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Predicting Higher-Order Dynamics With Unknown
Hypergraph Topology

Zili Zhou", Cong Li", Member, IEEE, Piet Van Mieghem ", Fellow, IEEE, and Xiang Li", Senior Member, IEEE

Abstract— Predicting future dynamics on networks is chal-
lenging, especially when the complete and accurate network
topology is difficult to obtain in real-world scenarios. More-
over, the higher-order interactions among nodes, which have
been found in a wide range of systems in recent years, such
as the nets connecting multiple modules in circuits, further
complicate accurate prediction of dynamics on hypergraphs.
In this work, we proposed a two-step method called the topology-
agnostic higher-order dynamics prediction (TaHiP) algorithm.
The observations of nodal states of the target hypergraph are
used to train a surrogate matrix, which is then employed in the
dynamical equation to predict future nodal states in the same
hypergraph, given the initial nodal states. TaHiP outperforms
three latest Transformer-based prediction models in different
real-world hypergraphs. Furthermore, experiments in synthetic
and real-world hypergraphs show that the prediction error of
the TaHiP algorithm increases with mean hyperedge size of
the hypergraph, and could be reduced if the hyperedge size
distribution of the hypergraph is known.

Index Terms— Nonlinear system, dynamics on networks, pre-
dicting higher-order dynamics, contagion, hypergraph.

I. INTRODUCTION

HE study of dynamical processes in networked sys-

tems is fundamental in complexity science [1], [2].
Examples include the cascading failures in power systems
[3], the propagation diseases in complex networks [4] and
synchronization in coupled oscillator networks [5], [6]. The
dynamical processes on networks are determined by two
independent parts: the topological structure of the network and
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the fundamental physical rule that governs the system. A sig-
nificant amount of research [7], [8], [9], [10] is dedicated to
investigating the influence of the network structure on dynam-
ical processes, assuming prior knowledge of the network
topology.

One of the crucial challenges in the study of dynamical
processes is the prediction of future dynamics on networks,
such as predicting cascading failures in power grids [11] and
predicting the spread of an infectious disease on a human
contact network. In a network of N nodes, we denote the nodal
state of node i at time ¢ by x;(¢). The adjacency matrix of the
network is denoted as A with elements A;;, where A;; = 1 if
nodes i and j are connected, otherwise A;; = 0. The intricate
interplay between network structure and physical rules that
govern the system could be captured in the following equation,
which characterizes a general class of dynamical process on
networks [12], [13], [14]

dx; (1) il
— = = f M)+ D Aig (i, x;0) (D)

dt o

where f(x;) represents the internal dynamics of node i,
and the interaction between node i and any other node j
depends on the adjacency matrix A and the interaction function
g(x; (1), x;(t)). For certain complex systems, the underlying
functions f and g in (1) are unknown. Additionally, the
majority of real-world network topologies is complicated, and
a sufficiently accurate network reconstruction is a difficult task
[15]. These factors further complicate the accurate prediction
of complex system dynamics.

In system where the dynamics has been modeled by (1),
it appears intuitive to first infer the topology of the net-
work and then predict the dynamics based on the inferred
topology. However, recent research [16] has demonstrated
that a general class of autonomous dynamics without any
control, including the Lotka-Volterra model of population
dynamics [17], the susceptible-infected-susceptible model of
epidemic spreading [4] and the Kuramoto model of synchro-
nization phenomena [18] could be accurately predicted with
the observations of dynamics on an unknown network while
the functions f and g in the governing (1) are known. This
prediction was achieved by a surrogate network, which was
derived by fitting past observations of nodal states to the
dynamical process. Counterintuitively, despite the significant
divergence between the surrogate topology and the network
topology, the prediction remained accurate. This method relied
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on a powerful tool for discovering low-dimensional structures
in dynamics, the proper orthogonal decomposition (POD) [19]
and applied to static networks.

The aforementioned study assumed that dynamic processes
are on networks with pairwise interactions. Recent stud-
ies [20], [21], [22], [23], [24] have indicated that pairwise
interactions may inadequately capture the intricate depen-
dencies among nodes in certain systems, and the existence
of higher-order interactions has been proved to profoundly
influence the dynamics of networked systems, from the cas-
cading failure problem in power systems [25], diffusion [26]
and synchronization [27], to social processes [28]. To cap-
ture higher-order interactions among nodes, more advanced
mathematical structures, such as hypergraphs and simplicial
complexes [20] were developed (See detailed definition of
hypergraph in Section II-A). In the field of circuits, higher-
order structures were used to construct topological insulators
[29], [30]. The multiple modules in a circuit netlist can be
represented as a hypergraph, where the nodes correspond to
the modules and the hyperedges correspond to the interconnec-
tions among modules, and the hypergraph model has been used
in the circuit partitioning problem [31], [32], [33], which is one
of the central problems in very large scale integration circuit
(VLSI) system design. However, the prediction of dynamics
on hypergraphs has not been fully studied. Whether the pre-
diction of higher-order dynamics is similar to the prediction of
network dynamics, which can be carried out without network
topology [16], is a question deserving extensive research.

In this work, the prediction of higher-order dynamics on
hypergraphs refers to the prediction of future nodal states of
a hypergraph. In fact, the temporal evolution of a nodal state
is also a time series. From this perspective, the prediction of
higher-order dynamics on hypergraphs is a multivariate time
series forecasting problem, where each variate is the state of a
node in the hypergraph. In recent years, various deep learning
models [34], [35], [36], [37] have been developed to solve the
time-series forecasting problem. Most of them are categorized
as data-driven methods [38], as they rely exclusively on train-
ing datasets as input to predict other datasets, disregarding the
underlying processes that generate the time series. However,
when specific knowledge about the generation of the time
series is available (e.g., the governing equations of a dynamical
system), a question arises consequently: how can such prior
knowledge be integrated into the prediction method?

The approach proposed in [39] was an attempt to imple-
ment this idea. This approach extended the method in [16]
to hypergraphs, but only applied to limited-size synthetic
hypergraphs with 100 nodes, consisting of size-2 and size-
3 hyperedges. Due to the space complexity of O(2"), the
scalability of this method was severely constrained for larger
networks. However, hyperedges that contain more than 3 nodes
are abundantly present in real-world hypergraphs, and most of
the hypergraphs contain far more than 100 nodes (see Table I
for structural features of real-world hypergraphs). Therefore,
it remains a challenge to predict the future states of nodes in
real-world hypergraphs with unknown topological structures,
where hyperedges of any orders may exist.
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In this work, we propose a novel method, called
Topology-agnostic ~ Higher-order =~ Dynamics  Prediction
(TaHiP) algorithm, to predict the dynamics of a contagion
processes [40] on general hypergraphs, including real-world
hypergraphs and synthetic hypergraphs with different
structural features. The main contributions of this work can
be summarized as follows:

o Unlike most of the purely data-driven deep learning
models, the proposed TaHiP algorithm incorporates the
governing equation of dynamical process and predict the
future states of nodes (with the form of time-series)
on a hypergraph with unknown structure. In various
real-world hypergraphs, TaHiP greatly outperforms three
latest data-driven time-series forecasting methods used
as baselines [35], [36], [37]. Furthermore, TaHiP needs
less data input (an N x 1 initial state vector) to predict
than the baseline methods, and its single-layer structure
leads to less training time and less storage space than the
multi-layer baseline models.

o Specifically, as the topological structure of the hyper-
graph is unknown, we constructed a surrogate matrix
to replace the unknown incidence matrix. We embedded
the elements of the surrogate matrix of a hypergraph
in exponential forms into the governing equation of the
system. The elements in this matrix are then continuously
optimized using the node state observation data of the
target hypergraph. Finally, the optimised surrogate matrix
is used to predict future states of nodes of the hypergraph.

o Following the definition of hyperdegree, we define the
predicted hyperdegree of node based on the optimized
surrogate matrix generated by TaHiP. We calculate
the Pearson correlation coefficients between metrics
including he hyperdegree (HD), the predicted hyperde-
gree (PHD), the higher-order H-index (HOH) and the
higher-order PageRank (HOP), and find that PHD is
highly correlated with HD and HOP when the prediction
is accurate.

The rest of the paper is organized as follows. Section II gives
the problem statement and introduces the proposed TaHiP
algorithm. Section III first reports a few structural features
of the adopted hypergraphs, and then shows the performances
of TaHiP on real-world hypergraphs, which are compared with
other prediction methods. Section IV analyses the relation
between the surrogate matrix obtained by TaHiP and the
hypergraph topology. Finally, Section V concludes the paper
and stipulates future directions.

II. TOPOLOGY-AGNOSTIC HIGHER-ORDER DYNAMICS
PREDICTION

A. Problem Statement

A hypergraph H = (V, ) is defined as a set of nodes
V = {v;} and a set of hyperedges & = {e;}, with N = |V
being the number of nodes and E = |£| being the number
of hyperedges. We denote & as the set of hyperedges that
contain the node i, and the cardinality of a hyperedge e; as
lej|. Formally, the incidence matrix B € RN*E of hypergraph
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‘H can be denoted as

]‘7
Bij = 0

By its definition, each column in the incidence matrix B
represents a hyperedge in the corresponding hypergraph, and
each row in B shows the specific hyperedges to which a node
belongs. We refer to Appendix A and [41] for more properties
of the incidence matrix.

In this work, we adopt a contagion process on hypergraphs
in [40] as our target dynamics to be predicted. In this process,
the nodal state x; () represents the probability of an individual
to be active at time 7. The contagion process can be written
as the form of (3) in Section I, with the self-dynamics of
node i being f(x;(t)) = —8x;(¢), in which § denotes the
curing rate of an individual, and the interaction function

g(x; (1), x](t)) = B(1—xi()) Ze & Hvkeej xi(t) is the

product of the probability that node i is 1nact1ve and the other
nodes in the hyperedge e; are active times a contact rate, S.
Hence, we have

dx; (1) = —8x;() + B (1 — xi (1)) Z H xx(). 3)

dt
ej e&; VkEej
k#i

ifvi Gej

if v ¢ €; (2)

For a hypergraph H with unknown topology consisting
of N nodes, we are given an initial nodal state vector
x(0) = [x1(0), x2(0), - - - , x5 (0)]7 € RY following a specific
distribution and the observed nodal state matrix for training

Xtrain = [X(0), x(1), -+, x(T — )] e RV*T | (4)

which describes a contagion process on this hypergraph, with
x(0) being the initial value. In matrix X¢r4in, €ach column
x(t) € RV stores the states of all the nodes observed at time
t, with the total number of time steps being T'.

To test the accuracy of the prediction algorithm, we obtained
another nodal state vector x'(0) by sampling from the same
distribution as x(0), and then construct X;.;; € RV*T by
generating a contagion process on the same hypergraph H
with x'(0) as the initial value

Xiesr = [X(0), X' (1), -, X (T = D] e RV>T. (5)

The prediction algorithm is supposed to output a matrix
Xpred = [X'(0), Xp(1), -, xp,(T = D] e RVT . (6)

given the initial nodal state vector x'(0), which is the same
as X;esr. Finally, the accuracy of the prediction algorithm is
measured by different metrics computing the error between
Xiesr and Xpeq. We refer to Fig. 1 for more details of the
generation of the aforementioned datasets.

B. Iterative Equation of the Contagion Process

The equation (3) of the contagion process defines the influ-
ence of other nodes on node i by first calculating the product
of the states of other nodes that share the same hyperedge
as node i. Then, the resulting products are summed based on
the hyperedge to which node i belongs. However, (3) must be
transformed to a general form of x(¢ + 1) = F(x(¢), B) to

1695

compute the observed nodal state matrix X;,4i, of a contagion
process, so that given the nodal state vector x(¢) € RV at any
time ¢ and the incidence matrix B, the nodal state vector at
next time step, X(# + 1) can be directly calculated.

First, we approximate the derivative C% in (3) by a
difference quotient,

xi(t+1)—x;(t)
At

= +BU—x0) > [] w0,

6]'651' vkee.j
k#£i

)

where At denotes the time interval. (7) can be rewritten as

xi(t+1) = (1= 8A0x (1) + AB(L—x; (1)) D [ x®.

e; €& VkEej
ki
®)

To transform (8) to the form of x(r + 1) = F(x(z), B),
the term zej c&; [ vkee; xic(¢) that describes the influence of
b

other nodes on node il must be simplified to a general term
that applies to any node in the hypergraph, regardless of its
location.

The incidence matrix B allows to compute the product of
nodal states of any hyperedge e; in the hypergraph as

[T = = ka o). ©)

Vi €e;

If By; = 0, implying that node v is not in hyperedge e,
then we have x,f (1) = Xy () = 1, which will not affect the
product in (9). If B;; = 1 and node k is in hyperedge e},
then x,f"f' (t) = x\(t) = xx(t), which will be included in the
product. Applying (9) to all the hyperedges yields a vector

N
Hxlfkl (®), Hkaz(t) i Hxlka )] € RIXE

k=1

prod

(10)

We denote the sum of products of nodal states within all
the hyperedges that node vx belongs to as

N
se= > [[x7® .

(11)
eje& k=1
and the vector consisting of s(i) of all the nodes
= [s1,5, -~ sn] e RV (12)
which can be written in matrix form as
s =Beproq - (13)

Moreover, the state of node i itself need to be eliminated
from the product, and we obtain the general term that describes
the influence of other nodes on any node i

1
P IEGCE =+ Berod)i

ej Eg vk €e;
ki

(14)
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where (Bep,oq); denotes the ith element of the vector Bepoq.
(14) is then substituted back into (8)

xi(t+1) =10 =8A0)x (1) + Atﬁ l(l)( )(Beprud)i ;
(15)
and written in matrix form as
xt+1)=(1-58A0x() + At,B X )( )Be,,md. (16)
Equation (16) transforms (8) to the general form of
x(t+1)=Fx@®), B), a7

which leads to an immediate calculation of the nodal state
vector x(z+1) given x(#) and the incidence matrix B. We refer
to (16) as the iterative equation of contagion process, which
will be repeatedly used in the generation of the observed data
and the prediction algorithm.

C. TaHiP Algorithm

As the topology of the target hypergraph is unknown,
we aim to find a surrogate matrix B to replace the inci-
dence matrix of the hypergraph. The surrogate matrix can
be substituted into (16) along with any initial nodal state
vector to generate predictions for future states of nodes in the
hypergraph. The framework of TaHiP algorithm is illustrated
in Fig. 1. The algorithm consists of three steps

1) Initialization of the surrogate matrix B.
To initialize the surrogate matrix B € RN*E from
a zero matrix, we first generate a set, Csample =
{le1l, leal, - -- , lee|} by sampling from a Poisson dis-
tribution with a fixed parameter A, f(n;A) = Pr[X =
n] =
matrix, we randomly select |e| elements to be replaced
by 1. After performing this operation for all columns,
we obtain an initialized binary matrix ﬁo. The choice of
other distributions for initialization will be discussed in
Section III-D.

2) Training, with the optimization of the surrogate
matrix B.
The optimization of the surrogate matrix is the core
of the proposed algorithm. As is shown in the left of
Fig. 1, the matrix X;4in € RY*T obtained by the
observation of nodal states in the unknown hypergraph
is the input of the algorithm. For each training epoch,
a submatrix Xgumpre € RNk g randomly sampled from
X:rqain, consisting of k consecutive nodal state vectors.
Here, k is referred to as the random window length. For
each vector in the first k —1 vectors in Xgqmpre, namely,
X1, X2, -+, Xg—1, we apply Eq. (16) with the current
surrogate matrix B resulting in vectors Xp, X3, - -+ , Xg.
Then, we use the MSE (mean square error) loss to
measure the discrepancy between the prediction X; and
the ground truth x;. The loss of each vector pair, denoted
as MSE(x;,X;), is gathered to get the overall objective
loss Z{F:z MSE(x;,X;), which is used for the backward
process. The elements in B will be updated in the end

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 72, NO. 4, APRIL 2025

of each training epoch by éi Jupdated) = éij + o *x
(8L0ss/8]§),-j, in which « denotes the learning rate.
We used the Adam algorithm [42] as the optimizer. The
maximum number of epochs is set as 1000 to assure
the convergence of loss. We have tested the impact of k
have on the prediction performance. The results showed
that different values of k had no significant effect on the
performance of TaHiP. Therefore, we set k as 100 to get
an acceptable time of training. We refer to Appendix B
for the convergence analysis of TaHiP, and Appendix C
for the complexity analysis.
3) Prediction with the surrogate matrix B.

We start with the initial nodal state vector x'(0), which
follows the same distribution as the initial nodal state
vector xX(0) of X;r4in. The predicted nodal state matrix
Xprea € RV*E is obtained by iterating (16) with the
optimized surrogate matrix B and the initial value of
x'(0) for T times. Meanwhile, the matrix X;.;; € RV*E
used as the ground truth is obtained by iterating (16)
with the incidence matrix B of the hypergraph and the
initial value of x'(0) for T times. Finally, we calculate
the MSE and MAE (mean absolute error) between the
matrix Xy.s; and the matrix X, as metrics, to evaluate
the performance of the proposed TaHiP algorithm.

The pseudocode of optimization of the surrogate matrix is
provided in Algorithm 1.

Algorithm 1 Training Part of TaHiP
Input:
By € RV*E: the initialized surrogate matrix;
Xtrain € RVXT. the observed nodal state matrix for
training;
M: training epochs;
o: learning rate;
F: the function for iteration, defined in Eq.(16) and
Eq.(17).
Output:
B € RV*E: the optimized surrogate matrix.
1: while m < M do
: Xyamplte <-randomly select N x k submatrix from

Xirains

3 g« 1;

4: Loss < 0O;

5: whilquk—ldp

6: Xg4+1 < F(x4,B)

7: Loss < Loss + MSE(X;y1,Xg41)

8: q <—q-+1

9: Backward with Loss, update elements in B by
B,,(u,,dmgd) = B,j + o * (8Loss/8B),j using Adam
optimizer

10: m<«—m+1

11:  end while
12: end while

There are a few remarks worth emphasizing. The initialized
surrogate matrix Bg is binary. Thus, it can be regarded as
an incidence matrix of a random unweighted hypergraph.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 01,2025 at 10:00:13 UTC from IEEE Xplore. Restrictions apply.
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a) Datasets generation ' Xirain
F(x'(0), B) F(x'(1),B) ko
x'(0) (1) " X(T—-1)
¢ Xtest f— ﬂ
""""" |
- I
©  Keampie L el Loss = Z MSE(x, %) :
- _ =2 B
"""" \\\\ Xy = F(Xk_1,B) |
S Optimise |
o %5 |%3 |%a %1 1
b) Tra Inl ng surrogate matrix :
Xiest Prediction error
~ R (MSE, MAE)
. F(x'(0), B) F(xp(1), B) :
X (0) Xp(l) )
Xpred !

Fig. 1.

TaHiP architecture. (a) Datasets generation. The training dataset X;,,i, and the test dataset X;o5; were obtained by applying function F defined

in (17) to the corresponding initial vector x(0) and x'(0) recursively with the incidence matrix B. (b) Training. We first conducted one-step inference with
the current surrogate matrix by X; = F(xx_1, B), and then updated the elements of B according to the constructed loss. (c¢) Prediction. Applying function
F defined in (17) to the initial vector x'(0) recursively with the optimised surrogate matrix B gave the final prediction matrix X pred-

However, during the optimization process, the elements of ﬁo
will be updated according to the calculated gradients, leading
to a real matrix B, which no longer corresponds to the topology
of any hypergraph as an incidence matrix.

In the definition of incidence matrix (2), a hyperedge
is modelled by a vector consisting of binary elements that
determine whether a node is in the hyperedge. We consider
this way of representing as a discrete form of modeling
higher-order interactions between nodes. In a more general
sense, the intensity of interactions between nodes should be
more precisely described with real numbers, including negative
values. Therefore, the proposed TaHiP algorithm does not
impose any constraint on the elements of the surrogate matrix.
This setting distinguishes the TaHiP algorithm from existing
studies on hypergraph structure inference [43], [44], [45] or
hyperedge prediction [46], [47], [48]. We do not focus on
the topology of the target hypergraph, but on constructing a
surrogate matrix that can be used for predicting dynamics in
the hypergraph.

III. EXPERIMENTS AND RESULTS
A. Structural Features of Real-World Hypergraphs

The 6 real-world hypergraphs in this work are derived
from empirical data from various domains, and were collected
by the author of [49]. The contact-high-school and contact-
primary-school datasets are hypergraphs of groups of people in
contact at a high/primary school. The email-Enron and email-
Eu datasets are hypergraphs of sets of email addresses on

emails. The senate-bills and house-bills datasets are hyper-
graphs modelling bill cosponsorship in the US House/Senate
of Representatives. For each hypergraph, we report a diverse
range of structural properties such as number of nodes, hyper-
edges and their sizes, as detailed in Table I. The definitions
of some features are listed below.

Definition 1 Hyperdegree: For a node i in a hypergraph,
the set of all the hyperedges that contain node i is denoted
as &. The hyperdegree dp (i) of node i is defined as the
number of elements contained in & and can be calculated
by dy (i) = ZEZ] B;;. Furthermore, (dy) denotes the mean

J
hyperdegree of all nodes in the hypergraph, given by (dy) =

N e du ).

Definition 2 Hyperedge Size: The hyperedge size |e;| =
lez 1 Bij is the number of nodes contained in the hyperedge
e;. Additionally, |e;|nqy is the maximum hyperedge size in
the hypergraph, (|e;|) denotes the mean hyperedge size with
(lejly = %Zle lejl, and %le;| = 2 is defined as the
ratio of the number of size-2 hyperedges to the number of
all hyperedges, which indicates the proportion of low-order
interactions among all interactions.

Definition 3 Hyperedge Density [50]: The hyperedge den-
sity p is defined as the ratio of the number of hyperedges to
the number of nodes, i.e., p = E/N.

Table I shows that the selected real-world hypergraphs
exhibit differences not only in basic parameters such as the
number of nodes and hyperedges, but also in higher-order
structural features such as mean hyperdegree and mean
hyperedge size.
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TABLE I
STRUCTURAL FEATURES OF 6 REAL-WORLD HYPERGRAPHS
N E_ du)  p  lejlman (lejl)  Tlejl =2
contact-high-school 327 7818 55.63 2391 5 2.3 0.703
contact-primary-school 242 12799  127.0  52.89 5 2.4 0.61
email-Enron 148 1512 30.74  10.22 18 3 0.535
email-Eu 998 25027 8531 25.08 25 2.33 0.510
senate-bills 294 21721 731.8 73.88 99 9.90 0.151
house-bills 1494 54933 8143  36.77 399 22.1 0.139
TABLE II We use two metrics, namely, MSE and MAE to measure the
CONTACT RATE § SET FOR EACH performance of the TaHiP algorithm. Specifically, we compute
REAL-WORLD HYPERGRAPH the error between the matrix X, and the matrix X,,.s by
hypergraph 8
contact-high-school 0.1 MSE(Xiests Xpred) =
contact-primary-school 0.05 N T .. NN
email-Enron 0.25 Zi:l Zj=1 Kest (i, J) — Xpred(ls ) (18)
email-Eu 0.05 NxT ’
senate-bills 0.075 N T
house-bills 0.2 1 L
MAEXest» Xpred) = Xiest (@, J) — Xpred|-
N xT
i=1 j=1
(19)
0.8
C. Comparing the Performance of TaHiP With Other
206 Prediction Methods
8 1) Comparing With Network Dynamics Prediction Method:
g 04 . .
2 In recent years, an increasing body of research from var-
o ious domains have supported the existence of higher-order
interactions in different systems. On the one hand, there is
010 evidence [51], [52] suggesting the modelling of higher-order
© 200 400 600 800 1000 1200 1400 interactions might in some cases be redundant, and may be
fully described by combination of pairwise interactions. In the
Fig. 2. Nodal states of contagion process with f = 0.1 and § = 1in  ¢ontagion process on hypergraphs studied in this work, is it

hypergraph contact-high-school. Each grey curve is the temporal evolution of
a nodal state, and the red curve shows the change of mean nodal state x; (¢)
over time.

B. Experimental Settings

The observed nodal state matrix X4, iS generated the
same way as Xs¢, Dy iterating (16) with the incidence matrix
B of the hypergraph and the initial value of x(0) for T
times. The elements of all the initial nodal vectors (x(0) of
X rain, X' (0) of X;es; and X,req) are sampled from a uniform
distribution U (0, 0.3), and the total number of time steps T
is set as 1500. The time interval At is set as 0.001.

We fix the curing rate § as 1 and adjust the contact rate j to
control the relative strength between the curing (deactivation)
process and the infection (activation) process. The contact rate
B directly affects the contagion process in the hypergraph,
which can be quantitatively described by the temporal evolu-
tion of the mean nodal state x;(t) = % Z,NZI xi(t). A larger 8
enables all nodes in the hypergraph to reach different steady
states more quickly, while a smaller 8 may hinder the con-
tagion process, with the mean node state x; (f) monotonically
decreasing over time. We set B for each real-world hypergraph
in Table II to ensure that x;(r) reaches a steady state in time
[T/2,T].

To illustrate, we plot the contagion process with § = 0.1 in
hypergraph contact-high-school in Fig. 2.

necessary to explicitly model the higher-order interactions
among nodes?

The SIS (Susceptible-Infected-Susceptible) model in net-
works is one of the dynamics that can be accurately predicted
without knowing the network topology in [16]. The governing
equation of SIS model is shown as

dxi (1)

N
o =—5xi(t)+(1—xi(t))ZAijxj(t)~ (20)

j=1
The equation of the contagion process on hypergraphs, i.e.,
(3) extends (20) to hypergraphs, by replacing the x;(¢) term
of single node state (according to the definition of pairwise
interaction) by the products of nodes in the same hyperedge,
ergj xi(¢). Suppose we are given the observed data of a

ki
contagion process on hypergraphs X;4in € R , without

knowing the underlying process. We adopt the method pro-
posed in [16] to predict the nodal state matrix X,eq € RNXT
assuming the underlying process is the SIS epidemic process
without higher-order interaction. If the prediction is accurate,
then the modelling of higher-order interaction in the contagion
model will be unnecessary.

The prediction of dynamics on hypergraph contact-high-
school is illustrated in Fig. 3, which shows that the
network dynamics prediction method is incapable of pre-
dicting the higher-order contagion process. Predictions on

NxT
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Fig. 3. Prediction of dynamics on hypergraph contact-high-school by the
network dynamics prediction method proposed in [16]. The black curves are
the true nodal states x; (), and red curves are the predictions of the corre-
sponding nodes. For clarity, 12 randomly chosen nodal states are depicted.

other 5 hypergraphs are similar to the prediction on hyper-
graph contact-high-school. Thus, we demonstrate that the
higher-order contagion process cannot be predicted with
unknown topology by the method designed for networks,
assuming only pairwise interactions between nodes. The
higher-order interactions among nodes must be modelled and
studied explicitly.

2) Comparing With Deep Learning Prediction Algorithm:
We compared the performance of TaHiP to three lat-
est Transformer-based models for multivariate time series
prediction:

e« Zeng et al. [35] (LTSFK, 2022): They extracted the
temporal relations in an ordered set of continuous points,
and introduced a simple one-layer linear model named
LTSF-Linear for the long-term time series prediction task.

o Nie et al. [36] (PatchTST, 2023): They proposed an effi-
cient design of Transformer-based model for multivariate
time series prediction, with segmentation of time series
into subseries-level patches and channel-independence
where each channel contains a single univariate time
series that shares the same embedding and Transformer
weights across all the series.

o Yi et al. [37] (FreTS, 2023): They explored a novel
direction of applying MLPs in the frequency domain for
time series prediction. They investigated the learned pat-
terns of frequency-domain MLPs, and proposed FreTS,
an effective architecture built upon frequency-domain
MLPs for time series prediction.

In this work, we set the parameters of each baseline method
according to the setting on the ILI dataset (adopted by all the
baseline models), which has a similar size (966 time steps) to
the training matriX Xgrain € RV*T ysed in TaHiP algorithm
(1500 time steps). We set the number of input features in the
baseline models according to the number of nodes N in each
hypergraph. The prediction results on various hypergraphs of
TaHiP and baseline models are presented in Table III.

Overall, the TaHiP algorithm outperforms all the baseline
models by metrics of MSE and MAE in all the six real-world
hypergraphs. Furthermore, TaHiP only needs an N x 1 initial
node state vector to start prediction, while the baseline models
require continuous data input (called ‘look-back window’
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« ground truth

0.8 « prediction

o
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>

Node state x;(t)
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Time t/Tmax

Fig. 4. Prediction of dynamics on hypergraph contact-high-school by the
TaHiP algorithm. The black curves are the true nodal states x;(¢), and red
curves are the predictions of the corresponding nodes. For clarity, 12 randomly
chosen nodal states are depicted.

[35] with length of L) to predict future data. Unlike the
baseline models, which rely exclusively on training datasets
and disregard the underlying process that generates the time
series, we have successfully integrated the governing equations
of a dynamical system into the prediction method in TaHiP,
and achieved a better performance. This finding highlights the
importance of combining the prior knowledge of a specific
domain with the training data, and these methods with prior
knowledge may outperform the data-driven methods developed
for general prediction purpose.

We plot the prediction on hypergraph contact-primary-
school in Fig. 4 to show the accuracy of the prediction.
As Table III shows, the TaHiP algorithm predicts with
extremely small MSE errors (around 10~*) on hypergraphs
contact-high-school, contact-primary-school, and email-Eu.
The 3 hypergraphs have small mean hyperedge sizes of 2.3,
2.4, and 2.33, respectively, and high proportions of size-2
hyperedge (%lej| = 2 > 50%). In contrast, the hypergraphs
senate-bills and house-bills have larger mean hyperedge sizes
(9.9 and 22.1) and lower proportions of size-2 hyperedges
(%lej| =2 < 20%). To summarize, the TaHiP algorithm pre-
dicts with higher accuracy on hypergraphs with smaller mean
hyperedge sizes and higher proportions of size-2 hyperedges.
The mean hyperedge size is one of the important indicators of
the complexity of the hypergraph topology, and hypergraphs
with larger mean hyperedge size contain more hyperedges with
higher-order. The existence of higher-order hyperedges, which
contain far more nodes than 2 (the minimum size of a
hyperedge), makes the accurate prediction based on observed
dynamics among nodes more difficult.

To quantitatively study the impact of mean hyperedge size
of a hypergraph on the prediction accuracy, we test the TaHiP
algorithm in different synthetic hypergraphs in Section III-D.

D. Predicting Higher-Order Dynamics With Known
Hyperedge Size Distribution

In the previous experiments, we predict the dynamics
of hypergraphs with completely unknown topology. In this
subsection, we conduct more experiments to explore the
following questions:
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TABLE III

PREDICTION RESULTS OF TAHIP AND BASELINE MODELS ON HYPERGRAPHS. THE BEST RESULTS OF MSE ARE IN BOLD.
IMP. DENOTES THE IMPROVEMENT ON MSE OF TAHIP COIEATPA[]IQEP[; TO THE CORRESPONDING
arti

METHOD, WITH IMP. =1 —

"MSE(Model)
Hypererah N TaHiP LTSF PatchTST FreTS
ypergrap MSE MAE | MSE MAE IMP. | MSE MAE IMP. | MSE MAE IMP.
contact-high-school 327 0.00022 0.0102 | 0.00644  0.0591 96.6% 0.00456  0.0454 95.2% | 0.00612 0.053 96.4%
contact-primary-school 242 0.00017 0.0089 | 0.00556 0.0535 96.9% 0.00589  0.0524 97.1% | 0.00516  0.0443  96.7%
email-Enron 148 0.00806 0.0631 0.01581 0.0928 49.0% 0.01143  0.0703  29.5% | 0.01075 0.0751 25.0%
email-Eu 998 0.00031 0.0124 | 0.00887  0.0621 96.5% 0.00284  0.0265 89.1% | 0.00224 0.0297 86.2%
senate-bills 294 0.00227 0.0215 0.0283 0.1285  92.0% 0.01046  0.0663 78.3% | 0.01259 0.0686  82.0%
house-bills 1494  0.00773 0.0611 0.03021 0.1330 74.4% 0.02992  0.1201 74.2% 0.01888  0.0761 59.1%
=== uniform-random-Poisson P For each m—uniform hypergraph, we use two distinct
10~! 4 —— uniform-random-* e P .
——- uniform-pa-Poisson LemmTTTTE methods of initialize the surrogate matrix. In the first case,
—— uniform-pa-* s ,/,

MSE

Mean hyperedge size

Fig. 5. Prediction errors measured by MSE of TaHiP on synthetic uniform
hypergraphs with different mean hyperedge sizes. The label ‘uniform-random’
or ‘uniform-pa’ indicates the generation method of the hypergraph, while the
suffix ‘-Poisson’ or ‘-*’ refers to the surrogate matrix initialization method of
Poisson distribution or hyperedge size distribution, respectively.

« In real-world applications of the algorithm, limited struc-
tural information of the target hypergraph (for instance,
the hyperedge size distribution) may be known, will the
known hyperedge size distribution (the topology of the
hypergraph is still unknown) improve the prediction accu-
racy of TaHiP?

o We have observed in Table III that the TaHiP algorithm
predicts with higher accuracy on real-world hypergraphs
with smaller mean hyperedge sizes, it is necessary to
validate this finding in more synthetic hypergraphs.

We test the TaHiP algorithm in synthetic uniform hyper-
graphs generated by two distinct methods. The first method
adds each hyperedge by randomly selecting m nodes from
the hypergraph. The second method selects nodes to form
hyperedges with the principle of preferential attachment.
Specifically, the probability of a node i being selected is
defined as

dy (i)

_— 21
SN du())

p(i) =

In both methods, duplicate hyperedges are not allowed.
We refer to the two classes of uniform hypergraph as
uniform-random and uniform-pa (‘pa’ is short for preferential
attachment), respectively. The sizes of all the uniform hyper-
graphs are set as N = 500 and E = 10000.

we assume the hyperedge size distribution of the target hyper-
graph is known, and generate samples from this distribution,
{m, m, -, m} to initialize the surrogate matrix, which
guarantees that the surrogate matrix and the target hypergraph
share the same hyperedge size distribution. In the second case,
where the hyperedge size distribution of the target hypergraph
is unknown, we use a Poisson distribution with A = 2 for
initialization, similar to the experiments in Section II-C.

We continue to use MSE as the measurement of prediction.
The results are showed in Fig. 5. Each MSE is the mean value
of 10 experiments. The method of hypergraph generation is
labeled as ‘uniform-random’ or ‘uniform-pa’, as noted above.
The suffix ‘-Poisson’ or ‘-*’ refers to the surrogate matrix
initialization method of Poisson distribution or hyperedge size
distribution, respectively.

First, in both classes of uniform hypergraphs with dif-
ferent mean hyperedge sizes, the knowledge of hyperedge
size distribution reduces the prediction error MSE (com-
paring ‘uniform-random-Poisson’ with ‘uniform-random-*’,
and ‘uniform-pa-Poisson’ with ‘uniform-pa-*’ in Fig. 5),
especially in hypergraphs with larger mean hyperedge size
(< |lejl >= 6 or 8). This finding demonstrates that the hyper-
edge size distribution of the unknown hypergraph for
initialization can improve the prediction accuracy in uniform
hypergraphs. Second, the prediction error increases with mean
hyperedge size of the hypergraph generally (except for the
‘uniform-pa-*’ case, where the hypergraph with < |e;| >=
6 slightly outperforms hypergraph with < |e;] 4),
which aligns with the results of experiments in real-world
hypergraphs (see Table III). We attribute this finding to the
complicated topology of hypergraphs with higher mean hyper-
edge size, which adds to the difficulty of prediction.

To provide more evidence, we test the performances of
the proposed TaHiP algorithm in real-world hypergraphs,
given the hyperedge size distribution of each hypergraph. The
results are compared with the predictions without hyperedge
size distribution in Table IV, which shows that in all the
hypergraphs except for hypergraph email-Eu, the knowledge
of hyperedge size distribution reduces the prediction errors,
especially in hypergraph senate-bills and hypergraph house-
bills, where the improvements are 83.3% and 76.4%.

Thus, the results in both synthetic hypergraphs and
real-world hypergraphs demonstrate that, the knowledge of
hyperedge size distribution of the unknown hypergraph can

>=
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TABLE IV

PREDICTION RESULTS OF THE PROPOSED TAHIP ALGORITHM WITHOUT/WITH HYPEREDGE SIZE DISTRIBUTION IN
REAL-WORLD HYPERGRAPHS. THE BESTRESULTS OF MSE ARE IN BOLD. IMP. DENOTES THE
IMPROVEMENT ON MSE OF TAHIP wW/E COMPARED TO TAHIP,

WITH IMP. =1 —

MSE(TaHiPw/e)

MSE(TaHiP)
TaHiP TaHiP w/e!

Hypergraph N MSE MAE  MSE  MAE IMP.
contact-high-school 327 0.00022 0.0102 0.00019 0.0093 13.6%
contact-primary-school 242 0.00017  0.0089  0.00010  0.0068 41.2%
email-Enron 148 0.00806 0.0636 0.00673 0.0629  16.5%

email-Eu 998  0.00031 0.0124 0.00031 0.0122 0%
senate-bills 204 0.00227 0.0215 0.00038 0.0124  83.3%
house-bills 1494  0.01594 0.0546 0.00376 0.0394  76.4%

!'wle denotes ‘with hyperedge size distribution’.

improve the prediction accuracy, and the prediction error of
the TaHiP algorithm increases with mean hyperedge size of
the hypergraph.

IV. TOPOLOGY OF THE SURROGATE MATRIX

In Section II-C, we provided detailed description of how
the proposed TaHiP algorithm predicts the dynamics of an
unknown hypergraph accurately by optimizing a surrogate
matrix, B. Does the prediction accuracy imply a similarity
of the surrogate matrix with the true incidence matrix of the
hypergraph?

We here denote the incidence matrix of any hypergraph by
B. The hyperdegree of any node i in this hypergraph can be
computed by summing all the elements of the ith row in matrix
B (see Definition 1).

Definition 4 Predicted Hyperdegree (PHD): Similar to
hyperdegree, we can sum all the elements of the ith row in
matrix B, and refer to this sum as the predicted hyperdegree
of node i, denoted as d}{ @)

E
dAH(l') = Z él'j.
j=1

To quantitatively study the similarity between the surrogate
matrix B and the incidence matrix B, we introduce two node
centrality metrics, including the higher-order H-index (HOH)
[22], and higher-order PageRank (HOP) [22]. The H-index
[53] is originally used to measure the citation impact of a
scholar or a journal, and is adopted in [54] as a node centrality
metric in networks. In this work, we use an extension of
H-index for hypergraphs defined in [22].

Definition 5 Higher-Order H-index (HOH): The HOH of a
node i is the maximum value H, such that there exists at least
H neighbors of the node i with hyperdegrees no less than H.
Here the neighbor of node i is defined as the node that belongs
to the same hyperedge with node i.

Definition 6 Higher-Order PageRank (HOP): Similarly to
PageRank [55], the element of the transition matrix P of a
hypergraph is defined as

(Ag)ij

> i(Arij’
01

(22)

ifi#j,

ifi = j.

P =

where Ag is the adjacency matrix of hypergraph defined in
the Appendix A. The stationary distribution P> is defined by
P> = lim P'.

t—00

The basic PageRank at time ¢ is defined by
pr®) =P prt = 1)

where pr;(t) is the PageRank value of the ith node in
the hypergraph. Considering that there might be a group of
interconnected nodes, the PageRank values remain the same
within the group and will not be changed. A damping factor
s is introduced to avoid this case, and we obtain a revised
PageRank. The steady-state value of the revised PageRank for
each node is defined by

e RV, (23)

pr( = s®@)7 pro) + 022,
where u € RV is a vector with every entry equal to 1, and each
element of pr(0) is 1/N, s € (0, 1) is the damping factor.

We calculate the Pearson correlation coefficients between
each pair of metrics, including the hyperdegree (HD), the pre-
dicted hyperdegree (PHD), the higher-order H-index (HOH)
and the higher-order PageRank (HOP) in the 6 real-world
hypergraphs. The Pearson correlation coefficient reflects the
linear correlation between variables, and has value between -1
and 1. The results are provided in Fig. 6. In all the real-world
hypergraphs in Fig. 6, the Pearson correlation coefficients
between HOH and the other three metrics are relatively low,
revealing its different nature of defining influential nodes from
the other metrics. On the other hand, the Pearson correlation
coefficients between HD and HOP are close to 1 in all the
hypergraphs, reflecting the strong correlation between these
2 metrics.

The PHD metric is computed from the surrogate matrix
generated during the prediction for each hypergraph. In hyper-
graph contact-high-school, contact-primary-school, email-Eu
and senate-bills, where the prediction is accurate (with
MSE< 0.003, see Table IV), the Pearson -correlation
coefficients between HD and PHD, HOP and PHD (see
Fig. 6(a),(b),(d),(e)) are close to 1, and larger than the
corresponding Pearson correlation coefficients in hypergraph
email-Enron and house-bills (see Fig. 6(c),(f)), where the
prediction is inaccurate. The results in Fig. 6 demonstrates
that, if the prediction of the unknown hypergraph dynamics

(24)
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(c) email-Enron

Pearson correlation coefficient
Pearson correlation coefficient

Pearson correlatior coefficient
Pearson correlatior coefficient

Pearson correlation coefficients between each pair of metrics, including the hyperdegree (HD), the predicted hyperdegree (PHD), the higher-order

H-index (HOH) and the higher-order PageRank (HOP) in the 6 real-world hypergraphs.
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Fig. 7. Hyperdegree distribution and the predicted hyperdegree distributions
of hypergraph contact-high-school. The predicted hyperdegree distributions
are obtained by TaHiP without/with hyperedge size distribution, denoted as
‘TaHiP’ and ‘TaHiP w/e’, respectively.

is accurate, then we can obtain the predicted hyperdegree
of that hypergraph, which is highly correlated with the true
hyperdegree of each node in the hypergraph.

For instance, we plot the hyperdegree distribution and the
predicted hyperdegree distribution of the hypergraph contact-
high-school in Fig. 7. Each dot in Fig. 7 is the hyperdegree
or predicted hyperdegree of a node, and the distributions are
obtained by sorting the hyperdegrees of all the nodes by value.
There is a remarkable similarity across the distributions illus-
trated in Fig. 7, which shows that the predicted hyperdegree
can be regarded as the inference of the hyperdegree of a node,
when the prediction of TaHiP is accurate.

V. CONCLUSION AND FUTURE DIRECTIONS

The prediction of contagion dynamics on unknown hyper-
graphs is studied, based on observations of the dynamics.

Node dy(i)
0 vy 1
1 v, 3
1 V3 2
1 Vy 2
1 vy 1

dy(i) = Z By;

Fig. 8. A hypergraph of 5 nodes and 3 hyperedges and its corresponding
5 x 3 incidence matrix B. The hyperdegree of a node i, denoted as dp (i),
is defined in Section III-A.

We propose a prediction framework which consists of two
steps. First, we obtain a surrogate matrix by fitting the
dynamical model to the observations of a contagion process
on a hypergraph with unknown topology. Second, we predict
the dynamics of any contagion process on the same hyper-
graph using the surrogate matrix, given initial values of all
the nodes. The proposed TaHiP algorithm outperforms three
Transformer-based deep learning models [35], [36], [37] in
different real-world hypergraphs, and requires less data input,
training time and storage space. Moreover, experiments in
synthetic and real-world hypergraphs show that the prediction
accuracy of TaHiP can be improved, if the hyperedge size
distribution of the hypergraph is used to initialize the surrogate
matrix. Furthermore, we studied the surrogate matrix obtained
by TaHiP, and found that when the prediction is accurate,
the Pearson correlation coefficient between hyperdegree and
predicted hyperdegree defined in this work is close to 1,
which shows that the hyperdegree distribution of the unknown
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hypergraph could be inferred by calculating the predicted
hyperdegree distribution from the surrogate matrix.

In terms of future directions, first, it is an open question
whether our prediction method applies to other higher-order
dynamics on hypergraphs, including diffusion, synchroniza-
tion, etc. Theoretically, this method works if the incidence
matrix of hypergraph can be embedded into the equation of
the dynamical process. Second, the proposed TaHiP algorithm
predicts with low accuracy on hypergraphs with higher mean
hyperedge size ({|e;|) > 10), how to improve the performance
of TaHiP on hypergraphs with higher mean hyperedge size
needs further works.

APPENDIX A
HYPERGRAPH AND INCIDENCE MATRIX

Fig. 8 shows a hypergraph of 5 nodes and 3 hyperedges and
its corresponding incidence matrix. Note that the size of the
hyperedge e; that contains node v, and v3 is 2, which means
this hyperedge models pairwise interaction between nodes,
similar to an edge in a network. Moreover, a hyperedge is not
equivalent to a complete graph containing the same number
of nodes, as higher-order interactions cannot be accurately
modelled by linear combinations of pairwise interactions [20].

For an undirected graph G of N nodes and L edges, the
unsigned incidence matrix R € RV*L is defined as

if node i and node j is linked by edge ¢,
otherwise.

The N x N adjacency matrix A of the graph G can be
written [41] in terms of the unsigned incidence matrix R as
A=RR” — A, (25)
where A =diag(dy, d» ---, dy) is the degree matrix.
Analogous the definition of adjacency matrix of graph, the

adjacency matrix of a hypergraph, H with N nodes and E
hyperedges can be defined as

(A = es, if node i and node j share eg hyperedges,
Wiy = 0, otherwise.
(26)
Similarly, we have
Ag = BBT — Ay, (27)

where B is the incidence matrix of hypergraph H,
as we have defined in Section II-A, and Ag =
diag(dg (1), dg(2) ---, dy(N)) is the hyperdegree matrix,
where dg (i) is the hyperdegree of node i.
We also find that in the £ x E matrix

M = B”B, (28)
the element M;; is the number of nodes that belong to hyper-
edge i and hyperedge j simultaneously, and each diagonal
element M;; is the size of each hyperedge i.
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APPENDIX B
CONVERGENCE ANALYSIS OF TAHIP

We analyze the convergence of TaHiP using the framework
proposed in [42]. First, the pseudocode of Adam [42] is
provided in Algorithm 2.

Algorithm 2 Adam.
Input:
Stepsize «, with 81, p» € [0,1) being exponential
decay rates for the moment estimates. Stochastic objective
function f(0), with initial parameter vector being 6.
Output:
Resulting parameters 6;.

1: mg < 0 (Initialize 1°" moment vector)

2: vy < 0 (Initialize 2"¢ moment vector)

3: t < 0 (Initialize timestep)

4: while 6; not converged do

5: t<—t+1

6: g < Vofi(0:—1) (Get gradients w.r.t. objective at t)

7. my < Pimy—1 + (I — B1)gr (Update biased first
moment)

8 v < Pavi—1+ (1 — Bo) g,2 (Update biased second raw
moment)

9:  m; < my(1—p}) (Bias-corrected first moment)

10 Uy < v (1 — ﬂé) (Bias-corrected second raw moment)
11: 6 <01 —a- n%,/(\/vT; + ¢) (Update parameters)
12: end while

Given an arbitrary, unknown sequence of convex cost func-
tions f1(0), f2(0),---, f:(0), the goal of Adam is to predict
parameter 6;, which is then evaluated on f;. The regret R(T')
is used to prove the convergence of an optimization algorithm.
R(T) is the sum of all the previous differences between the
prediction f;(6;) and the best parameter f;(6*) from a feasible
set X for all the previous steps. Specifically, R(T) is defined
as

T
R(T) =D [£i0) — fi(6")]

t=1

(29)

where 6% = argmingcx Zthl f1(8). The convergence of an
algorithm is ensured if the average regret, i.e., R(T)/T of the
algorithm converges.

Theorem 1 (Corollary 4.2. in [42]): Assume the function f;
has bounded gradients, ||V f;(0)|l2 < G, ||V f;(@)|loo < G
for all & € R? and the distance between any 0, generated
by Adam is bounded, |16, — Onll2 < D, |16n — Onlloo < Do
for any m,n € {1, 2,---, T}. Adam achieves the following
guarantee, for all T > 1.

R(T) _ o R(T) _

In TaHiP, first, we prove that the cost function of mean
squared error, namely, f(x) = %Zi‘:z(xi — %)% (See
Section II-C 2) and Fig. 1(b) ) is convex.

Lemma 1 (Affine Transformations Preserve  Convex-
ity [56]): If f is convex, then g(x) = f(Ax 4+ b) is also

convex.
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Fig. 9. Train loss and test loss vs training epochs of TaHiP applied to
hypergraph contact-high-school.

Lemma 2 (Non-Negative Weighted Sum Preserve Convex-
ity [56]): If fi1, f2, ---, fx are convex, then f = Bif1 +
Bofa+- -+ B fr is also convex, when By, B2, ---, Br = 0.

As % Zf:z ||x||%is convex, the MSE f(x) = % Zfzz(x,- —
%;)? is convex by Lemma 1 and Lemma 2, which satisfy
the requirement of Adam that the cost function is convex.
Second, we use the gradient norm clipping method to ensure
that the gradients during the training process are bounded,
which satisfy the conditions of Theorem 1. Therefore, the
convergence of TaHiP is guaranteed. We plot the curves of
train loss and test loss during the training processes of TaHiP
in Fig. 9.

Fig. 9 shows that, during the training process of TaHiP, the
test loss decreased simultaneously with the train loss and con-
verged quickly, proving the effectiveness of the algorithm. The
training process of TaHiP being applied to other hypergraphs
is similar.

APPENDIX C
COMPLEXITY ANALYSIS OF TAHIP

The time complexity of TaHiP could be estimated as

TCirain(N,E) = O(k- M - batch_size - 2N + 3N - E))
=O(N - E),
Tcprediction(Ns E) = O(T -N - E) = O(N . E),

where T Cy,4ipn is the time complexity of the training part of
TaHiP, T'Cpredicrion is the time complexity of the prediction
part, the random window length k = 100, the number of
training epochs M = 1000, the size of a batch of training
samples batch_size = 4, prediction time steps 7 = 1500,
the number of nodes N and the number of hyperedges E
vary with specific hypergraph. The training time of TaHiP
increases linearly with the number of nodes of the hypergraph
for prediction.
The storage space of TaHiP is

Space(train) ~ batch_size - N -[4-E - (k+ 1) + 1]
(€29

Space(prediction) ~ N - E - (T + 1) (32)

where batch_size = 4, k = 100, T = 1500, the number of
nodes N and the number of hyperedges E vary with specific
hypergraph. The space complexity of TaHiP is O (N-E), which

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 72, NO. 4, APRIL 2025

increases linearly with the number of nodes of the hypergraph.
We attribute the cost-effectiveness of TaHiP to the limited size
of training parameters (the elements of an N x E matrix).
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