃ(N)′Xt. (3.10)

Substituting this in (3.8), (3.9) and (3.10) into (3.6) we find together with the formulas for the
economy parameters from KNW that:

B(N)′(−KXt) +
1

2
(ΣXB(N)B(N)′Σ′X)− Ȧ(N)− Ḃ(N)′Xt − (R0 +R′1Xt) =

B(N)′Σ′X(Λ1Xt + Λ0).

Now we set all the terms with Xt terms equal:

B(N)′(−KXt)− Ḃ(N)′Xt −R′1Xt = B(N)′Σ′XΛ1Xt ⇒
Ḃ(N) = −R1 − (K + Λ′1ΣX)B(N)⇒

B(N) = (K + Λ′1Σ′X)−1
[
e−(K+Λ′

1Σ′
X)N − I2×2

]
R1

B(N) = M−1
[
e−MN − I2×2

]
R1 (3.11)
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with M = (K + Σ′XΛ1). We also set all the non Xt terms equal:

− Ȧ(N) +
1

2
B(N)′Σ′XΣXB(N)−R0 = (Λ′0ΣX)B(N)⇒

Ȧ(N) = −R0 +
1

2
B(N)′Σ′XΣXB(N)− (Λ0Σ′X)B(N)⇒

A(N) =

∫ N

0
Ȧ(s)ds (3.12)

so the bond price in the KNW model can be written as:

Pt(N) = eA(N)+B(N)′Xt (3.13)

where A(N) and B(N) are respectively as equation (3.11) and (3.12).

3.2.2 Implications of nominal and inflation linked bonds

The stochastic discount factor can be used to determine the value of all discounted assets because
the described markets are complete.

Definition 3.3. Complete markets
We say that a market is complete if:

• there are no transaction costs and there is perfect information

• there exists a price for every asset in all possible states of the world

In the theoretical representation of the KNW model the first theorem of fundamental asset
pricing holds since the KNW market can be characterized by a risk-neutral measure [8].

Theorem 3.4. First fundamental theorem of asset pricing
If a market is characterized by at least one risk-neutral measure Q that is equivalent to the
original probability measure P (i.e. they agree on which sets in filtrations Fn have probability
zero), then it does not allow arbitrage [9]

This has a few implications. Since the discounted bond price is a martingale in a complete
market under the risk neutral measure there does not exist arbitrage in the bond price [9], so
the expected change in the discounted value of the price of a nominal bond does not change over
time. The fundamental pricing equation for a nominal zero coupon bond is thus:

E [dφP ] = 0.

From this it follows that also the discounted value of the real bond price corrected for inflation
does not change over time, so for inflation linked bonds the following holds:

E [dφrPΠ] = 0

where rφ = φΠ is the real stochastic discount factor. Using the Ito Doeblin theorem we derive
for the real stochastic discount factor:

drφ
rφ

:=
d(φΠ)

φΠ

=
dφ

φ
+
dΠ

Π
+
dφ

φ

dΠ

Π

= −(0Rt − πt + σ′ΠΛt)dt− (Λ′t − σΠ)dZt

= −rt − (Λ′t − σ
′
Π)dZt
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Using Ito’s isometry we find that the nominal rate can thus be written as:

Rt = rt + πt − σ′ΠΛt

= (δ0r + δ0φ − σ′ΠΛ0) + (δ′1r + δ1φ − σ′ΠΛ1)Xt

:= R0 +R′1Xt

3.2.3 Implications for the equity risk premium

The fundamental valuation equation of the equity index implies that the expected value of the
discounted stock price does not change over time [8]:

E [dφS] = 0.

This equation implies a restriction. Using the Ito-Doeblin theorem gives:

dφS

φS
=
dφ

φ
+
dS

S
+
dφ

φ
· dS
S

= −Rtdt−Λ′tdZt + (Rt + ηS)dt+ σ′sdZt

+
(
−Rtdt−Λ′tdZt

) (
(Rt + ηS)dt+ σ′sdZt

)
=
(
ηS −Λ′tσS

)
dt−

(
Λ′t − σ

′
S

)
dZt. (3.14)

Again using Ito’s isometry we get:

E

[
dφS

φS

]
= E

[(
ηS −Λ′tσS

)
dt−

(
Λ′t − σ

′
S

)
dZt

]
= E

[(
ηS −Λ′tσS

)
dt
]

=
(
ηS −Λ′tσS

)
dt.

Which implies σ′SΛ0 = ηS and σ′SΛ1 = 0. This restrictions are imposed on the model.

3.2.4 Term structure

The formula for the interest term structure is given by coefficients A(N) and B(N) respectively
defined in equations (3.12) and (3.11). Where A ∈ R1x75, B ∈ R2x75 and maturity N ≤ 75.
The interest term structure with maturity N in scenario i equals:

NRit = exp
(
A(N) +B(1, N) ·Xi

t(1) +B(2, N) ·Xi
t(2)

)
− 1.

3.3 Investment strategy

The investment strategy determines how the pension capital is invested. This strategy generally
changes over time as the participant ages. In general individuals face two main decisions in their
financial planning over their life cycle, namely the saving decision and the investment decision
[11]. Through the saving decision, individuals decide how to smooth consumption over time
by setting the pension premium and the pension benefits. The next question then is how to
optimally allocate savings between stocks and bonds; the investment decision. Here we will focus
on the latter. The savings decision will not be optimized since we assume a set premium. The
investment decision for pension capital is influenced by the risk aversion of pension participants.
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3.3.1 CAPM model

We follow Campbell and Viceira [3] and use the CAPM model to determine the investment
strategy. We consider an investment portfolio with holdings in a risky asset Rt and a risk free
asset Rft . We assume that we invest a rate equal to ωt in risky assets and (1 − ωt) in risk
free-assets. The return of the portfolio will be as follow:

Rpt = ωtRt + (1− ωt)Rft
= Rft + ωt(Rt −Rft ). (3.15)

Investors will prefer a high mean and a low variance of the portfolio returns. The mean of the
portfolio is:

Et[R
p
t ] = Rft + ωt(E[Rt]−Rft ).

The variance of the portfolio is:

(σpt )
2 = ω2

t σ
2.

We assume that the investor trades off mean and variance in a linear fashion, so we will maximize
a linear combination of mean and variance with a positive weight on the mean and negative
weight on the variance. We get the following maximization problem:

max{ωt}

(
Rft + ωt(E[Rt]−Rft )− 1

2
(1− γ)ω2

t σ
2

)
.

We can subtract Rft without changing the maximization. We get:

max{ωt}

(
ωt(E[Rt]−Rft )− 1

2
(1− γ)ω2

t σ
2

)
.

We can solve this maximization problem when we relate the log portfolio returns to the log
returns of the individual assets using Taylor series. The portfolio return of (3.15) can be written
as:

1 +Rpt

1 +Rft
=

1 +Rft + ωt(Rt +Rft )

1 +Rft

= 1 + ωt
(1 +Rt +Rft − 1)

1 +Rft

= 1 + ωt

(
1 +Rt

1 +Rft

)
. (3.16)

We set:

log(Rpt ) = rpt

log
(
Rft

)
= rft .

Now taking the log of (3.16) we get:
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log

(
1 +Rt

1 +Rft

)
= log

(
1 + ωt

(
1 +Rt

1 +Rft

))
⇒

rpt − r
f
t = log

(
1 + ωt

(
ert−r

f
t − 1

))
.

This equation gives a non-linear relation between the log excess return on the risky asset (rt−rft )

and the log excess return on the portfolio (rpt − r
f
t ). This relation can be approximated using

a second order Taylor expansion around the point (rt − rft ) = 0. The function ft(rt − rft ) =

log
(

1 + ωt

(
ert−r

f
t − 1

))
is approximated as:

ft(rt − rft ) ≈ ft(0) + f ′t(0)(rt − rft ) +
1

2
f ′′(0)(rt − rft )2

with

ft(0) = 0

f ′t(0) = ωt

f ′′t (0) = ωt(1− ωt).

We replace (rt − rft )2 by it’s conditional expectation: σ2. So for the Taylor expansion we get:

rpt − r
f
t ≈ ωt(rt − rft ) +

1

2
ωt(1− ωt)σ2.

Now we substitute this into the maximization problem:

max{ωt}

(
ωt(E[Rt]−Rft ) +

1

2
ωt(1− ωt)σ2 − 1

2
(1− γ)ω2

t σ
2

)
and we solve for at:

E[Rt]−Rft +
1

2
σ2
t − ωtσ2 + ωt(1− γ)σ2 = 0

ωt((1− γ)σ2 − σ2) = −E[Rt] +Rft −
1

2
σ2

ωt =
−E[Rt] +Rft − 1

2σ
2

((1− γ)σ2 − σ2
t )

ωt =
E[Rt]−Rft + 1

2σ
2

γσ2

ωt =
µ+ 1

2σ
2

γσ2
.

With µ, σ, γ ∈ R and γ coming from the utility function U(Wt) with Wt ∈ R the wealth at time
t. The derivation of U(W ) can be found in appendix 9.4. By calculating µ and σ we can create
a life cycle ωt for the equity exposure. The life cycle ωt is diplayed in Figure 3.1. It depends
on the risk preferences of the participant via the risk aversion parameter γ and on the financial
market parameters. Obviously, the expected return is decreasing in γ since a high γ implies
a low equity exposure. We will use ωt as coefficient for the equity exposure in the simulation
of the pension capital. The CAPM model, however, gives an optimal life cycle for the Merton
model [12] and not for the KNW model. In the appendix we sketch an approach to deriving the
optimal life cycle in the KNW model. We will not use this in the pension capital simulation
since pension funds use more simple life cylces such as the Merton life cycle in practice.
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3.3.2 Human capital

If we assume that our pension participant receives labor income until retirement, from which he
will pay a percentage as premium, the optimal allocation to risky assets will be related to this
labor income and with that the amount of premium as well.
As mentioned before, the fraction of the agent’s financial wealth invested in the risky asset
should decrease as the age of our agent increases [2]. The first reason for this is that human
capital, which is the discounted value of future labor incomes, is usually seen as a risk free asset.
The value of human capital decreases as the investor ages. A second argument relates to the
flexibility young investors have to alter their labor supply. This allows them to invest more
aggressively in stocks compared to older agents.

The economic intuition is that early in life the fraction of human capital is high compared to
the fraction of financial wealth. Young agents are less dependent on financial wealth for con-
sumption since they have labor income as alternative income source. It is therefore affordable
for them to take more risk with financial wealth then elderly agents who almost entirely depend
on financial wealth for their consumption.

Although there are studies in the academic literature which assume that human capital is risky2,
most studies assume that human capital is risk free; human capital can be seen as an implicit
holding in risk free assets. This implicit holding pays out dividends in the form of labor income.
Hence, the agent’s wealth consists of financial assets which can be traded and human capital
which cannot be traded.

Figure 3.1: Merton life cycle (γ = 5)
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2Benzoni et al. (2007), Baxter and Jerman (1997), Lettau and Ludvigson (2001) and Santos and Veronezi
(2006).
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3.4 Model description simulation pension development DC

To simulate the pension capital during the accrual period and the retirement benefit period we
set up a model in which we use the scenario set from DNB generated by the KNW model. We
will analyze the development of the pension capital in all scenarios. The scenario set contains 60
years so our simulation will cover a maximum of 60 years. We will assume that our participant
starts to build up pension capital at an age of 25 retires at the age of 68 and dies at the age
of 85. At t = 0 the pension participant is 25 years old, so the pension date will be at s = 43
and the time of death will be T = 60. We will only analyze a complete life cycle of a pension
participant starting at the age of 25. We omit micro-longevity risk and macro-longevity risk
since its influence on the pension result is negligible. For the simulation we also do not take into
account investment costs or pension implementation costs.

3.4.1 Premium

• Career pattern
We use a career pattern to simulate a realistic labor income development. In the first 10
years (age 25-34) we assume a labor income growth of 3%. For the next 10 years (age
35-44) we assume a yearly labor income growth of 2%. For the age group 45-54 the growth
rate equals 1% and for the remaining labor years the growth rate equals 0%. This career
pattern is also used to determine the pension premium in a DC pension scheme.3

• Labor income
The initial yearly labor income equals y1 = 37000 Euro, the average labor income in the
Netherlands. We have to substract 70 percent of the ’Franchise’ from this amount, which
is the part of the pension capital that belongs to the AOW pension. The AOW pension
is a basis pension payment of the Dutch government that every Dutch citizen or formal
Dutch citizen is entitled to. We assume a unmarried pension participant and we assume
a ’middelloonregeling’ [10] which means that the pension aim is to get pension payments
which are 70% of the average labor income during the career of the pension participant.
The AOW in this case will be equal to 19518 and the AOW franchise will be equal to
0.70 · 19518 [10], this number is set by the Dutch government and based on our model
assumptions. The 70% of the AOW for the franchise comes again from the aim to get
pension payments which are 70% of the average labor income. We adapt the labor income
for inflation. To correctly apply the inflation rate to labor income we must use the discrete
price index Πi

t:

Πi
t = (1 + πi1) · (1 + πi2) . . . (1 + πit−1) · (1 + πit).

Let y1
t ∈ R+ for t ∈ [0, s− 1] be the labor income according to the career pattern at time

t, then we compensate the labor income for the inflation by:

yit =

{
y1
t ·Πi

t t ∈ [0, s− 1]
0 t ∈ [s, T ].

• Premium
The pension premium is a percentage of the salary which is invested each year. This
percentage c is determined by the 4% DC fiscal maximum premium ladder for the accrual
of old-age pension from the ’Staffels’ [10] and is dependent on the age of the participant

3Article 18a, paragraph 3b, ‘Wet op de loonbelasting 1964’.
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(See Appendix paragraph 2). The premium ladders are based on the fact that a pension
participant will have 1.875% pension accrual every year. The aim is that after 40 years
of pension payments the pension participant has accrued 70% of his average salary as
pension payments. This 70% is translated into a premium percentage per age group. We
will assume that the premium is payed at the end of the year and we will not take partner
pensions into account. We calculate the premium as follows:

pit = c · yit.

3.4.2 Interest rate strategy

For the simulation of pension accrual we assume that the bond portfolio consists of cash 0Rit, a
one year maturity bond 1Rit and in a five year maturity bond 5Rit. We will invest the remainder
that is not invested in stocks in a combination of these three assets. Let θ1 ∈ [0, 1] and θ2 ∈ [0, 1]

Rit = θ1
0Rit + θ2 · 1Rit + (1− θ1 − θ2) · 5Rit

We invest a weight of (1−ωt) in Rit. We assume for simplicity that spread of the weight (1−ωt)
over cash and bonds are constant. We choose θ1 = 0.1 and θ2 = 0.4. This weights are chosen
such that we invest the more in the longest maturity, which is the 5 year bond 5Rit, since pensions
are a long term investment product and we want to hedge against long term interest rate risk.

3.4.3 Pension capital development

Let W i
t ∈ R be pension capital at time t in scenario i, let pit ∈ R be the premium at time t

at scenario i, ωt ∈ (0, 1) is the investment strategy deduced in section 3.3 i.e. the fraction of
pension capital invested in stocks St. Let Qit be the pension payment at time t and in scenario
i. We assume that the pension payment is payed at the end of the year. We will distinguish
two definitions of pension capital. In the first case we do not take inflation into account; the
nominal pension capital. We simulate the pension capital in the nominal case per scenario as
follows:

W i
t+1 =

{
W i
t (1 + (1− ωt)Rit + ωtdS

i
t) + pit if t ∈ [0, s− 1]

W i
t

(
1 + (1− ωt) ·Rit + ωtdS

i
t

)
−Qit if t ∈ [s, T ].

(3.17)

The second definition of pension capital is the real pension capital. The real pension capital is
equal to the nominal pension capital corrected for inflation:

rW i
t =

W i
t

Πi
t

(3.18)

we assume that the portfolio is rebalanced after every year and with W1 = 0 is the initial wealth
value.

3.4.4 Pension payment

The pension payment Qit is calculated using the price of an annuity. It is determined such that
the participant receives pension payments until he dies. The discount factor determines how the
pension capital is distributed over the retirement period. We have three options for the price of
an annuity. We can use:

1. the bond portfolio Rit
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2. the term structure NRit

3. the risk free rate 0Rit

The bond portfolio is specifically chosen for the investment portfolio and not for the reference
measures that we will use to calculate pension result. Since we want the same annuity for all
definitions of pension result, in order to make a fair comparison, we will chose a more general
discounting factor; the risk free rate. In the case of a variable annuity DC pension scheme we
have to update our annuity and with that the pension payout every year. The pension payments
will be determined as in equation (3.19) in every scenario i and at every time t ∈ [s, T ], where
s is the pension date and T the time of death.

W i
t =

Qit
(1+0Rit)

+
Qit

(1+0Rit)
2 + ...+

Qit
(1+0Rit)

T−t t ∈ [s− 1, T ]

= Qit
∑T−t

k=1
1

(1+0Rit)
k t ∈ [s− 1, T ]

Qit =
W i
t∑T−t

k=1
1

(1+0Rit)
k

t ∈ [s− 1, T ] (3.19)

The real pension payout is defined as the nominal pension payout corrected for inflation:

rQit =
rW i

t∑T−t
k=1

1

(1+0Rit)
k

t ∈ [s− 1, T ] (3.20)

In Figure 3.2 respectively the real and the nominal DC pension capital development are dis-
played. We see that till the age of 68 the capital is increasing because of the payed premium
and the investment returns. After the pension date the capital is decreasing due to the pension
payouts. Note that the axes have a different scale since a similar scale would not show the real
pension capital very well.

Figure 3.2: DC pension capital development W i
t and rW i

t
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Chapter 4

Pension result in DC schemes

In this chapter we define the pension result in DC schemes in a quantitative way. We will first
introduce the way in which we want to formulate the pension result in DC schemes in a general
way, and afterwards we will discuss alternatives which suit this general definition in the sections
4.3 up till and including 4.7.

4.1 Pension result

As already mentioned, the pension result is not sufficiently applicable to DC schemes in the
existing form. In the current set up of the pension result applied to DC schemes we ignore the
fact that every pension agreement has the aim to support a suited benefit for the post-active
period. The pension result only takes into account the development of the pension capital from
the pension date, the first day of the retirement period, on. In a DB scheme the participant
accrues a pension entitlement by paying an amount of premium which leads to a certain pension
level during retirement. These pension entitlements give a lot of insights for the participants
about their pension benefit after retirement. In a DC scheme social partners only make an
agreement about the amount of premium but the social partners do not formulate a pension
goal, such as (indexed) pension entitlements. However we can still communicate about the
expected result. We can do this by formulating the pension result for all DC schemes as well. If
we add a pension result as a benchmark in the feasibility test which is applicable to DC pension
schemes this must not form any guarantee; it only has an informative role.
The four most important factors1 that influence the pension result are the premium, the invest-
ment returns, the interest rate (in particular the interest rate on the pension date and during the
rest of the retirement period) and the inflation rate. We will start with the premium. Although
the premium is an important factor that influences the pension result, we do however wish that
the pension result is independent of the amount of premium but dependent on the spread of
the premiums over the years. When the pension result would be dependent on the amount of
premium the solution to obtain a high pension result would be to choose a very high premium.
This is not a desirable result. The premium is determined by the social partners during the
set up of the pension agreement, it is not a desired feature that the pension result tests the
height of the premium and with that the specific financial situation of the pension participant,
we rather want to measure other factors that influence the quality of pension. The pension
result is also influenced by the investment returns. The investment returns depend on the in-
vestment strategy. The interest rate during the retirement period determines the height of the

1Other sources that influence the pension result are the chances of death which determine over how many
years we have to spread the pension capital during retirement. In this research the chances of death are left out
since this source of risk is not very important for the conclusions about the pension result.
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pension payments during retirement. These pension payments are key factors in the definition
of the pension result. Apart from this we also have some other individual factors such as the
length of the pension accrual period and the specific salary development from the participant
that influence the pension result. The pension result in general gives us insight to which extent
purchasing power is maintained. From this it follows that also the inflation rate has an influence
on the pension result.

To define a comparable definition for the pension result which is applicable in the DC scheme
in general we need a reference value that follows the inflation rate. In order to stay close to the
definition of the pension result in DB schemes we keep the numerator of the definition the same
in the sense that it is calculated by summing the flow of expected pension payments. These
pension payments are, however, determined in a different way when a DC pension scheme is
applied instead of a DB pension scheme.

Definition 4.1. Pension result in DC schemes
Let Qit be the nominal pension payment and let rQit be the real pension payment in scenario i
at time t based on the accrued pension capital using respectively formula (3.19) and (3.20). Let
aQit be the nominal pension payment and let r

aQ
i
t be the real pension payment, according to a

reference capital accrual by investing in portfolio a:

aQ
i
t =

aW
i
t∑T−t

k=1
1

(1+0Rit)
k

r
aQ

i
t =

r
aW

i
t∑T−t

k=1
1

(1+0Rit)
k

(4.1)

Let s be the pension date and let T be the time of death. The nominal and real pension result in
DC schemes is defined as:

PRi =

∑T
t=sQ

i
t∑T

t=s aQ
i
t

rPRi =

∑T
t=s

rQit∑T
t=s

r
aQ

i
t

(4.2)

Below we define possible definitions of the pension result, where we analyze different choices for
the reference values raQ

i
t. We do not discuss aQ

i
t since we will focus on the real pension payments

and not on the nominal pension payments. We analyze the the results that every definition of
pension result gives and we will draw a conclusion about which definition is most appropriate.

4.2 Pension result based on the risk free rate

For the first definition of the pension result we compare the development of pension capital
according to the investment portfolio, described in the previous chapter, with a pension capital

1W
i
t which has a return equal to the risk free interest rate. This is the interest rate we would

get when saving capital on the bank. Pension capital for this first reference value develops as
follows:

1W
i
t+1 =

{
1W

i
t (1 + 0Rit) + pit if t ∈ [0, s− 1]

1W
i
t

(
1 + 0Rit

)
− 1Q

i
t if t ∈ [s, T ].

r
1W

i
t+1 =

1W
i
t+1

Πi
t
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To calculate the pension result we use r
1Q

i
t as pension payment, calculated as in (4.1). We

determine the pension result as in equation (4.2). In Figure 4.1 respectively the nominal and
real pension capital development based on the risk free rate are displayed. We see rather straight
lines here since we do not invest in stocks.

Figure 4.1: Pension capital development based on the risk free rate 1W
i
t and r

1W
i
t .

4.3 Pension result based on a constant rate

We compare the development of pension capital according to the investment portfolio with a
pension capital with a constant return rate α. We basically set a minimum for the investment
return which we wish to reach. The pension accrual in respectively the nominal and real case
will be :

2W
i
t+1 =

{
2W

i
t (1 + α) + pit if t ∈ [0, s− 1]

2W
i
t (1 + α)− 2Q

i
t if t ∈ [s, T ].

r
2W

i
t =

2W
i
t

Πi
t

To calculate the pension result we use r
2Q

i
t as pension payment, calculated as in (4.1). We

determine the pension result as in equation (4.2). In Figure 4.2 respectively the nominal and
real pension capital development based on a constant rate are displayed. We can see that in the
accrual period the scenario lines are rather straight since the return is constant and the same
for every year. In the retirement period we also have to deal with the interest rate to determine
the pension payouts. Therefor we see less straight lines in the retirement period.

4.4 Pension result based on inflation rate

When we focus on measuring the maintenance of purchasing power it is desirable that the
realized investment returns are at least equal to the inflation rate. We compare the development
of pension capital according the investment portfolio with a pension capital which has a return
equal to the inflation rate. If the return rate we use in equation (3.17) for the investment
portfolio would be equal to the inflation rate, i.e. (1 + (1 − ωt)Rit + ωSit) = (1 + πit) we would
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Figure 4.2: Pension capital development based on a constant rate 2W
i
t and r

2W
i
t .

not lose purchasing power. The pension accrual in respectively the nominal and real case will
be as follows:

3W
i
t+1 =

{
3W

i
t (1 + πit) + pit if t ∈ [0, s− 1]

3W
i
t

(
1 + πit

)
− 3Q

i
t if t ∈ [s, T ].

r
3W

i
t =

3W
i
t

Πi
t

To calculate the pension result we use r
3Q

i
t as pension payment, calculated as in (4.1). We

determine the pension result as in equation (4.2). In Figure 4.3 respectively the nominal and
real pension capital development based on the inflation rate are displayed. The pension capital
in the denominator is mainly dependent on the inflation rate, so in the real case we do not see
big differences between the scenarios.

Figure 4.3: Pension capital development based on the inflation rate 3W
i
t and r

3W
i
t .
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4.5 Pension result based on non indexed pension entitlements

There exist DC pension schemes in which the pension capital is converted into DB pension
entitlements, in this type of pension scheme the pension fund buys pension entitlements on the
pension date. From then on it will be a DB scheme on which we can apply the feasibility test in
its existing state. In this case the pension participant also bears the pension conversion risk. The
pension conversion risk is the risk one gets exposed to when the pension capital is converted into
an annuity or in DB pension benefits. The level of pension payouts, raQ

i
t from equation (4.1),

depends on a number of factors, including the interest rate (in this specific pension scheme
mainly the interest rate on the pension date), the inflation rate and the expected age of death.
The Pension conversion risk is the risk that the investments do not protect against the cost of
buying an income at retirement. For this definition of pension result we use a similar structure
as this specific DC pension scheme. The only difference is that the pension capital will already
be converted into pension entitlements before the pension date. We analyze at every time t
what pension benefit we can buy at that time with the premium paid in that year. This is in
line with the accrual of nominal pension benefits in DB schemes. We compare the sum of these
benefits with the pension payments generated by the pension capital according to the investment
portfolio.

Bi
t =

pit∑T−s
k=1

1
(1+fR

i
t)

(s−t)+k

BSit =
t∑
l=1

Bi
l

rBSit =
BSit
Πi
t

(4.3)

We calculate the pension result PR per scenario i as follows in respectively the nominal and
real case:

4PR
i =

∑T
t=sQ

i
t

(T − s) ·BSit
r
4PR

i =

∑T
t=s

rQit∑T
s ·rBSit

For the nominal case we use (T − s) · BSit in the denominator since BSit is the same for all
t ∈ [s, T ], so BSit is not really dependent on t anymore. In the real case we use

∑T
s ·rBSit in

the denominator since the multiplication of BSit by the cumulative inflation Πi
t results in time

dependence, so rBSit does depend on t.

4.6 Pension result based on instant indexed pension entitle-
ments

We will analyze at every time t what pension benefit we can buy at that time with the premium
payed in that year, which will be indexed at all times t ∈ [0, s − 1]. We will compare the sum
of these pension benefits with the pension payments generated by the pension capital according
to the investment portfolio. We calculate the pension result PR per scenario i as follows in
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respectively the nominal and real case:

5PR
i =

∑T
t=sQ

i
t∑T

s ·BSit ·Πi
t

r
5PR

i =

∑T
t=s

rQit
(T − s) · rBSit ·Πi

t

4.7 Replacement ratio

Besides the different definitions of pension result it is also interesting to look at the replacement
ratio.

Definition 4.2. Real Replacement ratio
We define the real replacement ratio RRit at every time t and in each scenario i as:

RRit =
rQit

1
s

∑s
t=0

yit
Πit

. (4.4)

The replacement ratio is a reference of the pension payments in comparison to the earned salary.
This gives an idea of what the pension participant can expect in comparison to his labor period.

4.8 Results

In table 4.1 we displayed the results of all the definition of the pension result. In table 4.2
we displayed some basic information about the financial market. We will analyze the different
definitions for the pension result in DC schemes and we will conclude about the appropriateness
of the formulated definitions.

We start with addressing some general properties of the formulated definitions of the pension
result. The pension result depends on the scenario number for every definition. The nominator
dependents on the investment policy for every definition but the denominator is independent
of the investment policy. Another property is that all the definitions of the pension result do
not give a conclusion about the absolute amount op pension, but about the relative amount
of pension capital compared to a benchmark. We can also see that the definitions of pension
result are independent of the amount of premium since the amount of premium is taken into
account in both the nominator and denominator. So we do not get a higher pension result if we
would consume less during the accrual period. This is a desired feature since we do not want
the result to be the best if we would invest as much premium as we can. Paying more premium
is an obvious way of improving the pension capital, but the pension result does not aim to
measure the ratio between consumption and premium. The pension result aims to measure the
maintenance of purchasing power given the premium. If a higher premium would improve the
pension result, then it could not sufficiently measure the maintenance of purchasing power. In
that case it would also be difficult to analyze the influence of the other policy assumption, since
a higher premium would always be the solution to a higher pension result.

It can be seen in Table 4.1 that the pension result based on the risk free rate is higher than 1 in
every percentile, so the investment portfolio always gets a higher return than the risk free rate.
The pension result based on a constant rate asses a comparable value in the 95th percentile as
the pension result based on the risk free rate. In the 5th percentile the pension result based
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on a constant rate is lower than the pension result based on the risk free rate. The pension
result based on the inflation rate is equal to 3.344 in the 95th percentile which is higher than
the pension result based on the risk free rate and the pension result based on a constant rate
in the 95th percentile. In the lowest 5 percentiles the pension result based on the inflation rate
gets slightly lower than 1. The pension result based on non indexed pension entitlements asses
the highest value of 3.344 of all the definitions in the 95th percentile. In the 5th percentile it is
equal to 0.687 which lies between the values of the 5th percentile of the pension result based on
the inflation rate and the pension result based on a constant rate. These are respectively equal
to 0.911 and 0.383. The pension result based on instant indexed pension entitlements asses the
lowest value in both the 95th percentile and the 5th percentile. The highest difference between
the median and the 5th percentile is seen in the case of the pension result based on non indexed
pension entitlements where it is equal to 0.866. The lowest difference between the median and
the 5th percentile is seen in the case of the pension result based on instant indexed pension
entitlements where it is equal to 0.347.

We can see with these observations from Table 4.1 that there exists a clear order for the ’strict-
ness’ of the definitions. One denominator gives a higher pension result than the other. Here we
look at which definition has the most values of the pension result lower than 1. The order of
the definitions is as follows:

1. 5PR
i based on instant indexed pension entitlements

2. 2PR
i based on a constant rate with constant rate equal 4%

3. 4PR
i based on non indexed pension entitlements

4. 3PR
i based on inflation rate

5. 1PR
i based on the risk free rate

The definition based on the risk free rate is the least strict definition. The investment portfolio
outperforms the risk free bank saving in 96% of the scenarios. The definition based on instant
indexed pension entitlements and the definition based on the inflation rate are the only ones
that explicitly measure the maintenance of purchasing power.

4.9 Pension result and the risk attitude

The risk attitude is the extent to which the group of participants is willing to and is able to
take investment risk to realize the pension goals. The risk attitude is reflected in the maximum
acceptable deviation between the median and the 5th percentile of the expected pension result.
In general it holds that the more risk a participant is willing to take the higher the maximum
deviation gets. We can see this in Table 4.3. We can clearly see that the 95th percentile gets
higher as we take more risk. i.e. let γ decrease, but we also see that the maximum deviation
indeed gets bigger and the 5th percentile gets lower as γ declines. So we see that there exists a
link between the life cycle investment strategy which is based on γ and the risk attitude. The
KNW scenario set is, however, a very positive scenario set. The excess return on stocks has a
high mean of 0.0452. We are also considering a long time horizon of 60 years. Therefore a low
γ i.e. a low risk aversion, still gives relatively high pension results in the 5th percentile.
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Figure 4.4: Life Cycles for γ = 7, γ = 5, γ = 3 and γ = 1
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In figure 4.4 the median of the life cycles for different values of γ are shown. The blue line
represents the life cycle when γ = 1. The red line represents the life cycle when γ = 3, there is
a discontinuous part right before retirement at the age of 68 since the amount that one is
allowed to invest in stocks after retirement has a maximum of 0.35. The yellow line represents
the life cycle when γ = 5 and the purple line represents the life cycle when γ = 7. We see that
when γ is lower the graph decreases later in time.

4.10 Sensitivity Analysis

In this section we determine which definition for the pension result would be the best fit for the
feasibility test and afterwards we do some robustness tests. We first discuss the appropriateness
of the definition for the pension result.
The first definition based on the risk free rate is less suitable to use in the definition of the
pension result in the feasibility test for DC schemes since it only suits for short term pensions,
so for relatively older people. As soon as we look at long term pension capital development, then
in general it holds that partly investing in stocks is always better than a risk free investment.
Unless, however, the ratio invested in stock gets excessively high and/or the participant has a
very high risk aversion. The definition for the pension result based on a constant rate and the
pension result based on non indexed pension entitlements mainly measure the performance of an
investment product, the focus lies on the height of the stock returns. The pension result based
on non indexed pension entitlements also measures the interest rate risk. Definition three and
five, respectively the pension result based on the inflation rate and the pension result based on
indexed pension entitlements, explicitly measure the maintenance of purchasing power. Since
the feasibility test focuses on measuring the maintenance of purchasing power we would consider
these definitions to fit the best. Another favorable feature of definition five is that it resembles
the definition of pension result in DB schemes the most. There for we will choose the definition
based on instant indexed pension entitlements as the best definition for the pension result in
DC schemes. One has to be aware that a definition for the pension result in DC schemes has the
goal to inform about the quality of the pension. In DB schemes we compare the realized benefits
with fully indexed pension entitlements. In DC schemes, we do not want the denominator of
the definition of pension result to be interpreted as an ambition or an entitlement2. It should be
noted that the interpretation of the denomiator as an entitlement cannot be used in DC schemes.

2Since in a DC scheme the participant does not accrue pension entitlements.
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We will chose the definition based on indexed pension entitlements as the best definition and
we will focus from now on on this definition in the sensitivity analysis.

4.10.1 Sensitivity Analysis 1: constant premium

As stated before in section 4.8 about the observations of the definitions of the pension result,
all definitions are independent of the amount of premium. However the way in which premium
payments are distributed over the years does influence the pension result. We will look at
the sensitivity of the pension result to the premium development. We compare an increasing
premium based on the premium ladder with a constant premium percentage. When we use a
constant percentage it does not matter how high the percentage is as long as it remains constant
over the time horizon3. In figure 4.5 the development of the premium is displayed and in figure
4.6 the development of the premium percentage is shown. We can see that when a constant
premium percentage is used the premium development shows a smooth line which is not the
case when using the 4 % premium ladder.

Figure 4.5: Premium development

In Figure 4.5 we chose a constant premium percentage of 22 percent. It is chosen such that the
total amount of payed premium resembles the total amount of payed premium when the 4
percent premium ladder is used.

We can see in table 4.4 that in general the pension result is higher when we use a constant
premium instead of the premium ladder. The maximum deviation between the median and
the 5th percentile, however, is bigger when using a constant premium. The higher pension
result in the case of a constant premium percentage is the result of the increase of the premium
percentage in the premium ladder. A low percentage is payed at young ages and the percentages
increase with age. The premium payed at young ages can be invested for a longer period than
the premium payed at older ages. So in general one can make a higher investment return on the
premium payed at young ages compared to the premium payed at older ages. If we change the
spread of the premium percentages into a constant which is the same for every age group we will
see a higher pension result since the return made on premium payed at young ages is relatively
higher compared to using a premium ladder. We can see this effect since we only incorporate
the investment return in the numerator of the quotient for pension result.

3For the real replacement ratio however, the height of the constant premium percentage does matter, but we
will not focus on that in this research.
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Figure 4.6: Premium percentage development
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In figure ?? the development of the premium percentage is show when using the 4 % premium
ladder displayed in blue and when using a constant percentage displayed in red.

4.10.2 Sensitivity Analysis 2: constant stock exposure

In our model we used the Merton life cycle for the exposure to stocks. This life cycle is optimal
in the Merton model, but it is not optimal in the KNW model. The Merton life cycle can be
used as an approximation. The question is whether it is a good choice to use this approximation.
To answer this question we will first show if it is better to invest according to a life cycle than
according to a constant stock exposure by making a comparison between the Merton life cycle
and a constant mix strategy. The constant-mix strategy invests 38% in stocks. This proportion
is determined in such a way that the total median equity exposure (weighted for the available
financial wealth) is the same as the total median equity exposure of the Merton strategy in order
to properly compare the constant-mix strategy with the other strategy. We call the constant
mix ωcm and we calculate the constant mix ωcm according to the formula in (4.5). Here M
denotes the scenario number of the median.

ωcm =

∑T
t=1

(
WM
t · ωMt

)∑T
k=1W

M
k

(4.5)

When we compare the pension results in Table 4.1 with Table 4.5 we can see that investing
according to a life cycle gives a higher pension result in all the percentiles. This is a desired
result since investing according to a constant mix does not have the feature that it takes more
risk for pension participants at a young age and less risk for pension participants at an older
age. It is favorable to take more investment risk at young ages since the negative shocks that
can occur at young ages can still be compensated during the rest of the pension payment period.
At an older age there exists a need of protection of the pension capital which results in taking
less investment risk.

4.10.3 Sensitivity Analysis 3: fixed decrease

Pension participants in the Netherlands who buy a variable annuity have the possibility to choose
how they divide their pension capital over the various pension payments during retirement and
with that they have the possibility to choose the height of the pension payments. This is called
the pension payment policy. One could for instance choose to begin with a higher payout in the
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first years of the retirement period, based on the assumption that the investment returns can
compensate for this in the upcoming years. We compute the pension payments as in equation
(4.1) but with a different discount rate which takes into account the expected investment returns.
We call this different discount rate the assumed interest rate aR

i
t,

aR
i
t = fR

i
t + ωitηS for t ≥ s (4.6)

The parameters ωit · ηS determine the maximum fixed decrease pension participants can use.
Here ωit represents the equity exposure (see section 3.3.1). The investment strategy ωit depends
on the risk preferences of the participant via the risk aversion parameter γ and on the financial
market parameters. Obviously, the expected return is decreasing in γ since a high γ implies a
low equity exposure. A low aR

i
t implies a relatively low benefit level at retirement. A high aR

i
t

implies a high pension payment level at retirement but also a higher probability of a decrease
in the pension payment level during retirement.

To measure the sensitivity of the pension result to a fixed decrease in the payout during the
retirement period, we implement a fixed decrease in both the numerator and the denominator of
the definition of pension result. This because we assume that the choice to have a fixed decrease
is based on a pattern of consumption and not on the maintenance of purchasing power. In the
pension result we want to measure the maintenance of purchasing power and not the choice of
a consumption pattern. So in the nominator and the denominator we use the same structure to
determine the pension payouts using the annuity and the pension capital. In this way we also
stay consistent with the accrual period where the same premium is invested in the numerator
and the denominator.

We observe in table 4.6 that the pension result is similar when we apply a fixed decrease to
the pension payouts, the maximum deviation is also similar.

Figure 4.7: Payout development
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In Figure 4.7 we displayed the median of the payouts using no fixed decrease in the retirement
period, the blue line, and we displayed the median of payouts using a fixed decrease in the
retirement period, the red line. only the median is shown because this displays the effect of the
fixed decrease the best. In case of a fixed decrease we see a stable payout and in the case of no
fixed decrease we see an increasing payout.
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4.10.4 Sensitivity Analysis 4: different scenario set

An important point of criticism on the feasibility test is the underlying scenario set. The scenario
set is a prediction of the development of certain economic variables during the up coming 60
years. As most predictions this scenario set does not give us exact reality which naturally makes
it a point of discussion. The scenario set is, as mentioned before, based on the KNW model. So
the parameter and model risk of the KNW model is expressed in the scenario set.
In the KNW model the state variables, which resemble an interest rate factor and an inflation
factor, are modeled with a diffusion part and they are mean reverting. From a statistical point
of view, there exist three features for the interest rate process and the inflation rate process that
consistently exist in bond markets:

1. Autocorrelation and mean reversion

2. Volatility behavior

3. Significant skewness and kurtosis behavior

The first two features are present in the interest rate and inflation rate formulas of the KNW
model, but the third feature is not. It is well known that any normal distribution has zero
skewness and a kurtosis of 3. Therefore the skewness and kurtosis of the returns of a GBM
are zero [23]. Changes in interest rate demonstrate considerable skewness and kurtosis [14].
Kurtosis in the interest rate is often present in the form of Leptokurtosis. Leptokurtosis or ’fat
tailed risk’ occurs when the shape of a distribution is more peaked than the shape of a normal or
’bellcurve’ distribution. In such a distribution, small changes are less frequent than in a normal
distribution, but large price moves are more likely to happen and are potentially larger than in
a normal distribution. The central peak is more narrow, but the tails are significantly longer
and fatter. Backus et al. (1997) state that jumps better explain the high degree of curvature
(more peeks) in yield curves. Surprises i.e. jumps or shocks occur with significant magnitude
and regularity and have substantial impact on the yields, bond prices and bid-ask spreads. So
adding jumps to the interest rate process in the KNW model might lead to more realistic interest
rate development.

The presence of jumps in the inflation rate has not been considered so much in existing lit-
erature. We will analyze the historical data of the inflation rate and we will check whether is
could be modeled by a jump diffusion process as well.

The absence of kurtosis in the interest rate process in the KNW model is a point of criti-
cism and discussion. In the next chapters we will address this discussion point of the scenario
set by extending the KNW model. We will add jumps to the interest rate and the inflation rate
of the KNW model. We will define the formulas of the extension of the KNW model with jumps
in the interest rate and the inflation rate. We will conclude with an analysis about the impact
of a new scenario set, based on the extended KNW models, to the definitions of pension result.
With this we want to analyze if adding jumps is an important improvement of the KNW model
in order to give a better prediction of the economy parameters.

4.10.5 Goal of the feasibility test

In practice it is sometimes difficult to work with the feasibility test. The definition of pension
result does not give us any information about the height of the payout during the retirement
benefit period. The pension result is said to be an easy definition to communicate with about
the quality of a pension, but in practice this is not always the case.
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Instead of giving an alternative definition for the pension result in DC schemes we can also
consider an alternative goal for the feasibility test. We could shift from the goal to measure
the maintenance of purchasing power to the goal of measuring what pension payout we could
actually expect in comparison with the average salary the pension participant received before
retirement. The benchmark for the quality of a pension will then be the replacement ratio. The
question is now how the replacement ratio and the pension result relate to each other. Can we
transform one into another via a formula, such that when we define a new definition for the
pension result in DC schemes we can also make a link to the replacement ratio? We know that
the pension result based on instant indexed pension entitlements is defined as follows:

r
5PR

i =

∑T
t=s

rQit
(T − s) · rBSit ·Πi

t

From this it follows that the average real replacement ratio can be written using r
5PR

i,

T∑
t=s

rRRit =
T∑
t=s

rQit
Ei[ryit]

=
T∑
t=s

rBSit ·Πi
t

Ei[ryit]
·

rQit
rBSit ·Πi

t

=
T∑
t=s

rBSit ·Πi
t

Ei[ryit]
· 1

(T − s)
· r5PRi (4.7)

Since yit = 0 for t ∈ [s, T ] the expectation E[yit] will be evaluated over the accrual period only.
We can see in equation (4.7) that we cannot make a direct link between the pension result and
the replacement ratio, since the term rBSit · Πi

t has an inverse effect on the pension result and
the replacement ratio. When rBSit ·Πi

t is high the pension result gets low but the sum of rRRit
over the retirement period gets higher. This results in a higher mean of the replacement ratio’s.
This effect can also be seen in table 4.1, where we do not generally see a high replacement ratio
if we find a high pension result. The use of the replacement ratio has been a point of discussion.
Since the replacement ratio is generally easier to understand the replacement ratio seems to be
a favored alternative. The Dutch pension law, however, does not act on the agreements between
the employer and the employees about the amount of premium and the height of the salary. This
is the reason why the existing definition of the pension result does not measure the actual height
of the pension payments and why the pension result is chosen as a measure in the feasibility
test to inform about the quality of pensions.
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Table 4.1: Pension result definitions (γ = 5)

Pension result based on the risk free rate

Percentile Annuity rW i
s Payout Pension Result r

1W
i
s Payout RR

95 20.164 471241 27852 2.671 222932 10426 0.502
50 13.436 395205 26308 1.606 264507 16385 0.474
4.1 14.738 257499 15924 1.000 259397 15929 0.287
5 8.633 245991 17257 1.025 216836 16834 0.311

Pension result based on a constant rate

Percentile Annuity rW i
s Payout Pension Result r

2W
i
s Payout RR

95 10.255 534455 37730 2.693 205507 14012 0.680
50 13.039 337344 18148 1.007 260566 18021 0.327

49.5 24.132 412517 24853 1.000 310763 24854 0.448
5 22.031 197698 11279 0.383 372541 29488 0.203

Pension result based on the inflation rate

Percentile Annuity rW i
s Payout Pension Result r

3W
i
s Payout RR

95 17.665 455182 39028 3.344 207096 11672 0.703
50 17.945 400927 19617 1.681 207507 11672 0.353
8.8 21.004 159973 11669 1.000 209145 11672 0.210
5 17.730 200218 10629 0.911 208904 11672 0.191

Pension result based on non indexed pension entitlements

Percentile Annuity rW i
s Payout Pension Result r

4W
i
s Payout RR

95 12.683 556474 30959 3.353 0 13705 0.558
50 14.625 264614 17466 1.553 0 14652 0.315

17.2 25.370 317690 14850 1.000 0 13571 0.268
5 15.538 172405 9585 0.687 0 14948 0.173

Pension result based on instant indexed pension entitlements

Percentile Annuity rW i
s Payout Pension Result r

5W
i
s Payout RR

95 23.280 257736 16535 1.329 0 12446 0.298
85.4 16.080 314221 22264 1.000 0 22264 0.401
50 24.119 241986 13042 0.571 0 22854 0.235
5 18.817 191134 10661 0.224 0 47572 0.192

In Table 4.1 the first column displays the 95th percentile, the median, the percentile where the
pension result is approximately equal to 1 and the 5th percentile. In the second column the
average annuity price during the retirement period is displayed. In the third column the total
accrued real DC pension capital at the pension date s is displayed. In the fourth column the
average real pension payout during retirement is displayed, this is calculated according to
equation (3.20). In the fifth column the pension result is displayed. The sixth column displays
the real pension capital according to the reference value r

aW
i
t used in the denominator of the

definition for the pension result in DC schemes. The seventh column displays the real pension
payout r

aQ
i
t from equation (4.1) in case of the pension result based on the risk free rate, the

pension result based on a constant rate and the pension result based on the inflation rate. The
seventh column displays rBSit from equation (4.3) in case of the pension result based on non
indexed pension entitlements. The seventh column displays rBSit ·Πi

t in case of the pension
result based on instant indexed pension entitlements. The last column displays the average
associated replacement ratio. For all the values in this table a risk aversion of γ = 5 is assumed.
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Table 4.2: Basic information financial market (γ = 5)

Variable 1Rit Rit
0Rit πit dSit

µ 0.0247 0.0267 0.0229 0.0198 0.0682
σ 0.0324 0.0306 0.0331 0.0162 0.1822

In Table 4.2 the basic information about the financial market is displayed assuming that the
parameter of risk aversion γ = 5. In the first row respectively the mean of a one year maturity
bond 1Rit is displayed, the mean of the return of interest rate strategy from section 3.4.2 Rit,
the mean of the short rate 0Rit, the mean of the inflation rate πit and the mean of the stock
return dSit are displayed. In the second row the variances of the same parameters are displayed.

Table 4.3: Risk attitude and the life-cycle investment strategy

Pension result γ = 7

Percentile Annuity rW i
s Payout Pension Result r

5W
i
s Payout RR

95 15.927 256878 15679 1.172 0 13380 0.282
90.8 9,571 632810 49384 1.000 0 49402 0.890
50 19.691 285874 15189 0.523 0 29027 0.274
5 16.123 221725 13994 0.221 0 63189 0.252
1 13.328 305750 18914 0.148 0 127620 0.341

Pension result γ = 3

Percentile Annuity rW i
s Payout Pension Result r

5W
i
s Payout RR

95 18.114 590773 31926 1.754 0 18206 0.575
75 12.400 348979 21910 1.000 0 21919 0.395
50 16.028 483651 41654 0.656 0 63518 0.750
5 15.355 371533 19171 0.238 0 80512 0.345
1 9.321 270880 18758 0.147 0 127690 0.338

Pension result γ = 1

Percentile Annuity rW i
s Payout Pension Result r

5W
i
s Payout RR

95 17.133 493417 47783 3.017 0 15840 0.861
60.05 12.404 237516 38682 1.000 0 38687 0.697

50 18.857 402904 16312 0.798 0 20448 0.294
5 11.417 571960 50432 0.213 0 236911 0.909
1 16.193 282790 10303 0.132 0 78339 0.186

In Table 4.3 the results of the pension result based on instant indexed pension entitlements are
displayed using different values for the risk aversion parameter γ. It can be compared with the
last tabular of Table 4.1 i.e. the pension result based on instant indexed pension entitlements.
In Table 4.3 the first tabular displays the results when the risk aversion parameter γ = 7 is
applied, in the second tabular γ = 3 is applied. In the last tabular γ = 1 is applied. In each
tabular the same set up is used as in Table 4.1 regarding the columns. We only added the first
percentile here in the last rows to stress the behavior of the life cycle in bad weather scenarios.
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Table 4.4: Pension result constant percentage premium (γ = 5)

Percentile Annuity rW i
s Payout Pension Result r

5W
i
s Payout RR

95 13.350 248757 19223 1.541 0 12476 0.346
50 15.757 294604 15251 0.639 0 23871 0.275

78.7 23.141 291994 19470 1.000 0 19467 0.351
5 22.485 261628 14557 0.240 0 60552 0.262

In Table 4.4 the results of the pension result based on instant indexed pension entitlements are
displayed when using a constant premium percentage instead of the used premium ladder in
Table 4.1. We chose a constant premium percentage of 15 percent. It is chosen such that the
total amount of payed premium resembles the total amount of payed premium when the 4
percent premium ladder is used. Table 4.4 can be compared with the last tabular of Table 4.1
i.e. the pension result based on instant indexed pension entitlements. The set up of Table 4.4
is the same as the set up of Table 4.1 regarding the columns.

Table 4.5: Pension result using a constant stock exposure (γ = 5)

Percentile Annuity rW i
s Payout Pension Result r

5W
i
s Payout RR

95 23.010 165979 11680 1.216 0 9602 0.208
50 12.013 274041 18478 0.527 0 35054 0.220

89.35 9.571 576551 49443 1.001 0 49402 0.676
5 15.710 243639 12355 0.214 0 57631 0.146

In Table 4.5 the results of the pension result based on instant indexed pension entitlements are
displayed when using a constant mix instead of the Merton life cycle. Here we assume that the
parameter of risk aversion γ = 5. It can be compared with the last tabular of Table 4.1 i.e. the
pension result based on instant indexed pension entitlements. The set up of Table 4.4 is the
same as the set up of Table 4.1 regarding the columns.

Table 4.6: Pension result fixed decrease payout during retirement period (γ = 5)

Percentile Annuity rW i
s Payout PR r

5W
i
s Payout RR

95 13.460 247153 15188 1.332 0 11403 0.274
85.5 10.350 318180 22811 1.000 0 22815 0.411
50 19.916 238195 16084 0.572 0 28099 0.290
5 13.219 384491 24072 0.224 0 107492 0.434

In Table 4.6 the results for the pension result based on instant indexed pension entitlements
are displayed when using a fixed decrease payout during the retirement period. Here we assume
that the parameter of risk aversion γ = 5. The results in Table 4.6 can be compared with the
last tabular of Table 4.1 i.e. the pension result based on instant indexed pension entitlements.
The set up of Table 4.4 is the same as the set up of Table 4.1 regarding the columns.
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Chapter 5

Jump diffusion processes

For the modeling of asset price fluctuations diffusion is the most common stochastic process that
is used. The random component of diffusion is the Brownian motion process, this is a random
process with continuous sample paths. But the property of being continuous is often not found
in real life prices. Lots of assets show returns which are widely dispersed in their amplitude
and manifest frequent large peaks corresponding to discontinuous ’jumps’ in the price. This
high variability is an often observed feature of financial asset returns. In statistical terms this
results in heavy tails in the empirical distribution of returns; the tail of the distribution decays
slowly at infinity and large moves have a significant probability of occurring. This leads to a
poor representation of the distribution of financial asset returns by a normal distribution [15].

Jump diffusion models generically lead to highly variable returns with realistic tail behavior
[15]. The strongest argument for using discontinuous models with jumps is the presence of sud-
den significant moves in the price. While diffusion models, in some specific cases, can generate
heavy tails in the returns, they cannot generate sudden, discontinuous moves in prices. In a dif-
fusion model tail events are the result of the accumulation of many small moves. So if one aims
to build a model that captures the perception of risks with large unpredictable movements jump
diffusion models are helpful. This chapter is rather theoretical and serves as an introduction on
jump processes. The theorems and derivations will be applied in the next chapters.

5.1 Jump Processes

As mentioned before Brownian motions have continuous sample paths and therefor large jumps
are not allowed. Jump processes have discontinuous sample paths and therefore they allow for
large sudden moves in the underlying price process. We assume that the shocks in the prices
process arrive randomly. Let τ1 < τ2 < ... be the arrival times of the shocks. We assume that
limn→∞ τn = +∞, meaning that the number of shocks in a finite time interval is finite, so we
do not observe extreme explosions. Define the inter arrival times of the shocks by:

Tn = τn − τn−1, n ≥ 1

with the assumption that S0 := 0.
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5.1.1 Poisson Process

If the sequence of inter arrival times (Tn)n≥1 is an i.i.d sequence of exponential distributed

random variables with mean 1
λ , then the stochastic process {Nt with t ≥ 0}, which is defined as:

Nt =

∞∑
n=1

1{τn≤t}

for t ≥ 0, is called a homogeneous Poisson process with intensity λ. The prototype of jump
processes is the Poisson process {Nt with t ≥ 0}.

Definition 5.1. Poisson Process
The Poisson process has stationary and independent increments. It starts at t0 = 0 with N(t0) =
0. It has Poisson distributed increments. We denote the intensity rate by λ with λ ∈ (0,∞).
Then the probability that N(t) = n is given by:

P(N(t) = n) = e−λt(λt)n

n! n = 0, 1, 2, ...

and

E[Nt] =

∞∑
n=1

P(Sn ≤ t) = λt. (5.1)

From equation (5.1) we deduce that:

E[Nt − λt] = 0

since Nt − λt has independent increments, we get the following proposition:

Proposition 5.2. let F := σ(Ns : s ∈ [0, t]), t ∈ R+ denote the filtration generated by the
Poisson process (Nt)t≥0. The compensated Poisson process

(Nt − λt)

is a Martingale with respect to Fs ⊂ F .

5.1.2 Compound Poisson Process

The Poisson process defined above is a starting point, but it can only jump up by unity when
we use the Poisson process. This is not a suitable model for simulating the nominal interest rate
with random jumps. First we would like to have a range of possible jump amplitudes. We can
capture this by using a compound Poisson process.

To define the Compound Poisson process we assume that T = (Tn)n≥1 is a given i.i.d sequence
of exponential distributed random variables with mean 1

λ . Then the cumulative sum

τn =

n∑
j=1

Tj n ≥ 1

are the arrival times of the shocks in a homogeneous Poisson process.
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Definition 5.3. Compound Poisson processes
A compound Poisson process with intensity λ > 0 is a stochastic process Jt which we can define
in two equivalent representations

1. Infinite sum representation:

Jt =
∞∑
n=1

Yn1{τn≤t}.

2. Stochastic sum representation:

Jt =

Nt∑
i=1

Yi (5.2)

where jumps sizes Yi are i.i.d according to a given distribution with mean µY and variance σ2
Y .

(Nt)t≥0 is a Poisson process with intensity λ independent from (Yi)i≥1. The convention is always
that if Nt = 0, i.e. if the sum is empty, then Jt = 0.

In particular we note that the increment of the jump size

∆Jt := Jt − Jt−, t ≥ 0

of (Jt)t≥0, at time t, is given by the relation:

∆Jt = Y∆Nt, t ≥ 0

where

∆Nt := Nt −Nt− ∈ {0, 1}, t ≥ 0

denotes the jump size of the standard Poisson process (Nt)t≥0, and Nt− is the left limit

Nt− := lims→tNs, t > 0.

We consider the process Jt, t ≥ 0, with J0 := 0 and we derive the expectation of Jt with respect
to the risk neutral measure as follows:

EQ
t0

[Jt] = EQ
t0

[ ∞∑
n=1

Yn1{τn≤t}

]

=
∞∑
n=1

EQ [Yn1{τn≤t}]
=

∞∑
n=1

EQ [Yn]P(τn ≤ t)

= λtµY .

Since the compensated compound Poisson process also has independent increments we have the
following proposition:
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Proposition 5.4. The compensated compound Poisson process

Mt := {
∑N(t)

i=1 Yi − λtµY }, t ≥ 0 (5.3)

is a martingale. In differential notation this is written as:

EQ
t0

[Y dN(t)− λµY dt] = 0

or equivalently:

EQ
t0

[Y dN(t)] = λµY dt. (5.4)

Proof.

E[Mt|Ms] = E[

N(t)∑
i=1

Yi − λtµY |Ms] = E[

N(t)∑
i=1

Yi|Ms]− λsµY =

N(s)∑
i=1

Yi − λsµY = Ms.

5.1.3 Stochastic calculus with Jump processes

Based on the relation

dJt = Y dNt

and given that {Nt = n}, i.e. the n jump sizes of (Jt)t≥0 on [0, T ], are independent random
variables which are distributed on R according to ν(dx). The next proposition allows us to
compute the moment generating function of the increment JT − Jt [17]:

Proposition 5.5. For any t ∈ [0, T ] we have:

E[ea(JT−Jt)] = exp

(
λ(T − t)

∫ ∞
−∞

(eax − 1)ν(dx)

)
with a ∈ R.

Proof. Since Nt has a Poisson distribution with parameter t > 0 and is independent of (Yi)i≥1

∀a ∈ R we have, by conditioning on the value of NT −Nt = n,

E[exp(a(JT − Jt))] = E

[
exp

(
a

NT∑
i=Nt+1

Yi

)]

= E

[
exp

(
a

NT−Nt∑
i=1

Yi

)]

=
∞∑
n=0

E

[
exp

(
a

n∑
i=1

Yi

)
|(NT −Nt) = n

]
P((NT −Nt) = n)

= e−λ(T−t)
∞∑
n=0

λn

n!
(T − t)nE

[
exp

(
a

n∑
i=1

Yi

)]

= e−λ(T−t)
∞∑
n=0

λn

n!
(T − t)n

n∏
i=1

E
[
eaY
]

= e−λ(T−t)
∞∑
n=0

λn

n!
(T − t)n(E

[
eaY
]
)n

= exp
(
λ(T − t))(E

[
eaY
]
− 1
)

= exp

(
λ(T − t)

∫ ∞
−∞

(eax − 1)ν(dx)

)
.
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Since the probability distribution of ν(dx) of Y satisfies:

E[exp(aY )] =

∫ ∞
−∞

eaxν(dx)

and ∫ ∞
−∞

ν(dx) = 1.

From this moment generating function we can compute the variance of Jt for fixed t.

E[J2
t ] =

∂2

∂a2
E
[
eaJt

]
|a=0

= λt

∫ ∞
−∞

x2ν(dx) + (λ(T − t))2

(∫ ∞
−∞

xν(dx)

)2

= λtE[|Y |2] + (λtE[|Y |])2

which yields:

var(Jt) = λtE[|Y 2|]

so it follows that

E[(dJt)
2] = λE[|Y |2]dt

= λ(var(Y ) + (E[Y ])2)dt

= λ(σY + µ2
Y )dt. (5.5)

A common approach to stochastic differential equation which include jump processes is the
approach of Ahn and Thompson [21] and Baz and Das [20]. Here a linearization technique
is used for the moment generating function of the jump process Jt which includes a two-term
Taylor-series approximation. We call this the standard linearization,

E[exp(Jt)] ≈ Et
[
1 + Jt +

1

2
J2
t

]
= 1 + λtE[Y ] +

1

2

(
λtE[|Y |2] + λ2t2 (E[|Y |])2

)
. (5.6)

The last term λ2t2 (E[|Y |])2 is negligible. This linearization technique gives a closed-form ap-
proximation of the bond price.
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Chapter 6

Extending the financial market
model with a jump process

In this chapter we extend the KNW model by adding jumps to the bond prices and with that to
the interest rate process. We derive the bond prices with a added jump process. However affine
term structure models with a jump process in the bond prices do not always provide an analytical
solution. Solutions to the partial difference differential equation (PDDE) for bond prices implied
by jump-diffusion processes must often be found by solving an approximate PDDE. Here we use
the standard linearization technique of the bond PDDE. Affine jump-diffusion models make the
same functional form assumptions on the drift and the volatility as in the case without jumps.
In addition, functional form assumptions are needed for the jump intensities and the distribution
of the jump sizes conditional on information ’right before’ the jump. The first assumption that
we make is about the intensity of the Poisson process. We assume that the (stochastic) intensity
λ of the Poisson process is affine. We will take λ(Xt) = λ. We can note that the standard
linearization does not require explicit assumptions about the distribution of jump sizes. We do
assume that the jump sizes Yi are iid variables with mean µY and variance σY .

6.1 Solving the bond price for extended KNW

In order to add jumps in the nominal interest rate of KNW we have to define the bond price as
follows:

Pt,N (Xt + Jt) = eA(N)+B(N)(Xt+Jt). (6.1)

Where Jt is the added jump.
In general, using the fundamental pricing equation given maturity N and assuming that all
the time dependence of the bond price comes through the state variables Xt and Jt, We can
rewrite the fundamental pricing equation using Ito’s lemma. Recall that the fundamental pricing
equation is given as in (6.2):

EQ
t

[
dPt
Pt

]
−
(

1

Pt

∂P (N, t)

∂N
+Rt

)
dt = −EQ

t

[
dPt
Pt

dφt
φt

]
(6.2)

When using the standard linearization technique following Ahn and Thompson [21] and Baz and
Das [20] we can follow the approach we used to determine the bond price in the original KNW
model. This technique can produce an exact solution for the bond prices with respect to an
approximate PDDE using a two-term Taylor-series approximation. We rewrite the components

EQ
t

[
dPt
Pt

]
and EQ

t

[
dPt
Pt

dφt
φt

]
of equation (6.2) with added jumps.
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For the component EQ
t

[
dPt
Pt

]
of equation (6.2) we find:

EQ
t

[
dPt
P

]
= EQ

t

[
1

P

∂Pt
∂Xt

dXt +
1

P

1

2

∂2Pt

∂X2
t

(dXt)
2 +

1

P
(P (Xt + Y )− P (Xt)) dNt

]
= EQ

t

[
1

P

∂Pt
∂Xt

dXt +
1

P

1

2

∂2Pt

∂Xt
2 (dXt)

2 +
(
eB(N)′Y − 1

)
dNt

]
= EQ

t

[
1

P

∂Pt
∂Xt

µX +
1

2

1

P

∂2Pt

∂Xt
2σX

2dt+
1

P

∂Pt
∂Xt

σXdZt +
(
eB(N)′Y − 1

)
dNt

]
=

1

P

∂Pt
∂Xt

µX +
1

2

1

P

∂2Pt

∂Xt
2σX

2dt+ EQ
t

[(
eB(N)′Y − 1

)
dNt

]
(6.3)

For the component EQ
t

[
dPt
P

dφt
φ

]
of equation (6.2) we find:

EQ
t

[
dPt
P

dφt
φ

]
= EQ

t

[
1

P

∂Pt
∂Xt

µX +
1

2

1

P

∂2Pt

∂Xt
2 (σX

2)dt+
1

P

∂Pt
∂Xt

σXdZt +
(
eB(N)′Y − 1

)
dNt

]
· EQ

t [(−Rtdt− (Λt)dZt)]

=
∂Pt
∂Xt

σ′XΛtdt (6.4)

Let M be the compensated Poisson process dMt = dNt − λdt as in equation (5.3). Intuitively,
the compensated Poisson process is a centered version of the Poisson process because we are
taking out the conditional mean change λdt. This leaves us with a mean 0 shock process dM ,
similar to the Brownian motion dZt. Using the second order Taylor approximation we get:

EQ
t [
(
e(B(N)′Y ) − 1

)
dNt]

≈ EQ
t

[
−B(N)′Y dNt +

1

2
(B(N)′Y )2dNt

]
= EQ

t

[(
−B(N)′Y +

1

2
B(N)′Y Y ′B(N)

)
dNt

]
= EQ

t

[
λ

(
−B(N)′Y +

1

2
B(N)′Y Y ′B(N)

)
dt+

(
−B(N)′Y +

1

2
B(N)′Y Y ′B(N)

)
dMt

]
= λ

(
−B(N)′E[Y ] +

1

2
B(N)′E[Y ]E[Y ]′B(N)

)
dt (6.5)

Plugging equation (6.5) into (6.3) and plugging (6.3) and (6.4) into the fundamental pricing
equation (6.2) we get, when we divide both sides by dt,:

∂Pt
∂Xt

µX +
1

2

∂2Pt

∂Xt
2σX

2 + λ

(
−B(N)′µY +

1

2
B(N)′λ(σ′Y σY + µ′Y µY ))′B(N)

)
− ∂P

∂N
−RtPt

=
∂Pt
∂Xt

σ′XΛt (6.6)
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We can note here that one can easily relax the assumptions that jump risk can be diversified
away without considerably complicating the problem[19]. Following Das and Foresi [22], the
pricing kernel with systematic jump risk follows:

dφt
φt

= −Rtdt−Λ′tdZt + hλdt− hdNt.

Where the market price of (systematic) jump risk is constant and denoted by h. Now one can
easily account for the systematic jump risk in the two-term Taylor approximation outlined in
this section by substituting λ(1−h) for λ. However relaxation of the assumption that jump risk
is diversifiable becomes more costly in the context of estimating parameters.
We continue to rewrite the fundamental pricing equation (6.2) with jumps. Again we use for
equation (6.6) that:

1

Pt

∂Pt
∂Xt

= B(N)

1

Pt

∂2Pt

∂Xt
2 = B(N)B(N)′

1

Pt

∂Pt
∂N

= −Ȧ(N)− Ḃ(N)′Xt

where we use a dot notation for the derivative of A(N) and B(N) with respect to the maturity
N . With this, equation (6.6) and together with the formulas for the economic parameters from
KNW we find the following equality:

B(N)′ (−KXt − µY ) +
1

2
B(N)′(Σ′XΣX + λ(σ′Y σY + µ′Y µY ))B(N)− Ȧ(N)

−Ḃ(N)′Xt − (R0 +R′1Xt) = B(N)′Σ′X(Λ0 + Λ1Xt)

Now we set all the terms with Xt equal:

−B(N)′ (−KXt)− Ḃ(N)′Xt −R′1Xt = B(N)′Σ′XΛ1Xt ⇒
Ḃ(N) = −R1 −B(N)′(K + Σ′XΛ1)⇒
B(N) = M−1

[
e−MN − I2×2

]
R1

with M = (K + Σ′XΛ1)

As a next step we set all the non Xt terms equal:

B(N)′λE[Y ]− Ȧ(N) +
1

2
B(N)′(Σ′XΣX + λ(σ′Y σY + µ′Y µY ))B(N)

−R0 = B(N)′Σ′XΛ0 ⇒

Ȧ(N) = −R0 +
1

2
B(N)′

(
Σ′XΣX + λ(σ′Y σY + µ′Y µY )

)
B(N)

−B(N)′Σ′XΛ0 −B(N)′λE[Y ]⇒

A(N) =

∫ N

0
Ȧ(s)ds. (6.7)

So for the bond price we find

Pt,N (Xt + Jt) = eA(N)+B(N)(Xt+Jt). (6.8)
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With A(N) =
∫ N

0 Ȧ(s)ds and B(N) = M−1
[
e−MN − I2×2

]
R1. The nominal zero coupon

bond with duration N = 0 and payout 1 has a price Pt,T (Xt,Jt) = 1. This implies that
A(0) = 0 and B(0) = 01×2. The instantaneous nominal yield of a bond with duration zeros
(cash) is defined as the derivative with respect to the maturity N of the bond price. Since Xt

and Jt are not functions of the maturity N we get:

−d lnPt,N (Xt + Jt) = −(Ȧ(0) + Ḃ(0)
′
(Xt + Jt))

:= R0 +R′1(Xt + Jt)

so the instantaneous nominal yield of a bond with duration N is:

−d ln(P + t,N(Xt + Jt)) = −(Ȧ(N) + Ḃ(N)′(Xt + Jt))

6.1.1 Bond funds implementing constant duration

The KNW model is estimated using yields of bonds with different duration. The introduction
of bond funds which implement constant duration is convenient to calculate these yields. In this
subsection we will follow the approach of Draper[8] but we adapted by taking the added jumps
into account. The development of the bond index can be derived by applying the Ito-Doeblin
lemma to:12

PFN (Xt) = P (Xt, t, N) = eA(N)+B(N)′(Xt+Jt)

holding N constant leads to:

dPFN = PFNB(N)′dX +
1

2
PFNdX′B(N)B(N)′dXPFN + PFN (P (Xt + Y )− P (Xt)) dNt

we get for the relative bond return:

dPFN

PFN
= B(N)′ (−KXt) dt+

(
1

2
B(N)′(Σ′XΣX)

)
dt

+B(N)′Σ′XdZt +

(
B(N)′Y +

1

2
B(N)′Y Y ′B(N)

)
dNt (6.9)

This equation together with stochastic discount factor dφt
φt

= −Rtdt+Λ′tdZt are consistent with
the fundamental asset valuation equation if:

EQ
[
dPFN

PFN
+
dφt
φt

+
dPFN

PFN
dφt
φt

]
= 0

Which yields to the restriction:

B(N)′ (−KXt + λµY )

+
1

2
B(N)′(Σ′XΣX + λ(σ′Y σY + µ′Y µY ))B(N)

−Rt −B(N)′Σ′XΛt = 0⇒
B(N)′ (−KXt + λµY )

+
1

2
B(N)′(Σ′XΣX + λ(σ2

Y + µ2
Y ))B(N) =

−Rt −B(N)′Σ′XΛt (6.10)

2Note that the fund’s value index can not be determined using the instantaneous return of a bond with
constant maturity. The instantaneous return does not take into account changes in the state variables.
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If we substitute (6.10) into (6.9), this leads to the relative funds price dynamics equation:

dPFN

PFN
=

((
Rt +B(N)′Σ′XΛt

)
dt+B(N)′Σ′XdZt +

(
B(N)′Y +

1

2
B(N)′Y Y ′B(N)

)
dNt

)
6.1.2 Exact Discretization of KNW

Exact discretization is possible by writing the whole model as a multivariate Ornstein-Uhlenbeck
process. We need this exact discretization in order to simulate the model in Matlab.

dΨt = (Θ0 + Θ1Ψt)dt+ σΨdZt + σNdNt

with

Ψ′ =


Xt

ln(Πt)
ln(St)

ln
(
PF0

)
ln
(
PFN

)

 .
We use the Ito-Doeblin theorem for the log inflation:

d ln(Π) =
∂ ln(Π)

∂Π
dΠ +

1

2

(
∂2 ln(Π)

∂Π2

)
(dΠ)2

= (πtdt+ σ′ΠdZt)−
1

2

(
πtdt+ σ′ΠdZt

)2
= (πt −

1

2
σ′ΠσΠ)dt+ σ′ΠdZt.

We also use the Ito-Doeblin theorem for the log equity:

d ln(S) =
∂ ln(S)

∂S
dS +

1

2

(
∂2 ln(S)

∂S2

)
(dS)2

= (Rt + ηS)dt+
1

2

(
(Rt + ηS)dt+ σ′SdZt

)2
=

(
R0 +R′1Xt + ηS −

1

2
σ′SσS

)
dt+ σ′SdZt.

The log wealth invested in a constant duration fund develops according to:

d ln
(
PFN

)
=

∂ ln
(
PFN

)
∂PFN

dPFN +
1

2

(
∂2 ln

(
PFN

)
(PFN )2

)
(dPFN )2 + (P (Xt + Y )− P (Xt)) dNt

=

(
Rt +B(N)′Σ′XΛt −

1

2
B(N)′(Σ′XΣX)B(N)

)
dt

+B(N)′Σ′XdZt +

(
−B(N)′Y +

1

2
B(N)′Y Y ′B(N)

)
dNt

This implies that the discretized multivariate Ornstein-Uhlenbeck process, which we use to
simulate the financial market model, is as follows:

dΨt = (Θ0 + Θ1Ψt)dt+ σΨdZt + σNdNt
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with:

Ψt =


Xt

ln(Πt)
ln(St)

ln
(
PF0

)
ln
(
PFN

)



Θ0 =


02x1

δ0π − 1
2σ
′
ΠσΠ

R0 + ηS − 1
2σ
′
SσS

R0

R0 +B(N)′ΣXΛ0 − 1
2B(N)′(Σ′XΣX)B(N)



Θ1 =


−K 02×4

δ′1π 01×4

R′1 01×4

R′1 01×4

R′1 +B(N)′Σ′XΛ1 01×4



σΨ =


Σ′X
σ′Π
σ′S

01×4

B(N)′Σ′X



σN =


0
0
0
0

B(N)′Y + 1
2B(N)′Y Y ′B(N)



6.2 Alternative approximation for bond PDDE

In the previous section we applied the standard linearization technique of the PDDE for the bond
price in KNW following Baz and Das [20]. Although this approximations technique has proven
to be close to numerical estimates, they suggest that the degree of accuracy of this approach
is still an open question. Durham [19] provides an alternative closed-form approximation for
the PDDE of the bond price. This alternative approximation incorporates the specific distribu-
tional assumptions for the jump process J more explicitly and employs two-term Taylor-series
approximations after the expectation in the bond pricing equation has been taken.
Durham’s research shows that, when using Gaussian assumptions for the jump size, the alter-
native approximation is clearly more accurate than the standard linearization according to Ahn
and Thompson [21] and Baz and Das[20]. The higher accuracy of the alternative approximation
is independent of how much the jumps contribute to the variance in the interest rate compared
to the diffusion. In this section we will derive the PDDE of the bond price using the alternative
approximation from Durham [19].

In the standard approximation we approximated e(Jt) by a two-term Taylor approximation.
The alternative method of Durham [19] approximates the moment generating function of Y .
Given the Gaussian assumptions of Y and the independence of the Poisson process and the
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jump size we can write:

EQ
t [exp

(
B(N)′Y − 1

)
dNt] = λdt exp

(
B(N)′µY +

1

2
B(N)′(σ′Y σY )B(N)− 1

)
.

Taking the two-term Taylor expansion we get:

exp

(
B(N)′µY +

1

2
B(N)′(σ′Y σY )B(N)

)
=

1−B(N)′µY +
1

2
B(N)′σ′Y σYB(N)

+
1

2

(
B(N)′µ′Y µYB(N)−B(N)′σ′Y σYB(N)B(N)′µY

)
+

1

2

(
1

4
(B(N)′σ′Y σYB(N))(B(N)′σ′Y σYB(N))

)
.

With the fundamental pricing equation we get:

∂Pt
∂Xt

(−KXt − λµY ) +
1

2

∂2Pt

∂Xt
2 (σX

2 + λ(σY
2 + µY

2))− 1

2

∂3Pt

∂Xt
3 (µY σY

2)

+
1

8

∂4Pt

∂Xt
4σY

4 − ∂P

∂N
−RtPt =

∂Pt
∂Xt

σXΛt ⇒

B(N)′(−KXt − λµY ) +
1

2
B(N)′(σX

2 + λ(σY
2 + µY

2))B(N)−
1

2
B(N)′σ2

YB(N)B(N)′µY +
1

8
B(N)′σ2

YB(N)B(N)′σ2
YB(N)

−(Ȧ(N) + Ḃ(N)Xt)−RtXt = B(N)σX(Λ0 + Λ1Xt).

For B(N) we get again: B(N) = M−1
[
e−MN − I2×2

]
R1, with M = (K + Σ′XΛ1). For

A(N) we get:

Ȧ(N) = −R0 +
1

2

(
Σ′XΣX +B(N)′λ(σ′Y σY + µ′Y µY )

)
B(N)−B(N)′Σ′XΛ0 −B(N)′λµY

−1

2
B(N)′σ2

YB(N)B(N)′µY +
1

8
B(N)′σ′Y σYB(N)B(N)′σ′Y σYB(N)⇒

A(N) =

∫ N

0
Ȧ(s)ds.

6.2.1 Bond funds implementing constant duration

Again we will follow the approach of Draper[8] but we adapted it for the added jump process.
The development of the bond index can be derived by applying the Ito-Doeblin lemma to:

PFN (Xt) = P (Xt, t, N) = eA(N)+B(N)′Xt+Jt

holding N constant leads to:

dPFN = PFNB(N)′dX +
1

2
PFNdX′B(N)B(N)′dXPFN + PFN (P (Xt + Y )− P (Xt))dNt.

We get for the relative bond return:
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dPFN

PFN
=
(
B(N)′(−KXt)

)
dt

+

(
1

2
B(N)′(Σ′XΣX)

)
dt+ λ(σ′Y σY + µ′Y µY ))B(N)dt

−
(

1

2
B(N)′σ′Y σYB(N)B(N)′µY

)
λdt

+

(
1

8
(B(N)′σ′Y σYB(N))(B(N)′σ′Y σYB(N))

)
λdt

+B(N)′Σ′XdZt −B(N)′Y λdt. (6.11)

This equation together with stochastic discount factor dφt
φt

= −Rtdt+Λ′tdZt are consistent with
the fundamental asset valuation equation if:

EQ
[
dPFN

PFN
+
dφt
φt

+
dPFN

PFN
dφt
φt

]
= 0

which yields to the restriction:

B(N)′(−KXt + λµY )

+
1

2
B(N)′(Σ′XΣX + λ(σ′Y σY + µY µY ))B(N)

+
1

2
B(N)′σ′Y σYB(N)B(N)′µY +

1

8
(B(N)′σ′Y σYB(N))(B(N)′σ′Y σYB(N))

= −Rt −B(N)′ΣXΛt. (6.12)

If we substitute (6.12) into (6.11) leads to the relative funds price dynamics equation:

dPFN

PFN
=

1

PFN

((
Rt +B(N)′Σ′XΛt

)
dt+B(N)′Σ′XdZt + (P (Xt + Y )− P (Xt))dNt

)
.

6.2.2 Exact discretization of KNW

The log wealth invested in a constant duration fund develops according to:

d ln
(
PFN

)
=

∂ ln
(
PFN

)
∂PFN

dPFN +
1

2

(
∂2 ln

(
PFN

)
(PFN )2

)
(dPFN )2 + (P (Xt + Y )− P (Xt))dNt

=

(
Rt +B(N)′Σ′XΛt −

1

2
B(N)′(Σ′XΣX + λ(σ′Y σY + µ′Y µY ))B(N)

)
dt

+

(
−1

2
B(N)′σ′Y σYB(N)B(N)′µY +

1

8
(B(N)′σ′Y σYB(N))(B(N)′σ′Y σYB(N))

)
dt

+B(N)′Σ′XdZt −B(N)′Y dNt.

This implies that the discretized multivariate Ornstein-Uhlenbeck process, which we use to
simulate the financial market model, is as follows:

dΨt = (Θ0 + Θ1Ψt)dt+ σΨdZt

with:
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Ψt =


Xt

ln(Πt)
ln(St)

ln
(
PF0

)
ln
(
PFN

)



Θ0 =



02×1

δ0π − 1
2σ
′
ΠσΠ

R0 + ηS − 1
2σ
′
SσS

R0

R0 +B(N)′ΣXΛ0 −B(N)′µY − 1
2B(N)′(Σ′XΣX − λ(σY

2 + µY
2))B(N)

+1
3B(N)3µY σY

2 + 1
8(B(N)σY )4



Θ1 =


−K 02×4

δ′1π 01×4

R′1 01×4

R′1 01×4

R′1 +B(N)′Σ′XΛ1 01×4



σΨ =


Σ′X
σ′Π
σ′S

01×4

B(N)′Σ′X


6.3 Jump size distributions

So far we did not discuss the choice of the distribution for the jump size in detail. Assumptions
regarding the distribution of the jump size in general are critical when it comes to closed-form
solutions, numerical estimates and closed-form approximations of PDE’s of the bond price. To
simulate a realistic behavior of interest rate we want the probability of big jumps to be less likely
than the probability of small jumps. We also want to allow for negative jump sizes. Regularly
used distributions for the jump sizes are:

1. Gaussian distribution

2. Exponential/Bernoulli distribution (Das and Foresi [22])

3. Uniform distribution

4. Bimodal Gaussian mixture distribution (Durham [19])

A common assumption in the literature is that jump J has an expected value of zero and follows
a normal distribution. This is, however, not the most logical choice since it does not provide
meaningful movements compared to diffusion, i.e. it does not provide significant jumps different
from diffusion only models. This standard normal assumption is often just made for simplicity.

Durham[19] elaborates on an exponential distribution were the jump sign follows a Bernoulli
distribution. This assumption produces a analytical closed-form solution for bond prices. There-
fore, in contrast to Baz and Das [20], one can directly assess the relative accuracy of the numer-
ical and closed-form approximations of the bond price with respect to an analytical solution.
In other words, with this assumption one can test whether the numerical solutions to the exact
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PDDE are more accurate than the closed-form solutions to an approximated PDDE. This is a
nice feature to conclude about the use of the numerical solutions as a benchmark for accuracy.
The exponential assumption for the jump size distribution is, however, more driven by the fact
that it produces an analytical bond price solution rather than that is has theoretical notions
about the true distribution of jump sizes in the interest rate.
Durham [19] concludes that both closed-form approximations, the standard and the alternative,
give a higher accuracy with respect to the numerical solution when assuming an exponential
distribution for the jump sizes instead of Gaussian assumptions on the jump size distribution.
Durham [19] shows that the alternative closed-form approximation is clearly more accurate than
the standard linearization technique on average and for each maturity point. Moreover he shows
that on average the alternative closed-form approximation is more precise than the numeri-
cal solution independent of how much the jumps contribute to the variance in the short rate
compared to the diffusion. This result is notably driven by greater accuracy for bonds with a
maturity between one and 10, for higher maturities the numerical approximation is superior.
This result generally questions the use of numerical solutions as a benchmark. That is, one
cannot in principle be sure whether approximate solutions of the exact PDDE are more precise
than exact solutions of an approximate PDDE.

The assumption in Das and foresi [22] that the absolute value of the jump size follows an ex-
ponential distribution and that the jump sign follows a Bernoulli distribution is a considerable
improvement compared to the Gaussian assumption with respect to significant jumps. However,
another desirable feature of any possible distribution for jump sizes would be that the modes
are of considerable distance from the mean to allow for significantly higher interest rate move-
ments compared to diffusion. Jumps can also have a symmetrical distribution around the means,
which is also not feature of exponential distributions. Therefore, a useful alternative distribu-
tion would be the Bimodal distribution with jumps symmetrically distributed around modes of
sufficient distance from the origin.This assumption for the jump size distribution is also elabo-
rated by Durham. Here the average jump size is zero. The Bimodal distribution has the feature
that positive and negative values cancel out when taking the average or calculating expectations.

Durham [19] concludes about the Bimodal jump size assumption that the alternative approxi-
mation consistently gives a slightly more precise result in estimating the term structure but does
not provide significantly more accuracy than the standard linearization. The precision of both
closed-form approximations seem to decrease with maturity. When jumps contribute more to
the total variance of the short rate compared to the diffusion both closed-form approximations
become somewhat less accurate but still the absolute degree of precision is roughly comparable.
Therefor we will only derive the bond price in KNW using standard linearization of the bond
PDDE here when assuming a Bimodal distribution for the jump sizes.

6.3.1 The Bimodal distribution

A multi-modal distribution is a continuous probability distribution with two or more modes.
These modes appear as distinct peaks (local maxima) in the probability density function. A
multi-modal distribution most commonly arises as a convex mixture of different unimodal dis-
tributions (i.e. distributions having only one mode). Note here that there is no one to one
connection between the number of components in a mixture and the number of modes of the
resulting density. The Gaussian distribution is a unimodal distribution. The multi-modal dis-
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tribution based on Gaussian distributions is defined the following mixture:

f(y) =
n∑
i=1

wi
1√

2πσ2
i

exp

(
−(y − µi)2

2σ2
i

)
(6.13)

Where f(y) is the total density of the mixture, wi is the weight assigned to the ith component
Gaussian distribution. It holds that:

∑n
i=1wi = 1. The number of component distributions in

the mixture is n, µi is the mean of the ith component distribution, and σ2
i is the variance of the

ith component distribution.

For the distribution of the jump size we will use the specific case of a multi-modal distribution
with two different modes (n = 2); the bimodal distribution. The probability distribution is
defined as follows:

f(y) =
w√
2πσ2

1

exp

(
−(y − µ1)2

2σ2
1

)
+

(1− w)√
2πσ2

2

exp

(
−(y − µ2)2

2σ2
2

)
(6.14)

We can deduce that:

E[Y ] = wµ1 + (1− w)µ2

var(Y ) =
w(µ2

1 + σ2
1) + (1− w)(µ2

2 + σ2
2)

2

Since the standard linearization method does not require an explicit assumption about the jump
size distribution, we can simply fill in E[Y ] and var(Y ) for respectively µY and σ2

Y . We can also
make the intuitive assumption that the component distributions of Y are symmetric reflexions
across the origin, with equal but opposite means and equal variances. Under this formulation
µ1 = −µ2 and σ1 = σ2. The total expectation of the Bimodal variable will be equal to zero.

6.4 Jumps in the inflation rate

The KNW model is an affine two factor model. The two factors, or state variables influence
both the interest rate and the inflation rate. The pension result is also dependent on both the
interest rate and the inflation rate. The maintenance of purchasing power is highly influenced
by the inflation rate, so the way in which the inflation rate is modeled has a big influence on
the pension result. Therefor we will analyze what the impact is of adding jumps to the inflation
rate as well. Let Lt be the jump for the inflation rate, let Y2 be the variable for the jump size
and let λ2 be the expectation of the Poisson process for the jumps in the inflation rate. We
adapt the formula for price index in the KNW model as follows:

dΠt

Πt
= πtdt+ σΠdZt + Y2dNt (6.15)

Where δ1π,Xt,Lt ∈ R2. We will only observe a change in the exact discretization part:

d ln(Π) =
∂ ln(Π)

∂Π
dΠ +

1

2

(
∂2 ln(Π)

∂Π2

)
(dΠ)2

= ((πt + λ2)dt+ σ′ΠdZt + δ′1πY2dMt)−
1

2

(
(πt + λ2)dt+ σ′ΠdZt + δ′1πY2dMt

)2
= (πt + λ2 −

1

2
σ′ΠσΠ)dt+ σ′ΠdZt +

1

2
λ2δ
′
1π(µ2

Y2
+ σ2

Y2
)dt+ δ′1πµY2dMt
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Chapter 7

Parameter estimation

In this chapter we investigate the parameter estimation of the jump size and the jump intensity.
The investigation of the parameter estimation will be based on both historical data of the
interest rate and the inflation rate. For the historical data of the interest rate we use the Euro
one monthly OIS middel rate, see Figure 7.1. For the historical data of the inflation rate we use
the monthly all-items HICP of NADJ, see Figure 7.2. In chapter 6 we have seen that when we
add jumps to the bond price we get:

Pt,N (Xt + Jt) = eA(N)+B(N)(Xt+Jt).

The instantaneous nominal yield of a bond with duration zeros (cash) is defined as the derivative
with respect to the maturity N of the bond price. Since Xt and Jt are not functions of the
maturity N we get:

−d lnPt,N (Xt + Jt) = −(Ȧ(0) + Ḃ(0)
′
(Xt + Jt))

:= R0 +R′1(Xt + Jt)

so the equation for the interest rate will be as follows when we add a jump process:

−d lnPt(0) = R0 +R′1(Xt + Jt)

For the equation of the price index with jumps we found:

dΠt

Πt
= πtdt+ σΠdZt + Y2dNt

A method for estimating parameters for discrete, binned assets log returns is the multinomial
maximum likelihood estimation. The performance of the multinomial maximum likelihood is
superior to the method of the least squares [24]. We will estimate the parameters of the jump
size and the jump frequency for both a Gaussian jump size assumption and a Bimodal jump
size assumption. In case of the estimation of the interest rate we can easily extend to the two
dimensions for Jt for which Y and Nt are assumed independent. Let µ∗ be the estimated mean
of the jumps then we get using a parameter estimation:

E
[
R′1Jt

]
= λµ∗t⇒

E
[
R

(1)
1 J

(1)
t +R

(2)
1 J

(2)
t

]
= λµ∗t⇒

E
[
R

(1)
1 J

(1)
t

]
+ E

[
R

(2)
1 J

(2)
t

]
= λµ∗t⇒

E
[
R

(1)
1 J

(1)
t

]
= E

[
R

(2)
1 J

(2)
t

]
=

1

2
λµ∗t

here we assume that the entries of the jumps are symmetric. For the variance and the frequency
of the Poisson process we have the same.
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Figure 7.1: Euro monthly OIS middel rate
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Figure 7.2: Monthly all-items HICP of NADJ

7.1 Probability distribution of jump diffusion with normal jump
size

When we assume a Gaussian distribution for the jump size we can follow Floyed Hanson and
Zongwu Zu [24]:

drt = (a− brt)dt+ σdZt. (7.1)

where a, σ ≥ 0 and b ∈ R. Using the Ito-Doeblin formula, we can immediately verify that:

rt = r0e
−bt +

a

b

(
1− e−bt

)
+ σ

∫ t

0
e−b(t−s)dZt (7.2)

To get to the probability distribution of rt we use the relationship between the Brownian motion
and the drift with the right change of measure according to the first theorem of Girsanov[9].

Theorem 7.1. Girsanov 1
Let L(t) ∈ Rn be a stochastic process on the space (Ω,Fn,P) such that:

dL(t) = a(t, ω)dt+ dZt.

with L(0) = 0, ω ∈ Ω, 0 ≤ t ≤ T < ∞ and independent elements Z1
t , Z

2
t , ..., Z

n
t . Define the

process:

D(t) = exp
(
−
∫ t

0 a(s, ω)dZs − 1
2

∫ t
0 a

2(s, ω)ds
)
∀t ≤ T.

Assume that a(t, ω) is adapted and the following condition (the Novikov condition) holds:

EP

[
exp

(
1

2

∫ t

0
a2(s, ω)ds

)]
<∞.
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Define a new measure Q on (Ω, Fnt ) equivalent to measure P (i.e. they agree on which sets in
Fn have probability zero) , by setting:

dQ(ω) = DT (ω)dP (ω).

Then under the new measure Q, the process L(t) is a standard Brownian motion.

From here it follows directly that:

rt ∼ N
(
r0e
−bt +

a

b

(
1− e−bt

)
,
σ2

2b

(
1− e−2bt

))
.

We call:

µr = r0e
−bt +

a

b

(
1− e−bt

)
σr =

σ2

2b

(
1− e−2bt

)
.

Knowing the distribution of rt we can now use the theorem of Floyed Hanson and Zongwu Zu
[24] to get the probability density of the interest rate process with jumps.

Theorem 7.2. Let ∆Jt =
∑∆Nt

i=1 Yi be a stochastic jump with Yi ∼ N(µY , σY ) and Nt a Poisson

random variable; P (∆Nt = k) = e−λ∆t(λ∆t)k

k! . For a return on a fixed income asset rt the
probability density for the jump-diffusion returns of rt is:

f(∆rt) =

∞∑
k=0

pk(λ∆t)φ

(
∆rt; (r0e

−b∆t +
a

b

(
1− e−b∆t

)
+ µY · k,

σ2

2b

(
1− e−2b∆t

)
+ σ2

Y · k
)

where ∆rt ∈ R, pk(λ∆t) = P(∆Nt = k) and φ is the normal density:

φ(x;µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
with µ the mean and σ2 the variance.

Proof. Since

∆rt = r0e
−b∆t +

a

b

(
1− e−b∆t

)
+ σ

∫ ∆t

0
e−b(s)dZs+ Jt

And(
r0e
−b∆t +

a

b

(
1− e−b∆t

)
+ σ

∫ ∆t

0
e−b(s)dZt

)
∼ N

(
r0e
−b∆t +

a

b

(
1− e−b∆t

)
,
σ2

2b

(
1− e−2b∆t

))
we get for the distribution of ∆rt given that ∆Nt = k:

∆rt|∆Nt = k ∼ N
(
r0e
−b∆t +

a

b

(
1− e−b∆t

)
,
σ2

2b

(
1− e−2b∆t

))
+

k∑
N
(
µY , σ

2
Y

)
.

We will first focus on
∑kN

(
µY , σ

2
Y

)
. Since Yi are normal i.i.d and independent of Nt we get

that

P (∆Jt = j|∆Nt = k) = P

(
k∑
i=0

Yi = j

)

=

k∑
i=1

1√
2πσ2

exp

(
−(yi − µY )2

2σ2
Y

)
.
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We use the fact that the sum of k independent normal random variables also has a normal
distribution with the mean equal to µY · k and the variance equal to σ2

Y · k. It follows that:

P (∆Jt = j|∆Nt = k) =
1√

2πσ2
exp

(
−(yi − µY · k)2

2σ2
Y · k

)
.

Now we use the fact that the diffusion term and the jump term are independent normal random
variables and we use again that the sum of l independent normal random variables also has a
normal distribution where we sum the means and the variances of the separate normals. We
then get for ∆rt given that ∆Nt = k :

∆rt|∆Nt = k ∼ N
(

∆rt; (r0e
−b∆t +

a

b

(
1− e−b∆t

)
+ µY · k,

σ2
Y

2b

(
1− e−2b∆t

)
+ σ2

Y · k
)

The last step is to drop the assumption that Nt = k and to multiply by the distribution of
Nt.

7.2 Probability distribution of jump diffusion with Bimodal jump
size

The Bimodal distribution consists of the weighted sum of two normals. If we would sum k
identical Bimodal random variables we can use the fact that we are summing k i.i.d random
variables and get:

E[J |Nt = k] = E

[
k∑
Yi

]
= kwµ1Y + k(1− w)µ2Y

var(J |Nt = k) = var

(
k∑
Yi

)
= kw(µ2

1Y + σ2
1Y ) + k(1− w)(µ2

2Y + σ2
2Y )

The Bimodal distribution is not closed under convolution To get to the distribution of the sum of
the distribution we need to use convolution. This means that the sum of Bimodal distributions
is not a Bimodal distribution. using the convolution of Bimodal distributions (see appendix 9.5)
we get:

fZ(z) =

∫ ∞
−∞

1√
2πσ2

rt

exp

(
−(x− µrt)2

2σrt

)
(7.3)

· e
−λ∆t(λ∆t)k

k!

(
w√
2πσ2

1

exp

(
−(z − x)− µ1)2

2σ2
1

)
+

(1− w)√
2πσ2

2

exp

(
−((z − x)− µ2)2

2σ2
2

))
dx

7.3 Multinomial maximum likelihood estimation

The multinomial maximum likelihood estimation of model parameters is justified for binned
financial data [25]. This estimation method with discrete bins is used since the jumps diffusion
process is a discontinuous process. Let n be the number of data points we wish to estimate.
The main idea for this method is the following:

1. Step 1: sort the historical data into nb bins (bi, bi+1) for i = 1 : b of the same length ∆b.

With that a histogram is constructed. We get the sample frequency f
(s)
b , for 1 : nb.
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2. Step 2: Get the theoretical jump-diffusion frequency with parameter vector x. Here x =
(µy, σY , λ) in the case of a Gaussian jump size assumption and x = (µ1Y , σ1Y , µ2Y , σ2Y , λ)
in the case of a Bimodal jump size assumption. We get:

f
(jd)
b (x) := (n− 1)

∫ bi+1

bi

φ(jd)(η, x)dη

where φ(jd)(η;x) is some jump-diffusion density in η.

3. Step 3: minimize the objective function y(x):

y(x) := −
nb∑
b=1

[
f

(s)
b ln

(
f

(jd)
b (x)

)]
The minimization MATLAB function fmincon is used to get the optimal parameters x∗.
We want to maximize the chance of rt being inside a bin where we find many observation

from the historical data. So whenever f
(s)
b is high for bin b we want f

(jd)
b (x) to be high as

well. We use the following constraint:

σ2
Y ≥ 0

We base this parameter estimation on the method of Hanson and Zhu [24] but we adapt it
slightly. In the paper of Hanson and Zhu the multinomial maximum likelihood is used for the

stock returns. Instead of the sample frequency of the returns f
(s)
b they use sample frequency of

the returns of the log prices. Since we are dealing here with interest rates which can have negative
values we cannot use the log returns. We perform the multinomial maximum likelihood for both
the interest rate and the inflation rate. The data contains 232 data points for the monthly
interest rate from January 1999 up till and including may 2018. For the inflation the data set
contains 229 monthly data points from January 1998 up till and including January 2018.

7.4 Results

We follow Synowiec [28] and set the mean µr of the diffusion part in drt = µrrtdt+ σrdZt + dJt
equal to the mean of the historical data. We also set the mean and µπ) of the diffusion part
in dπt = µππtdt + σpidZt + dLt equal to the mean of the historical data. The mean is divided
by 100 since we want percentages. We set the variance of the diffusion (σ2

r and σ2
π) equal to

the variance of the historical data divided by 10000. We make this assumption since the KNW
model is already calibrated using historical data, so the mean and the variance of the historical
data are already been taken into account for the estimation of the KNW parameters. Therefore
we estimate the jump parameters given the mean and the variance of the historical data to
get parameter values that will match more with the KNW model. The mean and variance of
respectively the historical data of the interest rate and the inflation rate are:

µr = 0.017079397

σ2
r = 0.00027646

µπ = 0.017098

σ2
π = 0.000091
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7.4.1 Results parameter estimation

In Table 7.1 we stated the results of the multinomial maximum likelihood estimation using a
Gaussian assumption for the jump sizes. The first we do not limit the size of λ. We then find
that the jump frequency λ is bigger than 50. This high number is similar to the results of Syn-
owiec [28]. The jump sizes Y , however, do not really differ from the variance of the diffusion in
this case. When we limit the amount of jumps per year we observe bigger jump sizes. Durham
[19] uses estimates where the amount of jumps are either 10 or 16 jumps per year assuming a
normal distribution for jump sizes, so we display the results for the likelihood as well for λ ≤ 10.
This amount of jumps is about 5 times smaller than the amount of jumps estimated assuming
no upper bound for λ. The focus in the KNW model is on yearly data and the used time step is
one year. When we observe the historical data in Figure 7.1 and 7.2, we would rather have a low
jump frequency and a high jump mean since the data shows that a significant jump does not
happen every year and if the event of a jump takes place the jump size is significant compared
to the diffusion behavior. We could implement this by limiting the amount of jumps to less
than 1 significant jump per year. We will chose λ = 2

5 , which corresponds to 2 big jumps once
in 5 years. This choice is arbitrary but it is 25 times smaller than the previous upper bound
and it serves the goal of testing whether jumps influence the pension result. The results of the
multinomial maximum likelihood estimation are stated in the Table 7.1. In this table we can
see that in general it holds that the lower λ the bigger the jump size is.

For the Bimodal jump size distribution the optimization program is very heavy since the pro-
gram numerically computes two integrals, one for the convolution and one with respect to the
bins. We can only get an answers if we set the bin size very low in this case. But this makes
the estimation method very inaccurate. Here we can conclude that the multinomial maximum
likelihood is not a suitable estimation method for a Bimodal assumption for jump sizes when
using fmincon in Matlab.

7.4.2 Results for the estimation error

When using fmincon for negative log likelihood functions the Hessian matrix can be used for
a confidence interval for the estimation. The square root of the diagonal of the inverse Hes-
sian matrix gives an estimate for the error term. Diffusion models with jumps, however, have
continuous-time dynamics, but the sampling in continuous time is not feasible. Local asymptotic
normality is also an ongoing area of research for stochastic processes with jumps. No results for
general jump-diffusions have been established so far [27]. Therefore we cannot use the Hessian
method in this case. The multinomial maximum likelihood function that we have introduced
here is an estimation based on discrete-time observations and is a pseudo-likelihood function.

We do, however, want to know the accuracy of the estimation. We will use a very basic verifi-
cation in which we simulate a jump diffusion process where we chose the mean and the variance
of the diffusion and drift part equal to the mean and the variance of the historical data. For the
mean and the variance of the jump size and the jump frequency λ we will chose some arbitrary
value. We run the multinomial maximum likelihood for a 1000 times to see if the program
gives back similar values for the parameters of the jump as we had chosen. We set µY = 0.02,
σY = 0.001 and λ = 2

5 . We generate a data set based on a jump diffusion model with this
chosen parameter values. When we run the multinomial maximum likelihood with respect to
this generated data we find that the maximum likelihood method would always give us a jump
frequency between 50 and 53 with a small mean of the jump sizes between 0.001 and 0.0008. The
variances of the jump sizes which are of the order 10−8. From this it seems that the multinomial
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maximum likelihood estimation is not so accurate for estimation jump diffusion parameters in a
interest rate or inflation rate process since the data is based on a jump diffusion process where
the jump frequency is approximately 125 times smaller and the mean jump size is at least 20
bigger. Also the variance was chosen much larger than the number that the multinomial maxi-
mum likelihood returns.

Another verification of the accuracy of the multinomial maximum likelihood estimation can
be done by checking the estimated values with a grid search. We chose a search domain
for all three variables of the jump process, so we chose λ ∈ [λlb, λub], µY ∈ [µY lb, µY up] and
σY ∈ [σY lb, σY ub]. We then construct a for loop which starts at respectively λlb, µY lb and
σY lb. For each loop we add a step size ∆λ, ∆µ and ∆σ to the start values of λ, µ and σ, such
that we asses values within the chosen domains. So forinstance λ, will attain the grid points
λlb + ∆λ, λlb + 2∆λ, ..., λlb + (n− 1)∆λ, λlb + n∆λ, λub. We fill in these values in the likelihood
function f(∆rt). Again we set the mean and the variance of the drift and diffusion part equal
to the mean and the variance of the historical data. We calculate the likelihood estimator for
all the grid points:

l̂(λ, µY , σY ;xi) =
1

n

n∑
i=1

ln(f(xi|λ, µY , σY ))

Where n is the number of data point and xi are the observations in the historical data. We
check for which parameter values of λ, µ and σ the maximum likelihood estimator is the largest.
For this grid search we find the same result as for the multinomial maximum likelihood method.
The method always selects high jump frequencies in combination with small average jump sizes
µY .

Although we can conclude that the estimation method seems not reliable, our goal is to check
whether the presence of any reasonable jump in the KNW model has an influence on the pen-
sion result. When we look at the historical data the values that the estimation method gives
for Gaussian jump size assumptions, which are stated in Table 7.1, are not odd. We could still
use them to draw a conclusion about the influence of adding jumps in the KNW model on the
pension result. For the Bimodal jump size assumptions we will use values from literature. We
follow Durham [19] who uses a jump frequency of 10. This will be discussed in the next section.
Another motivation to use the values that we found with the multinomial maximum likelihood
estimation is that jump size mean that Durham [19] uses coincides with the values that we found
for the Gaussian jump size assumption in the case that we set an upper bound of 10 for the
jump frequency λ in the multinomial maximum likelihood estimation.

7.4.3 The pension result based on the standard linearization and Gaussian
jumps in the interest rate

We implement the values of the parameter estimation in the extended KNW model for Gaus-
sian jump size assumptions. We calculate the pension result in the case jumps are added to the
interest rate and the inflation rate of the financial market model. We state the results in Tables
7.2 and 7.3. We will first look at the values of the pension result in the case that we add a
jump process to the interest rate. In chapter 4 we can see in Table 4.1 that the pension result
in the 95th percentile is equal to 1.329. In Table 7.2 we see, for λ ≤ ∞, that the pension result
in the 95th percentile is equal to 1.349. For λ = 10 we find that the pension result in the 95th
percentile is equal to 1.400 and for λ = 2

5 we see that the pension result is the 95th percentile
is equal to 1.3934. So we see that adding a positive jump mean in the interest rate gives a
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slightly higher pension result in the 95th percentile. In Table 4.1 in chapter 4 we see that the
5th percentile is equal to 0.224 in Table 7.2 we see that the 5th percentile for all values of the
jump frequency λ is not significantly different. The maximum deviation is also not significantly
different compared to the values in Table 4.1 and the pension result is higher than 1 in the more
or less the same percentile compared with Table 4.1.

We also analyzed the case in which the mean of the jump sizes are negative. The results
are also stated in Table 7.2. We do not observe a significant difference in the values for the
pension result. It seems that the influence of λ is higher than the influence of the mean of the
jump size. When the jump sizes are normally distributed with mean zero we only see an impact
on the pension result when we assume extreme variances. This is not likely according to the
historical data. This coincide with Durhams [19] conclusion that jumps sizes which are normally
distributed with mean zero do not contribute much with respect to diffusion, except when their
variance is extremely high. When we use the alternative linearization instead of the standard
linearization we do not see significant difference in the pension result compared to the standard
linearization for all combinations of parameter values.

In general we see an effect of jumps in the interest rate process but this effect is not very
significant compared to a scenario set with no jumps in the interest rate. When we look at the
interest rate in the original KNW model, see Figure 7.3 then we see that a movement of for
instance size 0.03 in the interest rate is not so uncommon. According to the data these are quite
big jumps. The estimated mean of the jump size is of comparable size of these movements in
the KNW model. So if we want to add a jump to the nominal interest rate which distinguishes
from the diffusion in the KNW model we need to chose jumps with an average size bigger than
this, but that would not be very likely according to the historical data. Movements of the same
order of size as 0.03 are less common in the inflation rate in the original KNW model, see Figure
7.4. Therefore we see a bigger impact compared with the added jumps in the interest rate on
the pension result when we use the values of the multinomial maximum likelihood for the jumps
in the inflation.

Figure 7.3: Interest rate in the original KNW model (0Ri
t)
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Figure 7.4: Inflation rate in the original KNW model (πi
t)
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7.4.4 The pension result based on the standard linearization and Gaussian
jumps in the inflation rate

We add jumps to the inflation rate process in the KNW model and the results are stated in
Table 7.3. In Table 4.1 in chapter 4 the pension result surpasses 1 in the upper 15% of the
scenarios. In Table 7.3 we see, when use λ = 49 with the corresponding mean µy = 0.0008,
that the pension result does not even reach 1 in any scenario. For λ = 10 and µy = 0.0045 the
pension result is even lower and does not reach 0.5 in any scenario. For λ = 2

5 and µy = 0.02 we
see in Table 7.3 that the pension result is equal to 1 in the 97.3 percentile. So in general positive
values for µY make the pension result lower. This is due to the fact the the inflation rate gets
higher on average when we add positive jumps to it. A higher inflation rate means that a bigger
investment return is needed to compensate for the loss of purchasing power that occurs with
high inflation rates. When we look at negative values for µY the pension result gets higher. In
Table 7.3 we see that when we implement λ = 49 and µY = −0.0008 the pension result gets
higher than 1 in 99% of the scenarios. For λ = 10 and µY = −0.0045 the pension result is even
higher. For λ = 2

5 we see that the pension result is higher than 1 in 44 percent of the scenarios.
So in Table 7.3 we can see that adding jumps to the inflation rate has a significant influence
on the pension result and highly depends on the choice of the parameter values. We can also
conclude that adding Gaussian jumps to the inflation rate has a bigger influence on the pension
result than when we add Gaussian jumps to the interest rate.

7.4.5 The pension based on the standard linearization and Bimodal jumps

In Table 7.4 we stated the results for adding jumps with Bimodal jump sizes to the interest rate
and the inflation rate. We did not find estimates of the jump parameters, therefor we only used
parameters from Durham [19]. When applying the assumption of Bimodal jump sizes with the
restriction that the total expectation of the jump sizes is zero, see the approach in section 6.7.2,
we see in Table 7.4 that the jumps have a significant influence on the pension result. In Table
4.1 in chapter 4 we see that the difference between the pension result in the 95th percentile
and the 50th percentile is equal to 0.758. In Table 7.4 we see that the difference between the
95th percentile and the 50th percentile is equal to 1.817 for the interest rate and 1.829 for the
inflation rate. This is more than twice as big compared to the difference in Table 4.1. The
difference between the 50th percentile and the 5 in Table 4.1 is 0.347. In Table 7.4 we see that
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the difference between the 50th percentile and the 5 is 0.434 for the interest rate and 0.442 for
the inflation rate. The 95 percentile is higher and the 5th percentile is lower when we add jumps
with a Bimodal jump size to KNW. So overall we see that the Bimodal jumps have a significant
influence on the pension result. The pension result gets less stable when we add jumps to KNW,
i.e. the values are more spread. We also see that a Bimodal jump size assumption has a bigger
influence on the pension result for the interest rate and a lower influence for the inflation rate
than the Gaussian jumps size assumption. When we use the alternative linearization instead of
the standard linearization we do not see significant difference in the pension result compared to
the standard linearization.

7.4.6 Concluding remarks

We can conclude that in the current setting of the KNW model the addition of jumps has
an influence the pension result. This influence is highly dependent on what parameter values
we assume for the jump process. We also see that Bimodal jump sizes are conceptually more
realistic than Gaussian jumps. Since Gaussian jumps can be simulated with a diffusion only
model and Bimodal jumps allow for an average jump size of zero and it allows for positive and
negative jumps. The impact of Bimodal jumps on the interest rate and the pension result is
bigger assuming the same average jump size and comparable amounts of jumps per year, than
the impact of a Gaussian jump size assumption. The impact of a Bimodal jump size assumption
for the inflation rate influences the pension result less than a Gaussian jump size assumption.
However, we see that the added jumps do not deviate so much form the movements of the
diffusion in the original KNW model. The price movements of the interest rate and the inflation
rate are very high compared to historical data in the original KNW model. This could be a result
of the fact that the KNW model is estimated based on historical data already. The historical
data show diffusion and jumps and the KNW parameter estimation incorporates this behavior
in diffusion only. In fact, the total distribution of the combination of diffusion with Gaussian
jumps is again Gaussian. So the combination of diffusion and Gaussian jumps can always be
approximated by a diffusion only model with a higher volatility to cover for the jumps. What
we then see is the result of the KNW estimation; higher volatility when compared to market
data. While what we aim to see is small movements at most time points and whenever a jump
occurred, big movements. A Bimodal jump size assumption for the interest rate an the inflation
rate seems the most reasonable assumption. This assumption has a significant influence on the
pension result. The only issue here is to find a suitable parameter estimation technique that can
be applied to a Bimodal jump size assumption.
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Table 7.1: Results parameter estimation with Gaussian jump size

Process µY σY λ ≤ ∞ number of bins

Rt 0.00096179 1,11E-09 50.66 56
Πt 0.000817538 1,06E-07 49.74 56

Process µY σY λ ≤ 10 number of bins

Rt 0.004542874 1.10E-08 10 56
Πt 0.004511779 1.92E-08 10 56

Process µY σY λ ≤ 2
5 number of bins

Rt 0.022824471 3.06E-09 2
5 56

Πt 0.022557848 5.47E-09 2
5 56

In this table we state the results of the parameter estimation of the jumps using the
multinomial maximum likelihood estimation method and assuming Gaussian jump sizes. In
the first tabular the results are displayed with no restriction on λ. In the second tabular the
results are displayed when an upper bound of 10 for λ is set. In the last tabular the results are
displayed when an upper bound of 2

5 is set.

Table 7.2: Results for the Pension result with Gaussian jumps in the interest rate

λ <∞ λ ≤ 10 λ ≤ 2
5 λ <∞ λ ≤ 10 λ ≤ 2

5
% PR % PR % PR % PR % PR % PR

95 1.349 95 1.400 95 1.393 95 1.332 95 1.382 95 1.390
84.75 1.000 85,55 1.000 85,7 1.000 85,55 1.000 86,2 1.001 85.75 1.001
50 0.573 50 0.573 50 0.580 50 0.566 50 0.567 50 0.579
5 0.227 5 0.218 5 0.219 5 0.225 5 0.215 5 0.219

In this Table we state the results for the pension result based on a extension of the KNW
model where a jump process with a Gaussian jump size assumption is added to the interest
rate process. In the first 6 columns we state the percentile in the % column and the pension
result in the PR column that we obtain when using µY and σY from the multinomial
maximum likelihood estimation values for three constraints for λ. In the last 6 columns we
state the percentile in the % column and the pension result in the PR column that we obtain
when using −µY and σY from the multinomial maximum likelihood estimation values for three
constraints for λ.
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Table 7.3: Results for the Pension result with Gaussian jumps in the inflation rate

λ <∞ λ ≤ 10 λ ≤ 2
5 λ <∞ λ ≤ 10 λ ≤ 2

5
% PR % PR % PR % PR % PR % PR

100 0.731 100 0,416 97,3 1.001 95 12.643 95 16.518 95 2.273
95 0.159 95 0.127 95 0.868 50 4.996 50 6.332 55.75 1.000
50 0.067 50 0.054 50 0.354 5 1.805 5 2.334 50 0.928
5 0.028 5 0.022 5 0.139 0.65 0.976 0.4 1.010 5 0.361

In this Table we state the results for the pension result based on a extension of the KNW
model where we added a jump process with a Gaussian jump size assumption to the inflation
rate process. In the first 6 columns we state the percentile in the % column and the pension
result in the PR column that we obtain when using µY and σY from the multinomial
maximum likelihood estimation values for three constraints for λ. In the last 6 columns we
state the percentile in the % column and the pension result in the PR column that we obtain
when using −µY and σY from the multinomial maximum likelihood estimation values for three
constraints for λ.

Table 7.4: Results for the Pension result with Bimodal jumps in the interest rate and inflation
rate

Rt % PR πt % PR

95 2.403 95 2.421
73.05 1.000 72.1 0.998
50 0.586 50 0.592
5 0.152 5 0.150

In this Table we state the results for the pension result based on a extension of the KNW
model where a jump process with a Bimodal jump size assumption is added to the interest rate
and to the inflation rate process. The parameters for the jump process are based on Durham
[19]: λ = 10, µY 1 = 0.006, σY 1 = 0.0015, µY 2 = −0.004, σY 2 = 0.001 and w = 0.4. In the first
two columns we state the results for adding a jump process to the interest rate process. The %
column represents the percentile and the PR column states the number for the pension result.
In column 3 and 4 the result for adding a jump process to the inflation rate process is
displayed.
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Chapter 8

Conclusion and recommendations

The aim of this thesis is to propose an improvement of the design of the feasibility test for DC
pension schemes. For this purpose we analyzed definitions of the pension result in DC schemes.
The pension result currently used for DC schemes is the same as the definition for the pension
result in DB schemes. The pension result in DB pension schemes, however, is not applicable to
most DC pension schemes.

8.1 How should we define the pension result in DC pension
schemes?

In chapter 4, sections 4.3 up to and including 4.7, five possible new definitions for the pension
result in DC schemes have been proposed. The design of the definition for the pension result is
in line with the pension result in DB schemes: the concept of a quotient, with expected pension
payments in the nominator according to the investment portfolio of the pension fund and a
denominator with pension payments according to a norm, is maintained. The aim to measure
the maintenance of purchasing power with the pension result is also maintained. In DB pension
schemes the norm is the height of the indexed pension entitlements without cut backs. In DB
schemes this is also the pension goal. For DC pension schemes we cannot use the existing norm
for DB pension schemes since there are no pension entitlements, so the search for a new definition
of pension result in DC schemes comes down to choosing a new norm. This new norm, however,
cannot serve as a pension goal. We suggest five norms for the denominator of the pension result
quotient for DC pension schemes. It follows that comparing the expected pension payouts with
pension payouts which are generated from instant indexed pension entitlements is the best norm
among the five suggested norms. This definition measures the maintenance of purchasing power
in DC pension schemes and can be used as a new definition for the pension result in DC schemes.

8.1.1 Discussion about the pension result in DC schemes

In chapter 4 we justified the choice for a new definition for the pension result in DC schemes
which is based on indexed pension entitlements. This definition measures the maintenance of
purchasing power. This has been the goal of the pension result in DB schemes as well. We
can ask ourselves, however, if maintenance of purchasing power is the best term to define the
quality a pension. The pension result depends on the height of the pension payments in both
the denominator and the numerator. When the pension payments in the denominator are lower
than the pension payments in the numerator the pension result will be relatively higher than the
case in which the pension payments in the denominator are bigger than the pension payments
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in the nominator. The height of the pension result depends on three types of risk1. The interest
rate risk (or pension conversion risk), i.e. the risk that the interest rate will be low during
retirement, which will result in a low pension payment. The second type of risk is the inflation
rate risk. This is the risk that the inflation rate will be high which results in a lower real value
of the pension payment. The third type of risk is the investment risk. This is the risk that
the investment returns can be low which can result in losing capital. So the question is which
risk we mainly want to measure to define the quality of the pension payment. The definitions
based on the risk free rate, the constant rate and the inflation rate show the performance of an
investment product. We only measure investment return here. The pension result based on the
inflation rate also measures the maintenance of purchasing power. The definition based on non
indexed pension entitlements and indexed entitlements show the exposure to interest risk and
investment risk. So the conversion risk is only shown in the latter two definitions. The definition
of the pension result based on instant indexed pension entitlements also shows the exposure to
inflation rate.

One can also debate what the focus of the feasibility test should be. Do we want to stress
the stability of the median or do we want to stress the minimization of the deviation between
the median and the 5th percentile?

8.2 What is the relation between the risk attitude and the life-
cycle investment strategy?

The impact of the life-cycle investment strategy on the pension result is analyzed. We see that
when we implement a defensive life-cycle investment strategy that then the deviation between
the median an the 5th percentile gets smaller, so the risk attitude is more preserved in this case.
When we implement offensive life-cycle investment strategy, then we see the opposite result and
therefore the risk attitude is less preserved in this case. With this we can conclude that we see
the same result as for DB pension schemes; the more risk averse the pension participant is, the
lower the maximum deviation.

8.3 How robust is the new definition for pension result in DC
schemes?

Several sensitivity analyses have been done in order to test the proposed new definition for the
pension result in DC schemes. The influence of the development of the premium payments over
the accrual period on the pension result has been analyzed as well as the influence of a constant
life cycle, a fixed decrease and an extension of the financial market model.

8.3.1 Sensitivity Analysis 1: constant premium

In chapter 4 section 4.11.1 we analyze how the development of the premium payments over the
years influences the pension result. Pension funds use the premium ladder to determine the
percentage of premium during each year in the pension accrual period. We have seen that using
a constant percentage gives a better pension result. The pension result is independent of the
exact height of this constant percentage. The conclusion here is that one could determine the
constant premium percentage that results in a pension capital, after 40 accrual years, which

1Note that we do not take longevity and chances of death into account.
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pays a pension payment of 70% of the average salary. With this we preserve the premium ladder
aim, but the pension result will be higher.

8.3.2 Sensitivity Analysis 2: constant stock exposure

The influence of a constant investment mix versus the used Merton life-cycle is analyzed in
chapter 4 section 4.11.2. Using a life cycle that incorporates the risk attitude of a pension
participant and for which the risk averseness decreases with age always gives a higher pension
result than using a constant mix which does not take the age of the pension participant into
account. When a life cycle is used in DC pension schemes the optimal stock expose decreases
because of the decrease of the human capital. The conclusion here is that a use of life-cycle is
always necessary to achieve a better pension result.

8.3.3 Sensitivity Analysis 3: fixed decrease

The influence of using a fixed decrease, when determining the pension payments, on the pension
result is analyzed in chapter 4 section 4.11.3. We have seen that the pension result is similar
when we apply a fixed decrease to when we do not apply a fixed decrease. We have also seen
that the maximum deviation is similar and the 5th percentile is similar. We can conclude here
that using a fixed decrease does not have an influence on the pension result. If the pension
participant prefers more capital in the beginning of the retirement period or if ones believe is
that the stock returns will be positive during the retirement benefit period, then a fixed decrease
can be a preferred option.

8.3.4 Sensitivity Analysis 4: different scenario set

The financial market model, the KNW model is extended with a added jump process to the
interest rate and the inflation rate since historical data obviously show a jump diffusion process
which is not present in the original KNW model. We see that adding jumps influences the pension
result. The way in which the pension result changes when jumps are added is highly dependent
on the parameter values of the jumps and the assumption we make about the distribution of
the jump size. We see that Bimodal jump sizes are conceptually more realistic than Gaussian
jumps. We also see that a Bimodal jump size assumption, in the case of the interest rate process,
has a more significant impact on the pension result. A Bimodal jump size assumption in the
inflation rate has less influence on the pension result than a Gaussian jump size assumption in
the inflation rate, but the influence is still significant.

8.3.5 Calibration KNW

We see that the jump sizes, which in the multinomial maximum likelihood estimation where
recognized as jumps and which were significantly higher than the diffusion volatility, are very
common moves in the KNW model. We can therefore suspect that the diffusion volatility in the
KNW model is too high. This can be a result of the fact that the KNW model is estimated based
on historical data. The historical data seem to be a jump diffusion model while the KNW model
uses a diffusion only model. Therefore the volatility in the KNW model has to compensate
for the rare big jumps in the historical data, which may cause a volatility which is too high
to measure the impact of jumps estimated according to historical data. Lowering the KNW
volatility and adding jumps will give a more realistic interest rate behavior. We have estimated
the variables of the jump intensity and the jump size apart, without incorporating the rest of
the KNW model. A better analysis could be given if the KNW model as a whole were calibrated
with the jumps included.
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8.3.6 Jumps in mean reversion factor

Whether a diffusion only or a jump-diffusion process better captures interest rate movements
is an open empirical question[19]. As a consequence the computation of the nominal interest
rate in the KNW model is still a point of discussion. The KNW model uses a mean reverting
process, but if we check the historical data figure 7.1 then we see a different behavior. We can
see that the mean reversion is obviously present, but we see that the long time mean shows
jumps. So An another extension of the KNW model, with a clear motivation based on real life
date, would be to not implement the jump process in the bond price as done in this research, but
to implement the jump process in the mean of the nominal interest rate. This is an interesting
topic for further research.

8.4 Goal of the feasibility test

An important part of the feasibility test is the calculation of pension result, which has the aim
to measure the maintenance of purchasing power. We can, however, change the way in which we
qualify pension payments. We could also look at the real replacement ratio. This is a measure
which is conceptually easier to understand. The real replacement ratio gives more information
about the height of pension payment and it also takes inflation into account. We see that for a
pension payment where the maintenance of purchasing power is very high the pension payments
can still be low. A high real replacement ratio indicates high pension payments and a correction
for inflation. But since the feasibility test does not aim to be dependent on the amount of
premium, the real replacement ratio does not fit so well in the feasibility test framework. The
Dutch pension law does not act on the agreements between the employer and the employees
about the amount of premium and the height of the salary. This is the reason why the existing
definition of the pension result does not measure the actual height of the pension payments and
why the pension result is chosen as a measure in the feasibility test to inform about the quality
of pensions. The real replacement ratio does not have a direct link with the pension result in
the feasibility test but it can be used for communicational purposes about the actual hight of
the pension payments and it can be used to determine the height of the premium payments.

8.5 Can we design the feasibility test in a general way such that
it applies to all types of pension schemes?

The improvement for the pension result in DC pension schemes that we have suggested in this
research is chosen in such a way that the calculation of pension result serves the same goal as the
calculation of pension result in DB schemes. We also choose the same set up for the definition
of pension result with a similar norm in the denominator as for DB schemes but the numerator
differs conceptually since it are two different pension schemes. In this way we stay close tot the
current set up of the feasibility test and we adapted the test such that it can be applied to all
types of pension schemes.
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Chapter 9

Appendix 1: Parameters, details and
background knowledge

9.1 Derivation of the risk aversion

9.1.1 Utility theory

In order to define the life cycle for investment strategy the level of risk averseness is used. In
order to define the level of risk aversion we need some theory about utility functions. Utility is a
measure of preference over some set of goods and a utility function is a function that quantifies
the utility. The expected utility is measure of preference over some set of choices with uncertain
outcomes. To define this in more detail we asses this uncertain outcomes by obtaining lotteries.
A lottery is characterized by an ordered set of probabilities p = {p1, ..., pn} where

∑n
i=1 pi = 1

with pi ≥ 0. Let �,≺,�,� and ∼ denote preference and indifferent relationships.

• If an individual prefers lottery P ∗ to P this is denoted by P ∗ � P or P ≺ P ∗.

• When an individual is indifferent between two lotteries this is denoted as P ∗ ∼ P .

• If an individual prefers lottery P ∗ to P or is indifferent between P ∗ and P this is written
as P ∗ � P or P � P ∗.

Utility axioms:

Theorem 9.1. Axioms

1. Completeness,
for any two lotteries P and P ∗ either P ∗ � P , P ∗ ≺ P or P ∗ ∼ P .

2. Transitivity,
if P ∗∗ � P ∗ and P ∗ � P ⇒ P ∗∗ � P .

3. Continuity,
if P ∗∗ � P ∗ � P ⇒ ∃ λ ∈ [0, 1] such that P ∗ ∼ λP ∗∗ + (1 − λ)P where λP ∗∗ + (1 − λ)P
denotes a compound lottery. With probability λ one receives lottery P ∗∗ and with probability
(1− λ) one receives lottery P .

4. Independence,
for any two lotteries P ∗ and P it holds that P ∗ � P ⇔ ∀λ ∈ (0, 1] and ∀P ∗∗ it holds that:

λP ∗ + (1− λ)P ∗∗ � λP + (1− λ)P ∗∗
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moreover for any two lotteries P and P+ it holds that P ∼ P+ ⇔ ∀λ ∈ (0, 1] and ∀P ∗∗ it
holds that:

λP + (1− λ)P ∗∗ ∼ λP+ + (1− λ)P ∗∗.

5. Dominance,
let P 1 be the compounded lottery λ1P

∗+ (1−λ1)P+ and let P 2 be the compounded lottery
λ2P

∗ + (1− λ2)P+. If P ∗ � P+ ⇒ P1 � P2 ⇔ λ1 > λ2.

9.1.2 Deriving expected utility

As mentioned before, the expected utility is measure of preference over some set of choices
with uncertain outcomes. To display this uncertainty we define lottery ei = {p1, ..., pn} =
{0, 0, ..., 1, ..., 0, 0} with pi = 1, pj = 0 ∀j 6= i and with the payoff set: {x1, ..., xn}. We observe
outcome xi with probability 1 and outcome xj ∀j 6= i with probability 0. Without loss of
generality we assume that the outcomes are ordered such that en ≥ en−1 ≥ ... ≥ e1. This follows
from the completeness axiom for this case of n elementary lotteries. From the continuous axiom
we can derive that ∀ ei ∃ Ui in [0, 1] such that:

ei ∼ Uien + (1− Ui)e1 (9.1)

so for i = 1 ⇒ U1 = 0 and for i = n ⇒ Un = 1. A given arbitrary lottery can be viewed as a
compound lottery over the n elementary lotteries where elementary lottery ei is obtained with
probability pi.

p ∼ p1e1 + ...+ pnen

. By the independence axiom and by equation (9.1) the individual is indifferent between lottery
p and the following lottery:

p1e1 + ...+ pnen ∼ p1e1 + ...+ pi−1ei−1 + pi[Uien + (1− Ui)e1] + pi+1ei+1 + ...+ pnen.

Repeating this substitution gives us:

p1e1 + ...+ pnen ∼

(
n∑
i=1

piUi

)
en +

(
1−

n∑
i=1

piUi

)
e1.

Now we set Λ =
∑n

i=1 piUi then

p ∼ Λen + (1− Λ)e1.

Similarly we can show that any other arbitrary lottery

p∗ = {p∗1, ..., p∗n} ∼ Λ∗en + (1− Λ∗)e1

where Λ∗ =
∑n

i=1 p
∗
iUi. We know from the dominance axiom that:

p∗ > p⇔ Λ∗ > Λ⇒
n∑
i=1

p∗iUi >
n∑
i=1

piUi
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9.1.3 Merton’s coefficient of risk aversion

Expected utility is not unique under linear transformation. This is why in the following part
of this chapter we will derive a different measure to display the extent of risk averseness. The
intuition for why expected utility is unique up to a linear transformation comes from equation
(9.1). Here we express elementary lottery i in term of the least and the most preferred elemen-
tary lottery. However other bases for ranking a given lottery are possible.

Risk averse individuals reject every form of risk, even fair risk. We now introduce a different
measure for the level of risk averseness, the risk premium ρu(x̃), using the expected utility. This
measure is instead of simply the expected utility, unique under nonlinear transformations.

Definition 9.2. The risk premium ρu(x̃) of a lottery in Merton’s model with payoff x̃ for an
agent characterized by a utility function u is the maximum amount of money which the agent
is willing to pay to receive instead of x̃ its expected value with certainty: ρu(x̃) is such that
u(E[x̃]− ρu(x̃)) = U(x̃)

Merton’s risk premium is the amount that an individual is willing to pay to avoid risk. Let
ρu(x̃) denote the risk premium of an individual for the lottery with payoff ε̃:

U(W − ρu(x̃)) = E[u(W + ε̃)] < u(E[W + ε̃]) = u(W + 0) = u(W ) (9.2)

Here W − ρu(x̃) is the certainty equivalent associated with ε̃. We see that for concave utility
Jensens inequality implies that ρu(x̃) > 0 when ε̃ is fair, i.e. the individual would accept wealth
lower than his expected wealth to avoid the lottery. For small ε̃ we can take the Taylor expansion
of equation (9.2) around ε̃ = 0 and ρu(x̃) = 0. Expanding the left hand side about ρu(x̃) = 0
gives:

U(W − ρu(x̃)) = E[u(W − ρu(x̃))]

≈ u(W )− ρu(x̃)u′(W )

and the expansion of the right hand side about ε̃ = 0 gives:

U(x̃) = E[u(W + ε̃)]

≈ E[u(W ) + ε̃u′(W ) +
1

2
ε̃2u′′(W )]

= u(W ) + 0 +
1

2
ε̃2u′′(W ) (9.3)

with σ2 = E[ε̃2] the variance of the lottery. Setting the result of (9.2) and (9.3) equal we get:

π = −1

2
σ2u

′′(W )

u′(W )
=

1

2
σ2R(W ) (9.4)

Where R(W ) is the Pratt-Arrow measure of absolute risk aversion in correspondence of the
wealth W . Absolute risk aversion is the rate of decay for marginal utility u′(W ). More particu-
larly, absolute risk aversion measures the rate at which marginal utility decreases when wealth
is increased by one unit of the used currency. This means that absolute risk aversion is currency
dependent. It is often preferred to use a unit-free measurements of sensitivity. To this end,
we define the index of relative risk aversion ρru(x̃) as the rate at which marginal utility u′(W )
decreases. Relative risk gives us a lottery with relative payoff W (1 + ε̃). We get the following
relative risk aversion coefficient:

ρru(x̃) =
du′(W )

dW
· W

u′(W )

=
Wu′′(W )

u′(W )
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9.1.4 Utility for pension accrual

Describing a preference relation in the context of individual wealth is founded by Merton [12].
In this model the constant relative risk aversion (CRRA) is used as a measure of risk aversion to
represent the preference of individuals for the utility function. Intuitively an individual would
get less risk averse if his wealth Wt grows. This means that Merton’s risk premium ρu for utility

function u, which is proportional to the term U ′′(Wt)
U ′(Wt)

, decreases when Wt increases. Here U is the
expected utility function of the pension participant. So in order to describe a natural attitude
towards risk exposure we would want to obtain a function which is inversely proportional to the
wealth Wt. We also need a coefficient to determine to which extend the risk aversion gets less
as Wt grows which will be defined as γ. The function of the attitude towards risk exposure is
defined in such a way that if γ grows then our risk aversion is higher compared to capital Wt.
We get:

U ′′(Wt)

U ′(Wt)
=
−1
1
γWt

.

We can solve this differential equation in the following way:

U ′′(Wt)

U ′(Wt)
=

−1
1
γWt

−U ′′(Wt) =
U ′(Wt)

1
γWt

−1

γ
WtU

′′(Wt) = U ′(Wt)

⇒ U(Wt) =
W 1−γ
t

1− γ
.

When γ = 1 we solve:

−U ′′(Wt) =
U ′(Wt)

Wt

From this it follows that U(Wt) = ln(Wt). The time separable utility function of an individual
featuring CRRA preferences thus equals:

U(Wt) =

{
W 1−γ
t

1−γ if γ 6= 1

ln(Wt) if γ = 1
. (9.5)

This utility function describes the process in which money is favored. Since the function is a
concave utility function for γ > 1 it holds that the less capital you have, the more you favor.
Whenever people have more capital the favor tends to weaken. If γ < 1 then the utility function
is convex.
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9.2 Definition for convolutions

Definition 9.3. Convolution [26]
Suppose X and Y are two continuous random variables with fX the distribution function of X
and fY the distribution function of Y . Let f(x, y) be the joint distribution function of X and
Y and let Z = X + Y . To find the distribution function of Z we will first find the cumulative
distribution function of Z and then differentiate this. To find the cumulative distribution function
of Z we calculate:

FZ(z) =

∫ ∞
−∞

∫ z−x

−∞
f(x, y)dydx.

In the inner integral we make the change of variables y = v − x to obtain:

FZ(z) =

∫ ∞
−∞

∫ z

−∞
f(x, v − x)dvdx

=

∫ z

−∞

∫ ∞
−∞

f(x, v − x)dvdx.

Differentiating with respect to v, we have, if
∫∞
−∞ f(x, z − x)dx is continuous at z,

fZ(z) =

∫ ∞
−∞

f(x, z − x)dx.

If X and Y are independent, we have:

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x)dx.

This integral is called the convolution of the functions fX and fY .
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9.3 List of parameters

t ∈ [25; 85] time in years
N maturity in years
i ∈ N scenario number
Lt ∈ [25, 85] age of the participant
Xt ∈ R2 unobserved state variable
rt ∈ R nominal interest
πt ∈ R instantaneous expected inflation
Πt ∈ R cumulative inflation
St ∈ R investment return
Pt(N) ∈ R bond price
Λt ∈ R4 prices of risk
φt ∈ R stochastic discount factor
Rt ∈ R nominal interest at time
NRt ∈ R term structure

0Rt ∈ R risk free interest rate
pit ∈ R premium
ωt ∈ (0, 1) the life cycle
ryit ∈ R indexed salary
W i
t ∈ R pension capital at time

rW i
t ∈ R real pension capital

1W
i
t ∈ R pension capital based on risk free rate

r
1W

i
t ∈ R real pension capital based on risk free rate

2W
i
t ∈ R pension capital based on constant rate

r
2W

i
t ∈ R real pension capital based on constant rate

3W
i
t ∈ R pension capital based on constant rate

r
3W

i
t ∈ R real pension capital based on constant rate

4W
i
t ∈ R pension capital based on non indexed pension entitlements

r
4W

i
t ∈ R real pension capital based on non indexed pension entitlements

5W
i
t ∈ R pension capital based on indexed pension entitlements

r
5W

i
t ∈ R real pension capital based on indexed pension entitlements

Qi ∈ R pension payment

1Q
i
t ∈ R pension payment based on the risk free rate

r
1Q

i
t ∈ R real pension payment based on the risk free rate

2Q
i
t ∈ R pension payment based on a constant rate

r
2Q

i
t ∈ R real pension payment in scenario based on a constant rate

3Q
i
t ∈ R pension payment based on a inflation rate

r
3Q

i
t ∈ R real pension payment based on a inflation rate

4Q
i
t ∈ R pension payment based on a on non indexed pension entitlements

r
4Q

i
t ∈ R real pension payment based on a on non indexed pension entitlements

5Q
i
t ∈ R pension payment based on indexed pension entitlements

r
5Q

i
t ∈ R real pension payment based on indexed pension entitlements

PRit ∈ R pension result based on the risk free rate
rPRit ∈ R real pension result based on the risk free rate

2PR
i
t ∈ R pension result based on a constant rate

r
2PR

i
t ∈ R real pension result based on a constant rate

3PR
i
t ∈ R pension result based on inflation rate

r
3PR

i
t ∈ R real pension result based on inflation rate
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4PR
i
t ∈ R pension result based on non indexed pension entitlements

r
4PR

i
t ∈ R real pension result based on non indexed pension entitlements

5PR
i
t ∈ R pension result based on indexed pension entitlements

r
5PR

i
t ∈ R real pension result based on indexed pension entitlements

rRRit ∈ R real replacement ratio
u ∈ R utility
U ∈ R expected utility
Dt ∈ R dividend
Nt ∈ N Poisson process
λ ∈ N mean Poisson process
Jt ∈ R2 jump i.e. compound Poisson process
Yt ∈ R2 jump size
µY ∈ R2 mean jump size
σY ∈ R2 mean jump size
s time of retirement
T time of death
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9.4 Premium ladder (’Staffels’)

Table 9.1: 4% premium Staffels [10]

Age cohort Percentage of pension base

18-19 3.3%
20-24 3.7%
25-29 4.5%
30-34 5.5%
35-39 6.7%
40-44 8.2%
42-49 10%
50-54 12.2%
55-59 15%
60-64 18.6%
65-67 22.3%
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9.5 Parameter estimation KNW

Table 9.2: Estimation results Parameters KNW[8]

Parameter Estimate Standard deviation

δ0π 1.81 % 2.79 %
δ0π(1) -0.63 % 0.10 %

δ0π(2) 0.14 % 0.24 %

R0 2.40 % 6.06 %
R1(1) -1.48 % 0.22 %

R1(2) 0.53 % 0.56 %

K(1,1) 0.08 0.11

K(2,2) 0.35 0.18

K(2,1) -0.19 0.08

K(1,2) 0 0

σΠ(1) 0.02 % 0.07 %

σΠ(2) -0.01 % 0.06 %

σΠ(3) 0.61 % 0.04 %

σΠ(4) 0 % 0 %

ηS 4.52 % 3.73 %
σS(1) -0.53 % 1.44%

σS(2) -0.76 % 1.54 %

σS(3) -2.11 % 1.51 %

σS(4) 16.59 % 0.96 %

Λ0(1) 0.403 0.333

Λ0(2) 0.039 0.270

Λ0(3) 0 0

Λ0(4) 0 0

Λ1(1,1) 0.149 0.156

Λ1(1,2) -0.381 0.039

Λ1(1,3) 0 0

Λ1(1,4) 0 0

Λ1(2,1) 0.089 0.075

Λ1(2,2) -0.083 0.129

Λ1(2,3) 0 0

Λ1(2,4) 0 0
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Chapter 10

Appendix 2: Additional results on
Portfolio allocation

In the model for pension capital simulation we used the Merton life cycle to determine the
exposure to stocks. The Merton life cycle is, however, optimal in the Merton model but not in
the KNW model. The Merton model assumes that there are only stocks and risk free bonds to
invest in, moreover the prices of risk are constant in the Merton model. Ideally we want to apply
a life cycle which gives an optimal investment policy for both the stock exposure and the bond
exposure. Therefore we will try to derive the optimal life cycle. We want to take into account
the risk preferences of pension participants. We use the same utility function as the Merton
model. So to determine the optimal investment strategy we consider a pension participant with
an isoelastic utility function:

1

1− γ
c1−γ . (10.1)

Optimal investment strategy problems, however, do not allow for analytical solutions in general.
Simple models as the Merton model [12] and the Brennan Xia model [13] do have analytical
solutions. Koijen, Nijman and Werker [4] use numerical techniques to determine the optimal
investment strategy. This is necessary since the dynamic of the evolution of the participants
wealth Wt is endogenously determined. As a result, the solution is recursive and must be solved
using dynamic programming [30]. In this chapter we will explore how to deduce the closest
analytical solution for the KNW model.

We change the approach we used for Merton’s life cycle. Instead of maximizing the wealth
on the pension date, we maximize the flow of pension payments during the retirement period
using the martingale approach [29]. Since we need an investment strategy during the retirement
period as well.

Let cit be the nominal pension payment at time t and in scenario i, Πi
t be the cumulative

inflation rate, W i
t the nominal financial wealth, H i

t the nominal human capital and φit the real
stochastic discount factor, which is the nominal stochastic discount factor from chapter 3 com-
pensated for inflation. The investor’s optimal portfolio choice problem can be formulated in the
following way:
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maxctE
P
t

[∫ 60

43

1

1− γ

(
cil
Πi
l

)1−γ

dl

]
(10.2)

s.t.
W i
t +H i

t

Πi
t

= EP
t

[∫ 60

43

cil
Πi
l

φil
φit
dl

]
. (10.3)

The constraint comes from the fact that we want the expectation of all our pension payments
together to be equal to the accrued pension capital at time t, so we are maximizing the expected
real pension payments during the whole pension period. We get the following lagrangian:

L = EP
t

[∫ 60

43

1

1− γ

(
cil
Πi
l

)1−γ

dl

]
− λ

(
EP
t

[∫ 60

43

cil
Πi
l

φil
φit
dl

]
− W i

t +H i
t

Πi
t

)
.

All the expectations in the next sections will be with respect to the physical measure P. We will
leave out the notation of it for simplicity. We will also leave out the bold notation for matrices.

10.1 Optimal benefit

Taking the derivative with respect to
cil
Πil
∀l, i we get:

∂L

∂
cil
Πil

=

∫ 60

43

(
cil
Πi
l

)−γ
dl − λ

∫ 60

43

φil
φit
dl

we set ∂L

∂
ci
l

Πi
l

= 0 ∀t such that:

W i
t +H i

t

Πi
t

= Et

[∫ 60

43

cil
Πi
l

φil
φit
dl

]
.

We get:

∫ 60

43

(
cil
Πi
l

)−γ
dl = λ

∫ 60

43

φil
φit
dl.

This results in:

∫ 60

43

(
cil
Πi
l

)−γ
dl = λ

∫ 60

43

φil
φit
dl⇒(

cil
Πi
l

)−γ
= λ

φil
φit
⇒

cil
Πi
l

=

(
λ
φil
φit

)− 1
γ

⇒ (10.4)

cil =

(
λ
φil
φit

)− 1
γ

Πi
l. (10.5)
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We substitute (5.4) into (5.2) such and solve for λ

W i
t +H i

t

Πi
t

= Et

[∫ 60

43

(
λ
φil
φit

)− 1
γ φil
φit
dl

]
⇒

W i
t +H i

t

Πi
t

= λ
− 1
γEt

[∫ 60

43

(
φil
φit

)1− 1
γ

dl

]
⇒

λ
− 1
γ =

W i
t+Hi

t

Πit

Et

[∫ 60
43

(
φil
φit

)1− 1
γ
dl

] ⇒

λ =

(
W i
t+Hi

t

Πit

)−γ
(
Et

[∫ 60
43

(
φil
φit

)1− 1
γ
dl

])−γ . (10.6)

Now we fill in λ (5.6) in the optimal pension benefit (5.5):

cil =

(
W i
t+Hi

t

Πit

)
Et

[∫ 60
l=43

(
φil
φit

)1− 1
γ
dl

] (φil
φit

)− 1
γ

Πi
l.

10.2 Portfolio return

We have the following static variational problem stated in in equation (5.2) and (5.3). Let
W i
t+Hi

t

Πit
= wti , so wti is the real total wealth in scenario i and at time t. From there we can deduce

for the real return of the total wealth i.e. (dwti).

W i
t +H i

t

Πi
t

= Et

[∫ 60

43

cil
Πi
l

φil
φit
dl

]
⇒

wt = Et

[∫ 60

43

cil
Πi
l

φil
φit
dl

]
⇒

d log
(
wit
)

= d log

(
c∗tEt

[∫ 60

43

cil
c∗tΠ

i
l

φil
φit
dl

]′)
⇒

d log
(
wit
)

= d log(c∗t ) + d log
(
Ki
t

)
(10.7)

To simplify writing we define the following parameters:

wit =
W i
t +H i

t

Πi
t

c∗0 =
wi0

Et

[∫ 60
43

(
φil
φit

)1− 1
γ
dl

]
c∗t =

wit

Et

[∫ 60
43

(
φil
φit

)1− 1
γ
dl

] (φit
φit

)−1
γ

(10.8)

Ki
t = Et

[∫ 60

43

cil
c∗tΠ

i
l

φil
φit
dl

]
. (10.9)
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Note that c∗0 and c∗t are not actual benefits but convenient parameters we will use later.
From equation (5.8) it follows that:

d log(c∗t ) =
−1

γ
d log

(
φit
)
. (10.10)

For Ki
t we find:

Ki
t =

1

c∗t
Et

[∫ 60

43

cil
Πi
l

φil
φit
dl

]

=
1

c∗t

∫ 60

43
Et

 wit

Et

[∫ 60
43

(
φil
φit

)1− 1
γ
dl

] (φil
φit

)−1
γ φil
φit

 dl

=

∫ 60

43
Et

[(
φil
φit

)1− 1
γ

]
dl. (10.11)

10.3 Expectation of the pricing kernel

We are looking for the value of Et

[(
φil
φit

)1− 1
γ

]
to determine the value d log

(
Ki
t

)
in the portfolio

return. Recall that Xt is an Ornstein Uhlenbeck process, which has the following solution:

Xt = e−(t−s)KXs +

∫ t

s
e−(t−u)KΣ′xdZ(u).

For the prices of risk we then find that:

Λt = Λ0 + Λ1e
−(t−s)KXs + Λ1

∫ t

s
e−(t−u)KΣ′xdZ(u).

Also recall that K ∈ R2×2,

Σ′X =

[
1 0 0 0
0 1 0 0

]
dZ, λ0 ∈ R4×1 and Λ1 ∈ R4×2. We can write the pricing kernel as:

φl
φt

= exp

{∫ l

t

(
−ru −

1

2
Λ′uρΛu

)
du+

∫ l

t
Λ′udZ(u)

}
since the Brownian motions are independent ρ = I. We know that

(
φil
φit

)
has a log normal

distribution. The mean of
(
φil
φit

)1− 1
γ

is therefore equal to e

(
1− 1

γ

)
µ+
(

1− 1
γ

)2
1
2
σ2

with µ and σ2

respectively the mean and variance of:(∫ l

t

(
−ru −

1

2
Λ′uΛu

)
du+

∫ l

t
Λ′udZ(u)

)
.

So we are looking for:

µ = Et

[∫ l

t

(
−R0

u −
1

2
Λ′uΛu

)
du+

∫ l

t
Λ′udZ(u)

]
σ2 = var

(∫ l

t

(
−R0

u −
1

2
Λ′uΛu

)
du+

∫ l

t
Λ′udZ(u)

)
.
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In order to solve Et

[(
φil
φit

)1− 1
γ

]
we will make some assumption to simplify the problem. We

deduce an analytical solution of a simplified version of the KNW model following the Brennan
and Xia model[13]. The Brennan and Xia model differs from KNW assuming that prices of risk
are constant. Here we will not take the prices of risk completely constant but we discretize the
prices of risk. So instead of using the stochastic differential equation of Λt we assume that Λt is
a constant for each t such that the derivation is still manageable. To solve our expectation we
will set: Λt = Λct. We get the following:

Et

[(
φil
φit

)− 1
γ

]
= Et

[(
exp

{∫ l

t

(
−ru −

1

2
Λ′ctΛct

)
du+

∫ l

t
Λ′ctdZ(u)

})(
1− −1

γ

)]
.

So we are looking for:

µ = Et

[∫ l

t

(
−ru −

1

2
Λ′ctΛct

)
du+

∫ l

t
Λ′ctdZ(u)

]
= −Et

[∫ l

t
rudu

]
− 1

2
Et

[∫ l

t
Λ′ctΛctdu

]
+ Et

[∫ l

t
Λ′ctdZ(u)

]
= −

∫ l

t
Et [ru] du− 1

2

∫ l

t
Et
[
Λ′ctΛct

]
du+ Et

[∫ l

t
Λ′ctdZ(u)

]
.

We compute the three expectations separately:
1.

−
∫ l

t
Et [ru] du = −

∫ l

t
Et
[
δ0R + δ′1RXu

]
du

= −
∫ l

t
Et [δ0R] + Et

[
δ′1Re

−(u−t)KXt

]
+Et

[
δ′1R

∫ u

t
e−(u−v)KΣ′xdZ(v)

]
du

= −
∫ l

t
δ0Rdu+

∫ l

t
δ′1Re

−(u−t)KXtdu

= −δ0R(l − t) +

∫ l

t
δ′1Re

−uKetKXtdu

= −δ0R(l − t) +

∫ l

t
δ′1R

∞∑
m=0

1

m!
(−uk)metKXtdu

= −δ0R(l − t)−

[
δ′1RK

−1
∞∑
m=0

(
1

m!
(−uk)m − I

)
etKXt

]l
t

= −δ0R(l − t)− δ′1RK−1
(
e−lK − e−tK

)
etKXt.

2.

−1

2

∫ l

t
Et
[
Λ′ctΛct

]
du = −1

2

[
Λ′ctΛctu

]l
t

= −1

2
Λ′ctΛct(l − t).
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3.

Et

[∫ l

t
Λ′ctdZ(u)

]
= 0.

For σ we find:

σ2 = var

(∫ l

t

(
−ru −

1

2
Λ′ctΛct

)
du+

∫ l

t
Λ′ctdZ(u)

)
= var(

∫ l

t
Λ′ctdZ(u))

= E

[(∫ l

t
Λ′ctdZ(u)

)2
]

= E

[∫ l

t
Λ′ctΛctdu

]
=

∫ l

t
Λ′ctΛctdu

= Λ′ctΛct(l − t).

So:

µ = −δ0R(l − t)− δ′1RK−1
(
e−tK − e−lK

)
etKXt −

1

2
Λ′ctΛct(l − t) (10.12)

σ2 = Λ′ctΛct(l − t). (10.13)

10.4 Optimal portfolio allocation

We have seen that the log return of the portfolio dwit is defined as follows:

d log
(
wit
)

= d log(c∗t ) + d log
(
Ki
t

)
.

With the conversion factor Ki
t :

Ki
t =

∫ 60

43
Et

[(
φil
φit

)1− 1
γ

]
dl

=

∫ 60

43
e

(
1− 1

γ

)
µ+
(

1− 1
γ

)2
1
2
σ2

dl

=

∫ 60

43
ki(l, t)dl

with

dKi
t =

∂Ki
t

∂t
dt+

∂Ki
t

∂Zt
dZt +

1

2

∂2Ki
t

∂Z2
t

dt

such that for d log
(
Ki
t

)
we get:

d log
(
Ki
t

)
=

1

Ki
t

dKi
t −

1

2

1

(Ki
t)

2
(dKi

t)
2

=
1

Ki
t

(
∂Ki

t

∂t
dt+

∂Ki
t

∂Zt
dZt +

1

2

∂2Ki
t

∂Z2
t

dt

)
− 1

2

1

(Ki
t)

2
(dKi

t)
2.
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We only focus on the dZt terms.

1

Ki
t

∂Ki
t

∂Zt
dZt

=
1

Ki
t

∂
∫ 60

43 k
i(l, t)dl

∂Zt
dZt.

Now we use the Leibniz integration rule. We can use this since ki(l, t) = e
(1− 1

γ
)µ+(1− 1

γ
)2 1

2
σ2

is
continuous differentiable.

=
1

Ki
t

∫ 60
43 ∂k

i(l, t)dl

∂Zt
dZt

=
1

Ki
t

∫ 60

43

(
−(1− 1

γ
)δ′1RK

−1
(
e−lK − e−tK

)
etKΣX

)
·e
(

1− 1
γ

)
µ+
(

1− 1
γ

)2
1
2
σ2

dldZt

=

∫ 60

43

(
−(1− 1

γ )δ′1RK
−1
(
e−lK − e−tK

)
etKΣX

)
e

(
1− 1

γ

)
µ+
(

1− 1
γ

)2
1
2
σ2

∫ 60
43 e

(
1− 1

γ

)
µ+
(

1− 1
γ

)2
1
2
σ2

dl

dldZt.

For the determination of the optimal portfolio allocation we define the duration of the conversion
factor Dkt as follows:

Dkit =

∫ 60

43

(
−(1− 1

γ )δ′1RK
−1
(
e−lK − e−tK

)
etKΣX

)
e

(
1− 1

γ

)
µ+
(

1− 1
γ

)2
1
2
σ2

∫ 60
43 e

(
1− 1

γ

)
µ+
(

1− 1
γ

)2
1
2
σ2

dl

dl (10.14)

we then get,

d log
(
wit
)

= d log(c∗t ) + d log
(
Ki
t

)
= (...)dt− 1

γ
d log

(
φit
)

+DkitdZt

= (...)dt− 1

γ
(−Rtdt− Λ′ctdZt) +DkitdZt

= (...)dt+
1

γ
Λ′ctdZt +DkitdZt.

Note that Dkit only influences the uncertainty about the real interest rate and the instantaneous
expected inflation.
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10.4.1 Stochastic change in the wealth process

For the stochastic change in the wealth process of equation (3.8) and (3.9), we find using the
Ito-Doeblin formula:

d log

(
W i
t +H i

t

Πi
t

)
= (1− ωt)dRit + ωtdS

i
t − dΠi

t

= (1− ωt)R′1(−KXtdt+ Σ′XdZt) + ωt((Rt + ηs)dt+ σ′sdZt)

−πtdt− σ′ΠdZt
=

(
(1− ωt)R′1(−KXt) + ωt((Rt + ηs)− πt

)
dt

+
(
(1− ωt)Σ′X + ωtσ

′
s − σ′Π

)
dZt.

For the change in the log wealth we have to take into account the change in cash, the one year
maturity bond, the 5 year maturity bond, stock return, inflation rate and the payed premium.
We can see premium as a bond that pays a fixed dividend over 43 years. The present value of
the premium is:

PVpremium =

∫ 43

0
pit · P (N)dN ⇒

dPVpremium =

∫ 43

0
pit · dP (N)dN

where P (N) is the bond price for maturity N . It follows that:

dPVpremium
PVpremium

=

∫ 43
0 pit ((Rt(0) +B(N)λt) dt+B(N)ΣXdZt) dN∫ 43

0 pit · P (N)dN
(10.15)

so it follows that:

d log(PVpremium) =

∫ 43
0 pit ((Rt(0) +B(N)λt) dt+B(N)ΣXdZt) dN∫ 43

0 pit · P (N)dN

We can rewrite the equation d ln
(
W i
t+Hi

t

Πit

)
= (1− ωt)dRit + ωtdS

i
t − dΠi

t + dln(PVpremium) since

the interest rate term Rit consist of three factors, the short rate 0Rit, a one year maturity bond
1Rit and a five year maturity bond 5Rit. Every factor of the term Rit gets an separate weight. For
the one year maturity bond we assume that we invest a weight of ω1, for the five year maturity
bond we assume that we invest a weight of ω2. The weight invested in stocks will be ω3. We get
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d ln

(
W i
t +H i

t

Πi
t

)
=



1− ω1 − ω2 − ω3

ω1

ω2

ω3

1
1



′ 

d0Rit
d1Rit
d5Rit
dSit
−dΠi

t

d log(PVpremium)



=



1− ω1 − ω2 − ω3

ω1

ω2

ω3

1
1



′ 

R′1(−KXtdt+ Σ′XdZt)
(rt +B(1)ΣxΛt) dt+B(1)′Σ′XdZt
(rt +B(5)ΣxΛt) dt+B(5)′Σ′XdZt

(Rt + ηs)dt+ σ′sdZt
−πtdt− σ′ΠdZt
d log(PVpremium)



= (...)dt+



1− ω1 − ω2 − ω3

ω1

ω2

ω3

1
1



′


R′1Σ′XdZt
B(1)′ΣXdZt
B(5)′ΣXdZt

σ′sdZt
σ′ΠdZt∫ 43

0 B(N)′ΣXdN∫ 43
0 P (N)dN


⇒

We get the following system of equations:

1. (
(1− ω1 − ω2 − ω3)R

(1)
1 + ω1B(1)(1) + ω2B(5)(1) + ω3σ

(1)
s + σ

(1)
Π

)
dZ

(1)
t

−

(∫ 43
0 B(N)′ΣXdN∫ 43

0 P (N)dN

)(1)

dZ
(1)
t =

(
1

γ
Λ′ct +Dkit

)(1)

dZ
(1)
t

2. (
(1− ω1 − ω2 − ω3)R

(2)
1 + ω1B(1)(2) + ω2B(5)(2) + ω3σ

(2)
s + σ

(2)
Π

)
dZ

(2)
t

−

(∫ 43
0 B(N)′ΣXdN∫ 43

0 P (N)dN

)(2)

dZ
(2)
t =

(
1

γ
Λ′ct +Dkit

)(2)

dZ
(2)
t

3. (
ω3σ

(3)
s + σ

(3)
Π

)
dZ

(3)
t =

1

γ
Λ

(3)
ct dZ

(3)
t

4.

ω3σ
(4)
s dZ

(4)
t =

1

γ
Λ

(4)
ct dZ

(4)
t .

This does not give an unique analytical solution since there is no other asset apart from Sit
that influences the third shock dZ3

t . A solution would be to add the restriction Λ3
ct = 0 and

σ3
s = − 1

ω3
σ3

Π.
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We can then rewrite our problem in the following form:

ω′HdZt =

(
1

γ
Λ′ct +Dkit

)
dZt

 ω1

ω2

ω3

′
 B(1)(1) −R(1)

1 B(1)(2) −R(2)
1 0

B(5)(1) −R(1)
1 B(5)(2) −R(2)

1 0

σ
(1)
s −R(1)

1 σ
(2)
s −R(2)

1 σ
(4)
s


 dZ

(1)
t

dZ
(2)
t

dZ
(4)
t

 =



(
1
γΛ′ct +Dkit

)(1)
− σ(1)

Π − 0R
(1)
1 −

(∫ 43
0 B(N)′ΣXdN∫ 43

0 P (N)dN

)(1)

(
1
γΛ′ct +Dkit

)(2)
− σ(2)

Π − 0R
(2)
1 −

(∫ 43
0 B(N)′ΣXdN∫ 43

0 P (N)dN

)(2)

(
1
γΛ′ct

)(4)


 dZ

(1)
t

dZ
(2)
t

dZ
(4)
t

 .

It then follows that we also have the restriction Λ4
ct = −σ3

sσ
4
sγ

σ3
Π

. We call ω3 the speculative

demand for stocks. Intuitively, it is the quotient of how well risk taking in stocks is rewarded

i.e. the prices of risk Λ
(4)
ct divided by how risky stocks really are (how volatile they are, which is

incorporated in the parameter σ
(4)
S ). This quotient is multiplied with the attitude towards risk

which is symbolized by γ; the parameter for risk aversion. The higher γ the more risk averse we
are and the lower ω3 is, resulting in a low investment rate in stocks.

ω3 =
Λ

(4)
ct

γσ
(4)
S

ω2 contains a speculative demand for a one year maturity bond and a hedging demand. The
hedging demand is equivalent with the duration. The same holds for ω1.
When we determine the optimal investment strategy using a utility function we take into account
the risk preferences of a pension participant. If we would only maximize the sum of the expected
pension payouts and not apply a utility function we would get a high 50th percentile in the
pension result but the left tail, i.e. the 5th percentile can be low due to risky investments.
In this chapter we used the same utility function as in the Merton model, see equation (5.1).
The Merton model, however, assumes that there are only stocks and risk-free bonds to invest
in. There is no interest rate risk in the Merton model. In the optimal life cycle that we derived

in this chapter we do take interest rate risk into account. Let u(c) =
∫ T
s

1
1−γ

(
cil
Πil

)1−γ
dl and let

c∗ be our optimal pension payout. It holds that:

Et[u(c∗)] ≥ Et[u(c)]

but on the other hand, since we only maximized the life cycle of the pension payments, we
cannot say whether the optimal c∗ is expected to be the maximum flow of pension payments in
general:

E

[∫ T

s

c∗l
Πi
l

dl

]
≶ E

[∫ T

s

cl
Πi
l

dl

]
With this we can see that the real pension payouts are not maximized and therefor the pension
result will not be optimal using the derived life cycle in this section. So in general we expect to
find a lower 50th percentile, i.e. a lower pension result. Since we avoid more risk. On the other
hand we also expect to find a lower maximum deviation, so a lower difference between the 50th
and the 5th percentile since we governed all risky assets in the optimal life cycle.
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