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A novel reinforcement-learning-based compensation
strategy for DMPC-based day-ahead Energy
Management of Shipboard Power Systems

Jianfeng Fu, Dingshan Sun, Saeed Peyghami, Senior Member, IEEE, and Frede Blaabjerg, Fellow, IEEE,

Abstract—Distributed model predictive control (DMPC) has
become a focus in the energy management of shipboard power
systems due to its capabilities for privacy preservation, robust-
ness, and distributing computing burdens to local processors.
DMPC determines control actions in a distributed manner based
on the predictions of system statuses. However, the performance
of DMPC is affected by inaccurate predictions resulting from
uncertain parameters in nominal prediction models. Particularly,
these inaccuracies in predicting propulsion loads and solar panel
generation powers can lead to power imbalances when imple-
menting the control actions determined by DMPC. To address
this challenge, this paper proposed a novel reinforcement learning
compensated DMPC (RL-C-DMPC) to distributively compensate
for the control actions determined by DMPC baseline control,
thereby rectifying the power imbalances caused by uncertain pa-
rameters in nominal prediction models. A value-decomposition-
network-based training and distributed testing mechanism is
designed for our proposed RL-C-DMPC. Furthermore, a method
for range selection of compensation rate is specifically proposed
for the energy management of shipboard power systems. To
validate the effectiveness of our proposed RL-C-DMPC, we
conduct a comprehensive case study utilizing real-life voyage
data and historical solar power generation data in the area of
the voyage to build the environment for training and testing. By
comparing power imbalances between DMPC and RL-C-DMPC,
our results indicate significant reductions in power imbalances so
that frequency stability can be better ensured. Furthermore, via
the case study, we also evaluate the communication robustness
of RL-C-DMPC.

Index Terms—Uncertainties, reinforcement learning, dis-
tributed control frameworks, distributed model predictive control

NOMENCLATURE

Acronyms

ADMM Alternating direction method of multipliers
ARIMA Autoregressive integrated moving average
DG Diesel generator
DMPC Distributed model predictive control
DQN Deep Q Network
MPC Model predictive control
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RL Reinforcement learning
RL-C-MPC Reinforcement learning compensated

model predictive control
RL-C-DMPC Reinforcement learning compensated dis-

tributed model predictive control
SOC State of charge
VDN Value-decomposition network

Sets and Indices

I The set of zones (also the set of agents)
Kt The set of time steps of the prediction horizon

starting from the current time step t

Parameters

KQ
i Estimated advance coefficient for obtaining the

propulsion load of propeller i
K̃Q

i Actual advance coefficient for obtaining the
propulsion load of the propeller in Zone i

npro
i,k Revolution speed of the propeller in Zone i

N Number of zones/agents
NP Maximum number of iterations
P

bat

i The maximum charging power of the battery in
Zone i

P bat
i The minimum charging power of the battery in

Zone i
P

gen

i The maximum generation power of the diesel
generator in Zone i

P gen
i The minimum generation power of the diesel gen-

erator in Zone i
P pro
i,k The predicted propulsion load of the propeller in

Zone i at time step k using the nominal prediction
model

P ser
i,k The service load of Zone i at time step k

P sol
i,k The generation power of the solar panel in Zone i

at time step k using the nominal prediction model
Rgen

i The minimum ramping rate of the diesel generator
in Zone i

R
gen

i The maximum ramping rate of the diesel generator
in Zone i

Sbat
i The lower SOC boundary of the batch of batteries

in Zone i
S
bat

i The upper SOC boundary of the batch of batteries
in Zone i

αi Square cost coefficient of diesel generator in Zone
i
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βi Linear cost coefficient of diesel generator in Zone
i

ϵk Random value for predictions of generation powers
of the solar panel at time step k

ηi Comprehensive coefficient of environment and
propeller parameters

ϕi Estimated parameters of the autoregressive process
of the solar panel in Zone i

ρ Penalty parameter of the augmented Lagrangian
term

ϕ̃i Actual parameters of the autoregressive process of
the solar panel in Zone i

θi Estimated parameters of the moving process of the
solar panel in Zone i

θ̃i Actual parameters of the moving process of the
solar panel in Zone i

ξ1, ξ2 Tolerance gaps of synchronous ADMM

Variables

P bat
i,k The charging power of the batch of batteries in

Zone i at time step k
P gen
i,k The generation power of the diesel generator in

Zone i at time step k
P int
i,j,k The interconnecting power flow from Zone i to

Zone j at time step k
Sbat
i,k SOC of the batch of batteries in Zone i at time

step k

Learning related parameters and variables

P cp
i,t Compensation power rate of the generation powers

of the diesel generator in Zone i at time step t
P cp

i,t Minimum compensation power rate of P cp
i,t

∆P cp
i,t Linear increment of compensation power rate of

P cp
i,t

P̂ bat
i,t Baseline charging power of the batch of batteries

in Zone i at time step t
P̂ gen
i,t Baseline generation power of DG in Zone i at time

step t
P̃ gen
i,t Compensated generation power of DG in Zone i

at time step t
P̃ pro
i,t Actual propulsion load in Zone i at time step t

P̃ sol
i,t Actual generation power of the solar panel in Zone

i at time step t
uF
i,t Actions (outputs) of the DQN of the agent in Zone

i at time step t
vOi,t System state of Zone i at time step t
vPi,t State for predictions of Zone i at time step t
wP

i,t State (input) of the DQN in Zone i at time step t
γ Discount factor of training
σ Signal indicating whether the ramping boundaries

are satisfied

I. INTRODUCTION

In recent years, there has been increasing attention and ap-
plication in the maritime and transportation industries towards
hybrid vessels that combine both conventional and renewable

energy sources [1]–[3]. This shift is in response to the Inter-
national Maritime Organization’s commitment to reduce total
greenhouse gas emissions from international shipping [4], [5].
As part of this trend, hybrid vessels, especially all-electric
diesel-solar vessels, have gained considerable attention in both
research and practical deployment [6]–[8]. However, due to the
intermittent nature of uncertainties of propulsion loads and
renewable energy generation power predictions, it becomes
crucial to develop intelligent energy management strategies
to ensure an optimal, safe, and stable operation of shipboard
power systems.

In the literature, distributed model predictive control
(DMPC) has been extensively studied as an energy manage-
ment strategy for both shipboard and on-shore power systems
because of its capabilities for privacy preservation, robustness,
and distributing computing burdens to local processors [9]–
[11]. The DMPC approach first involves separating the power
systems into several local zones and formulating the local
energy management optimization problems for zones. Then,
these local energy management optimization problems are
solved in a distributed manner by local agents to obtain the
control actions for each zone. Subsequently, the local agents
execute the control actions in a distributed manner. Being a
model-based approach, DMPC relies on nominal prediction
models to predict parameters within a prediction horizon.
Consequently, the accuracy of these nominal prediction models
significantly influences the overall control performances of
DMPC, such as optimality.

One of the main factors affecting the accuracy of the
nominal prediction models is uncertainties. Uncertainties lead
to inaccurate parameter estimations of nominal prediction
models that are biased from those of the actual prediction
model. The uncertainties may come from the degradation of
equipment and system [12], [13], the inaccurate measurement
device [14], [15], or/and epistemic reasons [16], [17], etc.
In the most context of day-ahead energy management for
onshore and shipboard power systems, power balance should
be strictly satisfied [18]–[20]. However, inaccurate predictions
of propulsion loads and solar panel generation powers can
result in power imbalances. Although primary and secondary
regulations can handle a part of power imbalance in smaller
time scales, their regulation capability may not be enough.
Thus, these imbalances may pose a significant challenge to the
frequency stability of shipboard power systems and underscore
the critical importance of handling uncertainties in day-ahead
energy management.

Accordingly, several reinforcement learning (RL)-based
methodologies have been presented in the literature to ad-
dress the challenge of uncertainties. The first methodology
directly uses RL to determine control actions based on power
system statuses [21]–[27]. However, a major challenge with
this method lies in effectively handling hard constraints. The
second methodology explores the use of RL to formulate more
accurate nominal models that consider uncertainties [28]–
[32]. These improved models are then applied in DMPC
or MPC-based energy management strategies. However, as
these models are formulated individually, it is challenging to
ensure the overall performance of the entire system. Moreover,

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2024.3382213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Delft Library. Downloaded on July 19,2024 at 13:14:06 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SMART GRID, UNDER REVIEW 3

MPC module RL
module

Real
systemOutput inputNominal model

Optimization
(reference)

Fig. 1. The proposed control structure of using RL to com-
pensate MPC in [35].

formulating accurate models that account for all uncertainty
sources is impractical, particularly when some sources are
even unknown and interact with each other.

Several recent studies are using RL to compensate for base-
line control actions, such as back-stepping control and MPC,
to handle uncertainties and to ensure overall performance. For
example, in [33], [34], RL is employed to compensate for
back-stepping control and synchronization control to avoid
the collision of vessels and cable-driven robots, respectively.
Additionally, one of the co-authors of this paper proposed to
use RL to compensate for MPC in the domain of traffic control
[35]. The control structure is shown in Fig. 1, where ub and
ul are control actions obtained by MPC and the compensation
value, respectively. Furthermore, x and xm represent the actual
states and the states derived by substituting ub into the nominal
model. The output of the control structure in [35] is the sum of
ul and ub, and the inputs are the actual states feedback by the
real system. The reference of the control structure is imple-
mented as the objective function of the “optimization” section
in the MPC module to maximize or minimize certain indices.
Although the strategies proposed in [33]–[35] demonstrate
that RL-compensated baseline control can effectively handle
uncertainties and disturbances, it is essential to note that these
works mainly focus on centralized control frameworks.

Furthermore, to the best knowledge of the authors, in
the literature, no other papers apply compensation techniques
(compensating the control actions obtained by baseline control
strategies) to energy management of shipboard power systems.
Some papers in the literature use compensation techniques
in DMPC for microgrids [36]–[38]. However, these compen-
sation techniques are not based on reinforcement learning.
On the contrary, our paper proposes a reinforcement-learning-
based compensation technique for DMPC.

The state-of-the-art RL-based compensation strategies de-
signed for centralized control frameworks cannot be directly
applied to distributed control frameworks due to the physical
coupling of the local zones. To address this challenge, this
paper introduces a novel RL-compensated DMPC (RL-C-
DMPC) strategy tailored for distributed control frameworks.
Given that each agent can only access local states from
its respective zone, this paper designs a centralized train-
ing mechanism to train deep Q networks (DQNs) [39]–[41]
based on value-decomposition-network (VDN) [42]–[44]. Af-
ter training, the DQNs of the zones effectively compensate for

control actions in a distributed manner. Furthermore, this paper
proposes a method for selecting proper ranges of compensation
specifically for the energy management of shipboard power
systems.

The contributions of this paper are listed as follows:
• It proposes a novel RL-compensated DMPC (RL-C-

DMPC) approach to use RL to distributively compensate
for the control actions of DMPC. Firstly, the approach
effectively addresses hard constraints, which present chal-
lenges for traditional RL-based decision-making method-
ologies. Secondly, it considers the overall performance
of the system. Lastly, RL-C-DMPC avoids the need to
formulate accurate models for all uncertainty sources,
making it a practical and efficient solution.

• The research on using RL to compensate for the con-
trol actions obtained by DMPC in a distributed control
framework has not been studied yet, so the proposed RL-
C-DMPC is to explore this new area.

• This paper designs a value-decomposition-network-based
training and distributed testing mechanism for the pro-
posed RL-C-DMPC.

• It also introduces a method to select a proper compen-
sation range specifically for the energy management of
shipboard power systems. This method can reduce the
scale of the action space and avoid insufficient compen-
sation.

• The communication robustness of the proposed RL-C-
DMPC is evaluated.

II. PRELIMINARIES

A. DMPC-based day-ahead energy management of hybrid
vessels

An illustrative layout of shipboard power systems of all-
electric hybrid vessels is shown in Fig. 2. The layout in Fig. 2
is modified based on the crew-training and experimental ship
“YuKun” of Dalian Maritime University [45]. The portrait,
diesel generator, after-deck, and the propeller revolution speed
measurement and control panel of “YuKun” are shown in Fig.
3. This paper assumes that three groups of solar panels are
installed on the fore-deck, railing, and after-deck of “Yunkun”,
and three batches of batteries are installed.

The layout of Fig. 2 is divided into three zones that include
several components in the shipboard power system. In ship-
board power systems of hybrid vessels, this paper considers
diesel generators that provide main powers, batteries that
enable flexible operations, solar panels that generate renewable
energy, service loads for crew and goods, and propulsion loads
for propelling the vessels. To control the shipboard power
system distributively, each zone is managed by an agent. The
agents can communicate with each other via communication
wires, determine, and execute the control actions of their
zones distributively. The control actions of zones include the
generation powers of the diesel generators and the discharg-
ing/charging powers of the batches of batteries.

At the beginning of each time step, agents collect the current
states, predict future states using the nominal prediction mod-
els, determine the control actions for one prediction horizon by
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Zone 1
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DC
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AC
DC
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AC
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AC
DC

Battery 2

Diesel generator 2

P

Propulsion load 1

Solar panel 2

DC
AC
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DC

Battery 3

Diesel generator 3

P

Propulsion load 2

Solar panel 3

L

Service load 2

Battery 1

Diesel generator 1

L

Service load 1

Solar panel 1

Fig. 2. An illustrative layout of shipboard power systems of
all-electric hybrid vessels.

(a) Photo of “YuKun” (b) One diesel generator of “YuKun”

(c) After-deck of “YuKun” (d) Propeller revolution speed mea-
surement panel of “YuKun”

Fig. 3. Portrait and main equipment of “YunKun”.

solving the DMPC energy management optimization problem,
and then only execute the control actions of the first time step
according to the receding mechanism of DMPC.

B. Two sources of uncertainties in nominal prediction models

DMPC determines control actions using the nominal predic-
tion model. However, because of uncertainties, the parameters
of the actual prediction models cannot be accurately obtained
or measured in practice. Thus, the parameters of the nominal

prediction models used in the DMPC strategy may be biased
from those of the actual prediction models. Consequently, the
inaccurate parameters will affect the optimality of the DMPC
strategy. This paper considers two possible uncertainty sources
for nominal prediction models for day-ahead shipboard power
system energy management as follows.

1) Uncertain parameters in propulsion load prediction
models: A widely-used propulsion load prediction model for
vessels is as follows [46]–[49]:

P pro
i,k = 2πηiK

Q
i · (n

pro
i,k )

3|npro
i,k |, k ∈ Kt (1)

where P pro
i,k is the predicted propulsion load of the propeller in

Zone i at time step k using the nominal prediction model, ηi
is the comprehensive coefficient of environment and propeller
parameters of propeller i, KQ

i is the estimated advance coeffi-
cient for obtaining the propulsion load of propeller i, and npro

i,k

is the revolution speed of the propeller in Zone i. When the
reference of voyage speeds in one prediction horizon, which
can be obtained by the voyage plan, is given, the vessels can
control the propeller revolution speeds npro

i,k to keep the vessel
sailing at the reference voyage speeds or routine. Accordingly,
the propulsion loads P pro

i,k in one prediction horizon can be
calculated according to (1). However, since the propulsion
systems of vessels are quite complicated, the coefficient KQ

i

is difficult to estimate accurately [46], [48]. Thus, parameter
KQ

i is usually biased from K̃Q
i of the actual propulsion load

prediction model. In comparison, the actual propulsion load
prediction model is as follows:

P̃ pro
i,k = 2πηiK̃

Q
i · (n

pro
i,k )

3|npro
i,k |, k ∈ Kt (2)

where K̃Q
i is the actual advance coefficient for obtaining the

propulsion load of the propeller in Zone i and P̃ pro
i,k is the

actual propulsion load in Zone i at time step k.
2) Uncertain parameters in generation power prediction

models of solar panels: In literature, an autoregressive in-
tegrated moving average (ARIMA) model is widely used to
predict the generation powers of solar panels [50]–[52]. The
form of ARIMA(p,d,q) can be expressed as follows:

ϕi(B)(1−B)dP sol
i,k = θi(B)ϵk, k ∈ Kt (3)

where P sol
i,k is the generation power of the solar panel in

Zone i at time step k using the nominal prediction model,
ϕi(B) = 1−ϕi,1B−ϕi,2B

2−· · ·−ϕi,pB
p and θi(B) = 1+

θi,1B+θi,2B
2+ · · ·+θi,qB

q represent autoregressive process
and moving average process, respectively. Furthermore, B
is the backward shift operator, such that BP sol

i,k = P sol
i,k−1,

and ϵk is a stochastic value yield a normal distribution. In
the ARIMA model for generation power predictions of solar
panels, ϕi,1, · · · , ϕi,p and θi,1, · · · , θi,q are parameters that
may bias from the parameters of the actual prediction model
for generation powers of solar panels in Zone i. The actual
prediction model for the generation powers of the solar panels
in Zone i is:

ϕ̃i(B)(1−B)dP̃ sol
i,k = θ̃i(B)ϵk, k ∈ Kt (4)

where P̃ sol
i,k is the actual generation power of the solar panel

in Zone i at time step k, ϕ̃i is the actual parameters of the
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autoregressive process of the solar panel in Zone i, θ̃i is the
actual parameters of the moving process of the solar panel in
Zone i.

C. Formulation of the DMPC day-ahead energy management
optimization problems

In this subsection, the DMPC day-ahead energy manage-
ment optimization problems of the shipboard power system
will be formulated. The power flows of the optimization
problems are labeled in Fig. 2. The model of the batch of
batteries in Zone i is as follows:

P bat
i ≤ P bat

i,k ≤ P
bat

i , i ∈ I, k ∈ Kt

Sbat
i ≤ Sbat

i,k ≤ S
bat

i , i ∈ I, k ∈ Kt

Sbat
i,k−1 + P bat

i,k = Sbat
i,k , i ∈ I, k ∈ Kt − {1}

(5)

where P bat
i,k is the charging power of the batch of batteries

in Zone i at time step k, Sbat
i,k is the state of charge (SOC)

of the batch of batteries in Zone i at time step k, P
bat

i and
P bat

i are the maximum and minimum charging powers of the
battery in Zone i, respectively, Sbat

i and S
bat

i are the lower
and upper SOC boundaries of the batch of batteries in Zone i,
respectively. Constraints in (5) represent the charging power
bounds, the SOC boundaries, and the SOC accumulation,
respectively. The model of DGs is as follows:

P gen
i ≤ P gen

i,k ≤ P
gen

i , i ∈ I, k ∈ Kt

Rgen
i ≤ P gen

i,k − P gen
i,k−1 ≤ R

gen

i , i ∈ I, k ∈ Kt − {1}
(6)

where P gen
i,k is the generation power of the diesel generator in

Zone i at time step k, P
gen

i and P gen
i are the maximum and

minimum generation powers of the diesel generator in Zone i,
respectively, R

gen

i and Rgen
i are the maximum and minimum

ramping rates of the diesel generator in Zone i, respectively.
Constraints in (6) represent the bounds of generation powers
and the ramping rate of diesel generators in Zone i. The power
balance of Zone i is as follows:

P gen
i,k +P sol

i,k = P bat
i,k +P pro

i,k +P ser
i,k +

∑
j∈Ji

P int
i,j,k, i ∈ I, k ∈ Kt

(7)
where P ser

i,k is the service load of Zone i at time step k, and
P int
i,j,k is the interconnecting power flow from Zone i to Zone

j at time step k. In (7), the generation powers of solar panel
P sol
i,k and the propulsion load P pro

i,k are predicted by the nominal
prediction models (1) and (3). The constraints of the power
exchange among zones can be expressed such that:

P int
i,j,k = −P int

j,i,k, ∀i ∈ I, ∀j ∈ Ji, ∀k ∈ Kt (8)

Afterwards, the local objective function Ji of Zone i is as
follows:

Ji =
∑
k∈Kt

αi(P
gen
i,k )2 + βiP

gen
i,k (9)

where αi and βi are the square and linear cost coefficients
of the diesel generator in Zone i, respectively. Constraint (9)
means that the total cost of generation power of the DG in
Zone i during a prediction horizon should be minimized.

Equations (5)-(9) compose the local DMPC energy man-
agement optimization problem of Zone i. Accordingly, the
global DMPC energy management optimization problem can
be expressed as follows:

min
∑
i∈I

Ji

s.t. (5)− (9), ∀i ∈ I
(10)

where the optimization problem (10) can be solved by dis-
tributed algorithms, e.g., the synchronous alternating direction
method of multipliers (ADMM) [53], which will be explained
in Section II.D. The variables of the global DMPC optimiza-
tion problem include P bat

i,k , Sbat
i,k , P gen

i,k , P int
i,j,k. Among the

variables, the control actions are P bat
i,k and P gen

i,k . After solving
the optimization problem (10), the control actions of the first
step are implemented by the agents.

From (7), it can be observed that if the propulsion loads and
the generation powers of solar panels are not accurately pre-
dicted, the power imbalance will emerge if the baseline control
actions are not compensated. Thus, Section III will propose an
RL-C-DMPC strategy to reduce the power imbalance caused
by inaccurate parameters in the nominal prediction models.

D. Synchronous ADMM and its implementation

Synchronous ADMM is an algorithm that can solve global
optimization problems in a distributed manner [47], [54]–[56].
At iteration p, Agent i solves the local optimization problem
of Zone i as follows:

min
xi(p),x̃i,j(p)

Li(p) = Ji(p) +
∑
j∈Ji

(
λT
i (p)(x̃i,j(p)− zi,j(p))+

ρ

2
∥x̃i,j(p)− zi,j(p)∥22

)
s.t.

(
xi(p), x̃i,j(p)

)
∈ Xi

(11)
where ρ is the penalty parameter of the augmented Lagrangian
term, xi(p) = [P bat

i,1 (p), ..., P bat
i,|Kt|(p), S

bat
i,1 (p), ..., Sbat

i,|Kt|(p),

P gen
i,1 (p), ..., P gen

i,|Kt|(p)]
T is the vector of local variables of

Zone i in one prediction horizon at iteration p, x̃i,j(p) =
[P int

i,j,1(p), ..., P
int
i,j,|Kt|(p)]

T is the vector of interconnecting
power flows of Zone i in one prediction horizon at iteration p,
and Xi is the set of power system constraints of Zone i, such
that:

Xi = {(xi(p), x̃i,j(p)|(xi(p), x̃i,j(p)) satisfy (5)− (7),

and (9)}
(12)

Furthermore, in (11), zi,j(p) is calculated by:

zi,j(p)←
1

2
(x̃i,j(p− 1) + zi,j(p− 1)) (13)

where zi,j(p) is the local copy of x̃j,i(p) that is received
from Zone j via the communication network at iteration p.
Fig. 4 illustrates a physical shipboard power system and its
communication architecture of synchronous ADMM. In Fig.
4, each agent is equipped with a GPS to ensure the same clock.

The processes of the synchronous ADMM algorithm are
shown in Algorithm 1. Two stopping criteria are concerned:
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Fig. 4. The communication architecture of synchronous
ADMM

Algorithm 1: Synchronous ADMM
1: Set the tolerance gaps ξ1, ξ2, and the penalty parameter

ρ.
2: At the beginning of the time step t, the agents collect

parameters of the local optimization problem (11) from
local measurements. The agents initialize Lagrangian
multiplier λi(0) and set p← 1.

3: while p ≤NP or (14) is not satisfied do
4: For each Zone i, where i ∈ I, Agent i:
5: Calculates zi,j(p) via (13). Updates

λi(p)← λi(p− 1) + ρ ·
(
x̃i,j(p− 1)− zi,j(p− 1)

)
.

6: Solves local optimization problem (11) and obtains
xi(p) and x̃i,j(p). Duplicates variables
zj,i(p) = −x̃i,j(p). Waits tsol.

7: Sends zj,i(p) to all neighbor Zones j, and receives
zi,j(p) from neighbor Zones j, where j ∈ Ji. Waits
ttr.

8: p← p+ 1
9: end while

the number of iterations exceeds the maximum number of
iterations NP, or tolerance gaps (14) are satisfied.

∥λi(p)− λi(p− 1)∥22 ≤ ξ1, ∥zi(p)− zi(p− 1)∥22 ≤ ξ2 (14)

In Algorithm 1, tsol is the set solution time for each
agent to solve its local optimization problem (11), and ttr
is the set communication time for sending information among
agents. An illustrative timeline in one iteration of synchronous
ADMM for a communication network with three agents (each
agent connects to another two) is shown in Fig. 5. In Fig. 5,
at the beginning of one iteration, each agent implements Lines
5 and 6. The solution time for each agent may be different,
as described in the red bars in Fig. 5. After waiting tsol, the
agents send information to other agents. The communication
times for each agent to receive all the required information
may differ, as illustrated in green bars in Fig. 5. After waiting
ttr, a new iteration starts.

Agent 1

Agent 2

Agent 3

Actual solution time
(Lines 5 & 6)

{ {

Actual communication time
(Line 7)

Information transmission

Fig. 5. The timeline in one iteration of synchronous ADMM:
A three-agent example

III. THE PROPOSED RL-C-DMPC STRATEGY

A. Control structure

The control structure of the proposed RL-C-DMPC for
Zone i is shown in Fig. 6. Three main modules are included,
i.e., the DMPC module, the RL module, and the actual
shipboard power system of Zone i. The DMPC module
determines the control actions of one prediction horizon, and
the control actions of the first step are marked as P̂ gen

i,t and
P̂ bat
i,t . Then P̂ gen

i,t is compensated by multiplying the sum of
one and the compensation power rate, which is the output of
the RL module.

In Fig. 6, the states for prediction vPi,t =
[npro

i,t , P
sol
i,t−p·d, ..., P

sol
i,t−1], where k ∈ Kt, include the

revolution speed of the propeller in one prediction horizon
starting from the current time step t and the historical
generation powers of the solar panels. After a truncated section
in Fig. 6, the states for prediction are truncated to the states
(inputs) of the DQN, i.e., wP

i,t = [npro
i,t , P

sol
i,t−p·d, ..., P

sol
i,t−1].

Furthermore, because the ramping rate of DGs should be
considered in DG generation power compensation, the DG
generation power at the last time step should also be included
in states (inputs) of the DQN, i.e., wO

i,t = [P gen
i,t−1].

The actual system state vOi,t = [Sbat
i,t−1, P

gen
i,t−1] includes the

SOC level of the batch of batteries and the DG generation
power at the last time step t− 1 in Zone i. According to the
states for prediction vPi,t and the actual system state vOi,t, the
local optimization problem (11) can be formulated by nominal
prediction models (1) and (3), and nominal system models
(5)-(7) and (9). Afterward, the agents of zones solve the local
optimization problem (11) distributively via synchronous
ADMM and the communication architecture in Fig. 4. Then,
the control actions of zones can be obtained, i.e., P̂ gen

i,t and
P̂ bat
i,t .
By multiplying P̂ gen

i,t and (1+uF
i,t), the compensated

generation power of diesel generator of Zone i at time step t
can be implemented to the actual shipboard power system of
Zone i. Afterward, the new time step t+ 1 begins.

B. Implementation of the proposed RL-C-DMPC

In Fig. 6, Agent i mainly includes a DMPC module and an
RL module. To train the RL modules of the agents, this paper
adopts a centralized training mechanism and a distributed
testing (implementation) mechanism, as shown in Fig. 7. Note
that the details of the training algorithm, i.e., VDN, will be
illustrated in Section III.C.
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Fig. 7. Centralized training and distributed testing mecha-
nisms.

In Fig. 7(a), the central server collects the local measure-
ments obtained by the sensors in each zone. The agents whose
control structures are shown in Fig. 6 determine the com-
pensated control actions according to the local measurements.
Then, the control actions output by the agents are implemented
in the zones in the environment to obtain rewards, the next
states, and the signal of whether the episode is over. Afterward,

the “Global loss” of VDN is calculated and distributed to
the policy network in the RL module of each agent via the
central server. Accordingly, the networks of the agents can
be updated and trained. Fig. 7(b) illustrates how the agents
are distributively tested. In Fig. 7(b), each agent collects the
local measurements and implements the synchronous ADMM
as explained in Section II.D. Afterward, the agents output the
compensated control actions, and the compensated control ac-
tions, i.e., compensated generation power of diesel generator,
are implemented in each zone.

The authors adopt a distributed testing (implementation)
manner because distributed control frameworks can enhance
communication robustness compared to centralized control
frameworks [57], [58]. In distributed communication archi-
tectures, when failures, e.g., missing data and delays, occur,
the influences of the failures on the performance of the
energy management strategies can be reduced. To evaluate
the communication robustness of RL-C-DMPC, in Section
IV.C, we will compare the optimality of RL-C-DMPC and
RL-compensated MPC (RL-C-MPC), which has a centralized
control framework when failures occur. Two failure scenarios
will be studied in the evaluation of communication robustness
in Section IV.C. First, failures occur when the local measure-
ments are collected by the sensors and sent to the agents.
Second, failures occur when the control actions output by the
agents are sent to the zones for implementation. Further details
of the comparison will be explained in Section IV.C.

C. VDN-based centralized training mechanism

To train the DQN in the RL module shown in Fig. 6, this
paper proposes a centralized training mechanism based on
VDN as illustrated in Fig. 8. The basic idea of VDN is to
obtain the global Q value by summing up the local Q values.
Then the global losses derived from the global Q value are
applied to train local agents.

In Fig. 8, index i of State i, Next state i, Q eval i,
Action i, Q target i, and y i represents Zone i. Furthermore,
State i, Next state i, Q eval i, Action i, and Q target i are
state, next state after implementing the action, the Q value
of policy network, action, and Q value of target network of
Zone i, respectively. State i in Fig. 8 corresponds to wP

i,t and
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Fig. 8. Value-decomposition-network-based centralized training mechanism of DQNs in the proposed RL-C-DMPC.

wO
i,t mentioned in the control structure of Fig. 6. Additionally,

“Reward” and “Done” in Fig. 8 are the global reward obtained
after the action is implemented, and the signal of whether the
episode is over, respectively. If the episode is over, “Done” is
set to 1, and if not, “Done” is set to 0. Furthermore, y i can
be obtained by:

yi = Reward + γ ·Q target i · (1−Done) (15)

where γ is a discount factor. Moreover, the “Global loss” is
obtained by:

Global loss =
∑
i∈I

(yi −Q eval i)2 (16)

In Fig. 8, after the value and gradients of “Global loss”
are distributed to the policy networks of all zones, the policy
networks of all zones are updated distributively. Then, the
current training episode will be over. This design adopts the
backpropagation to update the weights of DQNs and the
adaptive moment estimation algorithm as the optimizer.

After the centralized training process, the trained policy
networks of zones are stored. The stored networks can be
applied for distributed testing (or implementation). The testing
mechanism is illustrated in Fig. 9. The following Section
III.D will introduce the design of the “Actual shipboard power
system (for all zones)” in Fig. 8 and Fig. 9, which is the
environment of the training and testing mechanisms.

D. Design of the actual shipboard power system environment

Compared to the nominal models, the actual shipboard
power system contains the actual prediction models with
actual parameters. The environment in training and testing

Actual shipboard power system (all zones)

State_1 State_i

Policy network
(Zone 1)

Policy network
(Zone i)

Action_1 Action_i

Reward

...

...

...

Fig. 9. Distributed testing mechanism of DQNs in the proposed
RL-C-DMPC.

outputs the value of the next state (Next state i), reward
(“Reward”), and the signal of whether the episode is over
(“Done”) according to the input actions of all zones. This
subsection illustrates how the outputs are derived from the
inputs.

Because the input actions of DQNs are discrete, we design
that one action value of agent i corresponds to one compen-
sation power rate, such that:

P cp
i,t = P cp

i,t +Action i ·∆P cp
i,t (17)

where P cp
i,t is the starting value of compensation power rate

and ∆P cp
i,t is the ratio of linear increment. Then, the compen-
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sated DG generation powers can be obtained such that:

P̃ gen
i,t = max{min{P̂ gen

i,t · (1 + P cp
i,t ), P

gen

i,t }, P
gen
i,t } (18)

where P̃ gen
i,t is the compensated DG generation power. In (17),

the final compensated DG generation power is bounded by the
maximum and minimum generation powers. Then the actual
propulsion load and the actual generation power of solar panel
in Zone i, i.e., P̃ pro

i,t and P̃ sol
i,t , can be obtained by (2) and (4),

respectively.
Afterwards, we design the global reward (“Reward”) for

training and testing as the negative value of the square of
power imbalance of the shipboard power system, given as:

Reward = −(
∑
i∈I

P̃ gen
i,t + P̃ sol

i,t − P̂ bat
i,t − P̃ pro

i,t − P ser
i,t )

2

−σ · Penalty
(19)

where P̂ bat
i,t represents the charging power of the batch of

batteries in Zone i at time step t obtained by solving the
DMPC energy management optimization problem as shown
in Fig. 6, σ is the signal of whether the ramping rate
boundaries are satisfied. In detail, if P̃ gen

i,t − P gen
i,t−1 ≥ R

gen

i

or P̃ gen
i,t − P gen

i,t−1 ≤ Rgen
i , we have σ = 1, otherwise σ = 0.

In (19), “Penalty” is a sufficiently large positive value.
Because of the receding horizon mechanism of DMPC, the

RL-C-DMPC proposed in this paper only compensates for DG
generation powers at the current time step t. Thus, one training
episode includes only one single time step, so “Done” is set
to 1.

E. A method for selecting the range of compensation power
rates

DQNs can output actions according to the states. Selecting
a small range of compensation rates may result in insufficient
compensation. On the other hand, selecting a large range of
compensation rates with a small-scale action space may lead
to large compensation errors. Furthermore, selecting a large
range of compensation rates with a large-scale action space
may take a lot of time to train DQNs. Thus, selecting a proper
range of compensation rates is important for RL-C-DMPC.
Accordingly, this subsection proposes a specific method to
select proper ranges of compensation rates for RL-C-DMPC
for shipboard power system energy management.

If the boundaries of power imbalance can be obtained, the
boundaries of compensation power rates can be estimated. For
example, if we know the boundaries of uncertain parameters
KQ

i , ϕ, and θ, we can calculate the largest and smallest gaps
between the proportion loads and generation powers of solar
panels using the nominal and actual prediction models. These
gaps are marked as DP pro,max

i , DP pro,min
i , DP sol,max

i , and
DP sol,min

i . Then the lower and upper boundaries of power
imbalances can be obtained by DP pro,min

i − DP sol,max
i and

DP pro,max
i −DP sol,min

i . Afterward, the range of compensation

Fig. 10. Solar panels in the lab of Lingshui Port in the area
of the voyage.

Table I: Parameters of the diesel generators and batches of
batteries in the case study

DG P gen
i P

gen

i Rgen
i R

gen

i

1-3 0 kW 2000 kW -1600 kW 1600 kW

Battery P bat
i P

bat

i Ebat
i E

bat

i

1 -375 kW 375 kW 37.5 kW.h 337.5 kWh
2 -375 kW 375 kW 37.5 kW.h 337.5 kWh
3 -525 kW 525 kW 52.5 kW.h 472.5 kWh

rates can be obtained as follows:

Range = ζ ·
∑
i∈I

(DP pro,max
i −DP sol,min

i )/
∑
i∈I

P
gen

i

Range = ζ ·
∑
i∈I

(DP pro,min
i −DP sol,max

i )/
∑
i∈I

P
gen

i

(20)

where ζ is a margin coefficient larger than 1 to avoid insuffi-
cient compensation, e.g., 1.2. Furthermore, Range and Range
are the upper and lower boundaries of compensation rates,
respectively.

IV. CASE STUDY

A. Basic settings

This section tests the proposed RL-C-DMPC strategy for
the energy management of the shipboard power system in
Fig. 2. The lengths of a time step and a prediction horizon
are 1 h and 24 h, respectively. The parameters of the DGs
and the batches of batteries are shown in Table I. The rated
powers of the Service load 1 and 2 are 400 kW and 200 kW,
respectively. The rated Propulsion loads 1 and 2 are both
2200 kW. Furthermore, since the rated power of solar panels
is around 1 kW/m2, according to the spaces of “Yukun”, the
rated generation powers of Solar panels 1 to 3 are 30 kW,
90 kW, and 30 kW, respectively.

To show the effectiveness of the proposed RL-C-DMPC
on handling uncertainties, the power imbalances with DMPC
(no compensation) and those with RL-C-DMPC are com-
pared. The DMPC solves the optimization problem (10) using
nominal prediction models via synchronous ADMM, and the
RL-C-DMPC treats the solution of DMPC as the baseline
control. During centralized training, the optimization problem
(10) is solved by “quadprog” function in Matlab. During
distributed testing, (10) is solved by ADMM where the local
optimization problems are solved by “quadprog” function in
Matlab. The DQNs of RL-C-DMPC are trained and tested via
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(a) Global losses during training of NM-1
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(b) Global rewards during training of NM-1
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(c) Global losses during training of NM-2
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(d) Global rewards during training of NM-2
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(e) Global losses during training of NM-3
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(f) Global rewards during training of NM-3

Fig. 11. Global losses and rewards during training processes of DQNs in the proposed RL-C-DMPC.

the mechanisms in Fig. 8 and Fig. 9 under the environment
mentioned in Section III.C.

The revolution speeds of the propeller are collected by the
measurement system on “YuKun” during its sailing on the
Yellow Sea in the northeast of China. The historical solar
generation powers are collected by the solar panels in the
lab of the Lingshui Port near Yellow Sea (the same area as
the voyage), as shown in Fig. 10. Because large p, d, and
q values of ARIMA(p,d,q) model increase the computational
burden, this paper adopts ARIMA models whose p+d+q values
are no larger than five. Since ARIMA(2,1,1) most fits the
solar radiation data in Lingshui Port among ARIMA models
satisfying p+d+q≤5, ARIMA(2,1,1) is adopted in this paper.
The parameters in nominal prediction models biased from
those in actual prediction models are listed in Table II, where
else three cases with different nominal models are used in
DMPC and considered for testing the general performance of
the proposed RL-C-DMPC. Furthermore, “AM” represents the
parameters of the actual prediction model, and “NM-1” to
“NM-3” represent the parameters of the nominal prediction
models in the three cases.

Furthermore, we collect 5000 groups of training data and

Table II: The biased parameters between nominal and actual
prediction models (AM: actual model, NM: nominal model)

Parameters AM NM-1 NM-2 NM-3
KQ

1 1 0.98 1 0.98
KQ

2 1 1 0.97 0.97
ϕ2 1 0.97 0.97 0.97
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Fig. 12. Actual and predicted solar generation powers for 100
test cases.

100 groups of testing data (i.e., 100 test cases). The predicted
solar generation powers versus the actual solar generation

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2024.3382213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Delft Library. Downloaded on July 19,2024 at 13:14:06 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SMART GRID, UNDER REVIEW 11

powers for 100 test cases are shown in Fig. 12 (in p.u. values).
The batch size of the training process is 1000. For every 40
episodes, the target network is updated according to the current
policy network. The dimension of the hidden layer is 128 and
the rectified linear unit is selected as the activation function.
The training and testing processes are implemented on Python
3.11.2. The maximum number of training episodes for all cases
is 40000.

Moreover, to evaluate the frequency stability when power
imbalances occur, the following frequency regulation model is
used [59]:∑

i∈I
P̃ gen
i,t + P̃ sol

i,t − P̂ bat
i,t − P̃ pro

i,t − P ser
i,t =∑

i∈I
(KGgen

i +KGpro
i ) · (f − f0)

(21)

where KGgen
i is the damping coefficient of the DG in zone

i, KGpro
i is the damping coefficient of the propulsion load in

zone i, f is the frequency of the shipboard power system, and
f0 = 50 is the fundamental frequency. The left-hand side of
(21) is the power imbalance, and the right-hand side of (21) is
the sum of damping coefficients multiplied by the frequency
variation. The damping coefficients of DG1 to DG3 are 2,
and the damping coefficients of two propulsion loads are 2.2
[59]–[61]. This simulation assumes that only the DGs and the
propulsion loads join in the frequency regulation.

B. Training and testing results of NM-1 to NM-3

The training processes of NM-1 to NM-3 are shown in Fig.
11. From Fig. 11, it can be observed that for NM-1 to NM-3,
the global losses decrease as the training processes proceed.
The global losses converge before 40000 episodes are trained.
Furthermore, the global rewards as mentioned in (19) increase
and approach zero as the training processes proceed. Since
for NM-3, the deviations of parameters are larger than NM-
1 and NM-2, the global losses and rewards are the largest
among NM-1 to NM-3 during training. The global losses and
rewards curves show the convergence and effectiveness of the
proposed RL-C-DMPC.

Fig. 13 and Fig. 14 show the testing results of NM-1 to
NM-3. Fig. 13 shows the power imbalances of 100 test cases
of NM-1 to NM-3. The red and blue curves show the power
imbalances when implementing the baseline control without
compensation and the baseline control with compensation to
the actual shipboard power system environment, respectively.
Since the deviations of the parameters of NM-3 is larger
than NM-1 and NM-2, the power imbalance is the largest
among NM-1 to NM-3 on average for implementing the
baseline control without compensation. From Fig. 13, it can
be observed that, with compensation, i.e., our proposed RL-
C-DMPC, the power imbalances can be largely reduced for
NM-1 to NM-3. The reduction ratio can be around 90% of
the power imbalance of the baseline control on average.

Fig. 14 further shows the details of the compensation
powers of NM-1 to NM-3 for 100 test cases. Since the
compensated generation power is the sum of the generation
power obtained by DMPC and the compensation power,
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Fig. 13. Power imbalance comparisons between those with and
without compensation for 100 different test cases.

negative compensation powers in Fig. 14 mean that, after
compensation, the compensated generation powers of the
generators are reduced compared to the generation powers
obtained by DMPC. From Fig. 14, it can be observed that,
after training, all the agents are involved in compensating the
power imbalances and contributing to rectifying the power
imbalances. In a few test cases among 100 test cases of
NM-1 to NM-3, although some agents contribute negatively
to enlarge the power imbalance, e.g., in the 4th and 5th
test cases of NM-1, the total contributions of the agents can
successfully rectify the power imbalance as shown in Fig. 13.
Finally, after compensation, the details of the compensated
generation powers and the consumed powers for NM-1 to
NM-3 are shown in Fig. 15. Thus, from Fig. 13, Fig. 14, and
Fig. 15, it can be observed that the agents work distributed
and succeed to rectify the power imbalances caused by the
inaccurate parameters in nominal prediction models with our
proposed RL-C-DMPC.

Fig. 16 shows the frequency variation simulation results.
The frequency variation (in percentage) is defined as (f −
f0)/f0, where f is obtained via model (21). Fig. 16 shows that,
without compensation, the frequency variations may exceed
the security range (normally from −5% to 5%). However, the
frequency variations can remain in the security range with
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Fig. 14. Compensation powers of agents for NM-1 to NM-3
for 100 different test cases.

compensation. Thus, our proposed RL-C-DMPC is vital for
the shipboard power system frequency stability.

C. Communication robustness evaluation of RL-C-DMPC

To show the communication robustness of RL-C-DMPC,
this subsection will compare the optimality of RL-C-MPC and
the proposed RL-C-DMPC under failures. Two scenarios of
failures explained in Section III.B are concerned. The control
structure and the training/testing mechanism of RL-C-MPC
are shown in Fig. 17 and Fig. 18, respectively.

As shown in Fig. 17, there is only one central agent with an
MPC module and an RL module to determine control actions.
DQN is used in the RL module of RL-C-MPC, as is the case
with RL-C-DMPC. The training data of RL-C-MPC is the
same as RL-C-DMPC. In Fig. 17, vOt , vPt , P̂

gen

t , P̂
bat

t , wP
t ,

wO
t , and uF

t are the combinations of variables vOi,t, v
P
i,t, P̂

gen
i,t ,

P̂ bat
i,t , wP

i,t, w
O
i,t and uF

i,t for all zones, i.e., i ∈ I, respectively.
The algorithm for solving the global optimization problem (10)
is the interior point method. Regarding the implementation of
RL-C-MPC, as illustrated in Fig. 18, the local measurements
are collected and sent to the central server. Then, the central
agent, whose control structure is shown in Fig. 17, outputs
the compensated control actions. Afterward, the central agent
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Fig. 15. Active power details for NM-1 to NM-3 for 100
different test cases.

distributes the compensated control actions to all the zones via
communication architecture.

In the simulation of communication robustness, we study the
performances when the failure rates vary from 10% to 50%.
The failure rate is the probability that collected observation
data, information, or control actions may fail to be sent to the
target agent(s) or zones. For each failure rate value, 30 cases
are tested. When failures occur during collecting and sending
observation data, we assume that the observation data remains
the one received at the last time step [57], [62], [63]. When
failures occur during sending control actions, we assume that
the control actions remain the ones of the last time step [57],
[64], [65].

To evaluate the performances of RL-C-MPC and RL-C-
DMPC under failure scenarios, we define the optimality
gaps of RL-C-DMPC and RL-C-MPC as |JD − J∗|/J∗ and
|JC−J∗|/J∗, where JD and JC are

∑
i∈I Ji (global objective

function values) obtained by RL-C-DMPC and RL-C-MPC,
respectively, and J∗ is the optimal global objective function
value when no communication failures occur. Moreover, we
also define the relative gap |JD − JC|/JC to quantify the
comparison results between RL-C-DMPC and RL-C-MPC.

The optimality gaps of RL-C-MPC and RL-C-DMPC under
failure scenarios are shown in Fig. 19. In Fig. 19, the black
crosses represent the mean values of the optimality gaps
regarding each failure rate. The mean values (“Mean”) and
variances (“Var”) of the optimality gaps for RL-C-DMPC and
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Fig. 16. Frequency simulation results of NM-1 to NM-3.
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Fig. 17. The control structure of the central agent of RL-C-
MPC.

RL-C-MPC are also marked in Fig. 19. From Fig. 19, it can
be observed that when failure rates increase, mean values
and variances of optimality gaps generally increase. Moreover,
for all failure rate values, the variances of optimality gaps
of RL-C-DMPC are smaller than those of RL-C-MPC. This
demonstrates that the performance of RL-C-DMPC is more
stable than RL-C-MPC when communication failures occur.
Furthermore, the mean values of optimality gaps of RL-C-
DMPC are smaller than those of RL-C-MPC. In details, the
relative gaps are 0.5687, 0.6873, 0.7394, 0.7337, and 0.6889,
respectively. From the relative gaps, it can be observed that
when the failure rate increases, the relative gaps generally
increase, so the effectiveness of the communication robustness
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Fig. 18. Training/testing mechanism of RL-C-MPC.
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Fig. 19. Optimality gaps of RL-C-MPC and RL-C-DMPC
under failure scenarios.

enhancement of RL-C-DMPC increases. Thus, our proposed
distributed control strategy, i.e., RL-C-DMPC, is more robust
than the centralized control strategy, i.e., RL-C-MPC, when
communication failures occur.

V. CONCLUSION

This paper proposed a novel RL-C-DMPC strategy to ad-
dress the issue of power imbalances in shipboard power sys-
tems caused by inaccurate predictions resulting from uncertain
parameters in the nominal prediction models of DMPC (or
MPC). The proposed RL-C-DMPC introduces RL modules to
distributively obtain the compensations for the DG generation
powers obtained from DMPC baseline control, effectively
rectifying the power imbalances for all-electric diesel-solar
vessels. Consequently, the frequency stability of the shipboard
power systems can in the end be ensured.

The research on using RL to compensate for the control
actions obtained by DMPC in distributed control frameworks
has not been studied yet, so the proposed RL-C-DMPC is
to explore this new area. Furthermore, we present a value-
decomposition-network-based training and distributed testing
mechanism while also proposing a method to select appropri-
ate compensation rates tailored for shipboard power systems’
energy management.

The effectiveness of RL-C-DMPC is tested through case
studies based on real-life voyage data and historical solar
generation power data. The results demonstrate that the pro-
posed RL-C-DMPC substantially reduces the power imbal-
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ances, reaching around 90% reduction, when compared to
the baseline control, i.e., DMPC. Furthermore, the proposed
RL-C-DMPC, which has a distributed control framework,
enhances the communication robustness compared to RL-
C-MPC, which has a centralized control framework. This
substantial reduction in power imbalances and enhancement
in communication robustness indicate a promising approach
to mitigate the influence of uncertain parameters in nominal
prediction models in the energy management of shipboard
power systems. The findings highlight the impacts of the pro-
posed RL-C-DMPC strategy on control microgrids and multi-
agent systems in distributed control frameworks since it does
not need to formulate accurate physics-based nominal models
for all uncertainty sources, making it a practical and efficient
solution. In future works, we will include the compensations
for charging/discharging powers in RL-C-DMPC.
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J. Friedrichs, F. di Mare, A. Mertens, B. Ponick et al., “Modelling
degradation mechanisms in hybrid-electric aircraft propulsion systems,”
in 25th International Symposium on Airbreathing Engines, 2022.

[14] Y. Wang, M. Zechner, J. M. Mern, M. J. Kochenderfer, and J. K. Caers,
“A sequential decision-making framework with uncertainty quantifica-
tion for groundwater management,” Advances in Water Resources, vol.
166, p. 104266, 2022.

[15] R. Gupta, F. Sossan, and M. Paolone, “Model-less robust voltage control
in active distribution networks using sensitivity coefficients estimated
from measurements,” Electric Power Systems Research, vol. 212, p.
108547, 2022.

[16] A. C. Caputo, A. Federici, P. M. Pelagagge, and P. Salini, “Offshore
wind power system economic evaluation framework under aleatory and
epistemic uncertainty,” Applied Energy, vol. 350, p. 121585, 2023.

[17] J. Ding, K. Xie, B. Hu, C. Shao, T. Niu, C. Li, and C. Pan, “Mixed
aleatory-epistemic uncertainty modeling of wind power forecast errors
in operation reliability evaluation of power systems,” Journal of Modern
Power Systems and Clean Energy, vol. 10, no. 5, pp. 1174–1183, 2022.

[18] Y. Huang, Y. Wang, and N. Liu, “A two-stage energy management for
heat-electricity integrated energy system considering dynamic pricing of
stackelberg game and operation strategy optimization,” Energy, vol. 244,
p. 122576, 2022.

[19] X. Zhu, Y. Sun, J. Yang, Z. Dou, G. Li, C. Xu, and Y. Wen, “Day-ahead
energy pricing and management method for regional integrated energy
systems considering multi-energy demand responses,” Energy, vol. 251,
p. 123914, 2022.

[20] H. Pan, X. Chen, T. Jin, Y. Bai, Z. Chen, J. Wen, and Q. Wu, “Real-
time power market clearing model with improved network constraints
considering PTDF correction and fast-calculated dynamic line rating,”
IEEE Transactions on Industry Applications, vol. 59, no. 2, pp. 2130–
2139, 2022.

[21] S.-H. Hong and H.-S. Lee, “Robust energy management system with
safe reinforcement learning using short-horizon forecasts,” IEEE Trans.
Smart Grid, vol. 14, no. 3, pp. 2485–2488, 2023.

[22] R. Lu, Z. Jiang, H. Wu, Y. Ding, D. Wang, and H.-T. Zhang, “Reward
shaping-based actor–critic deep reinforcement learning for residential
energy management,” IEEE Trans. Industr. Inform., vol. 19, no. 3, pp.
2662–2673, 2023.

[23] C. Huang, H. Zhang, L. Wang, X. Luo, and Y. Song, “Mixed deep
reinforcement learning considering discrete-continuous hybrid action
space for smart home energy management,” J. Mod. Power Syst. Clean
Energy, vol. 10, no. 3, pp. 743–754, 2022.

[24] H. H. Goh, Y. Huang, C. S. Lim, D. Zhang, H. Liu, W. Dai, T. A.
Kurniawan, and S. Rahman, “An assessment of multistage reward
function design for deep reinforcement learning-based microgrid energy
management,” IEEE Trans. Smart Grid, vol. 13, no. 6, pp. 4300–4311,
2022.

[25] Y. Hao, Q. Lu, X. Wang, and B. Jiang, “Adaptive model-based
reinforcement learning for fast charging optimization of Lithium-
Ion batteries,” IEEE Trans. Industr. Inform., pp. 1–10, 2023, doi:
10.1109/TII.2023.3257299.

[26] Z. Yi, Y. Xu, and C. Wu, “Model-free economic dispatch for vir-
tual power plants: An adversarial safe reinforcement learning ap-
proach,” IEEE Trans. Power Syst., pp. 1–15, 2023, doi: 10.1109/TP-
WRS.2023.3289334.

[27] Y. Du and F. Li, “Intelligent multi-microgrid energy management based
on deep neural network and model-free reinforcement learning,” IEEE
Trans. Smart Grid, vol. 11, no. 2, pp. 1066–1076, 2020.

[28] Y. Li, R. Wang, and Z. Yang, “Optimal scheduling of isolated microgrids
using automated reinforcement learning-based multi-period forecasting,”
IEEE Trans. Sustain. Energy, vol. 13, no. 1, pp. 159–169, 2022.

[29] K. Ojand and H. Dagdougui, “Q-learning-based model predictive control
for energy management in residential aggregator,” IEEE Trans. Autom.
Sci. Eng, vol. 19, no. 1, pp. 70–81, 2022.

[30] J. Wang, J. Wu, and X. Kong, “Multi-agent simulation for strategic
bidding in electricity markets using reinforcement learning,” CSEE J.
Power Energy Syst., vol. 9, no. 3, pp. 1051–1065, 2023.

[31] Y. Zhang, H. Wen, Q. Wu, and Q. Ai, “Optimal adaptive prediction
intervals for electricity load forecasting in distribution systems via
reinforcement learning,” IEEE Trans. Smart Grid, vol. 14, no. 4, pp.
3259–3270, 2023.

[32] Q. Gao, Y. Liu, J. Zhao, J. Liu, and C. Y. Chung, “Hybrid deep learning
for dynamic total transfer capability control,” IEEE Trans. Power Syst.,
vol. 36, no. 3, pp. 2733–2736, 2021.

[33] Q. Zhang, W. Pan, and V. Reppa, “Model-reference reinforcement learn-
ing for collision-free tracking control of autonomous surface vehicles,”
IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 8770–8781, 2021.

[34] Y. Lu, C. Wu, W. Yao, G. Sun, J. Liu, and L. Wu, “Deep reinforcement
learning control of fully-constrained cable-driven parallel robots,” IEEE
Trans. Ind. Electron., 2022.

[35] W. Remmerswaal, D. Sun, A. Jamshidnejad, and B. De Schutter,
“Combined MPC and reinforcement learning for traffic signal control
in urban traffic networks,” in 2022 26th International Conference on
System Theory, Control and Computing (ICSTCC). IEEE, 2022, pp.
432–439.

[36] J. S. Gomez, D. Saez, J. W. Simpson-Porco, and R. Cárdenas, “Dis-
tributed predictive control for frequency and voltage regulation in

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2024.3382213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Delft Library. Downloaded on July 19,2024 at 13:14:06 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SMART GRID, UNDER REVIEW 15

microgrids,” IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1319–
1329, 2019.

[37] P. Kou, D. Liang, and L. Gao, “Distributed coordination of multiple
PMSGs in an islanded DC microgrid for load sharing,” IEEE Transac-
tions on Energy Conversion, vol. 32, no. 2, pp. 471–485, 2017.

[38] A. Parisio, C. Wiezorek, T. Kyntäjä, J. Elo, K. Strunz, and K. H.
Johansson, “Cooperative MPC-based energy management for networked
microgrids,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 3066–
3074, 2017.

[39] H. Xiao, X. Pu, W. Pei, L. Ma, and T. Ma, “A novel energy
management method for networked multi-energy microgrids based
on improved DQN,” IEEE Trans. Smart Grid, pp. 1–1, 2023, doi:
10.1109/TSG.2023.3261979.

[40] H. Xiao, L. Fu, C. Shang, X. Bao, X. Xu, and W. Guo, “Ship energy
scheduling with DQN-CE algorithm combining bi-directional LSTM and
attention mechanism,” Appl. Energy, vol. 347, p. 121378, 2023.

[41] H. Zeng, B. Shao, H. Dai, N. Tian, and W. Zhao, “Incentive-based
demand response strategies for natural gas considering carbon emissions
and load volatility,” Appl. Energy, vol. 348, p. 121541, 2023.

[42] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al.,
“Value-decomposition networks for cooperative multi-agent learning,”
arXiv preprint arXiv:1706.05296, 2017.

[43] Z. Guo, Y. Wu, L. Wang, and J. Zhang, “Coordination for con-
nected and automated vehicles at non-signalized intersections: A value
decomposition-based multiagent deep reinforcement learning approach,”
IEEE Trans. Veh. Technol., vol. 72, no. 3, pp. 3025–3034, 2023.

[44] Z. Qiu, C. He, and X. Zhang, “Multi-agent cooperative structural
vibration control of three coupled flexible beams based on value de-
composition network,” Eng. Appl. Artif. Intell., vol. 114, p. 105002,
2022.

[45] T. Cao and X. Zhang, “Nonlinear decoration control based on perturba-
tion of ship longitudinal motion model,” Applied Ocean Research, vol.
130, p. 103412, 2023.

[46] J. Hou, J. Sun, and H. Hofmann, “Adaptive model predictive control with
propulsion load estimation and prediction for all-electric ship energy
management,” Energy, vol. 150, pp. 877–889, 2018.

[47] P. Xie, S. Tan, N. Bazmohammadi, J. M. Guerrero, J. C. Vasquez,
J. M. Alcala, and J. E. M. Carreño, “A distributed real-time power
management scheme for shipboard zonal multi-microgrid system,” Appl.
Energy, vol. 317, p. 119072, 2022.

[48] Ø. N. Smogeli, Control of marine propellers: from normal to extreme
conditions. Fakultet for ingeniørvitenskap og teknologi, 2006.

[49] S. Nasiri, S. Peyghami, M. Parniani, and F. Blaabjerg, “Modeling in-
and-out-of-water impact on all-electric ship power system considering
propeller submergence in waves,” in 2021 IEEE Transportation Electri-
fication Conference & Expo (ITEC). IEEE, 2021, pp. 533–538.

[50] M. Mohamed, F. E. Mahmood, M. A. Abd, A. Chandra, and B. Singh,
“Dynamic forecasting of solar energy microgrid systems using feature
engineering,” IEEE Trans. Ind. Appl., vol. 58, no. 6, pp. 7857–7869,
2022.

[51] D. van der Meer, G. R. Chandra Mouli, G. Morales-España Mouli, L. R.
Elizondo, and P. Bauer, “Energy management system with PV power
forecast to optimally charge EVs at the workplace,” IEEE Trans. Industr.
Inform., vol. 14, no. 1, pp. 311–320, 2018.

[52] P. Gangwar, A. Mallick, S. Chakrabarti, and S. N. Singh, “Short-term
forecasting-based network reconfiguration for unbalanced distribution
systems with distributed generators,” IEEE Trans. Industr. Inform.,
vol. 16, no. 7, pp. 4378–4389, 2019.

[53] A. Jamshidnejad, D. Sun, A. Ferrara, and B. De Schutter, “A novel
bi-level temporally-distributed MPC approach: An application to green
urban mobility,” Available at SSRN 4370158.

[54] Y. Wang, L. Wu, and S. Wang, “A fully-decentralized consensus-based
admm approach for dc-opf with demand response,” IEEE Transactions
on Smart Grid, vol. 8, no. 6, pp. 2637–2647, 2016.

[55] A. Korompili, P. Pandis, and A. Monti, “Distributed OPF algorithm
for system-level control of active multi-terminal DC distribution grids,”
IEEE Access, vol. 8, pp. 136 638–136 654, 2020.

[56] M. A. Mohamed, H. Chabok, E. M. Awwad, A. M. El-Sherbeeny,
M. A. Elmeligy, and Z. M. Ali, “Stochastic and distributed scheduling
of shipboard power systems using MθFOA-ADMM,” Energy, vol. 206,
p. 118041, 2020.

[57] Z. Zhang, W. Tian, and Z. Liao, “Towards coordinated and robust real-
time control: A decentralized approach for combined sewer overflow and
urban flooding reduction based on multi-agent reinforcement learning,”
Water Research, vol. 229, p. 119498, 2023.

[58] J. Zhao, X. Hu, M. Yang, W. Zhou, J. Zhu, and H. Li, “Ctds: Central-
ized teacher with decentralized student for multi-agent reinforcement
learning,” IEEE Transactions on Games, 2022.

[59] V. Vittal, J. McCalley, P. M. Anderson, and A. Fouad, Power System
Control and Stability. John Wiley & Sons, 2019.

[60] T. S. Mummadi and V. R., “Optimal design and power management in
shipboard system,” CVR journal of science and technology, vol. 17, pp.
83–89, 04 2020.

[61] S. Wen, H. Lan, D. C. Yu, Q. Fu, Y. Y. Hong, L. Yu, and R. Yang,
“Optimal sizing of hybrid energy storage sub-systems in PV/Diesel ship
power system using frequency analysis,” Energy, vol. 140, no. pt.1, pp.
198–208, 2017.

[62] J. Xu, H. Sun, and C. J. Dent, “ADMM-based distributed OPF problem
meets stochastic communication delay,” IEEE Transactions on Smart
Grid, vol. 10, no. 5, pp. 5046–5056, 2019.

[63] J. Guo, G. Hug, and O. Tonguz, “Impact of communication delay
on asynchronous distributed optimal power flow using ADMM,” in
2017 IEEE International Conference on Smart Grid Communications
(SmartGridComm), 2017, pp. 177–182.

[64] C. H. Ho, H. C. Wu, S. C. Chan, and Y. Hou, “A robust statistical
approach to distributed power system state estimation with bad data,”
IEEE Transactions on Smart Grid, vol. 11, no. 1, pp. 517–527, 2020.

[65] M. H. Nazari, L. Y. Wang, S. Grijalva, and M. Egerstedt,
“Communication-failure-resilient distributed frequency control in smart
grids: Part I: Architecture and distributed algorithms,” IEEE Transac-
tions on Power Systems, vol. 35, no. 2, pp. 1317–1326, 2020.

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2024.3382213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Delft Library. Downloaded on July 19,2024 at 13:14:06 UTC from IEEE Xplore.  Restrictions apply. 


