10.

PRl

7/’\" A5

Stellingen bij het proefschrift van J. Westerweel

. Het bepalen van de wrijvingssnelheid voor een turbulente wandstroming bij een laag

Reynolds-getal uit het logaritmische snelheids-profiel gaat er ten onrechte van uit
dat dit verband ook werkelijk aanwezig is.
(3. Kim, P. Moin & R. Moser J. Fluid Mech. 177 (1987) 133-166; dit proefschrift)

. De relaties tussen de parameters voor metingen met Particle Image Velocimetry (be-

lichting, tracer-dichtheid, etc.) lijken een volledig bepaald stelsel van vergelijkingen
te vormen; door één van de parameters te kiezen liggen de optimale waarden van
alle andere vast.

. De afmetingen van de meeste bestaande experimentele faciliteiten voor turbulentie-

onderzoek zijn gemaximaliseerd om de relatieve invloed van de meet-probes (Pitot-
buis en hitte-draad) te minimaliseren. Deze faciliteiten zijn dan ook ontoereikend
voor metingen met Particle Image Velocimetry, omdat daarbij de beschikbare licht-
intensiteit efficiénter benut kan worden naarmate de afmetingen van de faciliteit
kleiner zijn.

(R.J. Adrian, Annu. Rev. Fluid Mech. 22 (1991) 261-304)

. Digitale beeld-opname zal in Particle Image Velocimetry uiteindelijk de gangbare

fotografische technieken vervangen.
(dit proefachrift)

. De gekozen waarde van het Smagorinsky-getal in large-eddy simulatie zal voor iedere

niet-triviale geometrie aan de hand van meet-resultaten moeten worden geverifieerd;
dit houdt in dat large-eddy simulaties niet zonder meer de rol van experimenten
kunnen overnemen.

(Contactdag Turbulentie, 29 april 1992)

. Bij het combineren van onderzoeks-resultaten uit verschillende disciplines is het

vrijwel onmogelijk om een consistente notatie aan te houden.
(dit proefschrift)

. De gevolgde gedachtengang in een wetenschappelijke artikel wordt in sommige

gevallen pas duidelijk indien het van achteren naar voren wordt gelezen.

. Het is paradoxaal en opportunistisch dat een AIO zich gezien de tijdelijke duur van

het arbeidscontract wel particulier voor ziektekosten dient te verzekeren, maar aan
de andere kant weer niet als tijdelijk werknemer wordt gezien met betrekking tot
een vergoeding in de reiskosten tussen woon- en werkadres.

. Een evenredige taakverdeling tussen twee of drie sessie-voorzitters bij conferenties

doet meestal het “Kwik, Kwek & Kwak”-effect ontstaan.

Als werkgevers werkelijk willen bijdragen aan de emancipatie kunnen zij beter hun
(vrouwelijke en mannelijke) medewerkers gelegenheid geven om gebruik te maken
van kinderopvang en deeltijd-werk, dan in hun personeels-advertenties positieve dis-
criminatie van vrouwen te benadrukken.
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I was dreaming I was awake.
And then I woke up,
and found myself asleep.

Stan Laurel
in “Oliver the Eighth” (1934)
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Chapter 1

Introduction

Abstract. Flow visualizations clearly show that turbulence is not a random process,
but consists of coherent flow structures. An interpretation in terms of coherent structures
plays an important role in many complicated turbulent phenomena. With visualization we
only obtain a qualitative picture of these structures. Traditional instruments like the hot-
wire and laser-Doppler anemometer are one-point measurement techniques, and therefore
not able to reveal the instantaneous spatial structure of a flow. With the aid of a new obser-
vation technique, called “particle image velocimetry” (PIV), quantitative, two-dimensional
information of the flow velocity field is obtained. These data enable us to compute other
flow quantities, such as vorticity or deformation; these quantities are directly related to
the dynamics of coherent flow structures. The original method for PIV image analysis
yields accurate results with a high spatial resolution, but is very time-consuming. This is
a magor problem in the application of PIV to study the dynamics of coherent structures
in turbulent flows, which requires the analysis of a large number of images. A digital
implementation of the PIV method considerably reduces the processing time, at the cost of
a slight reduction in measurement accuracy. This provides a feasible solution to process
large quantities of PIV images.

The main aim of the work described in this thesis is the development and application
of the digital counterpart of a measurement technique called particle image velocime-
try (PIV). This technique yields the instantaneous, spatial measurement of the velocity
observed in a planar cross section of a flow. This is a considerable improvement with con-
ventional measurement techniques that yield velocity measurements from a single point
only, and makes the technique ideally suited for the investigation of coherent structures
in turbulent flows.

In this introductory chapter we review some of the background and history of turbu-
lent flow research in relation to particle image velocimetry (Sect. 1.1). We subsequently
describe the basic principles of PIV, and discuss its shortcomings with respect to the inves-
tigation of coherent structures in turbulent flows (Sect. 1.2). The digital implementation
of the PIV technique presented here provides a feasible solution to these shortcomings
(Sect. 1.3). We conclude this chapter with an outline of the topics treated in the remainder
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6 Introduction

of this thesis.

1.1 Background

Turbulent flow is so much a part of our daily life that we hardly realize the complexity
of the underlying processes. In fact, turbulence is still lacking a satisfactory theoretical
explanation. In general turbulence is described as a chaotically fluctuating state of a flow
that occurs when a characteristic flow parameter such as the Reynolds number, defined
as Re=UL/[v, where U and L are characteristic velocity and length scales and v is the
kinematic viscosity, exceeds a certain critical value. It is beyond the scope of this thesis
to give a detailed description of turbulence, but instead a brief outline of some relevant
aspects is given below. For further details refer to Tennekes & Lumley (1972) or Hinze
(1975).

Fully developed turbulence at sufficiently large Re is characterized by the existence of
two scaling regimes, denoted as the macrostructure and the microstructure. The classical
picture is that turbulent kinetic energy is produced at the macrostructure, where it is
extracted from the mean flow by instability processes. This energy is transferred from
the macrostructure to the microstructure by the so-called energy cascade: large-scale
eddies break up into smaller eddies, by which energy is transferred from larger scales to
smaller scales. This process of eddy break-up repeats itself until the microstructure is
reached where the energy is finally dissipated by molecular viscosity. The scaling of the
macrostructure is determined by the geometry of the flow; the scaling of the microstructure
is determined by the viscosity of the fluid and the amount of energy transferred along the
cascade (Kolmogorov scale). As a result of assuming these two separate scaling regimes
the ratio of the length scales of the macrostructure (£) and the microstructure (7) is given
by

L/ ~ Re**. (1.1)

In laboratory-type flows with Re ~10* and £ ~ 0.1 m, the Kolmogorov length given by
(1.1) is about 0.1 mm.

In the cascade process smaller eddies are deformed by larger eddies. The deformation
is coupled with the wvorticity, which is defined as the rotation of the velocity field. As a
result of this interaction energy is transferred from the larger eddies to the smaller eddies,
which further increases the vorticity of the smaller eddies. This mechanism is referred to
as vortez stretching.

1.1.1 changing views on turbulence

The “classical” notion of a turbulent flow is that of a stochastic process, described by
its statistical moments. This view was based on laboratory experiments with traditional
single-point measurement probes such as the hot-wire anemometer (HWA) and the laser-
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Doppler anemometer (LDA)!. This classical notion of turbulence was maintained until the
mid 50’s, when nonrandom phenomena were discovered by means of flow visualization? in
turbulent flows (Townsend 1956; Kim et al. 1971). These flow visualizations revealed that
turbulent flow is not completely disorganized, but contains large-scale so-called coherent
structures. Brown & Roshko (1974) demonstrated that the instantaneous spatial structure
of the flow can not be described by the turbulence statistics obtained from the single-point
probes.

200
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Figure 1.1: A single-point measurement (by laser-Doppler anemometry) of the streamwise (u) and vertical
(v) velocity signals as function of time in a turbulent boundary layer over a flat plate. The measurement
was taken at 20 viscous wall-units above the plate. (Courtesy A.D. Schwarz-van Manen.)

The occurrence of organized motion or coherent structures in turbulent flows is (ap-
parently) in contradiction with the conventional statistical description of a turbulent flow.
This is illustrated by Figures 1.1 and 1.2, which show a section of a LDA signal and a
hydrogen-bubble time-line visualization in the near-wall region of a turbulent boundary
layer. Whereas the appearance of the LDA signal suggests that it was generated by a
random process, the visualization reveals large-scale elongated structures. Obviously the
classical view of turbulence as a random process is no longer valid and new concepts of
turbulence had to be found. This is still a topic of theoretical, numerical and experimental
research.

The presence of “organized structures” in an apparently random signal shows similar-
ities to what is known as “deterministic chaos” of non-linear dynamical systems (Bergé
et al. 1987). Aubry et al. (1988) attempt to describe turbulent flow as a non-linear dynam-
ical system in which they apply a mathematical approach of coherent structures in terms

1These techniques measure the flow velocity as function of the time in a single point. Descriptions of
these techniques are given by Fingerson & Freymuth (1983) and Adrian (1983) respectively.

2This is a collective terminology for observation methods that visualize the motion, structure or density
distribution of a fluid, either in a planar cross section or integrated along the line-of-sight (Merzkirch
1987). The motion of a fluid can be visualized by adding small particles or dye to the fluid. A set of
beautiful examples has been collected by Van Dyke (1982).
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Figure 1.2: Photographs of hydrogen bubble time lines, showing typical large scale vortex motion in
turbulent boundary layer flow near a smooth wall. From: Kim et al. (1971)

of eigenfunctions. Other innovative work has been carried out by Vassilicos (1992) who
proposes a “multispiral” vortical structure that accounts for the spectral density distri-
bution that is commonly associated with the energy cascade mentioned before. However,
these theories still lack feedback from experiments.

A large part of the research on coherent structures is concentrated on incompressible
turbulent flow near a solid wall, the so-called boundary layer. Let us therefore briefly
review some of the aspects related to this type of flow.

1.1.2 near-wall turbulent flow in a pipe

A flow geometry of specific interest is that of a wall-bounded turbulent flow, like e.g.
the turbulent boundary layer and turbulent channel and pipe flows. Here we will restrict
ourselves to a pipe flow. For a detailed treatment of this flow type refer to Schlichting
(1979). The velocity of the flow near the wall scales with the friction velocity u., given
by the wall shear stress 7., i.e.

U =/7/p (1.2)

where p is the density of the fluid.

The turbulent pipe flow consists of an outer region, that scales with the pipe diameter
(D), and an inner region that scales v/u.. Usually the flow velocity (u) and the distance
(y) from the wall are made dimensionless by u, and », viz.

ut =ufu, and y* =yu./v. (1.3)
The turbulent pipe flow can be divided into four layers:

wake region (y/D > 0.1)
In the wake region the eddies scale with the flow geometry, i.e. £~ D. In this region
the total shear stress is dominated by the turbulent shear stress (the mean product
of the axial and radial fluctuating velocities).
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logarithmic wall layer (y* > 30...40,y/D < 0.1)
In the logarithmic wall layer the size of the eddies is determined by their distance
from the wall, i.e. £ ~ ky, where & is the Von-Kdrman “constant” which has an
empirical value of 0.4. The velocity profile in this region is given by

u+=—1-lny++H (1.4)
K

with I ~5.5 for a smooth wall. The logarithmic shape of the velocity profile in this
region is a direct consequence of the fact that the wall-bounded flow consists of an
inner and outer region.

buffer layer (5...10 < y* < 30...40)
The buffer layer is the transition region between the viscous sublayer (see below)
and the logarithmic wall layer. Both viscous and turbulent stresses play an equal
part in this layer.

viscous sublayer (y* < 5...10)
Very close to the wall the viscous stress dominates the flow, and turbulence can no
longer exist. The mean axial velocity is directly proportional to the distance from

the wall, i.e.
ut =yt (1.5)

The highest energy production and turbulent shear stress is found in the buffer layer
(Mansour et al. 1988). A great deal of turbulent flow research is dedicated to the mech-
anisms and the processes in this layer, which cannot be comprehended or explained by
contemporary statistical models. This applies in particular to the recently observed drag
reduction for flows with certain polymer additives (Harder & Tiederman 1991) and for
flows over grooved surfaces or “riblets” (Walsh & Lindemann 1984). It has been conjec-
tured that this drag reduction can be explained in terms of the dynamical behaviour of
coherent structures in the buffer layer (Luchini et al. 1991; Schwarz-van Manen 1992).
Furthermore it is believed that coherent structures play an important role in all kinds
of transport processes (such as heat transfer, the deposition/resuspension of particles or
chemical reactions).

1.1.3 coherent structures in near-wall turbulent flow

Most of the experimental information of coherent flow structures has been obtained
through flow visualization. Their interpretation is very subjective, and as a result there is
a wide variety of definitions and models of coherent flow structure. Reviews of the struc-
tures that have been identified in near-wall turbulent flow are given by Cantwell (1981),
Robinson (1991b) and Brand (1992). In this subsection a brief description is given of
the so-called “burst process” which may account for the production of turbulent kinetic
energy and turbulent shear stress in the buffer layer. It should be noted however that
the bursting process as such is ill-defined in the literature. The description given below
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is extracted from the reviews mentioned above.

The flow very close to the wall consists of long elongated regions in which the fluid
velocity is lower than average fluid velocity. These regions are called low-speed streaks.
Instability processes cause that small disturbances of the vortex sheet surrounding the
low-speed streak grow and develop into a so-called hairpin vortex. This is illustrated in
Figure 1.3. The tip of the vortex moves away from the wall by self-induction. The legs
of the vortex stretch and thus extract energy from the mean flow. Finally, the hairpin
vortex becomes unstable and breaks up into smaller structures (“burst”). During the
self-induction stage of the vortex low-momentum fluid is “pumped” away from the wall
between the legs of the vortex. This motion is called ejection, which strongly contributes
to the Reynolds stress. After the burst event high-momentum fluid moves towards the
wall, which is called a sweep, and interacts with the low-speed fluid near the wall. The
sweep may disturb another low-speed streak, and initiate another burst cycle. The time
scale of this cycle in a boundary layer is given by Tg ~5...76/U,, where & is the boundary-
layer thickness (for pipe flow é~ 1 D). Note that Tp scales with the outer flow parameters>.
This is rather surprising since a process that takes place in the buffer layer is supposed
to scale with inner parameters.

The coherent structures related to the bursting process have been identified in flow
visualization studies; see Kline et al. (1967), Kim et al. (1971) and Head & Bandyopadyay
(1981). It was mentioned before that these visualizations provide only a qualitative pic-
ture of these structures and related flow processes. Therefore the interpretation of these
visualization experiments are somewhat subjective.

Recently, Robinson (1991a) demonstrated the presence of these coherent flow struc-
tures in a direct numerical simulation® (DNS}) of a turbulent boundary layer by Spalart
(1988). The DNS allows a detailed quantitative investigation of these structures, but a
drawback is that one has to solve the entire flow field, even if one is only interested in
studying a small section of the flow (e.g. the buffer layer). Thus, direct numerical simula-
tion can only be applied to simple flow geometries (like e.g. channel flow between smooth
walls) and to flows with relatively low Reynolds numbers ( Re~3-7,000). Nonetheless,
based on DNS data Robinson (1991a) proposes detection criteria for hairpin vortices with
respect to the (spanwise component of the) vorticity, the fluctuating pressure and the
deformation of the flow field.

Hence, quantitative experimental data are necessary to make further substantial pro-
gress in the investigation of coherent flow structures in turbulent flows. The traditional
measurement techniques, like HWA and LDA, only provide information from a single
point in the flow and therefore—by principle—can neither reveal the instantaneous spatial

3This is still a subject of discussion.

*In a direct numerical simulation the equations of motion of a fluid (viz., the Navier-Stokes equations)
are solved numerically, in which all flow scales from the macrostructure to the microstructure are resolved,
thus without relying to any turbulence modeling.
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structure of the flow nor its dynamics (Kline 1978). Attempts to yield the instantaneous
spatial structure with single-point probes was done by conditional sampling, in which the
velocity signal is accepted when a predefined condition is met; e.g. the VITA (Gupta
et al. 1971; Blackwelder & Kaplan 1976) and quadrant (Wallace et al. 1972; Willmarth
& Lu 1972) methods. The large amount of somewhat conflicting views obtained from
these one-point observations shows that it is difficult to relate the conditional events
to the structures observed in flow visualization. The choice of detection criteria is not
well defined, which gives the results and their interpretation again a subjective nature.
Another disadvantage is that one can only study one event at the time. This makes it
very difficult to investigate the relationship—in time and space—between different events.
Therefore new measurement techniques that yield the instantaneous structure of the flow
need to be developed. This conclusion was the point of departure for the investigation
described in this thesis.

1.1.4 new measurement techniques

A breakthrough was achieved by the application of digital image processing to flow visu-
alization, which enabled a quantitative and automated analysis of flow pictures. These
techniques are collectively known as quantitative visualization. A general review of optical
flow diagnostics applying digital image processing is given by Hesselink (1988). One of the
categories of these new measurement methods visualizes the motion of the fluid by small
tracer particles added to the fluid. By measurement of the displacement of the tracers in
a given time interval the velocity field can be constructed. By subsequent differentiation
of the velocity data one can infer additional flow quantities such as the vorticity and the
deformation of the flow.

The vorticity and deformation are crucial quantities in understanding the dynamics
of coherent flow structures (Hussain 1986; Hunt et al. 1988). To yield useful results we
have to meet the following demands:

o The strongest vorticity occurs at the smallest scales in the flow (i.e. microstruc-
ture), and thus the method should have a sufficient spatial resolution in order to
resolve both the macrostructure and microstructure. The required ratio between
the smallest and largest attainable length scales is given by (1.1).

o To investigate also the temporal evolution of coherent structures, e.g. the devel-
opment of a low-speed streak into a hairpin vortex, we should have a temporal
resolution that matches the time scale of the flow.

e Differentiation increases the noise. Since vorticity is obtained by differentiation of
the measured velocity field, the accuracy of the measured data should be sufficiently
high in order to yield significant results for the vorticity (Hesselink 1988).

Note that the requirements for the spatial and temporal resolution are equivalent to those
for numerical simulation. (In that respect it should also be noted that it will not always
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be necessary to resolve all scales and yet obtain a feasible representation of the flow, like
in large-eddy simulation.)

In the next section we will discuss quantitative visualization with tracer particles in
more detail. For an extensive review refer to Adrian (1991).

1.2 Quantitative visualization with tracer particles

Consider a flow that has been seeded with small tracer particles. These particles are
supposed to accurately follow the motions of the fluid. With a light sheet a planar cross
section of the flow is illuminated, and an image is formed of the tracer particles that are
located inside the light sheet. The measurement principle of velocity is now based on the
displacement of the tracer particles in a given time interval. The most widespread method
to record the displacement of the particles is by taking a double-ezposure picture of the
tracer particles in the light sheet. We will first discuss the appearance of these images as
function of the tracer density, and after that discuss the analysis method.

1.2.1 image modes: PTV, PIV and LSV

The appearance and information content of the recorded image is described by two di-
mensionless numbers, denoted as the source density (Ns) and the image density (Np),
introduced by Adrian & Yao (1984). The source density indicates whether the image
consists of individual particle images (i.e. Ns< 1), or that particle images overlap and—
for coherent illumination—interference of light comes into play (i.e. Ng>>1). The other
dimensionless number, the image density, represents the number of particle images within
a particular area around a point at which we would like to determine the flow velocity.
This area is referred to as the interrogation area. (The exact definitions for Ng and Ny
are given later in Sects. 2.6 and 3.6.4 respectively.)

Depending on the values of Ns and N; we can distinguish between three different
modes of the recorded image, illustrated in Figure 1.4 (where an interrogation area is
indicated by a circle):

particle tracking velocimetry (PTV): Ng<1, N/l
In this mode we observe individual particle images (Vs <« 1). The average distance
between distinct particle images is much larger than the mean displacement, so that
the expected number of particle image in the interrogation area is low (N < 1);
see Fig. 1.4a. Because of the large distance between distinct particle images with
respect to the mean displacement it is fairly easy to identify particle-image pairs
that correspond to the same tracer particle in the flow, and thus obtain the local flow
velocity. However, since the image density is low we cannot determine the velocity
in any arbitrary position, but only at positions where a tracer particle happens to
be present. The result is a random sampling of the flow field. We will see later
(Sect. 2.3) that the sampling is in general not optimal. Because the velocity field is
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a: PTV b: PIV c: LSV
Ni<<1 Ng<<1 N> 1 Ng<<1 Ny>>1 Ng>> 1

Figure 1.4: The image types in: (a) particle tracking velocimetry (PTV), (b) particle image velocimetry
(PIV) and (c) laser speckle velocimetry (LSV). The information content (viz., N;) and appearance (viz.,
Ns) are determined by the tracer density. The circle indicates an interrogation area. (The parameters
N and Ng are further explained in the text.)

obtained from the displacement of individual tracer particles this analysis is referred
to as particle tracking velocimetry (PTV).

particle image velocimetry (PIV): Ns<1, N;>1

To yield a greater density of information of the flow field we have to increase the
density of the tracer particles. In Fig. 1.4b the situation for N;>>1 is shown. We can
still distinguish individual particle images (Ns < 1). Now the interrogation region
contains practically always a sufficient number of particle images to determine the
(local average) flow velocity in any position. However it is no longer possible to
identify individual particle-image pairs unambiguously. We therefore have to use a
statistical method, that will be described in the next subsection, to determine the
most probable displacement. The measurement technique that deals with this type
of images is referred to as particle image velocimetry (PIV).

laser speckle velocimetry (LSV): Ng>1, Ny>1

If we further increase the density of tracer particles in the flow, the particle images
will tend to overlap (Ns>>1). For illumination with a coherent light source (viz.,
a laser) the resultant image is that of a random interference pattern, better known
as speckle; see Fig. 1.4c. The speckle pattern moves along with the tracer particles
in the flow. By measurement of the displacement of the speckle pattern we can
determine the displacement of the particles in the flow. In principle the displacement
of the speckle pattern is measured in the same manner as in PIV, but since the
observed image consists of speckle it is referred to as laser speckle velocimetry (LSV).

There are two points that have to be made here. First, Adrian (1984) demonstrated that
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Table 1.1: Synonyms for particle image velocimetry (PIV).

digital image velocimetry

double-pulsed velocimetry

particle imaging velocimetry

laser speckle velocimetry

pulsed laser velocimetry

pulsed light velocimetry

particle image displacement velocimetry
whole field velocimetry

image processing velocimetry

the observation of “true” speckle in flow visualization requires such high tracer density
that other undesired effects—like e.g. two-phase flow effects or multiple scattering—come
into play. It may be that pictures considered to show speckle actually consisted of a dense
packing of individual particle images (these two image types are hard to distinguish). Sec-
ondly, images in PIV and LSV are analyzed in the same way (see Sect. 1.2.2). So there is
no real need for using different names to describe the measurement technique. However,
some authors refer to particle tracking velocimetry as particle-image velocimetry. This
considerably confuses what PIV stands for. In reaction, some refer to PIV/LSV consis-
tently as LSV, even though no speckle is observed at all. Even worse is the continuous
inflation of new names, each with its own three or four letter abbreviation; a literature
scan (Meynart 1991) may add up to twenty (!) proposed names all referring to the same
basic measurement principle; see Table 1.1.

1.2.2 analysis of PIV/LSV images

We still have to explain how we determine the displacement for the cases with N;>> 1.
Note that we actually want to determine the displacement of a random pattern. For a
double-exposure image the displaced pattern is superimposed on the original pattern.
Fig. 1.5a represents a double-exposure PIV record. One may see that the displace-
ment of the particle-image pairs changes its magnitude and direction throughout the
image. Now consider a small interrogation area that is sufficiently small to assume that
the particle-image displacement is uniform over this area. The interrogation image in
Fig. 1.5b corresponds to the sub-image in the rectangle in Fig. 1.5a. It is not possible
in Fig. 1.5b to pair images unambiguously. The interrogation image is analyzed through
its spatial (auto-)covariance function (Adrian 1988). For a double-exposure image we
obtain a covariance function with three dominant peaks, depicted in Fig. 1.5¢c: a central
self-correlation peak that is due to the correlation of each particle image with itself, and
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Figure 1.5: A schematic representation of the image analysis in PIV: (a) double-exposure PIV image (the
small square indicates the interrogation area); (b) interrogation image, with nearly uniform displacement
of particle-image pairs, and (c) two dimensional covariance with a central self-correlation peak and two
displacement correlation peaks (embedded in random correlation peaks).

two displacement-correlation peaks on opposite sides of the self-correlation peak that are
due to the correlation of the particle-images in the first exposure with their correspond-
ing images in the second exposure and vice versa. The width of these peaks is mainly
determined by the particle-image diameter. Obviously, we can only distinguish three
peaks for a displacement that is larger than this particle-image diameter. These three
peaks are embedded in a background noise due to the random correlation between dis-
tinct particle-image pairs. Provided that sufficient particle-image pairs are present within
the interrogation region, the displacement-correlation peaks will rise above the random
noise peaks. Hence, we can identify the displacement-correlation peaks as the highest
non-central peaks in the auto-covariance function. The centroid of the displacement-
correlation peak yields the local-average, in-plane displacement of the particles in the
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interrogation region. The same principle applies to speckle images. The only difference is
that the width of the covariance peaks is determined by the average size of the speckle,
instead of the particle-image diameter.

For double-exposure images we should realize that we cannot distinguish between
the two correlation peaks (the auto-covariance is a symmetric function), and therefore
we determine the direction of the displacement with a 180° directional ambiguity. In this
thesis we only consider uni-directional turbulent flows, so that the sign of the displacement
is known a priori. In the case of a flow that is not uni-directional we have to use techniques
that resolve the directional ambiguity during the image recording; see also Sect. 2.8.
Another way to avoid the directional ambiguity is to record each exposure on a different
frame, and subsequently use a cross-covariance analysis to determine the particle-image
displacement for corresponding interrogation areas in the two frames (Cho 1989). We now
find only one displacement-correlation peak (the self-correlation peak will not appear).
A disadvantage of recording successive exposures on separate frames is that frame rate
determines the temporal resolution of the measurement.

s

criteria for optimal analysis

Keane & Adrian (1990) carried out Monte-Carlo simulations to determine the require-
ments for the experimental parameters to yield optimal performance of the PIV analysis.
They recommended the following criteria:

¢ the number of particle images per interrogation area should be at least 15;

e the particle-image displacement in the direction perpendicular to the light sheet
{“out-of-plane” displacement) should be less than 1/4;

e the in-plane displacement of the particle images should be about or less than 1/4 of
the diameter of the interrogation area;

¢ the velocity gradient over the interrogation area should be at the most 5% of the
mean velocity.

We will refer to these criteria throughout this thesis.

Young’s fringe analysis

Let us now have a look at how the analysis of double-exposure photographs is imple-
mented. The analysis method that is employed most commonly is identical to the analysis
of double-exposure images in speckle metrology (Burch & Tokarski 1968). After devel-
opment the film negative is mounted on a xy-translation stage. A schematic drawing of
the interrogation set-up is given in Figure 1.6. A small area in the negative (viz., the
interrogation area) is illuminated with a laser beam (usually a HeNe-laser). The trans-
mitted beam is observed in the back focal plane of a lens. In this optical arrangement
the observed image is the optical Fourier transform of the transmitted light field in the
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Figure 1.6: Interrogation of a PIV photograph using the Young’s fringe method. The PIV photo is
mounted on a computer controlled XY-translation stage. The lens performs an optical Fourier transform
of the interrogation image. The fringe pattern is digitized and subsequently analyzed by a computer.

object plane (Goodman 1968). The double-exposure PIV negative acts as a diffraction
grating that yields an image in the back focal plane of the lens that consists of alternating
light and dark bands, better known as Young’s fringes. The direction of these fringes is
perpendicular to the direction of the particle-image displacement, and the spacing of the
fringes is inversely proportional to the magnitude of the displacement. (Again we have
a 180° directional ambiguity.) The Fourier transform of the Young’s fringe pattern is
formally equivalent to the auto-covariance of the image in the interrogated region on the
PIV negative (Keane & Adrian 1990). The fringe pattern is digitized (using an electronic
imaging device, like a CCD array, connected to a “frame grabber”) and is subsequently
evaluated with a digital computer. After the analysis of the fringe pattern the negative is
translated to the next interrogation position. This procedure is repeated until the entire
negative is analyzed.

Since all the above methods employ an optical read-out system for PIV transparencies
we henceforth refer to these methods collectively as optical particle image velocimetry
(OPIV).

The elegancy of the Young’s fringe method is that the information in the interroga-
tion spot is transformed optically into a pattern that can be readily analyzed, by direct
measurement of the direction and spacing of the fringes. However, in practice the fringe
visibility or contrast appears to be rather low (Landreth & Adrian 1990b), and as a result
the direct analysis of the fringes is not very robust. The direct analysis of the fringe pat-
tern was subsequently replaced by discrete Fourier analysis, which is capable of detecting
the regular fringe pattern under less ideal circumstances. (The discrete Fourier transform
of the fringe pattern is commonly computed with the efficient Fast Fourier Transform
(FFT) algorithm.) The reason why it is difficult to detect the orientation and spacing
of the fringe pattern directly is that it is a global image feature. Some thought reveals
that the Fourier transform of the fringe pattern concentrates the signal energy in a peak,
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which is now a local feature and therefore easier to detect.

The discrete Fourier analysis is usually carried out with a high resolution of 256 x256
or 512x512 pixels. This yields an estimated accuracy of about 0.3 pixel units (px).
Hence, for a nominal displacement that is 1/4 of the diameter of the interrogation area
the relative measurement accuracy is better than 1% (Prasad et al. 1992). However,
the analysis is very time consuming; at such high pixel resolution it takes at least a few
seconds to compute the Fourier transform. Taking into account that a PIV photograph
is interrogated in 1,000 to 10,000 interrogation positions, then the total time required
to analyze a single PIV negative is usually expressed in hours (Adrian 1986b; Lourengo
& Krothapalli 1988a). This is clearly a disadvantage for applications that require the
analysis of a large number of PIV pictures.

direct correlation

By performing a numerical analysis of the fringe pattern the actual advantage of the
fast optical processing is somewhat lost. We therefore might just as well compute the
image auto-correlation directly. This is illustrated in Figure 1.7; now two digital Fourier
transformations are necessary to yield the image covariance function. This slows down the
analysis by a factor two, but in return the direct computation also has advantages. For
example, the illumination of the interrogation region by a coherent light source is no longer
required. Incoherent illumination considerably reduces the effect of scattering by the
carrier material of the film negative, which improves the image contrast. Direct correlation
has been applied to PIV image analysis successfully (Reuss et al. 1989; Landreth & Adrian
1990a).

interrogation Young’s auto-
image fringes covariance

: ’.o:.. OFT ' . DFT
:r.. L )

Figure 1.7: The analogy of Young’s fringe analysis (top) and direct correlation analysis (bottom). The
abbreviations refer to: optical Fourier transformation (OFT) and discrete Fourier transformation (DFT).
The operation denoted by |- | denotes the squared norm of a complex field.



20 Introduction

1.2.3 applications

Some of the earliest reported applications of PIV/LSV concerned Bénard convection
(Simpkins & Dudderar 1978) and jet flow (Meynart 1983). Since then most of the work
has been devoted to improvement of the technique. Since the analysis of a single image
takes several hours (see previous paragraph) most applications of PIV to study coherent
structures in (turbulent) flows have been limited to a few individual realizations (up to
11) of the instantaneous flow field, see e.g. Lourengo & Krothapalli (1988a), Landreth &
Adrian (1990a) and Liu et al. (1992). Although this number may be sufficient to estimate
first and second order statistics of the velocity field (Liu et al. 1992), it is insufficient
to determine the relevant properties of coherent structures; a single realization of a PIV
measurement reveals the spatial coherence present in the flow but it does not provide any
information on the evolution or statistics of the structures. This requires the analysis
of a sequence of images. Measurements that study the evolution of flow structures were
carried out on vortex pairing (Meynart 1983), on temporal evolution of the flow past
a circular cylinder (Lourenco & Krothapalli 1988b), and on the flow under water waves
(Gray & Greated 1988). In fact, these experiments concern reproducible flow phenomena,
which relaxes the need for (fast) cinematographic recording and analysis of large amounts
of images to yield a satisfactory result. This is, however, not the case for turbulent flows.

This was about the situation at the beginning of the study described in this thesis. We
have seen that the PIV yields quantitative measurements of the instantaneous velocity
field in a planar cross section of the flow. This is the type of measurement that we need
for the investigation of coherent flow structures. However, the conventional PIV method
is very slow, which makes it impractical to analyze large sets of flow pictures. Let us
illustrate with an example that it is essential to have a very fast analysis method for the
application of PIV to study the dynamics of coherent flow structures in turbulent flows.

Example 1 (The PIV bottleneck in turbulent flow measurements)

Say we want to study a particular structure or event in a turbulent flow. Suppose that
we have a 10% probability to record this structure. To obtain reliable estimates of the
statistics of this structure we need a sample of say 100 events. Hence, we have to process
about 1,000 pictures to obtain a satisfactory result. For a spatial resolution of 1,000 inter-
rogations per picture this yields a total of about 10 interrogations. Even a larger number
of pictures would be required if we would also like to determine the dynamics of this
structure, i.e. through the analysis of time-resolved picture sequences, not to mention the
total number of pictures that would be needed if we also would like to study the structure
or event under different flow conditions. If we assume an analysis time of one second
per interrogation—which is representative for the Young’s fringe analysis—then the total
analysis of 10° interrogations would take about fwo weeks. In practice this would not even
be enough time because we should also include the time that is required for film devel-
opment, mounting the negatives in the interrogation system and post-processing the data.
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It should be clear by now that we cannot use a method that requires several hours to
analyze a single picture; the total time that is required to process all the images would
have to be expressed in weeks or even months. Hence, the current implementations of the
PIV method are not adequate for the investigation of coherent flow structures in turbulent
flows. This was the situation that we faced at the start of the study described in this
thesis. The solution to this problem is the introduction of the digital counterpart of
the conventional PIV method, which is the main topic of this thesis. The basic idea is
explained in the next section.

1.2.4 alternative implementations

The time-consuming digital analysis of the fringe pattern does not only nullify the elegancy
of the optical processing, but also creates a bottleneck in PIV applications that require
the analysis of a large number of PIV images. Therefore alternative analysis methods
were developed with the aim to reduce the processing time of PIV images.

image compression

Yao & Adrian (1984) proposed a one-dimensional orthogonal compression technique, in
which the fringe pattern is integrated along two orthogonal directions (using cylindri-
cal lenses). Now only two one-dimensional FFT computations are required to analyze
the fringe pattern. A disadvantage of this method is that the random noise peaks in-
crease considerably, which enhances the probability of a spurious identification of the
displacement-correlation peak (Adrian 1986b). In addition, we now have a fourfold direc-
tional ambiguity instead of a twofold directional ambiguity. Despite some of the obvious
advantages this method has not become very popular.

optical correlators

Another approach followed by several researchers (Coupland & Halliwell 1988) was to
develop a fully optical correlator. The basic idea is to implement the two Fourier trans-
formations that are required to obtain the covariance function optically. A fully optical
correlator is described by Coupland & Halliwell (1988). In this device the fringe pattern
is first recorded in a photorefractive® bismuth-silicon-oxide (BSO) crystal, while being
illuminated with a reference beam. Subsequently the reference beam is switched off, and
by the principles of holographic reconstruction (Goodman 1968) the auto-correlation of
the image written in the BSO crystal appears in the back focal plane of a second lens. In
theory, this correlator is capable to yield the auto-correlation associated with the fringe
pattern almost instantaneously. In practice however the limiting factor is the time that
is required to “write” the photorefractive crystal. With a 0.1 W Ar* laser the typical re-
sponse time is 1 second. Although optical correlators yield the image covariance function

SPhotorefractives are reusable materials that store phase information through the mechanism of the
linear electrooptic effect.




22 Introduction

without any numerical calculation, they have yet not been able to reduce the processing
speed within the order of a few minutes per PIV image.

These alternative implementation only aim to speed up the analysis time. However,
one should realize that the total processing time is not determined by the acquisition of
the covariance function alone; the traversing of the negative along the interrogation optics,
but also the evaluation of the auto-covariance function (i.e. estimation of the centroid of
the displacement-correlation peak) tend to determine the total processing time as the time
required to process the interrogation image is reduced. Besides that we should also take
into account the time that is required for film development, and mounting the negative
to the interrogation system.

1.3 Digital particle image velocimetry

What we have seen from the discussion above is that the bottleneck-problem is twofold:
(a) we have to find a way how to reduce the computational effort in the PIV image anal-
ysis; and (b) we must also avoid the processing of photographic film and the mechanical
manipulation, which are inherent to OPIV. An alternative approach that would provide a
feasible solution is to implement the PIV method digitally. The key principle of the digi-
tally implemented PIV method, referred to as digital particle image velocimetry (DPIV),
will be explained first. We will then describe a simple test experiment that was carried
out to assess the feasibility of this alternative implementation. Finally we will place the
method in its historical context.

1.3.1 principle

Let us first tackle the first part of the bottleneck-problem. The time that is required to
compute the two-dimensional discrete Fourier transform of a N x N-pixel image is propor-
tional to N2log N. Thus, we can reduce the processing time considerably by reducing the
pixel resolution of the interrogation image. However, a reduction of resolution also affects
the accuracy of the measured displacement. At first thought one would expect that the
relative measurement error for the displacement for a N x N-pixel interrogation area is
proportional to 1/N (Adrian 1986b). Suppose we would reduce the pixel resolution from
256 %256 to 32x32. Though the relative error is then increased by a factor of 8, the pro-
cessing time is reduced by more than a factor of 100! Referring to the performance quoted
for Young’s fringe analysis, the typical processing time required to analyze a 32 x 32-pixel
interrogation area is 5-10 milliseconds, with an expected relative measurement accuracy
of less than 4%. (As we will see later (Sect. 3.10), in practice it appears that the accu-
racy of DPIV is better, namely about 1-2%.) Provided that the turbulence intensity is
significantly larger than the relative measurement error® then the proposed reduction in

Sin the near-wall region of a turbulent boundary-layer flow the turbulence intensity is 10-20%; Hinze
(1975)




Digital particle image velocimetry 23

pixel resolution may still yield useful results.

We have argued in the last paragraph of the previous section that we can only take full
benefit of the reduction in FFT processing time if we can also tackle the second part of
the bottleneck problem. Namely, we must avoid the overhead of processing photographic
materials and mechanical manipulation of a PIV transparency in some interrogation sys-
tem. This can be achieved by recording the PIV image directly with an electronic imaging
device and store it in digital memory. An additional advantage is that the total image is
available in the memory of the computer we can apply various (global) image-processing
operations (e.g. make corrections for perspective distortion, subtract a background image
or align successive frames). The principle of the analysis is the same way as for the direct
correlation method, described in Sect. 1.2.2; instead of subsequent optical interrogation
we now digitally subdivide the complete image in small interrogation regions. These
are subsequently analyzed by computation of an image auto-correlation (using a FFT-
algorithm). The spatial resolution of this type of analysis depends on the pixel resolution
of the digital image. Typical resolutions for solid-state arrays are 512x512 or 1024 x 1024
pixels”. Although the spatial resolution of most electronic imaging devices several orders
of magnitude lower than that of photographic film (see Table 1.2}, the interrogation res-
olution differs only by an order of magnitude. However, the reduction of pixel resolution
in the interrogation analysis would still allow us to retrieve a satisfactory amount of data
from a digital PIV image. For example, suppose we have a 1024 x 1024-pixel digital image
that is interrogated with 32x32-pixel interrogation areas, in which we allow a 50% area
overlap for subsequent interrogation positions. This would still yield a resolution of about
4,000 interrogations per image.

The overall performance of PIV analysis is characterized by spatial resolution, accuracy

and processing speed. In Table 1.2 we compare the (estimated) performances of OPIV
and DPIV. It is the author’s belief that the distribution of performance over resolution,

Table 1.2: Comparison of the performances for OPIV and DPIV.

OPIV DPIV
image resolution px 107-10° ~10°
interrogations/image x10%  4-40 1-4
relative accuracy % <1 1-4
processing time?® s >500 10

%per 1,000 interrogations

accuracy and speed in DPIV is more suitable for the investigation of large sequences of

Tarrays with 2048x2048 or even 4096 x4096 pixels are currently being developed.



24 Introduction

data than in OPIV. This conjecture was the point of departure for the work described in
this thesis.

1.3.2 vortex street behind a cylinder

To show the feasibility of the digital implementation of the PIV method described above
we have carried out a simple test experiment. In this experiment a sequence of 13 double-
exposure images of a vortex street in water behind a cylinder were analyzed. The vortex
street can be considered as a simple, incompressible two-dimensional flow consisting of
vortical structures which remain constant in strength and move at constant velocity (Lamb
1932; Roshko 1954; Kaufmann 1963). This appeared to be an ideal test flow, with well-
defined vortical structures and with predictable dynamical behaviour.

Here we only briefly describe the experimental conditions of the test experiment; for
more details refer to Westerweel et al. (1992). A cross section of the flow behind the
cylinder was illuminated with a light sheet. Seeding of the flow was accomplished by
introducing small air bubbles. The mean fluid velocity was 16 mm/s, and the diameter of
the cylinder was 20 mm, yielding a Reynolds number of 320. The motions of the bubbles
in the light sheet were observed with a CCD-video camera, and recorded on a VHS video-
tape. The video images were digitized with a 512x512-pixel, 8-bit frame grabber. Every
fourth video frame was captured, with a total of 14 frames. The images were re-sampled at
256 x192 pixels (extracting only the even scanlines from the interlaced video signal). The
size of the images correspond to an area of 60x120 mm? in the light sheet. The frames
were added pairwise, yielding 13 double-exposure images with an exposure time-delay of
0.16 s. The average particle-image displacement was 5-6 pixel units.

The images were analyzed using overlapping 32x32-pixel interrogation sub-images,
with a shift of 16 pixels between successive interrogations. Each image yielded a data set
of 15x 11 velocity vectors with an estimated rms error of 1 mm/s. To reveal to vortical
structures the vorticity from the experimental data was computed. The results are shown
in Figure 1.8. At Re=320 the vortex street is outside the stable range, and the large-scale
structures are perturbed by small-scale instabilities (Roshko 1954). However, in Fig. 1.8
the typical structure of a vortex street can be recognized. The theory predicts that the
vortices move with a constant advection velocity of 0.7 times the mean flow velocity, and
that the vorticity of these structures remains constant (Lamb 1932; Kaufmann 1963). The
position and the average vorticity of a vortex structure were determined from the vorticity
data. The results are given in Figure 1.9. The measured advection velocity and strength
of the vortices agreed with the theoretical predictions within the statistical accuracy of the
results. In addition it should be noted that since the advection velocity of the vortices (in
the experiment) is about 0.7 times the mean flow velocity, the vortices move significantly
slower than the tracer particles themselves. This implies that the pattern we see in Fig. 1.8
is not tied to the tracer particles in the flow. This is an important difference with respect
to traditional visualization, in which structures are only visible if the tracer is applied
inhomogeneously or is tied to the observed structure.
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Figure 1.8: Grey-scale maps of the vorticity component perpendicular to the image
plane of a vortex street behind a cylinder determined from 12 double-exposure
images after PIV analysis. Light regions indicate positive values, dark regions
negative values. The sequence of the maps is according to the diagram. The flow

is from left to right.
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1.3.3 context

The first digital PIV application at high image density known to the author was by He
et al. (1984). They took direct digital images from a densely seeded, steady laminar flow
in a rectangular tube. Subsequent images were analyzed using a template-matching ap-
proach: subimages of the first image were cross-correlated with the entire second image.
Kimura & Takamori (1986) applied the same template-matching method to PIV images of
the wake region behind a circular cylinder. These precursive developments to digital PIV
were limited to simple flows, in which demands for high spatial and temporal resolution
and accuracy were not essential.

Independent of the development of digital PIV by the author, Willert & Gharib (1991)
developed a similar digital PIV method. Their aim was to come up with a method with-
out the directional ambiguity that is inherent to PIV applications with double-exposure
images, whereas the aim of the author of this thesis was to come up with an essentially
faster method. Instead of an auto-correlation method Willert & Gharib implemented
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Figure 1.9: The position (left) and strength (right) of a vortex structure in Fig. 1.8. The solid lines are
linear least-squares fits to the experimental data. The dashed line in the left graph would represent the
position of an object that moves with the mean flow velocity.

a cross-correlation method between two single-exposure frames as was suggested by Cho
(1989); see Sect. 1.2.2. They subsequently applied their method to the temporal evolution
of a vortex ring. The time scale of this low-speed flow could easily be resolved by the
frame rate (30 Hz) of their video system. An interesting aspect of their work was that
they introduced a new type of estimator for the centroid of the displacement-correlation
peak, namely the Gaussian peak-fit estimator. They demonstrated that this estimator
yielded an absolute measurement accuracy better than 0.1 px, whereas the conventional
estimation method (i.e. center-of-mass estimator) yields an accuracy of only 0.3-0.4 px
(Prasad et al. 1992). This was quite remarkable, and showed that earlier estimates of the
expected measurement accuracy for DPIV (i.e. interrogation with low pixel resolution),
based on the assumption that the relative measurement error is inversely proportional to
the pixel resolution, were too pessimistic. Obviously interrogation with low pixel resolu-
tion requires a different type of estimator than interrogation with high pixel resolution.
The accuracy claimed by Willert & Gharib implied that measurements of the displace-
ment with interrogation regions of only 32x32 pixels could yield a relative accuracy close
to 1%, which is also found in interrogation analysis with high pixel resolution in OPIV
(Prasad et al. 1992). The conclusion that a reduction in pixel resolution by a factor 82
practically does not affect the measurement accuracy was generally received with scepsis.
Although it was welcomed by those who believe in digital PIV, it is necessary to solve
this controversy in order to accept digital PIV as a feasible alternative for OPIV. This is
one of the problems that will be addressed in this thesis.
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Figure 1.10: The four stages in image and data analysis in (digital) PIV.

1.4 Outline of this thesis

In this chapter we have seen that particle image velocimetry is a new experimental tech-
nique that reveals the instantaneous spatial structures in turbulent flows. However, the
conventional implementation of PIV is not suited to investigate large sequences of data
which would be required to investigate also the dynamics or statistics of coherent struc-
tures. An alternative implementation, denoted as digital particle image velocimetry, was
developed, which is expected to meet this requirement. So, the main aim of this thesis
can be more specifically defined as to establish the necessary theoretical basis and practical
verification to justify this expectation.

The remainder of this thesis is divided in two parts. The first part consists of four
chapters, which describe the four stages in image and data analysis in (digital) PIV as
shown in Figure 1.10. In Chapter 2 we review the relation between tracer particles in a
flow and their respective images, and how a statistical analysis yields the velocity field.
This theory is extended in Chapter 3 to include the aspect that we are actually dealing
with digital images. We will use this theory to investigate different estimators to yield
optimal results as function of the digital resolution. Chapter 4 describes the validation
procedure that is required to remove spurious data from PIV results. In Chapter 5 it is
described how we can extract information from this data that is related to coherent flow
structures.

Part II consists of applications of PIV to turbulent flows. In Chapter 6 a test mea-
surement in grid turbulence with digital PIV is described. The remainder of Part II
(Chapters 7, 8 and 9) consists of three papers describing a comparative study of fully de-
veloped turbulent pipe flow carried out with direct numerical simulation and both OPIV
and DPIV.

This thesis concludes in Chapter 10 with a summary of the main results and conclu-
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sions from the preceding chapters. In addition we focus on the (expected) future devel-
opments with respect to digital particle image velocimetry and its further application to
the investigation of coherent flow structures in turbulent flows.
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Chapter 2

Statistics of PIV Images

Abstract. In PIV a flow is seeded with small tracer particles that are illuminated by a
thin light sheet. The in-plane fluid velocity in a planar cross-section of the seeded flow can
be obtained from the cross-covariance of two subsequent images recorded with a given time
delay. A relation between the statistics of the tracer particles and the statistics of PIV
pictures is established for the case of an incompressible flow that is seeded homogeneously
with ideal tracer particles. It is shown that the displacement field for the tracer particles
in a certain time interval can be reqarded as a low-pass filtered representation of the flow
velocity field.

2.1 Introduction

Optical flow diagnostics are based on the interaction, i.e. refraction, absorption or scat-
tering, of (visible) light with inhomogeneous media. In this thesis we restrict ourselves to
incompressible flow of constant density fluids, which are effectively homogeneous at the
scale of the wavelength of light. Hence there is no significant interaction of the incident
light with the fluid, such as refraction by density variations, by which we can retrieve
information of the flow velocity field (except for molecular scattering which is very weak
under normal conditions, viz., at room temperature and atmospheric pressure). We are
therefore forced to add small tracer particles to the fluid that act as scattering sites for
the incident light field. Provided that these tracer particles are ideal (see Section 2.2)
the local flow velocity is obtained from the displacement of the tracer particle in a given
time period. We may regard this as the basic principle of velocity measurement by the
technique of quantitative flow visualization with tracer particles.

In this chapter we discuss and review some of the basic principles of this technique,
as shown in Figure 2.1. In Section 2.3 we take a closer look at the relation between the
displacement of the tracer particles and the underlying flow field. The tracer particles
can in fact be viewed as an observable pattern that is tied to the fluid (Section 2.4). The
tracer particles are randomly distributed over the flow, so that the tracer pattern is also
a random quantity. In Section 2.4 we discuss the ensemble of all realizations of the tracer
pattern for a given flow field, and evaluate the statistics of this tracer pattern. The tracer
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Figure 2.1: The subsequent stages of image acquisition in PIV.

pattern is observed in a planar cross section of the flow by illumination of the tracers
with a thin light sheet. Pictures of the tracer particles are observed in the image plane
of the lens; in Section 2.5 we review some relevant aspects of the optical system, and in
Sections 2.7 and 2.8 we relate the statistical properties of the observed particle images
to the statistics of the tracer pattern. We conclude this chapter with a discussion of this
theoretical analysis of the measurement of flow velocity fields from flow visualization with
tracer particles (Section 2.9).

2.2 Ideal tracer particles

The tracer particles that are added to the fluid (or that may already be present in the
fluid) should follow the motion of the fluid exactly. In addition they should not alter the
flow, and also should not interact with each other. In that case the tracer particles are
said to be ideal. In a practical situation we can only approzimate this ideal situation. We
should not only consider the dynamical response of the tracer particles with respect to
the fluid motion, but also their light scattering characteristics. These two aspects impose
somewhat conflicting demands on the tracer particles; small particles cause a smaller
distortion of the flow than large particles, while on the other hand large particles scatter
light more efficiently.

There is an abundance of literature that deals with the behaviour of particles in fluids
and that deals with the scattering of light by (small) particles (Mie scattering). Emrich
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(1981) gives an overview of the dynamical response of particles in fluids, and see Kerker
(1969) for further details with respect to the scattering of light. For practical compu-
tations of light scattering properties of particles (with respect to PIV applications) see
Adrian & Yao (1985) and Smallwood (1992). Practical information on a choice of seed-
ing materials is given by Emrich (1981) and Oertel & Oertel (1989). Let us here briefly
review some general considerations that are important when one selects the seeding for
an experiment.

The efficiency of the light scattering is determined by the difference in index of refrac-
tion for the fluid and the particles. In gas flows seeded with solid or liquid particles, or in
liquid flows seeded with gas bubbles, we have efficient scattering of light. However, the
large relative difference in density between the fluid and tracer particles (about a factor
10%) requires that the diameter of the particles must be very small (~1 gm) to assure a
proper tracking of the fluid motion. This cancels the favourable scattering properties of
the particles. Buoyancy effects can be neglected when the response time of a particle to a
sudden change of the fluid velocity (Emrich 1981) is smaller than the smallest time scale
of the flow.

On the other hand, in liquid flows we can use solid particles that are almost neutrally
buoyant. In general this assures good tracking performance of the particles. However, the
difference between the refractive indices of liquids and solids are generally quite small, so
that relatively large particles (~10 gm) are required to yield sufficient scattering. Large
particles have a stronger mutual interaction or a stronger influence on the flow dynamics.
Obviously, the dynamics of turbulent flows is altered when seed particles have a diameter
that is comparable with the Kolmogorov length scale. We have seen in Sect. 1.1 that this
scale in laboratory-type flows is about 100 gm.

In general it should be possible to keep the non-ideal behaviour of tracer particles with
respect to the fluid motion within acceptable limits, i.e. within the experimental error
for the measurement of the displacement (see Table 1.2). We therefore will consider the
tracer particles as ideal for the remainder of this thesis.

2.3 The displacement field

The displacement field 5()-(. ;t',t") is defined as the distance traveled by a tracer particle
initially located in X in a time interval At =¢"—t' by the flow velocity field #(X,¢), and
is given by

tll
DXt 1") = / 5 [X(0),1] dt (2.1)
tl
for ideal tracer particles. Note that from the displacement field one can only obtain

information about the average velocity field along trajectories traversed in a time At.
Thus, D can not lead to an exact representation of ¥, but approximates it within an
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€error &:
|D(X;t,¢") - 5(X, )AL <6, with ¢<t<t. (2.2)

Effectively, D may be regarded as a low-pass filtered representation of ¢, by which we can
only observe phenomena that occur over a time interval which is longer than At and a
that have a spatial extent that is larger than the absolute displacement || D).

We only obtain information from those positions at which tracer particles are located.
In other words, displacements of individual tracer particles constitute a random sampling
of the displacement field. Since the particles are randomly distributed over the flow, differ-
ent realizations yield different estimates of D. Obviously we can neglect these differences
as long as the reconstructed displacement field satisfies Eq. (2.2). This implies that we
should sample the displacement field at a density that matches with the smallest length
scale of the spatial variations in D, which is proportional to || D}|. In other words, the av-
erage distance between tracer particles should be smaller than the particle displacement.
Recall from Sect. 1.2 that this corresponds to situation with high image density. Hence it
is demonstrated that particle tracking velocimetry (in which the average distance between
distinct particle images is usually larger than the displacement) in general cannot fully
resolve the displacement field.

2.4 The tracer pattern

We have seen in Section 1.2 that it is not possible to identify corresponding particle-image
pairs unambiguously in double-exposure PIV images at high image density. Instead we
use a statistical analysis to yield the displacement field.

Let us consider the tracer particles as a pattern that is “tied” to the fluid; the motion of
the flow is visible through the motion of the tracer pattern. We define the tracer pattern
in X at time t as v

G(X,t) =Y 6[X - Xi(t)] (2.3)
i=1
where N is the total number of particles in the flow, 6()-(. ) denotes the Dirac é-function
and X;(t) the position vector of the particle with index i at time ¢. The integration of
G(X, t) over a volume yields the number of particles in that volume.

Since the tracer particles are randomly distributed over the flow G(X,t) is a random
field. This implies that each realization of the tracer pattern yields a different sampling
of the displacement field. Following Adrian (1988) we consider the ensemble of all pos-
sible realizations of the tracer pattern for a given flow field, and evaluate the statistical
properties of the tracer pattern. The tracer ensemble and the statistical properties of
the tracer pattern are discussed in more detail in Appendix A.2. There we show that a
homogeneous distribution of tracer particles in the case of an incompressible flow remains
homogeneous (in space and time). This allows us to determine the statistics of the tracer
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G(X,t)y —| %X t) | — GX,

Figure 2.2: The velocity field a()Z ,t) is viewed as a black-box system that acts on the tracer pattern
G(X,t') at the input to yield the tracer pattern G(X,t") at the output.

pattern in a straightforward way. We will now show how these statistics are related to
the velocity field.

Consider a particular realization of the tracer pattern at times t and ¢/, with t' <",
denoted by G’ (X ) and G'"(X ) respectively. For a given flow field the displacement of an
(ideal) tracer particle in a time interval ¢ —¢' located in a position X at time ¢’ is given
by the displacement field D(X;#, "), defined in (2.1). Hence, the relation between G'(X)
and G”(X) under action of ﬁ()z,t) is a shift over 13()?, t,t”). In a sense we can consider
the flow as a “black-box” system that acts on a random field G’()-(:) at the “input” to yield
the random field G"(X) at the “output”. This is depicted in Figure 2.2. We previously
assumed that the tracer particles are ideal (see Sect. 2.2), which implies that they do
not influence the flow and do not interact with each other. In other words, including or
deleting a particle from G(X t) has no effect on the other particles. This implies that we
can consider the “system” in Fig. 2.2 as linear in G(X, t). By analogy with linear systems
analysis (see Appendix A.1) we can determine the displacement field that corresponds to
the observed flow field by evaluation of the cross-covariance function of the random fields

G'(X) and G"(X). This function is defined as
Rog (X', X") = (G'(X)G"(X") ~ (G'(X)G"(X")) (24)

where (---) denotes the ensemble average. In Appendix A.3 we use the statistics of the
tracer particles in an incompressible flow, derived in Appendix A.2, to evaluate the first
and second order statistics in (2.4):

GEX) =GR =C (2.5)

(G'(X)G"(X") = C8|X"— X' = D(X';¢,t")] + C*. (2.6)

where C is the number density of the tracer particles in the fluid. If we substitute these
results in (2.4) we obtain

Rea(X', X"y = C6[X"- X'~ D(X';t,¢")]. (2.7)

Note that the displacement field appears as a shift in Rgg. The displacement field in
(2.7) disappears for # =¢". In that case Rgg is shift-invariant, which implies that the
tracer pattern is a spatially homogeneous random field. The cross-covariance function for
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G(X,t) and G(X,t") on the other hand is not necessarily shift-invariant, due to the spa-
tial variation of the displacement field. We could proceed with our analysis, taking into
account that the displacement field depends on X' explicitly. However, we can simplify
the analysis considerably in case of a “locally” homogeneous displacement field. Let us
have a closer look at the effect of a (weak) spatial variation of the displacement field over
a small volume.

Roc(X' X" Rac(X-X)

-X'n_xx

Cp'X"-X")

VX

a b

Figure 2.3: (a) Schematic representatlon of the integration of the cross-covariance (Rgg) of the tracer pat-
tern over a small volume §V(X"). (b) Due to the spatial variation of the displacement field (D(X;1',1"))
the 6-function in Rgg is replaced by the distribution function (p'(X” — X')) of the local displacement
field; see text.

The integration of Rgg(X',t'; X", ") over a small volume §V(X') is depicted in Fig-
ure 2.3. (Note that the axes X" and X"—X' actually represent three-dimensional spaces.)
The peak in the covariance function is broadened due to the spatial fluctuations of the
displacement field over the integration volume; see Fig. 2.3b. In practice, the spatial dis-
tribution functxon of D(X";t/,t") over § V(X'), indicated by p'( X), replaces the é-impulse
in (2.7), 1.

wa(X"'~X') = Co(X"-X) (28)

where the prime for Rgg and p indicates the averaging over 6V(/\7 ). The local mean
displacement, denoted by IV, is given by

b= [ BOR;t,p(Rr-X)d(X" - R) (2.9)
sV(X1)
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(again the prime refers to a spatial averaging over §V(X')). We now associate §V/(X’)
with the measurement volume for which we want to measure the flow velocity (viz., tracer
displacement). Again consider the relation between the velocity field #(X, t) and the dis-
placement field D(X;#,1") given in (2.1). There we noted that the displacement field is
a low-pass filtered representation of the corresponding velocity field. As a direct conse-
quence the displacement field is strongly correlated over a length scale that is proportional
to the magnitude of the displacement; see Figure 2.4. This implies that the spatial vari-

R (s)

Figure 2.4: The (one-dimensional) auto-covariance of a turbulent velocity field (solid line) as function
of the separation s. The dashed line represents the auto-covariance of the corresponding displacement
field. The arrows represent the integral length scale of the velocity field (£, ) and the filter length (£.)
associated with the displacement field; see Eq. (2.2).

ation of D(X';',t") over §V(X’) is negligible provided that §V1/3 = O(|| D). For a
(nearly) uniform displacement we have

P(X"-X") ~ §(X"-X'- D). (2.10)

(If we substitute this in (2.9) then we find D'~ 5(/‘?'; t',t"); in other words, p’ can be
viewed as a pseudo §-function (Priestley 1992) with respect to the displacement field.)
In the following sections we will therefore consider Rgg for t” # ¢’ as a shift-invariant
function that consists of a §-impulse shifted over D', viz.

Reo(X', X"y m Rp(X"-X') = C[X"- X'~ D] . (2.11)

In the remainder of this thesis we assume that we are dealing with a displacement field
that can be considered as locally uniform; see also Sect. 2.9. In that situation we can

'Here we have implicitly assumed that the displacement field is also isotropic, which is not the case
where we have a strong velocity gradient perpendicular to the flow direction, like e.g. in the near-wall
region of a boundary layer flow. We will return to this situation in Sect. 2.9.
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use the expression in (2.11) for the cross-covariance function of the tracer pattern, and
consider the cross-covariance as homogeneous.

2.5 Optical system

In Figure 2.5 is shown a schematic representation of the light sheet and optical system for
imaging tracer particles in a planar cross section of a flow. We assume that the system
consists of an aberration-free, thin circular lens with a focal length f and a diameter D.
The object distance Z, and image distance zg satisfy the geometrical lens law:

11 1

— === 2.12
Zo = f 212
with the image magnification defined as:
20
=—. 2.1
M=2 (213)

The particles in the object plane are illuminated with a thin light sheet of thickness AZ,
from a coherent light source (viz., a laser) with wavelength A\. We assume that all observed
particles are in focus. This condition is satisfied for AZq less than the object focal depth
67, given by (Adrian 1991):

6Zz4(l+i)2f2’\ (2.14)

M) D*
The intensity I,(X,Y, Z) of the light sheet is assumed uniform in the X and Y directions
within the observed area. Hence, we may write

L(X,Y,2) = I,(2) (2.15)

where I,(Z) is the light-sheet intensity profile perpendicular to the object plane. For a
laser light sheet I,(Z) is typically a Gaussian profile

1(2) = Irexp[~8(2 — Zo)*/AZ]) (2.16)

where Iz is the maximum intensity along the Z-direction. Note that A Z, for the Gaussian
profile is defined by the 1/e? intensity.

In the optical system described here the relation between the complex amplitude field
Uo(X,Y) in the object plane and the complex amplitude field U;(z,y) in the image plane
for coherent illumination is (Goodman 1968):

Ui(z$y) = h(!l,‘,y) * Ug(I,y) (217)
with

Ug(a,y) = %Ua (—%—%) (2.18)
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Figure 2.5: Schematic representation of the imaging set-up in PIV.

where h(z,y) is the diffraction limited (amplitude) impulse response of the optical system,
the symbol * represents the convolution integral and U,y(z,y) is the geometrical optics
prediction in the paraxial approximation for the complex amplitude in the image plane.
The signal field f(z,y), i.e. the optical density of a film negative or the electric charge
collected with a CCD sensor, is proportional to the image intensity field I(z,y), viz.

f(z,y) ~ I(z,y) = [Ui(z,y)[. (2.19)

For CCD’s the collected charge is directly proportional to the incident light intensity; for
photographic material this relationship is that of a power-law (Oertel & Oertel 1989). In
both cases the conversion from f to I, and vice versa, is trivial. We therefore deal directly
with the image intensity for the remainder of this thesis.

In the Gaussian approximation of h(z,y) (see Appendix A.4) the image diameter d;
of a small circular object with diameter d,, is given by

di ~ M’d; + d2. (2.20)
where d, is the diameter of the Airy pattern (see Appendix A.4), given by:
/\20
r2.44—. 2.21
ds = 2.44 D (2.21)

In Figure 2.6 is given the diameter of the diffraction limited image of a disc with diameter
d, as function of Md, (its geometrical image diameter). For comparison we also plotted
the image diameter predicted according to the Gaussian approximation in (2.20).
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Figure 2.6: The image diameter (d;) as function of the geometrical-optics diameter (Md,) normalized by
the diffraction-limited spot diameter (d,). The dotted line represents the actual image diameter, and the
dashed line the diameter according to a Gaussian approximation.

2.6 Images from seeded flows

The optical system described in the previous section is linear in the (complex) amplitude
field. Thus, we may write the complex amplitude field U;(z, y) in the image plane as:

Ui(z,y) = Zk:Ak(a:,y). (2.22)

where Ai(z,y) is the amplitude field due to a particle with index k. We assume that the
tracer particles in the flow are identical, with a diameter d, that is small with respect
to AZo. The absolute amplitude of Ax(z,y) is then proportional to I!/2(Z;), given the
position X} = (X, Y, Zi) of the particle. It is clear that only particles with |Z; — Zo| <
AZp make a significant contribution to U;(z,y). Also, we may consider these particles in
focus (provided that §Z > AZp) which implies (in the paraxial approximation) that their
corresponding images all have equal diameter, independent of their position. As a result
we may write Eq. (2.22) as:

Ui(z,y) = 3 I} Zy)a(e — M Xy, y— MY;)e =9 (2.23)
k
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where ixa(z, y)normalized amplitude field of a tracer particle ((ampfld)) is the (normal-
ized) amplitude field of a tracer particle given by Eqs. (2.17-2.18), and ¢,(z,y) an addi-
tional phase term that depends explicitly on & (viz. )2;,) The image intensity field I(z, y)
is according to Eq. (2.19) given by:

I(z,y) = 3 5 I/ Z) I (Zi)ara; cos [¢r(2, y) — i, y)] (2.24)
k1

with a;=a(z—MX;,y— MY;) and where a} denotes the complex conjugate of a;.

The appearance of I(z,y) depends on the concentration of tracer particles in the light
sheet. The source density Ns, due to Adrian (1984), is a dimensionless quantity defined
as

7 d?
4 M?
where C is the number of tracer particles per unit volume, and d; the particle-image
diameter. A distinction is made between two image modes, determined by the value of
Ng: At low source density (Ns < 1) the average distance between particles is much larger
than the particle-image diameter, and thus the image consists of isolated particle images.
On the other hand, at high source density (Ng>> 1) particle images overlap; For coherent
illumination the resultant image is a random interference pattern, better known as speckle.
These modes are commonly referred to as the particle-image mode and the laser-speckle
mode respectively. For the analysis of the images discussed here we will only consider the
particle-image mode. This restriction is merely practical, and for two reasons: First, the
particle-image mode is most common, since true speckle images require high concentra-
tions (which may lead to undesired effects, like e.g. two-phase flow effects; see Adrian
1984). Secondly, restriction to low source density allows us to find a straightforward re-
lation between the tracer pattern G(X,t) and particle-image pattern, that will be given
below. However, for an analysis that applies to speckle images refer to Goodrnan (1984).

Ns = CAZy~ (2.25)

At low source density (Ns < 1) particle images do not overlap. Hence all cross terms
n (2.24) vanish, viz., axa} ~0 for k#! and (2.24) reduces to

I(z,y) = 21 Zi)t(x — M X,y — MY}) (2.26)

with t(z,y) = |a(z,y)|% This result is identical to the image field that would be obtained
for incoherent illumination (Goodman 1968). We may write Eq. (2.26) alternatively as

I(z,y) = Izt(z,y) * 9(z,y) (2:27)

with 1
ny) =1 ; 1,(Z1)6(z — MXy,y — MY) (2.28)
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where g(z,y) is referred to as the particle-image pattern. The relation between g(z,y)
and G(X) is obviously given by

o(z,p) = M, 5 126 (L. 7) az (2.29)

Note, by analogy with G(X,Y, Z), that the integral of g(x,y) over a given area yields the
(non-integer) number of particle-images in that area.

2.7 Ensemble statistics of PIV images

With the relation between the particle-image pattern g and the tracer pattern G given in
(2.29) we may now find the first and second order statistics of the image field I(z,y), given
the first and second order statistics of the tracer pattern. We first consider the ensemble
average and ensemble auto-covariance function of I(z,y). Then we consider the ensemble
cross-covariance of two realizations I'(x,y) and I”(z,y) at times ¢’ and ¢” respectively.

average

Using (2.27), we can simply express the ensemble average of I(x,y) in terms of the en-
semble average {g(z,y)) of the particle-image pattern:

(I(z,y)) = (Iz t(z,y)* 9(z,y)) = Iz t(z,y) * {9(z, y)). (2.30)
The ensemble average of g(z,y), defined in (2.28), is easily found:

won) = (3 [0 (2. 2.2)az)
- 5/ (e G d))

- (0 (i 2)) [ #ae

1
= p0az (2.31)

with 1
AZ = / 1(2)dz. (2.32)

For the Gaussian profile in (2.16) we have AZ’'=0.63AZ,. Substitution of (2.31) in (2.30)
yields

(I(z,y)) = IztoCAZ’ (2.33)

with

to = / /t(:c, y)dady (2.34)

cf. Adrian (1988). Note that (I(z,y))} is space and time invariant.
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auto-covariance

The ensemble auto-covariance of I(z,y) is defined as

R[(fl’l, yl’ l'”, yll) - (I(.’l”, y’)[(l’”, yll)) — (I(.’L”, yl))(](xll’ yll)>' (235)
Use (2.33) to rewrite the second term on the right-hand side as
2

(I, I 3") = [ 1steCAZ] (2.36)

and hence the second order statistics {I(z’, y’)I(z", y")) remains to be found. Substitution
of (2.27) yields

(I, ) (2",y") = I(t(2",y") g2’ ¥) - (2", y") * (2", y")) = (2.37)
]Z/ Ha'—u',y' =o' f t(z"—u",y" —o"){(g(u', v")g(u", v"))du'dv du" dv”
We first consider the second order statistics of g(z,y):

(g(x,v")g(w",v"))

_ <XJ14_12 / IO(Z’)I,,(Z")G( Y ,Z’)G( , ,Z”)>dZ’d "

1
<

I
|
=l
<

- Mm/ 1.(2)1.(2") <G(“l,"1, )G(%,%,Z”)>d2'd "
- MU? /1 (Z')1,( z"){ca [“A;“ VIV g z’]+02}d2dz"
- M4 T [ [z dZ] Co(u" !, v”—v')+m [/L,(Z)dzrcﬂ
- —MjAZ”Cé(u =) + %cz(Az')2 (2.38)
with ]
AZ'= 5 / 12(2)dzZ (2.39)

cf. Adrian (1988). The value of AZ" for (2.16) is equal to 0.44AZ,. Now substitute
(2.38) in (2.37):

(I, y)1(z",y")) =

12
— Vi//t(w'—u',y'—v') //t(zll_ull’yll_vh' .

{AZ”C& (u"—' 0" ') + CHAZ') } du'dv’du”dv”
= [f/i —u, Yy —v)t(z" =, y"—v’)du"dv'] CAZ" +
= [/t(u,v)dudv] C?

2
= IZ CAZ"tzFi -2y —y') + LIZtOCAZ' 2.40
Q M'z
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with
Fy(z,y) = / t(u, v)t(u+z,v+y)dudy. (2.41)

In the Gaussian approximation Fy(z,y) has a 1/e? diameter equal to dv/2, and a peak
value F,(0,0)=4/rd?. After substitution the second term in (2.40) cancels out with the
second term in (2.35), and what finally remains is:

Ri(z',y';2",y") = ILZCAZ"EFy(z" -2',y"~Y'). (2.42)

Note that the autocovariance of I(z,y), like its average, is shift and time invariant. In
other words, I(z,y) is also homogeneous in its second order statistics.

cross-covariance

We now evaluate the cross-covariance function between two realizations of /(z,y) at times
" and t”, indicated as I'(z,y) and I"(z,y) respectively. The ensemble cross-covariance
function of I'(z,y) and I"(z,y) is defined as

R}'}'(xl, yl; zll, yll) - (I’(.’E,, yl)I"(:t", y")) _ (Il(xl, yl))(lll(xll’ yll))‘ (2.43)

Note the similarity of this expression with that of the image auto-covariance given in
(2.35). Hence, the first part of the analysis is practically identical, i.e.:

' 1 1
(I, y") = [317002]
and by analogy with (2.37):

(Il(ml’ y')I"(:z:", yn)) — I% <{t(.’l'l, y/) * gl(xl’ yl)} . {t(x", yll) * g”(:t”, yn)}) =
I% //t(xl_ul, y/__vr)/ t(x"—u", y”—v")(g'(u', v')g"(u", v"))du’dv'du"dv". (2.44)

Consider the second order joint statistics of ¢’(z,y) and ¢g”(z,y):

( I(ul UI) ll(ull vll))

’ " "
- s i (o 5o 2) (5 ) wer
_ / II .
- .__M”% //L,(Z )1(2")
"_ ot "t
{05 u Mu —D’X, ’UM'U _ ;,,Z”—Z/—Dlz] +C2} dz'dz" (245)

with D' = (DY, D}, ;). Formally IV is a function of «/, v’ and Z’. In Sect. 2.4 we saw
that D may effectively be regarded as (almost) constant, which allows us to reduce (2.45)
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further to:
(gl(ul vl)g"(ull " )
7 J ; ’ v =0 Vi
- M“I” UI (Z)I,(Z'+ D )dz]ca[ = ¥ _ Dy, - —Dy] +
M4 e [/ 12 dZ]

= ——MCAZ”FO D%)é

[ 7 x, -D}, ]+—(J2AZ’2 (2.46)

with
Fo(Dy) = [ 1(2)1(Z + Dj dz//ﬁ 2)dz (2.47)

cf. Adrian (1988). The function (2.47) is interpreted as the loss of particle-image pairs
due to motion perpendicular to the plane of the light sheet (“out-of-plane motion”). We
subsequently substitute (2.46) in (2.44):

(II( l,yl)lll( II II))

= //tm v’y v)//t:t RTAN

{CAZ”FO(D’) [“—LD ”T_D' ] +C2AZ'2}du'dv'du"dv”
2
= ZCAZ'Fo(DY) [ [a'u o' )Ua" /- M Dl "M Dy )du'd
I% 2 2 ?
+—M—4~C AZ [/ t(u,v)dudv] . (2.48)

Again it should be mentioned here that DY and Dj are actually functions of ', v' and
Zo, but are considered here as constants. Then (2.48) further reduces to:

(Il(.'E,, yl)]l!(l'll’ yll))
12 , , I'Z ,
= MZZCAZ"FO(Dz)tgFt(x”_x'_MD;,,y"-y -MDy) + Vﬁg?gz 242,

If we substitute this result in (2.43) then again the second term in (2.49) cancels with the
second term on the right-hand side in (2.43):

IZ
Ru(e',y';2",y") = 7u%CAZ"FO(D'Z)tgln’,(ac"-ac'- MD'y,y"—y'—MD4)
= Fo(D%)Ri(z"—z'—MD,y"—y'—MDy). (2.49)
Thus the cross-covariance is (approximately) equal to the image auto-covariance, shifted
over a distance directly proportional to the in-plane displacement of the tracer particles

and with an amplitude proportional to Fp. This result shows that the in-plane displace-
ment of tracer particles in the light sheet is found by locating the centroid of Ry;.
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2.8 Multiple-exposure images

So far we have only considered the ensemble statistics of single-ezposure images. In general
however it is not always possible to record two (or more) subsequent images on separate
frames. This would require a frame rate of at least At~'. Practical values for At are
typically about a millisecond. In addition, recording images in individual frames is only
feasible provided that the relative positions of the subsequent frames match exactly. Al-
though equipment (both photographic and electronic) with sufficiently high frame rate
is available, single-exposure multiple-frame recording is not necessarily a desirable im-
plementation. Instead successive exposures are recorded on a single frame. We thus
implicitly assure a proper matching of the images, and reduce the need for a very high
frame rate. Actually, double-exposure single-frame (photographic) recording is presently
the most common implementation. Consider a double-exposure frame f(z,y):

f(z,y) = I'(z,y) + I"(z,y). (2.50)
Provided that the statistics of I' and I” are identical the average of f(z,y) is equal to
(f(z,y)) = 2(1). (2.51)

The auto-covariance and cross-covariance functions of I'(z,y) and I”(z,y) appear in the
auto-covariance function of f(z,y):

Bi(@',yia"y") = (I 9)+ 1", y)HI (" ") + 172", y"))

_ (I’(x,, y’)+I’l(zl, yl)) <I'(.’L‘", y”)+I”($”, yll))
2RI($”—$" yll_yl) + R]I(x’, yl; 1:”, yll) + RU(.’L‘", yll; ml’ yl)(2‘52)

Substitution of (2.49) for Ry, and subsequently s for ”-z’ and ¢ for y”-y’ in (2.52) yields
Re(s,t) = Ry(s,t) * {26(s,t) + Fo(D%)[6(s-sp,t-tp) + 6(s+sp,t+tp)]} - (2.53)

This last expression is exact for a uniform displacement field. Note that Rg(s,t) is sym-
metric with respect to the origin. It has two displacement correlation peaks in opposite
locations with respect to a central self-correlation peak. We can not determine the sign of
the displacement. This is usually referred to as the directional ambiguity. This may only
be a real problem for flows that are not unidirectional. Also, the presence of the central
peak prevents the measurement of small displacements, which may be a problem in appli-
cations where the mean velocity is small with respect to the rms fluctuating displacement.
In both cases we can overcome these problems by pre-shifting the first image relative to
the second image such that the images of the particle in the second exposure is always
on the same side with respect to the images in the first exposure. For more details on
applications of image-shifting techniques refer to Adrian (1986a), Coupland et al. (1987)
and Landreth & Adrian (1988).
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The average and covariance function for frames in which more than two exposures
have been recorded is obtained in the same way as shown in Egs. (2.50-2.53) for double-
exposure frames. Generalization of the expression for double-exposure frames from a
uniform displacement field given in (2.53) to P-fold exposure frames, with identical time
delays between successive exposures, yield

(fm(x,y» = P(I(.’l’, y)) (2.54)
and -
RP(s,0)= Y (P~ |pl)Fo(pDy)Ri(s-psp,t-ptp) (2.55)
p=—P+1

with P > 1. The main advantage of multiple exposure frames is that the number of
particle-image pairs is (P —1) times the number of tracer particles in the light sheet.
We therefore can use a lower concentration of tracer particles, while still yielding the
same density of particle-images on the PIV record. The different exposure sequences are
depicted schematically in Figure 2.7. However, for multiple-exposure frames the total

o’ o ®
=% //;;

P=1 P=2 P=4

Figure 2.7: Schematic representation of single-exposure/multiple-frame recording (P = 1; left), double-
exposure/single-frame recording (P = 2; middle) and multiple-exposure/single-frame recording (P = 4;
right).

“integration” time is equal to (P —1)At, which implies an additional smoothing of the
displacement field with respect to the velocity flow field; see the discussion following
Eq. (2.1). Keane & Adrian (1993) carried out an extensive study, using Monte Carlo
simulation, in which they compared the performances of the image analysis of single,
double and multiple exposure frames. Their study showed that single-exposure/multiple-
frame recording has the best performance? as function of the number of particle-images,
while double-exposure/single-frame has, in a relative sense, the worst performance. The
performance of multiple-exposure/single-frame recording with more than two exposures
has a better performance compared to double-exposure recording, but here the advantage
(viz., improved data-yield) should be weighed against the disadvantages (viz., extended
integration time).

2Here the performance refers to the valid-data yield; this quantity will be further explained in
Sect. 3.6.4 and in Chapter 4.
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2.9 Annotations

In the preceding sections we have established the relation between the statistics of the
PIV images and the tracer particles in the flow. We have made several assumptions and
idealizations of the situation. In this final section of this chapter we review these assump-
tions and idealizations, and take into consideration the scope of their validity. Besides,
we compare the present results with those obtained by Adrian (1988).

¢ The result in Eq. (2.49) is valid for ideal tracer particles in incompressible flows. We
have subsequently assumed that the displacement of the tracer particles is locally
uniform. This implies that the velocity gradients and the motion of the fluid at the
scale of the measurement volume must be negligible.

¢ In the case of non-ideal behaviour of the tracer particles the fluid motion is not
exactly followed. This implies that the distribution of the tracer particles is not
homogeneous, but depends on the underlying flow field (see Appendix A.2). For
example, the inertia of particles with a density that is higher than that of the
density of the fluid will expel these particles from vortex cores, while particles with
a lower density (e.g. tiny air bubbles in water) are caught in low-pressure regions,
such as occurs in vortex cores. In these situations the velocity field is no longer
sampled independently from the flow field; regions with a high local concentration
of tracer particles will make a larger contribution to the measured displacement
than regions with a low local concentration. As a result the measurement is biased
towards velocity regions with a high density of tracer particles. The same effect
applies to compressible flows, in which the fluid density is related to the velocity
field. Besides that, many compressible flows (i.e. transonic flows) contain strong
and abrupt changes in the velocity and density fields (shock waves) which imply
strong demands on the tracer particles.

In general the effects as a result of non-ideal behaviour of tracer particles in com-
pressible flows are small and can be neglected as long as the deviations from ideal
behaviour are small with respect to the measurement error for estimating the cen-
troid of the displacement correlation peak. This error will be estimated at about
one percent (see Table 1.2), and will be discussed in more detail in the next chapter.

e In Sect. 2.3 it has been made plausible that the local variations of the displacement
field under general conditions are negligible, because of the spatial filtering that is
implied when the velocity field is obtained from the measurement of the displace-
ment in a finite time interval. Strong local variations of the displacement field can
occur when (a) the integration time and displacement are large compared to the
Kolmogorov time and length scales of the turbulent flow, or when (b) there is a
strong velocity gradient perpendicular to the streamwise direction of the flow. As a
result the displacement distribution function over the measurement volume, intro-
duced in (2.8), may have non-negligible width and may also change its shape. This
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can be neglected provided that the width of the distribution function is small com-
pared to the width of the displacement-correlation peak. Let us illustrate this with
an example. Suppose that we have particle images with a diameter of 25 ym, and a
particle-image displacement of 250 ym. In the Gaussian approximation the width
of the displacement-correlation peak is about 35 pm. Hence, local fluctuations of
the displacement that are less than about 15% (~35/250) of the (local) mean dis-
placement are negligible with respect to the width of the displacement-correlation
peak. Let us evaluate the effects of local variations of the velocity field mentioned
above under (a) and (b) respectively.

Turbulent fluctuations of the velocity field over short distances are usually very
small, and at the most only a few percent of the local mean displacement (see
also Chapter 4). The effect of the low-pass filtering is that part of the turbulent
fluctuations are not resolved; see Fig. 2.4. This can be neglected if the defect
is smaller than the measurement error for the estimation of the centroid of the
displacement-correlation peak.

For near-wall turbulent flows strong variations in the displacement field due to spa-
tial velocity gradients are evidently the strongest in the viscous sublayer and buffer
region (see Sect. 1.1.2). Let us consider a numerical example to determine the
extent of the region where we can expect serious deviations from the idealized be-
haviour. Consider a measurement volume (viz., interrogation area) with a diameter
AY. In the viscous sublayer and buffer layer of a turbulent pipe flow the variation
of the mean axial velocity () over a distance AY along the radial direction (Y) is
approximately given by (for #/Y ~ constant)

du AY AY

Y w Y
Suppose that we measure the velocity with a spatial resolution of AY*t =4 (see
Part II) then the variation of the mean velocity gradient can be neglected (i.e.
AY/]Y < 15%) for radial distances Y+ > 25. Thus only very close to the wall we
can expect serious deviations from the expected behaviour as a result of velocity
gradients in a near-wall turbulent flow. (Thus for measurements in the viscous
sublayer and buffer layer it would be necessary to have a spatial resolution AY «4.)

Even with relatively strong velocity gradients it may still be possible to detect a
displacement-correlation peak. It appears that for a finite size of the interrogation
region the measured velocity is biased towards low velocity. (For more details see
Adrian (1988); this is also discussed in the next chapter.) Hence, qualitatively the
measured displacement from regions with strong velocity gradients can be considered
as a low-pass filtered representation of the observed flow field; the problem however
is how to interpret the measured displacement quantitatively. This aspect is left
untouched here (we only deal with weak velocity gradients), but further investigation
is required.
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e At the beginning of this chapter we mentioned that the relation between the statis-

tics of PIV images and the velocity of the flow has been derived previously by
Adrian (1988) for double-exposure images; see also Keane & Adrian (1990). Later
this work was further extended to include also multiple-exposure images (Keane &
Adrian 1991), and single-exposure/multiple-frame images (Keane & Adrian 1993).
Let us compare our results with these previously obtained results.

For double-exposure PIV images Adrian finds that the mean covariance function
consists of four terms: a self-correlation peak (Rp), two displacement-correlation
peaks (Rp+ and Rp- respectively) on opposite sides of Rp and a term R¢ due to
the mean image intensity. Obviously the term Rp corresponds to Rj(z,y) (2.42),
and the terms Rp+ and Rp- correspond to Ryi(z,y) and Ryr(—z, —y) respectively.
The term R¢ does not occur in our final results for the image auto-covariance and
cross-covariance, but appears to correspond to Eq. (2.36); the estimator for the
image covariance considered by Adrian only involves the second-order statistics of
the image intensity. This has an obvious reason: in Young’s fringe analysis the non-
diffracted interrogation beam is superimposed on the fringe pattern. As a result
there appears an extra term in the image covariance function.

The main difference with the approach followed here and that by Adrian is that
Adrian departs from a particular estimator for the image covariance and relates
its statistics to that of the tracer particles, whereas our point of departure in this
thesis is the tracer pattern from which we deduce the statistics of PIV images. Hence
Adrian describes the ensemble statistics for a spatial average, while here the result
is expressed as a two-point ensemble average. These two descriptions are closely
related. However, it appeared that the latter approach (described in this chapter)
is a more convenient point of departure for including the discretization of the PIV
images. After that, a spatial-average estimator, based on discrete image samples
(viz., pixels) will be introduced. These latter points will be further dealt with in
the next chapter.



Chapter 3
Digital Analysis

Abstract. A relation is derived between the statistics of continuous PIV images and
digital PIV images. In conventional PIV analysis the sampling rate in the interrogation
area matches the optical bandwidth of the PIV imaging system. It is demonstrated that
the minimum required sampling rate for PIV images is a factor 3-4 lower than the optical
bandwidth. This explains why a reduction in pizel resolution as applied in digital PIV has
little effect on the relative measurement accuracy. The performance of different estimators
for the particle-image displacement is investigated. It is found that the finite size of the
interrogation area yields a biased estimate for the displacement. The proposed correction
adequately compensates for this bias. It is demonstrated that interrogation with high pizel
resolution (conventional PIV) and with low pizel resolution (digital PIV) need different
optimal estimators for the particle-image displacement. The analytical predictions are in
good quantitative agreement with measurement results obtained from a linearly displaced
test image.

3.1 Introduction

In the previous section we have derived the relation between the statistics of PIV images
and that of the tracer particles in the flow. It was shown that the displacement field
can be obtained from the cross-covariance function of two subsequent images, usually
recorded in a single frame, with a time delay A¢. This function can be assessed indirectly
through the (optical) Fourier transform of the recorded images in the interrogation area
(viz., Young’s fringe analysis). Nowadays it is more common to digitize the images (either
directly, or from photographic records) and process the data numerically. As long as the
sampling rate is sufficiently high we may still use the continuous expressions for the second
order statistics given in the previous section. (Refer to Adrian (1988) for an analysis of
the statistics of PIV interrogation in the continuous domain.) However, the interrogation
analysis with high pixel resolution is relatively slow; to improve the processing speed we
have to use a lower pixel resolution. In a situation where we do not fully resolve the
bandwidth we can no longer disregard the influence of discretization on the statistics.

In this chapter we discuss the aspects related to the analysis of digital PIV images,
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Figure 3.1: The subsequent stages in the interrogation analysis of (digital) PIV analysis.

as shown in Figure 3.1. We first determine the relation between the (ensemble) statistics
in the continuous domain and those in the discrete domain (Sects. 3.2 and 3.3), and then
discuss the choice of the sampling rate (Sect. 3.5). We then introduce an estimator for the
(discrete) image covariance (Sect. 3.6), and derive the statistics of this estimator. This
result is subsequently used to investigate the behaviour of estimators for the centroid of
the displacement-correlation peak (Sects. 3.7-3.9). In Sect. 3.10 our analytical results are
compared with those from a test experiment, and in Sect. 3.11 we summarize the main
conclusions from this chapter.

3.2 Image sampling

The image I(z,y) is commonly discretized with an electronic imaging device (usually a
CCD) that “integrates” the light intensity over a small area, usually referred to as a
pizel. We assume that the device has a linear response with respect to light intensity (see
Sect. 2.5), and is made of square and contiguous pixels with area a%. Then the relation
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between the discrete image I;; and the continuous image I(z,y) is given by:

Lij = [ [pla-ia,y-ia)l(a,y)dedy (3.1)
where p(z,y) is the sampling function:

1/a% |z|<a/2, ly|<a/2

ple,y) = { 0 elsewhere (3.2)

Note that p(z,y) is symmetric in z and y (viz., p(z,y) =p(-z,-y)) and that [fp(z,y)dzdy
=1. We may now determine the statistics of the discrete PIV images, given the statistics
of the continuous PIV images.

i) = { [ fola-is,y-io)l(z,)dzdy)
[ [pla-ia,y-ia)i(z,y))dzdy
(I(2,9)) [ [o(z-is, y-js)dady = (I(z,9)) (33)

Thus, the average intensity of the discrete image field is equal to the average of the
continuous image field.

Following a similar procedure for the auto-covariance of the discrete image field, we
obtain

Rl gk, 1) = (Lijlig) — (Lij){Teg) =
= //p(:l:'—iA,'y'—jA)//p(:l:"—k’A,y"—jA)RI(.'l?’, y'; 2", y")da'dy'da"dy”  (3.4)

The auto-covariance function of I(z,v) is shift-invariant, so we can rewrite R;(z,y; 2", y")
as Ry(z"-z',y"-y'). If we subsequently substitute s = z"-z’ and ¢t =y"-y', and use the
symmetry property of p(z,y), (3.4) reduces to:

Rili,j; k1) = {®pp * Ry} (ka-ia,la-ja) (3.5)

with
@pp(s,t) = [ [p(z,v)p(s-, t-y)drdy. (3.:6)

If we substitute (3.2) in (3.6) then ®,,(s,t) is a quadrilateral pyramid with a base of 2a.
Note that Ry[i, j; k,1] is also a shift-invariant, which implies that the discrete image, like
the continuous image, is a homogeneous random field. For d;/a =0 the image covariance
Ry[r,s] is given by ®,,(s,t), i.e. the values of R[r,s| directly adjacent to [0,0] become
just equal to zero. But for all non-zero values of d;/a, like we have in practice, R[r, s]
covers more than one pizel. This property makes it possible to estimate the centroid of
the displacement at sub-pixel accuracy.
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The discrete cross-covariance function of two (discrete) images I ; and I}/, is defined
as:
Rn[iaj; k, 1] = (If,jlp’:/,t) - (Ii,.ijI’c,,l)' (3-7)

The relation between Ryli,j;k,1] and Ry(z’,y';2",y") is practically identical to that
between the discrete and continuous auto-covariance function given in (3.4):

R”[i’j;ka I] = (38)
//p(z'-z'A, y'-ja) //p(a:"-kA, y'-la)Ry(z', y's 2", y")dz' dy'dz" dy".

The main difference with (3.4) is that Ry;(z’,y’; 2", y") is in principle not shift-invariant.
However, like we have done before in our analysis, Ry/(z’,y'; z”,y") is considered approx-
imately as shift-invariant. We therefore replace the cross-covariance in (3.9) by (2.49),
and rewrite the integration variables:

Ruli,jik )= [[o(e,9) [ fol", 4"V Fr(Dz) (3.9)

Ri(ka-ia-z"+2'+MDx, la-ja-y"+y'+ M Dy )dz'dy' dz" dy"”

As a result, the integration variables in (3.10) only appear as differences, which allows us
to express Ryj[t,7; k,1] in a form similar to that of Ry[z,j;k,1] in (3.5). Hence,

Ruli,j; k1) = Fy(Dz) {®,p * Ri} (ka-ia—MDx ,la-ja-MDy). (3.10)

Note however that the displacements M Dx and M Dy are in general not integer multiples
of a, and therefore, unlike (2.49), we cannot simply express Ry[Z,j;k,1] as a copy of
Rilt, §; k, 1], multiplied by Fo(Dz) and shifted over (M Dx/a, MDy /a).

The expression in (3.10) is an important result that we will use frequently in the
remainder of this chapter. The (ensemble) cross-covariance between the images I’ and I”
represents the signal in our analysis. This quantity can be directly evaluated if we record
the images I’ and I” in separate frames, and subsequently apply a cross-covariance analysis
between corresponding interrogation areas in the two frames. We have seen in Sect. 2.8
that multiple-exposure imaging in a single frame is a more common implementation.
Provided that the displacement is large compared to the particle-image diameter (so that
the displacement-correlation peaks are well separated from the central self-correlation
peaks) we can easily identify and isolate the displacement-correlation peak. We therefore
only consider here the image cross-covariance.

3.3 Quantization

The step subsequent to image sampling is quantization, by which the image intensity I
is mapped onto a discrete variable /* that takes values from a finite set of numbers. The
most commonly used quantizer for digitization of images is an 8-bit uniform quantizer,
with zero memory (the quantizer output depends on the current sample at the input
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only). Let us briefly consider some aspects of quantization. For a review of quantizer
designs and their properties refer to Jain (1989).

Quantization is irreversible, and therefore introduces a distortion. The relation be-
tween the quantizer input and output can be written as

I=1"+¢ (3.11)

where ¢ denotes the quantizer noise. Consider a uniform quantizer, i.e. with equidistant
quantization levels. Provided that the number of levels is large with respect to the range
of the input signal, { has (approximately) a uniform distribution, with the following
statistics

E{(}=0 var{C} = f;¢* E{I(}=0 (3.12)

(Jain 1989) where g is the difference between two consecutive quantization levels. This
implies that I°® is an unbiased estimate of I, with

var{I*} < var{I}

by an amount given by var{(}. Furthermore, (3.12) implies that the quantizer noise is
uncorrelated with 1.

For an 8-bit quantizer the number of quantization levels is 256. Suppose that this
range is equal to 5 times the standard deviation of the image intensity (so that only a
tiny fraction of the pixels in the input image falls outside the quantizer range). Hence
the signal-to-noise ratio, defined as var{I}/var{(} (Jain 1989), for the quantizer noise
is approximately 45 dB. From this estimate we conclude that the quantizer noise for an
8-bit digitizer is negligible in practice.

3.4 Intensity statistics

In Section 2.6 we deliberately limited ourselves to low source-density images in order
to derive a relationship between the statistics of the tracer pattern in the flow and its
corresponding image. In this section we consider the probability density function of the
intensity. It will he made clear that, despite our earlier limitation, our results for the
statistics of the image from the previous sections also apply to high source-density images.

Goodman (1984) analyzed the intensity statistics of coherent light scattered from a
rough surface (viz., speckle patterns). Let us briefly review his results.

Consider a rough surface that is illuminated with coherent light. The surface is sub-
divided in small surface elements, that each scatter light. The amplitude at a given point
in the image plane consists of the superposition of contributions from different surface
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elements in the rough surface. If the surface roughness is large with respect to the wave-
length of the light, then the phase of the (complex) light amplitude from a surface element
is a random variable with a uniform distribution between 0 and 2x. The superposition
of complex amplitudes of all scattered light waves can be considered as a random walk in
the complex plane. By the central limit theorem it is found that the light amplitude is a
circular (complex) Gaussian random variable. From this it immediately follows that the
light intensity, which is the square of the amplitude, is a random variable with a negative
ezponential probability density function. This analytical result was verified experimen-
tally (Goodman 1984).

Now consider a pixel in the discrete PIV image. The equivalent area of a pixel in the
object plane is (a/M)?. In the paraxial approximation all tracer particles in a rectangular
tube of “infinite” length (viz., a length >> AZy, that is large enough to include all illu-
minated tracer particles) contribute to the light intensity in the pixel. Note that for any
finite A the number of scattering sites in this tube is infinite (or at least > 1), although
the tracer particles do not contribute to the total (pixel) intensity by an equal amount;
see Eq. (2.26). The tracer particles are distributed randomly over the flow. Hence, the
distance between tracer particles is also a random quantity, which implies that the phases
of the light amplitudes from different scattering sites are uncorrelated on average and
in general much larger than the light wavelength (implying phase excursions of many
times 27). These are the same conditions from which Goodman (1984) starts his analy-
sis. Therefore we may deal with the tracer pattern in the fluid as a “rough surface”, and
accordingly expect that the pdf for the light intensity at low source-density is also that
of a negative exponential distribution.

In Figure 3.2 is shown the histogram of the count of pixels per grey level as function
of the grey level (between 0 and 255) of a low source-density image (for more details refer
to Sect. 3.10.1). The solid line in this figure represents a negative exponential curve fit
to the histogram for the grey levels between 20 and 170. Below a grey level of 20 the
histogram deviates from the fitted curve, which is most likely due to instrumental noise;
above a grey level of 170 the histogram no longer follows the exponential curve and drops
to zero. The upper limit for the grey level in the histogram is determined by the amount
of light scattered by a particle located at Z = Zo (i.e. where the light-sheet intensity
profile has a maximum).

We conclude that the conditions for Goodman’s analysis of the intensity distribution
of a high source-density image (viz., speckle image) also apply (to a certain extent) to
low source-density images. In his subsequent analysis, Goodman (1984) obtains results
for the average and auto-covariance function of speckle patterns. Although his results
strictly apply to the speckle pattern obtain from laser light scattered by a rough sur-
face, his final results appear to be similar to Eqs. (2.33) and (2.42). Therefore we now
conclude that the statistical properties of PIV images and LSV images, obtained from
homogeneously seeded, incompressible flows have the same statistical properties. Thus,
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Figure 3.2: Histogram of the intensity or grey level distribution of a digital PIV image. The solid line is
a negative-exponential curve fit to the histogram.

the analysis of discrete images from seeded flows that follows will apply to images in both

the particle-image mode and the laser-speckle mode (i.e. independent of the image and
source densities).

In fact, the only thing that counts is that the images are described by a homogeneous,
negative-exponential random field, with a narrow covariance function. The purpose of
the analysis is to find the displacement field that maps one image into a second image,
by evaluating the cross-correlation of the two images. The underlying physical principle
by which the image is created is of secondary importance’.

3.5 Bandwidth of PIV images

So far we have not discussed the most important aspect of digitization, and that is the
choice of the sampling rate that is required for the digital image to yield a fair represen-
tation of the original continuous image. In other words, what is the bandwidth of a PIV

image? This is a very important consideration, since it will give us the lower bound for
the pixel resolution that we can use in digital PIV.

A signal is said to be bandlimited if its Fourier transform F(x,) is nonzero over only

1To the author’s opinion this again demonstrates that there is no real need to make a distinction
between LSV and PIV with respect to the image analysis.
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a finite region in the frequency domain:

F(X,iﬁ) = Oa for |X| > Xo, W’l > ¢0- (313)

The bandwidth W of F(x,) is defined as the maximum of xo and 3. The sampling
theorem (Oppenheim et al. 1983) states that a bandlimited continuous signal can be
reconstructed ezactly provided that the sampling rate (for an infinite number of samples)
on a square grid is (at least) twice the bandwidth. The minimum sampling rate (viz., 2xo,
21pp) is commonly referred to as the Nyquist rate.

Consider the optical system shown in Fig. 2.5. For a thin spherical lens with a focal
length f and an aperture D, the bandwidth of the image intensity field for coherent light
with a wavelength X is equal to (Goodman 1968):

D D

Tz M(M+1) (3.14)
with: zp = f(M+1); see (2.12-2.13). Let us estimate the required pixel resolution to
correctly sample a PIV image formed by this optical system.

Example 2 (Optical bandwidth of the PIV imaging system)

According to the sampling theorem mentioned above the image has to be sampled at a rate
2W. For an optical system with f/D =8 and M =1, and coherent light with A=0.5 pm,
Eq. (3.14) yields a sampling rate (2W) of at least 250 mm~'. For photographic PIV
this is not a problem; Most of the commonly available photographic films (e.g. ASA100)
have sufficient spatial resolution. This result also indicates that the digital analysis of a
1x1 mm? area on film requires a 256 x256-pixel digitizer. On the other hand, for CCD
arrays the spatial resolution in general does not exceed 100 mm™?, and one is therefore in-
clined to conclude that direct electronic imaging cannot be used for PIV image recording.
However, as will be made clear below, it is not necessary to resolve the optical bandwidth
in order to obtain a fairly accurate result from interrogation analysis.

However, the considerations for the sampling rate given above apply to the exact
reconstruction of a PIV image. The aim of the interrogation analysis is not image recon-
struction, but to obtain the position of the displacement covariance peak; see Eq. (2.49).
In other words, we are not interested in the exact shape of the particle images, but only
in their positions (i.e. only the low wave-number range is of interest). Thus, instead of
the bandwidth of the optical system, we should consider the bandwidth of the spectral
density S(x, ) of the random field that describes the statistics of the PIV image. Since
we are not interested in the exact reconstruction of the image we will use a generalized
approach to the concept of bandwidth.

Ignoring its detailed shape, the covariance function of a PIV image rapidly decays to
zero, at a rate that is characterized by its second moment, and has a spectral density
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function that vanishes (but not necessarily becomes equal to zero) for sufficiently large
(x, %), viz.

S(x,%) ~ 0, for |x| > xo, [#| > to. (3.15)

This is a generalization of the definition in (3.13), and defines a signal type that is called
“nearly bandlimited”. Many different definitions of the bandwidth for this type of signal
exist, but for random processes they all conceptually relate the spectral bandwidth to
the maximum rate of decay of the covariance function (Priestley 1992). Here we use a
definition that is a two-dimensional generalization of Parzen’s definition (1957) for a one-
dimensional signal: the bandwidth Wp of a process with a circularly symmetric spectral

S(xw)

5(0,0)

Area of rectangle =
area under S(x,0)

-

- WP —»l x,O

Figure 3.3: The bandwidth according to the definition by Parzen; after Oppenheim et al. (1983).

density S(x, ) is defined as the width of a cylinder which has the same volume as S(x, %)
(viz., unity) and the same height as S(x, %) at (x,%)=(0,0). Thus,

1/m
Wr =1 5000 (3.16)

This is illustrated in Figure 3.3. The result for Wp applies to a circularly symmetric
spectral density function, but we have to take into account that the sampling is done on
a square grid. In Figure 3.4 are given three possibilities for relating Wp to the sampling
rate: the numbers represent the ratio of the sampling rate and the bandwidth. The ones
on the left and right represent the “extreme” situations; for the one in the middle the disc
and the square have equal areas.

Now, let us apply this to the optical system in Fig. 2.5 for the case of particle images
that have a size of approximately d;. We assume that the particle images are Gaussian

curves, i.e. h(z,y)xG(z,y;op) with o, = %; see Eq. (A.23). The image auto-covariance
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Figure 3.4: Three possibilities to relate the bandwidth of a circularly symmetric spectral density function
to the sampling rates on a rectangular grid. The numbers represent the ratio of the side of the square
and the diameter of the disc.

function R; is found by convolution of h(z,y) with itself; see Eq. (2.41). The Wiener-
Khintchine theorem (Priestley 1992; Rosenfeld & Kak 1982) states that the Fourier trans-
form of Ry yields the spectral density function of the PIV image?. By using the properties
for Gaussian curves in Appendix A.5 we thus obtain:

h(z,y) o« G(z,y; o) with oy = 2522
U
Ri(z,y) x G(z,y;0nV2)
U
Sp(x, ) o G(x,%; n) with Bh=517
U

5(0,0) ,M—]za- = 4rof

Thus, (3.16) yields a bandwidth
Wp = 1/2xay,. (3.17)

Let us again consider the bandwidth with the same values for A, f/D and M as for the
evaluation of the optical bandwidth.

Example 3 (the bandwidth of a PIV image)

We assume that d, — 0, so that the particle-image diameter is given by d,; see Eqgs. (2.20-
2.21). For the optical parameters given above we find d, =20 pm, which yields a value
of 3.7 um for o}, (= d,\/2/2.447); see Eq. (A.23). By (3.17) and Fig. 3.4 we thus find that
the minimum sampling rate (2Wp) should be between 61 and 86 mm™". This is a factor
8-4 less than the optical bandwidth! We now find that a CCD array has sufficient spatial
resolution for direct recording. Thus, a pixel resolution of 64% pixels for the analysis of a
1x1 mm? interrogation area should be sufficient.

2For multiple exposure pictures the Fourier transform of Ry yields the “envelope” of the spectral
density function; see Eq. (2.53).
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Finally, it should be noted that the particle-image diameter d; in a practical situation
is usualty larger than d,. This is not only due to the fact that Md, is not negligible with
respect to d,, but also because optical aberrations (e.g. out-of-focus effects) and other
imperfections in general increase d;. As a result, the bandwidth Wp and corresponding
minimum required sampling rate in a practical situation will be even smaller. For exam-
ple, if we would use tracer particles with d,=15 pm in an experimental setup with the
parameters for the optical system given above, Eq. (2.20) yields d; ~28 um. Following
the discussion in this section we find that in this case a sampling rate of about 322 may
already suffice.

From the discussion in this section we may conclude that in photographic PIV using a
high pixel-resolution for interrogation analysis oversamples the image covariance function.
This partially explains why a reduction of pixel resolution from 2562 to 322 yields little
effect on analysis performance. In Section 3.7 we will take a closer look at the information
content of a PIV image as function of the resolution.

3.6 Estimation of the mean and cross-covariance

So far the expressions for the mean and covariance of the image intensity have been
ensemble averages with respect to all possible realizations of PIV images for a given
flow field. In practice the flow field is not reproducible (i.e. turbulent flow), and we have
available only a single realization of I} ; and I7; (either as a pair of single-exposure frames,
or as a single multiple-exposure frame). The basic strategy in such a situation is to replace
the ensemble averages by their corresponding spatial averages. A necessary condition is
that the random field is ergodic with respect to the mean and covariance. This condition
implies that the spatial average over N x NV samples converges to the ensemble average for
N — o0. For further details refer to Rosenfeld & Kak (1982) or Priestley (1992). In this
section we introduce spatial-average estimators for the mean and covariance of the image
intensity. We assume that the first and second order (ensemble) statistics of I ; and I
are identical and given by Egs. (3.3), (3.5) and (3.10). We subsequently determine the
statistical properties of these estimators, i.e. their expectation and (co)variance. This
is closely related to the analysis by Priestley (1992) of the statistical properties of one-
dimensional time-averaging estimators for the mean and auto-covariance of a stationary
random process. In Appendix B.2 we go into more detail about the computation of the
estimated covariance by means of discrete Fourier transformations.
Our point of departure is the ensemble image cross-covariance, defined in (3.7),

R”[T, S] = (Itl,] :f{-r,j+s) - (I)z (318)
with
(Ly=U5=(I) Vi (3.19)
cf. (3.3). Alternatively (3.18) can be expressed as
RII[T’ ’S] = (AIz{,jAIiI-IFr,j-{»s) (320)
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with

all; =I;—(I) and al;=1I; - (I). (3.21)
In the following subsections we introduce the spatial-average estimators for (3.19) and
(3.20), and derive the first and second order statistics of these estimators. In Appendix B.2
it is shown how to compute the estimator for R;s[r, s] by means of discrete Fourier trans-
formation (viz., the fast Fourier transform or FFT algorithm).

3.6.1 estimation of the mean image intensity

Let us first deal with the spatial average of I;; over a square region of N x N pixels,
defined as

_ 1 N N
I= N2 ;,Z—: I; ;. (3.22)
The expectation value of I is given by
N N
N ; ,2-:1 EllL;] = (3.23)

and its variance by

var(l] = E[(

R N (L Y| PP

r=—(N-1} s=—(N-1)

cf. Priestley (1992). For finite sample size (viz., N) I;; and I are correlated; their
covariance is given by

cov(li;, I] = e ;;R;{k i, 1—j]. (3.25)

For PIV images with small particle images, i.e. d;/a~1 (see Sect. 3.7), Ry[s,t] is practi-
cally negligible for all [s,#]#[0,0]. In that situation (3.24) and (3.25) are approximately
equal to

var(l] ~ R,[O 0] and cov[l;;,I] ~ RI[O 0. (3.26)

From Egs. (3.23) and (3.26) we conclude that I is an unbiased and consistent estimator
of the average image intensity.
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3.6.2 estimation of the cross-covariance

The image cross-covariance for two N x N-pixel (interrogation) images, al] ; and al’;, for
a shift over [r, s] is estimated by (see also Appendix B.2):
N—|r| N-]s|
RH[T‘ 8 Z Z AI' AI::HJ_H (327)
with
¥ for r>0
N-ir| gl or T 2>
= . (3.28)
‘ S for <0
i=1-r

(i.e. the subscript in the summation symbol indicates the summation variable and the
superscript the number of summation terms). Since we have in general no a priori knowl-
edge of {I), we have to estimate it from the same record that we use for R”[r s). This
implies that the estimate R”[r, s] is correlated with I. Let us have a closer look at this.

The image mean can be estimated from the entire image, while the cross-covariance
is estimated at each interrogation position from the pixels in a small sub-image (viz., the
interrogation region). If we have an image of M x M pixels with M > N, say M=N?,
then by (3.26) we have that

var[I) ~ O(1/M?) and cov|al;, I} ~ O(1/M?). (3.29)

As we will see later (Eqgs. (3.40-3.41)) the noise in Ry[r,s] is O(1/N?). Since 1/M? <«
1/N? we may regard I effectively as an exact estimate of (1), and henceforth neglect the
correlation between Ry;[r,s] and I.

We will now determine the expectation value and covariance for the estimator defined
in (3.27). First consider the expectation value:

) 1 NlrIN-ls
E{Rylr,s]} - Z 2 E{al;all, ..}

N-|r|N- ||

N2 z Z Ryqlr, 5]

(1 - _’Nr_') (1 - %) Rusfrss] (3.30)

Thus the estimator in (3.27) is not unbiased, although the bias vanishes for N — oo. The
bias is the result of the fact that for a shift over [r, s] only part of the signal in al]; and
al!; contributes to the estimate for Ry[r,s]. This is depicted in Figure 3.5. In Sect. 2.4
we have seen that the measurement of the displacement over a finite measurement volume
(viz., interrogation area) implies a spatial filtering of the displacement field. Now we have
obtained the “signature” of this spatial filter, i.e. a quadrilateral pyramid with a base

I
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Figure 3.5: For a shift over {r, s] only the shaded part of the signal in the interrogation area contributes
to the estimated covariance.

that is twice the size of the interrogation area. The shape of this filter implies that large
displacements make a smaller contribution to the mean than small displacements. As
a result the measured displacement over a flow region with a strong velocity gradient is
biased towards lower velocity. Adrian (1988) was the first who reported this bias. He
also gave the following, perhaps more comprehensive explanation of the velocity bias.
Consider an interrogation region of given size, denoted by the square with the solid lines
in Figure 3.5. For a particle-image displacement over a vector [r,s] only the particle-
images within the shaded region remain in the interrogation area and thus contribute
to the displacement-correlation peak in the image covariance. This is referred to as
the in-plane loss-of-pairs, by analogy with the out-of-plane loss-of-pairs; see Eq. (2.47).
For measurements over a region with a strong velocity gradient the interrogation region
contains a larger number of particle-image pairs with a small displacement than with
a large displacement. So, small displacements make a larger contribution to the local
mean displacement than large displacements. This biases the measurement towards the
lowest velocity in the measurement volume. This effect makes it difficult to interpret the
measured displacements in regions with strong velocity gradients. It is therefore important
to verify that the expected variation of the displacement over the interrogation area is
within acceptable limits; see Sect. 2.9.
We now direct our attention to the covariance of IA{n[r, s, given by

cov {R"[r, s],fiu[r+t,s+u]}
= E{Rulr,s)Rulr+t,s+u]} — E{Rulr,s]} E{Rulr+t,s+u]}.  (331)
Note that this expression is even in ¢ and u. Let us first consider the first term at the
right hand side of (3.31):
E {fin[r, .s]f?n[r+t, s+u]}

1 N=|r| N=|r+t| N=|s| N=|s+u]
— ’ " ! "
- F Z Z Z Z E {AIv,wAIu+r,w+sAlz,yAIr+r+t,y+s+u}
v

z w y
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N=|r]| N=|r4t| N=|s| N —|s+u]

= 4 ; Xr: ; ; [E {AI’ Ig+rw+s} E {AI’ AIz’+r+t y+a+u} +
E {AI:I,‘IUAI;,V} E {AI;,+r,w+aAI:Icl+r+t,y+a+u} +
E {AI;,wAIg+r+t,v+s+u} E {AI' AL "'+-'} + '64]
N=ir] N=lr+t] N=[s| N|s+u|

Z Z Z {Rii[r, s]Rit[r+t, s+u]+

R[z-v, u-w]Rj[z+t-v, y+u-w] +

2l

v

Rif[z+r+t-v, y+s+u-w]Ry(ver-z, wes-y] + £4}(3.32)

where x4 is a fourth order cumulant of the joint distribution function of al’ and al”. For
a Gaussian process k4 =0 (Priestley 1992; Isserlis 1918). We have seen in Sect. 3.4 that I
is not Gaussian, but negative-exponential, and not necessarily equal to zero. Nonetheless,
as a higher order term, x4 is not expected to play a dominant role in (3.32). Therefore, in
the subsequent analysis x4 is left out. A justification for this simplification will be found
in the experimental verification in Sect. 3.10. An analytical proof should be provided in
a future study. The first term in (3.32) cancels with the second term in (3.31), so that we
remain with

cov {fiu[r s], Ru[r+t s+u]}
N—|r| N=|r+t] N—|s| N=|s+u|

Z Z Z Z {R;[z-v, u-w]Ri[z+t-v, y+u-w]+

Riifz+r+t-v, y+s+u-w| Ryf[vir-z, wes-y]} (3.33)

Note that the variables v, w, z and y in (3.33) only occur as z-v and y-w. We may
therefore simplify the expression given above by substitution of m=z-v and n=y-w.
However, it is then not possible to give an expression with the generalized notation given
in (3.28). We therefore consider here only the case that r,s,t,u >0 (for the other cases
analogous results can be obtained):

cov {Rn[r, s, R;I[r+t, s+u]}

m=—(N=r)+1 n=—(N-s)+1
{Rr[m,n)Ri[m+t,n+u] + Ry[m+r+t, nes+u]Ryf[r-m,s-n]}  (3.34)
with
m m>0
nlm] = { 0 -t<m<0 (3.35)
-m-t —-(N-r)+1 <m < -t

(for n[n] substitute s for 7 and u for ¢). The expression in (3.34) gives the covariance of the
estimated cross-covariance of a homogeneous random field that satisfies the description
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given in Sect. 2.7. This result is an extension of the expression for the covariance of the
estimated auto-covariance of a stationary random process, given by Priestley (1992). For
t=0 and u=0 we obtain the expression for the variance of Ry[r, s], viz.

welbutrd} = g5 %S (1ol (i bhe).

m==(N=r)+1 n=—(N-s)+1
-{B}lm,n]) + Rurfr+m, ssn)Ryrfr-m,s-n]}  (3.36)

The expressions (3.34) and (3.36) are rather complicated, but reduce to much simpler
equations for large N, i.e.

cov {1%1[[7',3],1?211[1'+t,3+u]} ~ (3.37)

l o0 (==}
N Y. 3 {Ri[m,n]Ri[m+t,n+u] + Ris[m4r+t, n+s+u]Ryr-m, s-nl}

m=—00 N=—00

and

N 1 00 oo
var{Ry([r,s]} ~ e ; _z: {R%[m,n] + Ryf[r+m, s+n]Ryy[r-m, s-n]} . (3.38)
(The expressions in (3.37-3.38) are valid for all r, s, ¢ and u.) The conditions for which
we may consider N as large are

N> d/a and |r|,|s| < N. (3.39)

The first condition implies that the particle images should be small with respect to the
interrogation area. This condition is generally satisfied for PIV images. The second con-
dition implies that Eqs. (3.37-3.38) are only valid for displacements that are small with
respect to V. To our interest are only those values of r and s that are close to the location
of the displacement-correlation peak. If we follow the recommendations given by Keane
& Adrian (1990), then the in-plane particle-image displacements are less than 1/4 of the
diameter of the interrogation region. This implies that we only consider Eqs. (3.37-3.38)
for |r|,|s| < N/4. Let us assume that this is sufficient to consider N as “large.” So, in
most practical situations we also satisfy the second condition in (3.39).

The first condition in (3.39) implies that we are dealing with a narrow displacement-
correlation peak. Let us evaluate Egs. (3.37-3.38) for the case of a narrow peak, i.e.
Ry[r,s]~0 for r#0, s#0. For reasons of simplicity we assume that Fp~1 and that the
particle-image displacement is exactly an integer multiple of pixels, so that Rulr, ] is a
shifted copy of Ry[r,s]. Hence, we obtain

cov {Rufr, s}, Rulr +1,s+u]} ~ 0 (3.40)

(for t#0, ©w#0), and
var { Ru[r, 5]} ~ %Rﬁ[ﬂ, 0] (3.41)
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cf. Priestley (1992). These results show that the noise in the estimate for Ryy[r,s] is
uncorrelated and proportional to 1/N2. In other words, the result for Ry[r, s] consists of
a dominant correlation peak, i.e.

E {Ru[r, s]} > var {Rn[r, s]}

that is associated with the displacement peak Rj[r,s], embedded in background noise
that has the properties of a white random field (for d;/a — 0; in Section 3.7 we will in-
vestigate the situation for finite peak width). For increasing particle-image displacement
the amplitude of the dlspla,cement -correlation peak in Rn[r, s] decreases; see Eq. (3.30).
This means that for increasing displacement we have an increasing probability that the
displacement-correlation peak becomes smaller than one of the random noise peaks. In
that case the identification of the highest correlation peak as the displacement-correlation
peak yields an erroneous measurement of the displacement. In Section 3.6.4 we go into
more detail.

e (3.42)

Let us summarize the results we have obtained so far. The expressions (3.30) and (3.37)
show that fiu[r 5], defined in (3.27), yields an asymptotically unbiased and consistent
estimate for R;;[r, s]. However, for finite values of N the estimate is biased, proportional
to the magnitude of the displacement. The noise in Rn[" s], due to random particle-
image correlations, is approximately a white random field. The probability that the
displacement-correlation peak is smaller than highest noise peak is proportional to the
magnitude of the displacement.

3.6.3 weight kernels

In the previous analysis each pixel Al; ; contributed by an equal amount to the estimated
covariance. However, in some situations it is desirable to put a different weight to each
pixel; see Appendix B.2.2. Let us investigate the effect of an arbitrary weight kernel on
the expectation of Ry[r,s].

Suppose we multiply al;; and aly’; with a weight kernel denoted by W; ;. Note that
we multiply only the fluctuating irnage intensity with the weight kernel. The generalized
expression for the estimator of the discrete image cross-covariance that includes the weight

kernel reads
N-|r|N-|s|

R][[T S N2 z Z WmnAImnWm+rn+sAIm+3n+3 (343)

cf. (3.27). Provided that al’ and AI” are homogeneous, zero-mean random fields the
expectation for (3.43) is subsequently given by

E{Rulr,s|} = Filr, s|Rulr, s] (3.44)
with 1
FI[T, S] = m Z z Wm,nWm+r,n+s- (345)
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cf. Adrian (1988). In Appendix B.2.2 we discuss the effect of weight kernels with respect
to the computation of Ry{r, s} by the FFT algorithm (i.e. “windowing”).
For an uniform weight kernel W, ; is given by

(3.46)

0 elsewhere

< .
W.-,,-={ 1 for1<i<N, 1<j<N

By (3.45) we obtain
Filr,s] = (1 - %) (1 - _I]%I) . (3.47)

Note that this expression is exactly the prefix of Ry[r, s] in (3.30). Adrian (1988) refers
to Fy as the in-plane loss-of-pairs function; see also the discussion following Eq. (3.30).

In this thesis we will consider, besides the uniform weight kernel given in (3.46), also
a Gaussian weight kernel, given by

(3.48)

S AANZL (i 1AN2
W, ; = exp [—8(z G5 N) ]

N2

(The characteristic width of this kernel, based on the e~? “intensity,” is equal to N.) A
Gaussian weight kernel would occur “naturally” in Young’s fringe analysis (the interro-
gation laser beam in Fig. 1.6 has a Gaussian intensity distribution). The corresponding
in-plane “loss of pairs” function is approximately given by

r2+32]

= (3.49)

Filr,s] ~ exp [—4

(Here we implicitly assumed that the indices m and n in (3.45) are not bounded, and that
N is sufficiently large to deal with (3.48) as a continuous function.)

3.6.4 valid-data yield

We have seen in Sect. 3.6.2 that for a finite sample size (viz., N x N) there is a finite
probability that one of the peaks in the background noise is larger than the displace-
ment correlation peak. This may lead to an erroneous measurement of the displacement.
The likelihood of such an event is determined by the expected height of the estimated
displacement-correlation peak, given by the maximum of (3.30), with respect to the level
of noise in Rys[r,s]; see (3.41). We have seen in (3.30) that the estimated correlation
peak is biased, proportional to the magnitude of the displacement. Hence, the larger the
displacement the more likely a noise peak rises above the signal peak.

It has been suggested by several authors (Lourengo 1988, Coupland & Pickering 1988)
that at least four particle-image pairs are required to find a reliable measurement of the
displacement. The average number of particle-images in a N x N-pixel interrogation area

is given by c
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Adrian & Yao (1984) refer to Nj as the image density. The number n of particle-images
in a given area is assumed to have a Poisson distribution (Adrian 1991), viz.

=k
P(n)—e “T—n—!-

(3.51)
where P(n) is the probability to find exactly n particle-images, and & the average number
of particle-image pairs. Given u we can determine by (3.51) the probability to find a
sufficient number of particle-image pairs in the interrogation area. This probability is
generally referred to as the valid-data yield, denoted by I'. The average y depends on the
displacement, i.e. for a displacement [r, s] the effective average number of particle-image
pairs that remains inside the interrogation area is given by:

H = N[FIFO (352)

where Fy, defined in (3.45), accounts for the in-plane “loss of pairs” (see Fig. 3.5), while
Fo, defined in (2.47), accounts for the out-of-plane “loss of pairs.” For given y the valid-
data yield (viz., the probability to find more than four particle-image pairs) is given by
P(n=25)=1-P(n<4),i.e.

1 1 1 -
I'~1- <1+y+§u2+§¥u3+ﬁu4) e, (3.53)

In Section 3.10 we compare this model with the actual data-yield for experimental data.

3.7 Estimation of the displacement

In Sect. 3.6 we evaluated the statistical properties of the estimator Ryi[r,s). For a
displacement-correlation peak that is narrow with respect to the size of the interroga-
tion area we have obtained the expressions (3.30) and (3.37) for the expectation and
covariance of Rjj[r,s]. The maximum of };311[7', s] corresponds with the displacement-
correlation peak. But the position of the maximum itself yields only the displacement
with a resolution of 1 px. We have seen in Sect. 3.2 that the peak always has a finite
width, i.e. the peak always covers more than one pixel. By including the values of the co-
variance adjacent to the maximum of R”[r, s] the centroid of the displacement-correlation
peak can be estimated at sub-pixel level. Obviously, the accuracy of the estimation of the
peak centroid is determined by the number of pixels that is covered by the peak. Like
in Sect. 3.5 we face the question of how densely we should sample the interrogation area
to yield an accurate estimate of the displacement? In this section we provide an answer
by evaluating Egs. (3.37-3.38). Of course, one may solve these equations numerically,
given the expressions for R;[r,s] and Ryr,s| in (3.5) and (3.10) respectively. However,
presently we prefer an analytical result. We therefore introduce a simple model that allows
a straightforward evaluation of (3.37) and (3.38).
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a simple model for the image covariance

Considering the structure of Eqs. (3.37) and (3.38) it is convenient to use a model for
Ry[r,s] that has a trivial solution for the double summation over (r,s). We therefore
model the image auto-covariance with

Ri[m,n] = ala™*l | 0<a<1 (3.54)

with 0! = var{/}. Note that this model is separable in m and n, which allows us to
evaluate the sums over m and n separately. Summation of the exponential term in (3.54)
over [m, n] yields
0 0 l+a 2
mi+tel _ (L+@)" 3.
m;_:oon;wa (1 —a) (3:55)

We assume that the particle-image displacement is exactly an integer multiple of 4, i.e.
MDx =my,a and MDy =n.a (3.56)

cf. Eq. (3.10), and that the displacement of the particles perpendicular to the plane of
the light sheet is negligible with respect to the thickness of the light sheet, viz.

Fo(Dz) ~1
cf. Egs. (2.47) and (3.10). In that case we can write
Rii[m,n]) = Ri[m-m,,n-n,) (3.57)

Finally, to complete our model we have to establish a relation between the particle-image
diameter d; and the model parameter a. We will do this by making the total sum of
Ry[m,n] in (3.54) equal to the total sum of Ry[r,s] in (3.5). The expression given in
(3.5) shows that Rj[r,s] is the convolution of the continuous-image covariance with ®,,,
which has the shape of a quadrilateral pyramid with a base of 2a. Let us approximate
{®pp* R}z, y) with a Gaussian curve (see Appendix A.5), viz.

{q)pp*RII}(m,y) ~ U?g(‘rvy;dfl/‘l) (358)
where dp is given by (Gaussian approximation)
d% =~ 2d° + 4a%. (3.59)

cf. Eq. (2.20). The total volume under G(z,y;dr/4) is equal to md%/8); see Eq. A.25.
The value for the parameter a is given by
(1 + a)2 _ wdy

l—a 8

8

which can be rewritten as
c—1

m with ¢ = v2rdp/4 (3.60)
c

with dg given by (3.59). Note that dg/a — 2 for d;/a— 0, i.e. Ry[r,s] always has finite
width in practice. This implies that a >0.11 for all a. In Figure 3.6 the model in (3.54)
is compared with a Gaussian function.
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1.2

R,[r0]/o*

Figure 3.6: Comparison of the exponential model in (3.54) (dashed line) and Gaussian curve (solid line)
for Ry[r,s]. The arrow indicates a;, defined in (3.75).

integral length scale of the cross-covariance

We can now straightforwardly solve the expression for the covariance of 1%11[7', 8] in
(3.37). Let us have a closer look at the result for covariance between Ryf[m,,n,] and
Ryi[mo+t, no+u], given in (3.37). Given (3.57) we obtain

cov { Rui[mo, no), Ruzlmo+t, no+ul}
1 o0 oo
~ 3o 3 {Rim,n]Rim+t, ntu] + Ryfmemort, neng+ulRig[mo-m, n,-nl}

2 [>2] o0
e Y. Y Ri(m,nlRi[mst, nyul. (3.61)

m=—00 n=—00

Consider the double summation, and substitute (3.54):

00

o [o o) oo
Z Z Ri[m, n|Ri[m+t,n+u] = Z Z gImiFnllm ettty
M==00 M=~ M=—00 M=—00

={ f: a|m|+|m+t|}{ i alnl+ln+ul}. (3.62)

m=-co n=-—oo

Note that the terms between the braces are identical. We continue with the first term.
Assume that ¢ > 0 and split the summation in three parts:

0
R pml+imt] mitlmt] | S~ Iml+im]
{1} > a + > a +Xa

m=—00 m=-t+1 m=1
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0 t—1 00
= § almlimd g 3 gimltmtl 3 ghmltim

m=t m=0 m=1
o0 t-1 00
— a2m—t + amomtt + a2m+t
LR R
1 1
it t t _
= T tette (1—a2 l)
1+ a?
= d (T——az + t) (3.63)

The result for ¢ < 0 is obtained in a similar way, but with ¢ in (3.63) replaced by —t. The
same procedure is followed for the second term in (3.62), so we finally obtain

cov {Rn[mo,no], R”[mo+t,no+u]} = 2}% i+ (i +a ~+ 't[) (1 +a 5+ lu |> (3.64)

We divide this expression by the variance of Ru[ma, n,|, given by
var {Rll[mo, no]} = cov {én[mo, nol, Rizlmo, no]}

and thus obtain the correlation g[t, u] of the estimated covariance in {m,, o] with that in
a position [¢,u] relative to [m,,ng], i.e.
1 —a? 1—q?
. 3.65
) (14 i) (3.55)

This result points out that the estimated cross-covariance is correlated over a finite range.
By analogy with the integral length scale in a one-dimensional random process, we may
estimate an integral length scale £, associated with the signal peak by taking the square
root of the double sum of g[t, u] over all ¢, u. For the correlation in (3.65) we find

(1-a®)(1 +a)*]?
- Y dtl= [————1+a,)(1_a)2]. (3.66)

t=—00 u=~00

olt, u] = alf+e (

We may interpret C"; as the number of correlated samples, or reversely, consider N 2—[,";
as the number of independent samples for a sample size of N x N pixels. We regard
(N?~L2)/N? as a measure for the information content of an interrogation area with re-
spect to the estimation of the covariance. Let us apply this result in an example.

Example 4 (The integral length scale of the estimated signal peak)

Consider an interrogation region with an area of 1 x1 mm?. The particle-image diameter d,
is 25 pm, so that the peak in the image covariance has a e~? diameter of d;v/2; see Sect. 3.5.
For this situation we now evaluate the integral length scale £, in (3.65) as function of the
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plr,0]

Figure 3.7: The self-correlation g[r,0] of the estimated image covariance given in Eq. (3.65), for four
different values of the particle-image diameter (d;) with respect to the pixel size (a). The shaded triangle
represents ®pp; see Eq. (3.6).

pixel resolution. For NxN pixels the side of a single (square and contiguous) pixel is equal
to a=1/N mm. The model parameter a is found by Eqs. (3.59) and (3.60). In Figure 3.7
o[t, 0] is shown (as a continuous function of t) for four different values of d:/a, i.e. 0.4, 1.6,
3.2 and 6.4, which correspond to pixel resolutions of N x N pixels, with N=16, 64, 128
and 256 respectively. In Table 3.1 are given the values of relevant parameters and results
from Eqgs. (3.66-3.60) for different values of N between 16 and 512. The result for £, as

Table 3.1: The integral length scale £, of the covariance of Ry1[s,t] and values of relevant parameters in
Example 4, for different values of the number of samples N x N per interrogation area.

N a difa dg/a c a L, L,/N
(pm)

16 62.5 0.4 208 1303 0.132 164 0.10

32 313 0.8 230 1.441 0.181 1.95 0.061

64 16.6 1.6 3.02 1.892 0.309 296 0.046
128 1.8 3.2 495 3.102 0.512 5.62 0.044
256 3.9 6.4 9.27 5.809 0.706 11.3 0.044
512 2.0 12.8 182 1141 0.839 22.6 0.044

function of d,/a is plotted in Figure 3.8. This figure shows that £, for large a remains
practically constant, up to a pixel resolution of about N=32. For N <32 the particle-
image diameter is less than a pixel. Hence, the width of Ry[r,s] is determined mainly
by ®,p (viz., dr ~ 4). A constant value for £, implies that the information content of
the interrogation area becomes larger with increasing N; improving the resolution yields
a better accuracy for the estimated displacement. However, above a resolution of N=64
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we find that £,/N becomes constant. The value of this constant is proportional to the
area covered by the particle-image and the interrogation area. This behaviour for £, now
implies that the information content remains constant for increasing resolution. In other
words, above N=64 the signal peak in the estimated covariance covers a larger number
of pixels, but the estimated values are more strongly correlated, and do not yield more
“information” as N increases. In effect, the observed behaviour for N > 64 is exactly
what one would expect for the oversampling of a given signal, while the behaviour for
N <32 corresponds to an undersampling of the signal. This confirms our results for the
estimated bandwidth of PIV images, discussed in Sect. 3.5.

N
16 64 256
L]

20

10
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R 2 L
. -
’
1 - /’
4
4
.
.
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A | 1 1 1
02 1 2 10

d./a

Figure 3.8: Correlation length £, of the estimated image covariance as function of the pixel resolution
Nx N for a 1x1 mm? interrogation area and 25 pm particle-image diameter; see Example 4 on page 72.
The straight lines represent the asymptotic behaviour of £, for N—1 and N—co.

We have just learned from the preceding example that we should choose a in proportion
to d;. By (3.37) we know that the covariance of Ry[r,s|] ~ O(1/N?). Therefore to
improve the accuracy of Rys[r,s| we have to increase N relative to di/a. For “fixed”
d; (viz., d;/a ~ 1) this implies that we have to increase the interrogation area. We
cannot make the interrogation area arbitrarily large, because of two (obvious) reasons.
First, the total frame size is fized, say M x M pixels. In order to preserve a certain
degree of “spatial resolvability” in the measurement we should have that N <« M, which
limits the choice for N. Secondly, we cannot make the interrogation arbitrarily large
without opposing the assumption that the displacement field over the interrogation area
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is (approximately) uniform. Thus, in practice there is very little freedom to improve the
accuracy of estimating the centroid of the displacement correlation peak by increasing the
pixel resolution of the interrogation area. This partially explains why the accuracy of the
PIV analysis changes very little with the pixel resolution of the interrogation area.

3.8 Estimation of the fractional displacement

The particle-image displacement is given by the location of the cross-covariance peak with
respect to the origin; see Eq. (3.10). Provided that we have sufficient matching particle-
image pairs (see Sect. 3.6.4) the cross-covariance peak is identified as the maximum of
Ryq[r, s], located in [m,,n,]. The actual displacement (rp,sp) can be written as

rp = (mo+€n)a and sp = (n,+€)a (3.67)

where m, and n, are now referred to as the nearest-integer displacements, and ¢, and €,
as the fractional displacements, with

—05<e€,<05 and —0.5<e¢, <0.5. (3.68)

By itself the location of the maximum of Rjr,s] is an estimate of the particle-image
displacement, within an error £a/2. At high pixel resolution (i.e. d;/a>> 1) the difference
between the displacement in integer pixel units and the actual displacement is very small
with respect to the magnitude of the displacement; for example, the relative error for a
displacement over 64 px in a 512x512-pixel interrogation area would be 0.5/64, which is
less than 1%. This is not the case at low pixel resolution (i.e. d¢/a ~1); for a 32x32-
pixel interrogation area the same relative displacement from the previous example now
amounts to 8 px, which yields a relative error of 0.5/8, which is more than 6%. In order
to obtain an accuracy at sub-pizel level we make use of the fact that the displacement-
correlation peak always covers more than one pixel (see Sect. 3.2), and interpolate the
cross-covariance around the maximum in fiu(r, s].

Figure 3.9 illustrates the appearance of the covariance at low pixel resolution for dif-
ferent fractional displacements. Note that the strongest effect is found in the covariance
adjacent to the maximum. The dashed line represents the corresponding noise level.
This shows that at low pixel resolution only the nearest neighbours of the covariance
maximum exceed the noise level, and implies that only the covariance maximum and its
nearest-neighbours contain significant information with respect to the particle-image dis-
placement. In this section we therefore only deal with estimators of the fractional displace-
ment that use the covariance in [m,,n,] and in its four-connected adjacent neighbours,
shown in Figure 3.10. In our analysis we assume that Rn[r, s] is circularly symmetric and
separable in r and s, and that €, and ¢, are statistically orthogonal, viz.

cov{ém, €} =0. (3.69)

This allows us to deal with the fractional displacements in the two displacement directions
as if they were independent. So we reduced the estimation of the fractional displacement
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Figure 3.9: The discrete covariances for four different values of the fractional displacement. The situation
shown here corresponds to N =64 in Table 3.1. The dashed line represents the 95% significance level of
the background noise; see (3.41).

to a one-dimensional problem. We therefore only consider the estimation of the fractional
displacement of rp with sp = 0. (The corresponding result for sp # 0 is considered
trivial.) We have seen in Fig. 3.9 that only three values of the image cross-covariance, i.e.
IA?H[mo—l, o), f?u[mo, n,| and Rn[ma-pl, n,] contain significant information with respect
to the centroid of Ry/[r,s]; see also Sect. 3.7. We therefore refer to the estimators for €
that are introduced next as three-point estimators of the fractional displacement. We will
subsequently use the following simplified notation:

R, = R”[mo+m,0], Iém = R[;[ma+m,0], F. = Fl[mo-}-m,O]. (370)

3.8.1 three-point estimators

Here we introduce three different three-point estimators, denoted by &, for the fractional
displacement, given the location [m,, n,] of the maximum in Ry{r, s]. We limit ourselves
to the three estimators that have also been studied by Willert (1989).

e center-of-mass estimator
Probably the most widely used method for estimation of a peak position is by the
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Figure 3.10: The four-connected neighbourhood (closed dots) of the covariance maximum in [mo, no)
(open dot).

first moment of the peak. With only three points available this estimator becomes
Ry - R
BR_i+Ry+ Ry
In mechanics the first moment of a given mass distribution is denoted as the “center-
of-mass” or “center-of-gravity”. We will therefore refer to the estimator in (3.71) as
the center-of-mass estimator.

e parabolic-fit estimator
A more advanced estimator, in comparison with the center-of-mass estimator, is
to fit a parabola. With three elements available we can exactly solve the three
parameters of a parabolic curve. The position of the maximum of the parabola
defines the parabolic-fit estimator:

. R—l - R+1
€Ep = = = .
2(R-1 + R41 — 2Ro)

The main difference with the center-of-mass estimator is that we now make explicit
use of the fact that we are dealing with a peak, i.e. Bo> Ryq.

(3.72)

¢ Gaussian-fit estimator
An estimator that is very similar to the parabolic-fit estimator is the Gaussian-fit
estimator. Here we do not only use the fact that we are dealing with a peak, but
also use the fact that the image covariance function is (approximately) a Gaussian
curve. The logarithm of a Gaussian curve is a parabolic curve, so by substitution
of R, by In R, in (3.72) we get

_ In R_l —In R+1
¢= 2(lnR_1 +lnR+1 - ZInRo).

(3.73)

Note that, apart from f20>f2ﬂ, we should also have R; > 0 for i=—1,0,1.
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In the next section we will further investigate the statistical properties of these three-point
estimators. For now, let us make a qualitative comparison of these estimators with respect
to their (expected) robustness and performance.

If we compare these three estimators we find that éc will always yield a result, no
matter what the actual shape for R, actually is. The parabolic-fit estimator requires
that Ry is the mazimum of the three elements. This requirement is always satisfied
by the definition of [m,,n,); see Eq. (3.67). For the Gaussian peak-fit estimator it is
also required that the values of all three elements are positive. By (3.41) we know that
E{R.,} > var{R..}!/? so that this requirement is satisfied in general. Nonetheless, we
may conclude that éc has the highest robustness of these three estimators, while és has
the lowest.

On the other hand, we have seen that éc does not make use of any a priori knowledge
with respect to R,,, while ép and éz make use of the fact that R, has its maximum in
m,, and ég even takes into account the approximate shape of {®,, * Rir}(r,s). As a rule
of thumb we know that the performance of an estimator improves as it makes more use
of any a priori knowledge. We may therefore expect the best performance from é; and
the least from éc.

What should also be noted is that these three estimators have very similar form,
despite their (expected) differences in robustness and performance. The numerator is
only a function of R_; and R,,, while the denominator is a function of all three elements.
In fact, R_; and Ry, appear as a difference or ratio in the numerator. We therefore regard
the numerator as a kind of balance, while the denominator is actually no more than a
kind of normalization term. This reflects our initial observation at the beginning of this
section that a fractional displacement most strongly affects R_; and R;;. Conversely, one
may say that R_, and f2+, hold most of the “information” with respect to the fractional
displacement, and as a result we may expect them to play a dominant role in all three-
point estimators for e.

3.9 Statistics of fractional-displacement estimators

In this section we investigate the statistical properties of the fractional-displacement es-
timators introduced in the previous section. We have seen in (3.68) that the outcome of
this estimator is between —1/2 and +1/2. Here we will analyze the situation for which
the actual displacement is ezactly an integer number of pixels. In other words, we will
investigate the accuracy of the estimated fractional displacement given that the actual
fractional displacement is zero (i.e. ¢ = 0). This situation considerably simplifies the
analysis, since we have for e=0:

R_, = R+1 =a; Ry with 0<a <. (374)

Note that a; gives the ratio of Ry; and Ry, and is proportional to the width of the
displacement-correlation peak. If we assume that this peak has a Gaussian shape then a;
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is given by
a1 = exp(=8/d%) (3.75)

with dr given by (3.59). Note that a; > a; see Fig. 3.6.

3.9.1 expectation

To evaluate the expectation values for the three fractional displacement estimators de-
fined in Sect. 3.8.1 we assume that we may deal with the numerators and denominators

separately, viz.
A E{A}
E{—E} ~ 515 (3.76)
Let us evaluate the validity of this approximation. For the center-of-mass estimator in

(3.71) we have
A=Ry—R., and B=R_,+Ro+ Ry (3.77)
For e=0 we have
var{R_l} ~ var{Ry} ~ cov{B_y, Ry} and cov{R_;, Ro} = cov{R,1, Ro}
(see Eqgs. (3.37-3.38)). Substitution in (3.77) yields (after some straightforward manipu-
lation) that: cov{A, B} ~0, by which we may write
E{%}zE{A}-E{%}. (3.78)

The denominator B can be regarded as a normalization term (see previous section) that
is proportional to the width of the covariance peak. For a narrow peak we have: B~ Ry,
so that we may assume that E{B} > var{B}/? see Eq. (3.42). Under this condition we

may write

1 1

— R e .79

E{5~5 (BY (3.79)
which completes the justification of the approximation in (3.76). (A similar approach can
be followed to justify (3.76) for the peak-fit estimators.)
We use the result in (3.44), viz.
E{Rn} = FnRn

and substitute this with Eq. (3.74) in Egs. (3.71-3.73) to obtain the following expressions
for the expectations of é¢, éc and é¢:

Fyy = Fy

E{é} Fo i Fod Fojar (3.80)
\ F_y— Fp
E = 3.81
{EP} Q(F_l + F+1 - 2Fo/a1) ( )
1 —InF.
E {é) InFoy = InFys (3.82)

2(11’)F_1 +]IIF+1 —21DF9+2]H(11)‘
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The expression for E£{éz} was found by using the approximation
E{mR,} »mE{R.} (3.83)

which is valid for var{R,}'/2< E{R,,} (Priestley 1992). This condition is generally sat-
isfied for PIV images; see (3.42). For an unbiased estimate of the fractional displacement,
given that € =0, one expects that the enumerators in Eqgs. (3.80-3.82) are exactly equal
to zero, i.e. F_;=F,,. However, we have seen in Sect. 3.6.3 that for a finite size of the
interrogation area we have

Fi> F+1 (384)

(for m,>0). This implies that the enumerators in Eqs. (3.80-3.82) are not equal to zero
for the case ¢ = 0. Note that this bias is a direct consequence of (3.84), and therefore
not a property of the estimators themselves. Hence, we expect that all estimates of the
fractional displacement estimators are biased (except for the trivial case m, =0, when

F—1=F+1)-

Let us have a closer look at this bias for the uniform and Gaussian weight kernels
introduced in Sect. 3.6.3. After substitution of the uniform weight kernel, given in (3.47),
in Eqs. (3.80-3.82) we find (for m,>0)

d for é¢
l+ 2(11
. 2 N ai -
E{é} = NV 0 —a) for ép (3.85)
b e
4In(l/a) €

The expression for é; was found by using a first-order approximation for F,, i.e.

_ |mo+m||  |m,+m| (1)
Fm—ln[l i =——x + 0O Vi)

Let us subsequently evaluate the bias of the estimated fractional displacement for the
Gaussian weight kernel, given by (3.48). Substitution in Eqs. (3.80-3.82) now yields:

a

1794, for éc
. 2 8m, @ A
E {6} = —NT . —4(1 _ al) for €p (3.86)
_ for €
41n(1/ay) G

The expressions for E{éc} and E{ép} were found by a first-order approximation for Fy,,

l.e.
my+m\? my+m\? 1
Fm=exp[—8( N )}:1—8( N )+O(*]—v7)
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Note that in (3.86) only the term in front of the brace has changed with respect to (3.85).
Though not directly evident from Eqs. (3.80-3.82) it appears that the bias of the estimated
fractional displacement for the three estimators considered in Eqgs. (3.85-3.86) all show
the same qualitative behaviour as function of the displacement. Obviously this behaviour
is determined by the weight kernel; only the magnitude of the bias is determined by the
estimator itself. In Figure 3.11 are shown the terms on the left-hand side of the brace

0.00 7
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&
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Weight kemel: \\\\
020 F _._ uniform \\\
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0 " 8 12 16
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Figure 3.11: The bias in the estimated fractional displacement for the uniform and Gaussian weight
kernels, viz. Egs. (3.85) and (3.86) respectively, for the Gaussian peak-fit estimator, defined in (3.73), as
function of the displacement, with N =32 and a, =0.6 (viz., 4In(1/a;)=1); see also text.

in (3.85) and (3.86) as function of m, for N =32. Note that this term is approximately
constant for the uniform weight kernel, while it is directly proportional to m, for the
Gaussian weight kernel. It is rather surprising that the use of a different weight kernel
can cause such a change in behaviour. In Figure 3.12 are shown the terms on the right-
hand side of the braces in (3.85) as function of a;. This figure shows the magnitude of the
bias as function of the peak width. Note that for e, less than about 0.5 all these terms
yield approximately the same value. But, for a; the value for the peak-fit estimators, ép
and ég, increases rapidly, while it remains practically constant for éc. A value of a; <0.5
corresponds to a situation with Rp > 2R.;. This indicates that the peak-fit estimators
perform better if the displacement-correlation peak is sharp, whereas the performance of
the center-of-mass estimator is not very sensitive to the shape of the peak. This conclusion
corresponds with the discussion of the (expected) performance and robustness at the end

of Sect. 3.8.1.
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Figure 3.12: The magnitude of the bias in the estimated fractional displacement by (3.85) for three
different estimators as function of aj(= R+1/Ro); see (3.74)). The curves are drawn for N = 32 and
m,=0.

bias correction

A typical value of the bias for a 32x32-pixel interrogation region, with d; = 5.6 px (i.e.
41In(1/a;)=1), is about 0.06 px (see Fig. 3.11). Although it may seem negligible at first,
it can lead to significant errors in the estimation of the flow velocity statistics, like the
mean flow velocity, or in the computation of derived flow quantities, like the out-of-plane
component of the vorticity. We therefore have to compensate for this bias.

We have seen that all three estimators show the same qualitative behaviour as function
of the displacement, which is determined by the difference of F_; and Fi,; see (3.84). It
is therefore proposed to apply the following correction to the estimated covariances prior
to estimation of the fractional displacement:

fi’n[r, s]

}[[7‘, S] = —m (387)

(with: R = R};[m,+m,0]) where R};[r, s] is referred to as the unbiased estimate of the
image cross-covariance. With this correction E{R*,} becomes equal to E{R},} for e=0.
So now the expectation values for the numerators in all three fractional displacement
estimators are zero (for all values of a;), which implies that all three estimators are
unbiased.
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3.9.2 variance

We now turn to the variance of the estimated fractional displacement. Like in the previous
subsection we consider the situation for which the actual displacement is an exact integer
multiple of pixels (viz., e =0), and evaluate the statistical properties of the estimators
given in (3.71-3.73).

The variance of the estimated fractional displacement is approximated by

H O o9e oe L
var{é} ~ ———=cov{ R;, R; (3.88)
i=z—:1 ,';1 OR; OR; { J}

where 6&/61?; denotes the partial derivative of ¢ with respect to R;. The expression in
(3.88) is valid provided that var{R,} < E{Rn}?, which is generally satisfied for N > 1;
see (3.42). Like in the previous subsection, we consider the variance of the estimated
fractional displacement in (3.88) given that the actual displacement is exactly an integer
number of pixel units (i.e. €=0). In addition we apply the bias correction proposed in

(3.87), so that

0¢ 0é 1
— = . 3.89
dR; OR F (3:89)
By E{R%,}=E{R},} we obtain for the partial derivatives in (3.89):
o€ 0é 0é
—— =0 and = - . 3.90
oRy """ B8R, oRy (3.90)
In the case of a noise-free image with Fg(Dz)=1 and N — oo we have
var{R_,} = var{R,1} = cov{R_y, Ry,} (3.91)

see Eqgs. (3.37-3.38). In practice it appears that the conditions for (3.91) are rarely met.
Let us have a closer look at the consequences for (3.88). Suppose that the images are
contaminated by white noise®. Some thought reveals that white noise mainly increases the
variances of R, while its influence on the covariances is negligible; see Egs. (3.37-3.38).
We therefore introduce a constant K >0 that represents the decorrelation between R,
and RH, i.e.

(14 K) - var{ Ry} > cov{R_q, Ry1}. (3.92)
Hence, we obtain for (3.88):
. 8 \'[1+K 14K 2 A
var{é} =~ (3R11) [ 2 + 7, FaFn var{Ril}. (3.93)

This result shows that the variance of the estimated fractional displacement depends on
three terms, of which each—as we will see later—appears to play an individual role with
regard to the variance of €. Namely:

3This is additional (instrumental) noise. Do not confuse this with the noise in the estimated covariance
due to the finite sample size, described by (3.40-3.41).
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o The partial-derivative term (3¢/0R},)? directly depends on the applied fractional-
displacement estimator; see Sect. 3.8.1. This term can be interpreted as the sensi-
tivity of € to random errors in the estimated covariance.

o The term between brackets represents the effect due to in-plane loss-of-pairs as a
result of the finite size of the interrogation area (see Sects. 3.6.2 and B.2). Because
it depends on the (small) differences that exist between var{R_,}, var{R4,} and
cov{R_1, Ry1} we will refer to it as the balance term.

o The variance term var{Rs,} given by Eq. (3.38) is directly related to the image
covariance function, and subsequently depends on the bandwidth of the (continuous)
PIV signal; see Sects. 3.5 and 3.7.

In the next three paragraphs we will evaluate these three terms, given the fractional-
displacement estimators defined in Eqs. (3.71-3.73), the model for the image covariance
in (3.54) and the in-plane loss-of-pairs function in (3.45).

But before proceeding we first reconsider the expression given in Eq. (3.93), but now for
the case without applying the bias correction given in (3.87). In that case 1/F,, disappears
as a prefix factor for the (co)variances of Ry1[r, s}, but re-appears in the partial derivatives.
As a result (3.90) is no longer valid, and should be replaced by

9 1 0¢
3R, FnOR;,

(3.94)

of. Eq. (3.89). Now it can be easily seen this would yield the same expression as in (3.93).
Thus, the expression in (3.93) applies to both the corrected and uncorrected estimate
image covariance.

partial derivatives

Consider the three fractional-displacement estimators defined in (3.71-3.73). For zero
fractional displacement the squared partial-derivatives with respect to R4, yield

dic )’ o | 2Ry +E ]2
=0 3.95
(aRll " (R + R5+ Ry,)? (3.95)
aeP 2 _ -4 [ Ra - R;l 2
(3R‘ﬂ) =% |R4, + Ry, - 2Ry (3.96)
b 2 ™ - - 2

o )! g [l -

OR%, |(InR*, + In R}, — 21n R})?

Again note the similar form of the derivatives for the three different estimators. Since we
consider integer displacements only we substitute 1 and a; for Rj and R}, respectively.
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We then find
( r 1 2 ; .
o
o \? 4 1 2
— ] =o7*- - 2 3.98
(5321) 1 0 —01)] for ép (3.98)
1 2 N
| 4a1 In al] for &

cf. Egs. (3.85) and (3.86). In Figure 3.13 the partial derivatives are plotted as function
of a;. Note that (9¢/RY,)? for ép and ég strongly increases for a; larger than about 0.7,
while it slowly decreases for é-. This shows that the peak-fit estimators are very sensitive
to the width of the correlation peak; see also Fig. 3.12.

2.0 X
1]
—-— center-of-mass !
---- parabolic fit i
1.5 [ —— Gaussian fit ’

de JOR*,

0.0 . L

&3}

Figure 3.13: The partial derivatives of three fractional displacement estimators given by Eq. (3.98) as
function of the model parameter a;. The parameter a; is proportional to the width of the displacement
correlation peak; see Eq. (3.74).

balance term

The balance term in (3.93) depends only on Fy, (viz., Fy[m,n]). Let us first consider the
case for K=0. In that case the balance term in (3.93) can be written as:

1 11?
—_ - . 3.99
Fyy F—l] (3:99)
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which is a function of m,; see Eq. (3.70). The influence of the weight kernel on the
variance of ¢ is similar to that on the bias of é; see Sect. 3.9.1. Substitution of (3.47) in
(3.99) yields that the balance term is approximately constant, and O(4/N?).

Now let us investigate the balance term for finite K. We first simplify the expression
for the balance term by

F+1 ~ F_l ~ Fo

so that the balance term reduces to

1+K 14K 2 | 2K
F2, TR P Fual|

(3.100)

We have Fo=1-0(1/N?) (see Sect. 3.6.3), so that the balance term for & >0 is approx-
imately constant, and O(2K). In principle it should be possible to find an expression for
K from (3.37) and (3.38). However, our present aim is to investigate the performance of
the fractional displacement estimators given in (3.8.1). The balance term depends on the
weight kernel only, and its contribution to var{é} is equal for all three estimators. Hence
the relative differences in performance between the three estimators is not determined by
the balance term.

variance term

The variance term in (3.93) is given by (3.38). Like var{Ro} in Sect. 3.7 var{Rys1} is
easily evaluated through the model given in (3.54), which yields:

V&I{R:ﬂ }

<3 2% (B, n] + Rult+m, n) Rt —m, —n])

ot [(1+a®\* [1+a? 2a® 2
- Nj[(l—az) +(1-—112 1—a2+a

4 2 2
- (”" ) (1+3“ +a2). (3.101)

1—a? 1—a?

In Figure 3.14 is plotted var{R,} (normalized by o}) as function of a. In Example 4 we
noted that the correlation length for fixed d; increases proportional with N. In Fig. 3.14
we see that var{Ry;} exhibits the same kind of behaviour, and that it remains practically
constant for a larger than about 0.3.

We can now put together the results obtained in the three previous paragraphs. Note
that the term o7* in (3.98) cancels with the term of in (3.101). Hence the variance of ¢
does not depend on the o? (viz., intensity variance). That implies that the accuracy of
the estimated (uniform) displacement does not depend on the number of particle-image
pairs in the interrogation area. This will be further discussed in Section 3.11.

In the following example we evaluate the variance of the fractional displacement esti-
mators as function of the pixel resolution.
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Figure 3.14: Square root of the variance of the estimated cross-covariance by Eq. (3.101) (adjacent to the
peak maximum) as function of the model parameter a. The parameter a is proportional to the volume
under the displacement correlation peak; see Eq. (3.54).

Example 5 (The variance of the fractional displacement estimators)

Again consider a 1x1 mm? interrogation area that has been digitized to a N x N-pixel
image, with a particle-image diameter of 25 um; see also Example 4 on page 72. We evalu-
ate Egs. (3.98) and (3.101) to investigate the performances of the fractional displacement
estimators éc, ép and ég as function of the pixel resolution. The model parameters ¢ and
a; are chosen according to (3.60) and (3.75) respectively. The random error of the esti-
mated fractional displacement depends on the product of the partial-derivative term, the
balance term and the variance term. We have seen that the balance term only describes
the influence of the weight kernel. Hence, a measure for the random estimation error is
given by the product of the partial-derivative term and the variance term. The partial
derivatives for éc, €p and éc as function of a; are plotted in Figure 3.13. The variance
term—which is equal for all three estimators—is plotted in Figure 3.14 as function of a.
Table 3.2 contains the values for a N x N-pixel image, for several values of N between 16
and 512. In Figure 3.15 is given the product of the partial-derivative term and variance
term as function of N. We see from this figure that the variance of éc is smallest of
all three estimators for N larger than about 100. The parabolic and Gaussian peak-fit
estimators appear to have an optimum, namely at N ~40...80 for ép and at N ~60...100
for GG‘

It should be emphasized that these results apply to integer displacements only. None-
theless, it demonstrates that the peak-fit estimators have optimal performance at low
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Figure 3.15: The product of the partial-derivative term (0¢/0R%,) and variance term (var{R11}1/?) as
function of the resolution for a N x N-pixel image; see Example 5.

Table 3.2: The partial derivatives for éc, ép and ég and var{ftt;} for different values of the number of
samples N x N per interrogation area for fixed d,=25 pm. (The values in this table are given for g;=1.)

N a a;  var{Ry }'/? 0¢/0RY,
P

102 C G
16 0.132 0.157 6.63 0.76 0.30 0.86
32 0.181 0.220 3.49 0.69 032 0.75
64 0.309 0.416 2,12 0.55 0.42 0.69
128 0.512 0.721 1.67 0.41 0.89 1.06
256 0.706 0.911 1.58 0.36 2.81 294
512 0.839 0.976 1.57 035 >10 >10

pixel resolution, while the center-of-mass estimator has its optimal performance at high
pixel resolution. However, to make a definite statement with respect to which of the three
estimators has optimal performance at low pixel resolution we should first investigate their
behaviour for non-zero fractional displacements. This is our subject of the next section.
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Figure 3.16: The tracking error for three different fractional-displacement estimators by Eqgs. (3.104-
3.106) as function of the fractional displacement for three values of the model parameter a; (proportional
to the width of the displacement-correlation peak).

3.9.3 non-zero fractional displacements

So far we only considered integer displacements. In this section we will investigate the
behaviour of the three fractional displacement estimators defined in Sect. 3.8.1 for non-zero
fractional displacements. We do this by evaluating the tracking error of the estimators,
which is the difference between the fractional displacement given by the estimator and
the actual fractional displacement, viz.

y=€—¢ (3.102)

We will follow a procedure similar to Willert (1989); he did an analysis of the tracking
error for three-point estimators of the fractional displacement.
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To compare the outcome for each of the three estimators for a non-zero fractional
displacement we model the image covariance by a small modification of (3.74), i.e.

R.i=ai* Ro=a{ Ry =a™* (3.103)

cf. (3.75). (We omitted here the term o?, because it does not play any role in the
evaluation of the tracking error.) We deliberately did not choose for a Gaussian form in
(3.103), since that would certainly bias the tracking performances in favor of ég; see also
Willert (1989). Substitution of (3.103) in (3.71-3.73) yields after some straightforward
manipulation:

. sinh(elna;)

= — 104
€ cosh(elnay) + 3a5™" (3104)
., sinh(elna,)/2
= cosh(elna;) — a§™? (3.105)
o = — (3.106)

2—2¢

Note that the fractional displacement for é; does not depend on a; (i.e. the width of the
correlation peak).

The result for the tracking error as function of € is plotted in Figure 3.16 for three
different values of a;. (In this figure the sign of the tracking error for éc has been reversed
to provide an easier mutual comparison of the three curves in each graph.) Since the
tracking error for &g is independent of a,, the three curves for ég in Fig. 3.16 are identical.
This is in contrast with the tracking errors for éc and ép. The tracking error for ép seems
to approach that of ég for large a;. The tracking error of éc for small a; seems to approach
that of é;. However, unlike the curves for ép and ég, it appears that the tracking error for
éc is discontinuous at ez:t%. The discontinuity increases with increasing a;. Effectively
this means that éc has a strong bias towards an integer value of the displacement, which
explains why the variance of éc for € = 0 is lower than that of ép and ég for large a;
(see Example 5). But, for non-zero values of ¢ the estimation error of éz can be much
larger. The discontinuity is a direct result of the fact that the sample data (viz., estimated
covariances) are not symmetrically distributed with respect to the peak centroid. Let us
explain this with an example.

Suppose that we have a particle-image displacement of m,+e¢, with ¢=0.5 and where
m, is an integer number. In that case the covariances in m, and m,+1 are equal; if we
would only use the covariances in m, and m,+1 then a center-of-mass estimator would
yield é=3. However, for a three-point estimator always a third covariance is included in
€c. This is either the covariance in m,—1 or the covariance in m,+2, depending on which
of the two central covariances is identified as the maximum®?. Some thought shows that if

4Due to noise the two values will rarely be exactly equal; the identification of either m, or m,+1 as
the position of the maximum is then determined by chance.
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we would use the covariances in m,—1, m, and m,+1 we find éc < %, while for m,, m,+1
and m,+2 we find é¢c > % This discontinuity does not appear in the peak-fit estimators.

In order to characterize the overall tracking performarnce of the fractional displacement
estimators we now compute the rms tracking error, given by

1/2
= [ (- eyae (3.107)
~1/2

The results of (3.107) for éc, €p and g are plotted in Figure 3.17 as function of a,. Note
that (£?) is constant is constant for the Gaussian peak-fit estimator, which reflects our
earlier observation that the tracking error for éz is independent from the model param-
eter in (3.103). This figure confirms the observation in Fig. 3.16 that the tracking error
of &g is a lower bound for the tracking errors of éc for a; — 0 and of ép for a; — 1. It is
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Figure 3.17: The rms tracking error {¢;}!/? as function of the model parameter a; for three different
fractional displacement estimators. The parameter a, is proportional to the width of the displacement
correlation peak; see Eq. (3.74).

emphasized here that we deliberately used a model for the image covariance that is not
Gaussian; see Eq. (3.103). Therefore it is quite possible that in reality the rms tracking
error for ég is smaller 0.06 px.
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3.10 Experimental verification

In order to verify the analytical results from the previous sections a test experiment was
carried out. In this experiment the measured displacement of a uniformly translated test
object was compared with the actual displacement. From the results were determined the
average and rms fluctuating displacements as function of the actual displacement. Also
the effect of different weight kernels was tested.

3.10.1 experimental set-up

The optical arrangement in this test was similar to the schematic set-up shown in Fig. 2.5.
In the object plane was put a test object that was mounted on a traversing stage, by which
the test object could be accurately translated. In this way we could simulate uniform
displacements along a given direction and over a given distance. The position of the test
object was measured with a dial gauge, which had a smallest scale unit of 10 ym. The
test object consisted of a photograph taken from a seeded flow with a known number
density and particle size. The object area was illuminated with white light from a 60 W
incandescent lamp. Because a fixed test object was used we have Fo(Dz=0)=1.

The object was observed by a CCD video camera (High Technology Holland - MX).
The camera sensor (Philips NXA1011 frame transfer sensor) has an (effective) resolution
of 604 (horizontal) by 576 (vertical) elements. The image area is 6.0 mm (horizontal) by
4.5 mm (vertical). The camera was equipped with a 28 mm focal length lens, with an
aperture of f/D=2. The video signal from the camera was directly digitized by a high
resolution frame grabber (Data Translation 2851) to a 512x512-pixel, 8-bit digital image.
The sample rate of the digitizer was not synchronized with the pixel clock of the camera.
As a result the aspect ratio of a pixel in the digital image differs from that of a pixel in
the camera sensor. The digital image consisted of rectangular pixels with an aspect ratio
of 1.44. The equivalent area of the image in the object plane was 13.0x9.1 cm?. The
image magnification was equal to 0.044.

A set of eight single-exposure frames were recorded at different positions of the test
object over a displacement range of 1 mm in the direction perpendicular to the camera
scan-lines. The frame recorded with the object in its initial position is referred to as the
reference image. In the end, the object was repositioned at the initial position according to
the dial gauge reading, and a second reference image was recorded. This would enable us to
verify the reading and positioning errors of the translation stage. By shifting the reference
image digitally, translations over a distances greater than 1 mm could be “simulated”.
The reference image and a digitally shifted pairing image were also used to examine the
expectation and variance of the estimated cross-covariance and fractional displacement
estimators for the case of a displacement of exactly an integer number of pixels. For this
purpose the reference image was shifted over 6 px; for a 32x32-pixel interrogation area a
displacement of 6 px is approximately halfway the largest and smallest attainable absolute
displacements. Thus, in total thirteen translated frames plus two reference frames we used
for the image analysis. In Table 3.3 are listed the corresponding displacements.
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Table 3.3: Positions of the test object for the recorded images, relative to the reference image (i.e. the
image of the test object in its initial position). Frames 9-13 are “simulated” by shifting the digitized
reference image.

frame position | frame  position
mm  px mm  px

1 0.05 0.28 8 100 5.65

2 010 0.57 9 - 7.13

3 015 0.85 10 - 8.26

4 020 1.13 1 - 9.39

5 0.40 2.26 12 - 10.52

6 0.60 3.39 13 - 11.65

7 0.80 4.52 (0) 0.00 0.00

The image contained a total of 3642 particle images of different intensities, with a
particle-image diameter of 4.4 px (in the direction perpendicular to the scan-lines of the
CCD sensor). In Table 3.4 an overview is given of the relevant statistical properties of
the digital images and the model parameters ¢ and a;.

Table 3.4: Relevant properties and related model parameters of the digital test images.

grey value

- mean I 306
- standard deviation o; 34.7
particle-images

- image density N; 142

- diameter d 44 pX
model parameters

— global a 0592

- local a; 0.813

image analysis

For the analysis the images were sub-divided into 32x32-pixel non-overlapping interroga-
tion images. Corresponding sub-images in the translated image and reference image were
analyzed by computation of the cross-covariance. The analysis was carried out with and
without the correction for the displacement bias given in Eq. (3.87). Because there was
no overlap between adjacent interrogation images, each pair of images yielded 256 sta-
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tistically independent displacement vectors. Given the total number of particle-images,
the average number of particle images in a 32x32-pixel sub-image was equal to 14.2.
This value is in accordance with the recommendation by Keane & Adrian (1990) for a
valid-data yield of at least 95%. All measured integer displacements that deviated more
than one pixel from the expected displacement were considered as spurious vectors due to
insufficient particles image pairs, and were discarded from the data set. Such a strict test
for spurious data can only be done if one has exact a priori knowledge of the displacement.
From the remaining data were computed the displacement mean and standard deviation.

First, the observed mean and variance of the estimated cross-covariance and fractional
displacement estimators for an integer displacement were determined for comparison with
the analytically predicted results. Since only one test object was available, it was not
possible to investigate the behaviour of the fractional displacement estimators as function
of the particle-image diameter (viz., a;). However, the main purpose of this experiment
was to verify the predicted behaviour of the expected mean and rms displacements as
function of the actual displacement. We have seen in Sect. 3.9 that the (qualitative)
behaviour was mainly determined by the choice of the weight kernel. Here we tested the
effect of the three different weight kernels: the 32x32-pixel uniform and Gaussian weight
kernels, and the 16 x16-pixel uniform weight kernel (with zero-padding).

Table 3.5: Results of the test measurements and analytical predictions for the mean and covariances
of the estimated cross-covariances. The expectation values are normalized with respect to o (i.e. the
variance of the image intensity), and the (co)variances with respect to o /N2 (with N =32).

obs. pred. obs. pred.

E{Ro)} 0.807 0.813 | var{Ro} 9.12 8.65
E{R_,} 0.748 0.686 | var{R_,} 8.77 17.68
E{R.} 0.706 0.635 | var{R,1} 8.82 7.68
cov{R_y,Ry1} 7.37 7.68

3.10.2 results

We will first discuss the result of the cross-correlation analysis of the initial and the sec-
ond reference image. The measured displacement between these two images was equal
to (0.0013+0.0013) mm (95% reliability interval). From this result we conclude that the
reading and positioning errors are negligible with respect to the displacement.

The averages and (co)variances of R_1, Ry and R, were determined from the analysis
of the reference image and its pairing image that was shifted over 6 px. The results are
given in Table 3.5. The values for the averages and (co)variances predicted according to

Egs. (3.30) and (3.37-3.38) for the model in (3.54) and the image parameters in Table 3.4
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are also given in Table 3.5. The observed and predicted values agree within 10%. This may
be attributed to the to the fact that the model for the covariance in (3.54) is somewhat
course. The observed variances are systematically larger than the predicted values. How-
ever, note the close agreement of the observed and predicted values for cov{R_,, R+1}.
This seems to support our earlier conjecture that in a practical situation white random
noise mainly contributes to the variances of R,,, while it leaves the covariance unaffected
(see Sect. 3.9.2).

The image pair was analyzed with and without the bias correction proposed in (3.87).
The results for the mean displacement for the three fractional displacement estimators
taken over the entire image pair are given in Table 3.6. This table shows that the es-
timation of the fractional displacement without the bias correction yields a significant
deviation from the actual mean displacement between 0.4 and 1.7%. If we apply the bias
correction then the observed differences with the actual mean displacement are less than
0.05%, which is within the (estimated) reliability interval.

Table 3.6: Results for the mean displacement with (estimated) 95% reliability interval obtained from the
reference image and its pairing image shifted over 6 px. The analysis was carried out for three different
fractional displacement estimators, and with and without the bias correction in Eq. (3.87).

without with rel. int.
corr.  corr.  (95%)

éc 5.975 5.999 £0.004
ép 5.917 5.998 +0.005
L] 5.908 5.997 +0.013

The observed variances and covariance of B_; and R.H given in Table 3.5 were used
to determine the value of the constant K:

var{R_,} + var{R4} B

K= - -
2COV{R_1, R'H}

1 (3.108)

cf. (3.92), which yields K =0.19. This value will be used to predict the rms value of the
estimated fractional displacement that will be discussed below.

Let us turn to the means and variances of the estimated fractional displacements. In
Table 3.7 are given the partial derivatives for the center-of-mass, the parabolic peak-fit and
Gaussian peak-fit estimators computed according to (3.98) with a; given in Table 3.4. If
we multiply these numbers with the balance term given by (3.100) for m,=6 and K =0.19,
and with the variance term given by (3.101) (see also Table 3.5) we obtain the analyt-
ical predictions for the variance of the estimated fractional displacement. In Table 3.7
are given the standard deviations (viz. var{¢}!/?) for the three fractional displacement
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Table 3.7: Results of the analytical predictions and test measurements for the variance of the estimated
fractional displacement for an integer displacement of 6 px. Also shown here are the partial derivative,
balance and variance terms. (The term oy is omitted in the partial derivatives and variance terms.)

partial  balance variance  var{é}!/

derivative  term term  pred. obs.
10-3 px px
éc 0.145 0.596 7.12  0.025 0.021
ép 1.787 0.596 7.12  0.087 0.088
€ 2.206 0.596 7.12 0.097 0.094

estimators. Compare the predicted and observed values, which agree very well. This
demonstrates that the analysis of the statistical properties of the fractional-displacement
estimators in Sect. 3.9, for given values of R_;, Ry and R4, yields a correct prediction of
the accuracy of the three fractional displacement estimators discussed in this thesis. The
results also show that the displacement can be measured with an absolute accuracy that
is better than 0.1 pixel (rms value). This implies that at low pixel resolution, say 32x32
pixels, the relative accuracy for a nominal displacement of 1/4 of the interrogation-image
diameter (i.e. 8 px) is about 1%.

The set of displaced images was used to investigate the mean and rms differences be-
tween the measured and actual displacements as function of the actual displacement. We
only used the data that were obtained with the Gaussian peak-fit estimator (remember
that we saw in Sect. 3.9 that the performance as function of the displacement is deter-
mined by the weight kernel, and not by the fractional displacement estimator). As was
already explained in the previous paragraph, the images were analyzed with and without
the bias correction in (3.87) and for three different weight kernels. The results are shown
in Figure 3.18 as function of the displacement. The error bars represent the estimated 95%
reliability intervals, based on the sample variance. The solid lines represent the displace-
ment bias predicted by Eq. (3.82). From these results we conclude that the prediction for
the displacement bias agrees very well with those observed in the experimental data. We
can also see that the correction proposed in Eq. (3.87) adequately compensates for this
bias. It should be emphasized here again that the correction is applied to the estimated
(cross-)covariance, prior to estimation of the fractional displacement. In Fig. 3.18 are
also given the rms differences between the measured and actual displacements. The rms
difference for the uniform weight kernel is approximately constant over the displacement
range. The dash-dotted lines in Fig. 3.18 are the predicted behaviour for the rms dis-
placement error (viz., var{¢}'/?) according to Eq. (3.93). For both the 32x32-pixel and
16 x 16-pixel uniform weight kernels the predicted behaviour agrees fairly well with the
measured behaviour. On the other hand, for the Gaussian kernel the rms difference seems
directly proportional to the displacement. This is not in correspondence with the pre-
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dicted behaviour in (3.100). In fact, it appears as if the rms difference behaves according
to the balance term for a noise-free system (i.e. K =0), although the magnitude of the
rms differences suggests that we have K >0. This requires further investigation. Anyway,
for the same test object the Gaussian kernel yields more accurate results than the uniform
kernel. Suppose that the rms differences for the Gaussian kernel are indeed proportional
to the displacement (thus the relative accuracy of the measured displacement is constant),
then a linear fit to the rms differences in Fig. 3.18b yields a relative measurement error
of the displacement in this experiment that is better than 1% (rms value)!

The results presented in Fig. 3.18 were found after first discarding spurious data. In
Figure 3.19 is given the fraction of valid data as function of the displacement for the three
different weight kernels. Note that the valid-data yield for the 16x16-pixel zero-padded
uniform kernel drops very rapidly. This is not surprising because in this case the effective
image density (viz., the expected number of particle-images per interrogation region) is
3.6; only 1/4 of the image density for the 32x32-pixel uniform kernel. This value is too
low to expect a high valid-data yield. The 32x32-pixel uniform and Gaussian kernels on
the other hand have a valid-data yield that is very close to one over a wide displacement
range. We have seen in the previous paragraph that the Gaussian weight kernel yields a
more accurate estimate of the displacement than the uniform weight kernel. On the other
hand, in Fig. 3.19 we find that the Gaussian weight kernel has a lower valid-data yield than
the uniform weight kernel (for displacements that are larger than 9 px). So, the uniform
weight kernel is more robust than the Gaussian weight kernel. This can be interpreted
in terms of a difference in the effective number of particle-image pairs as function of the
displacement, i.e. N;Fo(Dz)Fi(m,n) given by (3.52). The lines in Fig. 3.19 represent
the valid-data yield predicted by the model proposed in (3.53). Initially this model failed
to predict the behaviour of the valid-data yield for the 16x16-pixel uniform kernel, given
an image density of 14.2 (see Table 3.4). The model in (3.53) was fitted to the observed
valid-data yield for the 16 x 16-pixel uniform kernel, with Ny as a free parameter. A good
agreement was found when the original image density (N;=14.2) was multiplied by 0.7;
see Fig. 3.19. In order to make an optimal design for a PIV experiment it is important
to have a reliable model to predict the valid-data yield as function of the image density,
the displacement and the weight kernel (see Chapter 4). Hence, further investigation is
required to improve the model proposed in (3.53).

In Figure 3.20 the present result for the rms differences between the actual and ob-
served displacements for the case of a 32x32 uniform weight kernel are compared with
similar test experiments carried out by Willert & Gharib (1991) and Lourengo (1993).
Willert & Gharib (1991) performed tests with artificially generated PIV images at var-
ious image densities, ranging from N; =6 to 74. They recorded and analyzed pairs of
single-exposure images. They analyzed these images with the Gaussian peak-fit estimator
and with a uniform weight kernel. In Fig. 3.20 are shown their data for Ny =11, which
is close to the image density in the present test. Lourengo (1993) carried out tests for
multiple-exposure images (no quotations were made of the used image density, particle-
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Figure 3.18: The mean (with and without bias correction) and rms differences between the actual and
measured displacement as function of the displacement in pixels for the 32x32 uniform (a) and Gaus-
sian (b), and 16x16 uniform (c) weight kernels. The lines represent the analytical predictions for the
uncorrected mean (solid line) and rms (dash-dotted line) differences; see text.

image diameter, weight kernel and fractional-displacement estimator). In Fig. 3.20 are
plotted his results for the double-exposure images. If we compare the results in Fig. 3.20
then we see that all three tests show the same qualitative behaviour, i.e. the rms measure-
ment error changes very little over a considerable range of displacement. The differences in
magnitude can be attributed to differences in the particle-image diameter; in the present
tests we used a fairly large particle-image diameter (i.e. 4.4 px). So it seems that Willert
& Gharib (1991) and Lourengo (1993) must have had smaller particle-image diameters.
That implies that the accuracy of about 0.1 px found in the present test can be further
improved by minimizing the particle-image diameter. However, it is remarkable that al-
though both Willert & Gharib (1991) and Lourengo (1993) claim a measurement accuracy
that is better than 0.1 px, neither of them report the bias found in the present results.
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data yield according to (3.53)

3.11 Summary and conclusions

In this chapter we investigated the statistical properties and the analysis of digital PIV
images. In this final section of this chapter a summary is given of the main conclusions

of the preceding sections.

e It was shown that the digital images are unbiased estimates of the continuous images
discussed in Chapter 2. Provided that the observed flow is incompressible and
seeded homogeneously with ideal tracer particles, the digital PIV image can then
be described in terms of a homogeneous, negative-exponential random field. This
result was verified experimentally; see Fig. 3.2.

e One of the most important issues in digital image processing is the (minimum)
required sampling rate of the continuous image field. We have seen that the PIV
image is bandlimited by the finite aperture of the imaging lens. In general a high
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Figure 3.20: The rms measurement error as function of the displacement for uniformly translated test
objects obtained by Willert & Gharib (1991) and Lourengo (1993) in comparison with the present results;
see text.

sampling rate is necessary to resolve the optical bandwidth. In a practical situation
this would correspond to a minimum resolution of 256 x256 px/mm?.

However, the measurement of the particle-image displacement does not require an
exact reconstruction of the PIV image. So, there is no essential need to resolve the
optical bandwidth. Instead, the bandwidth of the image spectral density, following
Parzen’s definition, is considered to give a more feasible measure for the required
sampling rate. This yields a value that is about 1/4 of the optical bandwidth.
In practice a resolution of 32x32 px/mm? or 64x64 px/mm? for the interrogation
analysis is already sufficient. In fact, a resolution of 256x256 px/mm? that is con-
ventionally used in OPIV oversamples the PIV image. This conclusion is confirmed
by evaluation of the integral length scale of the estimated displacement-correlation
peak as function of the pixel resolution; for a resolution of more than 64 x64 px/mm?
the number of independent samples that contribute to the variance of the estimate
remains practically constant.

In the optimal situation, i.e. for a resolution that matches the Parzen bandwidth,
the particle-images are about the size of a pixel (d;/a~1; see Table 3.1).

e We introduced a spatial-average estimator for the image cross-covariance. The esti-
mator can be computed efficiently by the fast Fourier transform (FFT) algorithm.
(This subject is discussed separately in Appendix B.2.) For small particle images
that are distributed homogeneously over the image (with zero background intensity)
zero-padding and windowing of the interrogation image are not necessarily required.
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The statistical properties of the estimator, based on a N xN-pixel interrogation im-
age, were expressed in terms of the ensemble statistics of digital PIV images. Like
its one-dimensional counterpart, the estimator appears to be asymptotically unbi-
ased for N — oo. For a finite value of N the displacement-correlation peak is skewed
towards the origin. This is the cause of a (small) bias in the estimated centroid of
the displacement-correlation peak; see below.

The particle-image displacement is given by the centroid of the displacement-corre-
lation peak. This peak or “signal” is identified as the maximum of the (estimated)
image cross-covariance. The amplitude of this “signal” with respect to the back-
ground noise (viz., the random correlation peaks) depends on the image density and
the magnitudes of the in-plane and out-of-plane particle displacements, represented
by Fr and Fp respectively. There is a finite probability that one of the noise peaks
is higher than the signal peak. In that case we say that we have a spurious measure-
ment of the displacement. The commonly accepted idea is that at least four or five
particle-images are required to obtain an unambiguous (viz., valid) measurement
of the displacement. A simple model, based on Poisson statistics, was proposed
to predict the valid data yield as function of the displacement. The predictions
from this model compared quite well with the observed valid-data yield in a test
measurement.

The maximum of the image cross-covariance yields only a rough estimate of the
particle-image displacement (with a resolution of 1 px). By interpolation of the
covariances near the peak maximum we obtain the location of the displacement-
correlation peak at sub-pixel level, denoted as the fractional displacement. At low
pixel resolution only the four-connected neighbourhood contains significant infor-
mation. Hence the fractional displacement along each in orthogonal direction is
estimated from only three points. We have investigated the statistics of three dif-
ferent interpolation methods, namely the center-of-mass estimator, the parabolic
peak-fit estimator and the Gaussian peak-fit estimator.

The skewness of the estimated cross-covariance is the cause of a small bias in the
expected displacement towards the origin (i.e. zero displacement). The behaviour
of the bias as function of the displacement is determined by the type of weight
kernel. This kernel puts a different weight to each pixel in the interrogation image.
Two types of kernels were introduced: a uniform kernel (all pixels contribute to the
estimate by an equal amount) and a Gaussian kernel (the contribution of the pixels
to the estimates gradually reduces towards the edges of the interrogation area). For
a uniform weight kernel the bias is approximately constant up to 1/3 of the diameter
of the interrogation image, while for a Gaussian weight kernel the bias is directly
proportional to the displacement. A linear dependence of a bias as function of the
displacement for a Gaussian weight kernel was reported by Keane & Adrian (1990)
for the case of a continuous PIV image. The bias associated with the uniform weight
kernel was not reported before. In a practical situation this bias is about 0.06 px
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for a 32x32 pixel interrogation area. Though small, it significantly contributes to
the measurement error at low pixel resolution where the random error is found
to be about 0.08 px. Markedly, this bias was not reported by others that claim
accurate measurement of displacement at low pixel resolution (Willert & Gharib
1991; Lourengo 1993). Adrian (1988) relates the magnitude of a displacement bias to
the velocity gradient over the interrogation area; an interrogation area of given size
can contain a higher number of particle-image pairs with a small displacement than
pairs with a large displacement, which biases the measured displacement towards a
value that is lower than the actual local mean displacement. Following this line of
thought one would not expect to find a displacement bias for a uniform displacement.
However, the present analysis revealed that the magnitude of the bias is directly
determined by the width of the displacement-correlation peak with respect to the
width of Fj. The width of this peak is not only determined by the particle-image size,
but also by the variation of the displacement field over the interrogation area, for
example due to a velocity gradient over the interrogation area or due to unresolved
motion at scales smaller than the size of the interrogation area; see Sect. 2.4).
Hence, we have given a more general explanation for the occurrence of a bias in the
measured displacement.

The bias can be easily compensated for by dividing the covariance values with the
in-plane loss-of-pairs function prior to the estimation of the fractional displacement;
see (3.87). The elegancy of this correction procedure is that it is non-parametric; it
does not require any a priori knowledge of the particle-image size or local variation
of the displacement field.

The analysis pointed out that the random estimation error of the three-point fractio-
nal-displacement estimators can be expressed as the product of three terms, namely:
one term that reflects the sensitivity of the estimator (partial-derivative term), one
term that depends on the detailed balance between the two outer covariances (bal-
ance term) and one term that is determined by the bandwidth of the PIV image
with respect to the sampling rate (variance term). The relative differences between
the three estimators considered here are only determined by the partial derivative
term. The balance term is determined by the size and shape of the weight kernel.

The peak-fit estimators yield accurate results for sharp peaks, whereas the center-
of-mass estimator is quite insensitive to the shape of the peak. It appeared that
the peak-fit estimators perform optimally if the particle-images are approximately
one pixel in diameter (d;/a~1). If we only consider displacements that are exactly
an integer number of pixel units then the center-of-mass estimator at high pixel
resolution has the lowest absolute estimation error; see Fig. 3.15. However, the
(three-point) center-of-mass estimator is strongly biased towards integer values of
the displacement in pixel units, and it has a discontinuous behaviour for fractional
displacements of :t% (i.e. displacement that lie exactly in the middle of two integer
pixel values). As a result we have a tracking error of more than 0.2 px; see Figs. 3.16-

3.17. This discontinuity can lead to large errors in the computation of flow quantities
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that require the differentiation of the displacement (viz., velocity); see Chapter 5.
At high pixel resolution this error is small in view of the nominal displacement (less
than 1%), but it becomes relatively large at low pixel resolution (more than 4%).
This makes the center-of-mass estimator unsuited for estimation of the displacement
at low pixel resolution. This result corresponds to the conclusion by Prasad et al.
(1992) who carried out test measurements to assess the measurement accuracy for
a center-of-mass estimator as function of the pixel resolution.

On the other hand, the peak fit estimators can resolve the fractional displacement
much better than the center-of-mass estimator, and are therefore better suited to
estimate the displacement at low pixel resolution. The Gaussian peak-fit estima-
tor has a random error that is somewhat larger than that of the parabolic peak-fit
estimator, but has a much smaller bias error. We therefore conclude that the Gaus-
sian peak-fit estimator has the best performance for estimating the particle-image
displacement at low pixel resolution.

Predictions from the theoretical analysis were compared with the observed values in
a simple test experiment. The agreement between the observed and predicted values
for the mean random error is fairly good. However, it was necessary to introduce
an empirical constant K >0 in the balance term of (3.93) to obtain a quantitative
agreement of the predicted and observed rms error. The constant K accounts for a
“unbalance” between the (co)variances of Ry, (in addition to the effect due to the
in-plane loss-of-pairs function F; see Sect. 3.9.1). This additional unbalance may be
due to the fact that in our analytical model the summations in Eqs. (3.34-3.38) were
extended to infinity, while actually the summations include only a finite number of
terms (proportional to N x N). In our test experiment the particle-image diameter
(d¢/a=4.4) was small in comparison with the size of the interrogation area (N = 32);
under this condition Eq. (3.37) is a good approximation of Eq. (3.34)°. Therefore
it is believed that the additional unbalance is most likely due to the presence of
additional (instrumental) noise; white noise would affect the variances, but not
the covariances. This line of thought is confirmed by the experimental results in
Table 3.5. In future work, additional noise can be accounted for by including the
noise statistics in the model for the image covariance (see Sect. 3.7). Hence, the
derived relation between the statistics of the estimated and actual image covariance
remains unchanged. Further research on this topic is required.

Now, suppose this future work would enable us to predict the value of K. Then,
through Eq. (3.93), it would perhaps also be possible to obtain reliability estimate
of the measured displacement (i.e. without recourse to a comparison with measured
displacements from neighbouring interrogation positions in a post-interrogation pro-

SA preliminary evaluation indicated that the difference between the results given by the exact expres-
sion in (3.34) and the approximation in (3.37) alone cannot account for the value of K found in the test
experiments.



Summary and conclusions 105

cedure; see Chapter 4). This would provide an alternative to the peak detectability?,
which is commonly used to assess the reliability of the measured value of the dis-
placement.

o The behaviour of the accuracy as function of the displacement that was found in
the test measurement showed that it has the same character as the displacement
bias: the error is practically constant for a uniform weight kernel, while it is directly
proportional to the displacement for a Gaussian weight kernel. This implies that
below a certain displacement the estimate obtained from the Gaussian weight kernel
yields more accurate results than those obtained with the uniform weight function.
It would be interesting to investigate this further in more detail; perhaps it is possible
to find an optimal weight kernel for a given experiment, that is designed with respect
to a priori knowledge of the observed flow field.

¢ The test measurements demonstrated that displacement measurements at low pixel
resolution could be made with an accuracy that is better than 0.1 px. Suppose we
have a mean displacement with a nominal value of 8 px, then measurements of the
displacement with a relative accuracy that is better than 2% seem feasible. Our an-
alytical and experimental results are in qualitative agreement with the experimental
results obtained by Willert & Gharib (1991) at corresponding image density, and
those obtained by Lourengo (1993). The quantitative differences between these ex-
perimental results can be ascribed to differences in particle-image diameter. (Again
it is emphasized that both Willert & Gharib and Lourengo did not report the oc-
currence of a displacement bias, despite the fact that they claim an accuracy that
is better than the present results.)

Willert & Gharib (1991) found that the accuracy of the estimated (uniform) dis-
placement decreases with increasing image density. At first sight, this seems a
feasible result; the more particle-image pairs per interrogation area the more accu-
rate result for the estimated displacement. Yet, this conclusion is not confirmed by
the present analytical results. How is this possible? Let us have a closer look at the
role of the image density in our analysis.

The present analytical results show that the accuracy of estimating the peak centroid
is independent of the image contrast, i.e. o, which is the only term that depends
on the image density. One should realize that o; does not only depend on the
image density, but also on the intensity of the incident light sheet, the conversion
of light into charge in the CCD, and the gain of the analog-to-digital converter
in the frame grabber. So, we can always create a situation with the same value
for o7 but with different values of the image density, simply by adjusting the light
intensity or the electronic gain. Now, if the accuracy would depend on o then a
simple rescaling, e.g. by changing the electronic gain, would yield a higher value of
accuracy. This is rather odd, because the relative differences between the signal and

87The detectabilily is defined as the ratio of the maximum of the displacement-correlation peak and the
maximum of the highest random correlation peak; see also Chapter 4.
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noise peaks did not change”. This demonstrates that the estimation accuracy of the
peak centroid does not depend on oy (viz., the image density). However, note that in
our analytical model we assumed that the displacement-correlation peak has already
been identified correctly (i.e. we are always dealing with a valid displacement). The
probability to identify the valid displacement-correlation peak among the random-
correlation peaks is proportional to the image density. Once we have identified the
proper correlation peak, the estimation of its centroid only depends on its shape
and diameter. Hence, the probability to find a valid displacement is determined by
the image density, while the accuracy of the measured (valid) displacement depends
only on the particle-image diameter. Alternatively, one may say for a uniform
displacement that each particle-image pair that is added to the pairs already inside
an interrogation area does not contribute to the information on the displacement,
but only reduces the uncertainty with regard to the most probable displacement.

So, in the case of a uniform displacement the estimation accuracy does not depend
on the number of particle images, given that the displacement-correlation peak is
detected correctly. Then why did Willert & Gharib find a relation with the image
density? A possible explanation is given below.

Willert & Gharib (1991) did not subtracted the mean image intensity prior to es-
timation of the image covariance, in correspondence to the covariance estimator
investigated by Adrian (1988). As a result the correlation peaks are superimposed
on a background level. This changes the relative differences between the estimated
covariances that are used for estimating the fractional displacement (some thought
shows that an increase in the background level affects the value of the parameter
K; as a result the rms random error depends on the mean background level, viz.,
image density).

To conclude this chapter, the following remarks should be made. The analytical investiga-
tion in this chapter has demonstrated that an interrogation analysis with a resolution that
is substantially lower than used conventionally can yield in principle results with com-
parable accuracy. However, further research is required to improve the analytical model
for the image covariance. The most important achievement of the results in this chapter
is that we can now investigate and comprehend the behaviour of various (three-point)
estimators and weight kernels analytically. This replaces the rather laborious empirical
approach that was commonly employed in the past.

7A rescaling does not enhance the information content of the signal.



Chapter 4

Data Validation: Detection of
Spurious Vectors!

Abstract. A statistical model is introduced that describes the occurrence of spurious
vectors in PIV data. This model is used to investigate the performance of three different
post-interrogation procedures: the global-mean, the local-mean and the local-median test.
The model was also used to optimize the performance of these procedures. Predicted per-
formances agree very well with those obtained from an artificially generated PIV record.
It is demonstrated that the “detectability” as the conventional measure for the reliability of
a measured displacement vector is very inefficient, compared to the three tests mentioned
here. The local-median test has the highest efficiency.

4.1 Introduction

In Particle Image Velocimetry (PIV) we often find that measurements results contain a
number of “spurious” vectors, like e.g. in Figure 4.1. These vectors deviate unphysically
in magnitude and direction from nearby “valid” vectors, and in general originate from
interrogation spots that contain insufficient particle-image pairs. In practice the number
of spurious vectors in a PIV data set is relatively low (typically less than 5%). However,
their occurrence is more or less inevitable: Even in carefully designed experiments there
remains a finite probability that an interrogation yields a spurious vector.

Generally, PIV measurement data are subject to a post-interrogation procedure in
which spurious vectors are identified and subsequently discarded from the data set. It
would be ideal to have a measure of reliability for each displacement vector that is directly
obtained from the auto-correlation function of the interrogation spot itself, like e.g. the
“detectability” Do (Keane & Adrian 1990). In practice it appears that these reliability
estimates are not very robust (this will be demonstrated later on). Instead, each displace-
ment vector is compared with nearby vectors and those that have an “unacceptably” large

L WESTERWEEL, J. Efficient detection of spurious vectors in particle image velocimetry data. Accepted
for publication in: Ezp. Fluids.
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Figure 4.1: Arbitrary example of a PIV measurement result containing spurious displacement vectors.

deviation are labeled as “spurious”.

In a visual representation of a PIV data set (e.g. like in Figure 4.1) spurious vectors
can be easily recognized as mismatches in the observed pattern. However, visual inspec-
| tion of PIV measurement data is tedious and subjective, and therefore not reproducible
| and not optimal. A visual approach will certainly fail for large quantities of PIV data;
The human operator will soon become fatigued and will become indifferent with respect
to performing his task. This brings up the need for a purely statistical approach for the
post-processing of PIV data. This does not only provide objective means to evaluate
the data, but would also provide a basis for the development of automated procedures
that are robust and optimally efficient. Although most authors report that they use some
kind of statistical method to evaluate their PIV measurement data in a post-interrogation
procedure, an account of the details of the procedure is rarely given. In this chapter first
a statistical model is introduced that describes the occurrence of spurious data in PIV
measurements. This model is subsequently employed to investigate the performance of
three different tests for post-interrogation evaluation. Finally predictions from the model
are tested against the results obtained from an artificially generated PIV image.

This chapter is dedicated to the statistical evaluation of PIV measurement data that is

O
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contaminated with spurious data. The occurrence of spurious data—also called outliers—
in measurement data is found in almost every field of experimental research. There is a
variety of evaluation methods and statistical tests for the detection of outliers in statistical
data (Barnett & Lewis 1979). The methods presented in this chapter were—in part—
adapted from statistical consistency tests that have been applied successfully in neutron
scattering experiments (Fredrikze 1985; Westerweel 1987). Similar procedures are also
used in digital image processing to filter out binary noise (Jain 1989). To certain extent
the contents of this chapter could be generalized to include also signals from other sources.

4.2 The PIV signal

We first give a more exact definition of what is called “valid” and “spurious”, instead
of the qualitative definition given in the Introduction. Subsequently we will introduce a
stochastic model of a PIV “signal” contaminated with spurious data. It is emphasized
that we are not looking for a mathematically exact description of this signal, but merely
a convenient model that allows us to examine different post-interrogation procedures.
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Figure 4.2: Typical example of the spatial auto-correlation function R(3) of an interrogation spot in a
double-exposure PIV record. The function R(3) consists of five terms (see text): Rp + Rp+ + Rp- +
Rp + Rc (Adrian 1988).

Today the most common method to analyze a PIV record is by computation of the
spatial auto-correlation function R(3) in a small interrogation spot (either directly or from
its optically Fourier-transformed image). Figure 4.2 shows a typical example of R(5) for a




110 Data Validation: Detection of Spurious Vectors

double-exposure PIV record. Adrian (1988) showed that R(3) can be separated into five
terms, i.e. the particle-image self-correlation peak Rp(3), the displacement correlation
peaks Rp+(8) and Rp-(3), and a noise term Rr(3) due to random particle correlations,
superimposed on the mean background correlation R¢(8). The two displacement peaks
Rp+(3) and Rp-(3) are located on opposite sides of Rp(3).

The particle-image displacement is taken equal to the centroid of the highest non-
central peak of R(3). When this peak corresponds to Rp+(3) (or Rp-(3)) a valid estimate
of the particle-image displacement is obtained. Otherwise, the peak that was detected is
part of the noise term Rp(3), and yields a spurious estimate of the displacement vector.
Usually the search for the highest correlation peak is limited to a window that includes
the range of displacements anticipated in the experiment. The detectability Dy of the
peak is defined as the ratio of the highest and second highest correlation peak in the
search window (Keane & Adrian 1990). A high value of Dy indicates that the detected
peak is substantially larger than the other peaks in the search window. Thus, Dy may be
considered as a measure for the reliability that the peak centroid corresponds to a valid
displacement.

The detection of either a valid or a spurious displacement depends on the number and
spatial distribution of particle-image pairs inside the interrogation spot. In practice it
appears that a minimum of four particle-image pairs is required to obtain an unambiguous
measurement of the displacement. The number of particle images inside an interrogation
spot is a stochastic variable with a Poisson probability distribution. Hence, an average of
10 particle-images per interrogation spot at an average in-plane displacement of 1D;—
where Dy is the diameter of the interrogation spot—yields a 95% probability to find at
least four particle-image pairs (i.e. a 95% probability to obtain a valid displacement).
Keane & Adrian (1990) made a detailed investigation of the yield of valid displacement
vectors as function of seeding density, particle motion (parallel and perpendicular to
the PIV light-sheet), and velocity-field gradients. They give an optimal design for PIV
measurements with a valid-data yield, indicated here as T, of at least 95%.

By increasing the seeding density one can improve the valid-data yield, but this is not
always desirable. By increasing the seeding density (at fixed particle size) we also increase
the influence of the seeding on the flow itself (two-phase effects) and the optical opacity
of the fluid (Adrian 1984). Thus, even in an optimally designed PIV experiment we will
have to accept a certain fraction of spurious data.

Briefly summarized, the outcome of the analysis of an interrogation spot at (z,7),
indicated by V‘f » 18 at random either a valid or spurious displacement vector, with a valid-
data yield I'. A walid outcome 17,’] is equal to the local average V,J of the displacement
field over the interrogation spot, apart from a small measurement error &;; (Adrian 1988).
A spurious outcome for ‘7,: ; is equal to the centroid [7,-,,- of some random peak inside the

search window. Based on this description we now propose the following expression for
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V/;y in terms of a stochastic 'signal’ or random field:

V=i (Vi + &) + (L= ) - Ui (4.1)

where v; ; is a binary random variable that takes a value of either 0 or 1. Let us further
specify the random fields V;;, &, U; and ¥ ;:

-
L] V;',‘:

In practice, we do not have any a priori knowledge of the instantaneous displacement
field V;; (e.g. measurements in turbulent flows). We therefore consider V;; as a
random field, with statistics that are directly related to the statistics of the observed
flow (taking into account that 17,, is a low-pass filtered representation of the flow
field observed in the PIV light sheet; see Adrian 1988). It is convenient to treat
17,’] identically for all (¢, ), and deal with the components of \7!’ ; individually. This
implies that the statistics of f’;,j do not depend on (4, 3), and that the components
in V‘,‘,j are uncorrelated and have identical probability density functions (pdf’s). In
other words, 17,] is a homogeneous random vector-field, with statistically orthogonal
components:

EWVi;l =i (4.2)
cov[Vz, Viprjil = 0% - 1+ p(k, 1) (4.3)

where 1 is the unit matrix, i the mean displacement, 62 the variance and p(k,1)
the spatial auto-correlation function of V:, This would correspond to a signal ob-
tained from an isotropic homogeneous turbulent flow that is uniformly advected.
Obviously, this does not represent a general situation: Most (turbulent) flows are
not isotropic or even homogeneous. However, in most cases it will be possible to
transform V;; into a signal that complies with (4.2-4.3). For more details refer
to Appendix C.1. For an optimally designed PIV experiment the magnitude of
the mean displacement ||/Z| is equal to D1 (Keane & Adrian 1990). The displace-
ment range—defined as the difference of the largest and smallest attainable absolute
displacements—is maximally %D, (for double-exposure PIV records). This implies
that the (equivalent) radius of the search window—denoted by R;—is maximally
iD;. The size of the search window should match the expected range of displace-
ments in the experiment. This imposes an upper limit for oy relative to Ry, i.e.
ov/Ri = 35+ in which case the search window should contain about 99.8% of the
displacements observed in the flow.

&4t

For non-overlapping interrogation regions the measurement errors &; ; in neighbour-
ing interrogation positions are independent. Furthermore, we assume that the two
components in £; ; are statistically orthogonal, and are identical homogeneous white
normal random fields with zero mean and a variance equal to o2, i.e.:

E{e;} =0 (4.4)
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cov[Eij kil = 02 - T 6y (4.5)

where 6;; is the Kronecker delta symbol. For most PIV systems o, is estimated to
be less than 1% of the full displacement range, i.e. o./D; < 0.02.

. O,
A spurious vector corresponds to a random position within the area that is searched
for the highest correlation peak. We assume that T ; ;,; 18 independent from V; i, and
has a uniform pdf over the search window. In general, the search window will have
its center close to the expected mean displacement ji, with a diameter equal to 2Ry,

le.:
E(li) ~ i (4.6)
COV[U‘,"J', (jk 1] = U?} . 1:: 6;k6jg (47)

with: oy/Rr = —\/_ ~ 0.82. For a'v/RI B thls 1mp]1es that oy/oy > 2.5. In
other words, we can expect a significant contnbutlon of U ;.; to the statistics of V,’J
It may be expected that for larger oy /ov it becomes easier to distinguish between
“valid” and “spurious” data. It does however not make sense to use a search window
that is substantially larger than the expected range of displacements. In practice
we will only have values of oy /oy close to 2.5. In the remainder of this chapter we
consider oy /oy =3.

® Vij:
For 4;; = 1 the process in (4.1) yields a valid vector for V;-’J The probability
P(~;; = 1) is equal to the valid-data yield I'. We assume that the occurrence of a

spurious vector is a purely random event that is not correlated with the displacement
field V. - (Realize that this is only true in first approximation; see Keane & Adrian
1990.)

The expectation and variance of 17,'] now become:
E[ J]_F E[V'J'*'eu]'*'(l"r‘) E[U,_,] (4.8)
2 3 - - 2
cov[V;, Vil =T (o} +02) T T+(1-Do3l+T(1-T) (ElV.;] - ElU.;]) (4.9)
Note that V,:} for E[V;;] = E[U;;] is an unbiased estimate of V, ;, independent of T, with

a variance equal to I'(6? + 0%) + (1 — T)o?.

4.3 Detection methods

In the Introduction we already mentioned that spurious vectors are visually recognized as
vectors that exhibit an “unexpectedly large” deviation with respect to nearby vectors. We
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define the residual displacement vector 7;; as the deviation of the observed displacement
from the expected displacement, i.e.:

g = Vij — Vi (4.10)

t,J

To comply with existing evaluation techniques for scalar data we consider the squared
magnitude of 7;; as a scalar measure for the deviation of V’ with respect to V, gy e

rk; = IV = Vil (4.11)

The identification of spurious data is based on a statistical test on the residuals with
respect to its statistics (mean and variance). For the signal in (4.1) this implies for each
(2,7) a null hypothesis Hy:y; ;=1 is tested against the alternative hypothesis H,:y; ;=0
for the residual defined in (4.11).

Under Hy the residual vector 7;; is equal to €: ;, which is a normal white random
field, with statistics given in (4.4-4.5). Hence, r - has an exponential probability density
function:

f(r*|Ho) = Lexp <—i) (4.12)
202 202
which has a mean value E{r?|Ho} = 20?. The pdf in (4.12) is an approximation valid for
r?/R? < 1. This condition is met in most practical situations, for which ¢?/R} is usually
less than 0.01.
On the other hand, under the alternative hypothesis Hy the residual vector r?; is equal

to [-j,"j — ‘7,, For 0% /0¥ >>1 the squared scalar residual under H; has approximately a
uniform pdf:
f(r?*|H) = U(0, R}). (4.13)

This is exact when U;; has a uniform distribution within a circular region of radius R;
centered at V; ;.

For a given reliability level we can compute a critical value r? above which Hy is
rejected. We now have obtained an ob]ectlve decision criterion by which we can label
a specific V’ as either “valid” or “spurious”. There is however a finite probability that
we label valzd data erroneously as “spurious” and wvice versa. These errors are commonly
indicated as errors of the first and second kind respectively, i.e.:

Ey = P(r* > r’| Hy) - P(y = 1), (4.14)
E; = P(r* < r’|H;) - P(y = 0). (4.15)
In addition the cost function K is defined as:

K=Cy E +Cy- B (4.16)

where C; and C; are weights for E; and E; respectively. Minimizing K with respect to
72 yields an optimal value of r? for a given set of (Cy, C3). For Cy=Cj the result for 77 is
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usually referred to as the Bayes decision criterion. Here we will consider only C; =C;=1,
although there may be situations were a different choice for (C;, C7) is more appropriate.
If we apply (4.12) and (4.13) in (4.14) and (4.15) respectively, and subsequently minimize
K in (4.16) for r? we obtain the following expression for r2 (with C; =C,=1):

r? 20? [1 - I‘2a‘2]
In

- T R

BT (4.17)

(Note that minimizing K for C; = C, = 1 is equivalent to solving T'f(r?|H;) = (1 —
I')f(r?|H,) with respect to r2.) The corresponding result for K yields:

20 1-T 202

In Figure 4.3 are plotted the results for K with respect to r? as function of E{r?|Ho}/202
for three different values of T.
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Figure 4.3: The total cost K as function of the mean squared residual E{r*|H} = 202 for three different
values of the valid-data yield T.

-

In practice V;; is not known e priori, and therefore has to be estimated from the
measured signal itself. This yields an estimate 77, for the squared scalar residual:

-

#2; = 11V - Vil (4.19)
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where ‘7."]' denotes an estimator for 17.] A suitable estimator should be unbiased and
have a variance that is substantially smaller than V:’ ;- The remainder of this section deals
with the description of three different tests, based on the global-mean, the local-mean and
the local-median estimators respectively.

4.3.1 global-mean test

The global mean of ‘_/:f ; is defined as the mean of V,f ; taken over the entire data set:

1
=% Z v (4.20)
)

where N is the total number of vectors in the data set. The expectation value and variance
of the global mean can be easily obtained from (4.8-4.9):

E(V') ~ i (4.21)

~ 1
varl(V)] & — [(o? + o) + (1 = T)o] (4.22)
where N’ is the effective number of independent samples in the PIV measurement data,
given by:
1 1
- =7 2Pk (4.23)
VAT

The value of N is inversely proportional to the integral length scale in Vi; ;- For flows that
have a velocity correlation function with a long “tail” the value of N’ may be reduced
considerably with respect to N. In the limit N’ — oo the variance of (V) converges to

zero. By substituting V;,; = (V') in (4 19) it is found that the lower bound for E{#?,;|Ho}
is equal to 2(¢2 + o). In practice, 02 < 0%, and as a result the pdf for 72 under Ho is
much broader than the distribution given in (4.12), i.e.:

E{i*|Ho} = 2(0? + a%). (4.24)

Hence, using (V") as an estimate for V;; will lead to a relatively high value of E{#*?|Ho}/R3.
From (4.18) and Figure 4.3 it is clear that we do not expect a high efficiency from this
estimator.

4.3.2 local-mean test

Alternatively, one can use the local mean (V');, over a small neighbourhood of \7’,' i i.e

(‘7 ( ‘7:"+k,j+t - ‘7:/1) (4‘25)
kJeM
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where M denotes the neighbourhood of (i, ;) that includes Ny elements. The choice for
the size of M will depend on the correlation length of Vi j- Here we will only consider a
3x3 eight-connected neighbourhood with Np=8. Note that in (4.25) we exclude V‘,f ; itself
from (V"); j; In this way (V*),; is not correlated with V,’ ; for 4;; = 0, which simplifies the
analysis.

In most cases neighbouring measurement data are highly correlated, as a result of
a high spatial correlation of the velocity field over a short distance. Assume that the
covariance for V' in the neighbourhood M is given by:

Cov[‘-;}:j’ ‘7;'+k,j+1] =n-o} (4.26)

for (k,1) € M and where 7 is a constant that has a value slightly smaller than one. This
assumption allows us to obtain a relatively simple expression for E{#%|Hp}.

First, we consider the case for I' = 1. Substitution of V;; = (V');; in (4.19) yields:

E{f0 =1} =2 (1 + N%,) (024 (1 —m)}). (4.27)

Here we find that E{#?|T =1} for p— 1 approaches 202%(1 + ﬁ) Clearly, the local-mean

estimator for ‘7,, is much more precise than the global-mean estimator.

Let us consider the case for I' less than one. Now we have a finite probability that one
or more of the measurement data in M is a spurious vector. The probability to find &
spurious vectors in a set of Njs data points at a valid-data yield I' is given by a binomial
distribution B(k; Nas,1 —T'). In Table 4.1 the probabilities are given to find up to four
spurious vectors in a 3x3 eight-connected neighbourhood for different values of I'. From
this table it is clear that in general we have a relatively high probability to have at least
one spurious vector (more than 30% at I'=0.95). For 5 < 1 the covariance of 7 ; is given
by:

Nm
cov{7;, 7 ;| Ho} = Z B(k; Ny, 1 =T) - cov{7:;,7i |k} (4.28)
k=0
where cov{7; ;,7; ;|k} is the covariance when M contains exactly k spurious vectors.

The presence of one or more spurious vectors in the neighbourhood of (, ) strongly
affects the outcome of (V'); ;. Also, the occurrence of a single spurious vector in (i, j) will
affect the evaluation of all vectors in its neighbourhood. In other words, the estimator
(V'); ; smoothes out spurious data, which increases the probability to reject valid data
in the neighbourhood of a spurious vector. Obviously the estimator (V*);; is not very
robust. This is reflected in the mean of #? obtained in the local-mean test, which can be
obtained from (4.28):

E{#*|Ho} =2 [r (1+ NLM) (2 + (1 —mod) + ﬁlg -0l @M

In Figure 4.4 E{#?|H,} is plotted as function of 5 for different values of I'. We find a
considerable increment of E{#%|Hy} with respect to the case I'=1 in (4.27). For example,
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ov/o, =10 oy/oy=3

E{r*H,} / 262

1 . RPN
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Figure 4.4: The mean of the squared estimated residual E{#?|Ho} normalized by 2¢? as function of the
local correlation 5 of the displacement data, for three different values of the valid-data yield T.

if we take oy /oy = 3 with n=0.95 then E{r?|Ho} for I' =0.95 is more than two times
E{#|l'=1}. This means that we can only obtain an accurate estimate for V.; provided
that the neighbourhood is free from spurious vectors or, alternatively, that we have a
priori knowledge on valid and spurious vectors. For example, we could first do a “rough”
identification of spurious vectors by using the global-mean test and subsequently apply
the local-mean test in which we only use those vectors that were labeled as “valid” in the
preceding evaluation to compute (V');;. One may expect that this combination of the
global-mean and local-mean tests should improve the overall performance, in comparison
with their individual performances. It should be noted however that it is more complicated
to optimize such a two-step procedure.

4.3.3 local-median test

The global-mean and local-mean are both linear estimators for V,J A nonlinear estimator
that is often used in outlier identification is the median of the sample data (Barnett &
Lewis 1979; Fredrikze 1985; Westerweel 1987). The median is the middle value (nth
element) of a sequence of 2n+1 scalar elements, that has been rearranged in increasing
or decreasing order (for any even number of elements, the median is equal to the mean
of the two middle elements). The outcome for the median is very robust with respect to
contamination with spurious data. Let us illustrate this with an example.
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Consider a sample of 2n+1 elements, with a valid-data yield I'. Spurious data will in
general have large deviations from the expected value and, while computing the median,
will end up at the begin or the end of the rearranged sequence. As a result, the outcome for
the median is in general equal to the value of one of the valid elements in the sequence, and
does not depend on the value of any spurious elements. This is in clear contrast to a linear
estimate, such as the sample mean. Only for strongly contaminated data the outcome of
the median yields a spurious value. The probability that a sample of 9 elements contains
more than four spurious vectors is less than 0.2% for ' > 0.90.

In digital image processing the local median is used as a nonlinear filter that efficiently
removes binary noise (“salt & pepper noise”) (Jain 1989). To some extent the character-
istics of binary noise are similar to those of spurious vectors in PIV measurement data.
Another property of the median filter (when used as a spatial filter) is that it is an “edge-
preserving” filter, i.e. it does not smooth out strong gradients. There is however not a
unique definition for the median of vector data. Here we obtain the “median displacement
vector” by computing the median for each component individually:

=, _ [ median{v¥,, ..,|k,1 € MU{0,0}}
Vs = ( median{ot, , |k, 1 € M U {0,0}} (4.30)

where v and v¥ denote the components of V. Note that we now include V:’ ; in computing
[V');.;; The main reason for this is that the analysis of the median statistics of an odd
number (i.e. Np + 1) of elements is less complicated. Let us consider the mean and
variance of the estimator in (4.30). The median of a stochastic variable is equal to
its mean when the probability density function is symmetric with respect to the mean.
Correspondingly, 7:",, is unbiased with respect to 7;; when ‘_;;:J has a symmetric pdf with
respect to V;;. This condition is met when E[V] = E[U/]. Again we assume that the
covariance of I-;;'J is given by (4.26). We also assume that the samples ‘Zf'_k‘j+,|k,l €
M U {0,0} may be considered as independent and orthogonal with identical pdf’s given
by:

N (Vijs0™D) + (1 = DU (Vg0 = Visll < Br) (431)

with 62 = 02+ (1 —7)o?. An expression for the pdf of the median of a sample with 2n+1
elements from a stochastic process is given in Appendix C.2. For samples that have a
normal pdf with zero mean and variance % the pdf of the median is in good approximation
a normal distribution N(0,0%/Neg), with Ny /Nex & 1.47+ O(T'). Compare this with the

pdf of the sample mean, which has a normal pdf N(0,02/N). If we substitute V;; = [V'); ;
in (4.19) we obtain through (4.28):

1
B2, Ho) =2 (14 =) (2 + (1 - n) - o). (4.32)
eff
Note the similarity with (4.27). The value of Neg depends only weakly on I'. In Figure 4.5

we compare E{#%|Hy} for the local-mean and local-median tests as function of I'. The
mean of 72 for the local-median estimator remains practically constant over a wide range
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Figure 4.5: The mean of the squared estimated residual E{#2|H,} normalized by 202 for the local mean
and the local median as function of the valid-data yield T.

in I, while the mean of #? for the local-mean estimator increases rapidly as I' decreases.
Thus, the local median estimator will yield the most accurate and robust estimate for V ;
in the three tests described in this section.

In the analysis given here we have assumed that the data points (2, ) do not lie on one
of the edges or corners of the data set. For the “bulk” data-points we have Np; = 8 for an
eight-connected 3x3 neighbourhood M. In principle this analysis also applies to edge and
corner data-points, but with Nap=>5 and 3 respectively. Note that only a relatively small
fraction of the data set consists of edge and corner data-points. It is therefore expected
that their influence on the statistics of the (estimated) residuals is negligible.

4.4 Performance tests

To demonstrate the superior performance of the local median estimator for 17” in evalu-
ating PIV measurement data a comparative test was carried out for the three estimators
defined in the previous section. In the first part of Section 4.3 we defined the cost K to
portray the performance of an evaluation procedure. Complementary to K we now define
the efficiency of a procedure as 1— K, with Cy = C; =1, which indicates the fraction of
displacement vectors that were properly identified as either valid or spurious data. In
order to determine this quantity we need a prior: knowledge of which vectors are valid
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Table 4.1: The probability B(k; Na,1 —T) to find k spurious vectors in a neighbourhood of Ny = 8
elements for three different values of T'.

k B(k;8,1 -T)
x 100

'= 098 0.95 0.90
0 85.1 66.3 43.0
1 13.9 279 383
2 1.0 5.1 149
3 00 05 33
4 00 00 0.5

and which are spurious. This was established by generating an artificial PIV image from
a given velocity field, and subsequently by comparing the displacement field after PIV
analysis with the original displacement field.

A displacement field that has the kinematic characteristics of homogeneous turbulence
was simulated with the method of random Fourier modes described by Fung et al. (1992).
For this simulation 64 Fourier modes were used, with random phase and an amplitude
that corresponds to the —5/3 power-law found in the inertial subrange. The modes were
distributed over the wavenumber range such that each mode contributes an equal amount
to the total energy. A constant advection velocity was added to obtain a displacement field
with a degree of turbulence of 16%. This would correspond to a situation where R; = iD;
and oy/ov=3. The valid-data yield was determined by the average number of particles
in the image. It was assumed that all particles have equal diameters. The intensity of
each particle was determined according to its position in a light sheet with a Gaussian
intensity profile perpendicular to the image plane. The PIV image that was generated
complies with the optimization described by Keane & Adrian (1990), with respect to the
in-plane and out-of-plane displacements. Thus, the expected valid-data yield I was equal
to 0.95. The smallest spatial variation (wavelength) in this field was taken equal to twice
the diameter of the interrogation spot in the PIV analysis. In that case the -5/3 decay in
the spectrum yields a correlation value 1 in (4.26) of approximately 0.95 between nearest
neighbours in the PIV data-set.

Interrogation analysis of the artificially generated PIV image yielded a test data-set
that consisted of in total 5041 vectors. Additionally, the “detectability” Do was obtained
for each vector. For each displacement vector #* was computed according to each of the
three tests described in the previous section.

A practical way to evaluate the pdf of 72 is by its cumulative histogram. Under the
null hypothesis #? has approximately an exponential distribution. Now, if we sort a total
of N residuals in magnitude and subdivide them into M bins, each containing an equal
fraction of A9 = M/N residuals, the expectation value for the lowest residual rZ in the
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m-th bin is given by:

2

_ T r? 2
0,,. =mAl = b/ -é?exp (-—%—2-> dr (433)
which is equivalent to:
ri =20%In ( ! ) (4.34)
- 1—0.) .

If we plot r2, for each bin against the logarithm of 1/(1 — 8,,) we expect to find a straight
line with a direction coefficient equal to E{#?|Hy}. In Figure 4.6 are given the cumulative
histograms for the residuals from the test data-set obtained by the global mean, the
local mean and the local median tests respectively. From (4.24), (4.29) and (4.29) we can
predict the values of E{r%|H,} for the three tests respectively. The solid lines in Figure 4.6
represent the expected histograms according to an exponential pdf. The predicted and
observed results for E{r?|Hy}/R? are given in Table 4.2. In this table are also given the
predicted values for r? and 1 — K according to (4.17) and (4.18) respectively, together
with the corresponding results obtained from the test data-set. Note that the observed
performances are very close to the predicted performances. This demonstrates that the
model described in Section 2 gives an adequate description of the PIV “signal”.

In addition we also tested the performance of the “detectability” Dy as a means to

global mean test
local mean test

local median test ¢

x10°

A
T

Figure 4.6: The cumulative histograms for the residuals in the test data-set for the global-mean, local-
mean and local-median tests. The solid lines represent the expected histograms.
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Table 4.2: The predicted and observed values for E{#?|Ho}/R}, r?/R} and 1-K for different tests applied
to an artificial PIV record (see text).

test predicted observed
global mean E{r?[Hp}/Ri 0.0448 0.0485
P2/RR 0271 0.238
1-K 0.9842 0.9867
local mean  E{#?|Ho}/R3 0.00658  0.00702
P2/R 0052 0075
1-K 0.9970 0.9952
local median E{7?|Ho}/R; 0.00289  0.00298
P2/RE 0026  0.022
1-K 0.9985 0.9986
detectability 1-K - 0.9280

distinguish between valid and spurious displacement vectors. Since the original displace-
ment field is known, we can easily determine E; and E, as function of a critical values for
Do. It appeared that a cost function for Dy does not have a minimum for Dy > 1. This
implies that T'f(Do|Ho) > (1 — T')f(Do|H,) for all Dy > 1. As decision criterion for the
detectability test was used the N - I'-largest observed value of Dg. (This corresponds to
E, = E,.) Thus a critical value was found of 1.1, with 1 — K=92.80%. Note that Keane
& Adrian (1990) propose a slightly higher value between 1.2 and 1.5. If we compare the
performances the different tests in Table 4.2 it is clear that the detectability test has a
very poor performance, especially compared to the performance of the local-median test.

4.5 Conclusions

From the comparison of the predicted and observed performances in the previous section
we conclude that the statistical model for ‘7,' ; described in Section 4.2 gives an adequate
description of the PIV signal, and that it is capable to analyze and to predict the optimal
performance of the post-interrogation procedures described in Section 4.3. In a practical
situation we can estimate E{#?|H,} from the cumulative histogram of #?. Figure 4.6
demonstrates that we can determine E{#?|Hp} directly from its histogram by fitting a
straight line to the cumulative histogram (for small values of #%). An a priori estimate
of I can be obtained from the figures given by Keane & Adrian (1990) given the mean
number of particle-images per interrogation spot, the mean in-plane and out-of-plane
displacements and velocity gradient. (These parameters are required anyway to set up
the PIV experiment.) For a given value of I’ one can directly determine the optimal
(Bayes) decision criterion r2. For given values of E{#*|Ho} and ' we can also predict the



Conclusions 123

efficiency of the post-interrogation evaluation procedure.

The comparative test described in Section 4.4 pointed out that the detectability, which
is the “conventional” quantity to characterize the reliability of a measured displacement
vector, has the lowest efficiency of the tests described in this chapter. Comparison of the
performances of the global-mean and local-mean tests pointed out that the evaluation of
the deviations relative to the local displacement field yields a much higher efficiency than
those relative to the global mean displacement. However, it appears that the local-mean
test is very sensitive to the presence of spurious displacement vectors in the direct neigh-
bourhood of an evaluated vector, and its performance decreases rapidly as I' decreases.
The highest efficiency was obtained by the local-median test. For the test data-set the
number of erroneous identifications in the local-median test was almost 4 times smaller
than in the local-mean test. The only difference in the evaluation algorithms is that a
local median instead of a local mean is computed.




Chapter 5

Estimation of Vorticity and
Deformation

Abstract. The vorticity and deformation are flow properties that can be obtained
by differentiation of the velocity field. The two-dimensional measurement data obtained
from PIV measurements allow the evaluation of components of the vorticity vector and
deformation tensor. The accuracy of these estimates is limited by the spatial resolution
and noise level of the PIV data. It is shown that the accuracies encountered in data sets
from digital PIV analyses can yield reliable estimates of the vorticity and deformation.

5.1 Introduction

In the previous chapters we have seen how to extract velocity information from a flow
seeded with small tracer particles. Now we have come to the point where we can estimate
(elements of) flow quantities that relate to the dynamics of coherent flow structures.
In the following we will identify these flow structures as areas where the value of the
vorticity or the second invariant of the deformation tensor exceed a certain threshold. In
this chapter we take a closer look at the estimation of these quantities from PIV data sets.
Our point of departure in this chapter is a PIV data set that consists of the instantaneous
measurement of the in-plane velocity field on a regular mesh of points. This data set
is supposed to be free from spurious data (i.e. spurious vectors have been detected and
subsequently removed from the data set with the procedure discussed in Chapter 4).

The vorticity and deformation have in common that they are obtained by differentia-
tion of the velocity field. Since we have only measurement data in discrete points we have
to estimate the spatial derivatives of the velocity field by finite differences. In addition
the measurement data are disturbed by noise; in general the contribution of noise to the
result is amplified by the differentiation of the data.

The methods described here will be used in the PIV applications described in Part II.
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5.2 Vorticity

The vorticity vector is defined as the curl of the velocity field, viz.
d=Vx7v (5.1)

(Batchelor 1967). With only two velocity components available we can only determine
the out-of-plane component of &, i.e.

_Ov  Ou
T8X oY
where u and v denote the velocity components in the X direction and Y direction respec-
tively (see Fig. 2.5). This quantity can be estimated from central first-order differences
of the measured velocity data, viz.

(5.2)

wz

Vit1, —Vi-14  Uij+1 —Uij-1

2AX 2AY (5:3)
where ¢ and j are indices of a mesh point in the PIV data set in the X direction and Y
direction respectively, and AX and AY the distances between mesh points. However, as
we will see shortly after, the estimator in (5.3) strongly amplifies the noise in the PIV
data set. To reduce the influence of the noise on the estimate for wz we have to apply
some degree of smoothing to the velocity data. Landreth & Adrian (1990b) propose a
spatial-averaging filter with a Gaussian weight kernel w; ;, i.e.

w; ; = exp [—2(1'2 +j2)/P2] . (5.4)

An appropriate choice of P should strongly reduce the random noise, while it leaves the
velocity signal virtually unaffected.

Another method to determine the vorticity, proposed by Reuss et al. (1989), is based
on the application of the Stokes theorem on a small surface

i 4 T4
“z =50 c S

where C' denotes the contour that encloses the surface S. For the contour C taken along
the 8-connected neighbourhood of a data point in (7,7), as shown in Figure 5.1, the
vorticity is estimated by (Landreth & Adrian 1990a)!:

_
4AXAY

wgz ~

(5.5)

1

wz [ AYviy1; +§AY {visr,j-1 + vig1541}
1

—~AXui 1 —§Ax {wic1 1 + %ig1,541)
1

—AYvi,; _EAY {vic1,jo1 + vic141}

1
+AXu; 51 +§AX {ttim1-1 + Ui+1,j—1}] . (5.6)

1The original formula given by Reuss ef al. (1989) contained a few sign errors; the correct formula is
given by Landreth & Adrian (1990a).
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If we substitute
. 1 1 . 1 1
Uman = E Umn,n + E{um-l.n + um+1,n} and Uman = 5’ [Um,n + §{vm,n-1 + U1 }]

then (5.6) becomes:

Uig1,j—Pic1y  Bijar — i1

2AX 2AY (5.7)
cf. Eq. (5.3). So, (5.6) is equivalent to a (5.3) with a local (3-point) filtering of the velocity
data.

wz ~

j1

Figure 5.1: The contour along the 8-connected neighbourhood of a data point in (3, j).

performance testing

To investigate the performances of the different methods to determine the vorticity from
PIV data a simple test was carried out. In this test the performance of the estimators
in (5.3), with and without the filtering in (5.4), and (5.6). We investigated the combined
effect of the size and vorticity amplitude of the structure (“the strongest vorticity occurs
at the smallest scales”; see Sect. 1.1), and the effect of random noise.

For this test we considered a one-dimensional shear layer aligned with the X-direction
of the data set, with the following functional relationship

u = 1 —l-a,rc tan (X) and v=20 (5.8)
2 oL

where o0, is a parameter that determines the width of the shear layer. Note that u ranges
from 0 to 1, and that the velocity and position are dimensionless. The corresponding
vorticity is obtained by applying (5.2) to (5.8), which yields
1 1
WZ= roult (Y/o,)?

Note that the mazimum vorticity (for Y = 0) is equal to 1/7o,. PIV data sets for
different values of o, were generated by sampling the velocity field in (5.8) with intervals

(5.9)
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AX =AY =1. The smallest value for o, was chosen such that the steepest gradient of
u over AY was less than about 20% of the mean velocity, i.e. o, >0.75. (For gradients
less than about 20% of the mean velocity we can neglect the gradient bias; see Sect. 2.9
and Adrian (1988).) To account for the measurement error white gaussian noise with
levels from 0.5 to 5% of the full range velocity range were added to the data set. The
total size of each data set was 20x20 data points (i.e. 20 data points across, and 20 data
points along the shear layer). Subsequently the estimators for the vorticity in (5.3), with
and without the filtering in (5.4), and (5.6) were applied to the artificially generated data
sets. This is illustrated in Figure 5.2 where the actual (noise-free) data for the velocity
and vorticity with o,, = 2 are compared to the corresponding data with a noise level of
2% computed by (5.6). The rms differences between the estimated and actual vorticity
in (5.9), relative to the mazimum vorticity as function of o, (viz., 1/7a,) are given in

Table 5.1.
The results in Table 5.1 show that even in a noise-free situation the vorticity is esti-

Table 5.1: The rms differences of estimated and actual vorticity relative to the maximum vorticity {in %)
for three different methods, as function of the spatial resolution (indicated by &,,) and the relative noise
level for a shear layer of finite width (see text).

Ist order central differences, without filtering

o, noise level
0.0% 05% 1.0% 25% 5.0%
0.75 7.10 7.13 7.27 7.36 8.22
1.00 7.28 7.31 7.28 7.64 8.61
2.00 4.54 4.79 4.81 7.01 10.34
4.00 1.92 237 4.74 8.81 19.72

Ist order central differences, with filtering (P=1)

noise level

Ow
0.0% 05% 1.0% 25% 5.0%
0.75 293 323 400 685 12.27
1.00 341 3.78 445 847 16.35
2.00 2.05 391 6.88 16.86 30.64
4.00 0.77 647 1294 31.55 58.28

circulation along 8-connected neighbourhood

Cu noise level

0.0% 05% 1.0% 25% 5.0%
0.75 293 3.09 344 499 8.43
1.00 341 359 3.71 569 10.26
2.00 2.05 3.02 437 10.58 19.24
4.00 0.78 4.06 8.01 19.25 36.67
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Figure 5.2: The velocity (a) and vorticity (b) profile of the shear-layer defined in (5.8) with o,,=2. The
same velocity data are shown in (¢) but now with a 2% noise superimposed on the original data. In (d)
is shown the corresponding vorticity, computed according to (5.6).

mated with an error of a few percent. This is the result of estimating the derivatives in
(5.2) with finite differences. Note that the performances for (5.3) with the filtering of (5.4)
with P =1 for the zero-noise case yields practically the same results as for (5.6). This
shows that the two methods are practically identical (in the absence of random noise); see
the remark after Eq. (5.6). Noise in the data set considerably increases the error for all
three methods. Although sharp gradients (viz., low o.,) can be resolved quite accurately,
weaker gradients (viz., high 0,,) can only be barely distinguished from the noise at higher
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noise levels. Rather unexpected is that these results show that the estimator (5.3) with-
out filtering at high noise levels performs better that the same estimator with filtering.
A possible explanation is that the filtering removes not only part of the noise but also
a substantial part of the velocity signal. The estimator in (5.6) also implies a spatial
filtering of the data, but apparently the loss of velocity information is not as strong as for
(5.4) with P=1. Roughly, the noise level in the vorticity data is an order of magnitude
higher than in the PIV velocity data.

As a general conclusion from this test we can say that the noise in the PIV data set
causes that large regions with a relatively low amplitude of the vorticity are attenuated
more strongly than small regions with high values of the vorticity. We will therefore
observe only the vorticity fluctuations at a certain scale. It is likely that this scale is
directly related to the spatial resolution (viz., AX, AY) of the data set. This should be
borne into one’s mind when interpreting PIV results. Of course, the test carried out here is
very limited, and further investigation on this matter is required. Currently the estimator
given in Eq. (5.6) appears to have the best overall performance of the three estimators
considered here, and is therefore preferable to the other two methods. The results of this
test confirm our initial thought that the noise is amplified by the differentiation of the
PIV data. This implies that if we want to yield significant results on the vorticity, say a
noise level in the vorticity of 10-20%, we should measure the velocity with an accuracy
of 1-2%. We have seen in the previous chapters that such high accuracy is within reach
of the digital PIV method.

5.3 Deformation

Our interest is to study the relation between different regions of a flow, and how kinetic
energy and shear-stress is exchanged between these regions. A convenient way to describe
the processes that take place in a flow is through its topology; the flow can be represented
by a collection of saddle-points, repelling and attracting foci that correspond to critical
points in the Jacobian of the velocity field (Hesselink & Helman 1987). Here we review
a method due to Hunt et al. (1988) to break down a flow field into three generic flow
types, characterized by its deformation. This classification is based on the value of the
second invariant of the deformation tensor and the pressure. The second invariant of the
deformation tensor is given by?

- av,' Bv,-

IT= 3% 7%

1
=E% - §w3 (5.10)

o
with ¥=(vy,v,,v3) and X=(X1, X3, X3), and where E;; is the symmetric strain tensor
B 1 { Ov; + Ov;
“=3\ax; " axX,
2Here we use the suffix notation for vector and tensor components, with the usual convention that

terms containing a repeated suffix are to be regarded as summed over all three possible values of the
suffix.
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(Batchelor 1967) and w; is the vorticity vector. The root-mean-square values of I, and
the fluctuating pressure p and absolute velocity ||7]| are denoted by the subscript rms.
Hunt et al. (1988) propose the following classification:

E: eddies

These zones are defined by a strong swirling motion with vorticity (thus excluding
irrotational swirling motion). However, strong vorticity can also be connected to
shear layers. To exclude shear layers we have to look at the local pressure; vortices
are characterized by a local minimum in the fluctuating pressure (Hunt et al. 1988;
Robinson 1991a). Therefore, two criteria are applied to define E zones: (a) the
second invariant of the deformation tensor is less than —21 Iy (viz., the vorticity
is much larger than the rate of strain), and (b) the pressure is less than —0.2pyy,.

C: convergence zones
These zones are defined as regions with irrotational straining motion i.e. with a
strong convergence or divergence of streamlines. This region contains a stagnation
point (defined in a suitable frame of reference). The criteria for the C zone are:
(a) the straining is large compared with the vorticity, i.e. 1 > Ilms, and (b) the
pressure in the interior of a C region is larger than p.ms. The pressure criterion
excludes the classification as C regions of irrotational swirling flow.

S: streaming zones
In these zones the flow velocity deviates strongly from the mean velocity, and with
low deformation of the streamlines. These regions are defined by: (a) vZ > v2,,
(viz., high speed), and (b) |I1| < IIms (viz., low deformation).

N ——
=

E C S

Figure 5.3: The generic flow types associated with eddies (E), convergence zones (C) and streaming
zones (S); Hunt et al. (1988).

IS

The generic flow patterns associated with the E, C and S zones are depicted in Figure 5.3.
It is conjectured by Hunt et al. (1988) that each of these three regions has its own con-
tribution to the transport processes in the flow. Let us consider for example mizing. The
eddy (E) zones lack a strong mixing of the flow, while on the other hand strong mixing
occurs in the convergence (C) zones. The streaming (S) zones have a low deformation,
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but the velocity in this region is high with respect to other regions. So, streaming zones
transport fluid between different flow regions. Hence, these zones make different contri-
butions to mixing processes in flows. A similar distribution over these three flow types
may also apply to other processes and flow quantities.

The method of Hunt et el. (1988) has been applied mainly to three-dimensional fully-
resolved numerically simulated flows. In PIV we only have two-dimensional information
of the velocity field in a planar cross section of the flow. Although this information is
incomplete, and besides is contaminated with noise, we attempt to apply similar methods
to describe the observed flow field. Presently there is very little knowledge with respect to
the robustness of these methods and to the interpretation of the results for two-dimensional
experimental (PIV) data. Nonetheless, our present aim was to acquire experimental data
that would enable us to investigate coherent flow structures. Of course it will be necessary
in a subsequent study to investigate in more detail the interpretation of these data. We will
return to this point in the conclusion of this thesis; see Chapter 10. For now we will just
use the information provided by PIV measurements to compute the second invariant of
the deformation tensor, and apply the classification suggested by Hunt et al. (1988). With
only two velocity components available on a regular mesh of point I7 is approximately
given by first-order differences in u;; and v;;, i.e.

o u,-+1,,~—u,~,,-)? (vi,j+1—vi.j)2 (vm,,-—v,»,,-) ("i,m—um‘) 1
I% ( ax ) T\Tar ) PPl ax ay ) G

We have seen in the previous section that first-order differences tend to be very sensitive
to the noise in the velocity data. For wz we used an alternative method, given in (5.6),
based on Stokes’ theorem; see (5.5). We did not look for a similar alternative for I1.
Instead we used the expression in (5.11). To reduce the effect of noise we filtered the
velocity data prior to applying (5.11) according to the method by Landreth & Adrian
(1990b).

5.4 Conclusion

In this chapter we have described the methods to compute the vorticity and the second
invariant of the deformation tensor. These quantities allow us to educe the structures
that are present in the flow. The main problem is that the PIV data are contaminated
by noise. This has a strong influence on the estimation of these quantities. Besides that,
the PIV data only provide two-dimensional information from a planar cross-section of the
flow, so that we can only estimate a sub-set of the components of the vorticity vector and
deformation tensor. This makes it more difficult to interpret the data.

In order to yield significant estimates of the vorticity and deformation the noise in
the PIV data should at least be smaller than 5%. In Chapter 3 we have seen that for
DPIV an accuracy of 1-2% should be feasible. In the next chapter we discuss the results
of a measurement with DPIV applied to turbulent flow behind a grid. These data were
subsequently used to demonstrate the methods discussed in this chapter.
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Chapter 6

Application of Digital Particle
Image Velocimetry to Turbulent
Flowl

Abstract. The spatial resolution and measurement accuracy in digital PIV are lower
than those in conventional or optical PIV. The question is raised whether this prevents
significant measurements of turbulent flow structures with digital PIV. To assess the fea-
sibility of digital PIV with respect to turbulent flow measurements a test ezperiment is
carried out. Data from a digital PIV measurement of homogeneous grid turbulence are
used to estimate the vorticity and deformation of the flow field. The results demonstrate
that consistent detection of flow structures by these flow quantities is possible for digital

PIV data.

6.1 Introduction

Traditionally PIV images are recorded on photographic film. The film negative is inter-
rogated optically in a point-by-point manner by the Young’s fringes method. The fringe
pattern is digitized and analyzed by a computer (Adrian 1986b). We refer to this method
as optical PIV, or OPIV. Digital particle image velocimetry (DPIV) is an alternative in-
terrogation method in which the entire image is digitized. This image is subsequently
analyzed by direct computation of the auto-correlation of small sub-images. The basic
principles of OPIV and DPIV are equal; the main difference between these techniques
is that DPIV provides high processing speed compared with OPIV. The processing of
1,000 in DPIV can be carried out in less than a minute (Westerweel et al. 1992), while in
OPIV the same amount of interrogations is carried out in 15-60 minutes (Adrian 1986b;
Lourenco & Krothapalli 1988a). This gain in processing speed is at the expense of accu-
racy and resolution. The relative measurement error in OPIV is estimated at less than

WESTERWEEL, J., ELGAARD, C. & NIEUWSTADT, F.T.M. 1991 Presented at: FEuroMech Collo-
quivm 279 “Image Analysis as a Measuring Technique in Flows” (Delft) July 2-5 (unpublished).
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1%, whereas the error in DPIV is estimated at 1-2%. The high processing speed of the
DPIV method allows the analysis of a large number of images (say 100-1000 images)
within an acceptable amount of time. The analysis of a large set of images is required for
the analysis of time sequences or the statistical investigation of coherent flow structures®.
Up to now DPIV was applied to relatively simple flows, such as the wake flow behind a
cylinder (Westerweel et al. 1992) and the evolution of a vortex ring (Willert & Gharib
1991). In these applications the decrease in resolution and accuracy were acceptable.
However, these limitations may not be acceptable in the application of DPIV to turbulent
flows. It was therefore decided to carry out a test measurement. For this purpose PIV
photographs were used that were taken in a PIV facility at the Fluid Dynamics Unit at
the Department of Physics of the University of Edinburgh. This facility is used for inves-
tigation of homogeneous turbulent flow generated by a grid (grid turbulence) (McCluskey
et al. 1993). The PIV photographs were digitized and subsequently analyzed with DPIV.

6.2 Experimental set-up

The measurements were carried out in an air flow behind a grid in a small wind tunnel.
The cross section of the tunnel was 50x50 mm? The turbulence was generated by a
square grid with a distance of 2 mm between the grid cells. The grid had a solidity of
3 (the solidity is defined here as the ratio of the area covered by the grid bars and the
area of the grid maze.) The mean flow velocity was 2.3 m/s. The Reynolds number of
the flow—based on the mean flow velocity and mesh distance—was equal to 300. The
flow was seeded with corn-oil droplets with a diameter of 1-2 ym. The number density
of the seeding particles was estimated at 3 mm™. The flow was illuminated with a
scanning-beam light sheet from a 15 W cw Ar* laser. The thickness of the light sheet was
approximately 1 mm. To create a scanning beam an 18-sided polygon mirror rotating at
300 Hz was used. In this configuration the exposure time-delay is 185.2 us. Photographs
were taken with a 35 mm photographic camera equipped with a 50 mm focal length lens
with an numerical aperture of 2.8. The optical axis of the camera was normal to the plane
of the light sheet. The image magnification was equal to 0.5. The area in the light sheet
that was recorded was 70 mm in the streamwise direction and 50 mm in the spanwise
direction. The center of the viewing area was located at a distance of 150 mm downstream
of the grid. We used ASA 400 Kodak black-and-white film (which has a resolution of 80
line-pairs/mm). The focal depth is about the thickness of the light sheet. The camera
shutter was set to 1/1000 s; with an exposure time-delay of 185.2 us this yields an average
of 5.4 exposures on a single photograph. In this configuration the estimated particle-image
displacement between two exposures was about 0.24 mm on the film negative. In total
three negatives were selected for further analysis. Here we discuss in detail the analysis
and results for one particular negative.

2gee Chapter 1
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6.3 Digital analysis

The negative was projected on a white sheet of paper, and a selected area in the nega-
tive was recorded by a CCD-video camera. The size of the area was chosen as follows.
The (nominal) particle-image displacement on the negative was equal to 0.24. Following
the recommendations by Keane & Adrian (1990) this implies that the diameter of the
interrogation area should be four times the in-plane displacement. We therefore chose
an interrogation area of 1 mm?®. The digital image consisted of 512x512 pixels, and was
analyzed with 32x32-pixel interrogation regions. This implies that the area covered by
the digital image is 256 mm? (the digital image consists of 16x16 contiguous 32x 32-pixel
interrogation areas). The CCD-array that was used has a 3:2 aspect ratio, so that we

selected an analysis area on the film negative of 20x14 mm?2.

The image was digitized to 512x512 pixels, with 256 grey-levels. The digital analysis
with 32x32-pixel interrogation regions, with a 50% overlap, yielded a total of 31 x31 inter-
rogations. The interrogation analysis was carried out on a Hewlett-Packard HP9000/835S,
which takes 36 seconds® for one image. It should be emphasized that this processing time
is obtained without the use of any dedicated hardware (such as an array processor). The
analysis of the digital image without any preprocessing appeared to contain a large num-
ber of spurious vectors (about 16%). This was most likely caused by the non-uniform
illumination in the digitization of the negative. We therefore subtracted the image back-
ground and normalized the image contrast prior to the DPIV analysis*. This reduced
the number of spurious vectors considerably to within an acceptable amount (to about
5%). The result is shown in Figure 6.1. Before we can extract any quantitative infor-
mation from the PIV data set we had to remove the spurious vectors. The detection of
a spurious vector was based on the deviation of a vector from the median displacement
of its 8 neighbours®. Vectors with large deviations from the estimated local median dis-
placement are discarded from the data sets. The discarded vectors are replaced by linear
interpolation.

In Table 1 are given the mean, rms, minimum and maximum values for the streamwise
(v) and spanwise (v) velocities, and the velocity amplitude (vu2+v?). The turbulence
intensity is defined as the ratio of the rms value and the mean value of vu2+v2. From the
values listed in Table 1 we find that the turbulence intensity in the present data set is 14%.
(This is a rather high value for grid turbulence. Apparently, a distance of 75 times the
grid spacing downstream the grid was not sufficient for the flow to develop. We suspect
that this is related to the high value of the solidity of the grid.) In Figure 6.2 is given
the vector map of the displacement field after subtraction of the mean flow velocity given
in Table 1. This figure shows that the vector map contains several large eddy structures.
These structures will be further analyzed in the following section.

30n the later model HP9000/720 the analysis time for the same image is only 8 seconds.
4see Appendix B.1
5see Chapter 4
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Figure 6.1: The vector map of the raw output from the interrogation analysis of a digital PIV image of
a turbulent flow behind a grid. See text for further details.

Table 1 The statistics for the streamwise (u) and spanwise (v) velocity components, the
velocity amplitude (vu?4v?) and the out-of-plane vorticity (wz).

mean rms min. max.

u m/s 246 0.39 153 3.24

v m/s 0.17 0.29 -1.04 0.76
Vui+v?  mfs 247 038 1.60 3.30
wz 103s7! -0.05 0.31 -1.14 0.90
II 10s~2  0.07 0.21 -0.92 3.09

6.4 Vorticity and deformation

In order to make a quantitative evaluation of the structures observed in Fig. 6.2 we used
the experimental PIV data to compute the out-of-plane component of the vorticity and
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Figure 6.2: The vector map of Fig. 6.1 after replacing spurious vectors and subtraction of the mean
velocity (represented by the arrow at the top of the figure).

the second invariant of the deformation tensor®.

The out-of-plane vorticity component wz (=dv/dz—0u/dy) can be expressed as:

. $ct-dl

wz = /]al_q(]) — (6.1)
where C is a contour enclosing the area A. This expression was used to compute the
vorticity (Landreth & Adrian 1990a), by taking the contour C' over the eight-connected
neighbourhood of a point in the velocity data sets. This procedure yields less noisy results
compared with estimating wz from first-order differences in v and v. The mean, standard
deviation, minimum and maximum of wz are given in Table 1. In Figure 6.3 we indicated
regions with a high magnitude of the vorticity (i.e. fluctuations that deviate more than
one time the rms value of the vorticity). One can clearly see large regions with positive and
negative vorticity. Elongated regions correspond to structures that seem to correspond to
shear-layer structures. Note how high momentum fluid is found between adjacent regions

Ssee Chapter 5.
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Figure 6.3: The (out-of-plane component of the) vorticity corresponding to the vector map in Fig. 6.2.

of positive and negative vorticity. The regions that cover only one or two data points
probably arise due to a large fluctuation of the random measurement error.

Another way to characterize the structures observed in Fig. 6.2 is through the value
of the second invariant of the deformation tensor, given by

ui 0u;

= Oz; Ox;

(6.2)

with @ = (u1,u,u3) and & = (x1,22,23). (Here we use the suffix notation for tensor
components; terms containing a repeated suffix are summed over the suffix variable.)
Hunt et al. (1988) describe a method to divide a flow map into three zones: eddy zones
(E), convergence zones (C) and streaming zones (S). This is done according to the value
of the second invariant of the deformation tensor I, namely

E: 11 < =2 I

C: IT> I
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Figure 6.4: The classification of the vector map of Fig. 6.2 in eddy (E), convergence (C) and streaming
(S) zones, based on the value of the second invariant of the deformation tensor and magnitude of the
fluctuating velocity.

S: =2 IIins < IT < I and vVu24v2 > s

where Il is the rms value of I, and ums the rms value of vu?+v2. The division
into E, C and S zones is a convenient way to detect coherent structures in turbulent
flows”. However, to do this properly for a three dimensional flow it would also require
fully three dimensional flow data (velocity and pressure; see Hunt et al. (1988)). Because
PIV measurements yield only two velocity components in a planar cross section of the
flow the division has been made as if the flow was two-dimensional. 1] was computed by
first-order differences. This procedure is quite sensitive to measurement errors. Therefore,
prior to differentiation a mild low-pass filter was applied (Landreth & Adrian 1990b). The
statistics of IT are given in Table 1. The subdivision of the flow map in Fig. 6.2in E, C
and S zones is given in Figure 6.4.

At present we want to refrain from linking the detected E, C and S regions to any
interpretation of the flow dynamics. Instead we use the result shown in Fig. 6.4 to verify
whether the observed flow patterns match the detected regions. The map in Fig. 6.4 is

"Further details are given in Sect. 5.3.
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dominated by large S zones that clearly match parts of the flow map with high velocity
and low deformation. At the edges of the S zones, and at places where different S zones
meet, we find C zones. In some of the C zones the vector map displays a flow pattern
that resembles a stagnation point. The vector map also contains a few distinct eddy
structures. Note that only the cores of the eddy structures are detected as E regions; this
is in correspondence to what we would expect, i.e. the eddy consists mainly of irrotational
swirling flow (expect for its core). However, since we have no information about the
pressure field we cannot distinguish between irrotational swirling flow and shear-layer.
We therefore also detect some other regions with a shearing motion at the edges of S
zones as E zones.

6.5 Conclusions

The present results demonstrate that DPIV can be applied to turbulent flows to yield
quantitative information of the (coherent) motions present in the flow. Coherent flow
structures were detected by applying a threshold value to the local value of the (out-
of-plane component of the) vorticity and the second-invariant of the (two-dimensional)
deformation tensor. The image analysis in DPIV requires only a fraction of the time that
would be needed for the analysis of the same image with the traditional PIV method
(OPIV). In the measurement described here we had a flow with a turbulence intensity of
14%. Although this is a rather high value for grid turbulence it is about the turbulence
intensity anticipated in the near-wall region of a turbulent boundary layer; this flow type
will be the object of study with DPIV in the near future. The present results provide a
picture of the quality of the results we can expect in this future study. In the present
application the fluctuations of the velocity with respect to the mean are relatively large
compared to the estimated relative measurement error in DPIV (i.e. 14% and 1-2%
respectively). One can expect that the quality of the results obtained with DPIV decreases
with decreasing turbulence intensity. Cornelisse et al. (1991) carried out an experiment
similar to the one presented here. They took measurements with OPIV, DPIV and LDA of
turbulent flow generated behind a grid, but at lower turbulence intensities (down to 3%).
They compared the OPIV and DPIV data obtained from corresponding interrogation
regions in the same negative. This comparison showed that even at a turbulence level of
only 3% DPIV could still yield significant velocity data.



Chapter 7

Measurements with Particle Image
Velocimetry of Fully Developed

Turbulent Pipe Flow at Low
Reynolds Number!

Abstract. Measurements with particle image velocimetry were carried out in fully
developed turbulent pipe flow at a Reynolds number of 5,277. Data were obtained in a
plane through the centerline of the pipe, across the full diameter. Statistical properties of
the flow obtained by ensemble averaging photographs and averaging the data along the azial
direction were in good agreement with direct numerical simulation. Maps of instantaneous
tangential vorticity reveal spatial structures near the pipe wall that resemble coherent flow
structures predicted by direct numerical simulation and observed in earlier experimental
studies.

7.1 Introduction

Fully developed turbulent pipe flow has been the subject of experimental studies for
decades (see e.g. Schlichting (1979)), and it is very well suited for testing and exploring
new experimental techniques and numerical codes such as direct numerical simulation.
From a numerical point of view, the development of codes for other standard turbulent
wall-flows such as channel flow and boundary-layer flow is less complicated than for a
pipe flow because they can be implemented in rectangular grids. Pipe flow, on the other
hand, is most naturally considered in cylindrical coordinates. To test the implementa-
tion of the equations of motion in a cylindrical coordinate system, a combined study was
initiated in which a code for direct numerical simulation (DNS) of turbulent pipe flow
was developed. Following an earlier DNS study on turbulent channel flow (Kim et al.

IWESTERWEEL, J., ADRIAN, R.J., EGGELS, J.G.M. & NIEUWSTADT, F.T.M. 1993 In: Applications
of Laser Techniques o Fluid Mechanics (ed. R.J. Adrian et al. ) Springer-Verlag, Berlin.
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1987) the Reynolds number based on the friction velocity u. and the pipe diameter D
was chosen to be Re,=2360. Concurrently, experiments on fully developed pipe flow were
carried out with hot-wire anemometry and particle image velocimetry (PIV) at the same
Reynolds number. This paper describes the experimental details and the results of the
measurements with PIV. A paper that includes all numerical and experimental results
obtained in this study is in preparation (Eggels et al. 1993a).

Particle image velocimetry (PIV) is an optical measurement technique that allows the
acquisition of instantaneous flow fields in a planar cross section of a flow. The technique
is a two-stage process. First, the flow is seeded with small particles which are able to
follow the motion of the fluid. A thin sheet of light illuminates a plane in the flow.
The motion of the particles is usually recorded by taking a double-exposure photograph.
The displacement of particle images during the time-delay between the two exposures is
directly proportional to the local fluid velocity. Second, the image on the photograph is
analyzed (“interrogated”) on a regular grid of points, where each point yields the local
in-plane displacement of the particle images. Given the image magnification and the time
delay between the exposures one obtains the instantaneous in-plane velocity of the fluid.
For further details on PIV refer to a review by Adrian (1991) and a paper by Keane &
Adrian (1990).

PIV is a multi-point technique, and it is therefore very well suited to investigation of
coherent flow patterns. These patterns have been observed in flow visualization and more
recently in numerical simulations. Traditional single-point measurement probes like the
hot-wire and laser-Doppler anemometer cannot reveal these structures in a straightfor-
ward way. By spatial differentiation of PIV velocity data one can obtain the out-of-plane
component of the vorticity. It is generally believed that the patterns observed in the vor-
ticity hold the key to understanding the dynamics of coherent structures in turbulence.
Thus, the PIV measurements in turbulent pipe flow can not only provide experimental
results on traditional quantities such as turbulence statistics, but also quantitative results
on instantaneous vortical structures. Recently, Liu et al. (1991) performed PIV experi-
ments on turbulent channel flow, in which they were able to identify these flow patterns.
The flow conditions in their experiment were comparable to the DNS performed by Kim
et al. (1987). The aim of the present experiment was to perform similar measurements
for conditions at which a DNS of the pipe flow exists.

The PIV measurements were made near the end of a 17 m long smooth pipe with an
inner diameter of 127 mm and a Reynolds number of 5,277 based on the bulk velocity
and the diameter of the pipe. Measurements with laser-Doppler anemometry (LDA) were
carried out to verify that the flow at the test section was fully developed. The PIV
laser sheet illuminated a plane through the centerline of the pipe, and a view area that
included the full diameter of the pipe was photographed. In total 33 photographs were
taken. Each photograph yielded instantaneous two-dimensional data sets of the axial
(z-coordinate) and radial (r-coordinate) velocities at 8,500 points. (We will use (u,v)
to denote the components in the (z,r) directions, and z to denote the direction normal
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the PIV light sheet. In some cases we will use y to denote the distance from the wall.)
From the PIV velocity data conventional turbulence statistics like the mean and the RMS
fluctuation, the Reynolds stress and the power spectrum have been determined. These
are compared with the results from the LDA measurements, and with results obtained
from the numerical simulation. Subsequently, the instantaneous tangential component of
the vorticity computed from the PIV data and the associated vortical structures will be
evaluated qualitatively.

7.2 Experiments

7.2.1 pipe flow facility

The pipe flow facility was previously used for accurate hot-wire measurements on fully
developed turbulent flow at a Reynolds number of 50,000 (Lekakis 1988). The air flow
through the pipe was driven by a blower, powered by a d.c. motor with a variable
transmission. The air passed a settling chamber, a honeycomb, and a grid before it
entered the pipe. The grid introduced an initial disturbance, which reduced the inlet
length that was required before the flow became fully turbulent. The pipe had a total
length of 17 m, equal to 134 diameters. At high Reynolds numbers an inlet length of
40 to 50 pipe diameters is considered sufficient length to produce a fully developed flow
(Schlichting 1979), but at low Reynolds numbers the development of the flow depends
on the flow condition at the pipe inlet (Wygnanski & Champagne 1973). Measurements
conducted with LDA, which will be discussed later, indicated that the flow was fully
developed at the location of the PIV measurements.

The flow rate through the pipe was set and monitored by measuring the pressure drop
over a length of 11.88 m. (The high pressure tap was located 2.74 m downstream from
the pipe inlet.) For a Reynolds number of 5,300 the expected value for the pressure drop
is about 0.80 Pa, corresponding to a water column of 76 ym. The pressure drop was
measured with a micro-manometer, which had an absolute reading error of 0.04 Pa.

The test section at the end of the pipe had a transparent wall of 80 pm thick acetate,
designed to eliminate serious aberrations caused by light rays passing through the pipe
wall at shallow angles. This made it possible to photograph particle images located less
than 0.7 mm from the wall.

7.2.2 seeding

For both LDA and PIV measurements the flow was seeded with 1-2 pm diameter oil
droplets generated by two atomizers. The droplets were small enough to follow the motions
of the air flow very accurately. The density of the seeding was controlled by the flow rate
of air through the atomizers. Injection into the pipe flow was by means of a small L-
shaped pipe located at the centerline, about 14 diameters downstream from the pipe
inlet, and orientated in the direction of the flow. In this way the injection of seeding did
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not introduce swirl into the flow, and the seeding was well mixed across the pipe by the
time it reached the test section.
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Figure 7.1: Optical configuration for the LDA (a) and PIV (b) measurements.

7.2.3 LDA measurements

LDA measurements of the axial component of the velocity were carried out with a
mW HeNe laser in a dual-beam configuration, with a photo-multiplier in the forward
scattering direction (see Figure 7.1a). The laser beam was split into two parallel beams
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with a separation of 48 mm, and these two beams were focussed to a measurement spot
with a 249.7 mm focal length lens. The measurement volume defined by the e=2 optical
intensity was 250 gm in diameter and 2.59 mm long. The output signal from a TSI
1090 frequency tracker was sampled at 10 Hz (0.1 s roughly corresponds to an Eulerian
time scale, estimated by dividing the pipe diameter by centerline velocity) and integrated
over 300 s to determine the mean value of the velocity. The root-mean-square (RMS)
fluctuating velocity was measured with a digital RMS voltmeter, with an integration time-
constant of 100 s. The estimated statistical sampling errors for the measured velocities
were about 0.3% for the mean and 1-2% for the RMS.

7.2.4 PIV measurements

The optical system for the PIV measurements is sketched in Figure 7.1b. Light pulses
were provided by two frequency-doubled Nd:YAG pulsed lasers with an energy of 130 mJ
per pulse at a repetition rate of 20 Hz. The firing of the lasers was accurately synchronized
with a time delay of 0.30000 ms. The orthogonally polarized laser beams were combined
into a double-pulsed beam by a polarization splitter plate. A prism at the pipe outlet
reflected the beam 90 degrees into the pipe. A spherical lens (1000 mm focal length)
combined with a cylindrical lens (-100 mm focal length) transformed the beam into a
thin, vertical light sheet that spanned the entire diameter of the pipe with a thickness of
0.4 mm. The light sheet had a non-uniform light distribution, with a maximum intensity
near the centerline and gradually lower intensity towards the pipe wall.

A camera with a 300 mm focal length f/5.6 lens recorded double-exposure photographs
on 5”x4” T-max 400 film, with a magnification of 0.70. The field of view was 127 mm
(one pipe diameter) in the radial direction, by 141 mm in the axial direction, with a focal
depth of 0.4 mm (comparable to the thickness of the light sheet). In total, 33 photographs
were taken and developed.

7.2.5 interrogation of the PIV photographs

The negatives were analyzed in the interrogation system described by Landreth & Adrian
(1990). Figure 7.2 shows a schematic of this interrogation system, which consists of
a computer-controlled translation stage that holds the negative, a 256x256 pixel (px)
CCD array (Reticon) with a frame grabber (Poynting Products), and a micro-computer
(MicroVax II) with an array processor (Mercury Computers Numerix-432). The system
was operated in “image mode”, i.e. the particle image displacement is computed directly
from the image observed in the interrogation spot, in contrast to the “fringe mode” in
which the particle image displacement is computed from the optical Fourier transform of
the illuminated spot. A condensed mathematical description of the analysis is given by
Keane & Adrian (1990). The analysis in the “image mode” involves digitization of an
interrogation area by a video camera trained on the film and computation of the two-
dimensional auto-correlation of the image. The particle displacement in the interrogation
spot is obtained from the centroid of the largest non-central peak in the auto-correlation.
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Figure 7.2: Schematic diagram of the interrogation system using the direct correlation method (“image
mode”).

After the analysis of one interrogation spot is complete, the negative is translated to the
next interrogation position, and the procedure is repeated until the entire negative is
analyzed.

We interrogated each negative with non-overlapping spots having a size of
0.98x0.98 mm?, with a spacing of 1 mm between subsequent interrogations in both di-
rections. The corresponding measurement volume and spatial resolution in the flow are
0.78 mm® and 1.43 mm respectively. A single interrogation (in “image mode”) was per-
formed in 0.9 s. The analysis of one negative (8,500 interrogation positions) took about
2% hours. The maximum particle-image displacement was about 0.2 mm, and the average
number of particle-image pairs in the interrogation spot was 25. Both figures are in accor-
dance with the recommendations given by Keane and Adrian (1990) for optimal results.
The particle images had a diameter of about 30 um. The RMS error in the displacement
was estimated at 0.3 px (Prasad et al. 1992), which corresponds to 0.7% of the maximum
particle-image displacement (0.2 mm) in the present experiment.

Reliable measurements were obtained down to a distance of 3.57 mm from the pipe
wall. Closer to the wall pairing images overlap, and it was no longer possible to separate
the displacement peaks from the central peak. If an image shifting technique had been
used, reliable measurements could have been obtained at even smaller distances from the
wall. Even so, the present results extend from the centerline down to 10 viscous wall units
from the pipe wall (which is near the transition of the viscous sub-layer into the buffer
layer).

The interrogation of each negative yielded a data set of 8,500 vectors (85 rows in the
axial direction of 100 vectors each). The data sets contained a small number of spurious
vectors (less than 2%). Spurious vectors are usually associated to signal “drop-out”
due to an insufficient number of particle-image pairs or high velocity gradients within the
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Figure 7.3: Vector map of the instantaneous fluctuating velocity obtained from the interrogation of a
PIV photograph.

interrogation spot (Keane & Adrian 1990). In the present case most of the spurious vectors
occurred near the pipe wall where the image contrast was low, the velocity gradients were
high and pairs of images were likely to overlap. In a post-interrogation procedure each
vector was compared with an estimate computed from its 8-connected neighbourhood.
A vector was labeled as an outlier if the deviation from this estimate was statistically
unacceptable (based on a 99% reliability interval). These outliers were discarded from
the data set, and the gaps were filled by linear interpolation.

The vector map of one of the instantaneous fluctuating velocity fields (i.e. the total

minus the mean velocity profile) is shown in Figure 7.3. The turbulent character of the
flow is obvious, and regions of high activity near the wall are very clear.
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7.3 Results
7.3.1 fully developed flow

The best way to verify that the flow was fully developed would have been comparison
of the flow characteristics at several locations along the pipe. However, this would be a
time-consuming operation. Instead with the LDA optics positioned near the test section,
measurements were performed on (1) the mean centerline velocity as function of the
measured pressure drop, and (2) the radial profile of the mean axial velocity component,
at a Reynolds number close to 5,300. A substantial deviation of these quantities from the
values expected for fully developed flow would have indicated that the flow at the test
section is not fully developed (Patel & Head 1969).

1.2

— Blasius’ law
® measurements

cs x10°

U.D/v

Figure 7.4: The skin-friction coefficient c; as function of the Reynolds number U.D/v based on centerline
velocity.

The skin-friction coeflicient ¢; was computed from the measured pressure drop AP

and centerline velocity U, according to (Schlichting 1979):
T0 D AP

=0 _ 2 = 7.1

= T,02 T 2pL 05902 (7.1)

where p is the density of the fluid, L the length over which AP is measured and D

the pipe diameter. We used U./U, = 1.30 to express ¢; in terms of centerline velocity

rather than bulk velocity (This relation is valid for Re ~4,000 — —7,000; Patel & Head

1969). Figure 7.4 compares the present results with Blasius’ semi-empirical law for a fully
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developed pipe flow (Patel & Head 1969; Schlichting 1979): ¢; =0.07910 - (UyD/v)~ /4.
The error bars represent the reading error of the manometer. The present results are
slightly higher than Blasius’ law, but this is not unexpected, in view of the fact that the
high-pressure tap is located only 22 diameters downstream of the pipe inlet where the flow
was apparently in a developing state. LDA measurements of the mean velocity profile
were made at a Reynolds number close to 5,300 along a line normal to the plane of the
PIV light sheet, from the centerline of the pipe down to 3 mm from the wall. To test the
velocity data for fully developed flow the results were compared to the profile for pipe
flow given by Reichardt (1951):

+ 3 2r

Ut = -1—ln(1 +Ky+)+c(1 —e"’””«y—e"b‘ﬁ) +'1—lr12—(1-+;»2 (7.2)
ﬂ )
where y* (= yu./v) is the dimensionless distance from the wall and r/D the distance
from the centerline relative to the pipe diameter, with the constants: «=0.40 (the Von-
Karmaén constant), c=7.8, 7=11.0 and 5=0.33. The third term on the right-hand side isa
correction that accounts for the wake region in the central part of the flow. The remaining
terms correspond the logarithmic profile for turbulent wall flows (Ut =x~!Iny* + 5.5).
Reichardt obtained the profile in Eq. (7.2) partially from a fit to experimental data. For
a quantitative comparison with this profile the velocity data had to be normalized with
friction velocity. Ideally, the friction velocity should be obtained independently, e.g. from
the measured pressure drop (Schlichting 1979):

/APD

*

However, measurement of AP (with an estimated error of 5%) would have yielded an
estimate for u. with an estimated error of 2.5%. The LDA data for the mean axial velocity
have an accuracy of 0.3%; Using an estimate for u. with an error that is substantially
larger than 0.3% could lead to systematic errors in the normalized profiles. Alternatively,
one could estimate the friction velocity from Blasius’ law (using: ¢; =2(u./Us)?). Then the
error in u, would be (mainly) determined by the error in U,. However, it appeared that an
estimate of U, (by numerical integration) from the experimental data had an estimated
RMS error of 0.6%. Again, this would have yielded an estimate of u, that was not
accurate enough. It was therefore decided to determine u, from a fit of the experimental
data to Reichardt’s profile, from which a least-squares value of u.=44.0+£0.2 mm/s was
obtained. This value was consistent with the value directly obtained from the pressure
drop (44.24+1.1 mm/s) and Blasius’ law (43.74£0.4 mm/s). The weighted residual sum
of squares was equal to 45, about 40% larger than the upper critical value of the 99%
reliability interval (31.3). Taking into account that Eq. (7.2) in its turn is a result of a fit
to experimental data (we will return to this point in the next section), it was decided to
accept the hypothesis that the flow was fully developed.
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Table 7.1: Some experimental conditions and data in the LDA and PIV measurements and the computer
simulation.

LDA PIV DNS
Re 5,427 5,277 5,300
Re. 370.6 366.3 360.0
U (mm/s) 644.4 626.6 —
U, (mm/s) 853.2 842.9 —
U./Us 1.324 1.345 1.312
U (mm/s) 44.0 43.5 —
Us/u. 14.65 14.40 14.72
U./u. 19.39 19.38 19.31
cs 9.32x10~% 9.64x10~% 9.23x107°
v/u. (mm)  0.3427 0.3467 —
%D"' 185.3 183.2 180.0
Art 7.56 4.12 1.88
Azt 0.73 4.12 7.03
Azt 0.73 1.15 8.84°

4 Tangential resolution at the pipe wall (%D‘*AB).

7.3.2 turbulence statistics

Turbulence statistics were obtained from the PIV velocity fields by averaging data along
lines of constant r in each field, and then ensemble averaging the line averages over the full
set of 33 fields. The results are compared with those from the LDA measurements, and
direct numerical simulation. The flow conditions in the experiments and the numerical
simulation are summarized in Table 7.1.

The fitting procedure described above was applied to the mean velocity profile given
by the PIV data to determine the friction velocity from which it was found that u, =
43.5+0.2 mm/s. This value is within the estimated error of the value for . obtained
from Blasius’ law (42.7+1.0 mm/s). Figure 7.5 shows the velocity profiles obtained from
opposite sides of the centerline. For comparison the results obtained by the LDA mea-
surements and the numerical simulation are also plotted. The profile obtained from the
PIV data is slightly skewed (the data from the upper half of the pipe are smaller than
those from the lower half), and in some locations it deviates significantly from the LDA
and DNS data. Since the PIV data were obtained along a line normal to the plane of the
light sheet, the results in Figure 7.5 could be interpreted as an indication of an azimuthal
variation of the mean velocity profile (with a period of 2r). However, it should be noted
that the PIV data roughly correspond to a total measurement time of only 7 seconds.
(This value was obtained by multiplying the number of photographs (33) with the length
of the measurement domain in axial direction (141 mm), divided by the mean axial ve-
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Figure 7.5: Axial mean velocity, normalized by friction velocity, as function of the distance from the
centerline.

locity (626 mm/s).) This is very short in comparison with the measurement time for the
LDA data (300 s). We therefore did not immediately accept a physical cause for the skew
in Figure 7.5, but first investigated whether it could be related to the finite sample size
of the PIV data.

It is important to realize that there is a difference in the way velocity data is acquired
in PIV with respect to LDA. In LDA the velocity profile is obtained sequentially, at
different r-locations. Thus in LDA the data points at different distances from the wall
are statistically independent. On the other hand, in PIV the velocity data are obtained
simultaneously at many r-locations (by acquisition of instantaneous velocity maps) and
therefore the PIV data for the mean axial velocity profile are correlated along the radial
direction. Random fluctuations in correlated data from a stochastic process appear as
smooth variations over a length that is determined by the width of the correlation function,
and with an amplitude that is related to the (sample) variance. To assess the extent of
correlation in the radial direction the two-point correlation function of the axial velocity
fluctuations, defined as

(7.4)

var{u(ry)}var{u(rs)}

was computed, and the results at r,/ D= 0.45, 0.25 and 0.00 are shown in Figure 7.6. It
is clear that the PIV data are correlated over a considerable distance in radial direction.
The width of each of the curves in Figure 7.6 is approximately 0.1-0.2 D, which roughly
corresponds to the integral length scale. However, correlation over larger lengths also

cov{u(ry), u(r2)}
Pun(r1,m2) =
V
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Figure 7.6: Two-point correlation puy(r1,r2) of axial velocity fluctuations as function of the distance
r1/D from the centerline, for three values of r2/D.

seem to be present: fluctuations of the axial velocity component near the pipe wall (r; /D
= 0.45) on opposite sides of the centerline are negatively correlated across the pipe. This
can be related to large-scale coherent motion (see e.g. Townsend 1956). Hence, the
PIV velocity profiles in Figure 7.5 are not statistically independent. Near the pipe wall
fluctuations are negatively correlated, which enhances the skewness of the profile. It
therefore seems plausible that the skew observed in Figure 7.5 is due to the limited sample
size.

Figure 7.7 compares the mean velocity profile obtained by averaging the PIV data in
Figure 7.5 to the LDA data, the DNS data, and Reichardt’s velocity profile (Eq. (7.2))
without the wake correction (this corresponds to the limit Re— o00). The wake correction
is also shown. To emphasize the differences between the data and Reichardt’s profile
Figure 7.8 plots the difference between the data from LDA, PIV and DNS and the profile
in Eq. (7.2). The experimental results (normalized with the friction velocity) deviate
systematically from Reichardt’s formula. Note that the numerical results carry the same
systematic deviation. Obviously, Reichardt’s formula (which was obtained from a fit to
experimental data) merely gives a description of the velocity profile and is not completely
exact. Nevertheless, the agreement of the experimental data with the numerical data
indicates that the value obtained for the friction velocity is accurate.

Figure 7.9 shows the RMS of the fluctuating axial («"*) and radial (v"*) velocity com-
ponents computed from the PIV data, and normalized with u., and Figure 7.10 shows the
Reynolds-stress profile ({u*v*)), normalized with u.2. The corresponding results obtained
by DNS are shown for comparison. Figure 7.9 also contains the values of u"* measured
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Figure 7.7: Axial mean velocity, normalized by friction velocity, as function of the distance from the pipe
wall in wall units, in semi-log scale.

by LDA. The error bars represent the 95% reliability intervals based on the estimated
sampling covariance. The measurements of u'* agree very well with the numerical results.
Near the pipe wall the measurements of v"* deviate significantly from the DNS results
due to noise in the PIV data. The noise also affects the axial velocity component, but
the contribution is relatively small because the amplitude of u'* near the pipe wall is
relatively large. The result for the Reynolds stress also agrees with the numerical result
(taking into account the estimated sampling error). The smooth variations of the PIV
data relative to the DNS data in Figures 7.9-7.10 are directly related to the correlation
of the data along the radial direction, which was discussed in the previous paragraph.
One-dimensional power spectra of the fluctuating axial and radial components of the
velocity (denoted by F,, and F,, respectively) normalized by turbulent intensity squared
were also computed at three distances from the centerline (r/D = 0.00, 0.25 and 0.45).
Figure 7.11 compares the spectra as functions of the dimensionless wavenumber £D to the
(normalized) spectra obtained from numerical simulation. The deviation of the numerical
result for Fy,,(x) at /D =0.45 from the corresponding experimental results is most likely
related to the fact that the velocity auto-correlation at 2.5 pipe diameters in the axial
direction (this is halfway the domain in the DNS in axial direction) is still 0.09. As a
result, the spectrum F,,(x) at /D =0.45 in the DNS is smaller than in the PIV data
over the wavenumber range shown in Figure 7.11. For F,,(«) at /D = 0.25 and 0.00
and F,,(k) at /D = 0.45, 0.25 and 0.00 the PIV results agree with the DNS results
within statistical accuracy up to a dimensionless wavenumber of £ D =350. This is almost
two decades of wavenumber. For larger wavenumbers the velocity signal is obscured by
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Figure 7.8: Residuals of the axial mean velocity, normalized by friction velocity, with respect to the
velocity profile in Eq. (7.2).

noise in the PIV signal. The highest noise level, with a signal-to-noise ratio® (SNR) of
1.4, was found in the radial velocity component at r/D = 0.45 (A relatively high RMS
of the fluctuating radial velocity component has already been noted at this location). In
the other spectra the signal-to-noise ratio is about 30. At the centerline (r/D=0.00) this
corresponds to an error of 0.4 px, which is in close agreement with the accuracy that was
estimated from calibration measurements (Prasad et al. 1992).

7.3.3 vortical structures

Until now only ensemble averaged results have been presented. By averaging the data the
detailed structure that can be found in the instantaneous flow maps such as Figure 7.3
is lost. A detail from Figure 7.3 is shown in Figure 7.12. The flow pattern in this figure
resembles that of a hair-pin vortex that has been cut in its plane of symmetry.

The instantaneous tangential vorticity component w, (= dv/dz —0u/dy) has been
calculated for each vector field by computing the circulation along a line that connects
the eight neighbours of a data point, and dividing the result by the enclosed area. This
method, due to Reuss et al. (1989), is equivalent to spatially smoothing of the data with
a filter whose length is two times the spatial grid of the data set prior to differentiation.
In this way amplification of noise in the vorticity data is restricted at the cost of a small

2We defined the signal-to-noise ratio as the total energy in the signal divided by the total energy in
the noise.
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Figure 7.10: Reynolds stress, normalized by friction velocity squared, as function of the distance from
the centerline (the dashed line represents the total shear stress).
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Figure 7.11: Power spectra of the axial (Fy,) and radial (F,,) fluctuating velocity, normalized with
turbulence intensity squared, at three distances from the centerline.

loss in spatial resolution.

The vorticity maps show structures inclined to the pipe wall at an angle between 8
and 16 degrees. The structures have a length of 100¥-350* in the axial direction, and
intrude about 1007 into the flow. Most of the observed structures can be classified as one
of the following types:

1. “plain” shear layers: These are straight shear layers at an oblique angle to the pipe
wall. These structures are the most common.

2. “kinked” shear layers: These structures resemble plain shear layers but they have a
distinctive kink.

3. “hair pin” vortices: These are strong vortices at the end of a shear layer. This
suggests that these structures are related to hair-pin vortices.

4. “isolated” vortices: usually found in the continuation of a straight line through a
shear layer. Isolated vortices only seem to appear at a distance from the wall of
more than 90 viscous length scales.

Figure 7.13 shows examples of these structures, found in different PIV data sets. Shear
layers and vortices were also found in vorticity maps obtained by Liu et al. (1991) in a
turbulent channel flow at approximately the same Reynolds number. We noted a strong
resemblance between these structures with the different states in the temporal evolution
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Figure 7.12: Detail near the pipe wall from the vector map in Fig. 7.3.

of a hairpin vortex found in a direct numerical simulation on a turbulent boundary layer

studied by Robinson (1991).

7.4 Summary and conclusions

Experimental data were obtained from a turbulent pipe flow at a Reynolds number close
to 5,300 with LDA and PIV. The results of the LDA measurements (which preceded
the PIV measurements) verified that the observed flow was fully developed at the test
section. Using PIV, instantaneous velocity maps were obtained of the axial and radial
velocity components in a planar cross section through the centerline of the pipe. The
spatial resolution was 1.43 mm in both the axial and radial direction.

Ensemble averaging the PIV data yielded turbulence statistics of the pipe flow as
function of the radial distance from the centerline. Results were obtained for the mean
axial velocity, the axial and radial turbulent intensities and the Reynolds stress. Also,
true wavenumber spectra of the fluctuating axial and radial velocity components were
computed at three radial positions without recourse to the use of Taylor’s frozen field
hypothesis. The PIV results for the axial mean and turbulent intensity profiles agree
with the results obtained with LDA, within the estimated statistical error. The profiles
of the axial mean velocity, axial and radial turbulent intensities and Reynolds stress,
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Figure 7.13: Contour maps of vortical structures near the pipe wall found in the maps of tangential
vorticity (w,) computed from the PIV data sets: “plain” (top left) and “kinked” (top right) shear layers,
and “hair-pin” (bottom left) and “isolated” (bottom right) vortices. The flow is from left to right. Shaded
regions correspond to: w, < —7.5 s~L.

together with the power spectra, were compared with results from a numerical simulation
of turbulent pipe flow. In general, the PIV and numerical results are quite consistent,
and apparent differences appeared to be a result of the finite accuracy of the experimental
data. It is important to normalize experimental data with an independent and accurate
estimate of the friction velocity.

Maps of the tangential component of the vorticity were computed from the instanta-
neous flow maps obtained with PIV. Strong vortical structures were found in the near-wall
region of the flow, at an oblique angle of 8-16°, which intrude about 100 viscous wall-units
into the flow. Four generic planar structures were identified in a qualitative comparison
of the vorticity maps: “plain” and “kinked” shear layers, and “hair-pin” and “isolated”
vortices. These structures may be elements of a more complex three-dimensional struc-
ture. For example, Liu et al. (1991) suggest that the shear layer is an interface between a
wallward sweep and second quadrant fluid that is pumped upward by a hairpin, so that
it usually lays behind a hairpin vortex. Some of the structures may however be different
stages of evolution of a hair-pin, as suggested by Robinson (1991).

Since velocity fluctuations are correlated over considerable distances in the axial and
radial direction, large numbers of photographs are required in PIV experiments to ob-
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tain accurate results on turbulence statistics. We expect results with high accuracy from
hot-wire measurements carried out elsewhere. The major contribution of the PIV mea-
surements to the comparative study mentioned in the Introduction will be the generation
of experimental data that allow a quantitative identification and comparison of vortical
structures found in numerical data sets. Presently, we are preparing a comparison of
the vorticity patterns shown in Figure 7.13 with the DNS results. The results will be
presented in the near future (Eggels et al. 1993b)3.

3See Chapter 8.



Chapter 8

Comparison of Vortical Flow
Structures in DNS and PIV Studies
of Turbulent Pipe Flow!

Abstract.  Fully developed turbulent pipe flow at Re = U.D/v = 7000 is studied nu-
merically by means of Direct Numerical Simulation (DNS) and ezperimentally by means
of Particle Image Velocimetry (PIV). Several mean properties of vortical flow structures,
defined as regions of the flow where the fluctuating tangential vorticity component exceeds
a threshold value, are computed from the DNS and PIV data and compared quantitatively.
Reasonable agreement is obtained illustrating that DNS can provide quantitative informa-
tion on turbulence flow structures although the vortical structures in the near-wall region
observed in DNS are approzimately twice as large as those in PIV.

8.1 Introduction

Direct numerical simulation is an established numerical technique to study the details
of turbulent flows. Beside providing turbulence flow statistics, the data generated by
DNS can be used to study flow structures e.g. in the near-wall region of low Re-number
turbulent flows (see e.g. Robinson 1991a). In this paper, numerically generated turbulent
flow structures obtained from DNS are compared with experimental results obtained from
particle image velocimetry. Using DNS and PIV, fully developed turbulent pipe flow is
considered at a Reynolds number, based on centerline velocity and pipe diameter, equal
to 7000. The present work is part of a broader joint study in which, beside the DNS
and PIV studies, results of hot-wire and laser-Doppler measurements are also included
for comparison of numerical simulation with experiment. The results of a second DNS
using a different numerical code are also presented in this joint study. The details and
statistical results are described by Eggels et al. (1993a). In general, the agreement between

1EGGELS, J.G.M., WESTERWEEL, J., NIEUwsTADT, F.T.M. & Aprian, R.J. 1993 In: Near-Wall
Turbulent Flows. (eds. R.M.C. So et al. ) Elsevier. pp. 413-422.
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numerical and experimental statistical results is excellent. For a description of the PIV
experimental setup, we refer to Chapter 7.

In the present paper, we focus on a quantitative comparison of properties related to
turbulent flow structures obtained from DNS and PIV. Experimentally, the 2-D veloc-
ity distribution is measured instantaneously in a planar cross-section of the flow. This
cross-section extends over the complete pipe diameter D in radial direction and over
approximately 1.1D in the streamwise direction. By spatial differentiation of this in-
stantaneous velocity field, the spatial distribution of the out-of-plane component of the
vorticity vector is obtained. In Fig. 7.13 examples of the 2-D distribution of the vorticity
fluctuations are shown as found in different PIV data sets. The shaded regions correspond
to flow regimes where the instantaneous negative vorticity fluctuations exceed a negative
threshold value. Clearly, these vorticity fluctuations are organized in what is called here
“vortical flow structures”. The observed structures can be classified in different types
as indicated in Fig. 7.13. A major distinction is made between elongated flow structures
(“shear layers”) on one hand and more compact structures (“vortices”) on the other hand.
Several statistical properties of these vortical flow structures are computed and compared
quantitatively with the corresponding results obtained from the DNS data. First, we
computed some properties of the near-wall vortical flow structures mainly, including the
mean angle of inclination of these structures with respect to the pipe wall. Secondly, the
mean shape-parameter (defined as the ratio of the perimeter squared to the area of a
structure) is computed as function of the distance to the pipe wall. The details of the
techniques used for these computations and the corresponding results are described in
Section 8.2. Although the physical interpretation of the present results might perhaps
not always be precise and clear, one should keep in mind that the aim of the present
study is only focussed on a quantitative comparison of flow structure properties obtained
from DNS and PIV rather than on a detailed interpretation of the observed phenomena.
To get an impression of the relevance of the vortical flow structures to the turbulence flow
statistics, conditionally sampled data are presented in Section 8.3. Finally, in Section 8.4
a summary and the conclusions of the present work are given.

8.2 Computational technique and results

8.2.1 Introduction

All present analyses of turbulent flow structures are based on the spatial distribution of
the out-of-plane component wy of the vorticity vector, i.e. the vorticity component aligned
with the azimuthal direction. This is certainly the most obvious flow parameter available
in PIV which can also be related directly to flow structures as indicated in Fig. 7.13.
Furthermore, wy can be computed easily from the DNS data. Alternatively, one could use
a different parameter like pressure or enstrophy (see Robinson (1991a) for an overview
of possible parameters and their usefulness in analyzing turbulent flow structures) to
quantify some properties of flow structures but these alternative parameters cannot be
obtained from the PIV data. Since the present analysis is based on wy, the RMS of its
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Figure 8.1: Root-mean-square values of the vorticity component wj as function of the distance r/D from
the centerline. w:" rms denotes wp .. normalized by v/ul.

fluctuation (w)?) is computed first and shown in Fig. 8.1. The agreement between DNS
and PIV is excellent in view of the measurement error in PIV which is largest near the
wall. Therefore, only close to the wall (r/D > 0.4) the vorticity fluctuations found in PIV
deviate from those obtained from DNS.

The analyses are carried out by means of the image processing system TCL-Image.
Within TCL-Image, the 2-D vorticity distributions can be processed easily and quickly
using standard procedures for image processing and pattern recognition. In the present
study, the negative vorticity fluctuations are considered only which means that regions
with positive vorticity fluctuations have been neglected. This is done because the negative
vorticity fluctuations tend to be more organized in flow structures as observed in the
PIV measurements. Furthermore, by omitting the positive fluctuations, the vortical flow
structures formed by regions of negative vorticity are identified more easily. Of course,
similar analyses can be carried out using a different range of vorticity fluctuations. For
the purpose of the present study this is of minor importance as long as the DNS and PIV
data are processed exactly in the same way.

8.2.2 Computation of near-wall structure properties

To quantify mean properties of the vortical flow structures in the near-wall region of the
pipe, the 2-D covariance function has been determined for each 2-D plane. This covariance

2From hereinafter, the vorticity w) is normalized by wall units, i.e. by v/u? in which u, is the wall
shear velocity defined as y/7,,/p and » the kinematic viscosity.
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function is defined as:

Nz Ny
NlN ZZ wp(tAz, JAT) wh(tAz + 77, JAT + 7). (8.1)

=1 j=1

cov(rg,ry) =

in which 7= (rz,7+) represents the displacement vector. N, and N, denote the number
of data points in axial and radial direction respectively, Az and Ar the corresponding
grid spacing. Zero padding is used at the edges of each plane, except for the streamwise
direction in DNS. As in the actual simulation, periodic boundary conditions are adopted
here.

Both the DNS and PIV vorticity distributions have not been normalized with their
RMS profiles to obtain a 2-D homogeneous distribution. The reason for this is that such
a normalization would enhance weak vortical flow structures in regimes with low RMS
vorticity in favour of strong vortical flow structures in the near-wall region where the
RMS vorticity is much larger (see Fig. 8.1). Since we are mainly interested in properties
of the latter structures here, normalization is not applied. The DNS data at dimensionless
distances to the wall (y*) smaller than 10.4 viscous wall units, have been omitted because
the corresponding PIV data are not available. In the DNS data, the 2-D covariance
distributions are averaged over all planes in azimuthal direction to yield only one 2-D
covariance function per data field. During the simulation 43 data fields are stored, so
43 independent covariance functions are available from the DNS data. From the PIV
data, 64 covariance distributions are computed using 32 PIV recordings (each recording
was split in an upper and lower part of D x 1.1D size each). The PIV data have been
reduced to 8 independent covariance functions each of which is obtained by averaging 8
covariance distributions.

The 2-D covariance function which is finally obtained and normalized to unity using
its maximum value, resembles an elliptical pattern of contour lines shown in Fig. 8.2 as an
example of the DNS data. This distribution can be characterized by several parameters,
i.e. by the length scales L; and L, corresponding to the size of the ellipse along its principal
axes, by the mean angle a between the direction of the major principal axis and the pipe
wall and by p characterizing the “2-D shape” of the ellipse (p is the correlation coefficient
between r, and r,; p = 0 corresponds to a circle, p = 1 to a line). All four parameters
are computed using linear regression theory. Beside its mean value, the 95% reliability
interval, based on the variance of the parameter considered, the number of independent
functions IV, and the student-t distribution, is determined for each parameter. The results
are listed in Table 8.1.

Obviously, the mean length scales L; and L, are significantly smaller in PIV in com-
parison with DNS. The mean angle of inclination « obtained from DNS agrees rather
well with PIV. On average, the vortical flow structures in DNS and PIV are inclined at a
nearly similar angle despite the significantly different proportions L; and L;. The “2-D
shape” parameter p obtained from the PIV data is also found to be much smaller than
p obtained from DNS. This indicates that the PIV covariance function tends to be more
circular (or less elongated) than the DNS covariance distribution. In general, the 95%
reliability intervals of the PIV results are larger than those of the DNS results because
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Table 8.1: Mean properties of near-wall vortical flow structures. L; and L3 are given in arbitrary units,
« in degrees. p is a correlation coefficient, whereas N, represents the number of independent data sets.

PIV (N, = 8) DNS (N, = 43)
mean 95% reliability interval mean 95% reliability interval
L, 1400 11.72<L,<16.28 Ly 21.65 2098 <L, <2232
L, 218 1.81 < L, £2.53 L, 298 2.95 < L, £3.01
a 89 76 < <103 a 19 7.7<a<81
p 0549 0.377 < p < 0.721 p 0.715 0.710 < p £ 0.720

of the rather small number of available data sets and the presence of noise. This experi-
mental noise might explain why L;, L, and p are smaller in PIV than in DNS. Due to the
noise, the elongated structures near the wall can be subdivided into several smaller, less
elongated, structures (see e.g. the “shear layer” shown in the contour map at the bottom
right position of Fig. 7.13). As a result of this subdivision, the mean values of Z,, L, and
p might become smaller in PIV. We will return to this point also in the next section.

8.2.3 Computation of mean shape-parameter

In Fig. 7.13, the vortical flow structures shown as shaded regions differ in shape and
size. From an earlier PIV study, the vortical flow structures in the core region of the
flow seemed to be more compact than those close to the wall which appeared to be more
elongated. To quantify this qualitative observation, a dimensionless shape-parameter S,
defined as the perimeter squared of a structure divided by 47 times its area, is computed

Figure 8.2: Contour map of the 2-D covariance function as an example of the DNS data. The maximum
value of the covariance function is normalized to unity. The step size between two sequential contour
lines equals 0.2. L; and L, represent the principal axes of the best fit ellipse, o denotes the angle between
the direction of L; and the r.-axis. r, and r, are in arbitrary units.
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as a function of the radial distance r/D from the centerline. For a circular and square
structure, S equals 1 and 4/7 respectively.

In contrast to the procedure described in the previous section, the DNS and PIV 2-D
vorticity distributions are now normalized by the RMS vorticity profiles to yield a 2-D
homogeneous distribution. At each position of the flow field, p., representing the ratio
of the vorticity magnitude —wj to the corresponding RMS value wj ., is thus available.
Rather arbitrarily, a threshold value p, = 2 is imposed to select the regions with largest
vorticity fluctuations. Each particular region is denoted as a vortical flow structure of
which several shape-parameters are computed within TCL-image. The details of the nu-
merical procedures involved in the latter computation are described in the TCL-Image
manual and by Dorst & Smeulders (1985).

In Fig. 8.3 the mean shape-parameter S is shown as a function of r/D. Beside the
mean values obtained from DNS and PIV, the spreading in the DNS data is indicated by
the two additional lines denoted with 10% and 90%. The region in between these two
lines captures 80% of all computed values of S. Obviously, the mean value of S increases
towards the wall in both DNS and PIV. On average, the vortical flow structures close to
the wall are elongated more than those close to the centerline, confirming the qualitative
observation mentioned earlier. The mean values obtained from PIV show some scatter
which is again due to the small number of available data sets. Close to the wall, S obtained
from PIV decreases whereas S from the DNS remains nearly constant. The subdivision of
elongated structures into smaller structures due to the noise in PIV, as discussed in the
previous section, is the main reason for this decrease of S. Towards the wall, the spreading
of S also increases which indicates that compact vortical flow structures (S = 1.5---2.0)
are present at all radial positions whereas strongly elongated structures (S > 5) are only
observed near the wall (r/D > 0.3). These quantitative results must depend on the
imposed threshold p, = 2 but we expect that the observed general tendency discussed
above will be qualitatively similar for other threshold values.

8.3 Conditionally sampled flow statistics

In Sect. 8.2, the 2-D vorticity distributions were subdivided into regions of the flow where
Wy S —PuWjme and where wj > —p wj o, With p, and wj e > 0. The former regions
are referred to as vortical flow structures. In this section the relevance of these vortical
flow structures to the turbulence flow statistics is studied by means of conditional sam-
pling. Therefore, each mean turbulent flow quantity < ¢ > is assumed to consist of two
contributions:

<P>=< P>+ < $ >, (8.2)
with
Nvfs

N N,
<p>= %Zq&(z) , < ¢ D= —}V— > ¢(i) and < ¢>,= %Zfﬁ(l) (8.3)

i=1 =1 i=1
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in which < ¢ > denotes the average sampled over the vortical flow structures only,
< ¢ >, the average sampled over all other regions of the flow, N the total number
of samples, Ny, the number of samples which satisfy the sampling condition and N
the number of samples equal to N — N,g,. Since the flow field is subdivided into two
complementary regions only, the following relation holds:

N, vis
N

and n.= Nk (8.4)
Here n¢, denotes the fraction of the flow field occupied by the vortical flow structures and
n, the fraction of all other regions. To investigate whether the conditional average over
the vortical flow structures contributes significantly more or less to the turbulence flow
statistics in comparison with the average over all other regions, the relative importance
is expressed in terms of Feys:

1= Nvis + Nr with Nyfs =

Nyss

<P >t NL{ E 0
F<¢> = T&— = —1—%— (85)
" & 2 #(0)

T oi=1

If F¢4> equals 1, the vortical flow structures contribute just as much to the turbulence
flow statistics as the averaged contribution over all other regions of the flow field. For
Fegs > 1 or Feys < 1, their contribution is significantly more or less respectively. This
conditional sampling on vortical flow structures of the flow field has been applied to several
turbulence flow quantities for DNS and PIV using p, = 0,1 and 2. In Fig. 8.4, Fys is
shown as function of /D where < ¢ > represents the mean axial velocity < W >. In the
middle of the pipe (r/D < 0.4), F<y> approximately equals 1 indicating that the vortical
flow structures travel with a velocity similar to the mean velocity < W > corresponding
to the position r/D. Towards the wall, F¢w> obtained from DNS increases up to 2. This
increase could be a numerical artifact of < W >, or n,g tending to zero close to the wall.
However, this is not very likely to be the case here because at r/D = 0.497 (y* = 0.937)
we obtain < W >y¢= 0.533u,, < W >,= 0.401u., n. = 0.43 and n, = 0.57 for p, = 0.
Furthermore, ng and thus also n, are fairly constant for all r/D. The radially averaged
values of n.g for p, = 0,1 and 2 respectively equal 0.456, 0.133 and 0.036 for the DNS
data. The PIV data provide almost the same result: 0.460, 0.133 and 0.036 respectively.
Close to the wall, it thus appears that the vortical flow structures travel with a velocity
larger than the mean velocity.

In Fig. 8.5, F¢y» is shown with < ¢ > representing the mean Reynolds shear stress
< w'w’ >. For r/D < 0.3 the vortical flow structures seem to contribute more to the
Reynolds shear stress than the total over all other regions. However, the PIV results
do not confirm the DNS results here. Despite the large scatter in the PIV data, Feyws>
becomes smaller than 1 at /D = 0.1 in contrast to the DNS data. Near the wallat r/D ~
0.46 (which exactly matches the location of maximum shear-production and maximum
turbulence intensity of the streamwise velocity component), the averaged Reynolds shear
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stress is larger outside regions which satisfy the sample condition. Both DNS and PIV
yield Feyrurs < 1, even for p, = 0. It has not been investigated yet whether this also
implies that the turbulence shear-production is largest in regions where wj > 0. Near the
wall and the centerline, < u'w’ >y5 and < u'w’ >, decrease to zero, but since < u'w’ >
is larger here than < u'w' >,, F¢ury»> increases.

F4> has also been computed for the velocity fluctuations. Since the observed tendency
for all three components is similar, only Fcyrs is shown in Fig. 8.6. The agreement
between DNS and PIV is encouraging in particular for p, = 0. Similar as in Fig. 8.5
for Fewws, Fewnwrs becomes smaller than 1 at r/D = 0.46. This illustrates that the
velocity fluctuations are also larger in flow regions where wj > 0 than in regions where
wh < 0. If the mean shear-production in the former regions is indeed larger than in the
latter because of the larger averaged Reynolds shear stress, then the observed tendency
here can be explained by the larger mean shear-production.

8.4 Summary and discussion

Direct numerical simulation and particle image velocimetry are used to study fully devel-
oped turbulent pipe flow at Re = 7000. Several DNS and PIV turbulence flow statistics
have been compared in earlier work and provided an excellent agreement. In the present
work, some mean properties of vortical flow structures observed in DNS and PIV have
been compared quantitatively. No attempt has been made to interpret the observed phe-
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nomena and presented results e.g. in terms of flow dynamics.

A vortical flow structure referred to in this paper is defined as a region of the flow
where the ratio p, = —w}/wj s exceeds a threshold value. The analyses of the present
comparison are based on the spatial distribution of wj because this is one of the most
obvious parameters which is available in both DNS and PIV.

First, some mean properties of vortical flow structures in the near-wall region have
been computed. A qualitative observation of the PIV data indicated that the vortical
flow structures in the near-wall region are elongated and inclined with respect to the pipe
wall. Quantitatively, we obtained a mean angle a of inclination equal to 8.9 degrees for
the PIV data. The 95% reliability interval (7.6 < o < 10.3), however, is rather large due
to the presence of noise and the small number of available PIV data sets. From the DNS
data, we obtained 7.7 < a < 8.1 with 95% reliability and a mean angle o = 7.9 degrees.
The PIV and DNS results are in reasonable agreement. Other mean properties obtained
from PIV, like the averaged length scales of the near-wall vortical flow structures, differ
significantly from DNS which is most probably due to noise in the PIV data.

Secondly, a dimensionless shape-parameter S has been computed as function of the
distance r/D from the centerline. In general, the present analyses showed that for both
DNS and PIV the vortical flow structures near the centerline of the pipe are more compact
than those close to the wall which are more elongated. In particular, it is found that
compact flow structures are present at all r/D whereas strongly elongated structures only
appear close to the wall,

Furthermore, a quantitative analysis has been made in which the flow statistics condi-
tionally sampled over the vortical flow structures have been compared with flow statistics
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sampled over all other regions in the flow in order to study the relevance of the vortical
flow structures to the flow statistics. It was found that the vortical structures in the
middle of the pipe (r/D < 0.4) travel with the mean velocity corresponding to the radial
position r/D. Close to the wall, the vortical structures travel with a velocity larger than
the mean velocity. At y* &~ 15 (r/D = 0.46), it appeared that the averaged Reynolds
shear stress and the velocity fluctuations are larger in regions where wj > 0 in comparison
with regions where wj < 0.

The present work illustrates that DNS can provide quantitative information on turbu-
lence flow structures and that these DNS results are in reasonable agreement with PIV.
However, some uncertainties remain involved in the DNS. Possible influences on the flow
structures caused by the numerical procedures used in the simulation, the applied numer-
ical resolution and/or the size of the computational domain still need to be investigated.
None of these uncertainties have been mentioned here although they may be of impor-
tance for studies of flow structures using DNS. In the present paper a first explorative
quantitative comparison of numerical and experimental results is presented, but there is
also an unmistakable need for a comparison of the present DNS and PIV results with
other experimental, numerical and in particular theoretical results regarding turbulence
flow structures.



Chapter 9

Application of Digital Particle
Image Velocimetry to a Turbulent
Pipe Flow!

Abstract. The results are presented of probably the first successful application of digital
particle image velocimetry (DPIV) in a fully developed turbulent flow. The flow under
study was a small region close to the wall (ranging from 40 < y* <90) in a smooth pipe
flow, at a relatively low Reynolds number of 5,300, based on the bulk velocity and the
diameter of the pipe. The advantage of DPIV in comparison with the traditional imple-
mented PIV method is the enormous reduction in analysis time. The time needed for 1000
interrogations with the conventional PIV analysis is typically 1000 seconds, whereas for
DPIV about 60 seconds are needed. This reduction in analysis time is achieved at the cost
of a small reduction in accuracy. The present DPIV experiments were carried out with
a simple video camera with an effective resolution of 256x 512 pizels. Despite this rather
poor resolution, the results demonstrate that DPIV is sufficiently accurate to yield statis-
tically significant results. The accuracy is estimated at 0.2-0.4 ut, which corresponds to a
measured particle image displacement of 0.1-0.2 pizel. The turbulent statistics show sat-
isfactory agreement in comparison with data obtained with the conventional PIV method.
Visual comparison of vector maps representing instantaneous fluctuating velocity fields
obtained from the present DPIV measurements and conventional PIV experiments previ-
ously carried out in the same facility, show that both techniques are able to capture sitmilar
flow patterns. A first investigation to detect flow structures gives promising results.

9.1 Introduction

It is generally accepted that turbulent flow is not random, but consists of spatially and
temporal coherent structures. These flow patterns can be observed e.g in flow visualiza-

1VAN DER HOEVEN, J.G.TH., WESTERWEEL, J., NIEUWSTADT, F.T.M. & ADRIAN, R.J. 1993 In:
Proc. of IUTAM Symp. “Eddy Structure Identification in Free Turbulent Shear Flows” (Poitiers) 12-14
Oct. 1992. Kluwer Academic, Dordrecht.
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tion. With traditional single-point measurement techniques, like hot-wire and the laser-
Doppler anemometry, it is difficult to observe the spatial character of these structures.
Therefore, additional multi-point techniques are required.

Particle Image Velocimetry (PIV) is such a technique. With PIV one can obtain
quantitative information on the instantaneous flow pattern in a plane. This yields direct
information on the spatial coherence of structures. In addition, the spatial distribution
of derived quantities can be computed, such as the out-of-plane vorticity component and
the second invariant of the 2D deformation tensor. It is believed that these quantities
may be relevant for the dynamics of coherent structures.

The technique of PIV starts with a flow which is seeded with small particles that
accurately follow the flow. The particles are usually illuminated with a laser sheet. Tradi-
tionally, doubly or multiple-exposure images of the particles are recorded on photographic
film. The film negative is then analyzed by means of scanning it with an optical/electronic
interrogation technique. The principle of this technique is as follows. A small interro-
gation spot in the negative is illuminated with a laser beam. This results in a Young’s
fringes interference pattern in the far field of the transmitted light beam. The distance
of these fringes is directly proportional to the local fluid velocity. Their orientation is
perpendicular to the displacement of the particle-image pairs on the negative (Adrian
1986). This pattern is subsequently digitized with a typical resolution of 256 x256 pixels,
for analysis with a computer. The fringe pattern is equivalent to the Fourier transform
of the auto-correlation of the interrogation image. Hence, one can alternatively carry out
the analysis by direct observation of the interrogation image and by computation of the
auto-correlation directly.

This method, based on the analysis of either the fringe pattern or the direct compu-
tation of the correlation function, yields accurate local velocity measurements, usually
better than 1%. In addition, the spatial resolution is rather high, up to 100100 interro-
gation spots per photograph. However, this technique is rather slow, up to several hours
per photograph are needed. This rather large analysis time is due, partly to the develop-
ing of the film, and partly to the scanning process, which requires the traversing of the
camera and laser beam across the negative. Therefore, the conventional PIV technique is
only appropriate to treat a small set of images.

For the study of the dynamics of coherent structures, like e.g. in turbulent boundary
layer flows, one is interested in the time evolution of the flow or in the statistics of the
observed flow patterns. In this case analysis of large numbers of images is essential. A
slow analysis method is then unacceptable. Therefore, we have developed an alternative
PIV technique based on a digital analysis of the images instead of the optical (fringe)
analysis. (From hereafter we will denote the alternative digital method as DPIV and the
conventional method as OPIV.) First, instead of using photographic film, the complete
image of the particles is recorded digitally with a CCD-array, with a typical resolution
of 512x512 pixels. Second, the digitized image is then analyzed by interrogating small
regions, usually 32x32 pixels or 64x64. In such an interrogation window the distance
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between particle images is obtained from the correlation function calculated by FFT’s.
For further details on this alternative analysis for large numbers of images we refer to
Chapter 7.

Using this technique the analysis time per complete image is now reduced to seconds
rather than hours. Therefore, sequences of images (100-1000 frames) can be analyzed
within reasonable time. However, there is a small reduction in the measuring accuracy,
which is now 1-3%, and a somewhat lower spatial resolution, i.e 1,000-4,000 interroga-
tions/image.

Some additional advantages arise due to the digitization of the complete image before
analyzing. First, standard image processing techniques can be applied, e.g. to correct for
noise or non-uniform background lighting. Second, series of single-ezposure images can
be analyzed using the cross-correlation technique on two successive images to obtain the
velocity information (Willert & Gharib 1991). In this way, one gets rid of the velocity di-
rection ambiguity present using the auto-correlation technique on double-ezposure images.
In addition, cross correlation allows a more accurate determination of the displacement
of the correlation peak.

The results are presented of the application of DPIV in a fully developed turbulent air
flow. The flow under study was a smooth pipe flow at a relatively low Reynolds number.
Recently PIV measurements using the conventional analysis technique were carried out
in the same pipe flow facility under the same flow conditions. In that case a total of
33 photographs was taken in a plane through the centerline of the pipe, across the full
diameter. For these measurements the negatives of the PIV photographs were analyzed
in the interrogation system described by Landreth & Adrian (1990). The results of these
experiments were presented together with the results of LDA measurements and DNS
calculations for comparison in Chapter 7. Some experimental conditions and data of the
PIV measurements are summarized in Table 1. This will be the set of measurement data,
with which we will compare our present DPIV data.

The main reason for doing these experiments was the opportunity to compare the
results of the, probably, first application of DPIV measurements in a fully turbulent flow
with the results of measurements with the conventional implemented PIV carried out in
the same flow facility and under the same flow conditions. To investigate the statistical
quantities of flow properties, like vorticity, which are associated with flow structures a
larger number of images is required. Therefore, under the same flow conditions, a set
of 501 double-exposure images was taken using a simple video camera. The data was
analyzed in terms of statistics, such as mean and rms profiles. Subsequently, conditional
sampling was applied.

9.2 Experimental set-up

A schematic of the experimental set-up is given in Figure 9.1. Except for the image
acquisition, the experimental set-up and flow conditions are the same as described in
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Figure 9.1: Schematic diagram of the experimental set-up (cf. Fig. 7.1b).

more detail in Chapter 7.

turbulent pipe flow

The images were taken near the end of a 17 m long smooth pipe with an inner diameter of
127 mm. The Reynolds number was 5,277, based on the bulk velocity and the diameter of
the pipe. To verify if the air flow was fully developed at the test section LDA measurements
were carried out. For the results, which confirmed that the velocity profile was fully
developed, and a description of these experiments we refer to Chapter 7. The flow was
seeded with 1-2 pm diameter oil droplets generated by two atomizers. Injection was about
14 pipe diameters downstream of the flow inlet.

The optical set-up for the pulsed laser light sheet is given in Fig. 9.1. Two Nd:YAG
pulsed lasers with a repetition rate of 20 Hz were accurately synchronized with a time
delay of 0.50000 ms®. The orthogonally polarized laser beams were combined into a double
pulsed beam by a polarization splitter plate. A prism at the pipe outlet reflected the beam
90 degrees into the pipe. A spherical lens combined with a cylindrical lens transformed
the beam into a thin, vertical light sheet. The thickness of the light sheet was about
1-2 mm.

image acquisition

The image acquisition system was built up with commercially available components. A
simple video camera (Panasonic GP-MF702) with 649x491 (non-square) pixels was used
in the interlaced mode, with a low cost Data Translation frame grabber in a PC-AT. The
frame rate of the video camera was 30 Hz. The camera was synchronized with the two

2Note that a different value of the time delay was used in the OPIV measurements; see page 147.
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lasers to obtain double-exposure images. The memory of the frame grabber could store 4
images. To empty its memory took about 1-2 minutes per 4 frames. Therefore, the 501
taken images are not a “continuous” time series.

Limited by the number of pixels of the video camera (because the camera was operated
in interlaced mode only 256 lines in y-direction are available), the overall image size was
chosen rather small, 20x15 mm?. Expressed in viscous units the length and height of
the image was 60* and 50*, respectively. The camera was focused on a small part of
the wall boundary layer, 15 to 30 mm distance from the wall, which corresponds to y*
ranging from 40 to 90. This particular location was chosen, based on the previous OPIV
measurements, which revealed it as an interesting area.

9.3 Results

First, the results of the different steps of the image analysis are presented and discussed.
Next, the results of turbulence statistics are presented in comparison with the results of
the OPIV experiments in the full pipe diameter. In addition, some results of conditionally
sampled statistics are presented, compared with the results from the OPIV data and a
direct numerical simulation (DNS) carried out at the same Reynolds number (Eggels et al.

1993b).

preprocessing

The digitally recorded video images can be enhanced relatively easy using standard image
processing routines. The camera was used in the interlaced mode. Therefore, as a first
step, the black lines were removed and we interpolated the remaining 256 lines to 512
lines. Next, the images were normalized to correct for possible non-uniform background
lighting. For these operations we used the software package TCL-image.

interrogation analysis

In general, PIV data sets contain erroneous vectors. These are due to an insufficient local
density of particle-images, or to a non-uniform particle displacement distribution within
the interrogation area (Keane & Adrian 1990). After a test analysis of a small number
of images it turned out that the particle density was too low for the analysis with 32x32
pixel interrogation areas. Therefore, we increased the size of the interrogation window to
64x64 pixels. This corresponds to a spatial averaging over an area of 7.5% x 8.2%. The
overlap of neighbouring interrogation areas was 75%. The combination of the used camera
(649491 px) and frame grabber (512x512 px) yielded images with 506x480 px exposed
pixels. This yielded a set of 501 instantaneous velocity fields of 27x27 nodes each. A
vector map of one of the obtained instantaneous velocity fields is shown in Figure 9.2.
The mean displacement of the particle images, as a function of distance from the
wall, varied from 7.5 to 8.5 pixels. This means a relative particle displacement compared
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Figure 9.2: Vector map of the instantaneous velocity field obtained from the interrogation of a DPIV
image. The map contains about 2% spurious vectors.

to the length of the interrogation area of 8/64. This value is in agreement with the
recommendations by Keane & Adrian (1990).

The analysis of one frame took less than 45 seconds (on our laboratory computer
HP9000/720). That is, 60 seconds per 1000 vectors. For comparison only we mention
here that for the analysis of an OPIV negative 1000 seconds per 1000 interrogations were
needed (disregarding the time needed for the development of the film).

postprocessing: erroneous vectors

As the example of a raw DPIV vector map shows there are some erroneous vectors (see
Fig. 9.2). For large numbers of images it would be an enormous laborious task to detect
and replace these spurious vectors manually. In addition, visual inspection of PIV mea-
surement data is subjective, and therefore not reproducible and not optimal. Therefore,
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an algorithm has been written, which rejects vectors as spurious based on a deviation from
the local median. An account of the details of this procedure and its efficiency is described
in Chapter 4. After rejection, vectors are automatically replaced by a new velocity vector
which value is computed by means of the interpolation of the eight neighbouring vectors.

Counting the number of detected outliers per image we found that about two third
contained less than 1% of spurious vectors (for one third of the images the number of
detected outliers was zero). We disregarded all the images which contained more than 5%
of spurious vectors. This yielded that 93% of the images (i.e. 464) was used for further
analysis.

turbulence statistics: mean and rms profiles

The turbulent flow statistics were obtained from the remaining 464 instantaneous velocity
fields by averaging the data along lines of constant y in each field and then calculating the
line averages over the full set. To normalize the flow quantities with the viscous length
scale, v/u., and the friction velocity, u., we used the results obtained previously with the
OPIV measurements (see Table 7.1). The results are presented in the Figures 9.3-9.5. The
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Figure 9.3: Mean axial (U) and radial (V) velocity profiles, normalized by friction velocity. The solid
line represents the result from the OPIV measurement (see Chapter 7). The bar denotes the velocity
corresponding to a particle-image displacement of 1 pixel.
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normalized mean velocity profile (Fig. 9.3) and the normalized rms fluctuating velocity
profiles (Fig. 9.4) are compared with the results from the OPIV data. As mentioned
before, we used the results obtained with OPIV to normalize the DPIV data. Therefore,
the agreement between the two mean profiles is rather good. In Fig. 9.3 the bar represents
the velocity corresponding to a measured particle image displacement of 1 pixel.
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Figure 9.4: RMS profiles, normalized by friction velocity. The line represents the results from the
OPIV measurement (see Chapter 7). The bar denotes the velocity corresponding to a particle-image
displacement of 0.1 pixel.

In the rms profiles we see a difference of about 10%. This can be explained in terms
of the differences in size of the interrogation windows between the two experiments. One
should be aware of the fact that because of the finite size of the interrogation window
the measured velocity field is a low-pass filtered representation of the observed flow field.
The filter length is proportional to the size of the interrogation window. In the OPIV
measurement the diameter of the interrogation window was about 4 viscous units, while
in the DPIV measurement it was about 8 viscous units. Therefore, the turbulent fluc-
tuations in the DPIV measurements are not fully resolved, which results in a slightly
smaller value of rms fluctuating velocities. The bar in Fig. 9.4 shows the accuracy in the
velocity, corresponding to 0.1 pixel. This indicates that the particle image displacement
is estimated within sub-pixel accuracy.

We subsequently computed the out-of-plane component of the vorticity, given by
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Figure 9.5: Mean vorticity profile, in viscous units. The line represents the computed profile obtained
with Reichardt’s formula for a fully developed turbulent pipe flow; see Eq. (7.2).

w, = Qu/dz —Bu/dy. As an additional check of the accuracy of the measured data we
compared the mean out-of-plane vorticity component with the derivative of Reichardt’s
formula for the universal profile for fully developed pipe flow (Reichardt 1951). This is
shown in Figure 9.5. Except for the scattering in the measurements the agreement is
good. Landreth & Adrian (1990) suggest to apply a careful smoothing prior to estima-
tion of the vorticity, which suppresses the amplification of noise in the vorticity data due
to differentiation of the velocity data. Since this would imply a further loss of spatial
resolution we computed the vorticity directly from the measured displacement field. The
agreement between the experimental and expected result in Fig. 9.5 demonstrates that
the vorticity—without the additional smoothing—yields significant results.

turbulence statistics: structures

Visual inspection of the instantaneous fluctuating velocity fields reveals “structure-like”
features. As an illustration two fields are shown in Figures 9.6 and 9.7. The fluctuating
fields are obtained after subtraction of the local mean velocity. For demonstration rea-
sons only, the result was multiplied with a factor of 10. When this procedure is carried
out on the vector field shown in Fig. 9.2 we obtain the result shown in Fig. 9.6. The
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Figure 9.6: Vector map of the instantaneous fluctuating velocity field as obtained after replacing spurious
vectors and after subtraction of the local mean velocity from the field shown in Fig. 9.2. The vectors
have been magnified by a factor of 10 with respect to the vectors in Fig. 9.2.

fluctuating velocity components are rather small, especially if seen in comparison with
the instantaneous fluctuating field shown in Fig. 9.7. This field reveals a dominant coher-
ent movement in the flow. Compare this with the detail of an instantaneous fluctuating
velocity field obtained with OPIV shown in Fig. 7.12. The similarity between the large
patterns is striking! We emphasize that these flow patterns were found in the same pipe
flow facility at equal flow conditions, but in different experiments. It should be repeated
that the OPIV experiments covered the full pipe diameter instantaneously with suffi-
cient spatial resolution. Whereas for the DPIV experiments we focused on a relatively
small region of the pipe flow, due to the relatively low spatial resolution of the image
acquisition components. However, visual comparison of the two instantaneous fluctuating
fields (Figs. 9.6 and 9.7) demonstrates that both techniques are able to capture similar
structures. Despite the lower spatial resolution and measurement accuracy of DPIV in
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Figure 9.7: As in Fig. 9.6, but obtained from another DPIV image; cf. Fig. 7.12.

comparison with OPIV it is possible with DPIV to resolve coherent flow structures in
turbulent flows. The obvious advantage of DPIV is that the time needed to record and
process the digital image to yield the result shown in Fig. 9.7 is only a fraction of the
time needed for the analysis of an image with OPIV.

Dealing with large numbers of images, fully automatic algorithms are needed to search
for flow structures. Recently, Eggels et al. (1993b)® presented some results of a quantita-
tive comparison study of vortical flow structures generated by a direct numerical simula-
tion (DNS) in the same geometry (viz., a smooth pipe) and flow conditions as the OPIV
measurements presented in Chapter 7 and the DPIV measurements presented here. For
obvious reasons of comparison, our data has been processed exactly in the same way.

The assumption underlying their conditional sampling criterion is based on observa-

3see Chapter 8
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Figure 9.8: Relative importance of the vortical flow structures to the mean velocity as function of the

dimensionless distance from the centerline

tions of the instantaneous 2-D fluctuating vorticity distributions as obtained with OPIV
’

It seems that the regions with negative vorticity fluctuations, w! < 0, tend to be more
organized in flow structures. Therefore, the regions where w, > 0 were neglected. The
former regions are referred to as vortical flow structures. To investigate the relevance

of these vortical flow structures to the turbulence flow statistics conditional sampling is
used. Therefore, each mean turbulent flow quantity (¢) is assumed to consist of two con-
tributions: (¢) = (@)vis +(@),, with the conditionally sampled averages over the vortical
flow structures {¢)vss and over the remaining flow regions, {(¢),, i.e
Nvfi 1 Nr
B =3 22 86)  {8) = 3 D 60) (9.1)
z—l 3
respectively, where N is the total number of data samples, N, the number of samples

which, according to the conditioning criterion, correspond to vortical flow structures, and
N, the number of samples corresponding to all other flow regions. The fraction of samples
corresponding to either of the flow types are denoted with n.g or n,, with nye+n,=1. To
investigate the relevance of the vortical flow structures to the mean turbulence statistics
the averaged contribution of both vortical flow structures and all the other flow regions
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are compared, expressed in the following parameter*:

Fygy=

If Fi4) equals one, the averaged contribution of both flow regions is equal. For a more
detailed description and for a discussion of the results obtained from the DNS and the
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OPIV data we refer to the paper by Eggels et al. (1993b).

Application of Digital Particle Image Velocimetry to a Turbulent Pipe Flow
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Figure 9.9: Relative importance of the vortical flow structures to the root mean square of the streamwise

velocity fluctuations, as function of the dimensionless distance from the centerline.

The results of this conditional sampling are given in the Figures 9.8-9.10 in comparison
with the results obtained from the OPIV and DNS data sets. In these figures the relative
contribution to the mean flow velocity, (U), the mean Reynolds stress, (u'v/), and the
turbulence intensity in flow direction, (u'w’) are shown. In the investigated area, 40 <
y* <90, the value of Fig for all three mean quantities is approximately equal to one. Fiy
approximately equal to one is indicating, that the vortical flow structures travel with a

velocity similar to the local mean flow velocity. The scattering in the DPIV results for
Flunyy and Fiyyy is relatively large compared with the results obtained with OPIV.

“see Eq. (8.5)
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Figure 9.10: Relative importance of the vortical flow structures to the Reynolds shear stress, as function
of the dimensionless distance from the centerline.

9.4 Conclusions

The measurements presented here are probably the first successful application of DPIV in
a fully developed turbulent flow. The flow under study was a relatively small area close to
the wall in a pipe flow, at a Reynolds number of 5,300. The dimensions of the flow region,
ranging from 40 < y* < 90, were defined by the resolution of the camera and the frame
grabber. A set of 501 directly recorded digital images were analyzed. The analysis time of
each image in 730 interrogation positions took less than 45 seconds. This is a considerable
improvement in processing speed in comparison with the conventional method applied
in OPIV. Hence, we could easily analyze this large amount of images in a very short
time. The turbulence statistics of first and second order quantities, calculated from the
data are in fair agreement to previously carried out OPIV measurements spanning the
full diameter of the same pipe flow. The accuracy is estimated at 0.2-0.4 u*, which
corresponds to a measured particle image displacement of 0.1-0.2 pixel. Visual inspection
of the instantaneous fluctuating velocity fields shows that both techniques are able to
capture similar dominant structures. In addition, some results of a numerical comparison
of structures found in the two data sets (DPIV and OPIV) were presented. Summarizing,
the results of the application of DPIV in a turbulent flow are encouraging.



Chapter 10

Conclusions

In this final chapter we summarize the main results and conclusions presented in this the-
sis. We review to which extent the problems put forward in the first chapter of this thesis
have been clarified. In addition we will consider some general aspects of the application
of PIV to turbulent flow research. This chapter concludes with the author’s view on the
future developments in (digital) PIV.

recapitulation of the problem

In the first chapter of this thesis we have argued that for the investigation of coherent flow
structures in turbulent flow we need a (new) measurement technique that yields quan-
titative spatial information of the instantaneous flow velocity field. A very promising
technique is particle image velocimetry (PIV) which is an optical measurement technique
that yields the instantaneous velocity field in a planar cross section of the flow. The data
obtained from PIV measurements enable us to compute flow quantities, such as (compo-
nents of) the vorticity and the deformation; these quantities are very useful in the study of
coherent flow structures, since vorticity and deformation are closely related to the dynam-
ics of coherent structures. The fundamental differences of PIV with classical visualization
should be emphasized here. First, classical visualization yields only a qualitative picture of
the flow structures, while PIV yields quantitative information. Secondly, in classical flow
visualization the tracer material (dye, smoke or particles) is applied in such a way that
the flow structure of interest becomes directly visible, while in PIV the tracer material
(particles) is applied homogeneously and the flow structure is educed through physical
quantities of the flow field (viz., vorticity).

In conventional PIV, images are recorded on photographic film, which—after develop-
ment—is interrogated in small interrogation areas by an optical read-out system. We
therefore refer to this conventional method as OPIV. The interrogation area is analyzed
with a high pizel resolution, which yields accurate results (better than 1%). By using a
large film format we can also obtain a high spatial resolution. However, the analysis in
OPIV is (inherently) slow due to (a) the development of the film and (b) the mechanical
manipulation of the negative in the interrogation system. As a result the analysis of
a single negative takes several hours. This implies a bottleneck in the processing of a
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sequence of PIV images, which is a serious obstacle in the application of PIV to the
investigation of coherent structures in turbulent flow, where one is especially interested
in the time evolution of structures; see Example 1 on page 20.

In this thesis an alternative digital implementation of the PIV method is presented—
referred to as DPIV—that processes the data in less than about 1% of the time needed
for the OPIV analysis. The price to pay for this improvement is a somewhat lower
spatial resolution and a slight loss of accuracy. A test measurement of the vortex street
in the wake of a circular cylinder described in Sect. 1.3.2 demonstrated that with low
pixel resolution we can still extract significant information of the dynamics of coherent
structures in a flow. The digital analysis of a PIV photograph taken from a turbulent flow
behind a grid demonstrated that digital PIV, despite its somewhat lower resolution and
accuracy, can provide significant information of coherent structures in turbulent flow.

There are no fundamental differences between the traditional and digital OPIV meth-
ods. However, in the traditional PIV analysis the interrogation images are digitized and
processed with a high pixel resolution, while for digital PIV a low pixel resolution is used.
For analysis with high pixel resolution we can neglect the fact that we are dealing with
images of discrete pixels, but this approach can no longer be maintained at low pixel reso-
lution. Also there seemed to be a kind of controversy reported in literature; the accuracy
claimed at low pixel resolution appeared to be better than was expected on the base of
extrapolation of the accuracy at high pixel resolution; see Sect. 1.3.3. The estimates of the
measurement accuracies were all obtained from simple calibration measurements, which
did not provide much insight or explanation of this controversy. In addition, there was no
clear picture of the limitations of the DPIV method with respect to the pixel resolution
in the interrogation analysis; in other words, what is the minimum required pixel reso-
lution that would still yield significant results? In this thesis an analytical investigation
of the measurement accuracy for digital interrogation of PIV images was carried out. In
Fig. 1.10 the subsequent stages are given in the PIV image acquisition and analysis that
were investigated. The results of this investigation are given in Part I of this thesis.

10.1 Theory (Part I)

In this section we will discuss the major results of the analysis derived in Part I, namely:
digital PIV analysis (image statistics, bandwidth, accuracy), data-validation (spurious
data) and the estimation of vorticity and deformation.

image statistics

The measurement of the velocity field from tracer displacements implies that the measured
flow field is a low-pass filtered representation of the actual flow field; see Sect. 2.3. It was
shown that a dense seeding of the flow (i.e. the average distance of the tracer particles
is less than their displacement) can in principle fully resolve the observed displacement
field. Additionally we argued that, if we want to obtain a measurement that is not
biased in favour or against a certain flow structure, a homogeneous seeding is required
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with particles that follow the motion of the fluid exactly (ideal tracer particles) in an
incompressible flow. Under this condition the spatial image statistics are homogeneous;
see Sect. 2.7. This was the point of departure for our analytical investigation, where we
partially followed the procedure as put forward by Adrian (1988) for continuous images.
It was necessary to re-derive and extend his results in order to include also the digitization
of PIV images; see Sect. 2.9. In the theoretical analysis given in Part I of this thesis we
obtained expressions for the (ensemble) statistics of the digital images and subsequent
estimation of these statistics from a single realization of a PIV image; see Eq. (3.10) in
Sect. 3.2.

bandwidth

One of the most important aspects of digitization of images is the choice of an appropriate
sampling rate. In Sect. 3.5 we took a closer look at the (minimum) required sampling
rate that would be needed for the interrogation analysis. It appeared that the high
pixel resolution used in conventional OPIV analysis corresponds to a sampling rate that
matches the optical bandwidth of the PIV imaging system, i.e. the original picture can
in principle be reconstructed from the discrete image. We argued, however, that for the
determination of the displacement it is not necessary to have complete optical information
of the picture. Alternatively we estimated the bandwidth of the PIV image according to
Parzen’s definition, which yielded a value that is about a factor 42 lower than the optical
bandwidth; see Eq. (3.16). It was subsequently demonstrated that the information content
of the PIV signal does not further improve for sampling rates above the Parzen bandwidth.
In a practical situation this implies that a pixel resolution of 64x64 is already sufficient,
while the optical bandwidth would prescribe a resolution of 256x256 pixels.

accuracy of interrogation analysis

The actual accuracy of the measurement as function of the pixel resolution is not only
determined by the image bandwidth, but also by the performance of the estimator that
is used to determine the centroid of the displacement-correlation peak. We have tested
the performance (mean and variance) of three different estimators.

We further employed the results obtained for the statistical properties of the image
statistics to investigate the performance of three different estimators for the centroid
of the displacement-correlation peak, namely the center-of-mass, parabolic peak-fit and
Gaussian peak-fit estimators; see Sect. 3.8.1. The accuracy of center-of-mass estimator
improves slightly with increasing pixel resolution. Hence, although the information con-
tent of the signal does not improve for a resolution that is higher than the bandwidth, the
estimation of the displacement at high pixel resolution is somewhat better than at low
pixel resolution. The investigation also revealed that other estimators, i.e. the parabolic
and Gaussian peak-fit estimators, loose accuracy when the pixel resolution is increased;
these estimators appear to have an optimal performance at a pixel resolution that matches
the minimum required sampling rate of the PIV image. This explains the controversy that
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was observed in calibration measurements with different estimators at different pixel res-
olutions; see Sect. 1.3.3. As was already discussed in the previous paragraph, it was
shown in Sect. 3.7 that the information content of the displacement-correlation peak at a
resolution above the image bandwidth (by Parzen’s definition) changes marginally. This
implies that with the use of optimally efficient estimators—given the pixel resolution—the
relative accuracy as function of the pixel resolution changes marginally. Let us illustrate
the implication of these results with respect to the differences between OPIV (i.e. anal-
ysis with high pixel resolution) and DPIV (i.e. analysis with low pixel resolution): by
reducing the pixel resolution with a factor of 8 (viz., from 256x256 to 32x32 pixels) the
processing speed is increased by a factor of 100, while the relative accuracy deteriorates
with only a factor 2-4.

Not only the choice of the estimators was discussed, but also the influence of two
important properties: the mean and the variance. First, we showed that even for uniform
displacements there is a small bias towards the zero displacement. Secondly, we could
predict the behaviour of the random measurement error as function of the displacement.
Let us review the consequences of these results.

We found in Sect. 3.9.1 that the bias is inversely proportional to the pixel resolution
and proportional to the width of the displacement-correlation peak. In other words, the
magnitude of the bias is determined by the width of the displacement peak with respect
to the size of the interrogation area. Thus, a bias will occur for all influences that tend to
increase the width of the displacement-correlation peak, i.e. the increase of the particle-
image diameter due to the finite size of the tracer particles, but also unresolved motion
at scales below the size of the interrogation area and strong velocity gradients over the
interrogation area. (It should be noted here that Adrian (1988) reports that a such bias
would occur only for non-uniform displacements.)

For particle-images with a diameter of 4 px and a 32x32 pixel interrogation region
with a uniform weight kernel this bias is about 0.06 px. This was also verified in a test
experiment. Markedly this bias was not reported by others (Willert & Gharib 1991;
Lourengo 1993), although it should have made a significant contribution to the total
measurement error in their calibration measurements.

Hence, we obtained a general explanation of biases in the measured displacement with
respect to the actual displacement. Our theoretical analysis also provided a simple cor-
rection procedure in order to compensate for this bias. It is important to note that this
correction is applied prior to the actual estimation of the displacement; the correction does
not require any parameter (since the bias is proportional to the correlation-peak width,
an a posteriori correction would require the width of the correlation peak as a parameter).

In Sect. 3.9.2 we have shown analytically that the accuracy of estimating the peak cen-
troid does not depend on the image density of the PIV image, but only on the width of
the peak. However, the probability to detect the displacement-correlation peak amongst
the random correlation peaks is determined by the image density. (The combination of
these two effects determines the overall performance of the PIV analysis). We investi-
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gated the behaviour of the measurement accuracy as function of the displacement. The
expression for the variance of the estimator (Eq. 3.93) can be spiit up in three terms: (a)
a partial-derivative term that only depends on the applied estimator, (b) a balance term
that depends on the weight kernel, and (c) a variance term that depends on the bandwidth
of the PIV image. It appeared that the qualitative behaviour of the accuracy as function
of the displacement is determined by the choice for the weight kernel in the interrogation
analysis; for a uniform weight kernel the accuracy is approximately constant as function
of the displacement, while for a Gaussian kernel the accuracy is directly proportional
to the displacement. The behaviour for different weight kernels could be understood
qualitatively. However, it was necessary to introduce a free parameter (probably related
to instrumental noise) to obtain also a quantitative agreement between the analytically
predicted and observed accuracies. It is conjectured that a more realistic model for the
statistics of the PIV signal (i.e. one that includes also the presence of instrumental noise)
would make it possible to predict also this free parameter.

It was demonstrated that in a practical situation the accuracy for the measurement of
the displacement at low pixel resolution is less than 0.1 px. This value is based on rather
large particle-images (with a diameter of about 4 px). Calibration experiments by Willert
& Gharib (1991) suggest that accuracies up to 0.02 px are feasible.

spurious data

The probability that the highest correlation peak is indeed the displacement-correlation
peak is determined by the number of particle images in the interrogation image. A simple
model, based on the principle that at least five particle-images are required to yield a valid
displacement (Sect. 3.6.4), seemed to explain qualitatively the behaviour as function of
the displacement of spurious vectors in a test experiment; see Sect. 3.10. Still, this is
somewhat unsatisfactory, because we concluded earlier that the fact that a PIV image
consists of particle-images is not significant with respect to the analysis. Instead, one
would expect a model that relates the valid-detection probability to the image contrast!.
This model would then perhaps also apply to images with high source density (viz., speckle
images). Further investigation on this matter is required.

In principle it would be possible to reduce the probability of detecting a spurious
displacement peak to an arbitrarily small value by increasing the image density. However,
in practice there are a few complications. First, at a certain density the particle images
will start to overlap. From that point we can insert more particles to the flow, but
this no longer improves the image quality (which is now determined by the contrast of
the speckle pattern). Secondly, the application of a high density of tracer particles may
have undesirable influence on the flow or may considerably reduce the transparency of
the fluid. Therefore a strategy that aims at a maximal reduction of the spurious-data
probability may not always prove to be effective. Instead, it is more practical to allow a
(predefined) fraction of spurious data (say 5%} and subsequently remove these data in a

1The image contrast is defined as the rms fluctuating image intensity divided by the mean image
intensity.
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post-interrogation data-validation procedure.

An argument against such a strategy is that in this way one may perhaps filter out
interesting flow phenomena. This argument may have some relevance, but it is not nec-
essarily true. Let us explain this. In Appendix A.2 it was described that under the
conditions of a homogeneous distribution of ideal tracer particles in an incompressible
flow the distribution of these particles over the flow is not determined by the flow veloc-
ity field. So, the local density of the tracer particles is not determined by the presence
of any flow structure. Thus, from first principles, we do not expect to find a higher
signal “drop-out” (i.e. the occurrence of insufficient particle-images in the interrogation
area that results in the detection of a spurious displacement) correlated with certain flow
structures. However, the amplitude of the displacement-correlation peak is determined by
the out-of-plane motion of the tracer particles (see Eq. (2.49)) and the local variations in
the displacement field. Likely, these effects may be correlated with the presence of certain
structures. Therefore to assure that the spurious data is independent from the flow field
we must satisfy two additional requirements, namely: (a) the out-of-plane displacement
is small with respect to the thickness of the light sheet and (b) the local variations of
the displacement field are small with respect to the local mean displacement; see the
discussion in Sect. 2.9.

Following the second strategy we developed a new method, based on the local-median
filter. In Chapter 4 we used a statistical model of a PIV data set to test this method
against other (existing) data validation procedures. We thus demonstrated that the local-
median method is the most efficient and robust of the considered procedures. In addition
the statistical model was used to optimize the procedures. Subsequently the method was
successfully applied to all the experimental data described in Part II of this thesis. The
most important achievement of the data validation methods presented in Chapter 4 is
that they can be fully automated (the optimal decision criterion for accepting or rejection
of data can—in principle—be determined automatically). This is especially beneficial to
the processing of large amounts of PIV data sets.

vorticity and deformation

The validated data sets (after detection and removal of spurious data, and subsequently
filling up “open” spaces in the data set by (linear) interpolation) can be used to determine
contributions to the vorticity vector and deformation tensor. We applied existing meth-
ods, that are described in detail in Chapter 5. There we have shown that for significant
results of the vorticity the (random) error in the measurement should be maximally a
few percent of the accessible displacement range in the interrogation analysis. With the
conventional OPIV analysis the relative error is commonly less than 1%; for digital PIV
the relative measurement error is about 1-2%. Although not as accurate as with the
conventional PIV method, we may still expect significant results for the estimated vor-
ticity (and concurrently the estimated deformation). This was confirmed by the analysis
of the PIV image taken from the turbulent flow behind a grid which demonstrated that
digital PIV could provide significant information of the vorticity and deformation from a
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turbulent flow; see Chapter 6.

To distinguish between different flow regions Hunt et al. (1988) suggested a method
to subdivide a flow into eddies (E), convergence (C) regions and streaming (S) regions,
based primarily on the value of the second invariant of the deformation tensor. In PIV we
have only access to two velocity components from which we can evaluate only 4 out of 9
tensor components®. Despite the fact that we have only an incomplete set of components
(see Sect. 5.3) it appeared still possible to apply the concept of E, C and S regions to
PIV data sets. The PIV measurement data obtained from the turbulent flow behind a
grid demonstrated that we could detect flow patterns that match the patterns associated
with these E, C and S regions; see Chapter 6. However, it is currently not known how to
interpret the results from this type of classification when applied to planar cross section
of a three-dimensional flow. In addition, in the case of experimental data the results may
also be affected by noise. It was therefore decided, for the moment, not to apply these
methods to the other experimental data®.

However, one of the general problems that we face in evaluating the PIV measure-
ment results is how the computed vorticity and deformation are related to the actual
instantaneous vorticity of the flow. Since we have a limited spatial resolution we have to
estimate derivatives of the velocity field by finite differences. In doing this we will always
make a (small) error, and subsequently we cannot always fully resolve all length scales
(the same problem occurs in numerical simulation). On the other hand, we have seen in
Sect. 5.2 that the noise in the PIV data set prevents the measurement of weak, large scale
gradients. So, we conclude that we can only assess the derivatives of the velocity field
over a limited range of scales. We will return to this point in Section 10.3.

10.2 Application (Part II)

The second part of this thesis consists of four papers that report on the application of
PIV to turbulent flow, namely:

e DPIV measurements of a turbulent flow behind a grid (see Chapter 6),
o OPIV measurements of a fully developed turbulent pipe flow (see Chapter 7),

e numerical comparison of vortical flow structures in DNS and OPIV studies of tur-
bulent pipe flow (see Chapter 8), and

e DPIV measurements of a fully developed pipe flow (see Chapter 9).

2 Actually, we can evaluate even 5 components if we make use of the relation divv'=0 for incompressible
flows.

3With regard to the pipe flow data we have the additional complication that the radial flow direction
is not homogeneous; the original definition by Hunt ef al. (1988) applies to homogeneous and isotropic
turbulence.
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The first experiment was intended to assess the quality of velocity data from digital
PIV measurements of turbulent flow with respect to the computation of vorticity and
deformation. It has been mentioned in the introduction of this chapter and will not
further be discussed here. The second paper describes OPIV measurements carried out
as part of a joint study on fully developed turbulent pipe flow with both numerical and
experimental techniques (a complete overview of all numerical and experimental results
obtained in this study is given by Eggels et al. (1993a)). The aim was to compare the
results from a direct numerical simulation (DNS) implemented in cylindrical coordinates,
with experimental data obtained with hot-wire and laser-Doppler anemometry and PIV of
the same flow geometry (viz., a pipe flow) and at the same flow condition (i.e. Re~5,300).
In extension to this comparative study between numerical and experimental data an
attempt was made, described in the third paper, to compare the structures observed in
the OPIV data set with those observed in the DNS data set. The aim of the experiment
described in the fourth paper was to find out if we could obtain with digital PIV the same
kind of information as was obtained with the conventional PIV method.

A comparison was made of two different aspects of the flow: (a) the statistics of the flow
velocity field and (b) the vortical structures observed in the numerical and experimental
data sets.

statistics

The OPIV data sets were used to compute several turbulence statistics, like the mean
and fluctuating rms velocity profiles and the shear stress profile. These results indicated
that the observed flow could be considered as a fully developed turbulent pipe flow.
The results from the OPIV data—though obtained from only 33 photographs—were in
good agreement with the LDA data and with the results obtained from the DNS. The
OPIV data were also used to estimate the spatial energy spectra of the axial and radial
velocity components. The agreement with the spectra obtained with the DNS, taking into
account the relatively small sample size of the OPIV data set, was quite good. It should
be noted that these experimental spectra are truly spatial spectra, that were computed
without recourse to use of Taylor’s hypothesis of frozen turbulence. The flow statistics
obtained with DPIV (500 images) agreed fairly well with those obtained with OPIV, even
though the equipment was not optimally suited for this type of experiment. It should be
emphasized that the time needed for the interrogation of 10® positions took 1,000 seconds
with OPIV whereas it took only 60 seconds with DPIV.

vortical structures

A qualitative investigation of the vorticity maps computed from the OPIV data sets
yielded four generic flow structures; see Fig. 5.3. These structures were found on more
than one occasion on different photographs. Sometimes these structures were found in
close proximity of one another; as if they belonged to a single, larger structure. The
representation of these four generic structures in Fig. 7.13, suggests that they may be
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related. These structures suggest correspondence with the temporal evolution of a hair-
pin or horseshoe vortex found by Robinson (1991) in a direct numerical simulation of
a turbulent boundary layer by Spalart (1988). Conversely, the structures in Fig. 7.13,
could also represent the same (three-dimensional) structure, but seen in different lateral
cuts. For example, the “vortex” structures could be found near the plane of symmetry
of the structure in Fig. 1.3, while the “shear-layer” structures could correspond to cuts
through the “legs” of the structure. The structures in Fig. 7.13 also seem to fit in with
the conceptual model for the evolution of a hair-pin vortex in a boundary-layer flow, as
suggested by Smith (1984). The occurrence of elongated and kinked shear layers resembles
the structures observed and investigated by Kim et al. (1971). Summarizing, it can be said
that we presently do not know exactly how to interpret these results. A further analysis
of the numerical simulation data together with PIV data should bring more results.

Since we wanted to carry out an unbiased comparison (i.e. we did not want to pin us
down to a specific structure observed in the OPIV data) we only investigated whether the
statistics of the observed structures found in both data sets agreed or not. The results
showed that the vortical structures in both the DNS ard OPIV data have the same aspect
ratio and inclination to the pipe wall. A logical next step would be the identification of
the structures in Fig. 7.13 in the DNS data, and use the (fully resolved) DNS data to
determine the mutual relationship between these structures. A preliminary investigation,
in which a cross-correlation method between the two data sets was applied, revealed that
a sophisticated procedure is needed to make a robust identification.

In the DPIV data set it was also possible to detect an eddy structure similar to one of
the structures found in the OPIV measurements, see Figs. 7.12 and 9.7. This experiment
demonstrated that it is possible to make direct (digital) recordings of small tracer particles
in a turbulent flow. To the knowledge of the author this has been so far the only successful
application of digital PIV to turbulent flow.

10.3 Future developments

theory of digital PIV

As was already concluded in Sect. 10.1 the theoretical approach presented in Chapters 3
and 2 only applies to an idealized situation. The two most common non-ideal situations
are (a) inhomogeneous seeding (in the case of seeding with non-ideal tracer particles or
compressible flow) and (b) the analysis of flow regions with strong velocity gradients.
In these situations the (local) seeding density is linked to the (local) velocity field; see
Appendix A.2. A logical next step would be to extend this analytical description to
include also non-ideal situations. The main problem here is not the image analysis itself;
provided that a sufficient number of particle-image pairs are present we will generally
detect a displacement-correlation peak. The question is how to interpret the measured
displacement. In the case of non-ideal tracer particles we may be able to account for
the dynamical behaviour of the tracers with respect to accelerations or decelerations of




Future developments 195

the fluid. In a sense the tracer particles can be considered as part of the instrument,
with a “given” dynamical response. It may be possible to use a deconvolution approach
for reconstruction of the actual displacement field. With regard to velocity gradients
Adrian (1988) demonstrated that the measured displacement in the presence of a strong
velocity gradient is biased towards low velocity. In that case we cannot simply interpret
the measured displacement as a local (uniform) average over the displacement field. In
the analytical description presented here we only consider the translation of the tracer
pattern. An obvious—but non-trivial—extension would be to consider also the rotation
and the straining motion of the pattern.

optimization

The analytical description of the image analysis allowed us to investigate the behaviour
of different estimators for the fractional displacement, and the effect of applying different
weight kernels. Conversely, we may apply this theoretical approach to “design” optimally
efficient estimztors and weight kernels, based on a priori knowledge of the observed flow

field.

new imaging techniques

Although the development of the PIV technique has proven to be a substantial improve-
ment in the experimental investigation of coherent flow structures, it only yields only the
two in-plane velocity components in a planar cross section of the flow. The next step
would be to develop techniques that would enable us to determine all three velocity com-
ponents in a plane. Eventually these techniques may be extended to yield fully resolved
three dimensional measurements of the flow field?.

Gauthier & Riethmuller (1988) and Arroyo & Greated (1993) demonstrated that the
out-of-plane velocity component can be reconstructed from simultaneously recorded im-
ages in a two-camera stereoscopic imaging system. The reconstruction requires accurate
measurement of the displacement, and the applications mentioned here used photographic
recording. Westerweel & Nieuwstadt (1991) demonstrated with a simple test measure-
ment and by the analysis of artificially generated PIV images that the accuracy of a
stereoscopic digital PIV system is sufficient to yield significant measurements of the out-
of-plane component. This has yet not been verified in any actual experiment.

Fully resolved three-dimensional measurement would require also different recording
techniques, such as holography, tomography or volume imaging with a scanning light
sheet (Dahm et al. 1992). One of the drawbacks of holographic recording is that it is
difficult to acquire large sequences (time series) of densely seeded flows. The application

4With multiple-camera particle-tracking velocimetry (PTV) it is already possible to measure the three
components of the fluid velocity in space; see e.g. Papantoniou & Maas (1990). However, this is only for
a limited number of particles, distributed randomly over the flow. Besides, we have seen in Sect. 2.3 that
PTV does not fully resolve the observed displacement field
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of tomography and scanning light sheets in quantitative flow visualization is as yet mainly
untouched.

interpretation of PIV data

In Chapter 5 it was already mentioned that the vorticity and deformation computed
from PIV data sets yield a representation of the actual vorticity and deformation of the
observed flow with respect to certain length scales only. Presently we do not exactly
know how the measured vorticity is related to the actual vorticity in the flow. This
implies that we should be somewhat careful in the interpretation of the results. This
of course also holds for the deformation. With respect to the classification of E, C and
S regions we have the additional problem that we can only determine 4 out of 9 tensor
components. A detailed investigation of the relation between the classification of E,
C and S zones based on a subset of the deformation tensor and the full deformation
tensor was not included in this study, but should eventually be carried out in order
to interpret the measured PIV data. Such a study could be carried out by generation
of artificial PIV images from computer simulation data (so that we have access to all
velocity components and pressure), and subsequently relate the results obtained from the
PIV data to particular features of coherent flow structures. In this way we can learn
from the numerical simulations, carried out at low Reynolds number, how to interpret
PIV measurement data at high Reynolds numbers or complex flow geometries that are
currently not accessible to numerical investigation.

The problem described above deals with the estimation of the three-dimensional fea-
tures of objects derived from a two-dimensional representation (i.e. a “slice” or planar
cross-section—of finite thickness—of the flow); in a sense there is a paralle] with stereology
(Russ 1986). In that respect the following should be remarked. It was demonstrated by
Young (1988) that the measurement of simple object features (like the object perimeter
and area) requires a sampling rate (viz., interrogation density) that is higher than the
bandwidth of the picture (viz., measured velocity data). PIV images are usually inter-
rogated with contiguous or partially overlapping interrogation regions. It is generally
believed that an overlap of more than 50% does not yield substantially more information.
This is based on two considerations®: (a) for an overlap of more than 50% the measure-
ment errors for consecutive data become strongly correlated, and (b) only motions with
a wavelength that is at least twice the diameter of the interrogation area can be resolved
(by analogy of the Nyquist sampling criterion). Young’s conclusion implies that for the
determination of object features of coherent structures we must resolve the data by more
than two points per smallest wavelength (i.e. an overlap of more than 50%). A prelimi-
nary test using the data in Sect. 3.10 indicated that the correlation between measurement
errors remains small with overlaps up to 80%. This promising conjecture would imply that
the amount of information that can be retrieved from a PIV image is substantially larger
than generally believed. However, if we increase the overlap from 50 to 75%, the number
of interrogations increases by a factor of four. This implies an even stronger demand

5 A systemnatical investigation of these considerations has so far not been carried out.
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on the processing speed (see Example 1 on page 20) with respect to the investigation of
coherent flow structures. Nonetheless, in DPIV it is easy to extract the maximum amount
of information from a image, because the processing time is not the limiting factor, as
opposed to OPIV. It would therefore be useful to continue investigations along this line.

applications

The aim of the study presented in this thesis was to adapt PIV to the application to
turbulent flow research, with special emphasis to coherent flow structures. The motivation
for this study was that further developments in turbulent flow research (as a sequel to
some notable breakthroughs obtained with computational methods) can only be achieved
by experiments.

Both the DPIV measurements of grid turbulence (Chapter 6) and turbulent pipe flow
(Chapter 9) demonstrated that DPIV is a feasible alternative to OPIV; see Sect. 1.4. It is
expected that with appropriate equipment (i.e. high-resolution cameras with digital image
storage) a higher spatial resolution and measurement accuracy can be achieved. This type
of equipment was recently installed and is currently deployed in a pilot experiment on
turbulent pipe flow.

To resolve both the macroscale and the microscale of the turbulent flow requires a
very high spatial resolution (this problem is also faced by the direct numerical simulation
of turbulent flow). Currently the spatial resolution of electronic imaging devices does
not allow us to fully resolve all scales of turbulent flow at high Reynolds number. In the
previous paragraph and in Chapter 5 we discussed how this may affect the estimation (and
subsequently the interpretation) of flow quantities that are associated with the turbulent
microscale. Anyway, we will not always be interested in the full range of scales. With
PIV we are now able to investigate the flow at different scales in different experiments.
We can observe the large-scale motion while neglecting the microscale (like in large-
eddy simulation), or zoom in and study only the detailed structure of the flow®. This
is an obvious advantage of PIV—as an experimental technique—with respect to most
simulation methods. Let us illustrate this with an example.

Suppose we like to study the inner layer and logarithmic wall-layer of the turbulent
boundary layer in a pipe flow. With PIV we can simply zoom in to the relevant section
of the flow. On the other hand, with DNS or LES we have to simulate the entire flow
volume; note that only 20% of the pipe volume is occupied by the inner and logarithmic
wall-layers. Besides that, the use of periodic boundary conditions implies that the simu-
lation domain should be at least twice the largest (anticipated) length scale in the flow.
Hence, only about 10% of the simulated data is of interest! With PIV we can obtain
relevant data more selectively than by numerical methods.

In the introduction of this thesis (Sect. 1.1.4) it was argued that for the measurement
of coherent flow structures it is necessary to acquire a large set of PIV images. Apart from
developing fast and automatic image acquisition and analysis procedures, we should also

SIn this mode PIV would allow us to investigate sub-grid modelling in large eddy simulation.
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consider alternative experimental techniques that yield the desired results from a smaller
set of images. We may for example combine DPIV with LDA in such a way that an
image or sequence of images is only acquired when a certain criterion for the LDA signal
is met (viz., the detection of a sweep of ejection). To achieve fast response times we need
an electronic image acquisition and image storage system. We could use the conditional
event detected by the LDA signal to trigger the image acquisition, either as a conditional
start or conditional stop. Such a set-up would allow us to study transient phenomena, like
the transition of high Reynolds-number laminar flow to turbulent flow. Another method
to reduce the set of images is to subject the flow under study to a (repetitive) artificial
disturbance, as was put forward by Brand (1992). This type of measurement requires
electronic imaging and storing devices to achieve fast responses, initiated by an external
triggering. Digital PIV is ideally suited for the analysis of this type of experiments.

10.4 Concluding remarks

With respect to traditional single-point measurement probes and classical flow visual-
ization, particle image velocimetry has proven to be a fundamental step forward in the
way we can observe flows under experimental conditions. Now flow properties such as
vorticity and deformation, that previously belonged only to the domain of theoreticians
and numerical codes, have reached the scope of experimentalists. Somewhat surprising is
that—since the first pioneering experiments in the late 70’s—there have been very few ap-
plications that make explicit use of this new and unique way of fluid flow measurement. In
the view of the author this is partially related to the fact that in practice the conventional
implementation of the PIV method does not allow the analysis of large sets of images,
which is required to collect significant and reliable information of the flow under study.
This thesis demonstrated that the distribution of the performance over accuracy, spatial
resolution and processing speed (see Table 1.2) in digital PIV provides an alternative, and
likely more suitable solution to the measurement of coherent flow structures in turbulent
flows than the conventional implementation of the PIV method. It is the author’s view
that (digital) PIV can become an important tool in turbulent flow research, since it can
provide necessary information of turbulent flows in geometries and at conditions that are
(currently) not accessible to simulation methods. In the near future we can expect further
improvements in computer and sensor technology, i.e. faster digital processors and sensors
with higher resolution. Digital PIV will mostly benefit from these innovations, as there is
a direct relation between performance and resolution, while the traditional PIV method
remains with the inherently slow processing and manipulation of photographic material.
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A.1 Linear system analysis

Consider a continuous parameter, linear—but not necessarily time-invariant—system with
an impulse response H(t, s), shown schematically in Figure A.1. The output signal Y(t)
for a given input signal X(t) is given by

Y(t) = / H(t, )X (s)ds. (A1)
Suppose that X(t) is a homogeneous zero-mean white random process, i.e.

(X)) =0
(X (X (4 1)) = 8(7) } vt (A-2)

where (- --) denotes the mean and §(7) is the Dirac §-function, then the impulse response
is given by the cross-covariance function of the input and output processes, viz.

Ray(t,s) = (V()X(s)) ~ H(L5)- (A-3)

X)) —| M) | — YO

Figure A.1: Schematic representation of a linear system.
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A.2 The tracer ensemble

Consider the ensemble of N particles in a volume V. The position of a particle with index
¢ at time t is given by X;(t). The state of the ensemble at time ¢ is represented by a vector
X1
Xa(t)

I'(t) = (A.4)

Za(t)

in a 3N/ -dimensional phase space. For ideal tracer particles the trajectory of Fis given by

‘;—f =V(T,1) (A.5)
with o
3(%s,t)
W(T,t) = ﬁ()f n1) (A.6)
(1)

In addition, we define the displacement D(T; ¢/, t") of T by ﬁ(t) during the time interval
(',

Iz

D¢, ¢") = / PIT(t), t)dt (A7)

cf. Eq. (2.1).
The ensemble mean of a quantity A(X,t) for a given flow field #(X, ¢) is given by (for
brevity of notation we omit the coordinates X and t):

()= [ A@)p(f)dE (A8)
Vv

where p(f, t) is the probability density function to find the ensemble in a state I at time
t, with
p(T,t)dT = 1. (A.9)
v
Note that the ensemble average defined in (A.8) is knear in A.
The second order statistic (A(X’, #")A(X”,1")) is given by (again we drop the coordi-
nates X and ¢ in order to keep a concise notation):

(A'A") = / /A(f’)A(f”)p(f', £\ df d T (A.10)
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where p(f’, I ) is the joint probability density function to find the ensemble in a state I
at time t’ and in a state [ at time t”. We may write this function as

p(T',I) = p(T"IT") - p(T") (A11)

where p(f"lf’) is the conditional pdf for [ given the initial state I". For a given flow
field ¥ the state I'” is uniquely given by the equation for the trajectory in (A.5), given the
initial state I”. We may therefore write

p(I|1¥) = 8 [~ " - D(I")] . (A.12)
As a direct consequence Eq. (A.10) now reduces to
(A'A") = / ADA(T + D)p(T)dl (A.13)

Thus, for ideal tracer particles in a given flow field both first and second order ensemble
statistics are described by p(T',t). In the remainder of this section we will evaluate p(T', t)
for the special case of ideal tracer particles in a homogeneously seeded, incompressible flow.

Since there are no particles that appear into or disappear from the ensemble p(f, t)
satisfies the continuity equation (for brevity of notation we omit from here on the coor-
dinates I' and t):

%+v-gradp+pdivv=o (A.14)

(cf. Liouville’s theorem) where V has been defined in (A.6). We now consider the special
case of Eq. (A.14) for an incompressible flow with spatially homogeneous seeding, viz.

divV =0 and gradp=0. {A.15)

Inserting this in (A.14) yields immediately that
9p
— = A.16
5 =0 (A.16)

which implies that p(f,t) is stationary and does not depend on the flow field. This
considerably simplifies the evaluation of the first and second order ensemble statistics
defined in (A.8) and (A.13). Hence, for a volume V with A ideal tracer particles that are
homogeneously distributed in an incompressible flow, we have, cf. Eq. (A.9):

(T 1) =V, (A.17)

With this result we can evaluate the first and second order statistics of the tracer pattern,

defined in (2.3)
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A.3 Ensemble statistics of the tracer pattern

We now apply the results from Appendix A.2 to find the first and second order statistics
of the tracer pattern defined in (2.3). The first order statistic of G yields:

[+ [dZ dXN25P( Xjv-¥

1=1

- VNdeliSP( ) [ [d-dRy

N

(G(X,1)

= WVN— =_‘7 (A.18)
and subsequently the second order statistic:
(G(X'l’tl)G(X‘u, t”))
N N
= [ [dRe - dXa Y 6% - K] L8| X, - D(Xp)| VY
=1 i=1
= f-../d)?l---d)tﬂzapf'-)?,]s 07— %i- D) VY +
/ /dx, dXNZZ¢SP( ~X|s[R" - &~ D(Xp)| vH
- VN/XméSP( X]a[x" R-B(X)) [+ [y dRy +
N (%, [a%o[8- 2[R0y~ DR [+ [ake-dR
= %5[)?”-)2'-13()2’#’,%] +N2V“2N. (A.19)

where 5()?’; #/,t") is the displacement field, defined in Eq. (2.1). In the limit for V — o0
and N — oo with A//V = C constant, where C' is the number density of the seeding,
(A.18) and (A.19) yield

(G(X,)=C (A.20)

(G(X', )G(X", ) = C8[X"— XK'= D(X';¢, )] + C2. (A.21)

A.4 Diffraction limited spot of an optical system

The impulse response h(z,y) of the optical system in Sect. 2.5 is given by the Fraunhofer
diffraction pattern of the lens aperture (Goodman 1968). The intensity |h|? for a circular
lens and coherent illumination is better known as the Airy pattern, which is a circularly
symmetric function with a radial distribution given by

2
h(r)|* = (4—TO> [2‘]‘7(r—’;;1/::—") with ro=§5ﬂ (A.22)
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where Ji(z) is the Bessel function of the first kind and first order, and r the radial
coordinate in the image plane (Goodman 1968). The first zero of the function in (A.22)
is found in r & 1.22ry (see Fig. A.2). We can approximate (A.22) by a Gaussian curve,
defined in (A.24):

WP = (o) exp [~(rr/2ro)]
~ %nng(r;ah) (A.23)

with o}, =r9v/2/x. The functions (A.22) and (A.23) and their Fourier-Bessel transforms

|n(|? HE*H(E)
1 1 e
— Airy RN
----- Gauss *
olb— wo- 0 . :
0 1 20 0.5 1
r / 1 §/ é()

Figure A.2: The radial intensity profile of the Airy pattern and its Gaussian approximation (left) and
their Fourier-Bessel transforms (right).

are plotted in Figure A.2. The approximation is very useful because it allows a consider-
able simplification of some of the mathematics encountered in this thesis. (Appendix A.5
summarizes relevant properties of Gaussian curves.)

A.5 Relevant properties of Gaussian curves

Consider the set of two-dimensional, circularly symmetric Gaussian curves G(z,y;0) in
Cartesian coordinates:

$2 + 2
G(z,y;0) = exp [— 202‘1’ (A.24)
where o determines the width of the Gaussian curve. The total volume under G(z,y;0)
is equal to

o0 OO

/ /g(x,y;a)da:dy = 2ra’. (A.25)

-0 —00
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This set of curves has several very convenient properties, given below, which considerably
simplify some of the mathematics encountered in this thesis.

Fourier transformation:

f
G(z,y;0) — 210°G(x,¥; 1/270) (A.26)
multiplication:
ag109
G(z,y;01) - G(2,9502) = G | 2,95 ——] - (A27)
( 1) - G( 2 bitol
convolution:

(A.28)

(g(x,y;01)> . (g(x,y;oz)) 9 (xy\/m)

w0} 210} 2r(o? + 0})
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B.1 Image enhancement

In high-resolution direct interrogation or Young’s fringe analysis we only observe a single
interrogation image at a time. Unique to the processing of digital PIV images is that
we have the possibility to pre-process the entire image prior to analysis. Digital image
processing has an enormous flexibility (although it should be said here that some im-
age processing, like for example Fourier transformation, is much simpler and faster when
implemented optically). For reviews of digital image processing methods refer to e.g.
Rosenfeld & Kak (1982) or Jain (1989).

Image pre-processing can compensate for non-ideal aspects of our imaging system.
For example, we can subtract a background image, correct for non-uniform illumination,
enhance the image contrast or correct for perspective distortion or defocussing effects.
This of course does not relieve us of carefully designing and implementing the imaging set-
up described Sect. 2.5. Let us consider here one example of how digital image processing
can improve the quality of our analysis.

B.1.1 correction for non-uniform illumination

Probably one of the most often encountered deviations from the ideal situation in PIV
image recording is that of non-uniform illumination. In Sect. 2.5 we have assumed that
the intensity of the light sheet is uniform in X and Y. However, if we use a diverging light
sheet then the particle-images at the side of the light source are (slightly) brighter than
those at the opposite side. In many situations this does not need to be a real problem
(provided that the length scale over which the intensity changes is large compared to
the equivalent size of the interrogation area in the object plane). However, our present
analysis is based on the assumption that the PIV image is illuminated homogeneously. In
order to compare our analytical results with those from an experiment it is essential that
we meet this demand.

In Figure B.1 is given an example of a PIV image that suffers from non-uniform illu-
mination. This is probably only visible to the observer who has been provided with the

205
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Figure B.1: PIV picture with non-uniform illumination; see text. (The grey values have been inverted.)

a priori knowledge that the right half of the image is slightly brighter than the left half.
This becomes more readily visible by averaging along vertical lines. In Figure B.2a is
plotted the average over groups of ten consecutive vertical lines, normalized by the global
image mean, applied to the image in Fig. B.1. Now it is clearly visible that the left half
of the image is on average 20% darker than the global-mean image intensity, while the
right half is 20% brighter. Given that the global-mean grey value is equal to 42 we find
that the difference in average grey level between the right and left halves is only about
14 grey levels in a total range of 256 grey. The human vision can only distinguish about
60 grey levels (Rosenfeld & Kak 1982), so that we can expect that the difference is barely
visible. In the remainder of this section we deal with a technique to remove the effect of
non-uniform illumination in digital images.
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06
0 128 256 384 512

Figure B.2: The mean image intensity along columns relative to the global mean intensity for (a) the
original image in Fig. B.1 and (b) after contrast normalization and background subtraction, shown in
Fig. B.4.

There exist many different operations to correct for non-uniform illumination. In the
following example we discuss one of them that proved to be very beneficial to PIV image
analysis. Its principle is based on the fact that the image consists of a collection of objects
that are all smaller than a certain area, superimposed on a slowly varying background.
We want to remain with these objects only, and then subsequently normalize the local
fluctuations in intensity so that the contrast over the image is (practically) constant.

Example 8 (Contrast normalization)

The operation that we discuss here is part of the TCL-Image software package! and is
based on so-called min/max operations. To understand its principle it is more convenient
to consider a one-dimensional signal. The solid line in Figure B.3a is a signal from a
fourth-order moving-average process of a negative-exponential random variable. Hence
the characteristic length scale of the signal fluctuations is five samples. We decide to re-
move all fluctuations that occur over a length scale greater than nine samples. The dashed
lines in Fig. B.3a that enclose the solid line represent the local maximum (top) and the

ITCL-Image has been developed by the TNO Institute of Applied Physics, the Netherlands.
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Figure B.3: Example of contrast normalization using min/max filtering on a one-dimensional signal. The
solid line is the signal; the dashed lines are upper and lower envelopes. (a) The original signal with local
maximum and local minimum envelopes. (b) The envelopes after smoothing with a uniform filter. (c)
The signal after subtraction of the lower envelope in (b) and normalized by the difference between the

upper and lower envelopes in (b).

local minimum (bottom) over nine samples. Figure B.3b shows the same signal, but now
the local maximum and local minimum have been smoothed with a uniform filter, again
over nine samples. The dashed lines may be considered to represent the upper and lower
envelopes (over a length scale of nine samples) of the original signal. The lower envelope
represents the “local background” signal, and the difference between the upper and lower
envelopes the “local contrast”. The lower envelope is subtracted from the original signal,
and subsequently divided by the difference between the upper and lower envelopes. The
result is shown in Figure B.3c. All fluctuations with length scales larger than the filter
length (viz., 9 samples) have been removed from the original signal. What remains is a
signal that may be considered homogeneous over a length scale larger than the selected

filter length.
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Figure B.4: The picture of Fig. B.1 after contrast normalization.

The image in Figure B.1 consists of particle images with an area of about 4x4 pixels.
In Figure B.4 is given the image of Fig. B.1 but now after the contrast normalization
procedure described above, with a filter size of 15x15 pixels. The filter size should be
larger than the size of the particle images. If we use a filter size that is very close to
the particle image size then we alter the statistics of the PIV image (i.e. the intensity
statistics have no longer a negative-exponential pdf). On the other hand, the filter size
should be smaller than the spatial variations in the image background. In this particular
example a filter size of 15x15 pixels yielded satisfactory results. Figure B.2b shows again
the average pixel intensity over groups of ten consecutive vertical lines, normalized by
the global image mean, but now for the image in Fig. B.4. Here the effect of unequal
illumination in the original image has been removed. In this way we assure that the mean
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and variance of the pixel intensity of the digital images subjected to the PIV analysis are
(approximately) homogeneous.

B.2 Computation of the cross-covariance

Although we may compute the interrogation covariance defined in Eq. (3.27) directly,
there exists an alternative way by using discrete Fourier transformation. This is a very
attractive method, since we can make use of a fast algorithm, called the fast Fourier
transform (FFT). In the first part of this section we will show how the covariance can
be computed using discrete Fourier transformation. The main difference with the direct
computation of the covariance is that the FFT computation considers the image as peri-
odic. Therefore certain precautions, like zero-padding and windowing, are usually made
to assure that the computation yields a reliable estimate of the covariance. We will deal
with these in two additional subsections.

Wold’s theorem? (Priestley 1992) states that the spectral density function and covari-
ance function of a discrete-parameter random process are Fourier transform pairs. This
theorem also applies to two-dimensional random fields (Rosenfeld & Kak 1982). This
property is commonly used for computation of the estimated covariance function from a
given set of observations.

Consider a square interrogation image al,., of N x N pixels. We may consider al,, as
an infinitely large image with

al,; =0, outside 1<r<N,1<s<N. (B.1)
Let af,, be a periodic image with a period M > N in both r and s and such that:
al,,=al,,, for 1<r<M,1<s<M. (B.2)
The discrete Fourier-transform (DFT) of al,, is given by (Oppenheim et al. 1983; Rosen-
feld & Kak 1982):
Flu,v] = —1—2 S Y alsexp [—%(ru + sv)] (B.3)
M r=<M> s=<M> M

where r =< M > and s=< M > denote that the summations are taken over one period
in r and s. Note that F[u,v] is also periodic in u and v, with period M. If we take the
summations over an area for which A/, ,=al, ,, we obtain

. 1 MM 2 B
Flu,v] = e ; ; al,,exp [——M—(su + tv)] . (B.4)

Let Ai,’." and Af,ff, be the periodic images associated with the interrogation images alI},
and al}, respectively, constructed according to Eqs. (B.1-B.2). For each of these two

2This is the discrete-parameter equivalent of the Wiener-Khintchine theorem
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signals the discrete Fourier transform given in (B.4) is computed, denoted by #”[u,v] and
B [u, ] respectively. The cross-spectral density of these two images is given by

Sitlu,v] = F'u, o] F"u, v]* (B.5)

where * denotes the complex conjugate. Substitution of (B.4) in (B.5) yields

Srilu,v]
1 M M 1 M M *
= {—2 NN Al exp [--——(ku Iv)]} {_i 33 Al exp [-——(mu+nv)]}
k=11=1 M m=1m=
1 MMM — 9y
= AL X L alialexp [ {(k-m)us(ne}]
k=1l=1 m=1n=
1 M-1 M- -
T Mt > ) {Z > al,, +|r|,n+la}exP [-7,]‘(7‘“**5”)]
r=—(M-1) s=~(M-1) \m=1n=1
2 M-l Ai: -1 { N- Z|:r|1v Xl:al } 27
= — all, At rltlo] { EXP [-—(ru+sv)] (B.6)
MY _ - We=—(-1) | V? mm1 A=t mHirbntlel M

by substitution of r=k-m and s=I-n, and Eq. (B.1). The term between the braces is
recognized as the (biased) cross-covariance estimator Ry;[k, m] defined in Eq. (3.27):

2

M-1
Stilu,v] = A]Z“ > Z Rir, ) exp[ i (ru+sv)] (B.7)

r=—(M-1) s=—(M~-1)

Since Rys[r, s]=0 for |r|, |s| > N this result shows that for M > 2N the inverse discrete
Fourier transform of the cross-spectral density of af , and al’ : yields exactly Rn[r s).
The same result also applies to multiple exposure frames

The main advantage behind using DFT’s is that it can be implemented using the
efficient FFT algorithm. Whereas the direct computation of Rjs{u,v) requires O(N*)
multiplications, the same result is obtained by using FFT’s with only O(N?log N) mul-
tiplications.

B.2.1 2zero-padding

In the procedure described previously we transformed the interrogation images of finite
size N x N into a periodic image with a period M > N in the orthogonal coordinates. In
order to ensure that Rn[u v] fits the domain we should use M >2N.

Zero-padding (as the adding of extra zeroes around the image is commonly referred)
implies that 3/4 of the image consists of zeroes. In practice the particle-image displace-
ment should be less than about N/4 pixels, in order to have a sufficient data yield. This
implies that the cross-covariance vanishes for |r|,|s| > N/4. In that case we may even
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choose M=N. Thus, for the computation of Ryy[r, s} using DFT zero-padding is not re-
quired in practice. Without zero-padding of the interrogation area we further reduce the
processing time for the image analysis. For example, the time required to compute the
FFT of a 32x32-pixel interrogation area is about 1/5 of the time required for a 64x64-
pixel interrogation area.

However, computation of the Rn[r, s] without zero-padding has some consequences for
the expectation and (co)variance of the estimated cross-covariance. For M=N Eq. (B.7)
becomes:

1 N-1N-1

Su,v] = Nz 3 {ﬁzz[r, s]+ Ryf[N-r, N—s]}exp [—277\;1(7‘11 + sv)] . (B.8)

=0 3=0
Let us denote the inverse discrete Fourier transform of S [u,v] by R, s, viz.
Rylr,s) = Rulr,s] + Ru[N—r,N-s]. (B.9)
Provided that the particle-image displacement is less than N/2 and d;/a < N, we have
E{Rulr,s)} = E{Rulr,s]} (B.10)

by E{ft’”[r, s]} ~ 0 for |r|,|s| > N/2. Consider the (co)variance of Riilr,s] near the

maximum of Rn[r, s] in [mo, ng). In that case we find
var{ Rys[r, s]} = var{Rp/[r, s]} + var{ R[N —r, N—s}} (B.11)

and

cov{Ryi[r, s], Ru[r+t,s+u]} ~ cov{Rur, s|, Ru[r+t, s+u]} (B.12)

by Egs. (3.37) and (3.38). Thus, without zero-padding of the variance of Rylr,s] is
increased by an amount proportional to the noise in the estimated cross-covariance for
large displacements. Taking a closer look at (3.36) tells us that var{Ryj[N—r, N—s]} is
in general much smaller than var{Rs[r,s]} for |r|,|s| < N/2.

B.2.2 window functions

By extracting only a finite interrogation area from the complete PIV record we may in-
troduce abrupt steps at the edges of the interrogation image. This may be caused by a
non-uniform background intensity, or by particle images that fall only partially inside the
interrogation area. As a result artefacts may appear in the estimated cross-covariance
that have a direct influence on the analysis result. The usual procedure to overcome this
problem is to multiply the sample data with a window function that puts a lower weight
to the sample data close to the edges of the domain. In Sect. 3.6.3 we already discussed
the effect of weight kernels on the estimation of the cross-covariance. Here we discuss the
use of window functions with respect to the periodic continuation of interrogation area in
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FFT analysis.

We know that the PIV image consists of a collection of particle-images with approxi-
mately equal size. For small particle images (say with a diameter of 2-4 pixels) the image
intensity already strongly fluctuates over the interrogation image. The occurrence of a
particle image that falls only partially inside the interrogation area is proportional to the
ratio of the boundary pixels and the total number of pixels N. So, first of all we are only
dealing with a small, and likely negligible, fraction of the total number of particle images.
Furthermore, we may view these fractional particle-images as contributing to the noise
in the estimated cross-covariance. By the fact that these fractional particle-images are
always smaller than the “fully” present particle-images, it is plausible to accept that the
length scale of this noise is negligible with respect to that of the noise due to correlation
between random particle images (see Eq. 3.40). Therefore the presence of particles at the
boundary is not expected to have a strong effect on the analysis result.

A more serious problem is the presence of a non-uniform background. Our total analy-
sis has been based on the principle of a homogeneous random field. This was mainly done
to ensure an unbiased sampling of the observed flow field. Here we find another reason
to have homogeneous images (i.e. the estimation of Rirfu,v] that is free from artefacts).
It is however not always possible to ensure a uniform background at the image recording
stage. We know that the diameter of the particle-images is small with respect to the
size of the interrogation area. In that case we can use a high-pass filtering operation to
remove intensity fluctuations with a length scale of the order of the interrogation area,
while preserving the particle images that have a diameter less than the characteristic filter
length.

We have thus seen that it is not necessary to use window functions in order to avoid
boundary effects in DFT processing of interrogation images.



Appendix C

C.1 Non-homogeneous random fields

In order to treat all residuals in an equal manner—in other words, to have identical pdf’s
for #2; for all (7,5)—the PIV ’signal’ in the post-interrogation evaluation should be sta-
tistically homogeneous, with components that are statistically homogeneous. In general
however V; ; does not satisfy this condition (e.g. turbulent channel flow or turbulent jet
flow). Provided that (1) the pdf of V‘,’J in each point (7, 7) is (approximately) normal, and
(2) the first and second statistical moments are known a priori, then V:’ ; can be projected
onto a new random field ‘7,’ ;7 that is (at least in first approximation) homogeneous and
orthogonal. This will be illustrated with an example.

Consider a random field )-{:,-,j that is homogeneous in only one direction (here taken
equal to the direction associated with the i-coordinate). This random field would e.g. de-
scribe the PIV signal from a turbulent pipe or channel flow. The statistics of this random
field are given by:

BIX:) = i) ()
cortfis Toansuil = (| 50 T4 ) ki + (C2)

where ji;, 0ii, 0;; and 0;; = 0j; represent the ’profiles’ of the mean displacement, root-
mean-square fluctuating displacement in ¢ and j direction, and mean Reynolds stress
respectively, and p the spatial correlation tensor. For the evaluation procedures described
here only the nearest-neighbour correlations are involved. In general nearest-neighbour
data will be highly correlated, and differ only by small amounts (this is closely related
to the demand that spatial variations in the displacement field should be small over a
length scale equal to the diameter of the interrogation spot). Thus, the assumption made
in (4.26) is also valid for PIV data obtained from non-homogeneous flows.

Provided that we have a priori knowledge of the statistics of the observed flow field!

UThese statistics would usually be obtained from preceding single-point measurements, e.g. by laser-
Doppler anemometry

214
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the random field in (C.1-C.2) can be projected onto a homogeneous and orthogonal ran-
dom field. This is achieved by applying the following (linear) transformations:

%= (Ra-i0) - ( 28 ) ()

In the new random field X' the components have a normal pdf with zero mean and
unit variance for all (¢,j). The two components in X' are correlated by an amount:
p = a'?j/a;,-ajj (this is related to the mean shear). This is subsequently removed by

redistribution of the two displacement components:
L 0
v (T 0 ) (1) »
0 oy -1 1

We now have a new random field X" with statistically orthogonal components with iden-
tical normal pdf’s with zero mean and unit variance for all (1, j).

C.2 The pdf of the mean and the median

Consider a sample {z1,z3,...,zn} of N elements from a white stochastic process with a
pdf f(z). The pdf of the sample mean (z} is given by the N-fold convolution of f(z):

F(N(z)) = /.../dxl...de_lf(:c,)...f(:::N_l)f(N(x)—x1—...—:cN_l). (C.5)

-0

For a white process with a normal pdf N(0, 0?) the mean (z) has a normal pdf N(0,02/N).

Consider the sorted array of the sample {z1, z2,...,zn}, i.e.
{z1, 22, .yan} > {2}, 75, ., 2} with 2] <z) < - <2y (C.8)

The sample median, denoted by [z], for odd N (=2n+1) is defined as the (n+1)-th element
of the sorted array, i.e. [z]=2z],,;. The pdf of [z] for N independent samples is given by:

f({=])

P([a]lzy, -..s 25 < [2); @ppa =[a]; 2hyae 2y 2 (]

)
f(x)(/ x)da:) ( fl ) 2’;';”,1)' (C.7)

(Note that (2n + 1)!/n!n! is the number of permutations for {z] in the unsorted array
of samples.) If f(z) is normal, then f([z]) fits to a normal pdf with a variance that is
approximately 1.470%/N for N> 1.

I

2n +
)(”T{!_)



References

ADRIAN, R.J. 1983 Laser Velocimetry. In: Fluid Mechanics Measurement. (ed. R.J.
Goldstein) Springer, Berlin.
ADRIAN, R.J. 1984 Scattering particle characteristics and their effect on pulsed laser

measurements of fluid flow: speckle velocimetry vs particle image velocimetry Appl.
Opt. 23, 1690.
ADRIAN, R.J. & Ya0, C.-S. 1984 Development of pulsed laser velocimetry (PLV) for

measurement of turbulent flow. In: Proc. Symp. Turbul. (ed. X. Reed et al. )
University of Missouri, Rolla.

ADRIAN, R.J. & Yao, C.-S. 1985 Pulsed laser technique application to liquid and
gaseous flows and the scattering power of seed materials. Appl. Opt. 24, 44.

ADRIAN, R.J. 1986a Image shifting technique to resolve directional ambiguity in
double-pulsed velocimetry Appl. Opt. 25, 3855.

ADRIAN, R.J. 1986b Multi-point optical measurements of simultaneous vectors in un-
steady flow—a review. Int. J. Heat & Fluid Flow 7, 127-145.

ADRIAN, R.J. 1988 Statistical properties of particle image velocimetry measurements
in turbulent flow. In Laser Anemometry in Fluid Mechanics — III (ed. R.J. Adrian
et al. ) LADOAN Instituto Superior Tecnico, Lisbon, pp. 115-129

ADRIAN, R.J., OFFuUTT, P.W., LANDRETH, C.C., Liu, Z.-C. & HANRATTY, T.J.
1990 Studies of liquid turbulence using double-pulsed particle correlation. Proc. 5th
Int. Symp. Appl. Laser Techn. Fluid Mech. (Lisbon) 9-12 July, 15.4

ADRIAN, R.J. 1991 Particle-imaging techniques for experimental fluid mechanics.
Annu. Rev. Fluid Mech. 22, 261-304.

ARROYO, M.P., YONTE, T., QUINTANILLA, M. & SAVIRON, J.M. 1988 Particle
image velocimetry in Rayleigh-Benard convection: Photographs with a high number
of exposures Opt. Lasers Eng. 9, 295.

AUBRY, N., HoLMES, P., LUMLEY, J.L. & STONE, E. 1988 The dynamics of coher-
ent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192,
115-173.

BARNETT, V. & LEwis, T. 1979 Outliers In Statistical Data Wiley, New York.

BATCHELOR, G.K. 1967 An introduction to fluid dynamics. University Press, Cam-
bridge (UK).

BERGE, P., POMEAU, Y. & VIDAL, CH. 1987 Order within Chaos. Wiley, New York.

BLACKWELDER, R.F. & KAPLAN, R.E. 1976 On the wall structure of the turbulent
boundary layer. J. Fluid Mech. 76, 89-112.

BRAND, A.J. 1992 The turbulent boundary layer: spanwise structure, evolution of low-
velocity regions and response to artificial disturbances. Ph.D. thesis, Delft University

216




References 217

of Technology..

BROWN, G.L. & ROSHKO, A. 1974 On density effects and large structure in turbulent
mixing layers. J. Fluid Mech. 64, 775-816.

BuURCH, J.M. & TOKARSKI, J.M.J. 1968 Production of multiple beam fringes from
photographic scatters. Optica Acta 15, 101-111.

CANTWELL, B.J. 1981 Organized motion in turbulent flow. Annu. Rev. Fluid Mech.
13, 457.

CHo, Y.-C. 1989 Digital image velocimetry. Appl. Opt. 28, 740.

CORNELISSE, J.M., GODEFROY, H.W.H.E., KooPMANS, F., UITTENBOGAARD, R.E.
& WESTERWEEL, J. 1991 An experimental comparison between optical and digi-
tal particle velocimetry. Presented at: FuroMech 279 “Image Analysis as Measuring
Technique in Flows” (Delft) 2-5 July

CouPLAND, J.M., PICKERING, C.J.D. & HALLIWELL, N.A. 1987 Particle image
velocimetry: The ambiguity problem. Proc. SPIE Vol. 81/ Photomechanics and
Speckle Metrology August 1987 (San Diego), p. 738

CoUPLAND, J.M. & HALLIWELL, N.A. 1988 Particle image velocimetry: rapid trans-
parancy analysis using optical correlation. Appl. Opt. 27, 1919.

CoUPLAND, J.M. & PICKERING, C.J.D. 1988 Particle image velocimetry: estimation
of measurement confidence at low seeding densities Opt. Lasers Eng. 9, 201-210.

DanM, W.J.A., SOUTHERLAND, K.B. & BucH, K.A. 1992 Four-dimensional laser
induced fluorescence measurements of conserved scalar mixing in turbulent flows.
In: Applications of Laser Techniques in Fluid Mechanics. {ed. R.J. Adrian et al. )
Springer, Berlin.

DoORsT, L. & SMEULDERS, A.W.M. 1985 Length estimators compared. In: Proc.
pattern recognition in practice II. June 19-21, Amsterdam, The Netherlands.

EcGEeLs, J.G.M., UNGER, F., WEiss, M.H., WESTERWEEL, J., ADRIAN, R.J.,
FRIEDRICH, R. & NIEUWSTADT, F.T.M. 1993a Fully developed turbulent pipe
flow. A comparison between direct numerical simulation and experiment. (in prepa-
ration)

EGGELS, J.G.M., WESTERWEEL, J., ADRIAN, R.J. & NIEUWSTADT, F.T.M. 1993b
Comparison of flow structures in DNS & PIV studies of turbulent pipe flow. In: Proc.
Int. Conf. on near-wall turbulent flows, Tempe (AZ) 15-18 March (see Chapter 8)

EMRIcH, R.J. 1981 Methods of experimental physics. Part 18A: Fluid Dynamics. Aca-
demic, New York. pp. 6-64.

FINGERSON, L.M. & FREYMUTH, P. 1983 Thermal Anemometers. In: Fluid Mechan-
ics Measurement. (ed. R.J. Goldstein) Springer, Berlin.

FREDRIKZE, H. 1985 Neutron diffraction on sub- and supercritical krypton. Ph.D. the-



218 References

sis Delft University of Technology, pp. 74-77.

Fung, J.C.H., HunT, J.C.R., MALIK, N.A. & PERKINS R.J. 1992 Kinematic simu-
lation of homogeneous turbulence by unsteady random Fourier modes J. Fluid Mech.
236, 281-318.

GAUTHIER, V. & RIETHMULLER, M.L. 1988 Application of DPIV to complex flows:
measurement of the third component. In: VKI-LS 1988-06 “Particle Image Displace-
ment Velocimetry,” Von-Karméan Institute for Fluid Mechanics, Rhode-Saint-Genese.

GOODMAN, J.W. 1968 Introduction to Fourier Optics. McGraw-Hill, New York.

GOODMAN, J.W. 1984 Statistical properties of laser speckle patterns. In Laser Speckle
and Related Phenomena (ed. J.C. Dainty) Springer, Berlin. pp. 9-75.

GRrAY, C. & GREATED C.A. 1988 The application of particle image velocimetry to
the study of water waves. Opt. Lasers Eng. 9, 265.

GuUprTA, A.K., LAUFER, J. & KAPLAN, R.E. 1971 Spatial structure in the viscous
sublayer. J. Fluid Mech. 50, 493-512.

HARDER, K. & TIEDERMAN, W.G., 1991 Drag reduction and turbulent structure in
two-dimensional channel flows. Phil. trans. Roy. Soc. 336, 1640.

HE, Z.H., SUTTON, M.A., RANSON, W.F. & PETERS, W.H. 1984 Two-dimensional
fluid-velocity measurements by use of digital-speckle correlation techniques. Ezp.

Mech. 24, 117.

HEAD, M.R. & BANDYOPADYAY, P. 1981 New aspects of turbulent boundary layer
structure. J. Fluid Mech. 107, 297-338.

HESSELINK, L. & HELMAN J. 1987 Evaluation of flow topology from Numerical Data.
AIAA Invited Pap. 87-1181-CP

HESSELINK, L. 1988 Digital image processing in flow visualization. Annu. Rev. Fluid
Mech. 20, 421-485.

Hinze, J.O. 1975 Turbulence. (2nd Ed.) McGraw-Hill, New York.
Hunt, J.C.R., WRAY, A.A. & MoOIN, P. 1988 Eddies, streams, and convergence

zones in turbulent flows. Proc. of the Summer Program 1988, Center for Turbulence

Research, Stanford. pp. 193-208.

HussaIN, A.K.M.F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173,
303-356.

IsSERLIS, L. 1918 On a formula for the product moment coefficient of any order of a
normal frequency distribution in any number of variables Biometrika 12, 134-139.

JAIN, A.K. 1989 Fundamentals Of Digital Image Processing Prentice-Hall, Englewood
Cliffs (NJ), pp. 246-249

KAUFMANN, W. 1963 Fluid Mechanics McGraw-Hill, New York. pp. 216-222.
KEANE, R.D. & ADRIAN, R.J. 1990 Optimization of particle image velocimeters.



References 219

Part I: Double-pulsed systems. Meas. Sci. Technol. 1,1202-1215.

KEANE, R.D. & ADRIAN, R.J. 1991 Optimization of particle image velocimeters.
Part II: Multiple-pulsed systems. Meas. Sci. Technol. 2, 963-974.

KEANE, R.D. & ADRIAN, R.J. 1993 Theory of cross-correlation of PIV images. In:
Flow Visualization and Image Analysis. (ed. F.T.M. Nieuwstadt) Kluwer Academic,
Dordrecht. pp. 1-25

KERKER, M. 1969 The Scattering of LightAcademic, New York

KiM, H.T., KLINE, S.J. & REyYNoLDS, W.C. 1971 The production of turbulence
near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50, 133-160.

KiM, J., MoIN, P. & MoSER, R 1987 Turbulence statistics in fully developed channel
flow at low Reynolds number. J. Fluid Mech. 177, 133-166.

KIMURA, I. & TAKAMORI, T. 1986 Image processing of flow around a circular cylinder
by using correlation technique. In: Flow Visualization IV Proc. 4th Int. Symp. on
Flow Visualization, 26-29 August 1986, Paris. pp. 221-226

KLINE, S.J., REYNOLDS, W.C., SCHRAUB, F.A. & RUNDSTADTLER, P.W. 1967
The structure of turbulent boundary layers. J. Fluid Mech. 30, 741-773.

KLINE, S.J. 1978 The role of visualization in the study of the structure of the turbulent
boundary layer. Workshop on coherent structure of turbulent boundary layers. (eds.

C.R. Smith & D.E. Abbott) Lehigh University, Bethlehem (PA)
LaMB, H. 1932 Hydrodynamics University Press, Cambridge (UK).

LANDRETH, C.C. & ADRIAN R.J. 1988 Electrooptical image shifting for particle im-
age velocimetry Appl. Opt. 27, 4216.

LANDRETH, C.C. & ADRIAN, R.J. 1990a Impingement of a low Reynolds number
turbulent circular jet onto a flat plate at normal incidence. Ezp. Fluids 9, 74-84.

LANDRETH, C.C. & ADRIAN R.J. 1990b Measurement and refinement of velocity data
using high image density analysis in particle image velocimetry. In Applications of
Laser Anemometry to Fluid Mechanics (ed. R.J. Adrian et al. ) Springer, Berlin. pp.
484-497.

LEkKAKIS, I.C. 1988 Coherent structures in fully developed turbulent pipe flow. Thesis
University of Illinois.
Liu, Z.-C., LANDRETH, C.C., ADRIAN, R.J. & HANRATTY, T.J. 1991 High resolu-

tion measurement of turbulent structure in a channel with particle image velocimetry.
Ezp. Fluids 10, 301-312.

LOURENCO, L.M. 1988 Some comments on particle image displacement velocimetry.
In VKI-LS 1988-06 “Particle image displacement velocimetry” Von-Karman Institute
for Fluid Mechanics, Rhode-Saint-Geneése.

Lourengo, L.M. & KROTHAPALLI, A. 1988a Particle image displacement velocime-



220 References

try measurements of a three dimensional jet. Fzp. Fluids 31, 1835-1837.

LouRENGO, L.M. & KROTHAPALLI, A. 1988b Application of PIDV to the study of
the temporal evolution of the flow past a circular cylinder. In: Laser Anemometry in
Fluid Mechanics III (eds. R.J. Adrian et al. ) LADOAN-Instituto Superior Tecnico,
Lisbon. pp. 161-177

LOURENGO, L. 1993 Recent advances in LSV, PIV and PTV. In: Flow Visualization
and Image Analysis (ed. F.T.M. Nieuwstadt) Kluwer Academic, Dordrecht. pp. 81-
99

LucHINI, P., MaNzo, F. & Pozzi, A. 1991 Resistance of a grooved surface to a
parallel fiow and cross flow. J. Fluid Mech. 228, 87-109.

MANSOUR, N.N., KiM, J. & MOoIN, P. 1988 Reynolds-stress and dissipation-rate
budgets in a turbulent channel flow. J. Fluid Mech. 194, 15-44.

McCLUSKEY, D.R., ELGAARD, C., EassonN, W.J. & GREATED, C.A. 1993 The
application of PIV to turbulent two-phase flows. In: Flow Visualization and Image
Analysis (ed. F.T.M. Nieuwstadt) Kluwer, Dordrecht.

MERZKIRCH, W. 1987 Flow Visualization. 2nd Ed. Academic, New York.

MEYNART, R. 1983 Speckle velocimetry study of vortex pairing in a low-Re unexcited
jet. Phys. Fluids 26, 2074-2079.

MEYNART, R. 1991 Past and future of PIV. Invited lecture at EuroMech 279 “Image
analysis as measuring technique in flows” (Delft) 2-5 July

OERTEL, H. sEN. & OERTEL, H. JUN. 1989 Optische Strémungsmeftechnik. G.
Braun, Karlsruhe.

OPPENHEIM, A.V., WILLSKY, A.S. & YouNG, I.T. 1983 Signals and Systems. Pren-
tice-Hall, Englewood Cliffs (NJ).

PapaNTONIOU, D. & Maas, H.-G. 1990 Recent advances in 3-D particle tracking
velocimetry. Proc. 5th Int. Symp. Appl. Laser Techn. Fluid Mech. (Lisbon) 9-12
July, 18.4

PARzEN, E. 1957 On choosing an estimate of the spectral density function of a station-
ary time series. Ann. Math. Statist. 28, 921-932.

PATEL, V.C. & HEAD, M.R. 1969 Some observations on skin friction and velocity
profiles in fully developed pipe and channel flows. J. Fluid Mech. 38, 181-201.

Prasap, A.K., ApriaN, R.J., LANDRETH, C.C. & OrruTT, P.W. 1992 Effect of
resolution on the speed and accuracy of particle image velocimetry interrogation.

Ezp. Fluids 13, 105-116.

PRIESTLEY, M.B. 1992 Spectral Analysis and Time Series. (7Tth Ed.) Academic, San
Diego (CA).

REICHARDT, H. 1951 Vollstindige Darstellung der turbulenten Geschwindigkeitsvertei-




References 221

lung in glatten Leitungen. Z. angew. Math. Mech. 31, 208-219.

REuss, D.L., ADRIAN, R.J., LANDRETH, C.C., FRENCH, D.T'. & FANSLER T.D.
1989 Instantaneous planar measurements of velocity and large-scale vorticity and
strain rate in an engine using particle-image velocimetry. SAE Technical Paper Series
890616

RoBINSON, S.K. 1991a The kinematics of turbulent boundary layer structure. NASA
TM-103859

RoOBINSON, S.K. 1991b Coherent motions in the turbulent boundary layer. Annu. Rev.
Fluid Mech. 23, 601-639.

ROSENFELD, A. & KAK, A.C. 1982 Digital Picture Processing (2nd Ed.) Academic,
Orlando.

ROSHKO, A. 1954 On the development of turbulent wakes from vortex streets NACA
Report 1191.

Russ, J.C. 1986 Practical Stereology. Plenum, New York.
SCHLICHTING, H. 1979 Boundary-Layer Theory 7th Ed. McGraw-Hill, New York..

SCHWARZ-VAN MANEN, A.D. 1992 Coherent structures over grooved surfaces. Ph.D.
thesis, Eindhoven University of Technology..

SiMPKINS, P.G. & DUDDERAR, T.D. 1978 Laser speckle measurements of transient
Benard convection. J. Fluid Mech. 89, 665-671.

SMALLWOOD, G.J. 1992 A Technique for Two-Colour Particle Image Velocimetry.
M.Sc. thesis, University of Ottawa.

SmiTH, C.R. 1984 A synthesized model of the near-wall behaviour in turbulent bound-
ary layers. Proc. 8th Symp. on Turbulence (eds. G.K. Patterson & J.L. Zakin)
University of Missouri (Rolla)

SPALART, P.R. 1988 Direct simulation of a turbulent boundary layer up to Reg=1410.
J. Fluid Mech. 187, 61-98.

TENNEKES, H. & LUMLEY, J.L. 1972 A first course in turbulence. MIT Press, Cam-
bridge (MA).

TOWNSEND, A.A. 1956 The Structure of Turbulent Shear Flow. University Press,
Cambridge..

VAN DYKE, M. 1982 An Album of Fluid Motion. Parabolic, Stanford.

VassiLicos, C. 1992 Multispiral turbulent structure. Proc. 4th European Turb. Conf.
(Delft) 30 June - 3 July.

WALLACE, J.M., ECKELMANN, H. & BRODKEY, R.S. 1972 The wall region in tur-
bulent shear flow. J. Fluid Mech. 54, 39-48.

WaLsH, M.J. & LINDEMANN, A.M. 1984 Optimization and application of riblets for




222 References

turbulent drag reduction. AIAA paper 84-0347

WESTERWEEL, J. 1987 Statistical tests for time-of-flight spectra in neutron scattering
experiments Report 132-87-02 Interfaculty Reactor Institute, Delft. (in Dutch)

WESTERWEEL, J., NIEUWSTADT, F.T.M. 1991 Performance tests on three-dimensio-
nal velocity measurements with a two-camera digital particle image velocimeter. In:
Laser Anemometry: Advances and Applications. (ed. A. Dybbs & B. Ghorashi)
ASME, New York. Vol. I, pp. 349-355.

WESTERWEEL, J., FLOR, J.B. & NIEUWSTADT, F.T.M. 1992 Measurement of dy-
namics of coherent flow structures using particle image velocimetry. In: Applications
of Laser Techniques in Fluid Mechanics (ed. R.J. Adrian et al. )} Springer, Berlin.

WILLERT, C.E. 1989 High resolution correlation peak detection. ECE 251 C UCSD,
La Jolla

WILLERT, C.E. & GHARIB, M. 1991 Digital particle image velocimetry. Exp. Fluids
10, 181-193.

WILLMARTH, W.W. & Lu, S.S. 1972 Structure of the Reynolds stress near the wall.
J. Fluid Mech. 55, 65-92.

WYGNANSKI, I.J. & CHAMPAGNE, F.H. 1973 On transition in a pipe. Part 1. The
origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281-335.

Yao, C.S. & ADRIAN, R.J. 1984 Orthogonal compression and 1-D analysis technique
for measurement of particle displacements in pulsed laser velocimetry. Appl. Opt.
23, 1687-1689.

Young, I.T. 1988 Sampling density and quantitative microscopy. Analyt. Quant.
Cytol. Histol. 10, 269-275.



List of Symbols

Chapters 1 to 3, Appendices A and B

Roman capitals and calligraphic

Ar(z,y)

Q

D
D(X; ¢, t")
ﬁr
DT 1y, 1)
F(x,%)
Flu,v]
F[[T, s]

Fn
Fo(D7)
Ft("z_:‘a y)
G(X,1)
G'(X)
G"(X)
G(z,y;0)
I(z,y)
I'(z,y))
I"(z,y)

light amplitude field due to a particle with index &
number density of the tracer particles in the flow
lens aperture

displacement field

mean displacement over measurement volume
displacement of T by V(t) during time interval (1, ¢3)
Fourier transform

discrete Fourier-transform of a periodic image al,,
loss of correlation due to in-plane motion of tracer particles
Fylmy+m,0]

loss of correlation due to out-of-plane motion of tracer particles
structure function of the tracer image

tracer pattern

realization of the tracer pattern at time ¢’
realization of the tracer pattern at time t”
circularly symmetric Gaussian curve

image intensity field

realizations of I(z,y) at time ¢’

realizations of I(z,y) at time t”

discrete image intensity

quantized image intensity

mean image intensity

fluctuating image intensity

periodically extended interrogation image
intensity of the light sheet

light sheet intensity profile

maximum of I,(Z)

Bessel function of the first kind and the first order
decorrelation constant for R-l and 135.,.1
characteristic length scale of the flow

integral length scale of Rys[r, s]

image magnification

total image diameter in pixels

diameter of the interrogation image in pixels
image density

source density
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N number of particles (2.3)
P number of exposures (2.54)
P filter length for spatial smoothing of velocity data (5.4)
P(n) Poisson probability distribution (3.51)
Re Reynolds number p. 6
Re(z,y) ensemble auto-covariance of f(z,y) (2.52)
Rge ensemble covariance function of the tracer pattern (2.1
Ri(z,y) ensemble auto-covariance of I(z,y) (2.35)
Ri(z,y)  ensemble cross covariance of I'(z,y) and I"(z,y) (2.43)
Ry[i, 5] auto-covariance of the discrete image field (3.4)
Ryi[m,n]  discrete cross-covariance function of Ié sand If, ., 3.7
Riy[r, s] inverse discrete Fourier transform of S[u, v] (B.9)
Rijfm,n]  (biased) estimator of Ry;[m,n] (3.27)
Ri;[r,s] unbiased estimate of the image cross-covariance (3.87)
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Digital Particle Image Velocimetry :
Theory and Application

Summary

Flow visualizations clearly show that turbulence is not a random process, but consists of
so-called coherent flow structures. An interpretation in terms of coherent structures plays
an important role in many turbulent phenomena. With traditional flow visualization we
only obtain a gqualitative picture of these structures. On the other hand, traditional in-
struments like the hot-wire and laser-Doppler anemometers are one-point measurement
techniques, and therefore not able to reveal the instantaneous spatial structure of a flow.
With the aid of a new observation technique, called “particle image velocimetry” (PIV),
quantitative, two-dimensional information of the flow velocity field is obtained. The basic
principle of this method is to determine the fluid velocity in a thin light sheet from the
motion of small tracer particles that are added to fluid. Images of the tracer particles are
recorded. The recording is subsequently analyzed on a point-by-point basis in small inter-
rogation areas by means of a correlation method. The results of PIV measurements enable
us to compute (components of ) other flow quantities, such as the vorticity or the deforma-
tion; these quantities have a close relationship to the dynamics of coherent flow structures.

The conventional method for the analysis of PIV images (photographs) yields accu-
rate results with a high spatial resolution, but is very time-consuming. This is a major
problem in the application of PIV to study the statistical properties and the dynamics
of coherent structures in turbulent flows, which requires the analysis of a large number
of images. This was about the situation at the beginning of the study described in this
thesis. To overcome this problem a digital implementation of the PIV method—referred
to as digital PIV or DPIV—is proposed in this thesis. DPIV considerably reduces the
processing time, at the cost of a slight reduction in measurement accuracy. In DPIV
the pixel resolution in the interrogation analysis is reduced by a factor 8 with respect
to the pixel resolution used in conventional PIV interrogation analysis; this reduces the
processing time by a factor of 100, while the loss of relative measurement accuracy is only
a factor 2-4. In a practical situation a single image is interrogated in 1,000 positions in
less than 10 seconds, with a relative measurement accuracy of 1-3%. Hence, DPIV was
expected to provide a feasible solution to process large quantities of PIV images. So,
the main aim of this thesis can be more specifically defined as to establish the necessary
theoretical basis and practical verification to justify this expectation.

The remainder of the thesis consists of two parts. Part I deals with the necessary
theoretical aspects of (digital) PIV, related to image acquisition, interrogation analysis,
data validation and data analysis. Part II describes the application of the traditional PIV
method and the new digital PIV method to turbulent flow.

In Part I a relation between the statistics of the tracer particles and the statistics of the
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digital PIV pictures is established. Based on this result an estimation is made of the min-
imum required sampling rate for PIV pictures. It is derived that the required bandwidth
for PIV analysis is a factor 3-4 lower than the optical bandwidth. This explains why
the reduction in pixel resolution in DPIV analysis with respect to the conventional PIV
analysis (in which the pixel resolution matches the optical bandwidth) has little effect on
the relative measurement accuracy. The derived analytical results are subsequently used
to investigate the performance of different estimators for the particle-image displacement.
This demonstrates that interrogation with high pixel resolution (conventional PIV) and
with low pixel resolution (digital PIV) need different optimal estimators for the particle-
image displacement. The analytical predictions are in good quantitative agreement with
measurement results obtained from a linearly displaced test image.

Under certain circumstances the measured displacement in an interrogation area is
spurious as a result of insufficient particle-images within the interrogation area. It is
therefore necessary to validate the measurement data prior to the evaluation of flow pro-
perties from PIV data sets. A statistical model is introduced that describes the occurrence
of spurious vectors in PIV data. This model is used to investigate and optimize the
performance of different post-interrogation procedures for detection of spurious vectors.

The vorticity and deformation are flow properties that can be obtained by differen-
tiation of the velocity field. The two-dimensional measurement data obtained from PIV
measurements allow the evaluation of components of the vorticity vector and deformation
tensor. The accuracy of these estimates is limited by the spatial resolution and noise
level of the PIV data. It is shown that the accuracies encountered in data sets from
digital PIV analyses can yield reliable estimates of the vorticity and deformation. This is
demonstrated in Part II with the results of a test measurement of homogeneous turbulent
flow behind a grid.

Part II describes the application of the conventional PIV method and the new digital
PIV method to turbulent flow. (The application to grid turbulence was already mentioned
in the previous paragraph.) The main subject of Part II is the application of PIV to fully
developed turbulent pipe flow. First the measurement of this flow with the conventional
PIV method is described. In total 33 photographs were recorded, of a plane through the
centerline of the pipe across the full diameter. The observed structures closely resemble
the structures found in numerical simulations and the structures proposed in conceptual
models of the boundary-layer flow structure. The flow structures found in the vorticity
computed from the velocity data of the PIV measurements are compared with those found
in the results of a numerical simulation, carried out at the same flow condition and in the
same flow geometry as the PIV measurements. This comparison shows that the statisti-
cal properties of the structures found in the experimental and numerical data sets agree
quantitatively. (It is beyond the scope of this thesis to pursue a further interpretation
of the observed flow patterns.) To assess the feasibility of the alternative DPIV method,
measurements are carried out with DPIV in the same facility. About 500 pictures are
recorded and analyzed. The view area in the DPIV measurements is now smaller, and
the final results exhibit slightly higher scatter. However, the total processing time for
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the analysis of the DPIV pictures was only a fraction of the time required to analyze
the PIV photographs. The agreement of the flow data obtained with digital PIV agree
reasonably well with those obtained with the conventional PIV method. (The digital PIV
pictures were recorded with moderate video equipment; it is expected that the quality of
the results will improve when the PIV pictures will be recorded with high-quality digital
instruments.)

In this thesis it is demonstrated that digital PIV is a feasible alternative to the con-
ventional PIV method, and is capable of analyzing large amounts of PIV pictures at an
acceptable computational effort. The logical next step is to apply digital PIV to turbulent
flows with the aim to investigate the statistical properties and dynamics of coherent flow
structures. It is expected that experimental PIV data will provide necessary information
of turbulent flows in geometries and at flow conditions that are (currently) not accessible
to computer simulations. However, one of the next problems that needs to be solved is
how to interpret the observed two-dimensional patterns in terms of evolutionary three-
dimensional flow structures. In that respect it can be expected that experimental PIV
data en numerical simulation data will complement each other.



Digitale Particle Image Velocimetry :
Theorie en Toepassing

Samenvatting

Met behulp van klassieke stromingsvisualisaties is in het verleden aangetoond dat turbu-
lentie niet als een puur stochastisch proces moet worden opgevat, maar ook zogenaamde
coherente structuren bevat. Een interpretatie in termen van coherente structuren speelt
een belangrijke rol bij verschillende turbulente verschijnselen. Met klassieke visualisatie
verkrijgen we slechts een kwalitatief beeld van deze structuren. De traditionele meet-
technieken zoals hitte-draad anemometrie en laser-Doppler anemometrie daarentegen zijn
één-punts methoden die niet in staat zijn om de instantane, ruimtelijke structuur van de
stroming te bepalen. Met behulp van een nieuwe, optische meettechniek, genaamd “Par-
ticle Image Velocimetry” (PIV), kan kwantitatieve twee-dimensionale informatie over het
instantane snelheidsveld worden verkregen. Het basisprincipe van deze techniek bestaat
uit het toevoegen van kleine deeltjes aan het fluidum, waarbij de snelheid wordt bepaald
uit de beweging van deze deeltjes in een lichtvlak in de stroming. Van deze deeltjes wordt
een opname gemaakt die vervolgens puntsgewijs in kleine interrogatie-gebieden wordt
geanalyseerd door middel van een correlatie-methode. De resultaten van PIV-metingen
stellen ons in staat om (componenten van) andere stromingsgrootheden te bepalen, zoals
de vorticiteit en de vervorming; deze grootheden hangen nauw samen met de dynamica
van coherente structuren.

De conventionele methode die wordt gebruikt voor de analyse van PIV-opnames (foto’s)
heeft een hoge nauwkeurigheid en een hoge ruimtelijke resolutie, maar is erg traag. Dit is
met name een probleem bij toepassingen waarbij een groot aantal opnames moet worden
geanalyseerd, zoals bij het onderzoek naar de statistische eigenschappen of de dynamica
van coherente structuren. Dit was de situatie bij de aanvang van de studie die staat
beschreven in dit proefschrift. Als oplossing voor dit probleem wordt in dit proefschrift
een digitale implementatie van de PIV-methode—oftewel DPIV—voorgesteld. DPIV geeft
een aanzienlijke versnelling van de verwerkingstijd, die echter een kleine verslechtering
in ruimtelijke resolutie en meetnauwkeurigheid tot gevolg heeft. Bij DPIV is de pixel-
resolutie in de beeldanalyse een factor 8% lager dan bij de conventionele PIV-methode;
dit geeft een versnelling van de beeldanalyse met een factor 100, terwijl de relatieve
meetnauwkeurigheid met slechts een factor 2-4 afneemt. In de praktijk kan een digitale
opname in 1.000 posities worden geanalyseerd in minder dan 10 seconden. De relatieve
meetnauwkeurigheid bedraagt 1-3%. Op basis hiervan was de verwachting dat DPIV een
haalbaar alternatief is voor toepassingen waarbij het noodzakelijk is om grote aantallen
opnames te analyseren. Het hoofddoel van dit proefschrift kan daarom preciezer worden
omschreven als het theoretisch onderbouwen en vervolgens verifiéren van deze verwachting.

Het resterende deel van dit proefschrift bestaat uit twee delen. Deel I behandelt de
benodigde theoretische aspecten van DPIV met betrekking tot de beeldopname, beeld-
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analyse, data-validatie en data-analyse. Deel II beschrijft de toepassing van de conven-
tionele en nieuwe digitale PIV-methoden op turbulente stromingen.

In Deel I wordt eerst een relatie afgeleid tussen de statistiek van willekeurig over de
stroming verdeelde deeltjes en de statistische eigenschappen van de digitale opnames. Aan
de hand van dit resultaat wordt de minimale bemonsteringsfrequentie voor PIV-opnames
bepaald. Er wordt aangetoond dat de bandbreedte van PIV-opnames een factor 3-4
lager is dan de optische bandbreedte. Dit verklaart waarom de afname in pixel-resolutie
bij DPIV in vergelijking met de conventionele PIV-methode (waarbij de bemonsterings-
frequentie is afgestemd op de optische bandbreedte) nauwelijks effect heeft op de relatieve
meetnauwkeurigheid. De afgeleide theoretische relaties worden vervolgens gebruikt om
de eigenschappen van verschillende schatters van de verplaatsing van de deeltjes in de
opnames. Hiermee wordt aangetoond dat de analyse met hoge pixel-resolutie (conven-
tionele PIV) en lage pixel-resolutie (DPIV) verschillende optimale schatters vereisen. De
theoretische voorspellingen blijken goed overeen te komen met resultaten uit metingen
aan een testbeeld dat lineair wordt verplaatst.

Onder bepaalde omstandigheden kan het voorkomen dat in een bepaald interrogatie-
gebied onvoldoende deeltjes aanwezig zijn om de snelheid te kunnen bepalen. De gevonden
verplaatsing is dan onjuist. Daarom is het nodig de individuele meetdata te valideren,
voordat de verschillende stromingsgrootheden geschat kunnen worden uit PIV-data. Van
verschillende validatie-methoden zijn de eigenschappen bepaald met behulp van een statis-
tisch model, dat het optreden van onjuiste meetdata beschrijft. Dit model is ook gebruikt
om de methoden te optimaliseren.

De vorticiteit en deformatie zijn stromingsgrootheden die worden verkregen door het
snelheidsveld te differentiéren. Componenten van de vorticiteitsvector en deformatietensor
kunnen worden geschat uit de twee-dimensionale meetdata verkregen uit PIV-metingen.
De nauwkeurigheid van deze schattingen wordt bepaald door de ruimtelijke resolutie van
de meetdata en door de aanwezige ruis. Er wordt aangetoond dat de nauwkeurigheid van
meetdata verkregen uit digitale PIV-metingen nog voldoende is om betrouwbare schat-
tingen te maken van de vorticiteit en deformatie. Ter demonstratie worden in Deel II de
experimentele data van een turbulente stroming achter een rooster geanalyseerd.

Deel II beschrijft de toepassing van de conventionele PIV-methode en de nieuwe digi-
tale PIV-methode op turbulente stromingen. (De toepassing van digitale PIV op rooster-
turbulentie werd al in de vorige paragraaf genoemd.) Het hoofdonderwerp van Deel I
is de de meting met PIV aan een volledig ontwikkelde turbulente pijpstroming. Eerst
worden metingen met de conventionele PIV-methode beschreven. Daarbij zijn in totaal
33 foto’s genomen van een vlak door de as van de pijp, over de gehele pijpdiameter.
De structuren in de meetresultaten vertonen een sterke gelijkenis met structuren zoals die
worden voorgesteld door conceptuele modellen en zoals die zijn gevonden in resultaten van
computersimulaties. De statistische eigenschappen van de experimenteel gevonden struc-
turen blijken kwantitatief overeen te stemmen met die van structuren in de resultaten van
een computersimulatie, uitgevoerd in dezelfde stromingsgeometrie en bij vrijwel dezelfde
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stromingscondities. Hieruit blijkt dat de statistische eigenschappen van structuren in
de experimentele en numerieke resultaten kwantitatief met elkaar overeenkomen. (Een
verdere interpretatie van de gevonden structuren valt buiten het bestek van het onder-
zoek beschreven in dit proefschrift.) Om een indruk te krijgen van de bruikbaarheid van
de alternatieve, digitale PIV-methode zijn digitale opnames gemaakt van dezelfde stro-
ming. Ongeveer 500 opnames zijn geanalyseerd, waarbij de beeldgrootte echter kleiner is
dan bij de metingen met de traditionele PIV-methode. Daar staat tegenover dat dit grote
aantal opnames werd geanalyseerd in slechts een fractie van de tijd die nodig was voor
het analyseren van de conventionele PIV-opnames. De fouten in de DPIV-metingen ver-
tonen een wat grotere spreiding dan die in de conventionele PIV-metingen. Desondanks
komen de resultaten redelijk goed overeen. (De digitale PIV-opnames zijn gemaakt met
eenvoudige video-apparatuur. Het is te verwachten dat de kwaliteit van de resultaten zal
verbeteren bij gebruik van apparatuur van betere kwaliteit.)

In dit proefschrift is aangetoond dat digitale PIV een haalbaar alternatief is voor
de conventionele PIV-methode, en dat deze in staat blijkt om grote aantallen opnames
te analyseren in een relatief zeer korte tijd, terwijl de meetresultaten nog steeds een
acceptabele nauwkeurigheid hebben. Een logische volgende stap is om deze techniek
daadwerkelijk in te zetten bij onderzoek naar de dynamica van coherente structuren.
Naar wordt verwacht zullen experimentele PIV-resultaten met name informatie verschaf-
fen over stromingen in geometrieén en bij condities die (vooralsnog) niet toegankelijk zijn
voor computersimulaties. Daarbij dient aandacht te worden besteed aan de vertaling van
twee-dimensionale patronen in de meetdata naar tijdsafhankelijke, drie-dimensionale ver-
schijnselen in de stroming. Hierbij zullen computer-simulaties en PIV—als experimentele
techniek—elkaar wederzijds aanvullen.
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