

Delft University of Technology

Improving the Computational Efficiency of ROVIO

Bahnam, S. A.; De Wagter, C.; De Croon, G. C.H.E.

DOI
10.1142/S2301385024410012
Publication date
2024
Document Version
Other version
Published in
Unmanned Systems

Citation (APA)
Bahnam, S. A., De Wagter, C., & De Croon, G. C. H. E. (2024). Improving the Computational Efficiency of
ROVIO. Unmanned Systems, 12(3), 589-598. https://doi.org/10.1142/S2301385024410012

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1142/S2301385024410012
https://doi.org/10.1142/S2301385024410012

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2022-5 13th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

Improving the computational efficiency of ROVIO
S.A. Bahnam*, C. de Wagter, and G.C.H.E de Croon

Delft University of Technology, Kluyverweg 1, Delft

ABSTRACT

ROVIO is one of the state-of-the-art mono vi-
sual inertial odometry algorithms. It uses an It-
erative Extended Kalman Filter (IEKF) to align
features and update the vehicle state simultane-
ously by including the feature locations in the
state vector of the IEKF. This algorithm is sin-
gle core intensive, which allows using the other
cores for other algorithms, such as object detec-
tion and path optimization. However, the compu-
tational cost of the algorithm grows rapidly with
the total number of features. Each feature adds
three new states (a 2D bearing vector and inverse
depth), leading to bigger matrix multiplications
which are computationally expensive. The main
computational load of ROVIO is the iterative part
of the IEKF. In this work, we reduce the aver-
age computational cost of ROVIO by 40% on an
NVIDIA Jetson TX2, without affecting the accu-
racy of the algorithm. This computational gain is
mainly achieved by utilizing the sparse matrices
in ROVIO.

1 INTRODUCTION

Visual Inertial Odemetry (VIO) and Simultaneous Local-
ization And Mapping (SLAM) are popular methods to navi-
gate in GPS-denied environments. However, Micro Air Vehi-
cles (MAVs) with extreme Size, Weight, and Power (SWaP)
restrictions do not have enough computational power to do
onboard loop closure computation. Especially, if the MAV
has multiple computational tasks, such as object detection and
path planning, it is important that computational effort for
VIO is minimal. Moreover, minimal computation time and
latency are important for high-speed flight, as in autonomous
drone racing.

The most common VIOs are either monocular or stereo.
Stereo VIO has the advantage of being able to triangulate fea-
tures to immediately get a depth estimation for new features.
Even though it requires an extra step (stereo matching), com-
pared to mono VIO, it does not have to be computationally
more expensive [1]. However, it requires an accurate stereo
calibration and adds the weight of an extra camera. Further-
more, for drones with a smaller stereo baseline, the resolution
of the depth estimation is also smaller.

Monocular VIO is preferable for MAVs with extreme
SWaP constraints, as it requires only a single camera. The

*Email address: S.A.Bahnam@tudelft.nl

state-of-the-art filter-based mono VIOs are ROVIO [2] and
MSCKF VIO [3]. ROVIO uses a patch-based direct method
to align features and estimate the state in an Iterative Ex-
tended Kalman Filter (IEKF). Whereas, MSCKF tracks fea-
tures and updates the state each time a feature is lost. A
disadvantage of MSCKF is that the computational load per
frame varies as it only updates if a feature is lost or when a
maximum number of camera states are in the buffer. Next,
there are optimization-based VIOs, like VINS-mono [4] and
OKVIS [5]. However, these are generally computationally
more expensive, because they optimize over a window of
states.

Of the above-mentioned algorithms, ROVIO is the only
algorithm that is single core intensive, which allows using the
other cores for other computational tasks. Next, ROVIO is
the only direct method, whereas the others are feature-based
methods. The advantage of direct methods is that they are
able to estimate the motion even in low-texture environments
[6]. Furthermore, ROVIO is able to track features on an edge
(e.g. line features) due to the initial feature location predic-
tion it receives from the IMU-driven state propagation [2].

ROVIO has been used in various drone applications, rang-
ing from cave exploration [7] to autonomous drone racing
[8]. In a drone delivery application [9] ROVIO was consid-
ered, but SVO [10] was chosen because it is computationally
cheaper and therefore has a smaller computational delay.

In this work we reduce the computational cost of ROVIO
without affecting the accuracy. To be more precise we reduce
the average computational time by 40% on an NVIDIA Jet-
son TX2. The main modifications to ROVIO are:

1. We substantially reduce the size of the Jacobian used
in the IEKF of the ROVIO algorithm

2. We reduce the computational cost of the prediction step
of the IEKF by exploiting the sparsity of the matrices.

The remainder of the article is organized as follows.
Firstly, in Section 2 we give a short overview of ROVIO. In
Section 3 it is shown what we have modified in ROVIO to re-
duce the computational cost. Next, the results on the EuRoC
and UZH-FPV Drone Racing dataset are shown in Section 4.
This is followed by the conclusion in Section 5.

2 RELATED WORK

ROVIO mainly differs from other VIOs by using an IEKF
that uses photometric errors of patches as an innovation term
in the filter update step. This means that the feature alignment
is done simultaneously with the state update. The features

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 47

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2022-5 13th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

are included in the state vector where each feature has a 2D
bearing vector and an inverse distance parameter. Further-
more, the state vector includes 21 other states: robocentric
position, velocity and attitude of IMU (9), accelerometer and
gyroscope biases (6), and linear and rotational part of the the
IMU-camera extrinsics (6). Therefore, the state vector has a
size of n = 21 + 3 · m, where m is the maximum number
of features (25). The computation for each new image frame
can be described in 3 steps. Firstly, the state is predicted us-
ing the IMU data between time t and t − 1. Next, for each
feature, the state vector is iteratively updated until the feature
is matched (or discarded as an outlier). Lastly, new features
are added when the number of tracked features drops below a
certain threshold (of 0.8 ·m).

Adding new features has a low average computational
cost, but can result in computational peaks. The reason for
this is that only new features are added when the number of
features is dropped below 80% maximum number of features.
Therefore, in most frames no features need to be detected,
which result in a low average computation time. However for
frames which adds new features, it requires additional com-
putation for feature detection next to the IEKF computation,
which result in a computational peak in ROVIO. When look-
ing only to the new feature selection part of ROVIO, the com-
putation of the Shi-Tomasi score [11] of all candidates is the
computational most expensive part.

In most VIO evaluations on benchmarks, the VIO per-
formance is not affected by computational peaks, because a
camera buffer is used in the VIO. However, the control per-
formance of applications, such as autonomous drone racing,
is affected by delay. Therefore, one would like to decrease
the computational delay. For this reason, one could decide to
reduce the camera buffer in such applications. However, this
comes at the cost that the accuracy of the VIO may decrease
or in worst case that the filter diverges if the peak process-
ing time is too high. In [8] it is reported that ROVIO was
processed at 35 Hz, but the total delay was 130 ms. It is
also mentioned that the main contribution to the total delay
was interfacing with the camera and running the VIO. In this
work we reduce the computational cost of ROVIO to increase
the execution frequency and reduce delays..

3 METHOD

3.1 Prediction step of IEKF

In the prediction step of the IEKF, the states are prop-
agated and the covariance is estimated using the IMU data.
ROVIO uses the average IMU data between two frames in or-
der to compute the prediction step only once every frame and
reduce the computational cost without a notable performance
loss. The covariance matrix computation is computationally
most expensive as it involves n×nmatrix multiplications and
can be calculated with Equation 1.

P−
k = Fk−1 · P+

k−1 · FTk−1 +Gk−1 ·Wk−1 ·GTk−1 (1)

, in which P is the covariance matrix, k − 1 and k are before
and after the state prediction, respectively. F is the system
transition matrix, G is the noise input matrix and W is the
continuous time noise covariance. Each matrix here has a size
of n×n, where n is equal to 21+3 · m, where m is the max-
imum number of features. Therefore, the multiplication of
the matrices is computationally expensive. However, matrix
F , G, and W are all sparse matrices. W is a constant diago-
nal matrix, where all entries are the estimated noise variances
from the input. F and G can be found in Equation 2 and 3,
respectively. For more details how F and G are constructed,
see [2].

F =




I3×3

B15×12 015×6 021×f
0n−3×3 06×12 I6×6

Bf×12 0f×6 BDf×f


 (2)

G =




03×3

D12×12 B3×3 015×6 021×f
06×3

B3×3

0n−12×12 06×3 D6×6

Bf×3 0f×6 BDf×f




(3)

, in which B is a block matrix, BD a block diagonal (3 × 3
block diagonal for F and G), D is a diagonal matrix and f is
the number of all feature states (3m).

3.2 Iterative update of IEKF
The difference between an EKF and IEKF is that the up-

date step is performed multiple (j) iterations until the update
is small/converged, the measurement is discarded (detected
as outlier), or the maximum number of iterations (20 for the
original settings) is reached. ROVIO iteratively updates the
state vector for each feature candidate (i) separately.

Each iteration requires big matrix multiplications to cal-
culate the Jacobian, Kalman gain, update vector, and the co-
variance matrix of the state update. The big matrices are
sparse, however the used MatrixXd from the Eigen library
[12] in ROVIO does not perform sparse matrix multiplication
efficiently.

A feature candidate is generated using the the predicted
feature location and its covariance. This is done at least once
and a maximum of 3 times (for the original settings) per de-
tected/tracked feature on the previous frame. Each time the
state vector is updated as in Equation 4.

x = x+ P−
in×n

· −cTi2×n
· Pyi · dyi (4)

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 48

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2022-5 13th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

, in which Pin×n is the state covariance matrix, ci is the pixel
location of the feature inserted in a 2× n zero matrix, which
is done to get the correct size for matrix multiplication. dyi
is a 2 × 1 vector, which depends on the eigenvalues of the
Pyi. And Pyi is a 2 × 2 matrix and can be calculated with
Equation 5.

Pyi = −ci2×n · P−
in×n

· −cTi2×n
(5)

Since ci only contains information about the pixel loca-
tion we can save computation time. Depending on which fea-
ture is processed, we use a certain 2× 2 block of those matri-
ces. Therefore, we can modify Equation 4 and 5 to Equation
6 and 7, respectively.

x = x+ P−
in×2
· −cTi2×2

· Pyi · dyi (6)

Pyi = −ci2×2 · P−
i2×2
· −cTi2×2

(7)

Next, a multilevel patch is extracted (a patch of 6 × 6 on
two image levels) for each feature candidate. The Jacobian
of the feature is calculated based on the multilevel patch gra-
dient, adaptive light condition parameters and the (distorted)
feature pixel location. The gradient of the previous image is
used, therefore the multilevel patch gradient is constant for
all iterations per feature in a single frame. However, the orig-
inal ROVIO algorithm unnecessarily recomputes the gradient
at every iteration of each feature per frame (i, j, k). We store
the gradient of the patch of a feature on the first iteration of
each frame. Therefore, we only need to calculate the gradient
once per feature per frame (i, k).

In ROVIO the 2x2 Jacobian is inserted in a 2×n zero ma-
trix, with n being the size of the state vector. This is done to
allow matrix multiplications with the n×n covariance matrix.
However, this is very inefficient as many zero multiplications
are involved. Therefore, we extract the useful information
in the 2 × 2 block Jacobian for calculations. This allows us
to use smaller blocks for the covariance matrix as well. The
original code of ROVIO calculates the 2× 2 matrix Pyi,j us-
ing Equation 8. We propose to calculate Pyi,j as in Equation
9.

Pyi,j = Hi,j2×n
· P−

in×n
·HT

i,j2×n
+R (8)

Pyi,j = Hi,j2×2
· P−

i2×2
·HT

i,j2×2
+R (9)

, in which P−
i2×2

= P−
i .block(21 + 3i, 21 + 3i, 2, 2) is a

2 × 2 block of the covariance matrix of the prediction step,
where i is the index of the processed feature in the state vec-
tor. Hi,j2×2 is the Jacobian without zeros. R is the measure-
ment noise matrix with size 2 × 2. Note, that the computa-
tional time of our proposed method is independent of the size
of the state vector and the original method is O(n3 + n2).
Next, the Kalman gain (of size n × 2) is calculated with the

original code as in Equation 10. We propose to modify it to
Equation 11.

.
Ki,j = P−

in×n
·HT

i,j2×n
·
(
Pyi,j2×2

)−1
(10)

Ki,j = P−
in×2
·
(
HT
i,j2×2

·
(
Pyi,j2×2

)−1
)

(11)

Since Ki, j is of size n× 2 we have to use all rows of our
covariance matrix, but we only need two columns. Further-
more, we first do the 2 × 2 matrix multiplication as this will
save computational work. This reduce the computational cost
from O(n3 + n) to O(n).

The original code uses Equation 12 to compute the update
vector and we propose Equation 13 instead.

∆xi,j = (x−i ⊟ x+i,j)−

Ki,j ·
(
zi,j +Hi,j2×n · (x−in×1

⊟ x+i,jn×1
)
)

(12)

∆xi,j = (x−i ⊟ x+i,j)−

Ki,j ·
(
zi,j +Hi,j2×2

· (x−i2×1
⊟ x+i,j2×1

)
)

(13)

, in which the ⊟ is the boxminus operator. The computational
cost is reduced from O(n2 + n) to O(n).

Furthermore, the Jacobian, Hj , and the measurement, zj ,
(difference of the multilevel patches) are computed twice per
iteration in the original ROVIO code. This is modified, such
that it is only calculated once per iteration.

4 RESULTS

We test the modified and original ROVIO on the EuRoC
[13] dataset and on the UZH-FPV Drone Racing Dataset [14].
We run the algorithms on an NVIDIA Jetson TX2, which
has a dual-core Denver 2 64-Bit CPU and a quad-core ARM
Cortex-A57. We use the tool of [15] to get the RMS of the
APE. All trajectories are aligned with the ground truth, op-
timizing position and yaw only, which is proposed for mono
VIOs in [15].

Firstly, we show the difference in computation time, due
to the modifications. Next, we show that the modified ROVIO
does get a similar trajectory estimation when processing all
frames on the EuRoC dataset. Finally, we reduce the camera
buffer and compare the accuracy of the original and modified
algorithm on the UZH-FPV Drone Racing Dataset.

4.1 EuRoC
We compare the original ROVIO and modified ROVIO

on the EuRoC dataset. We exclude sequence Machine Hall 2,
because ROVIO (with original parameters) diverges on this
sequence. Furthermore, we exclude the first 21 seconds of
the sequence Machine Hall 1, in order to ensure ROVIO ini-
tializes correctly (and similarly) for the original and modified

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 49

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2022-5 13th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

Table 1: RMS of the APE of the original and modified ROVIO on the EuRoC dataset after aligning position and yaw with the
ground truth. In bold we show when the modified ROVIO matches the original ROVIO either on the laptop or TX2.

MH011 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203

Laptop Original 0.346 0.449 0.819 1.307 0.161 0.133 0.225 0.239 0.346 0.249
Modified 0.346 0.449 0.819 1.307 0.161 0.196 0.176 0.242 0.394 0.251

TX2 Original 0.346 0.398 0.819 1.307 0.156 0.175 0.176 0.242 0.394 0.251
Modified 0.346 0.449 0.819 1.311 0.161 0.175 0.225 0.242 0.394 0.237

version. Furthermore, we check for both algorithms that they
initialize at the exact same (IMU) timestamp and process the
same number of frames.

ROVIO original ROVIO modified

20

40

60

80

100

120

Co
m
pu

ta
tio

n
tim

e
pe

r f
ra
m
e
[m

s]

Figure 1: Computation time per frame on the EuRoC dataset
(all sequences except MH02) on an NVIDIA Jetson TX2

In Figure 1 the computation time on an NVIDIA Jetson
TX2 can be found for the original and modified ROVIO. It
can be seen that the average and the maximum computational
time per frame is reduced. The original algorithm has an av-
erage computation time per frame of 25.6 ms and the modi-
fied algorithm this is reduced to 14.1 ms. It can be seen that
the modified algorithm still have computational peaks. Those
mainly correspond to frames where new features are added.
The main computational cost of the feature detection is the
computation of the Shi-Tomasi score of the (usual) many de-
tected candidates.

In Table 1 it can be seen that the accuracy sometimes dif-
fers when we run the original and modified algorithm. Also
it differs when we run the same algorithm on different hard-
ware. The reason for this are rounding errors, which some-
times can lead to a feature at the image border being seen as
”out of frame”. This may result in different features being
detected and tracked, which results in a change in accuracy.
However, it can be seen that the modified algorithm always
has the same accuracy as the original algorithm either on the

1The first 21 seconds are excluded of this sequence

0 250 500 750 1000 1250 1500 1750 2000
Frame [-]

0.00

0.05

0.10

0.15

0.20

0.25

AP
E
[m

]

Figure 2: APE of the modified ROVIO w.r.t. the origi-
nal ROVIO on sequence V203 of the EuRoC dataset on an
NVIDIA Jetson TX2

laptop or Nvidia Jetson TX2. Except for V102 on the Laptop
and V203 on the TX2.

The difference on V102 on the laptop is quite big. How-
ever, when we change the feature detection threshold from
0.8 to 0.999 we get and average RMSE of 0.135 m for se-
quence V102 for modified and original algorithms on both
hardware. By changing this threshold new features are added
every time a feature is inactive (not tracked), instead of when
the number of tracked features drops below 80% of the maxi-
mum number of features. Therefore, the change in feature set
is reduced.

The modified ROVIO on the TX2 gets a slightly lower
RMSE on sequence V203, but the difference is small. In Fig-
ure 2 the difference between the original and modified algo-
rithm on the TX2 are shown. The reason for the difference
is that at the 1006th frame one feature is lost in the modified
algorithm, however that same feature is tracked with the orig-
inal algorithm. The reason for this is a rounding error when
computing Equation 7, if we use the original Equation 5, the
modified algorithm matches the original ROVIO on sequence
V203. However, it results in that other sequences will experi-
ence a similar rounding error (in another part of the modified
algorithm).

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 50

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2022-5 13th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

Table 2: Total frames processed per sequence using a camera buffer of 1 on the UZH-FPV Drone Racing Dataset with an
NVIDIA Jetson TX2.

03 05 06 07 09 10
Original 2124/2552 4073/4162 1589/1970 2850/3158 2051/2068 2082/2127
Modified 2437/2552 4157/4162 1935/1970 3142/3177 2066/2068 2124/2127

Table 3: RMS of the APE of the original and modified
ROVIO on the UZH-FPV dataset after aligning position and
yaw with the ground truth.

03 05 06 07 09 10
Original 1.47 0.72 0.50 1.08 0.38 0.62
Modified 0.97 0.59 0.48 1.08 0.52 0.58

In order to verify that the modified matrix multiplication
is done correctly, we use the Frobenius norm of the matrices
for a fuzzy comparison (Eigen::isApprox) as in Equation 14.

||V −W ||F = p ·min(||V ||F , ||W ||F) (14)

, in which V is the matrix calculated using the proposed equa-
tions, W is the result using the original matrix multiplication
from ROVIO. We set p to 10−12, because this is the default
value for a fuzzy comparison with double precision matrices.
We do this test for all proposed modifications separately. All
modified equations pass the test, except the update vector cal-
culation from Equation 13. In all sequences it returns 0.1%
false or less. This is because the magnitude of the update
vector is sometimes small (when the prediction is close to the
measurement), which results in a very strict comparison.

4.2 UZH-FPV Drone Racing Datset
We run the Original and modified version of ROVIO as

well on the UZH-FPV dataset [14]. We are using sequence
03, 05, 06, 07, 09 and 10 of the forward facing camera in-
door, because those sequences contain the ground truth of
the trajectory. We reduce the camera state buffer to 1, which
means that a frame (the oldest) is dropped when the algo-
rithm is not fast enough to process two consecutive frames.
We do the evaluation only on the NVIDIA Jetson TX2, be-
cause the laptop is fast enough to process all frames. This
type of evaluation would be realistic for cases where the state
estimation delay is of importance. Which could be for ex-
ample autonomous drone racing, because a delay in the state
estimation affects the control performance. We do not change
any other parameters of the algorithm.

In Figure 3 the computation time on the UZH-FPV dataset
can be seen. The average computation time for the original
algorithm is 31.5 ms and for the modified 17.4 ms. Even
though, the image resolution is smaller on the UZH-FPV
dataset (640 × 480) than on EuRoC (752 × 480), the com-
putation time is higher on the UZH-FPV dataset. We think
this is because the motion on the UZH-FPV is bigger, which

ROVIO original ROVIO modified

20

40

60

80

100

120

140

160

Co
m
pu

ta
tio

n
tim

e
pe

r f
ra
m
e
[m

s]

Figure 3: Computation time per frame on (all sequences of)
the FPV dataset on an NVIDIA Jetson TX2

requires to use more iterations in the IEKF to align the fea-
tures.

In Table 2 it shows how many frames out of the total
frames are processed for the modified and original ROVIO.
Note, that the full (rosbag) sequence is used here. It can
be seen that fewer frames are thrown away for the modified
ROVIO than the original ROVIO. The reason for this is the
computational gain from the sparse matrix operations. It can
also be seen that almost all frames are processed for the modi-
fied algorithm. The missed frames are expected to come from
frames where new features are added, because this adds addi-
tional computation in a frame.

The RMSE of the original and modified ROVIO can be
found in Table 3. Again we align the the estimated trajectory
with the ground truth by optimizing position and yaw only.
Note that for the UZH-FPV dataset that the ground truth is
only available for part of the sequences. The modified algo-
rithm is more accurate for most sequences, which is expected
since it was able to process more frames. The difference in
accuracy is most visible in sequence 03. In this sequence
there is a big difference in the number of processed frames.
However, processing more frames does not guarantee a lower
RMSE. On sequence 07 the RMSE of the modified ROVIO is
the same as the original algorithm, but the modified algorithm
processed almost 300 more frames. On sequence 09, the orig-
inal algorithm has even a smaller RMSE, however sequence
09 the original ROVIO did not drop many frames either.

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 51

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2022-5 13th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

5 CONCLUSION

We have made ROVIO computationally more efficient,
mainly by utilizing the sparse matrices. The accuracy is the
same as the original ROVIO, but requires 40% less computa-
tion time on an NVIDIA Jetson TX2. The computational gain
depends on the number of features used, because the compu-
tational cost of the modified ROVIO is less dependent on the
size of the state vector compared to the original ROVIO.

Furthermore, it was shown that the modified ROVIO has
a higher accuracy when using a camera buffer of one. How-
ever, the difference was small for most sequences. We expect
that the difference is bigger when running on a computation-
ally more limited device or when increasing the maximum
number of features.

The computational peaks are reduced as well, but they
are still there. To mitigate the computational peaks, we rec-
ommend do modify the feature selection method. To be more
specific: reducing the number of feature candidates of which
the Shi-Tomasi score is computed. This could for example
be done by using a feature mask around tracked features or
using an adaptive FAST threshold. However, this will affect
the accuracy of ROVIO and therefore we have not included
this in this work.

REFERENCES

[1] Ke Sun, Kartik Mohta, Bernd Pfrommer, Michael Wat-
terson, Sikang Liu, Yash Mulgaonkar, Camillo Taylor,
and Vijay Kumar. Robust stereo visual inertial odome-
try for fast autonomous flight. IEEE Robotics and Au-
tomation Letters, PP, 11 2017.

[2] Michael Bloesch, Michael Burri, Sammy Omari, Marco
Hutter, and Roland Siegwart. Iterated extended kalman
filter based visual-inertial odometry using direct photo-
metric feedback. The International Journal of Robotics
Research, 36:1053–1072, 09 2017.

[3] Anastasios I. Mourikis and Stergios I. Roumeliotis. A
multi-state constraint kalman filter for vision-aided in-
ertial navigation. In 2007 IEEE International Confer-
ence on Robotics and Automation, ICRA’07, Proceed-
ings - IEEE International Conference on Robotics and
Automation, pages 3565–3572, November 2007.

[4] T. Qin, P. Li, and S. Shen. Vins-mono: A robust and
versatile monocular visual-inertial state estimator. IEEE
Transactions on Robotics, 34(4):1004–1020, 2018.

[5] Stefan Leutenegger, Simon Lynen, Michael Bosse,
Roland Siegwart, and Paul Furgale. Keyframe-based
visual-inertial odometry using nonlinear optimization.
The International Journal of Robotics Research, 34, 02
2014.

[6] Guoquan Huang. Visual-inertial navigation: A concise
review. 2019 International Conference on Robotics and
Automation (ICRA), pages 9572–9582, 2019.

[7] Mihir Dharmadhikari, Huan Nguyen, Frank Mascarich,
Nikhil Khedekar, and Kostas Alexis. Autonomous cave
exploration using aerial robots. In 2021 International
Conference on Unmanned Aircraft Systems (ICUAS),
pages 942–949, 2021.

[8] Philipp Foehn, Dario Brescianini, Elia Kaufmann, Titus
Cieslewski, Mathias Gehrig, Manasi Muglikar, and Da-
vide Scaramuzza. Alphapilot: autonomous drone rac-
ing. Autonomous Robots, 46, 01 2022.

[9] Gino Brunner, Bence Szebedy, Simon Tanner, and
Roger Wattenhofer. The urban last mile problem: Au-
tonomous drone delivery to your balcony. In 2019 In-
ternational Conference on Unmanned Aircraft Systems
(ICUAS), pages 1005–1012, 2019.

[10] Christian Forster, Zichao Zhang, Michael Gassner,
Manuel Werlberger, and Davide Scaramuzza. Svo:
Semidirect visual odometry for monocular and mul-
ticamera systems. IEEE Transactions on Robotics,
33(2):249–265, 2017.

[11] Jianbo Shi and Tomasi. Good features to track. In 1994
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pages 593–600, 1994.

[12] Gaël Guennebaud, Benoı̂t Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[13] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas
Schneider, Joern Rehder, Sammy Omari, Markus
Achtelik, and Roland Siegwart. The euroc micro aerial
vehicle datasets. The International Journal of Robotics
Research, 35, 01 2016.

[14] Jeffrey Delmerico, Titus Cieslewski, Henri Rebecq,
Matthias Faessler, and Davide Scaramuzza. Are we
ready for autonomous drone racing? the uzh-fpv drone
racing dataset. In 2019 International Conference on
Robotics and Automation (ICRA), pages 6713–6719,
2019.

[15] Zichao Zhang and Davide Scaramuzza. A tutorial
on quantitative trajectory evaluation for visual(-inertial)
odometry. In IEEE/RSJ Int. Conf. Intell. Robot. Syst.
(IROS), 2018.

APPENDIX A: CODE

A branch of the updated code can be found at:
http://www.github.com/sbahnam/rovio2

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 52

	Papers
	Improving the computational efficiency of ROVIO

