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Abstract—In this paper, the full calibration chain of FMCW
radar with simultaneous transmission of two orthogonally po-
larized orthogonal waveforms is considered. Specifically for this
type of polarimetric radar, compensation of signals’ biases and
equalization of the amplification gains of the parallel polari-
metric channels in the receiver are jointly performed using the
noise measurements. The calibrations of the absolute complex
gains of the transmitter’s polarimetric channels together with
complex antenna gains are done using the model-based fit of the
measurements of the rotating dihedral reflector. Phase relations
between polarimetric channels are treated in the Doppler do-
main using the unfolded velocity of the target. The performed
calibration results in high-accurate measurements of the radar
targets’ polarimetric scattering matrix (PSM) in the Doppler
domain. All the proposed calibration steps are illustrated using
real radar data.

Index Terms—radar polarimetry, polarimetric calibration,
polarization scattering matrix measurements

I. INTRODUCTION

Instant polarimetric properties of any object as a subject of
radar observations can be fully described using the concept
of Polarization Scattering Matrix (PSM), which relates the
polarization state of the incident electromagnetic signal with
the polarization state of the scattered signal in a specific
direction. Polarimetric radars with the capability to measure
the PSM have a long history and many applications. In the
last one and a half decades, the novel concept of simultaneous
radar polarimetry using FMCW signals with dual orthogonal-
ity (in polarimetric and waveform domains) [3], [5] has been
implemented and intensively studied experimentally using
the S-band FMCW polarimetric Doppler PARSAX radar [4].
Besides other advantages, the simultaneous polarimetry using
signals with dual orthogonality at least two times improves
the ambiguity in the Doppler frequency estimation.

The analysis of experimental data shows that multi-channel
parallel measurements of the polarimetric signal, which are
specific for this type of polarimetric radar, are strongly
influenced by the non-ideality and non-equality of the radar
signal transmission and reception channels. In this paper, we
present the full calibration chain of the measured polarimetric
signals processing that results in high-accurate measurements
of the radar targets’ PSM in the Doppler domain and illustrate
the proposed calibration steps using real radar data.

The paper is organized as follows. Chapter II presents
the mathematical model and processing algorithms of the
polarimetric measurements using sensing signals with dual
(polarization and waveform) orthogonality. The noise-based
equalization of the signals in polarimetric channels with non-
equal biases and amplifications is proposed and illustrated in
Chapter III. Chapter IV describes the calibrations of the abso-
lute complex gains of the transmitter’s polarimetric channels
together with complex antenna gains using the measurements
of the rotating dihedral reflector. The proposed model-based
fit of the measured polarimetric data takes into account
the non-ideality of the radar and dihedral reflector’s spatial
arrangement. Chapter V describes the Doppler-domain-based
compensation of the residual phase difference between the
PSM columns that are measured using quasi-simultaneous
polarimetric FMCW waveforms [6] and illustrates the results
using the statistics of moving cars polarimetric observations.
The final conclusions and recommendations for the proposed
calibration chain usage are presented in Chapter VI.

II. MODEL OF THE FMCW POLARIMETRIC SENSING
WAVEFORMS WITH DUAL ORTHOGONALITY AND THEIR

PROCESSING ALGORITHMS

Instant polarimetric properties of any object as a subject of
radar observations can be fully described using the concept
of Polarization Scattering Matrix (PSM), which relates the
polarization state of the incident electromagnetic signal with
the polarization state of the scattered signal in a specific
direction (see e.g., [1], [2]):

ĖR(t) = Ṡ · ĖT (t) =
∥∥∥∥ S11e

jψ11 S12e
jψ12

S21e
jψ21 S22e

jψ22

∥∥∥∥ · ĖT (t) (1)

where ĖT/R(t) =
∥∥∥ĖT/R

1 (t), Ė
T/R
2 (t)

∥∥∥T are complex polar-

ization vectors of the transmitted and received signals, Ṡ - the
PSM of an observed object. It is necessary to mention that
all these polarization vectors and PSM have to be written at
some but the same polarization basis (PB) {1, 2}. In general,
the notation (1) can be used not only for the description of
the polarization state of the transmit and received signals
with normalized vectors Ė but for the full description of
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signals propagation within the radar channel, including signal
amplitudes and phases, and the noise instant values.

In reality, the polarization state of the received radar signal
is not defined as easily as presented in (1). The realistic
model of the polarization vector of the transmitted wave has to
include all non-ideality and non-equality of the transmission
channels for signals with both orthogonal polarizations, non-
equality of the transmit antenna gains on these polarizations,
and the possible presence of the non-zero cross-polarization
coupling. As a result, the measured signals at the output ports
of the polarimetric received antenna can be written as

ĖR(t) =
A

r2
e−2jkr · Ẋ · ĖT + ṅ (2)

where the measured PSM Ẋ of the whole radar channel can
be defined as

Ẋ = Ṙ · ṘA · Ṗ− ·
(
Ṡ0 + Ċ

)
· Ṗ+ · ṪA · Ṫ (3)

and its general amplitude is defined using the standard radar
equation

A =
(
2η0PtGtGrλ

2/(4π)
2
)1/2

(4)

Here Ṡ0 is the actual PSM of the radar object of interest
(target), Ċ is the PSM of clutter, Ṫ is the (2 × 2) diagonal
distortion matrix of the transmitter, ṪA is the distortion ma-
trix of the dual-polarized transmit antenna, ṘA is the similar
distortion matrix of the dual-polarized receiving antenna, Ṙ -
is the diagonal distortion matrix of the receiving antenna’s
output ports and input circuits of the receiver. ĖT is the
idealized polarization state vector of the transmitted signal.
Ṗ+ and Ṗ− are the distortion matrices of the propagation
channel in both directions: from the radar to the target and
back, respectively, ĖT is the received polarimetric signal that
has to be used to characterize the target with the ”true”
PSM Ṡ0. This equation also takes into account the initial
amplitude of the transmitted wave (using the constant A that
is defined by the standard radar equation), the dependencies of
received signal amplitude and phase from the range r between
radar and observed target, and the presence of the thermal
white Gaussian noise ṅ in every measurement channel. In
this equation, k is the modulus of the propagation vector, Pt
- transmit power, Gt, Gr - gains of the transmit and receive
antennas, λ - radar wavelength, and η0 - intrinsic impedance
of free space.

Using the normalization of every matrix and vector to
one of arbitrarily selected elements (e.g., with indexes 11),
it is possible within this equation to separate the general
scalar relations between total amplitudes/powers/phases and
vector/matrix relations that describe the dependencies be-
tween the polarization-orthogonal components of the received
signals.

As follows from (1), for the measurements of all elements
of the PSM, it is necessary to transmit such waveforms
on orthogonal polarizations that, with signal processing in
the receiver’s channels, their amplitudes and phases can be
correctly and independently estimated. Within this study, we

Fig. 1. The simplified block diagram of the TU Delft PARSAX radar -
polarimetric FMCW radar with dual-orthogonal sensing signals

use the definition of a polarimetric radar as a radar that is
capable of measuring all elements of the PSM using sensing
signals with dual orthogonality - in polarization and waveform
spaces [3] [4], [5]. Such signals can be represented as a sum
of two orthogonal polarization components, which form the
polarization basis of the radar measurements, and which are
modulated with some kind of orthogonal waveforms that can
be separated during the reception with some type of matched
processing.

The simplest for the received signal processing imple-
mentation and, as a result, most widely used in existing
polarimetric radar systems are time-multiplexed polarimetric
waveforms when transmission and reception of the orthogo-
nally polarized components are separated in time. The main
disadvantages of this technique are that the columns of the
PSM are not measured simultaneously, and the full PSM
is measured with two-times reduction of the operational
pulse/sweep/waveform repetition frequency. The first factor
degrades the measurement accuracy for fast-moving/changing
targets. The second is even more critical as it reduces two
times the ambiguity in Doppler velocity estimation.

An alternative approach is formulated in [3] - to transmit
and receive the signals simultaneously with orthogonally-
polarized components that are modulated with orthogonal
waveforms, i.e., waveforms that follow the orthogonality
conditions:

UT
ij =

∫
ĖT
i (t) · ĖT

j
∗
(t) · dt ≡ 0

UR
ij (τ, ωd) =

∫
ĖT
i (t) · ĖR

j
∗
(t− τ, ωd) · dt ∼= 0

(5)

where indexes i, j = 1, 2, i ̸= j relate to the orthogonally-
polarized components, and T,R are related to transmitted and
received signals, respectively. The joint matching processing
of these waveforms gives the possibility to simultaneously
measure all elements of the PSM. Different types of the LFM-
based polarimetric signals for the FMCW radars have been
proposed in [3] [4], [5], [7] and implemented within the TU
Delft PARSAX radar. The block diagram of this radar is
presented in Fig. 1, and the optimal for deramping processing
FMCW waveforms with dual-orthogonality [6] that were used
for measurements within this study are presented in Fig. 2.
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Fig. 2. Dual-orthogonal polarimetric waveform for the quasi-simultaneous
measurements of the PSM elements in an FMCW polarimetric radar

The main specific feature of such polarimetric radar is
the simultaneous measurements of signals at the output of
four parallel polarimetric receiver channels. These signals are
proportional to all elements of measured PSM Ẋ, defined
with equation (3). More specifically, the range- and time-
dependent polarimetric signal at every output of the FMCW
radar deramping receiver’s four parallel polarimetric channels
can be written as a sum of the signal xi,j(r, t), which is
scattered by external objects, with the thermal noise:

yi,j(r, t) = xi,j(r, t) + ni,j(r, t) (6)

where r is the range coordinate after the beat signal range
compression, t is the discrete slow time that is equal to
the integer number of the sweep repetition interval (SRI),
x is the slow-time-dependent range profile of the complex
scattered signals, n is the complex white Gaussian noise with
zero mean and the variance σ2

i,j . Indexes i, j are related to
two transmitted and two received polarization channels (e.g.,
horizontal H and vertical V ), respectively.

As soon as the reception channels are real independent
electronic devices, their characteristics are not ideal or identi-
cal. The final measured signal at the output of every receiver
channel can be represented as

Vi,j(r, t) = ai,j(r) · yi,j(r, t) + bi,j(r) (7)

where ai,j(r) and bi,j(r) are channel-specific amplification
and bias of the output signal, respectively. In general, both
parameters can be functions of the range, and their short-term
temporal dependency is not expected.

The presented model of the polarimetric radar, which
uses signals with dual orthogonality for the simultaneous
measurements of all elements of the PSM, helps to develop
a set of calibration algorithms that will convert the measured
complex range profiles Vi,j(r, t) into the best estimation of
true PSM of target and clutter ˆ̇S0 + ˆ̇C. These data, which
describe the true polarimetric characteristics of the target and
clutter in the best possible way, can be processed further
to solve classical radar’s tasks for target reliable detection,
classification, and identification.

In this paper, we propose to start with the noise-based
polarimetric channels equalization algorithm for the vector
Ẏ(r, t) estimation, which will be presented and illustrated in
Chapter III. After such a noise-based equalization of polari-
metric channels, it is possible to make an external calibration

of the radar. This calibration provides the necessary data for
the estimation of the matrix Ṡ0 + Ċ using signals yi,j(r, t).

As in most standard/usual scenarios, the propagation chan-
nels can be regarded as non-depolarized channels, the matri-
ces Ṗ+ and Ṗ− are diagonal and can be neglected from the
consideration. In most practical cases using the mentioned
above normalizations, the diagonal distortion matrix of the
transmitter Ṫ and the distortion matrix of the dual-polarized
transmit antenna ṪA can be combined into the distortion
matrix of the polarimetric transmitter and denoted as the same
notation ṪA. A similar operation can be done by combining
the distortion matrix of the dual-polarized receiving antenna
ṘA with the diagonal distortion matrix of the receiving
antenna’s output ports and input circuits of the receiver Ṙ.

Finally, the estimation of the true polarization scattering
matrices at the specific radar resolution volume at a distance
r from the sensor will still be affected by thermal noise ˆ̇N
and can be written as

ˆ̇S0 + ˆ̇C+ ˆ̇N =
(
ṘA

)−1

· Ẏ ·
(
ṪA

)−1

(8)

The matrices ṪA and ṘA can be estimated through an
external radar calibration using, for example, the observation
of the rotated dihedral reflector [10], [11]. An example of
such calibration will be given in Chapter IV.

All such corrections, calibration, and equalizations have to
be done within the specific measurement polarization basis,
which is defined by the polarizations of the transmit and
receive antennas. After the estimation of the PSM using (8),
the results can be converted to any suitable polarization basis
for further analysis. In the case of the PARSAX radar, such a
conversion is required due to the specific construction of the
antenna steering system. The linearly-polarized measurement
polarization basis changes its orientation angle in relation to
the elevation angle. Finally, the PSM estimation in standard
polarization basis {H,V } has to be calculated as

ˆ̇S0HV + ˆ̇CHV + ˆ̇NHV =

= QT (α) ·
(
ṘA

)−1

· Ẏ ·
(
ṪA

)−1

·Q (α)
(9)

where Q (α) is the polarization basis rotation matrix for the
angle α that defined by the elevation angle for analyzed
measurements.

III. NOISE-BASED POLARIMETRIC CHANNELS
EQUALIZATION

Usually, it is possible in most FMCW radars to measure
only the noise signals in polarimetric channels using the
capability to blank the transmitters’ power amplifier. As soon
as all parallel channels of the polarimetric radar receiver
have the same electronic design and are physically located
in the same environment with the same system temperature,
the true power of noise signals in all channels must be the
same. This assumption can be used for estimating the specific
amplification ai,j(r) and bias bi,j(r) in equations (6) and
(7) for every polarimetric receiver’s channel. In the case
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Fig. 3. Average range profiles of the real part of the PARSAX radar noise data
- the initial signal that is strongly influenced by the range compression (blue
line represents the voltage in ADC units ) and the signal after application
of the proposed algorithm (red line represents the voltage in noise std units,
shifted from zero value up for 400 unis for better visibility)

Fig. 4. Clouds of the samples from the noise range profile at the IQ plane:
(a) a multimodal distribution of the measured data, (b) Gaussian distribution
after application of the proposed algorithm (skewness 10−7, kurtosis 3.147
for both real and imaginary parts of the signal).

of noise-only measurements, the channel-specific measured
signals will look like:

Ṅi,j(r) = ai,j(r) · ṅ+ bi,j(r) (10)

where Ni,j(r, t) is the measured noise range profile at the
output of the FMCW receive channel (i, j), and n is the
true noise signal that is expected to be time-, range- and
channel-independent white Gaussian noise with zero mean
and the system temperature-dependent variance σ2

0 . If these
assumptions are correct, then

mean(Ni,j(r)) = bi,j(r)

var(Ni,j(r)) = [ai,j(r)]
2 · σ2

0

(11)

As soon as the range profiles of these noise signal’s moments
are estimated, it is possible to equalize/calibrate signals in all

TABLE I
AMPLITUDES OF THE ELEMENTS OF THE COVARIANCE MATRICES

OF THE POLARIMETRIC NOISE BEFORE AND AFTER EQUALIZATION

before HH HV VH VV

HH 1.3300 0.0156 0.0122 0.0125
HV 0.0156 5.4700 0.0267 0.0254
VH 0.0122 0.0267 2.3200 0.0270
VV 0.0125 0.0254 0.0270 4.9600

after HH HV VH VV
HH 1.0000 0.0058 0.0070 0.0048
HV 0.0058 1.0000 0.0076 0.0049
VH 0.0070 0.0076 1.0000 0.0079
VV 0.0048 0.0049 0.0079 1.0000

polarimetric channels:

y′i,j(r, t) =
Vi,j(r, t)−mean(Ni,j(r))√

var(Ni,j(r))

= x′
i,j(r, t) + n′

i,j(r, t)

(12)

After such an equalization/calibration, the variance of the
residual noise n′

i,j(r, t) is equal to 1, and the amplitude of
the informative component x′

i,j(r, t) equals to the
√
SNR -

the square root from the signal to noise ratio in this specific
polarimetric channel.

The proposed algorithm applying to the real PARSAX radar
polarimetric data shows that such normalization of the mea-
sured polarimetric signals using the independently measured
noise signals provides the capability to remove some artifacts
of the bit signal processing and range compression in FMCW
radar. These artifacts result in the signal amplitude modulation
along the range axis (see Fig. 3) and multi-modal shape of
the noise signal distribution (Fig. 4a). The proposed algorithm
completely removes any unexpected range dependence of the
noise characteristics (strictly linear red line in Fig. 3) and
improves the noise normality (Fig. 4b) in every channel.
Using the estimation of the noise polarimetric 4×4 covariance
matrix before and after correction (12), it was demonstrated
that not only the channel amplitudes are equalized but also
the channels’ independence is improved (cross-channel co-
variance coefficients become closer to zero) (see Table I). In
this table, the amplitudes of the covariance matrix elements
estimated before equalization have been normalized with
the general multiplier 106 for compactness. The analysis
also shows that, in agreement with (12), the phases of the
covariance matrix elements have not been influenced by this
equalization algorithm.

The equality of the noise variance in range and in between
polarimetric channels, together with the representation of
signals’ amplitude in terms of SNR simplifies not only the
comparative analysis of the PSM elements’ amplitudes but
also the range dependency analysis of any element of the
PSM.
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IV. POLARIMETRIC CALIBRATION USING A ROTATING
DIHEDRAL CORNER REFLECTOR

The external calibration of a polarimetric radar provides a
possibility to estimate the distortion matrices ṪA and ṘA

together with the absolute complex gains of the transmitter,
receiver, and antennas polarimetric channels [8], [9]. These
characteristics are necessary for the equation (8) implemen-
tation to estimate the true PSM of a radar target and can be
represented using similar forms without losing generality:

ṪA = THH

[
1 δ̇T1
δ̇T2 ḟT

]
, ṘA = RHH

[
1 δ̇R1
δ̇R2 ḟR

]
(13)

where for both antennas δ1 and δ2 are crosstalk terms, and
f represents the one-way co-polarized channel imbalance in
amplitude and phase. One of the possible approaches to the
external calibration of polarimetric radars that minimize the
number of necessary calibration targets with different PSM is
to use the dihedral corner reflector, which is rotated around
the line of sight [10], [11]. The PSM of this reflector that
rotates through an angle α in the plane (h, v) can be written
in this coordinate system as follows

S (α) =

√
σ

4π

[
− cos 2α sin 2α
sin 2α cos 2α

]
(14)

The sizes a and b of such reflector have to be selected using
the equation of the maximum radar cross section (RCS) σ =
8πa2b2/λ2 that has to be big enough to provide high values
for signal-to-noise and signal-to-clutter ratios.

The timeline of the measured signal in the case of the
rotated dihedral corner reflector (which can even be rotated
manually) has to be converted in the angular dependency
using the signal’s minimum on co-polarised channels at
orientations ±45◦,±n · 90◦ and on cross-polarized channels
at orientations ±n · 90◦, where n is the integer number of
rotation. The resulting angular dependency of multi-channel
measured data can be used for the estimation of parameters
δ1, δ2, and f using the best fit to the simulated model data
methods.

Figure 5a represents the fitted to the angular grid and
measured with the PARSAX radar polarimetric data of 16
continuous slow rotations of the dihedral corner reflector
with sizes of 1.05 × 1.5 m at a distance of 1.3 km. As
can be seen from the zoomed part within the picture, the
variability of the signal from rotation to rotation in the area
of maximum does not exceed 0.1-0.2 dB for all channels.
The observing theoretically unexpected difference of about
5 dB between co-polarized channels and ≈ 3 dB between
cross-polar channels originated from the receiver channels
inequality. As can be seen from Fig. 5b, this inequality
of signals in polarimetric channels was removed after the
application of the described above noise-based equalization
to the raw data. The application of the model-based distortion
matrices (13) estimation algorithm to the data after the noise-
based equalization shows the good quality of the PARSAX
radar hardware design: for both antennas, the amplitudes of
the crosstalk terms δ1 and δ2 are better than 0.005, and the

Fig. 5. The PSM elements’ amplitudes of the dihedral corner reflector that
is slowly rotating around the line of sight as functions of the rotation angle.
The plot represents 16 sequential rotations, which were synchronized using
the HH channel minima. (a) raw data, (b) data after the noise-based channels
equalization.

co-polarized channel imbalance |f | > 0.95 (better than 0.25
dB).

V. POLARIMETRIC PHASES CORRECTION IN THE
DOPPLER DOMAIN

In the FMCW polarimetric radar with quasi-simultaneous
dual-orthogonal signals (Fig. 2), a time shift between the
transmitted H- and V-polarized signals for the case of moving
targets would lead to an additional phase difference between
the columns of the PSM. This phase difference is proportional
to the target’s velocity ∆ϕ(v) = 2π(2v∆t)/λ and can be
easily compensated in the Doppler domain for the case of
the target’s motion with the non-ambiguous Doppler velocity.
Such compensation has been demonstrated in [12] for classi-
cal polarimetric waveforms with the polarization orthogonal
components transmission with the time-shift of one sweep
repetition interval ∆t = SRI = 1/PRF . The polarimetric
waveforms with dual orthogonality that are used in this study
provide a possibility to coherently process every polarimetric
channel with the original sweep repetition frequency, without
Doppler ambiguity degradation. In this case the time-shift
is two times smaller: ∆t = 0.5 · SRI = 1/(2 · PRF ),
but also results in the additional phase shift between the
columns of the PSM, which can be related to the maximum
unambiguous velocity vmax: ∆ϕ(v) = π · v/(2 · vmax). For
the real measured polarimetric calibrated data, this effect is
demonstrated in Fig. 6 using the phase difference between
cross-polarized components HV and V H , which is expected
to be zero. This range-Doppler plane represents the collection
data for moving cars that were measured within the street-way
case when all these cars moved with the velocity below the
Doppler ambiguity.

Further analysis shows that in quite practical case of one-
time folded target velocity, an extra phase shift of π has to
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be added:

∆ϕ =


πv

2vmax
v = vtrue

πv

2vmax
+ π v = vfolded

(15)

The resulting corrected elements of the PSM with compen-
sated phases have to be calculated as

Ṡ′
V H = ṠV H · ej∆ϕ , Ṡ′

V V = ṠV V · ej∆ϕ

where Ṡ′
V H and Ṡ′

V H are the compensated data.
The results of such compensation are demonstrated in Fig.

7a, where most targets have equal phases of HV and V H
elements of the PSM. The reason why not all phase differ-
ences between cross-polar components in this plot are close
to zero is demonstrated in Fig. 7b. In this figure, the phase
difference is presented as a function of the signal amplitude.
The inverse proportionality of the distribution width of the
residual phase difference from the target’s signal amplitude
can be clearly seen from this picture as a result of the stronger
noise influence on the phase characteristics of weaker targets.

VI. CONCLUSIONS

This paper introduces the full calibration chain for signal
processing in FMCW radar with simultaneous transmission
of two orthogonally polarized orthogonal waveforms and
echo signals parallel reception in the 4-channel receiver for
simultaneous measurements of all elements of the PSM. The
noise-based algorithm for equalization of polarimetric chan-
nels has been proposed and illustrated using measurements
of the noise and slowly rotated dihedral corner reflector. The
high performance of the proposed algorithm is demonstrated
for polarimetric channel equalizations and the removal of
some specific artifacts for the FMCW radar processing. Phase
relations between polarimetric channels are treated in the
Doppler domain, extending existing approaches to new classes
of signals and cases with the Doppler velocity ambiguity. The
performed calibration results in high-accurate measurements
of the radar targets’ polarimetric scattering matrix (PSM) in
the Doppler domain. All the proposed calibration steps are
illustrated using real radar data.

Fig. 6. Phase difference between the PSM elements SHV and SV H of
multiple moving cars that shows a linear dependence on the Doppler velocity.
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