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Abstract. Offshore wind energy is emerging as a large contributor to installed renewable energy 

capacity.  In order to continue the momentum of its development, the offshore wind industry is 

looking to continually lower the levelized cost of electricity (LCOE). One area being explored 

in an effort to lower the LCOE of offshore wind generation is the optimization of the wind farm 

layout. Many of the offshore wind farm layout designs that exist today are structured in a 

rectilinear form where turbines are spaced evenly along columns and rows. This research 

explores the economic advantages of removing rectilinear constraints and optimizing the 

positions of the individual turbines within an offshore wind farm. At the core of achieving the 

research objective was the development of a model that is capable of simulating an existing 

offshore wind farm by converting representative wind farm data into an LCOE. The positions of 

the turbines within the wind farm can be modified using an optimization framework with the 

intent to minimize the LCOE. The model comprised of the Jensen Wake Model, a hybrid cable 

layout heuristic and a cost scaling model. The wind farm layout was optimized using a genetic 

algorithm. The cost estimation model and optimization framework were applied into two case 

studies to analyze the results of the wind farm layout optimization of two wind farms, Horns Rev 

and Borssele. In both case studies the optimized layouts provided higher AEP, shorter intra-array 

collection cable lengths and ultimately a lower LCOE than the baseline rectilinear layouts.  

1.  Introduction 

1.1.  Background 

Developing carbon free sources of electricity has become a global focus in recent decades. As the 

understanding of the importance of this shift within the energy sector spreads, increased interest and 

investment have been directed towards renewable energy sources in an effort to expedite the transition. 

Wind energy is a leading technology in the development of large-scale renewable energy generation and 

is a significant percentage of the electricity generation of many nations. [1] [2] 

Offshore wind energy in particular is an emerging technology that is becoming increasingly viable 

as improvements in technology are driving down the levelized cost of electricity (LCOE), making it 

more competitive with onshore wind technology and other forms of electricity generation.  

One particular area being explored in an effort to lower the LCOE of offshore wind generation is the 

optimization of the wind farm layout. There are multiple parameters that are considered when designing 

a wind farm array including but not limited to: wake effects, wind profile, bathymetry, soil types, cable 

installation costs, transmission losses, environmental concerns, permitting restrictions and aesthetics. 
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While acknowledging these parameters, many of the resulting wind farm layout designs that exist today 

are structured in a rectilinear form where turbines are spaced evenly along columns and rows. This is 

the case for many notable large projects such as Horns Rev, London Array, Gemini Wind Farm and 

Dudgeon. 

Wind farm designers have considered the value of minimizing wake effects, as the rows and columns 

of wind farms are often oriented into an optimal direction based on the local wind climate. However, 

the inconsistent nature of environmental factors such as the local wind climate, bathymetry, and soil 

types would conclude that these are not driving factors in the structured layouts. 

It has been hypothesized through many academic research efforts that keeping rectilinear formats 

may cost a great deal when measuring the annual energy production over the lifetime of the windfarm 

[3]. 

When determining the spacing between turbines in an offshore windfarm layout, there are two key 

parameters that oppose with regards to profitability; wake effects and the collection cable length.  As 

the turbine spacing increases, the wake effects decrease which results in an increase in the annual energy 

production. Though increased space between turbines results in longer collection cables and in turn, 

higher transmission losses and increased cable costs. The opposing nature of these design variables 

result in some layouts being more profitable than others. 

Abandoning the rectilinear constraints described above and understanding how the wake effect and 

cable cost variables are related may be utilized in the wind farm design process to improve the economic 

viability of offshore wind development.  

1.2.  Research Objective 

This work explores the advantages of optimizing the positions of the individual turbines within an 

offshore wind farm. The optimization seeks to minimize the objective function which is the LCOE of 

an offshore wind farm. At the core of this work was the development of a model that is capable of the 

following: 

• Simulating an existing offshore wind farm by converting necessary input data into a 

representative LCOE. 

• Providing the ability to optimize the positions of the individual turbines within the wind farm 

in order to lower the LCOE.  

• Providing the ability to perform sensitivity analysis for different input parameters for the 

offshore wind farm that can provide insight to the importance of the different design variables. 

The model was validated using measured data from an existing wind farm. Upon validation, the 

model was used to estimate the difference in LCOE’s for different wind farms with the existing and 

optimized wind farm layouts and conclusions were drawn from the results. 

 

2.  State of the art 

A wind farm consists of an array of wind turbines that convert the kinetic energy from the wind to 

electricity.  Wind turbines can be arranged within a wind farm in a certain orientation in order to increase 

the energy the wind farm yields. Traditional layouts are typically in a rectilinear format, identifiable by 

the turbine’s arrangement in equally spaced rows and columns. The majority of the largest wind farms 

in operation today are in a grid format, rotated in an orientation with respect to the wind direction to 

maximize energy yield (for the set formation). However there has been a growing field of research into 

truly maximizing the energy yield for a given wind farm site by abandoning the rectilinear constraints. 

The area of this research has been termed the Wind Farm Layout Optimization Problem (WFLOP), 

where interested parties are creating models and using optimization algorithms to better understand how 

different wind farm orientations can provide higher energy yields under different environmental and 

physical circumstances. [3] 

2.1.  Wind Farm Layout Optimization Problem (WFLOP) 
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The WFLOP requires a defined objective function and an optimization strategy. The objective function 

is calculated based on the design parameters, and is minimized through optimization of the wind farm 

design. 

The optimization strategies use algorithms that iterate through various scenarios in search of 

satisfying constraints and minimizing the objective function. The optimization algorithms can be 

categorized into gradient methods [4], genetic algorithms [5] [6], viral algorithms [7], particle swarm 

algorithms [8] and greedy heuristic algorithms [9]. [10] 

The WFLOP was first explored by Mosetti et al. [5] by considering a wind farm that did not have a 

defined desired power output, but a fixed number of potential turbine positions. The wind farm consisted 

of a 10x10 grid where the wind turbine could be placed in the center of each quadrant or not, in search 

of the most profitable design based on the objective function. Since the work of Mosetti et al. there have 

been numerous attempts to determine the best methods for designing a wind farm layout. The research 

that followed Mosetti et al. can largely be categorized into two paths: (1) a track focused on the 

development and testing of different optimization strategies i.e. optimization algorithms, [6] [8] [9] and 

(2) a track focused on improving the wind farm model accuracy [11] [12]. [3] The second path 

concentrates on the inclusion of more comprehensive sub-models that consist of an increasing number 

of parameters in an effort to make the simulations more representative and applicable. 

Hebert et al. [3] provided a comprehensive review of the state of the art of wind farm design and 

optimization. Hebert et al. reviewed over 150 works and found that the most common objective 

functions being used were the maximum AEP and minimum COE. The most common wake model used 

within WFLOP research to date is the Katic-Jensen model. This is in large part due to its modelling 

simplicity which lessens the computational demand and decreases the simulation time. Hebert et al. 

concluded that computational technologies are typically the limiting factor for the treatment of the 

WFLOP problem.  Beyond improvement of computational restraints, Hebert et al. concluded that the 

most important research trends in WFLOP are focused on improving the formulations describing the 

expected energy conversion of the wind farm, the wind turbine wakes and turbulence impacts, the wind 

turbine structural fatigue and degradation, the various types of environmental impacts, the overall 

electrical system losses and reliability and the uncertainty and risk management.  

3.  Model Development 

The objective of the model optimization, is to optimize the positions of the turbines within a wind farm 

in an effort to minimize the LCOE. There are two variables within Equation 1 that are dependent on the 

positions of the turbines (all else were considered independent within this work); Initial Capital Costs 

(ICC) and the annual energy production (AEP). More specifically within the ICC, it is the intra-array 

cable costs that are dependent on the wind turbine positions. 

 

 
𝐿𝐶𝑂𝐸 =

𝐼𝐶𝐶 ∗ 𝐹𝐶𝑅

𝐴𝐸𝑃
+ 𝐴𝑂𝐸 

(1) 

 

The modelling framework developed in this work is explained easiest by breaking down the three 

core components. The physical component included sub-models that provided collection cable lengths 

and annual energy production for a given wind farm based on its layout. The economic component 

utilized the cable length and AEP to generate an LCOE. The optimization component used the LCOE 

as its objective function and modified the turbine positions in search of an optimal layout. A schematic 

of the wind farm layout optimization framework can be seen in Figure 1. 

3.1.  Physical Component 

The physical component accounts for the environmental and physical characteristics of the wind farm 

and provides the annual energy production and collection cable layout. The two core sub-models within 

the physical component pertain to the wake effects and the cable topology. 
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Figure 1: Optimization framework schematic. 

3.1.1.  Wake effects 

As a turbine extracts energy from the wind and converts it to electrical energy, it leaves a wake behind 

which is characterized by reduced wind speeds and increased turbulence in the flow [13]. The wake 

from a turbine expands and gradually returns to the free stream condition as it continues downstream. If 

the wake of a turbine intersects with the swept area of another turbine downstream prior to reaching the 

free stream condition, the downwind turbine is considered to be shadowed by the upstream turbine [14]. 

If a turbine is shadowed, it experiences a lower wind velocity than the free stream, which can result in 

less energy conversion than if the turbine was not shadowed.  

3.1.2.  Jensen Model 

The Jensen Model is one of the oldest and most widely used wake prediction models.  A benefit to the 

use of the Jensen model is that it is a relatively simple model that is less computationally demanding 

than others and has still been proven to provide comparably accurate results [15] [16] [17]. 

A key assumption to the Jensen single wake model is that mass1 is conserved in the direction of the 

turbine axis [18]. The total velocity deficit of the wind velocity at position 𝑥 (see Figure 2), due to the 

wake effects from an upstream turbine can be given by Equation 2 [18]. 

 

 
1 −

𝑣1

𝑣0
=

1 − √1 − 𝐶𝑡

(1 +
2 α 𝑥
𝐷0

)
2 

 

(2) 

 

Equation 2 assumes the complete downstream turbine is within the wake. When the downstream 

turbine is only partially shadowed by an upstream turbine, a proportionate amount of the wake with 

respect to the area shadowed is considered. 

When having multiple wakes interacting with one another, it is assumed that the kinetic energy deficit 

of a mixed wake is equal to the sum of the energy deficits for each wake acting on a given position. This 

can be expressed by Equation 3 for a turbine in the wake of two others [18]. 

                                                      
1 Katic et al. [18] incorrectly state “momentum is conserved”. 



WindEurope

IOP Conf. Series: Journal of Physics: Conf. Series 1222 (2019) 012007

IOP Publishing

doi:10.1088/1742-6596/1222/1/012007

5

 

 

 

 

 

 

 

Figure 2: Jensen wake model diagram. 
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(3) 

 

This approach of using Equations 3 is valid for both scenarios seen in Figure 3. 
             

 

 

 

(a) (b) 

Figure 3: Multiple wake effects diagram. 
 

In Figure 3 (a), both Turbine T1 and Turbine T2 cause wakes that interact downstream and affect 

Turbine T3. In Figure 3 (b), both Turbine T1 and Turbine T2 cause wakes that affect Turbine T3, 

however in this scenario Turbine T2 doesn’t experience the free stream velocity. Even in this 

arrangement, Equation 3 holds and the free stream velocity is used to calculate the combined wake 

effects for Turbine T3 [19]. 

3.1.3.  Intra-array collection cable 

The intra-array collection cable system gathers the electricity from each individual turbine and connects 

it to a substation. The subsea cables drop from the individual turbines to the sea bed and are typically 

buried 1 to 2 meters in the seabed. Current collection systems are medium voltage, and depending on 
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the project can range from 10 to 66 kV. There are a number of design strategies for the layout of 

collection cables, each with their own strengths and drawbacks.  

The simplest design strategy for a collection system is the radial design which connects a series of 

turbines on a single cable. The number of turbines per cable is determined by the maximum power 

output from each turbine and the maximum rated capacity of the cable. The radial design is considered 

to be advantageous because it uses minimal cable, but its drawback is that it does not account for any 

redundancy [20]. 

The branch design is less common for offshore wind farm designs, but is frequently used in 

communication networks and has desirable features for use in collection cable design. The branch 

design, provides opportunity for lower cost and higher reliability than the currently most common 

approach, the radial design. [21] 

In order to adequately compare wind farm layouts, the model required a cable layout method that 

provided consistent radial/branched results between rectilinear layouts and irregular layouts. 

 

3.1.4.  Cable layout heuristic 

A hybrid cable layout heuristic developed by Katsouris [21] that combined the planar open savings 

(POS) heuristic [22] and the Esau-Williams heuristic [23] was implemented. The heuristic acted as a 

nested optimization within the physical model that efficiently designed a near optimal cable layout using 

the strengths of the POS heuristic and the EW heuristic. 

The POS heuristic was developed by Bauer and Lysgaard and is one of the most efficient heuristic 

algorithms for the radial internal connection of offshore wind farms [21]. The POS heuristic begins with 

an initial solution of every wind turbine being connected directly to the substation. In every step the 

savings heuristic considers merging two routes (cables) into one cable. The savings associated with this 

merge are logged, and in every step the heuristic greedily chooses the merge with the highest savings 

resulting in a route not exceeding capacity [22]. The heuristic continues until all savings are achieved 

under the given constraints and capacities and a near optimal solution is reached. 

The EW heuristic is a saving procedure which, similar to that of the POS heuristic, starts from a star 

tree formation of the turbines and substation connections. In each iteration, the merging of two routes is 

determined by the option that provides the largest savings [23]. Relative to the POS heuristic, the EW 

provides more freedom and possibilities for merging routes since there is no limitation on the position 

of the turbines in their corresponding routes. The main characteristic of the EW heuristic is that it 

attempts to connect the turbines further from the substation into clusters first, and then upon a cable 

reaching its full capacity, the algorithm continues with creating a new cluster closer to the substation 

[21]. 

3.2.  Economic Component 

The economic component’s function is to use the AEP and cable layout obtained from the physical 

component and to assign values to the outstanding variables required to provide the LCOE for the wind 

farm (see Equation 1). These outstanding variables include the annual operating expenses (AOE) (see 

Equation 4), bottom lease cost (BLC), operations and maintenance (O&M), levelized replacement cost 

(LRC), fixed charge rate (FCR) and most significantly the remaining parameters within the ICC. The 

ICC is the sum of the turbine system costs and the balance of station costs. 

 

 
𝐴𝑂𝐸 = 𝐵𝐿𝐶 +

𝑂&𝑀 + 𝐿𝑅𝐶

𝐴𝐸𝑃
 

(4) 

 

The Wind Turbine Design Cost and Scaling Model developed by Fingersh et al. [24] was selected to 

be the basis of the economic model for all of the fixed costs because of the simplicity of the parameters 

required. The Fingersh model is intended to provide reliable cost projections for wind generated 

electricity based on different turbine and wind farm sizes. This was an important characteristic for 
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implementation into a model that intends to be used for a variety of wind farm and wind turbine sizes. 

It is understood that at the time of publishing the Fingersh et al. model, the components directly related 

to offshore technology were in their infancy and the forecasts are considered extremely rough. The cost 

estimates are projected based on only the turbine power rating, rotor diameter, hub height, as well as a 

few inflation and cost of material variables, all of which remain unchanged throughout the optimization 

process. 

Modifications were required for the electrical cost estimates within the ICC for the cost scaling model 

developed by Fingersh et al. The collection cable costs within the model were dependent on the rated 

power of the turbine, and not the cable topology which was a core feature of the model being developed. 

Therefore, appropriate modifications were made by using components of an additional NREL cost 

model developed by Green et al. [25] focused primarily on electrical collection and transmission systems 

for offshore wind power.  

The LCOE results from the economic component are estimated values with the purpose of being 

used for comparison between wind farm layouts with the same economic parameters. Assumptions and 

limitations, as well as explanations for the derivations of the empirical cost scaling models can be found 

at [24] [25]. 

3.3.  Optimization component 

A genetic algorithm was selected for the optimization of the wind farm layout primarily based on the 

research into other WFLOP. Genetic algorithms are probabilistic search algorithms which are designed 

to mimic the logic of natural selection. Genetic algorithms work by generating populations of individuals 

(wind farm layouts) that consist of a set number of variables (x and y coordinates for each turbine). The 

objective function for each individual (LCOE of each windfarm layout) is calculated for the entire 

population. The population is evaluated based on the desired stopping criteria for the optimization and 

if the criteria is met the optimization process is complete. If the stopping criteria is not met, the 

population goes through a genetic manipulation process where the elite individuals (wind farm layouts 

with lower LCOE) are passed on to the following population and other individuals are selected to 

become parents in the following generation.  Once the parent individuals have been selected, a crossover 

operation is used to combine the traits of the parent individuals. The final step in the genetic 

manipulation process is the mutation phase in which there are random alterations made to the population.       

These random alterations are important for incorporating new information into the population that 

increase the likelihood of testing more of the result surface [26].  The children individuals that were 

created from the parent individuals are then evaluated against the optimization stopping criteria to 

determine whether or not another genetic manipulation process is required. There are different 

parameters and strategies that can be implemented for each stage of the genetic manipulation which is 

described further by Pohlheim [27]. 

External constraints were applied to the genetic algorithm that sectioned the wind farm into tiles 

where only one turbine could be micro-sited within each tile as seen in Figure 4. The wind turbine could 

be placed anywhere within each tile so long as it also satisfied the additional Jensen model constraint 

which ensures no turbines were closer than 3 diameters to one another. This feature provided some 

structure to the wind farm which may be desirable for designers, but more importantly it limited the 

function result surface which reduced the computational demand of the optimization process. 
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Figure 4: Wind farm layout optimization constraint. 

 

4.  Model Validation 

Validation was carried out once the model was completed and model behaviour within the design space 

was analyzed. The wake model validation compares results from the present model with measured data 

from an existing wind farm. 

Horns Rev wind farm (seen in Figure 5) was used for model validation due to the amount of publicly 

available information [28] [29] [30]. The information necessary for validation is the physical and 

environmental characteristics of the wind farm (turbine power and thrust curves, wind rose and Weibull 

distribution parameters, etc) as well as the measured annual energy production of the wind farm. 

Additionally, measured power data for individual machines is required to validate the wake model 

specifically by analyzing the wind velocity deficits at particular turbines in different locations within 

the wind farm. 

 

 

Figure 5: Horns Rev wind farm layout. 
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4.1.  Wind Velocity Deficit Validation 

The wind velocity deficit can be defined as the wind velocity experienced by a given wind turbine 

experiencing wake effects divided by a wind turbine experiencing free stream wind velocities. The wind 

velocity deficit results from the model were compared to the measured wind velocity deficits of two 

different turbines within the Horns Rev wind farm. 

The results for comparing the model wake deficits with different wake decay constants of Turbine 

17 with the measured data can be seen in Figure 6 and the results from Turbine 45 in  Figure 7. 

 

 

Figure 6: Wind deficit comparison (Turbine 17). 

 

While analyzing Figure 6 and Figure 7, the model results show a trend where the highest wake effects 

occur when the wind approaches from 0°,90°,180° and 270°, which is expected with this rectilinear 

layout. In between these angles the wake deficits at the turbines tested are less, with the model results 

showing some orientations experiencing no wake losses.  

Between 0° and 90°, the measured data does not trend with the model results as well as for other 

orientations. Firstly, the measured wind deficit at 0° is less than the measured wind deficit for 90°, 180° 

and 270°. This discrepancy is unexpected, as for example when the wind is approaching from 0°, 

Turbine 17 is near the back of the wind farm, compared to at 180° Turbine 17 is in the second row. 
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Figure 7: Wind deficit comparison (Turbine 45). 

 

Every 90° the model results indicate a peak where the turbines experience less wake effects. The 

measured data matches this trend between 90° and 360°, however between 0° and 90°, the measured 

data inexplicably show no such peak. Additionally, Sorensen [17] indicates that for large wind farm 

arrays, the Jensen model over estimates the wake effects in the first rows and underestimates the wake 

effects in the back rows. This however does not explain the discrepancy for Turbine 45. 

With regards to a comparison between wake decay constants, a wake decay constant of 0.075 always 

underestimates the wake effects, whereas a wake decay constant of 0.04 tends to both over estimate and 

underestimate depending on the direction of the wind approaching. As expected, the wake decay 

constants trend in the same order with larger wake decay constants providing lower wind deficit 

estimates and smaller wake decay constants providing higher wind deficit estimates. There are 

exceptions to this rule when in some orientations larger wake decay constants have an expansion angle 

that includes some turbines that the smaller wake decay constants do not (seen at 120°). 

4.2.  Limitations in Wind Deficit Validation 

The model results do not match the measured data exactly for the following reasons: 

• A potential influence on the difference between the measured and model results could be 

attributed to the Weibull distribution parameter assumption for the wind distribution between 

7-10 m/s.  

• Inconsistencies in the measured data that cannot be explained by relying on second-hand data.  

Further model validation with other offshore wind farm data sets which were not available would 

provide more conclusive results. 

 

4.3.  AEP Validation 

When comparing the model AEP results to the measured results for the overall wind farm output, the 

model was a better predictor than it was for the wind deficit measurements of individual turbines. This 

was expected as the aim of the Jensen model is to give an estimate of the energy content of a wind farm 

rather than to describe the velocity field accurately [18].  

The AEP was estimated using four different wake decay constants to determine which was the best 

fit for the measured data. The wake decay constant that fit the measured data the best was 0.04 which 

gave AEP results within 1.1% of the approximate AEP that was observed at Horns Rev wind farm in 
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2005 (the period being tested).  A wake decay constant of 0.04 is consistent with the standard value for 

offshore wind farms used in state-of-the-art software [17]. 

 

Table 1: AEP validation results. 

 

 

4.4.  Model Behaviour Observations 

4.4.1.  Cable Layout Heuristic 

The cable layout heuristic was proven to be more effective than the traditional radial design that collects 

the power from all turbines in a column and transmits it to the substation. A visual comparison of the 

traditional layout and an improved layout from the cable layout heuristic on a rectilinear wind farm 

layout can be seen in Figure 8. 

The heuristic results were compared with traditional designs for different numbers of turbines, 

different rows and column spacing and different intra-array cable capacities. In all scenarios the heuristic 

outperformed the traditional design for a rectilinear wind farm layout by a reduction of 11-19% in cable 

length.  
 

 

Figure 8: Cable layout comparison (rectilinear wind farm layout). 

 

The cable layout heuristic becomes of increased value for non-rectilinear layouts where the function 

developed for generating the traditional layout struggles to provide reasonable results. Figure 9 shows 

𝒌 AEP (GWh) Relative AEP 

Measured Data 

(Approximation) 

630 100.00% 

0.04 636.7 101.1% 

0.05 650.8 103.3% 

0.06 661.6 105.0% 

0.075 669.5 106.3% 
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the traditional cable layout function results along with the improved cable layout results. The improved 

cable layout results in only 68% of the traditional cable length required. 

 

 

Figure 9: Cable layout comparison (irregular wind farm layout). 

 

The cable layout heuristic function consistently provided a cable layout design with shorter overall 

cable length than the traditional layout function and was more robust and effective in dealing with non-

rectilinear layouts. 

5.  Results & Analysis 

5.1.  Case Study I: Horns Rev Wind Farm 

The optimization of the Horns Rev Wind Farm evaluated 900 individual wind farm layouts in total, over 

9 generations and determined an optimal layout after the minimum LCOE from 4 consecutive 

generations averaged a difference of less than 0.0001. It is understood that the limited nature of this 

optimization simulation does not necessarily provide a true optimum, but these were the best results 

obtained due to time and computational restrictions. The existing Horns Rev wind farm is shown in 

Figure 10 with a cable layout that was designed using the hybrid cable layout heuristic. The cable layout 

heuristic was used instead of the installed cable layout to provide a valid comparison between the 

different wind farm layouts due to assumptions that were made in the cable cost sub-model. The 

improved wind farm layout can be seen in seen in Figure 11. 

 

Figure 10: Existing Horns Rev layout (optimized cable design). 
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Figure 11: Optimized Horns Rev wind farm layout. 

 

Figure 12 displays the minimum, average and maximum LCOE value for each generation. None of 

the individuals that were evaluated resulted in an LCOE as high as the LCOE from the existing layout 

(0.0904 $/kWh). 

 

Figure 12: LCOE evolution of Horns Rev wind farm optimization. 

 

The array efficiency for the final design is 90.5% compared to the existing design which was 86.5%. 

A comparison of the cable length, AEP and LCOE of the two layouts can be seen in Table 2. The total 

collection cable length of the improved design is 8.6% shorter than the original layout. The improved 

design results in an estimated 4.7% increase in AEP. As both the cable length and AEP improve, the 

resulting LCOE for the improved layout is 3.7% lower than the existing Horns Rev layout. 

 

 

 

 

 

 

 

 

0.0865

0.087

0.0875

0.088

0.0885

0.089

0.0895

0.09

0.0905

0 1 2 3 4 5 6 7 8 9

LC
O

E 
[$

/k
W

h
]

Generation

LCOE (AVG) LCOE (MAX) LCOE(MIN)



WindEurope

IOP Conf. Series: Journal of Physics: Conf. Series 1222 (2019) 012007

IOP Publishing

doi:10.1088/1742-6596/1222/1/012007

14

 

 

 

 

 

 

Table 2: Horns Rev wind farm layout comparison. 

Parameter Existing Layout Improved Layout 

Cable Length [m] 65611 59943 (91.4%) 

Cable Cost [106$] 38.96 35.59 (91.4%) 

AEP [GWh] 626.91 656.37 (104.7%) 

LCOE [$/kWh] 0.0904 .0871 (96.3%) 

5.2.  Case Study II: Borssele Wind Farm 

The second case study analyzed the Borssele Wind Farm. The Borssele wind farm zone is divided into 

5 smaller wind farm sites. Borssele III and Borssele IV are considered for this paper and will be referred 

to as the Borssele Wind Farm. What is different about the Borssele wind farm compared to Horns Rev 

is that the Borssele wind farm has not yet been constructed.  So, although an existing design cannot be 

validated like it was for Horns Rev, the data made available for the design tender [31] is used along with 

a proposed baseline wind farm design obtained from Perez-Moreno et al. [32] to analyze different 

layouts. The baseline wind farm layout (seen in Figure 13) was a rectilinear layout that comprised of 74 

5-MW turbines.  

Similar to the first case study, the analysis of Borssele wind farm was also limited by time constraints 

on the optimization. In the case for Borssele wind farm, 2200 individual wind farm layouts were 

evaluated over 11 generations, with the best layout seen in Figure 14.  

 

Figure 13: Baseline Borssele wind farm layout. 
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Figure 14: Optimized Borssele wind farm layout. 

 

Figure 15 shows the minimum, average and maximum LCOE result for each generation, all of which 

are lower than the LCOE for the baseline layout (0.0955 $/kWh). As was the same in Case Study I, the 

initial individual simulated was very similar to the baseline layout which is why the maximum value in 

the first generation is similar to the LCOE of the baseline layout. It should be noted that the LCOE cost 

for the Borssele wind farm does not consider transmission costs (or losses) because the transmission 

was provided by another project. Also, the project proposal has a maximum bid for the cost of electricity 

of 0.11975 €/kWh [31], which indicates that the results from the model are within an appropriate range 

of expectations. 

 
 

 

Figure 15: LCOE evolution of Borssele wind farm optimization. 

 

The array efficiency for the final design is 93.2% compared to the existing design which was 89.0%. 

A comparison of the cable length, AEP and LCOE of the two layouts can be seen in Table 3. The total 

collection cable length of the improved design is 8.2% shorter than the baseline layout. The improved 

design results in an estimated 4.8% increase in AEP. As both the cable length and AEP improve, the 

resulting LCOE for the improved layout is 5.5% lower than the baseline Borssele rectilinear layout. The 

influence of each parameter on the LCOE will be explored further in the observations in the following 

section. 
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Table 3:Borssele wind farm layout comparison. 

Parameter Baseline Layout Improved Layout 

Cable Length (m) 107540 98705 (91.8%) 

Cable Cost (106$) 89.40 82.05 (91.8%) 

AEP (GWh) 1441.6 1511.2 (104.8%) 

LCOE ($/kWh) 0.0955 0.09028 (94.5%) 

 

5.3.  Case Study Observations 

In both case studies results indicate that optimizing the positions of the individual turbines within the 

wind farm provides both a higher AEP and lower cable costs. The original expectation was that these 

two variables were contrasting and that one may have to worsen in order for the other to improve and 

lower the LCOE. However, in both cases the contrasting variables both improved making it difficult to 

know which variable has a greater impact on the LCOE. 

Upon analysis of Figure 16 and Figure 17, the average AEP results for each generation trend upwards 

(improves) as the optimization continues for both wind farms. The average cable cost on the other hand, 

has a less distinct trend for Borssele but trends upwards (worsens) for Horns Rev. This would indicate 

that in the case of Horns Rev, increasing the AEP was of more influence than lowering cable costs in an 

effort to minimize the LCOE.  

 

 

 

Figure 16: Horns Rev wind farm – AEP and cable cost evolution. 
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Figure 17: Borssele wind farm – AEP and cable cost evolution. 

 

This relationship can be observed in Equation 1 which shows that the LCOE corresponds to the 

relationship of the ICC divided by the AEP. As noted above, the intra-array cable costs are only a 

fraction of the ICC which results in the LCOE being more sensitive to variations in the AEP than the 

collection cable costs. 

The AEP for each wind farm varied no more than 7% once the optimization had abandoned the 

original rectilinear layout. The cable costs varied much more than the AEP, by 18% and 19% for the 

Horns Rev and Borssele wind farms respectively. 

As both the AEP increased and the cable cost decreased for each design relative to the existing 

layouts, both wind farms saw a decrease in the LCOE which was the anticipated outcome from the 

optimization. The optimized layout for Horns Rev experienced a decrease in LCOE of 3.7% and 

Borssele 5.5%. The difference in the WFLO-driven LCOE decrease between the present work and the 

results of Pillai et al. [12] may be attributed to the fact that both Horns Rev (80 turbines, 160 MW) and 

Borssele (74 turbines, 370 MW) are much larger than Middelgrunden (20 turbines, 40 MW) and would 

experience much more wake interaction.  The increased wake interaction and variability for cable design 

of the larger farms would be expected to provide larger potential for savings if the layout is optimized. 

The results of two case studies indicate that rectilinear wind farm designs are not optimal with regards 

to minimizing the LCOE. Despite these findings, which agree with the prior research, rectilinear wind 

farm layouts are still the industry standard for offshore wind farms. This may be a result of the industry 

being conservative in nature and as such, hesitant to transition away from the traditional designs. 

Although the observations from this work indicate that the traditional designs are not optimal from a 

cost of energy standpoint, they may be considered optimal for other valued variables, such as planning, 

financing or aesthetics. This trend may change in the future as more accurate models are developed that 

provide more assurance and information on new design strategies to help the industry become more 

economically viable. 

6.  Conclusions 

The objective of the work was to explore the advantages of optimizing the positions of the individual 

wind turbines within an offshore wind farm. In order to perform analysis on different wind farms, a 

model was developed that is capable of simulating an existing offshore wind farm by converting external 

input data into a representative LCOE. The model which outputs LCOE is used in an optimization 

framework to optimize the positions of the individual turbines within the wind farm with the objective 

of minimizing the LCOE. Upon consideration of accuracy, availability of data and computing 

86.4

86.6

86.8

87

87.2

87.4

87.6

87.8

1480

1490

1500

1510

1520

1530

1540

1550

1 2 3 4 5 6 7 8 9 10 11

C
ab

le
 C

o
st

 [
$

 1
0

^6
]

A
EP

 [
G

W
h

]

Generation

AEP (AVG) Cable Cost (AVG)



WindEurope

IOP Conf. Series: Journal of Physics: Conf. Series 1222 (2019) 012007

IOP Publishing

doi:10.1088/1742-6596/1222/1/012007

18

 

 

 

 

 

 

restrictions, the Jensen Wake-deficit Model and a hybrid cable layout heuristic were incorporated into 

the physical component and an NREL cost scaling model was included into the economic component. 

A genetic algorithm was selected for the wind farm layout optimization component. 

Horns Rev and Borssele wind farms were used as case studies to explore the advantages of optimizing 

the positions of the individual turbines within an offshore wind farm. The wind farm layout optimization 

results show that: 

• Optimized wind farm layouts resulted in a reduction of collection cable length relative to the 

baseline rectilinear layout of 8.6% for Horns Rev and 8.2% for Borssele. 

• Optimized wind farm layouts resulted in an increase in the Annual Energy Production relative 

to the baseline rectilinear layout of 4.7% for Horns Rev and 4.8% for Borssele.  

• Optimized wind farm layouts resulted in a decrease in the Levelized Cost of Electricity relative 

to the baseline rectilinear layout of 3.7% for Horns Rev and 5.5% for Borssele. 

The initial expectation was that the contrasting nature of the wake effects and the collection cable 

costs would result in the improvement of one value at the expense of the other that would ultimately 

lead to an improved LCOE. However, the results from the model indicate that both the wake effects and 

collection cable costs were improved by applying an optimized layout in both case studies. The LCOE 

savings were higher than the results of Pillai et al. for Middelgrunden wind farm (1-3.5%). This 

difference may be explained by the size and shape of the Horns Rev and Borssele wind farms relative 

to the Middelgrunden wind farm. The larger wind farms studied in this paper provide increased potential 

for savings through farm layout optimization layout because of the increased wake interaction and cable 

design variability.   

The results observed from the model in both case studies indicate that there is potential for reducing 

the levelized cost of electricity for offshore wind farms by optimizing the positions of individual wind 

turbines within the layout. However, it is important to consider the assumptions and limitations of the 

implementation of the model used for analysis. 

The following assumptions and limitations should be considered as they relate to the validity of the 

model and the qualitative results: 

• The model was validated against the measured data from one wind farm due to limitations on 

available data. It is important that the current model is compared with measured data from more 

wind farms in order to compare the results and determine the model’s accuracy.  

• The assumption that the foundation costs for each turbine were the same regardless of the 

bathymetry and soil conditions may cause large discrepancies in the LCOE results. However, 

the rectilinear constraints are unlikely to provide a better result if the individual turbine 

foundation costs are considered. 

The subsequent assumptions and limitations should be considered as they relate to the accuracy of 

the model and the quantitative results: 

• The optimization framework was constrained by time which limited the effectiveness of the 

application of the genetic algorithm. Using a more powerful computing device and having 

longer simulation times would allow for improved optimization results. 

• The accuracy of the LCOE results are limited by the uncertainty of the input values incorporated 

into the economic model which vary based on the existing market and wind farm location. This 

is less relevant for relative comparisons, however could provide increased value by having the 

model LCOE be representative of the actual wind farm LCOE. 

• The application of a simplified cable loss sub-model provides limited accuracy for the total 

electrical losses experienced in the collection cable network. However, in both case studies the 

cable length was reduced relative to the existing layout, therefor it is expected that improving 

this sub-model would result in increased value for optimizing the turbine locations. 

Despite the limitations and assumptions, the results provide valuable insight into the benefits of wind 

farm layout optimization as the same parameters and conditions were applied to each simulation. 
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