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Abstract

Driven by the rapid integration of Renewable Energy Sources (RESs) and the growing elec-
trification of transport, heating, and industry, the Dutch power grid is being fundamentally
reshaped. While essential for meeting climate goals, these developments introduce significant
operational challenges, including higher uncertainty in power production and congestion risks.
Existing approaches for Congestion Management (CM) often neglect the stochastic nature of
RESs generation, rely on simplified network representations, or overlook real-world market
constraints.

This thesis addresses these gaps by formulating the Dutch market-based CM problem as a
Chance-Constrained Model Predictive Control (CC-MPC) framework. A linearized model
of the Dutch high-voltage network is employed within a CC-MPC scheme that incorporates
flexibility offers through integer decision variables. Uncertainty in RESs generation is cap-
tured using an Seasonal AutoRegressive Integrated Moving-Average (SARIMA) model for
each production region in the network, enabling a probabilistic treatment of forecast errors.
To mitigate conservatism in the chance constraints, a Reinforcement Learning (RL) approach
is introduced to adaptively tune the uncertainty model. The resulting stochastic disturbance
trajectories are used in a sampling-based approximation of the CC-MPC, optimising conges-
tion mitigation decisions under uncertainty.

The proposed methodology is validated using real-world data from the Dutch energy data ex-
change platform Energie Data Services Nederland (EDSN), including operational data from
Grid Operators Platform for AnCillary Services (GOPACS), the national CM platform. Re-
sults demonstrate that the RL-enhanced CC-MPC achieves improved constraint satisfaction
compared to other methods. Overall, this work contributes to the current literature by devel-
oping a rigorous framework for market-based CM under uncertainty, aimed at ensuring the
reliable and cost-effective operation of future renewable-dominated power systems.
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Preface

This document forms part of my Master of Science graduation thesis for the Systems and
Control program at Delft University of Technology.

The idea of conducting my research on CM in the Dutch electricity market originated from my
working experience at an energy supplier start-up, where I was first exposed to the operational
and economic challenges of energy trading and flexibility management.

This experience sparked my interest in understanding how control strategies and market
mechanisms could be combined to create a more efficient and resilient energy network. The
thesis represents the culmination of that curiosity and an opportunity to contribute, in a
small way, to the ongoing energy transition in the Netherlands.

Throughout the project, I have had the privilege of combining theoretical insights from control
engineering with practical challenges from the energy sector. The collaboration with EDSN
allowed me to work with real-world data and gain valuable experience in applying academic
research to industrial practice.

I hope this work provides useful insights for both researchers and practitioners working at the
intersection of power systems, data science, and market design.

Delft, University of Technology J. van der Weerd
November 7, 2025
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Chapter 1

Introduction

1-1 Background

In 2015, the Paris Agreement established a commitments of governments across the globe to
limit the rise in average global temperature, requiring a rapid reduction in greenhouse gas
emissions [1]. One of the key technologies for achieving this goal are RESs such as wind and
solar power. Governments worldwide have pledged to triple renewable energy capacity by
2030 [2], and recent trends already show a steep increase in installed capacity.

Simultaneously, the electrification of transport, heating, and industrial sectors is essential,
further increasing electricity demand [3]. This transition is driven not only by the need to
achieve climate goals but also from a strategic geopolitical standpoint, which necessitates a
shift towards energy autonomy [4]. These factors contribute to the expected total increase in
electricity demand by 2030 of 60%. To accommodate for the extra demand big investments
for expanding and modernising the transmission and distribution grid are necessary and the
European commission puts the overall investments around 70 billion euros per year until
2050 [5].

This ambitious shift toward increased electrification, while vital, presents numerous challenges
for grid operators. Today’s power systems, designed and implemented decades ago, operate
under outdated assumptions such as unidirectional power flow and centralized power produc-
tion. The challenge is two-fold: first, as renewable energy sources like wind and solar become
more prevalent, the intermittent nature of these power sources increases the demand for bal-
ancing on the grid; second, the traditional approaches that mainly use conventional generators
become less effective as their share of total energy requirement decreases. As a consequence,
congestion issues become more pronounced, potentially causing voltage violations or thermal
overloading of network components [6]. Excessive loading can lead to overheating, voltage
instability, or, in extreme cases, even result in outages if not managed properly [7]. This evo-
lution calls for innovative methods that can cope with reduced flexibility from conventional
plants, increased distribution of generation, and greater uncertainty in the network.
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2 Introduction

The importance of efficient CM extends beyond purely technical considerations as detailed
above. Economically, congestion leads to high remedial costs, such as re-dispatch or cur-
tailment of renewable generation. For example, in 2023 alone, remedial CM measures in
the European power grid cost €4.26 billion [8]. Environmentally, curtailing RES undermines
decarbonization efforts and slows progress toward climate targets. Socially, rising costs and
reliability concerns hinder industrial expansion and delay the benefits of electrification, i.e.,
higher energy efficiency and lower energy prices [3], for consumers.

1-2 Problem description and research question

The CM problem is complex, driven by the growing uncertainty in power system operation and
the limited range of control options available to transmission system operators. The growing
integration of RESs, coupled with a declining share of conventional generation in the overall
energy mix, substantially increases variability and uncertainty in both supply and demand.
The declining generation share of conventional units also limits the available capacity for
remedial actions. Consequently, alternative sources of flexibility from market participants
must be utilized. At the same time, market rules and regulatory frameworks restrict the set
of actions network operators can take to alleviate congestion. Consequently, ensuring secure
and efficient grid operation has become an increasingly challenging task, demanding advanced
decision-making methods capable of operating under uncertainty.

Despite the growing importance of CM, existing operational practices often rely on rule-based
or heuristic approaches. On the other side, more advanced optimization-based methods are
a promising paradigm to tackle the CM problem, as they allow to systematically handle CM
and market constraints. Among these, MPC emerges as a promising alternative because it
allows explicit incorporation of system constraints and forecasts of future conditions. By
optimising remedial actions over a prediction horizon and continuously updating decisions
as new data become available, MPC can enhance security, improve economic efficiency, and
adapt control actions to evolving system conditions in real time. However, a key limitation of
MPC is systematically handling uncertainty, such as forecasting errors in power demand or
RESs generation. To address the time-varying nature of these uncertainties, stochastic models
(e.g., ARMA) are needed to incorporate probabilistic information directly into the optimiza-
tion via chance constraints. Since such uncertainty models are necessarily approximate, it
remains challenging to select appropriate MPC hyperparameters under changing conditions.
To further enhance adaptability and robustness, RL techniques can be integrated to refine
these hyperparameters online by learning from past data, improving control performance.

To address the outlined challenges, the proposed approach integrates these strategies into
a unified, predictive control framework for CM. The scope and objectives of this work are
therefore captured in the following research questions:

How can an MPC-based CM strategy, enhanced with RL, be implemented to
manage congestion under uncertainty for the Dutch transmission grid using

real-world data?

The research question can be subdivided into the following sub-questions:

J. van der Weerd Master of Science Thesis



1-3 Structure of this report 3

• How can the Dutch high-voltage transmission grid be modelled as an MPC problem for
CM?

• How can a the Dutch CM market be formulated as an MPC problem?

• How can real-world data be leveraged to incorporate uncertainty within the proposed
MPC CM framework?

• How can an RL strategy be leveraged to increase performance within the proposed MPC
CM framework?

1-3 Structure of this report

In this section a short overview of the structure of the rest of this thesis is provided. Chapter 2
offers the necessary background on the main topic and its application context, establishing
the foundation for the subsequent analysis. Chapter 3 focuses on the data supplied by EDSN,
describing in detail its processing and subsequent use in the study. Chapter 5 introduces
various control methods, including the novel approach developed as part of this thesis. These
methods are then applied and evaluated in Chapter 6 through a case study, where their
performance is compared and discussed to demonstrate the effectiveness of the proposed
solution. Finally, Chapter 7 summarizes the findings and offers concluding remarks based on
the results obtained.
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Chapter 2

Related works and background
information

This chapter presents and analyses related works, provides essential background information
on key theoretical concepts, and establishes the necessary context for the real-world applica-
tion of the proposed approach. First, the background information on CM in the Netherlands
and the Dutch power grid will be presented. Then, an outline of the theoretical foundation of
the proposed methodology will be given, focusing on the core concepts of this thesis: power
grid modelling, MPC, AutoRegressive Moving-Average (ARMA) estimation, and RL. Finally,
related works will be presented and discussed.

2-1 Relevant background information

This section provides the necessary background knowledge a broad introduction to the archi-
tecture of power grids and the Dutch power markets, with a specific focus on the GOPACS,
the Dutch market for congestion services. Additionally, it includes a mathematical model of
the Dutch high-voltage transmission grid, which will be utilised throughout the thesis.

2-1-1 Operational timescales of power grids

Due to the complex nature of the power grid, system control is divided into multiple timescales
to ensure each task remains manageable and effective. The shortest timescales fall under
operations, where primary control, such as frequency control, must react within seconds,
followed by secondary control that restores nominal frequency within minutes. As the required
response becomes slower, the tasks shift toward operational planning. This includes tertiary
control, i.e. CM, and other system security and economic dispatch actions that operate on a
timescale of minutes to hours. Planning over even longer horizons involves decisions like unit
commitment over hours to days, and maintenance scheduling, which spans days to months.
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6 Related works and background information

Finally, facility planning addresses long-term system development, from day-ahead market
considerations to transmission expansion, which may extend over months to years [9].

These categories and representative tasks are illustrated in Figure 2-1. Faster timescales
require more detailed and accurate system models because of the rapid physical dynamics
involved. Longer-term planning tasks allow for more simplified modelling approaches, since
they address slow-evolving structural and economic changes rather than real-time stability.

Figure 2-1: Operational timescales for power grids

2-1-2 Dutch power markets

The Dutch electricity market is organized into several layers, each designed to balance supply
and demand over different time horizons. These electricity markets range from one day ahead
to months or years ahead. Participants can fine-tune their positions in the intra-day market
until five minutes before delivery, addressing precise demand and generation needs. Finally,
the imbalance market, operated by the transmission system operator TenneT, is used to
guarantee a stable system frequency and overall grid stability [10].

CM in the Netherlands is implemented in a market-based manner after market settlement,
using the centralized platform GOPACS, which matches flexibility offers submitted by market
participants. Transmission and distribution system operators compensate the spread between
buy and sell orders: a buy order reflects a downward adjustment in net position (consuming
more or generating less), while a sell order reflects an upward adjustment in net position
(consuming less or generating more). When the predicted production and consumption pat-
terns show congestion is possible, GOPACS pairs opposing offers to ensure a net-zero power
adjustment, preventing any impact on system frequency. The network operator covers the
price spread, with positive prices indicating payment by the participant on the buy side or
compensation on the sell side. This coordinated mechanism allows congestion to be resolved
efficiently without distorting wholesale market prices or jeopardizing grid stability [11].

In this work, the flexibility offers are modelled after the requirements for the new offer struc-
ture as specified by the Dutch high-voltage transmission grid operator TenneT [11]. The
properties of two different types of orders are

J. van der Weerd Master of Science Thesis



2-1 Relevant background information 7

Volume Time
Partial activation Start time and duration

Minimum activation Minimum duration
Quantity Maximum duration

Table 2-1: Properties different market order types

2-1-3 Dutch power grid

The focus of this thesis is CM in the Dutch high-voltage transmission grid. In this thesis, the
high-voltage grid is represented as a undirected mathematical graph, based on the map made
by Tennet [12], consisting of nodes and edges in the following way:

G = (N , E )
N := {0, . . . , |N | − 1}
E ⊆{(n, m) | n, m∈N , n ̸= m}

(2-1)

where G is the undirected graph, N denotes the set of nodes and E denotes the set of edges.
The number of nodes is represented by |N |. The graphical representation of this network
is shown in Figure 2-2. Where the nodes {39, 40, 41, 42, 43, 44, 45, 46} represent the medium-
voltage regions that connect all consumption and production to the high-voltage grid. The
rest of the nodes are high-voltage substations.

Figure 2-2: Graph of the studied high-voltage power grid, where each node represents a coupling
substation and each edge represents a transmission line connection between substations

Master of Science Thesis J. van der Weerd



8 Related works and background information

2-2 Relevant background theory

In this section, the necessary theoretical background for this thesis is presented. It covers
four main topics: the power flow model, ARMA models, MPC, and RL.

2-2-1 The AC Power flow model

Many power flow models exist, ranging from highly detailed representations that capture
device-level dynamics to simplified linearised formulations. The choice of model typically
involves a trade-off between accuracy and computational tractability. In this thesis, the focus
is on the behaviour of a transmission network. Since the network under consideration is
a balanced three-phase systems, it is sufficient to adopt a single-line representation of the
grid [13]. In this model the active and reactive power balance at each node n at time t is
expressed as in [14]:

P (n)(t) =
∑

m∈N

(
− v(n)(t)v(m)(t)g(n,m) cos

(
θ(n)(t)− θ(m)(t)

)
− v(n)(t)v(m)(t)b(n,m) sin

(
θ(n)(t)− θ(m)(t)

)) (2-2a)

Q(n)(t) =
∑

m∈N

(
− v(n)(t)v(m)(t)b(n,m) cos

(
θ(n)(t)− θ(m)(t)

)
− v(n)(t)v(m)(t)g(n,m) sin

(
θ(n)(t)− θ(m)(t)

))
,

(2-2b)

where P (n)(t) and Q(n)(t) denote the active and reactive power injections at bus n at time t,
v(n)(t) and θ(n)(t) are the bus voltage magnitude and phase angle, and g(n,m), b(n,m) are the
conductance and susceptance of line (n, m), respectively. The active and reactive power flows
along each transmission line (n, m)∈E are described as

P (n,m)(t) = (v(n)(t))2g(n,m)− v(n)(t)v(m)
t g(n,m) cos

(
θ(n)(t)− θ(m)(t)

)
− v(n)(t)v(m)(t)b(n,m) sin

(
θ(n)(t)− θ(m)(t)

) (2-3a)

Q(n,m)(t) =−(v(n)(t))2b(n,m) + v(n)(t)v(m)(t)b(n,m) cos
(
θ(n)(t)− θ(m)(t)

)
+ v(n)(t)v(m)(t)g(n,m) sin

(
θ(n)(t)− θ(m)(t)

) (2-3b)

where P (n,m)(t) and Q(n,m)(t) are the active and reactive power flows from bus n to bus m
at time t. Together, (2-2) and (2-3) define the AC power flow model that will be used in
subsequent sections to analyse the behaviour of the transmission grid.

2-2-2 AutoRegressive Moving Average models

ARMA models are a family of linear time series models designed to describe stationary
stochastic processes. Given two parameters p, q ∈ N, an ARMA model combines two com-
plementary components. The AutoRegressive part captures how the current value of the
time series depends on its own past observations—specifically, a linear combination of the
previous p values. In contrast, the Moving Average part describes how the current value is

J. van der Weerd Master of Science Thesis



2-2 Relevant background theory 9

influenced by random shocks or innovations from the past q time steps, representing the effect
of unmodelled disturbances or noise that persist over time. Together, these two terms allow
the ARMA model to represent both deterministic dependencies on past values and stochastic
effects arising from past random disturbances. Following [15], an ARMA(p, q) process for a
zero-mean stationary time series {y(t)} can be expressed as

y(t) =
p∑

i=1
ϕiyt−i + e(t) +

q∑
j=1

θjet−j , (2-4)

where y(t) denotes the value of the time series at time t, yt−i are the lagged observations,
and e(t) represents a white noise innovation term with zero mean and constant variance.
The coefficients ϕi and θj correspond to the autoregressive and moving average parameters,
respectively, while p and q denote the orders of the AR and MA components.

The formulation in (2-4) can be rewritten in a more compact form using the back-shift op-
erator D, defined such that Dky(t) = yt−k. This operator-based representation simplifies the
manipulation of lagged variables. Expressed in this way, the ARMA(p, q) model becomes [16]

(1−Dϕ1−D2ϕ2 + . . . + Dpϕp)y(t) = (1 + Dθ1 + D2θ2 + . . . + Dqθq)e(t),
ϕp(D)y(t) = θq(D)e(t),

(2-5)

where the autoregressive and moving average polynomials are defined as

ϕp(D) = 1−Dϕ1−D2ϕ2− . . .−Dpϕp (2-6)

and
θq(D) = 1 + Dθ1 + D2θ2 + . . . + Dqθq. (2-7)

Because many real-world time series are non-stationary, a preprocessing step called differ-
encing is often used as a preprocessing step. Differencing subtracts consecutive observations
from one another to remove trends. A first order differencing operation looks like

(1−D)y(t) = y(t)− yt−1. (2-8)

Incorporating differencing of order d yields the AutoRegressive Integrated Moving-Average
(ARIMA)(p, d, q) model [17], which modifies (2-5) to

ϕp(D)(1−D)dy(t) = θq(D)e(t), (2-9)

where (1−D)d denotes the d-th order differencing operator applied to the series.

When the time series exhibits periodic or seasonal behaviour, the model can be further ex-
tended to include seasonal components, resulting in the SARIMA(p, d, q, ps, ds, qs, s) [18]. This
model includes both non-seasonal and seasonal autoregressive and moving average terms, and
can be written as

ϕp(D)(1−D)dΦ(Ds)(1−Ds)dsy(t) = θq(D)ΘQ(Ds)e(t), (2-10)

where Φ(Ds) and ΘQ(Ds) represent the seasonal autoregressive and moving average polyno-
mials with a seasonal lag of s. The parameters ps, ds, and qs correspond to the orders of the
seasonal AR, seasonal differencing, and MA components, respectively, while s denotes the
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10 Related works and background information

length of the seasonal cycle (for instance, s = 12 for monthly data with annual seasonality).
The first order seasonal differencing looks like:

(1−Ds)y(t) = y(t)− yt−s (2-11)

This formulation allows the model to simultaneously capture both short-term dynamics and
long-term seasonal patterns within a single framework.
Model selection for ARMA, ARIMA, or SARIMA models involves determining the optimal
orders (p, d, q) and, in the seasonal case, (ps, ds, qs, s). This choice should balance model
complexity and predictive accuracy. To evaluate the models, information criteria such as the
Bayesian information criterion [19], or Akaike information criterion [20] are commonly used.
In practice, these criteria are used in automated algorithms such as the procedure introduced
in [21] to evaluate the models found in a systematic search of the parameter space too find the
best model order. Once the model structure is chosen, estimation of the model parameters
(ϕi, θj , Φi, Θj) is typically performed via maximum likelihood estimation. The principle of
maximum likelihood estimation is to find the parameter values that maximize the likelihood
of the observed data under the assumed model.

2-2-3 Model Predictive Control

MPC is a model-based optimal control strategy that determines a sequence of control inputs
to steer the state of a system towards a desired reference trajectory. At each time step, an
optimisation problem is solved over a finite prediction horizon, balancing performance ob-
jectives (encoded in the cost function) with safety and operational requirements (encoded as
constraints on the states and control inputs). This is illustrated in Figure 2-3. The solid
black line represents the measured system state x(k), while the orange line shows the refer-
ence trajectory r(k) that the system should follow. At the current time step, the controller
predicts the future evolution of the system over the horizon np based on a sequence of candi-
date control inputs u(k), shown as green dots. The black dotted line represents the predicted
state trajectory resulting from these candidate inputs. Among all feasible input sequences,
the optimisation selects the one that minimises the cost while satisfying the state constraints.
Only the first input of this sequence is applied to the system, after which the procedure is
repeated at the next time step using updated measurements. Deterministic MPC is formu-
lated under a deterministic setting, meaning that it assumes perfect knowledge of system
parameters and neglects the presence of disturbances or uncertainties [22]. The deterministic
MPC optimisation problem for a linear system is typically written as

min
x(k+1),...x(k+np),

u(k+1),...,u(k+np−1)

np−1∑
i=1

l(x(k + i), u(k + i)) + lf(x(k + np)) (2-12a)

s.t. x(k + i + 1) = Ax(k + i) + Bu(k + i + 1) ∀i∈{0, . . . , np− 1} (2-12b)
h(x(k + i + 1), u(k + i))≤ 0 ∀i∈{1, . . . , np− 1} (2-12c)
x(k + i)∈X ∀i∈{1, . . . , np} (2-12d)
u(k + i)∈U ∀i∈{1, . . . , np− 1}, (2-12e)

here x(k) denotes the measured system state at the current time k and np is the pre-
diction horizon. The state matrices A, B form the model describing the state evolution;
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Figure 2-3: Nominal MPC control strategy. The solid black line shows the measured state x(k),
the orange line indicates the reference trajectory r(k), and the green dots represent the candidate
control inputs u(k) predicted over the horizon np.

h(x(k + i + 1), u(k + i)) encodes the constraints on the states and inputs; and X ⊆ Rn,
U ⊆ Rm are the admissible state and control sets. The objective function is composed of
two terms: the stage cost l(x(k + i), u(k + i)), which penalises state trajectories and control
actions along the prediction horizon, and the terminal cost lf(x(k + np)), which penalises the
final predicted state. Despite its effectiveness, deterministic MPC does not explicitly handle
uncertainty. However, in practice systems are subject to disturbances, measurement noise,
and parameter variations. Incorporating uncertainty into the optimization problem improves
decision-making, reliability, and constraint satisfaction, although it generally comes with in-
creased computational complexity. Two main extensions of MPC have been proposed for this
purpose: robust MPC and stochastic MPC.

Robust MPC accounts for all possible realisations of uncertainty within a predefined uncer-
tainty set. This yields strong safety guarantees, but often at the expense of performance
due to conservatism. In contrast, stochastic MPC relaxes these deterministic safety guaran-
tees into probabilistic constraint satisfaction. Instead of requiring absolute satisfaction of the
constraints, it allows for constraint violation with a prescribed probability. This results in
less conservative control actions and improved performance, though without absolute safety
guarantees [23]. The deterministic formulation in (2-12) can be extended to the stochastic
setting as a CC-MPC problem as follows [24]:

min
x(1)(k),...,x(ns)(k),u(k)

1
ns

ns∑
s=1

np−1∑
i=1

l(x(s)(k + i), u(k + i)) + lf(x(s)(k + np))

s.t. x(s)(k + i + 1) = Ax(s)(k + i) + Bu(s)(k + i + 1) + Dw(s)(k + i + 1)
∀i∈{0, . . . , np− 1}, s∈{1, . . . , ns}

IP(h(x(k + i + 1), u(k + i), d(k + i))≤ 0, ∀i∈{1, ..., np− 1})≥α

u(k + i)∈U ∀i∈{1, ..., np− 1}
(2-13)
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where the disturbance w(k+i) belongs to the uncertainty setWm, α∈ (0, 1] denotes the min-
imum probability of constraint satisfaction, and the bold symbols denoted the full trajectory
over the prediction horizon. Solving chance-constrained problems is notoriously difficult due
to the complexity of the probability constraints, even for relatively simple systems [24]. To
enable practical solutions, scenario-based or sampling-based approximations of chance con-
straints are widely adopted. In these approaches, the probabilistic constraint in (2-13) is
replaced by ns deterministic constraints, one for each sampled scenario. This has two advan-
tages: it transforms the problem into a deterministic program with manageable complexity,
and it does not require an explicit knowledge of the uncertainty distribution, provided that
a sufficient number of samples can be drawn [23]. Under suitable conditions, the required
number of samples can be small, making scenario-based MPC an attractive approach even for
large-scale systems [25]. The sample-based approximation of the chance-constrained problem
formulated in (2-13) can be written as

min
x(1)(k),...,x(ns)(k),u(k)

1
ns

ns∑
s=1

np−1∑
i=1

l(x(s)(k + i), u(k + i)) + lf(x(s)(k + np))

s.t. x(s)(k + i + 1) = Ax(s)(k + i) + Bu(s)(k + i + 1) + Dw(s)(k + i + 1)
∀i∈{0, . . . , np− 1}, s∈{1, . . . , ns}

1
ns

ns∑
s=1

𝟙(h(x(k + i + 1), u(k + i), d(k + i))≤ 0, ∀i∈{1, ..., np− 1}
)
≥α

u(k + i)∈U ∀i∈{1, ..., np− 1}
(2-14)

where x(s)
k , denotes the predicted state trajectory under scenario s. Each scenario corresponds

to a particular sampled realisation of the disturbance sequence d(s)(k + i), which is drawn
from the uncertainty set D. The control input sequence uk is common to all scenarios, since
the controller cannot adapt its decisions to a disturbance before it has been observed. The
number of scenarios considered is ns. The probabilistic constraint in (2-13) is replaced by it
sample-based approximation of the joint chance-constraint:

1
ns

ns∑
s=1

𝟙(h(x(k + i), u(k + i), d(k + i))≤ 0, ∀i∈{1, ..., np− 1}
)
≥α, (2-15)

which enforces that the fraction of sampled scenarios satisfying the original constraints must
be bigger than α. In this way, the chance constraint is approximated through a finite set of
deterministic constraints, one for each scenario where 𝟙 is defined as in (2-16).

𝟙(x) =
{

1 x≥ 0
0 x < 0

(2-16)

2-2-4 Reinforcement learning

RL is one of the three main branches in machine learning, alongside supervised and unsuper-
vised learning. In contrast to supervised learning, RL does not rely on labelled data. Instead;
it focuses on learning a policy, a strategy that maps states of the system to actions, with the
objective of maximizing the cumulative reward over time.
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The RL framework is composed of two main components: the agent and the environment. The
agent serves as the decision-maker, while the environment represents the system or process
with which the agent interacts. At each step of the learning cycle, the agent observes the
state of the environment, selects an action, and subsequently receives both a new state and
a reward. This continuous interaction between the agent and the environment is illustrated
in Figure 2-4. The environment is often modelled as a Markov decision process. A Markov

Figure 2-4: Agent-environment interaction in RL

decision process is a framework for sequential decision-making in stochastic settings, defined
by states, actions, transition probabilities, and rewards. A Markov decision process can be
modelled mathematically as the Markov decision process tuple in the following way [26]

M∼
(
S,A, IP, R

)
,

whereM is the Markov decision process tuple, S represents the state space, A represents the
action space, IP defines the transition probabilities from the current state s(t) to the next
state st+1 under action a(t), and R is the reward function. Note that in this thesis, both sk

and xk are referred to as states; however, the former denotes the state of the RL agent, while
the latter represents the state of the power grid’s dynamic model. A valid Markov decision
process must satisfy the Markov property, which assumes the process is memoryless. This
implies that transition probabilities for the next state depend solely on the current state.
Formally, this is expressed as

P (sk+1 | sk, ak) = P (sk+1 | sk, ak . . . , s0, a0), (2-18)

where P (·) is the transition probability from state sk ∈ S to state sk+1 ∈ S under action ak.
If the environment can be modelled as an Markov decision process, utilizing only the current
state to determine an action is as effective as using the complete history of states.
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2-3 Related Works

This section reviews related work on market-based CM relevant to this thesis. The discussion
is organized around four main themes: power flow models, market-based CM approaches,
control methodologies, and uncertainty treatment in CM. Each topic is examined to highlight
current methods, their underlying assumptions, and key differences. The section concludes
with a summary of the reviewed literature and a discussion of the research gap addressed by
this thesis.

2-3-1 Power Flow Models

Two types of power flow models are commonly applied in CM studies: the AC power flow
model and the Direct Current (DC) power flow model.

The AC model provides a detailed and accurate representation of the electrical grid by captur-
ing both real and reactive power flows through non-linear equations based on power balance
at each node [27, 28]. It considers voltage magnitudes, voltage angles, conductance, and sus-
ceptance for each line, allowing precise estimation of voltages, reactive power flows, and power
losses. However, its non-linear nature makes the model computationally intensive and less
suitable for large-scale or real-time applications.

This complexity motivates the use of simplified alternatives when high accuracy is not essen-
tial. The most common simplification is the DC power flow model, which assumes: no active
power losses, no reactive power, small voltage angle differences between nodes, and a uniform
voltage magnitude of one per unit at all nodes [29,30]. These approximations justify the lin-
earisation of the AC equations, allowing faster computation and efficient estimation of active
power flows. However, these simplifications limit accuracy. The DC model performs well only
when the reactance-to-resistance ratio exceeds four and voltage angle differences remain below
about 7°, conditions typically found in high-voltage transmission networks. The flat voltage
profile assumption is its main limitation, as it can lead to large errors under varying load or
voltage regulation conditions. Therefore, while the DC model offers computational efficiency,
its validity depends strongly on the network characteristics and operating conditions [29].

2-3-2 Market-Based CM Methods

Market-based CM can be broadly categorized into ex-ante and ex-post approaches, depending
on whether transmission limits are considered during or after market settlement.

In ex-ante markets, such as nodal or zonal markets, transmission constraints are integrated di-
rectly into the market-clearing process. In a nodal market, electricity prices are node-specific;
when transmission capacity to a node is scarce, the local price increases to reflect conges-
tion costs, and only the highest offers are cleared [31–33]. In a zonal market, multiple nodes
are grouped into zones with uniform pricing, simplifying settlement but neglecting congestion
within zones [34]. In principle, ex-ante markets should eliminate the need for remedial actions
since congestion is priced into the settlement. In contrast, ex-post CM operates after market
clearing. The main market is settled as a single zone under the copper plate assumption (i.e.,
unlimited transmission capacity), and congestion is resolved subsequently [27]. This can be
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achieved through non-market mechanisms such as load shedding or re-dispatch, where flex-
ibility is demanded as needed [35]. Some non-market price-based coordination schemes use
price signals as control incentives rather than as market-clearing outcomes. For example, [36]
employ a price-based coordination mechanism where the network operator sends incentive
signals to aggregators to adjust demand and relieve congestion, without actual offering or
clearing. Similarly, [37] use cost-based predictive control to coordinate flexibility ex-post.
Such approaches mimic market behaviour but do not involve real trading.

In full market-based approaches, flexibility is traded through pool-based markets, bilateral,
or multilateral contracts. Re-dispatch objectives may focus on cost minimization or deviation
minimization, depending on whether the goal is to reduce re-dispatch costs or deviations from
the market schedule. Flexibility offers are typically represented as offers from participants,
submitted as fixed prices or contract-based offers [37–40].

2-3-3 Control Methodologies for CM

Existing CM control methods can be broadly categorized into optimization-based and MPC-
based methods

Optimization-based methods formulate CM as a mathematical optimization problem that
minimizes system costs or maximizes social welfare subject to physical and operational con-
straints. These approaches provide static solutions assuming accurate system models and
perfect information. Depending on the formulation, objectives include social welfare maxi-
mization before market clearing [31, 33], or cost/deviation minimization during re-dispatch
[37, 41, 42]. Extensions include multi-objective optimization [43], distributed optimization
[28, 44], and mixed-integer formulations for both continuous an discrete control decisions
[40,45].

MPC extends traditional optimization by introducing feedback and receding-horizon control.
Instead of computing a static, open-loop solution, MPC repeatedly solves a constrained opti-
mization problem over a prediction horizon, applies the first control action, and re-optimizes
as new measurements arrive. This allows the controller to anticipate and mitigate future
congestion while adapting to evolving grid conditions. Recent studies [39, 46–48] demon-
strate MPC’s effectiveness for real-time coordination of generators, storage, and curtailment.
Robust MPC extensions further improve resilience to forecast errors and renewable fluctua-
tions [49]. However, MPC requires accurate dynamic models and incurs higher computational
costs compared to static optimization. Its performance is also sensitive to how uncertainty
is represented inside the controller. In CC-MPC, probabilistic feasibility is enforced using
generated scenarios from an underlying statistical model of forecast errors. If the uncertainty
model is misaligned with real grid behaviour, these scenarios can lead to under- or over esti-
mation of risk. To mitigate this issue, reinforcement learning is used to adaptively tune the
variance parameters of the ARMA-based uncertainty model based on the observed system
response. Through this online adjustment, the RL agent balances constraint satisfaction and
economic efficiency.
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2-3-4 Uncertainty Treatment in CM

Uncertainty in CM arises from forecast errors, imperfect system models, and the variability of
RESs. As distributed generation and flexible demand increase, managing these uncertainties
becomes crucial for reliable and efficient operation.

Traditional optimization approaches address uncertainty through fixed safety margins on
constraints, but this is often overly conservative or fails to guarantee feasibility under large
deviations [50]. Recent work therefore focuses on explicit uncertainty modelling using data-
driven forecasting methods. Probabilistic and machine-learning models are applied to capture
forecast errors and temporal dependencies, providing statistical information that can be in-
corporated directly into control formulations [51–54]. Probabilistic formulations, such as
chance-constrained or scenario-based methods, use probability distributions to balance risk
and performance, albeit at higher computational cost [55–57]. Robust optimization ensures
feasibility for all realizations within bounded uncertainty sets, making it suitable for data
scarcity, or safety-critical applications but often yielding conservative solutions [58].

2-3-5 Overview

Most market-based ex-post approaches rely either on deterministic forecasts [36–39] or static
optimization methods that lack closed-loop adaptability. Although recent studies incorporate
probabilistic information [40, 55], they do not leverage receding-horizon control or real-time
learning to handle evolving uncertainties. Additionally, only a limited number of works com-
bine realistic grid modelling with real-world data.

These gaps are addressed by combining statistical forecasting to capture renewable and de-
mand variations, with a market-based CC-MPC incorporating real market restrictions with a
receding horizon control method. Finally an RL-agent is then integrated to tune the ARMA
model to improve constraint satisfaction and economic efficiency. This integrated approach
demonstrates superior performance relative to a greedy selection approach, deterministic MPC
and CC-MPC in terms of constraint satisfaction and economic efficiency, while being validated
on real-world data and an AC grid model representative of the Dutch transmission network.

2-4 Summary

This chapter establishes the context for market-based CM in the Netherlands and outlines
the theoretical tools used in the thesis. It introduces the Dutch market architecture, from
futures to imbalance—and explains how CM is performed ex-post via the GOPACS platform,
where opposing flexibility offers are paired and the operator covers the price spread. The
Dutch high-voltage grid is abstracted as an undirected graph used throughout the work,
and offer attributes for flexibility products (timing and volume constraints) are aligned with
TenneT’s specification. Last, related works and research gaps are discussed, and the main
thesis contributions are outlined.
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Paper Power flow
model

Market-based
approach

Uncertainty
treatment

Control
methodology

Data type & grid
model

[36] AC
Ex-post, non-
market-based,

price coordination

Deterministic
forecast Optimization

Simulated data +
benchmark

network

[37] AC
Ex-post, non-
market-based,

price coordination

Deterministic
forecast MPC

Simulated data +
benchmark

network

[38] DC
Ex-post,

market-based,
pool market

Deterministic
forecast Optimization

Simulated data +
benchmark

network

[39] DC
Ex-post,

market-based,
pool market

Deterministic
forecast Optimization

Simulated data +
benchmark

network

[40] AC
Ex-post,

market-based,
pool market

Statistical Optimization Real-world data
+ real grid model

[55] DC
Ex-post,

market-based,
pool market

Statistical
Chance-

constrained
optimization

Simulated data +
benchmark

network

This work AC
Ex-post,

market-based,
pool market

Statistical
Chance-

constrained
MPC

Real-world data
+ real grid model

Table 2-2: Summary of related work on market-based CM
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Chapter 3

Data usage and uncertainty

In this chapter, the data and statistical model used for making the disturbance prediction
are presented. First, in Section 3-1, the structure of the used data set is described. Then, in
Section 3-2, the process of constructing a statistical forecasting model from the raw time series
is described, starting with data analysis that includes seasonal identification and stationarity
testing, and concluding with the selection of the SARIMA model. The resulting model is
evaluated through residual analysis and out-of-sample prediction in Section 3-3, forming the
basis for uncertainty representation in the control framework introduced in the following
chapters.

3-1 Data description

In the model developed for this thesis, eight areas are considered, each featuring both elec-
tricity consumption and production. For each area, the available data are divided into two
categories: connections that solely represent consumption and all other connections. The
data have been provided by EDSN.

It should be noted that large-scale grid connections exceeding 60 MW are excluded from the
dataset, as they are directly connected to the transmission grid and therefore not included
in the EDSN data. This exclusion encompasses all conventional power plants. Nevertheless,
because the overall power system must remain balanced, the total generation across the system
must equal the net demand. This relationship enables the total generation to be estimated
and subsequently allocated to the corresponding generator nodes.

3-2 Data analysis and processing

This section develops the statistical model used to make the disturbance forecasts in the
proposed CC-MPC framework. The workflow follows well-established guidelines for time-
series analysis and SARIMA modelling [21,59].
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Ensuring stationarity is essential for ARMA-type modelling, since if the underlying pro-
cess changes the models parameters on fitted on past data become biased or meaningless.
Therefore, the process begins with an exploration of the raw measurement data to under-
stand its key characteristics, such as the existence of trends or patterns, indicating non-
stationarity. Trends and/or patterns can be removed using differencing. To characterize
periodic behaviours, a fast Fourier transform is applied, allowing dominant seasonal fre-
quencies to be identified and helping determine the appropriate seasonal period for seasonal
differencing [60]. To validate the differencing, statistical tests can be performed to check for
stationarity using a unit root test. Two commonly used test are The augmented Dickey–Fuller
and Kwiatkowski–Phillips–Schmidt–Shin tests [59,60]. The augmented Dickey–Fuller test as-
sumes that the series is non-stationary, whereas the Kwiatkowski–Phillips–Schmidt–Shin test
assumes stationarity, due to this difference the augmented Dickey-Fuller test tends to favour
differencing as pointed out in [21]. Applying differencing can cause unwanted dependency in
the time series data that did not exist beforehand therefore keeping the model order as low
as possible is advisable [61].
As discussed in Subsection 2-2-2, ARMA-type models are typically applied under the assump-
tion that the underlying time series is stationary. This means that the statistical properties
of the process, such as mean and variance, are assumed to remain constant over time. If
the underlying data do not exhibit these properties, at least locally, the dynamics cannot be
effectively captured.
After stationarity is achieved by differencing and/or seasonal differencing, the differenced
series are examined using the Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF). This autocorrelation analysis guides the selection of candidate models
orders, p, q, ps, qs respectively as defined in (2-10), from which several SARIMA model struc-
tures are proposed for further evaluation. To balance model accuracy and simplicity, the
corrected Akaike information criterion is employed for analysis of the selected model orders.
The corrected Akaike information criterion corrects bias in the Akaike information criterion
for over estimating the number of model parameters needed and is defined as [59,62]

AICc = AIC + 2(ρ + 1)(ρ + 2)
T − ρ− 2 , AIC =− log(L̂), (3-1)

where ρ denotes the total number of estimated parameters in the model, T is the number of
usable observations in the time series, and L̂ is the maximized likelihood of the fitted model.
The additional correction term penalizes models more heavily when the sample size is small
relative to the number of parameters, reducing the risk of over-fitting. The model with the
lowest corrected Akaike information criterion value is therefore preferred, as it provides the
best trade-off between predictive accuracy and model simplicity.

3-2-1 Raw Data Analysis

The data analysis procedure is demonstrated for a single case. Equivalent analyses for the
remaining regions are omitted due to space constraints, however the performance of the other
fitted models are also shown. The raw production and consumption time series for Noord-
Holland are shown in Figures 3-1 and 3-2. Each figure include a full year of data (20th of April
2023 – 20th April 2024) and a zoomed-in view of a August 2023 to better show short-term
dynamics.
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Figure 3-1 reveals that production exhibits substantial variability driven by renewable gener-
ation. These fluctuations occur at multiple periodicities, with frequent rapid spikes superim-
posed on broader seasonal patterns. Conversely, as seen in Figure 3-2, electricity consump-
tion displays a more structured temporal profile. Daily cycles, weekly working-day effects,
and smoother seasonal changes dominate the load pattern, and extreme fluctuations are far
less pronounced compared to production. Historically, short-term load forecasting at the

(a) Raw electricity production data for Noord-Holland for April 2023 to April 2024.

(b) Raw electricity production data for Noord-Holland for August 2023 showing a clear, but highly
variable, daily pattern

Figure 3-1: Raw production data for Noord-Holland.

transmission level has been highly accurate due to the predictable nature of aggregated con-
sumption [63]. For example, real-time demand forecasts in Australia achieved 1.88% Mean
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(a) Raw electricity consumption data for Noord-Holland for April 2023 to April 2024.

(b) Raw electricity consumption data for Noord-Holland for August 2023, showing clear week and
weekend pattern (5 high peaks (week days), followed by 2 low peaks (weekend days)

Figure 3-2: Raw consumption data for Noord-Holland.

Absolute Precentage Error (MAPE) [64], and day-ahead errors as low as 1.36% MAPE were
reported in [65]. Given the high accuracy achieved when modelling demand and the clear
structural patterns in consumption profiles, this study does not develop separate statistical
models for demand. Instead, real measured consumption values are used as input, and the
predictive analysis focuses only on the local electricity production from RESs, where volatility
results substantial uncertainty.
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3-2-2 Stationarity Assessment, Differencing, Seasonality Identification

The raw production data for Noord-Holland are first tested for stationarity using the aug-
mented Dickey–Fuller and Kwiatkowski–Phillips–Schmidt–Shin tests, with the results sum-
marized in Table 3-1. While the augmented Dick-Fuller test suggests that the undifferenced
data may already be stationary, the Kwiatkowski–Phillips–Schmidt–Shin test rejects this, in-
dicating the presence of non-stationary behaviour. This non-stationarity conclusion is also
consistent with the visibly strong periodic patterns, i.e. changing mean, visible in Figure
3-1. To quantify the dominant recurring behaviour, the seasonal frequency of the data is

Augmented Dick-Fuller Kwiatkowski–Phillips–Schmidt–Shin
d = 0, D = 0 Stationary Not stationary
d = 0, D = 1 Stationary Stationary

Table 3-1: Results of stationarity tests applied to the production data of Noord-Holland.

determined using the fast Fourier transform, following the approach in [60]. The spectrum in
Figure 3-3 reveals a clear peak corresponding to a cycle of 96 time steps, which is equivalent
to a daily seasonality (96 intervals × 15 minutes = 24 hours). After applying seasonal differ-
encing using (2-11) with the s = 96 and ds = 1, both the ADF and KPSS tests confirm that
the transformed series is stationary (Table 3-1).

Based on these findings, the differencing orders are selected as d = 0 and D = 1. With
stationarity ensured, the next step is to identify suitable model orders, which will be addressed
in the following section through analysis of the autocorrelation structures of the preprocessed
data.

Figure 3-3: FFT spectrum of the production data for Noord-Holland, showing a clear daily
periodicity with a dominant frequency corresponding to 96 time steps (24 hours).

3-2-3 Autocorrelation Analysis for Model Order Selection

After applying seasonal differencing, the autocorrelation structure of the differenced produc-
tion data is examined using the ACF and PACF, shown in Figure 3-4.
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Figure 3-4a shows a decaying ACF spikes outside the significant values, where the PACF
with a dominant spike at lag 1. This pattern indicates short-memory dependence typical
of a low-order autoregressive process, suggesting a small non-seasonal auto-regressive term p
component and no clear evidence of a moving-average term q = 0.
In Figure 3-4b) the ACF exhibits pronounced negative spikes at 96, while the PACF decays
gradually without a clear cut-off. This pattern is characteristic of a seasonal moving-average
process of order one, indicating that one seasonal difference (D = 1) is sufficient and that the
remaining seasonal structure can be captured with a seasonal MA(1) term. Together, these
features justify considering models of the general form:

SARIMA(p, 0, 0, 0, 1, 1, 96),

where the non-seasonal AR(p) component captures short-term dependence and the seasonal
MA(1) component accounts for residual autocorrelation at the seasonal frequency.

3-2-4 Model Selection using correct Akaike information criterion

The identified model types are fitted using maximum likelihood estimation and the residuals
are evaluated using the correct Akaike information criterion. The lowest correct Akaike
information criterion is best therefore the selected model is SARIMA(5, 0, 0, 0, 1, 1, 96).

Model correct Akaike information criterion
SARIMA(1,0,0,0,1,1,96) 618156.84
SARIMA(2,0,0,0,1,1,96) 616888.29
SARIMA(3,0,0,0,1,1,96) 616578.49
SARIMA(4,0,0,0,1,1,96) 616575.48
SARIMA(5,0,0,0,1,1,96) 616569.23

Table 3-2: Results information criterion tests on selected modelling parameters for Noord-Holland

3-3 Model validation

Finally, with the best model parameters selected, the model diagnostics are assessed to deter-
mine if the selected SARIMA adequately captures the dynamics. First, the residual time-series
plot is examined to visually check for bias and constant variance. The distributional of the
residuals are plotted with a histogram over which a Gaussian distribution estimate is plot-
ted, together with a QQ (quantile-quantile) plot, which compares the empirical quantiles of
the residuals against a theoretical Gaussian distribution to detect skewness or heavy-tailed
behaviour. Finally, the ACF plot is used to test for remaining temporal dependence. These
diagnostics collectively verify whether the model is suitable for scenario generation and fore-
casting.
In addition to residual diagnostics, the predictive accuracy of the SARIMA model is evaluated
using an out-of-sample forecasting. The models are used to predict unseen data. The forecast
errors are then quantified using the MAPE metric, which measures the average magnitude of
the prediction error relative to the observed values.
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(a) Zoomed in ACF and PACF

(b) ACF and PACF plot for Noord-Holland

Figure 3-4: Autocorrelation and partial autocorrelation plots of the seasonally differenced time
series for Noord-Holland. Subfigure (a) shows a zoomed-in view of the first 20 lags, while subfigure
(b) displays the full lag range to illustrate seasonal correlation structures.

Gaussian Noise and Independence Tests

Figure 3-5 presents the residual diagnostics for the fitted SARIMA model on the generation
data of Noord-Holland. In the residual time-series plot (top-left), the mean of the residuals
fluctuates around zero, indicating no obvious bias. However, noticeable variations in the
spread throughout the period suggest heteroscedasticity, meaning the residual variance is not
constant over time. This is to be expected due to the seasonal and weather dependency of
RES.

The residual distribution is further examined in Figure 3-5. The histogram of the residuals
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with an overlaid Gaussian estimate (top-right) shows an approximately bell-shaped form.
This observation is supported by the QQ plot (bottom-left), where the theoretical quantiles
on the x-axis correspond to a standard normal distribution, while the sample quantiles on the
y-axis reflect the actual scale of the residuals. The difference in axis ranges arises because the
residuals are not standardized, but the alignment of points along the red reference line still
indicates approximate normality. However, slight deviations at the tails suggest the presence
of occasional large residuals, implying heavier tails than those expected under a Gaussian
distribution.

Serial correlation is examined in the ACF plot (bottom-right), which shows that no significant
autocorrelations remain. This indicates that the SARIMA model has effectively captured the
underlying patterns in the data, leaving no systematic structure unexplained. However, the
residual variance remains high, which is expected to limit the predictive accuracy of the
model.

Overall, these diagnostics indicate that the SARIMA model provides unbiased residuals with
near Gaussian behaviour and minimal autocorrelation, making it suitable for prediction. At
the same time, the observed heteroscedasticity highlights that uncertainty varies with sys-
tem conditions, thus motivating the use of adaptive variance estimation within the proposed
CC-MPC-RL framework, which will be presented in Chapter 5.

Figure 3-5: Residual diagnostic plots for the fitted SARIMA model: (top-left) residual time
series, (top-right) residual histogram with kernel density estimate, (bottom-left) QQ plot, and
(bottom-right) .

Out-of-Sample Performance Evaluation

The SARIMA models will be used to make short term generation predictions for the MPC-
based controllers that will be derived in Chapter 5. Therefore the predictive accuracy will be
tested on the prediction horizons chosen for the methods np ∈{8, 16}. After fitting the time-
series model, the estimated autoregressive and moving-average parameters are used together
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with the distribution of the residuals. First, the most recent values of the seasonally differ-
enced time series and past error terms are stored as initial conditions. At each simulation
step, a new forecast value is computed by summing the contributions from the non-seasonal
AR and MA terms, as well as the seasonal SAR and SMA components extracted from the
fitted model. A random innovation term is then sampled from the fitted normal distribution
shown in Figure 3-5. By iterating this process over the desired forecast horizon, one simulated
trajectory is generated. The predictions are made by exploiting the recursive structure of the
SARIMA model equations, for the final model parameters the model can be formulated as

yt+1 =
p∑

i=1
ϕi yt+1−i +

qs∑
j=1

Θj εt+1−j + εt+1, εt+1∼N (0, σ2), (3-2)

where ϕi and Θj denote the non-seasonal AR and seasonal MA coefficients, s the seasonal
period, and εt+1 a random innovation drawn from the fitted Gaussian distribution. By iter-
ating this recursion over the desired horizon, one simulated trajectory is obtained. Repeating
the process with newly sampled innovations yields multiple different paths. The forecasting

Figure 3-6: MAPE of ARMA across 50 simulated days

results for all regions are summarised in Table 3-3. The forecasting results for all regions

Province RMSE (mean) MAPE MAPE (variance)
Noord-Holland 6497 [kW ] 13.86 % 8.64 %
Zuid-Holland 26608 [kW ] 23.25 % 20.02 %

Groningen 22882[kW ] 495.45 % 4959.55 %
Zeeland 11765 [kW ] 31.69 % 32.00%
Brabant 17001 [kW ] 19.89 % 18.80 %
Limburg 9965 [kW ] 23.03 % 19.24 %

Utrecht, Flevopolder, en Gelderland 19864 [kW ] 27.68 % 27.82 %
Friesland 7679 [kW ] 41.94 % 53.05 %

Table 3-3: Out-of-sample prediction accuracy per region for prediction horizon np = 16

are summarised in Table 3-3. The Root Mean Square Error (RMSE) values indicate that the
absolute forecast errors remain within a reasonable range for short-term renewable generation
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prediction. Most regions show MAPE values between 10 % and 30 %, which unfortunately is
not very accurate but to expected due too the high variability of the data since all different
kinds of RES and consumption are bundled together.

Two outliers appear in the MAPE scores: Groningen and Friesland. They exhibit significantly
higher MAPE values. In Groningen, this is primarily due to periods of very low or zero
production, which causes percentage-based errors to inflate despite relatively normal absolute
deviations. Friesland’s higher MAPE Also has periods of lower production periods which
drive percentage based errors up but no near zero values to explode the number as big as for
Groningen.

Despite the elevated MAPE values observed in these regions, the corresponding RMSE values
remain within an admissible range on the total scale of the network. Therefore, the forecasting
models remain usable within the proposed CC-MPC framework.

3-4 Summary

This chapter presents the data foundation and uncertainty modelling used in the proposed
CC-MPC framework. Aggregated electricity production and consumption data were obtained
for eight Dutch provinces. Due to the high predictability of aggregated demand, real consump-
tion values are used directly, while forecasting efforts focus on the more volatile renewable
production component.

A systematic time-series analysis workflow is applied to develop a stochastic generation
forecast model. Raw data characteristics are examined to identify trends, seasonality, and
variability. Stationarity is assessed using augmented Dick–Fuller and Kwiatkowski–Phillips–
Schmidt–Shin tests, and confirmed after applying daily seasonal differencing, guided by dom-
inant frequencies identified via fast Fourier transform. The autocorrelation structure of the
stationary data is then analysed using ACF and PACF plots to propose candidate SARIMA
model orders.

Model selection is performed using the corrected Akaike information criterion to balance
forecasting accuracy and model complexity. The selected model undergoes residual analysis,
confirming near-Gaussian white-noise behaviour and appropriate capture of temporal struc-
ture. Out-of-sample forecasting shows the out-of-sample predictive accuracy of the models.
Overall, the chapter develops a statistical forecasting model for RESs production, enabling
its use within the CC-MPC-RL control framework introduced later in the thesis.
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Chapter 4

Modelling

In this chapter, the foundation for the MPC implementation is established. Section 4-1
presents the linearised dynamical model of the high-voltage transmission network, which
serves as the system representation within the control framework. Section 4-2 then derives
the market model, based on the Dutch congestion market GOPACS, that integrates with the
proposed methodology.

4-1 Linearised dynamical transmission network model

As discussed in Chapter 2, the physical model of the transmission network is non-linear. To
enable its use within the MPC framework, a linearised time-varying representation is derived
here. The resulting model takes the following form:

x(k + 1) = A(k)x(k) + B(k)u(k) + B(k)w(k), (4-1)

where x(k) is the current real and reactive power output of each node and real and reactive
power transmissions for each transmission line. The control inputs u(k) are the net changes of
power at each node due to the activation of market offers and w(k) are all the other changes
in power at each node as these are not controllable from the market. The state, control and
disturbance vectors are defined as follows:

x(k) =
[
P (1)(k) . . . P (|N |)(k) Q(1)(k) . . . Q(|N |)(k)

P (1,2)(k) . . . P (|E|)(k) Q(1,2)(k) . . . Q(|E|)(k)
]T (4-2a)

u(k) =
[
∆P (1)

u (k) . . . ∆P (|N |)
u (k) ∆Q(1)

u (k) . . . ∆Q(|N |)
u (k)

]T (4-2b)

w(k) =
[
∆P (1)

w (k) . . . ∆P (|N |)
w (k) ∆Q(1)

w (k) . . . ∆Q(|N |)
w (k)

]T
, (4-2c)

where the states consist of the net real P (n)(k) and reactive Q(n)(k) power generation or
demand of each node n∈N , and the net real P (n,m)(k) and reactive power flow Q(n,m)(k) of
each transmission line (n, m)∈ E . The control inputs are the controllable real ∆P

(n)
u (k) and
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reactive power changes ∆Q
(n)
u (k) at node n. The disturbance are all other changes in real

∆P
(n)
w (k) and reactive power ∆Q

(n)
w (k). The dynamics of real and reactive power at a node

is defined as

P (n)(k + 1) = P (n)(k) + ∆P (n)
u (k) + ∆P (n)

w (k) ∀n∈N (4-3a)

Q(n)(k + 1) = Q(n)(k) + ∆Q(n)
u (k) + ∆Q(n)

w (k) ∀n∈N . (4-3b)

The dynamics of the power transmission are derived from the non-linear relation in (2-3),
which is approximated using a first order Taylor series expansion. Due to space constraints
the full derivation is omitted here and the reader is referred to Appendix A. The linearised
model for change of power transmission is defined as follows [66]

∆P (n,m)(k) =
∑
l∈N

g(n,m),l
pp (k)∆P l(k) + g(n,m),l

pq (k)∆Ql(k) ∀(n, m)∈E (4-4a)

∆Q(n,m)(k) =
∑
l∈N

g(n,m),l
qp (k)∆P l(k) + g(n,m),l

qq (k)∆Ql(k) ∀(n, m)∈E (4-4b)

where g
(n,m),l
pp (k) are AC power transfer distribution factors from real power change in node

l to real power transmission in line (n, m) similar to the work in [66]. Combining (4-3) and
(4-4) into one model results in the following model in the form of (4-1)

P (n)(k + 1)
Q(n)(k + 1)

P (n,m)(k + 1)
Q(n,m)(k + 1)

= I4|N |×4|N |︸ ︷︷ ︸
A(k)


P (n)(k)
Q(n)(k)

P (n,m)(k)
Q(n,m)(k)

+


I|N |×|N | 0

0 I|N |×|N |
G(k)(P P ) G(k)(P Q)

G(k)(QP ) G(k)(QQ)


︸ ︷︷ ︸

B(k)

[
∆P

(n)
u (k)

∆Q
(n)
u (k)

]

+


I|N |×|N | 0

0 I|N |×|N |
Gpp(k) Gpq(k)
Gqp(k) Gqq(k)


︸ ︷︷ ︸

B(k)

[
∆P

(n)
w (k)

∆Q
(n)
w (k)

] (4-5)

where the vectors P (n)(k), Q(n)(k), P (n,m)(k), Q(n,m)(k) are the collection of all individual
variables and matrices Gpp(k), Gpq(k), Gqp(k), and Gqq(k) are defined as in (A-23). The
model in (4-5) is for a single time step but can easily be adapted to include all time steps in
the prediction horizon in the following way

x(k + 1) = S(k)x(k) + T (k)u(k) + T (k)w(k) (4-6)

where the matrices S(k) and T (k) are defined as

S(k) =


I4|N |×4|N |

...
I4|N |×4|N |

 , T (k) =

B(k) 0 0
... . . . 0

B(k) . . . B(k)

 (4-7)

and

x(k + 1) =


x(k + 1)
x(k + 2)

...
x(k + np)

 , u(k) =


u(k)

u(k + 1)
...

u(k + np− 1)

 , w(k) =


w(k)

w(k + 1)
...

w(k + np− 1)

 , (4-8)
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where the bold symbols denote the fact that it is the vector over the whole prediction horizon.
For the linearisation too hold the voltage angle difference between connected nodes must be
small, i.e. ±3.5°. For high voltage networks this is a valid assumption [29].

4-1-1 Limits

Transmission lines are subject to physical and thermal constraints that restrict the maximum
amount of power that can be safely transmitted. Excessive power flow causes line heating,
which increases conductor resistance and may lead to permanent damage or tripping of pro-
tection systems. To ensure secure operation, these thermal constraints are represented as
limits on the apparent power flow in each transmission line.
The apparent power limit, commonly referred to as the thermal limit, defines the maximum
apparent power transfer. It is formulated as a quadratic constraint on the apparent power
magnitude as follows [67,68]:(

P (n,m)(k + i)
)2 +

(
Q(n,m)(k + i)

)2≤ (Smax)2 ∀i∈{1, . . . , np}, (n, m)∈E , (4-9)

where Smax denotes the maximum apparent power transferable through the transmission
lines, and P (n,m)(k + i) and Q(n,m)(k + i) represent the corresponding real and reactive power
flows at time step k + i. These limits are incorporated into the MPC framework to ensure
that the optimisation respects the physical operating boundaries of the network.

4-2 Market model

As discussed in Subsection 2-1-2, the Dutch congestion market operates as a pool-based
market, where participants submit offers according to the specifications summarized in Table
2-1. In this section, the restrictions imposed on the control inputs by the Dutch market design
are formulated within an MPC framework.
The complete set of offers, denoted by O, contains tuples representing the full definition of
each offer, which will be detailed in the following subsections. A single offer is denoted by
POo or FTOo, depending on its type, where o is the offer index and POo, FTOo ∈O. The set
O can be divided into two subsets based on the offer type: the Profile Offers (POs), i.e., offers
specifying fixed power profiles over time, and the Flex-Time Offers (FTOs), i.e., offers that
allow temporal flexibility in the activation of power. These subsets are defined as follows:

OPO⊆O, OFTO⊆O, OPO ∩OFTO = ∅. (4-10)

Each offer o∈O belongs exclusively to one of these two subsets, ensuring that POs and FTOs
are mutually exclusive and together form the complete set of offers.

4-2-1 Balancing requirement

The overall control input can be decomposed into the contributions from each individual offer.
Hence, the total control action at time step k is given by

u(k + i) =
∑
o∈O

u(o)(k + i) ∀i∈{0, . . . , np− 1}, (4-11)
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where u(o)(k + i) is the control action associated to the offer indexed by o, and it is zero for
every node that is not the node at which the offer is made, as shown in

u(o)(k + i) =
{[

0 . . . 0 ∆P
(n)
u (k + i) 0 . . . 0

]T ∀k + i∈{tstart,(o), . . . , tstop,(o)}[
0 . . . 0

]T otherwise,
(4-12)

where the change of power ∆P
(n)
u (k + i), tstart,(o), and tstop,(o) associated with each offer type

o will be defined in Subsections 4-2-2 and 4-2-3. Since the congestion market operates inde-
pendently of the balancing market, the net effect of congestion management actions must not
alter the system’s power balance. This constraint can be expressed as∑

o∈O
u(o)(k + i) = 0 ∀i∈{0, . . . , np− 1}, (4-13)

ensuring that the aggregate control actions across all offers remain power neutral at all times.
As the congestion market in the Netherlands only considers real power offers these are the
only one under consideration even thought the model also allows for reactive power offers.

4-2-2 Profile offers

RESs are weather-dependent and therefore cannot shift their flexibility in time. To model
curtailment or other similar one-time flexibility actions, the corresponding offers must be
valid only for a single moment and must specify a fixed power profile for each time step. Such
offers are represented by the tuple

PO(o) : (n, tstart,(o), tstop,(o), βmin,(o), P (o), c(o), m(o)) (4-14)

where n denotes the node index associated with offer o. The start and end time of the offer
are denoted by tstart,(o) and tstop,(o) respectively. The minimum activation fraction is defined
as βmin,(o). The power profile associated with offer o, denoted by P (o), defines the amount
flexible power at each time step within the offer’s start and end time. Finally, the cost is
denoted by c(o) and market direction by m(o) ∈ {−1, 1} with +1 for a buy bid and −1 for a
sell bid. The power profile P (o) is defined as

P (o) = [P (n)
u (tstart,(o)) . . . P (n)

u (tstop,(o))] (4-15)

where P
(n)
u (tstart,(o)) represents the scheduled power output at node n and time step tstart,(o).

The change in power output resulting from activating a given offer is defined as

∆P (n),(o)
u (k + i) =

{(
P

(n),(o)
u (k + i + 1)−P

(n),(o)
u (k + i)

)
β(o)δ(o) ∀k + i∈{tstart, . . . , tstop + 1}

0 otherwise.

(4-16)
Here, β(o) ∈ [βmin,(o), 1] is a continuous scaling factor determining the magnitude of activation,
whereas δ(o) is a single binary variable indicating whether the offer is activated. The product
β(o)δ(o) introduces a non-linear relationship. To address the non-linearity introduced in (4-16),
a reformulation is applied to linearise the corresponding terms in the optimisation problem,
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following the standard approach described in [69].

∆P (n),(o)
u (k + i)≤Mhighδ(o)−

k+i−1∑
j=tstart

∆P (n),(o)
u (j)

∆P (n),(o)
u (k + i)≥M lowδ(o)−

k+i−1∑
j=tstart

∆P (n),(o)
u (k + j)

∆P (n),(o)
u (k + i)≤β(o)P (n),(o)(k + i)−

k+i−1∑
j=tstart

∆P (n),(o)
u (k + j)−M low(1− δ(o))

∆P (n),(o)
u (k + i)≥β(o)P (n),(o)(k + i)−

k+i−1∑
j=tstart

∆P (n),(o)
u (k + j)−Mhigh(1− δ(o))

(4-17)

In this formulation, Mhigh and M low represent sufficiently large positive and negative con-
stants that define the upper and lower bounds of the feasible range for ∆P

(n)
u (k). When the

offer is inactive (δ(o) = 0), the inequalities force ∆P
(n)
u (k) to zero. Conversely, when δ(o) = 1,

the equations allow ∆P
(n)
u (k) to take on values consistent with the power change determined

by β(o).

4-2-3 Flex-time offers

Flexible assets such as batteries are often characterized by a maximum power, which can be
delivered when necessary for as long as the battery is not empty. To capture this behaviour
within the market model, the FTO is introduced. An FTO represents an offer with a constant
maximum power but a flexible activation period, allowing the market mechanism to optimally
allocate its operation in time. This offer is defined by the tuple

FTO(o) : (n, tstart,(o), tstop,(o), ℓmin,(o), ℓmax,(o), βmin,(o), P max,(o), c(o), m(o)) (4-18)

where n denotes the node index associated with offer o. The set of all FTO offers is denoted by
OFTO and each element FTOo ∈OFTO represents a single FTO. The parameters tstart,(o) and
tstop,(o) define the earliest activation and latest possible end time, while ℓmin,(o) and ℓmax,(o)

specify the minimum and maximum consecutive activation periods. The variables βmin,(o)

and P max,(o) denote the minimum activation fraction and maximum power quantity. The
offer cost is denoted by coffer,(o), and moffer,(o) indicates the market direction, with +1 for buy
and −1 for sell offers. For a single offer the constraint on the change of power in a node is
then defined as

∆P (n)
u (k + i) =

{(
δ(o)(k + i)− δ(o)(k + i− 1)

)
β(o)P max,(o) ∀k + i∈{tstart,(o), . . . tstop,(o)}

0 otherwise,

(4-19)
where ∆P

(n)
u (k) represents the change in power at node n in time step k. The binary variable

δ(o)(k) indicates the activation status of the offer at time step k, taking the value 1 when the
offer is active at time step k and 0 otherwise. The parameter β(o) ∈ [βmin,(o), 1] defines the
activation fraction of the offer, with +1 for a buy bid and −1 for a sell bid, while P max,(o)

denotes the corresponding offered power associated with FTO(o).

Master of Science Thesis J. van der Weerd



34 Modelling

Once an FTO is activated, it should remains active for at least the minimum duration ℓmin.
This condition is enforced through the binary activation variable δ(o)(k), which indicates
whether offer (o) is active at time step k. This behaviour is encoded in the following constraint
k+ℓmin−1∑

j=i

δ(o)(k + j)≥ ℓmin
(
δ(o)(k + i)− δ(o)(k + i− 1)

)
∀k + i∈{tstart, . . . , tstop− ℓmin + 1},

(4-20)
which ensures that if the activation variable switches from 0 at time k + i− 1 to 1 at time
k + i, the offer remains active for at least ℓmin consecutive time steps. In other words, each
activation must last no shorter than the minimum duration defined in the FTO. To enforce
the maximum activation duration, a limit ℓmax is imposed to prevent an offer from remaining
active beyond the allowable time. This condition is expressed a

tstop∑
j=tstart

δ
(o)
j ≤ ℓmax, (4-21)

which restricts the total number of time periods during which the offer can be active to the
specified limit. However, this formulation still permits multiple non-consecutive activations
within the activation window. To prevent such cases, the following constraint is added:
tstop∑
j=i

δ
(o)
j ≤ ℓmax(1 + δ(o)(k + i)− δ(o)(k + i− 1)

)
∀k + i∈{tstart + ℓmin, . . . , tstart + ℓmax− 1},

(4-22)
which ensures that once the activation variable switches from 1 at time k + i−1 to 0 at time
k + i, all subsequent activation variables remain 0. In other words, this constraint prevents
multiple non-contiguous activations of the same offer within the allowed time window. The
combination of (4-20), (4-21), and (4-22) make sure that at an FTO is activated at most
once with a length between ℓmin and ℓmax. The formulation in (4-19) is non-linear due to the
multiplication of β and δ. To remove this nonlinearity from the optimisation problem, the
constraint is reformulated in the following way [69]

∆P (n),(o)
u (k + i)≤Mhighδ(o)(k + i)−

k+i−1∑
j=tstart

∆P (n),(o)
u (j)

∆P (n),(o)
u (k + i)≥M lowδ(o)(k + i)−

k+i−1∑
j=tstart

∆P (n),(o)
u (j)

∆P (n),(o)
u (k + i)≤β(o)P max,(o)−

k+i−1∑
j=tstart

∆P (n),(o)
u (j)−M low(1− δ(o)(k + i))

∆P (n),(o)
u (k + i)≥β(o)P max,(o)−

k+i−1∑
j=tstart

∆P (n),(o)
u (j)−Mhigh(1− δ(o)(k + i)),

(4-23)

where Mhigh and M low are large positive and negative constants, respectively, chosen to bound
the feasible range of ∆P (n,u)(k + i). This formulation ensures that the power adjustment
∆P (n,u)(k+i) only takes meaningful values when the offer is active (i.e., δ(o)(k+i) = 1), while
it is forced to zero when the offer is inactive (δ(o)(k + i) = 0). As a result, the non-linear
dependency between β(o) and δ(o) is handled in a linear manner.
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4-2-4 Cost

The total volume associated with a given action is determined by the activation fraction
βmin,(o). Consequently, the cost of an offer corresponds to the product of the total activated
volume and the respective offer price. Since the control actions represent changes in power,
the total energy exchanged is obtained by summing over all cumulative power adjustments.
Furthermore, as the network operator compensates for the difference between the buy and sell
offers, the cost is weighted by the offer direction m(o) ∈{−1, 1}, indicating whether the offer
represents an increase or decrease in power. The total cost incurred by the network operator
is therefore expressed as

Ctotal,(o) =
∑
o∈O

m(o)β(o)c(o)
np∑
i=1

i∑
j=1

u
(o)
k+j (4-24)

where Ctotal,(o) denotes the total cost for the network operator, m(o) is the offer direction,
c(o) is the offer price, and u

(o)
k+j represents the power change associated with offer o at time

step j. The inner summation accumulates the power deviations over the prediction horizon,
while the outer summation aggregates the corresponding energy costs across all offers in O.

4-3 Summary

In this chapter, the core mathematical models underpinning the thesis have been presented:
a linearised dynamical model for a high-voltage transmission network and a market model
formulated within an MPC framework. The dynamical model captures real and reactive power
dynamics at each node and along transmission lines, derived through a first-order linearisation
of the AC power flow equations. This formulation enables the prediction of system behaviour
as a foundation for MPC-based CM.

Then, a novel MPC-compatible market formulation inspired by the Dutch GOPACS con-
gestion market is derived. Two offer types, POs and FTOs, are modelled according to the
specifications of the high-voltage grid operator. The model uses binary variables to encode
the market orders as control actions in the MPC. Together, these models establish the basis
for a dynamic and market-based model that enables real-time, MPC-based CM within the
existing Dutch congestion market structures.
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Chapter 5

Control methods

In this chapter, various control methods for CM are presented. The discussion begins with
approaches inspired by existing research, followed by the introduction of the novel control
framework developed in this thesis. Section 5-1 describes a greedy matching method for
congestion control. Section 5-2 then introduces an market-based MPC-based approach, which
is subsequently extended to a CC-MPC formulation in Section 5-3. Finally, Section 5-4
presents the proposed method, which combines the CC-MPC with RL agent to improve
performance.

5-1 Algorithmic Greedy Matching approach for CM

The first approach to consider is a greedy matching strategy that removes predicted con-
gestion by activating the cheapest pair of market offers that solves the issue, serving as a
practical benchmark for the optimization-based controllers in the next sections. The ap-
proach does not capture potential combinations beyond pairwise trades, though it reflects
a realistic dispatcher tactic: trying a few cheap counter-trades and immediately validating
them against the actual network. Albeit simple, this algorithmic greedy matching approach
highlights the gains provided by more advanced MPC and CC-MPC controllers over a more
realistic implementation.

At time k, the method uses the current state x(k), the previously scheduled inputs u(k|k−i),
where the notation k|k − i indicates that the input was scheduled at time k − i, and the
predicted disturbances w(k) to perform a power-flow simulation over the next np time steps.
At each step the transmission line power flow magnitudes are checked. If no violations occur
no action is needed. If congestion is predicted, each offer pair is checked for the following
conditions:

• Directions must be opposite. Two buys or two sells cannot net to zero.
• Offers must lie fully within [k, k + np].
• Offers must be at different nodes.
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For a feasible pair, the power volumes P buy and P sell over their activation window are balanced
using

βbuy =

1 if |P buy| ≤ |P sell|
|P sell|
|P buy| Otherwise

, βsell =

1 if |P sell| ≤ |P buy|
|P buy|
|P sell| Otherwise

, (5-1)

so that the maximum matchable power is activated. The total input u(k|k) =
∑np

i=0 u(k|k−i)
is then checked. If all previously predicted violations disappear and no new ones arise, the
pair is accepted and its activation cost is

Ctotal = βbuy,(o)Cbuy−βsell,(o)Csell,

where Cbuy and Csell are defined as in (4-24). The total cost is thus defined by the spread
between the buy and the sell order. Among all accepted pairs, the minimum cost solution is
chosen.

5-2 CM as an MPC problem

Starting from the MPC framework defined in (2-12), the complete formulation can be specified
by substituting the corresponding model components as follows. For the cost function (2-12a),
the cost expression in (4-24) is applied. The cost function is formulated as an economic MPC
where only the financial cost are under consideration [70].

In conventional MPC, only the first control action of the optimized sequence is applied at
each time step, and the optimization problem is re-solved at the next step using updated
system information. However, in this case, once an offer is activated, it must remain active
for its entire duration. Therefore, previously activated control actions must continue to be
considered in subsequent optimization steps. The full applied control action u(k) at time k
is the sum of the current control action and the shifted control actions from the previous np
time steps, defined as

u(k) =
np∑
i=0

u(k|k− i), (5-2)

where only u(k|k) is an optimization variable, and the remaining u(k|k− i) terms are treated
as constants. To ensure that control actions are correctly aligned in time, the previously
determined control sequences are shifted forward at each time step as follows:

u(k|k− i) =



u(k + i|k− i)
u(k + i + 1|k− i)

...
u(k + np|k− i)

...
0


, (5-3)

where u(k + np|k− i) is the (k + np)-th control input calculated at time k− i. At each new
time step, the first control input is applied, and the remaining elements are shifted forward,
with zeros appended at the end until all entries become zero.
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Offers are only activated at the last possible moment, i.e. only if the offer is set to start at time
k + 1. Therefore, for the next time step, the shifted control sequence is updated according to

u(k|k− 1) =


u(k + 1|k− 1)

...
u(k + np|k− 1)

0

 , if u(k|k) ̸= 0, u(k|k− 1) =

0
...
0

 , otherwise. (5-4)

This guarantees that the most recent data is used to make the activation decision.
The system dynamics (2-12b) are represented by the linearised transmission network model
given in (4-5). The state constraint (2-12c) corresponds to the thermal limit on apparent
power flows as defined in (4-9). However, since these are the only quadratic constraints, the
overall computational burden can be significantly reduced by employing a linear approxima-
tion, effectively transforming the problem from a mixed-integer second-order cone program
into a mixed-integer linear program. For systems operating at a high power factor (> 0.95), it
is reasonable to assume that the real power is approximately equal to the apparent power, i.e.
, P (n,m)(k + i)≈S(n,m)(k + i). This assumption is well justified for high-voltage transmission
networks, as many system operators mandate power factors above 0.95 to minimize line losses
and improve operational efficiency [71]. Under this approximation, the constraint in (4-9) can
therefore be reformulated as

|P (n,m)(k + i)|< Smax. (5-5)
The state bounds (2-12d) enforce operational limits on nodal power injections. Finally, the
input constraints (2-12e) are defined by the market activation and feasibility conditions spec-
ified in (4-17), (4-20), (4-21), (4-22), and (4-23).
For typical MPC formulations theoretical guarantees can be given on feasibility. However,
since the control inputs are limited by market orders, guaranteeing satisfaction of the state
constraints is not possible. To avoid infeasibility in the optimisation problem, a slack variable
z is introduced to relax the constraints on power flows. This allows the optimisation to remain
feasible even when strict constraint satisfaction cannot be achieved. The constraint limiting
the power flow is then reformulated as

|P (n,m)(k + i)| −Smax≤ z(n,m)(k + i) ∀i∈{1, . . . , np}, (n, m)∈E , (5-6)

where the slack variable z(n,m)(k + i) represents the degree of constraint violation for line
(n, m) at time k + i. To ensure that the optimisation problem does not arbitrarily increase
the value of the slack variable, the following penalty term proportional to z is added to the
objective function ∑

(n,m)∈E

np∑
i=1

czz(n,m)(k + i), (5-7)

where the weighting coefficient cz must be selected sufficiently large so that violating the
constraint is always more costly than adjusting the control input, thereby maintaining the
validity of the solution. Due to the high value of cz it will be optimal to be as far as possible
below the limit, i.e. z(n,m) < 0, this incentives actions that reduce power even below the limit.
To prevent this the following constraint is added on the slack variable

z(n,m)(k + i)≥ 0 ∀i∈{1, . . . , np}. (5-8)
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This guarantees only constraint violation is penalised and as long as the use of the network
stays within the constraints the power market stays unaffected. Combining all the equations
and models results in the following definition for the MPC problem

min
x(k+1),u(k|k),β,δ

∑
o∈O

m(o)c(o)
np∑
i=1

i∑
j=1

u(o)(k + j|k) +
∑

(n,m)∈E

np∑
i=1

czz(n,m)(k + i)

s.t. x(k + 1) = S(k)x(k) + T (k)u(k|k) + T (k)w(k)
z(n,m)(k + i)≥ 0 ∀i∈{1, . . . , np}
|P (n)(k + i)|< P (n),max ∀i∈{1, . . . , np}, n∈N

|Q(n)(k + i)|< Q(n),max ∀i∈{1, . . . , np}, n∈N

|P (n,m)(k + i)| −Smax≤ z(n,m)(k + i) ∀i∈{1, . . . , np}, (n, m)∈E

u(o)(k + i) =
[
0 . . . 0 ∆P (n),(o)

u (k + i) 0 . . . 0
]T ∀k + i∈{tstart,(o), . . . , tstop,(o)}, o∈O∑

o∈O
u

(o)
k+i|k = 0 ∀i∈{0, . . . , np− 1}

u(k) =
np−1∑
i=0

u(k|k− i)

βmin,(o)≤β(o)≤ 1

PO(o) :∆P (n),(o)
u (k + i)≤Mhighδ(o)−

k+i−1∑
j=tstart

∆P (n),(o)
u (j) ∀i∈{0, . . . , np− 1}

∆P (n),(o)
u (k + i)≥M lowδ(o)−

k+i−1∑
j=tstart

∆P (n),(o)
u (k + j) ∀i∈{0, . . . , np− 1}

∆P (n),(o)
u (k + i)≤β(o)P (n),(o)(k + i)−

k+i−1∑
j=tstart

∆P (n),(o)
u (k + j)−M low(1− δ(o))

∀i∈{0, . . . , np− 1}

∆P (n),(o)
u (k + i)≥β(o)P (n),(o)(k + i)−

k+i−1∑
j=tstart

∆P (n),(o)
u (k + j)−Mhigh(1− δ(o))

∀i∈{0, . . . , np− 1}

FTO(o) :
k+ℓmin−1∑

j=i

δ(o)(j)≥ ℓmin
(
δ(o)(k + i)− δo(k + i− 1)

)
∀k + i∈{tstart, . . . , tstop− ℓmin + 1}

tstop∑
j=tstart

δ(j)(o)≤ ℓmax

tstop∑
j=i

δ(o)(j)≤ ℓmax(1 + δ(o)(k + i)− δ(o)(k + i− 1)
)
∀k + i∈{tstart + ℓmin, . . . , tstart + ℓmax− 1}

∆P (n),(o)
u (k + i)≤Mhighδ(o)(k + i)−

k+i−1∑
j=tstart

∆P (n),(o)
u (j) ∀i∈{0, . . . , np− 1}

∆P (n),(o)
u (k + i)≥M lowδ(o)(k + i)−

k+i−1∑
j=tstart

∆P (n),(o)
u (j) ∀i∈{0, . . . , np− 1}

∆P (n),(o)
u (k + i)≤β(o)P max,(o)−

k+i−1∑
j=tstart

∆P (n),(o)
u (j)−M low(1− δ(o)(k + i))

∀i∈{0, . . . , np− 1}

∆P (n),(o)
u (k + i)≥β(o)P max,(o)−

k+i−1∑
j=tstart

∆P (n),(o)
u (j)−Mhigh(1− δ(o)(k + i))

∀i∈{0, . . . , np− 1}
,

(5-9)
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where the constraints for FTO(o) and PO(o) are repeated for every order in their respective
sets using the parameters defined in tuple of the offer. where the constraints associated with
FTO(o) and PO(o) are applied for every offer o in their respective sets, using the parameters
specified in each offer’s tuple. The binary activation variables are collected in the vector δ,
and the corresponding scaling coefficients in vector β. The aggregated control input at time
k is given by u(k) =

∑
i u(k|k−i), which represents the cumulative effect of all control actions

scheduled at previous time steps that remain active at time k.

5-3 CM as an CC-MPC problem

The MPC formulation presented in the previous subsection can be extended to a sample
approximated CC-MPC by replacing the dynamics with

x(s)(k + 1) = S(k)x(k) + T (k)u(k) + T (k)w(s)(k) ∀s∈{1, . . . , ns} (5-10)

where x(s)(k + 1) is a the state evolution over the full prediction horizon under scenario s
and ns is the number of scenarios. The deterministic constraint in the MPC formulation
must be replaced with the scenario approximation of the stochastic constraint, which can be
formulated as

1
ns

ns∑
s=1

𝟙(|P (n,m),(s)(k + i)| −Smax≥ 0
)
≤ 1−α (5-11)

where 𝟙(·) is defined as in (2-16) meaning if the constraint is met the indicator function
becomes 1 and if the constraint is violated it is 0. The risk parameter α ∈ [0, 1) defines the
minimum fraction of scenarios that satisfy the limits. Similarly to the MPC formulation the
constraints have to be replaced by a penalty since constraint satisfaction cannot be guar-
anteed. The indicator function is replaced by binary variables δ(s) and the slack variables
z(n,m)(k + i) are re-introduced in the following way

|P (n,m),(s)(k + i)| −Smax≤ z(n,m)(k + i) + Mδ(s) ∀i∈{1, . . . np}, s∈{1, . . . , ns}, (5-12)

where z(n,m)(k + i) is the shared over all scenarios and thus reflects the maximum constraint
violation for transmission line (n, m) at time k + i over all the scenarios. The penalty in the
objective function is then formulated as

cs max
(

ns∑
s=1

δ(s)− (1−α)ns, 0
)

+
∑

(n,m)∈E

np∑
i=1

czz(n,m)(k + i) (5-13)

where cs must be selected such that additional scenarios exhibiting constraint violations incur
a penalty greater than the magnitude of the violation itself. This allows the slack variable
z(n,m)(k + i) to stay zero in the scenarios where constraint violation is ’allowed’ due to the
chance constraints. This combination penalises the magnitude of constraint violations in
the scenarios that must be satisfied, but excludes the constraint violations in the scenarios
where constraint violation is allowed in due to the risk parameter in the chance-constraints.
Combining all gives us the following novel formulation for a market-based CC-MPC CM
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method

min
xk,uk|k,β,δ

∑
o∈O

m(o)c(o)
np∑
i=1

i∑
j=1

u(o)(k + j) + cs max
(

ns∑
s=1

δ(s)− (1−α)ns, 0
)

+
∑

(n,m)∈E

np∑
i=1

czz(n,m)(k + i)

s.t. x(s)(k) = S(k)x(k) + T (k)u(k) + T (k)w(s)(k|k) ∀s∈{1, . . . , ns}
|P (n)(k + i)|< P (n),max ∀i∈{0, . . . , np}, n∈N

|Q(n)(k + i)|< Q(n),max ∀i∈{0, . . . , np}, n∈N

|P (n,m),(s)(k + i)| −Smax≤ z(n,m)(k + i) + Mhighδ(s) ∀i∈{1, . . . np}, s∈{1, . . . , ns}

u(o)(k + i) =
[
0 . . . 0 ∆P (n)

u (k + i) 0 . . . 0
]T ∀k + i∈{tstart,(o), . . . , tstop,(o)}, o∈O∑

o∈O
u

(o)
k+i|k = 0 ∀i∈{0, . . . , np− 1}

u(k) =
np∑
i=0

u(k|k− i)

βmin,(o)≤β(o)≤ 1

PO(o) :∆P (n),(o)
u (k + i)≤Mhighδ(o)−

k+i−1∑
j=tstart

∆P (n),(o)
u (j)∀i∈{0, . . . , np− 1}

∆P (n),(o)
u (k + i)≥M lowδ(o)−

k+i−1∑
j=tstart

∆P (n),(o)
u (k + j)∀i∈{0, . . . , np− 1}

∆P (n),(o)
u (k + i)≤β(o)P (n),(o)(k + i)−

k+i−1∑
j=tstart

∆P (n),(o)
u (k + j)−M low(1− δ(o))∀i∈{0, . . . , np− 1}

∆P (n),(o)
u (k + i)≥β(o)P (n),(o)(k + i)−

k+i−1∑
j=tstart

∆P (n),(o)
u (k + j)−Mhigh(1− δ(o))∀i∈{0, . . . , np− 1}

FTO(o) :
k+ℓmin−1∑

j=i

δ(o)(j)≥ ℓmin
(
δ(o)(k + i)− δo(k + i− 1)

)
∀k + i∈{tstart, . . . , tstop− ℓmin + 1}

tstop∑
j=tstart

δ(j)(o)≤ ℓmax

tstop∑
j=i

δ(o)(j)≤ ℓmax(1 + δ(o)(k + i)− δ(o)(k + i− 1)
)

∀k + i∈{tstart + ℓmin, . . . , tstart + ℓmax− 1}

∆P (n),(o)
u (k + i)≤Mhighδ(o)(k + i)−

k+i−1∑
j=tstart

∆P (n),(o)
u (j) ∀i∈{0, . . . , np− 1}

∆P (n),(o)
u (k + i)≥M lowδ(o)(k + i)−

k+i−1∑
j=tstart

∆P (n),(o)
u (j) ∀i∈{0, . . . , np− 1}

∆P (n),(o)
u (k + i)≤β(o)P max,(o)−

k+i−1∑
j=tstart

∆P (n),(o)
u (j)−M low(1− δ(o)(k + i)) ∀i∈{0, . . . , np− 1}

∆P (n),(o)
u (k + i)≥β(o)P max,(o)−

k+i−1∑
j=tstart

∆P (n),(o)
u (j)−Mhigh(1− δ(o)(k + i)) ∀i∈{0, . . . , np− 1}

,

(5-14)

5-4 CM as an CC-MPC-RL problem

The proposed method employs RL to enhance the performance of the CC-MPC formulation
in (5-14). The RL-agent learns to dynamically adjust a scaling factor for the variance of the
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innovations in the SARIMA-based disturbance prediction models. The concept is inspired by
the adaptive robustification factor κ introduced by [72], where a deep reinforcement learning
agent continuously adjusts κ to balance feasibility and performance in an adaptive stochastic
non-linear MPC framework. Similar to their approach, the RL-agent here learns to modify the
uncertainty scaling factor online based on most recent measurements, allowing the controller
to respond more effectively to time-varying uncertainties present in the system.

An overview of the proposed control architecture is presented in Figure 5-1. The ‘true’ system
generates the state feedback x(k) and disturbance signal w(k), which are passed to the ARMA
models for disturbance prediction. The RL-agent observes the system’s behaviour and past
control performance, then determines an appropriate scaling factor κb for each of the nodes
with uncertainty, which adjusts the variance of the predicted disturbance distribution w(k+i).
This prediction is then provided to the CC-MPC, which computes the optimal control action
u(k). Once applied to the system, the process repeats at each sampling instant, forming a
closed control loop. In this configuration, the RL-agent operates in parallel with the predictive
control framework, continuously improving its policy for adaptive uncertainty handling. In

Figure 5-1: Overview of the proposed closed-loop framework integrating RL with CC-MPC. The
RL-agent dynamically adjusts the innovation variance in the ARMA-based disturbance predictions
to improve robustness and adaptability.

the following subsections, the full derivation of the RL-agent will be presented starting with
the necessary definitions of state space, actions space, etc. and will finish with the training
procedure.

State space

The state space of the RL agent consists of the system state vector x(k) and the previous 192
values (corresponding to two days of data) of the disturbance state vector w(k) as defined in
(4-2). The RL state vector is therefore defined as

s(k) =
[
x(k)T w(k)T w(k− 1)T . . . w(k− 192)T

]T
∈Rnx+192nw , (5-15)
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where nx and nd denote the dimensions of the system and disturbance states, respectively.
The system dynamics evolve according to the plant model

x(k + 1) = A(k)x(k) + B(k)u(k) + B(k)w(k), (5-16)

while the disturbance w(k) follows the SARIMA dynamics,

w(k + 1) =
p∑

i=1
ϕi w(k + 1− i) +

qs∑
j=1

Θj ε(k + 1− j) + ε(k + 1), ε(k + 1)∼N (0, σ2). (5-17)

Action space

The action space represents the possible decisions available to the RL agent at each time step.
Here, an action corresponds to a scaling factor applied to the variance of the innovations in
the SARIMA disturbance models. For each of the eight regions, the variance of the innovation
term is scaled by κb, such that

ε(k + 1)∼N (0, κbσ
2), (5-18)

where κb adjusts the uncertainty level of the forecast. The full action set is therefore

A= [κ1, . . . , κ8],
where κb ∈{0.5, 0.6, . . . , 2.0}, ∀b∈{1, . . . , 8}.

Each action corresponds to a joint assignment of eight scaling factors, one per SARIMA model.
Since each κb can take 16 discrete values, the total number of possible joint actions is 168. This
exponential growth makes standard Deep Q-Network (DQN) approaches computationally
infeasible, as exhaustive exploration of all combinations is impractical. To overcome this
challenge, an action-branching architecture is adopted, as described in Subsection 5-4.

Reward function

The reward function transforms the control objective into a scalar feedback signal. In this
formulation, it balances the trade-off between conservative and risk-seeking actions by com-
bining operational costs with constraint violations. The immediate reward at time step t is
given by

r(k) = R(s(k), a(k), s(k + 1))
R(s(k), a(k), s(k + 1)) =−ccostCcost(a(k), s(k))− cvioCvio(s(k + 1))

(5-20)

where ccost, cvio are a scaling factors of the cost and limit violation for training stability,
C(a(k), s(k)) is the financial cost of the actions taken by the CC-MPC as a result of a(k) as
defined in (4-24), and Cvio(s(k + 1)) is the of constraint violation with as the square of the
violation, defined as

Cvio(s(k + 1)) =
∑

(n,m)∈E

max(0, |P (n,m)(k + 1)| −Smax)2. (5-21)
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Policy

The policy π(a|s) defines the agent’s strategy, mapping states s ∈ S to actions a ∈ A. For
a set policy π the value of an action a(k) for state s(k) is determined using the state-value
function Qπ(s(k), a(k)), which is defined as follows [73]:

Qπ(s(k), a(k)) =E
[ ∞∑

k=0
γkR(s(k), a(k), s(k + 1))|s = s(k), a(k) = a, π

]
(5-22)

where Qπ is the action-value function; γ the discount factor; r(k) is the reward achieved by
taking action a(k),; and a(k), s(k) and π are the current action, state and policy respectively.
The action-value function Q(s(k), a(k)) thus says what the expected total value of the action
will be given that after that action a(k) it always takes the action that follows the policy π.
The optimal action-value Q∗(s(k), a(k)) is then achieved by finding the policy that maximises
the expected value of the reward

Q∗
π(s(k), a(k)) = max

π
E
[ ∞∑

k=0
γkR(s(k), a(k), s(k + 1))

∣∣∣s = s(k), a = a(k), π

]
. (5-23)

The optimal action-value function follows the structure of the Bellman equation, which orig-
inates from dynamic programming. The Bellman equation decomposes the decision problem
into two parts: the expected immediate reward of the current action and the expected reward
of the future decisions. This recursive structure enables the formulation of optimal policies
as an iterative problem. The optimal action-value function can be expressed as [73]:

Q∗(s(k), a(k)) =E
[
r(k) + γ max

a(k+1)
Q∗(s(k + 1), a(k + 1))

∣∣∣∣s = s(k), a = a(k)
]
. (5-24)

Consequently, the problem shifts from directly determining the optimal policy to learning the
action-value function, which simultaneously captures the immediate reward of an action and
the expected return of the remaining decision process. Typically for discrete state spaces it
is not feasible to learn exact values for all state-action pairs, therefore the goal of RL is to
approximate this action-value function as follows [73,74]

Q(s(k), a(k); θ)≈Q∗(s(k), a(k)), (5-25)

where θ are the parameters of the function approximator. In the specific case of deep Q-
learning or DQN the function approximator is an neural network where the weights θ are the
parameters of the neural network. The parameters are updated using the difference between
temporal difference target y(k) and the current estimate of the action-value Q(s(k), a(k); θ),
using this recursive formulation from the Bellman equation. The temporal difference target
is defined as

y(k) = r(k) + γ max
a(k+1)

Q(s(k + 1), a(k + 1)), (5-26)

and t temporal difference error is then be defined as follows:

TD(k) = y(k)−Q(s(k), a(k); θ(k)). (5-27)

In DQN the squared temporal difference error is used as loss function to update the parameters
θ(k) of the network, as follows:

L(θ(k)) =E
[
(y(k)−Q(s(k), a(k); θ(k)))2]. (5-28)
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It is easy to see that if TD(k) = 0 the learned action-value function perfectly predicts the
action-value, and thus can be used to choose the optimal action given the current state.

DQN architecture

As discussed in Subsection 5-4, the number of possible joint actions grows exponentially with
the number of uncertain nodes. To address this, an action-branching DQN architecture is
employed. This approach decomposes the high-dimensional joint action space into multi-
ple independent branches—one for each node with uncertainty—while maintaining a shared
state representation. Instead of evaluating all possible combinations of actions jointly, each
branch independently estimates the advantage of its own local action, and these are later
combined with the shared state value to determine the overall Q-value. This decomposition
allows the computational complexity to scale linearly with the number of nodes rather than
exponentially, since the network learns a separate policy for each branch instead of a single
high-dimensional joint policy [75]. The architecture integrates action branching with dou-
ble Q-learning, experience replay, and a duelling network structure. These components are
discussed first, followed by a detailed explanation of the full method used in this work.

Experience replay

The use of experience replay has improved training stability of RL [73]. Instead of updat-
ing the Q-network solely from the most recent transition, the agent stores past interactions
e(k) = (s(k), a(k), r(k), s(k + 1)) in a replay buffer D = {e1, e2, . . . , e(k)}. During training,
mini-batches of experiences are drawn uniformly at random from this buffer, which breaks
correlations between consecutive samples and improves data efficiency. The interaction in
Figure 2-4 is then adapted to Figure 5-2 where instead of directly returning the state, action,
reward and next state they are saved in a the replay memory and randomly sampled to update
the network parameters each time step.

Double Q-learning

Standard Q-learning uses the same network for action selection and evaluation, this is one of
the reasons that standard Q-learning tends to overestimate action values. Double Q-learning
addresses this issue by using two networks: one to select the best action, the policy (or online)
network Q(·), and another to evaluate the chosen action, the target network Q′(·) [74]. This
decoupling reduces overestimation bias by separating action selection from evaluation. Then
every τ update steps the parameters from the policy network are copied into the target
network. Formally, the Double Q-learning temporal difference target is defined as:

y(k) = r(k + 1) + γQ′
(
s(k + 1), arg max

a(k+1)
Q(s(k), a(k + 1); θ); θ′

)
, (5-29)

where θ are the parameters of the policy network (used for action selection), and θ′ are the
parameters of the target network (used for action evaluation). The architecture of each model
does not change but the overall architecture does as depicted in Figure 5-3. Instead of one
model two neural networks are used to evaluate the actions as defined in (5-29).
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Figure 5-2: Experience replay

Figure 5-3: Double Q-learning architecture

Duelling

The duelling network architecture modifies the standard DQN by decomposing the Q-function
into two separate estimators: the state-value function V (s) and the state-dependent advantage
function A(s, a). Intuitively, in many states the choice of action has little effect on outcomes,
so estimating the value of the state directly is more efficient than learning separate Q-values
for every action. The state-value function V (s(k)) is very similar to the action-value function
Q(s(k), a(k)) but instead of taking a action that is not defined by the policy first and then
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following the policy it follows the policy immediately, this can be formalised as follows [76]:

Vπ(s(k)) =Ea(k)=π(s)
[
Qπ(s(k), a(k))

]
=E

[ ∞∑
k=0

γkr(k)|s = s(k), π

]
.

(5-30)

The values for the state and each action are then combined into the action-advantage function
A(s(k), a(k)):

A(s(k), a(k)) = V (s(k))−Q(s(k), a(k))

Q(s(k), a(k)) = V (s(k)) +
(
A(s(k), a(k))−max

a′(k)
A(s(k), a(k)′)

)
.

(5-31)

This adaptation also changes the architecture of the network. Instead of only sequential layers
that stack until the output layer of the Q-values, the duelling network introduces has layers
that are parallel but share the same shared feature extraction layers: one estimating the scalar
state-value function V (s(k)), and another estimating the advantage function A(s(k), a(k)).
These two outputs are then combined in an aggregation layer to produce the final Q-values
for all actions, as illustrated in Figure 5-4.

Figure 5-4: Duelling network architecture

Formally, the duelling architecture defines the Q-function as

Q(s(k), a(k); θ, α, β) = V (s(k); θ, β) +
(
A(s(k), a(k); θ, α)−max

a′ (k)
A(s(k), a

′ ; θ, α)
)
, (5-32)

where θ are the parameters of the shared feature extraction layers and aggregation layer, and
α and β are the parameters of the parallel advantage and value layers, respectively. This
decomposition improves learning stability and efficiency by allowing the network to better
estimate state values, particularly in situations where the choice of action has little influence
on the outcome [76].
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Action branching framework

The overall network architecture employed in this work is based on the action branching
architecture proposed in [75]. An illustration of the network is shown in Figure 5-5. The key
idea is to split the network into multiple branches, in this case 8, instead of one. In this way
each branch can select one action instead of selecting the best combination of 8 actions.

Figure 5-5: Action branching architecture

This approach is combined with the innovation of the double deep Q-learning (Figure 5-
3 and experience replay (Figure 5-2). Each branch of the network outputs action-specific
advantage values for one action dimension, while a shared representation (the state-value
branch) estimates the state-value function, following the principles of duelling DQN [76]. This
shared state-value captures the common utility of being in a given state, while the branch-
specific advantages model the relative value of selecting a particular action within that branch.
The combination of these streams results in an action-value function that respects the duelling
decomposition [75]:

Q(b)(s(k), a(k)(b)) = V (s(k))+A(b)(s(k), a(b)(k))− 1
|A(b)|

∑
a(k)(b)∈A(b)

A(b)(s(k), a(b)(k)) ∀b∈{1, . . . , 8},

(5-33)
where b the denotes the branch, V (s(k)) is the shared state-value, and A(b)(s(k), a(k)(d))
denotes the action-advantage for an action in branch b. In a similar fashion, but according
to the double Q-learning update, the temporal difference target needs to be changed for each
branch

y(b)(k) = r(k + 1) + γQ′(b)
(
s(k + 1), arg max

a(b)(k+1)
Q(b)(s(k + 1), a(b)(k + 1); θ); θ′

)
, (5-34)
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where Q(b) and Q′(b) denote for branch b of the policy and target network respectively. The
loss function is then defined as the square of the mean squared temporal difference error as
follows

L(θ(k)) =E
[1

8

8∑
b=1

(
y(b)(k)−Q(b)(s(k), a(b)(k); θ(k))

)2]
, (5-35)

as this has been shown to produce the best results [75].

Training procedure

The full training procedure for the RL agent is summarized in Algorithm 1. At each time step,
the current state s(k), which includes both the measured system state and recent disturbances
as defined in (5-15), is observed by the agent. Based on its exploration strategy it selects an
action a(k) the best action according to the current policy with probability 1− ϵ or samples
an action at random with probability ϵ. With one action consisting of 8 uncertainty scaling
factors κb(k) discussed in Subsection 5-4. These scaling factors adjust the variance of the
disturbance predictions generated by the SARIMA model as defined in (5-18), the resulting
predictions are then used in the CC-MPC problem in (5-14) to compute the optimal control
sequence.

The resulting control input u(k) is applied to the ’true system’, producing the next state
s(k + 1). The reward r(k) is computed using (5-20), which penalizes both the operational
cost of u(k) and any constraint violations. The experience tuple (s(k), a(k), r(k), s(k + 1))
is then stored in the replay buffer to break correlations between sequential time steps and
accelerate learning. During training, batches of these experiences are randomly sampled from
the buffer to update the neural network parameters.

The loss is computed using the branch-based temporal difference error defined in (5-35), while
double Q-learning is used to reduce overestimation bias and the duelling network architecture
improves value estimation stability. Periodic updates, every τ time steps, of the target network
further enhance training robustness. Through this iterative closed-loop process, the RL-agent
continuously refines its policy for online uncertainty adaptation, enabling the CC-MPC to
achieve a better performance under dynamically varying disturbances.
The results of the training procedure are shown in Figure 5-6. Where each episode is a full
day of simulation and the light red line represents the raw cumulative reward obtained in
each training episode, while the darker red line shows a smoothed average to highlight overall
trends .Throughout the training process, the cumulative reward exhibits oscillatory behaviour,
with frequent fluctuations and several deep negative spikes. This behaviour indicates that
the learning process is unstable, which can be explained by the fact that RL is penalised for
constraint violation while in most cases it is impossible to completely remove the congestion.
The absence of a clear upward trend suggests that the agent does not converge towards a
consistently improved policy. Instead, the cumulative rewards oscillate around a relatively
constant mean value, showing the relative inability of the controller (since the reward is largely
determined by which day is sampled to train on) to influence the reward.
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Algorithm 1: Training of the RL–enhanced CC–MPC controller
Init: Initialize Qθ, Qθ̄←Qθ, replay buffer D
while training do

s(k)← [x(k)T wT
k . . . wT

k−192]T
if Unif(0, 1) > ε(k) then

a(k)← arg maxa Qθ(s(k), a)
else

κb∼UNIF({0.5, 0.6, . . . , 2.0}) ∀b∈{1, . . . , 8}
end
κb← arg maxa(b)(k) Q(b)(s(k), a(b)(k)) ∀b∈{1, . . . , 8}
w(k + 1)← SARIMA(b)(κ(k)(b))
u(k)← Solution of (5-14)
x(k + 1)←True system(x(k), u(k), w(k))
s(k + 1) = [xT (k + 1) wT (k + 1) wT (k) wT (k− 1) . . . wT (k− 191)]T
r(k)←R(s(k), a(k), s(k + 1))

Store (s(k), a(k), r(k), s(k + 1)) in D
{(s(k), a(k), r(k), s(k + 1))}batchsize

=1 ←D

L(θ(k)) =E
[

1
nd

∑
b

(
y(b)(k)−Q(d)(s(k), a(b)(k); θ(k))

)2]
,

Update θ(k) with gradient step on L(θ(k)) k← k + 1 Every τ steps: θ(k)′← θ(k)
end

Figure 5-6: Cumulative rewards during reinforcement learning training.

5-5 Summary

This chapter presents control methods for CM, moving from a fast heuristic to optimization-
and learning-based controllers. It starts with a physics-validated greedy matching baseline
that resolves predicted congestion by activating the cheapest feasible pair of market offers.
Next, CM is posed as an economic, market-based MPC that respects the persistence of
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activated offers over the horizon. The method is then extended to a sample-approximated
CC-MPC that enforces chance constraints under uncertainty. Finally, the proposed controller
integrates RL with CC-MPC, where an action-branching, duelling, double DQN agent adapts
scenario uncertainty scaling per node to balance cost and reliability
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Chapter 6

Case study and results

In this chapter, the results of the methods developed in Chapter 5 are presented and compared.
First, the simulation and experimental setups are described, providing the necessary context
for how the results were obtained. Next, a simulation on the Dutch high voltage grid is
discussed as a detailed case study. Subsequently, three key aspects are analysed: the impact
of prediction quality on controller performance, the influence of the risk parameter parameter
on the proposed CC-MPC method, and the effect of the RL-based enhancement of the MPC.
Finally, the overall results are summarised and compared with other existing CM approaches.

6-1 Simulation and experimental setup

This study evaluates the performance of the proposed control strategy under varying mod-
elling and operational conditions. To assess the effect of the prediction horizon on model
performance, two different lengths are considered. The prediction horizon defines how far
ahead the controller anticipates system behaviour, and its selection involves a fundamen-
tal trade-off. A longer horizon enables the inclusion of longer admissible offers, providing
greater flexibility for market participants and enhancing the overall feasibility of offer match-
ing. However, it may also increase the accumulation of model mismatch, particularly for
linearised system representations that are valid only near the current operating point, and
it leads to higher computational complexity during optimisation. To study the influence of
the risk parameter α, two values of α are used. This parameter represents the level of risk
aversion in the decision-making process, affecting how conservative or aggressive the control
actions are. To examine the impact of prediction accuracy, the MPC is tested using forecasts
generated by the SARIMA models developed in Chapter 3. This is then compared with the
MPC scheme that uses perfect predictions (MPC-PP) of the future uncertainty values. This
comparison shows the effect of forecast errors on control performance. Finally, to assess the
effect of offer quantity; four different offer sets are analysed. Each set represents a distinct
configuration of available options two for each prediction horizon length with two different
amounts of offers, of allowing evaluation of how market flexibility influences outcomes.
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In the following sections, the control schemes outlined in the previous chapters, namely the
Algorithmic Greedy Matching approach, the MPC, the CC-MPC, and the RL enhanced
CC-MPC, are evaluated. The objective is to validate these strategies in terms of constraint
satisfaction and congestion cost. To this end, the influence of several key design choices is
investigated: the prediction horizon, the safety level α, and the market flexibility. Specif-
ically, two prediction horizon lengths are considered to analyse how the look-ahead period
affects performance. A longer horizon enables the inclusion of longer admissible offers, pro-
viding greater flexibility for market participants and increasing the overall feasibility of offer
matching. However, it may also increase the accumulation of model mismatch, particularly
for linearised system representations that are valid only near the current operating point, and
it leads to higher computational complexity during optimisation. The safety level α controls
the degree of risk aversion in the chance constraints, determining how conservative or ag-
gressive the control actions are; two values of α are tested to evaluate its impact on system
performance.

To examine the effect of forecast quality, the MPC is tested under two conditions: one
using the stochastic forecasts generated by the SARIMA models introduced in Section 3,
and another using perfect predictions (MPC-PP), which uses to the actual future values.
This comparison quantifies the influence of forecast errors on control performance. Finally,
the sensitivity to market flexibility is analysed by varying the number of available offers, 100
and 200 per horizon, across both prediction horizon lengths. For benchmarking purposes, all
methods are compared against two reference cases: (i) an uncontrolled scenario, where no
congestion management actions are applied, and (ii) an idealised MPC with perfect future
knowledge, representing the theoretical best case performance.

6-1-1 Data usage

Table 6-1 summarizes how the available dataset is divided across the different stages of the
study. The historical data from 2023-04-20 to 2024-04-20 is used to fit the ARMA models
developed in Chapter 3, which provide the forecasts required for the predictive control frame-
work. The subsequent period, from 2024-04-20 to 2025-04-20, is used for both training the
RL-based control strategy and the evaluation of the derived methods. Specifically, 85% of this
data is allocated for RL training to ensure robust policy learning under varying conditions,
while the remaining 15% is reserved for performance evaluation and producing the final sim-
ulation results. The 15% is randomly sampled from the full year and represents roughly 50
days of simulations. This partitioning ensures that model training and testing are performed
on distinct subsets, enabling an unbiased assessment of the proposed approach.

Data range Amount Usage
2023-04-20 to 2024-04-20 100% Training ARMA models
2024-04-20 to 2025-04-20 85% Training RL
2024-04-20 to 2025-04-20 15% Producing results

Table 6-1: Data usage
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6-1-2 Offer generation & analysis

The offer set generation algorithm creates a collection of offers with randomized attributes
to simulate market diversity. For each offer, all the variables defined in (4-18) and (4-14)
are randomly allocated to simulate real-world market behaviour. The offer generation is
described in Algorithm 2. In Figure 6-1 the average aggregated flexible power for the four
offer sets is shown. The green and red shaded areas illustrate the available up- and down-
regulation power, respectively, while the grey area denotes the matchable flexibility volume,
i.e., the portion of power that could maximally be activated due to sufficient opposing offers.
Figures 6-1a and 6-1b compare two offer set sizes for a prediction horizon of np = 8. As

Algorithm 2: Offer Set Generation
for i = {1, . . . , Noffers} do

n∼{39, 40, 41, 42, 43, 44, 45, 46}
m(o)∼{1,−1}
if m(o) = 1 then

c(o)∼N (180, 40)
else

c(o)∼N (−220, 50)
end
tstart,(o)←UNIF (0, 96−np)
ℓmin,(o)←UNIF (0, np)
ℓmax,(o)←UNIF (ℓmin,(o), np)
tstop,(o)← tstart,(o) + ℓmax,(o)

βmin,(o)←UNIF (0, 1)
if FTO(o) then

P max,(o)←N (m(o)30, 10)
O← (n, tstart,(o), tstop,(o), ℓmin,(o), ℓmax,(o), βmin,(o), P max,(o), c(o), m(o))

else
P 1,(o)←N (m(o)30, 10)
P 2,(o)←N (m(o)30, 10)
P max,(o)← [P 1,(o) . . . P 1,(o) P 2,(o) . . . P 2,(o)]
O← (n, tstart,(o), tstop,(o), βmin,(o), P (o), c(o), m(o))

end
end

expected, increasing the number of offers broadens both the up- and down-regulation ranges,
resulting in greater overall flexibility and a larger matchable area. Figures 6-1c and 6-1d
present the same comparison for a longer prediction horizon of np = 16. Once again, the
larger offer set provides higher flexibility across all time steps.
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(a) Offer set for np = 8 with 100 offers (b) Offer set for np = 8 with 200 offers

(c) Offer set for np = 16 with 100 offers (d) Offer set for np = 16 with 200 offers

Figure 6-1: Aggregated flexible power for each of the offer sets averaged over all the different
simulation days.

6-1-3 Case Study — 2024-08-20

In this section, a single day (2024-08-20) is analysed in detail to illustrate the behaviour and
performance of the different control approaches. All methods are compared using the offer
set corresponding to np = 16 and 200 available flexibility offers. The results are regrouped
into three main figures to provide a concise overview of constraint violations, control actions,
and aggregated performance metrics.

Figure 6-2 presents a comparison heatmap of the constraint violations across all transmission
lines for each control strategy. The horizontal axis represents time, where each time step
corresponds to a 15-minute interval, and the vertical axis lists the transmission lines. The
colour intensity indicates the magnitude of the constraint violations, with darker shades of
red representing higher levels of congestion.

The top panel shows the uncontrolled case, where one transmission line experiences persistent
congestion while others become overloaded during the afternoon hours. The second panel
displays the results of the Algorithmic Greedy Matching approach, which does not actively
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deploy flexibility, resulting in similar congestion patterns to the uncontrolled case.
For the model-based controllers, the MPC method exhibits substantial activation of flexibility,
leading to a clear reduction in the number and intensity of congested periods. The MPC-
PP further improves congestion mitigation, confirming that forecast errors contribute to the
residual violations seen in the standard MPC. Finally, the probabilistic controllers, CC-MPC
and CC-MPC-RL, achieve the lowest overall congestion levels. These methods exhibit more
preventive activation behaviour, mitigating minor overloads and demonstrating the benefits
of probabilistic constraint handling in terms of robustness and reliability. Figure 6-3 shows

Figure 6-2: Comparison heatmap of constraint violations for all control strategies on 2024-08-20.

the corresponding control actions for the same day. Each subplot illustrates the up- and
down-regulation activations of the respective control strategy, along with the total flexibility
available in the system. The shaded grey area represents the total offered flexibility, while
the green and red lines denote the activated up- and down-regulation, respectively.
The Algorithmic method shows no activations, consistent with the congestion observed in
the heatmap. The MPC-based controllers activate flexibility throughout the day in response
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to congestion events, with the MPC-PP showing slightly smoother activations due to per-
fect knowledge of future disturbances. The CC-MPC and CC-MPC-RL approaches display
broader and more frequent activations, even in periods without visible congestion, reflecting
a more conservative, preventive control strategy. While this increases operational cost, it
significantly improves congestion prevention under uncertainty. The aggregated results for

Figure 6-3: Comparison of control actions for all control strategies on 2024-08-20.

the case study are presented in Figure 6-4. The top panel shows the cumulative constraint
violations, while the bottom panel presents the corresponding cumulative operational costs.

The uncontrolled and Algorithmic cases result in the highest cumulative violations, con-
firming the inability of simple matching or absence of control to alleviate congestion. The
MPC-based methods achieve a substantial reduction in violations, with the perfect-prediction
variant MPC-PP performing slightly better due to the absence of forecast uncertainty. The
probabilistic controllers CC-MPC and CC-MPC-RL achieve the lowest cumulative violations
overall, demonstrating that accounting for uncertainty explicitly improves reliability and ro-
bustness.
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In terms of cumulative cost, the Algorithmic strategy yields the lowest value, as no flexibility
activations occur. The MPC-based controllers incur higher costs due to increased flexibility
usage, with the probabilistic methods being the most expensive. However, this higher cost
corresponds to improved system security and reduced constraint violations. Notably, the
CC-MPC-based methods achieve similar congestion mitigation performance to the perfect-
prediction case while using imperfect forecasts, highlighting their robustness and practical
applicability.

Figure 6-4: Cumulative constraint violation (top) and cumulative cost (bottom) for all control
strategies during the 2024-08-20 case study.

6-2 Impact of Prediction Quality on Model Performance

As discussed in Chapter 3, the statistical models used for prediction might exhibit limited
accuracy. To evaluate the impact of these prediction errors, the MPC-based approach is
compared to MPC-PP, which uses perfect predictions, for different prediction horizons and
number of offers. The results for both configurations, MPC and MPC-PP, are presented in
Tables 6-2 and 6-3, respectively. Comparing Tables 6-2 and 6-3, the results confirm that
prediction accuracy has a measurable impact on the performance of the nominal MPC. When
perfect predictions are available, both the mean total violation and violation count are consis-
tently lower, indicating that forecast uncertainty contributes to residual constraint violations.
This effect becomes more pronounced for larger offer sets, where the controller has more flex-
ibility to act on accurate forecasts. However, the differences in overall performance remain
moderate, suggesting that even with imperfect predictions, the nominal MPC can effectively
mitigate congestion. In other words, while forecast errors do reduce optimality, their impact
does not critically undermine the controller’s ability to operate the system efficiently.
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MPC np = 8 np = 8 np = 16 np = 16
nof = 100 nof = 200 nof = 100 nof = 200

Total violation (mean) [%] -3.91 % -6.57 % -35.81 % -56.18 %
Total violation (variance) [%] 5.97 % 7.74 % 25.0 % 26.78 %
Violation count (mean) [%] -2.6 % -4.68 % -29.22 % -46.65 %

Violation count (variance) [%] 7.42 % 9.58 % 22.91 % 27.55 %
Cost (mean) [€] 16692.68 € 22527.62 € 302572.72 € 538241.63 €

Cost (variance) [€] 11060.39 € 12117.94 € 219901.91 € 241400.13 €

Table 6-2: Summary of MPC performance metrics across 50 simulations for varying prediction
horizons (np) and offer set sizes (nof), relative to the uncontrolled case

MPC-PP np = 8 np = 8 np = 16 np = 16
nof = 100 nof = 200 nof = 100 nof = 200

Total violation (mean) [%] -4.54 % -7.43 % -41.49 % -60.32 %
Total violation (variance) [%] 7.78 % 11.49 % 27.46 % 22.55 %
Violation count (mean) [%] -1.94 % -5.0 % -32.19 % -48.8 %

Violation count (variance) [%] 6.25 % 10.77 % 25.65 % 21.13 %
Cost (mean) [€] 14042.17 € 22273.09 € 313929.35 € 562637.84 €

Cost (variance) [€] 9827.81 € 14293.88 € 230628.23 € 258304.89 €

Table 6-3: Summary of MPC-PP performance metrics across 50 simulations for varying prediction
horizons (np) and offer set sizes (nof), relative to the uncontrolled case

6-3 Impact of risk parameter

One of the main advantages of CC-MPC is the ability to explicitly trade robustness for per-
formance by adjusting the risk parameter α. Table 6-4 illustrates how varying α affects the
mean and variance of violations and cost. As expected, a lower risk parameter (α = 0.75)
leads to a slightly lower cost, but at the cost of slightly increased constraint violation. The
lower risk parameter (α = 0.75) results in fewer control actions, leading to a slight reduction
in operational costs but at the expense of increased constraint violations. In principle, relax-
ing the chance constraint (i.e., allowing a lower probability of constraint satisfaction) should
enable the controller to operate more efficiently by prioritising performance over strict robust-
ness. However, in this case, many of the congestions are structural and persist throughout
the operating horizon. As a result, even when the controller is permitted to take on a higher
level of risk, the underlying violations remain largely unavoidable. Consequently, the ex-
pected performance gain from reducing the risk parameter is limited, since the system cannot
meaningfully exploit the additional flexibility provided by a lower α.

6-4 Impact of RL-Enhancement

The RL-enhanced variant CC-MPC-RL is introduced to automatically tune the variance of
the uncertainty used in the prediction models based on observed closed-loop performance.
However, in this work the RL training process was not fully stable: the learning curves
exhibited oscillatory behaviour and no clear convergence to a single policy, as discussed in
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CC-MPC α
np = 8 np = 8 np = 16 np = 16

nof = 100 nof = 200 nof = 100 nof = 200

Total violation (mean) [%] 0.75 -3.03 % -6.71 % -39.38 % -59.2 %
0.9 -3.93 % -7.13 % -43.77 % -59.44 %

Total violation (variance) [%] 0.75 7.93 % 11.24 % 25.52 % 24.82 %
0.9 7.56 % 11.23 % 27.51 % 24.14 %

Violation count (mean) [%] 0.75 -1.47 % -5.06 % -32.27 % -50.77 %
0.9 -1.88 % -5.74 % -35.92 % -50.85 %

Violation count (variance) [%] 0.75 6.38 % 12.87 % 22.9 % 23.43 %
0.9 6.02 % 12.64 % 25.61 % 22.51 %

Cost (mean) [€] 0.75 12567.14 € 25642.35 € 355028.02 € 653568.64 €
0.9 12258.20 € 25623.13 € 371277.57 € 690521.43 €

Cost (variance) [€] 0.75 11445.64 € 16194.16 € 237708.41 € 255827.52 €
0.9 10249.82 € 17058.65 € 230599.56 € 238974.97 €

Table 6-4: Summary of CC-MPC performance metrics across 50 simulations for varying prediction
horizons (np) and offer set sizes (nof), relative to the uncontrolled case

Subsection 5-4. Table 6-5 summarizes the results for CC-MPC-RL. For the short prediction
horizon np = 8 on which the RL-agent was trained, the proposed CC-MPC-RL achieves slightly
lower mean violations than CC-MPC. Indicating that even though the RL training did not
converge it still learned a policy capable of further reducing the constraint violation. For
the configurations with a longer horizon (np = 16), the RL policy does not improve results,
indicating that the learned policy is suitable to compensate and improve performance when
a short horizon is chosen. Overall, the results show that RL can provide improvements, even
if the full potential of the RL-enhanced design is not reached.

CC-MPC-RL np = 8 np = 8 np = 16 np = 16
nof = 100 nof = 200 nof = 100 nof = 200

Total violation (mean) [%] -4.2 % -7.43 % -41.88 % -58.59 %
Total violation (variance) [%] 7.57 % 11.2 % 27.43 % 24.24 %
Violation count (mean) [%] -2.2 % -5.81 % -35.82 % -50.98 %

Violation count (variance) [%] 6.01 % 12.6 % 26.53 % 24.49 %
Cost (mean) [€] 10808.43 € 27051.14 € 387401.87 € 711028.66 €

Cost (variance) [€] 9913.18 € 18838.99 € 225910.49 € 222442.33 €

Table 6-5: Summary of CC-MPC-RL performance metrics across 50 simulations for varying
prediction horizons (np) and offer set sizes (nof), relative to the uncontrolled case

6-5 Comparison between methods

The previously shown results are summarized in Tables 6-6–6-9, where all methods are com-
pared across the four configurations of prediction horizon (np ∈ {8, 16}) and offer set size
(nof ∈{100, 200}). From this comparison, three consistent observations emerge.
Across all configurations, the Greedy Matching baseline performs the worst in terms of con-
straint violations. Among the predictive approaches, MPC-PP achieves the lowest mean
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violation, benefiting from perfect foresight. The chance-constrained methods (CC-MPC and
CC-MPC-RL) achieve nearly identical levels of constraint satisfaction while still relying on
the same imperfect prediction models as the nominal MPC. This improvement, however,
comes at a substantially higher cost, as the chance-constrained controllers activate flexibility
pre-emptively in anticipation of possible violations—taking actions that the MPC-PP, with
perfect future knowledge, would recognise as unnecessary.

Costs increase whenever violations are reduced by activating flexibility. The Greedy Matching
approach is therefore cheapest but unacceptable from a risk/safety of operation perspective.
Among the predictive methods, cost differences are closely related to the degree of violation
reduction that is achieved, with MPC-PP representing an exception by demonstrating that
accurate forecasting improves both constraint satisfaction and economic efficiency.

Moving from np = 8 to np = 16 substantially decreases violations for all predictive methods
(e.g., MPC mean violation from −6.57% to −56.18% when nof = 200), showing that longer
prediction horizons and richer offer sets enable more effective congestion mitigation. This
highlights the importance of appropriate market order design to ensure that flexibility offers
can be efficiently matched and utilised.

np = 8 & nof = 100 Greedy Matching MPC CC-MPC CC-MPC-RL MPC-PP
Total violation (mean) [%] -0.26 % -3.91 % -3.93 % -4.2 % -4.54 %

Total violation (variance) [%] 0 % 5.97 % 7.56 % 7.57 % 7.78 %
Violation count (mean) [%] 0 % -2.6 % -1.88 % -2.2 % -1.94 %

Violation count (variance) [%] 0 % 7.42 % 6.02 % 6.01 % 6.25 %
Cost (mean) [€] 1501.40 € 16692.68 € 12258.2 € 10808.43 € 14042.17 €

Cost (variance) [€] 0 € 11060.39 € 10249.82 € 9913.18 € 9827.81 €

Table 6-6: Performance comparison of control approaches with respect to the uncontrolled case
for offer set with np = 8 and nof = 100)

np = 8 & nof = 200 Greedy Matching MPC CC-MPC CC-MPC-RL MPC-PP
Total violation (mean) [%] -0.27 % -6.57 % -7.13 % -7.43 % -7.43 %

Total violation (variance) [%] 1.71 % 7.74 % 11.23 % 11.2 % 11.49 %
Violation count (mean) [%] -0.32 % -4.68 % -5.74 % -5.81 % -5.0 %

Violation count (variance) [%] 0.77 % 9.58 % 12.64 % 12.6 % 10.77 %
Cost (mean) [€] 1944.92 € 22527.62 € 25623.13 € 27051.14 € 22273.09 €

Cost (variance) [€] 1181.43 € 12117.94 € 17058.65 € 18838.99 € 14293.88 €

Table 6-7: Performance comparison of control approaches with respect to the uncontrolled case
for offer set with np = 8 and nof = 200)

np = 16 & nof = 100 Greedy Matching MPC CC-MPC CC-MPC-RL MPC-PP
Total violation (mean) [%] -8.83 % -35.81 % -43.77% -41.88 % -41.49 %

Total violation (variance) [%] 11.89 % 25.0 % 27.51 % 27.43 % 27.46 %
Violation count (mean) [%] -7.76 % -29.22 % -35.92 % -35.82 % -32.19 %

Violation count (variance) [%] 9.94 % 22.91 % 25.61 % 26.53 % 25.65 %
Cost (mean) [€] 102719.91 € 302572.72 € 371277.57 € 387401.87 € 313929.35 €

Cost (variance) [€] 59598.27 € 219901.91 € 230599.56 € 225910.49 € 230628.23 €

Table 6-8: Performance comparison of control approaches with respect to the uncontrolled case
for offer set with np = 16 and nof = 100)
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np = 16 & nof = 200 Greedy Matching MPC CC-MPC CC-MPC-RL MPC-PP
Total violation (mean) [%] -10.19 % -56.18 % -59.44 % -58.59 % -60.32 %

Total violation (variance) [%] 14.26 % 26.78 % 24.14 % 24.24 % 22.55 %
Violation count (mean) [%] -5.53 % -46.65 % -50.85 % -50.98 % -48.8 %

Violation count (variance) [%] 6.46 % 27.55 % 22.51 % 24.49 % 21.13 %
Cost (mean) [€] 146396.78 € 538241.63 € 690521.43 € 711028.66 € 562637.84 €

Cost (variance) [€] 80776.80 € 241400.13 € 238974.97 € 222442.33 € 258304.89 €

Table 6-9: Performance comparison of control approaches with respect to the uncontrolled case
for offer set with np = 16 and nof = 200)

6-6 Summary

This chapter presented and compared the performance of the proposed congestion manage-
ment methods across a range of modelling and operational conditions. The analysis considered
variations in prediction horizon, risk parameter, prediction accuracy, and offer quantity, sup-
ported by a structured simulation set-up using both synthetic market offers and real historical
data. A detailed day-ahead case study (2024-08-20) was used to illustrate the differences be-
tween approaches, showing that uncontrolled operation and Greedy Matching fail to mitigate
congestion effectively, while all model-based predictive methods achieve substantial reductions
in line overloads.

The MPC-based controllers successfully coordinated up- and down-regulation actions to main-
tain system balance, even when relying on imperfect SARIMA-based forecasts. Despite relying
on approximate uncertainty models, the chance-constrained approach achieves performance
close to that of MPC-PP, which has access to perfect future information, albeit at a substan-
tially higher cost due to its added conservatism. The CC-MPC method, which introduces
probabilistic constraints, achieved even better constraint satisfaction and nearly matched
the performance of MPC-PP while using the same imperfect forecasts. Adjusting the risk
parameter α allowed explicit control over the robustness–performance trade-off, though the
structural nature of congestion limited its overall impact.

The analysis of offer availability showed that increasing the number of offers and extend-
ing the prediction horizon both enhance the system’s controllability by enlarging the pool
of matchable flexibility. However, these gains come at the cost of increased activations and
computational effort, with diminishing returns once sufficient flexibility is available. The RL-
enhanced CC-MPC approach (CC-MPC-RL) demonstrated potential for automated adapta-
tion but suffered from unstable training and poor generalisation to unseen configurations.
While it outperformed CC-MPC for the configuration it was trained on, improvements were
inconsistent across other cases.

Overall, the results confirm that predictive and probabilistic control strategies are highly
effective for managing structural network congestion. Even with imperfect forecasts, the
proposed approaches significantly reduce violations compared to static or greedy alternatives.
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Chapter 7

Conclusion, Discussion and Future
work

7-1 Conclusion

The objective of this work has been captured by the following research question:

How can an MPC-based CM strategy, enhanced with RL, be implemented to
manage congestion under uncertainty for the Dutch transmission grid using

real-world data?

This thesis addressed these questions through a structured methodology combining system
modelling, control theory, data analysis, and simulation-based validation. First, the Dutch
transmission grid was represented within an MPC framework, allowing the CM problem to
be expressed as a dynamic optimisation problem. Then, the MPC problem was extended
to incorporate the market rules of CM in the Netherlands, allowing the interaction between
technical control and market-clearing mechanisms to be captured. Real-world data from the
Dutch grid have been utilized to form a statistical model, incorporating realistic uncertainty
in the network. The inclusion of RL enhanced the CC-MPC framework by enabling adaptive
tuning of control parameters and improved decision-making under uncertain and time-varying
conditions.
The simulation and case study results demonstrated that the combined CC-MPC-RL ap-
proach can effectively anticipate congestion events, coordinate flexibility activation, and re-
duce congestion events compared to other methods. The integration of statistical uncertainty
models and a stochastic CC-MPC formulation improved robustness under uncertainty, while
the RL component allowed the controller to improve results. Overall, the findings confirm the
feasibility and potential of an CC-MPC-based CM strategy augmented with RL to enhance
grid operation in the Dutch context.
The control architecture integrates a CC-MPC scheme with an adaptive RL component for
online uncertainty tuning. The results indicate that the CC-MPC approach consistently
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outperforms the deterministic MPC and greedy matching strategies in terms of constraint
satisfaction. This confirms that incorporating probabilistic forecasts can effectively balance
performance and security. Moreover, the inclusion of the RL layer enables adaptive vari-
ance estimation of the stochastic model, thereby enhancing robustness under varying system
conditions.

7-2 Discussion

The proposed framework successfully bridges the gap between technical control methodologies
and market-based CM. While the results demonstrate improvements in both operational and
economic performance, several aspects merit further reflection and refinement.

The CC-MPC and its RL-enhanced variant require the repeated solution of multiple stochastic
scenarios, which increases computation time and may challenge real-time implementation for
large-scale networks. This trade-off between control accuracy and computational tractability
is central to future deployment considerations.

The control framework relies on a linearised transmission network model derived from the
AC power flow equations. While this linearisation enables efficient optimisation, it is valid
primarily for high-voltage transmission networks with small voltage angle differences. Because
the proposed platform is also intended to address congestion in medium- and low-voltage
networks, this simplification constitutes a significant limitation. Incorporating non-linear
AC formulations or reduced-order non-linear models would improve accuracy and extend
applicability across voltage levels; however, at significant computational cost.

The GOPACS market representation adopted in this study presumes greater flexibility avail-
ability than is presently observed in the real system. In practice, both the quantity and scale
of market offers are considerably lower, which restricts the impact the proposed method can
have.

The statistical disturbance model developed using data from EDSN formed the basis for
uncertainty representation within the proposed CC-MPC framework. Although the imple-
mented SARIMA models captured general production patterns, forecasting accuracy varied
significantly between regions. The results demonstrate that model accuracy directly influences
control performance, as improved forecasts lead to more effective congestion mitigation. This
underlines the need for more advanced and adaptive forecasting techniques.

Residual analysis revealed mild heteroscedasticity, indicating that forecast uncertainty is time-
varying and strongly influenced by weather-driven variability in renewable generation. Future
work should therefore explore the integration of volatility models such as generalized autore-
gressive conditional heteroscedastic models, which explicitly account for time-varying variance
and could provide a more accurate representation of stochastic behaviour in renewable energy
forecasts (e.g., ensemble models, volatility extensions to SARIMA, and or the incorporation
of exogenous variables, or deep learning models).

In this work only two offer structures were investigated; however, in practical CM, more com-
plex offer types—such as exclusive, block, or linked offers—are common and might be needed
to attract the necessary amounts of flexibility. Expanding the market model to accommodate
these advanced offer structures could facilitate more users.
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Additionally, the performance of the RL component warrants further investigation, particu-
larly with regards to training convergence.

Overall, the findings confirm that combining probabilistic forecasting, CC-MPC, and RL pro-
vides a promising and powerful approach to CM under uncertainty. Extending this framework
to non-linear AC formulations, integrating advanced forecasting techniques, incorporating
richer market order types, and expanding its scope to include additional parts of the power
grid represent promising directions for future research and development.

7-3 Contributions and Future Work

7-3-1 Contributions

This thesis contributes to the ongoing research on market-based CM in by developing a novel
CC-MPC approach that bridges the gap between advanced theoretical control techniques in
literature to real-world applicable control strategies. First, a representative market model
of the Dutch congestion management framework is developed and integrated into a dynamic
CC-MPC-based optimisation framework.

Second, it presents an integrated control framework that combines CC-MPC with RL to
enhance adaptability under stochastic operating conditions. This hybrid design enables the
controller to dynamically tune the uncertainty representation in response to observed per-
formance, improving constraint satisfaction compared to deterministic MPC and CC-MPC
methods.

Second, the thesis introduces a comprehensive data-driven approach to uncertainty quantifi-
cation for real-world CM applications. By leveraging time-series data from EDSN, statistical
models were constructed to represent renewable generation variability and used directly within
the CC-MPC optimisation. This integration of real-world data into a predictive control set-
ting demonstrates a practical pathway to incorporating uncertainty directly in the decision
making process.

Third, the thesis validates the proposed methods through a case study based on the Dutch
high-voltage transmission grid. The study compares multiple control strategies; greedy match-
ing, deterministic MPC, CC-MPC, and CC-MPC–RL, and demonstrates the superior perfor-
mance of the proposed approach in congestion mitigation under uncertainty.

7-3-2 Future Work

Building on the findings of this work, several avenues for future research can be identified
to strengthen and extend the proposed framework. First, enhancing uncertainty modelling
remains a key priority. Since the forecasting quality of the SARIMA-based models was shown
to influence control performance, future research should focus on integrating more advanced
uncertainty representations, such as ensemble models, volatility extensions to SARIMA, the
inclusion of exogenous variables, or deep learning-based approaches. In addition, the applica-
bility of the controller could be improved by addressing the limitations of the linearised grid
model. Extending the framework to a non-linear AC formulation would allow the method to
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capture lower grid levels, thereby making it relevant for both transmission and distribution
networks. Finally, expanding the market representation to include complex offer types, such
as linked, block, and exclusive offers, would enable a more complete assessment of flexibility
trading mechanisms in large-scale CM. As market design strongly influences how flexibility is
activated and valued, these extensions are essential for evaluating the framework under real-
istic market conditions. Overall, future work should refine the proposed method to enhance
its applicability in real-world systems.
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Appendix A

Derivation of the Linearised Model

Starting from the non-linear AC power flow equations (2-3) and the nodal power balance
equations (2-2), a linear, time-varying dynamic network model is derived. The model is
expressed as

x(k + 1) = S(k)x(k) + T (k)u(k) + T (k)w(k), (A-1)
where S(k) and T (k) are time-varying system matrices, x(k) is the state vector, u(k) collects
controllable power changes, and w(k) collects uncontrollable power changes.
Let N be the set of nodes and E the set of directed transmission lines, with |N | the number
of nodes and |E | the number of lines. The stacked state, input, and disturbance vectors are
defined as

x(k) =



P (1)(k)
...

P (|N |)(k)
Q(1)(k)

...
Q(|N |)(k)
P (1,2)(k)

...
P (|E |)(k)
Q(1,2)(k)

...
Q(|E |)(k)



, u(k) =



∆P
(1)
u (k)
...

∆P
(nu)
u (k)

∆Q
(1)
u (k)
...

∆Q
(nu)
u (k)


, w(k) =



∆P
(1)
w (k)
...

∆P
(nw)
w (k)

∆Q
(1)
w (k)
...

∆Q
(nw)
w (k)


, (A-2)

where P (n)(k) and Q(n)(k) are respectively the active and reactive nodal powers at node
n∈N , and P (n,m)(k), Q(n,m)(k) are the active and reactive power flows on line (n, m)∈ E .
For each node n∈N define,

P (n)(k + 1) = P (n)(k) + ∆P (n)(k),
Q(n)(k + 1) = Q(n)(k) + ∆Q(n)(k).

(A-3)
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The nodal power changes are decomposed into controllable and uncontrollable components:

∆P (n)(k) = ∆P (n)
u (k) + ∆P (n)

w (k),
∆Q(n)(k) = ∆Q(n)

u (k) + ∆Q(n)
w (k),

(A-4)

where ∆P
(n)
u (k) and ∆Q

(n)
u (k) are controllable active and reactive power changes (for example,

from generators), and ∆P
(n)
w (k) and ∆Q

(n)
w (k) are uncontrollable changes (for example, from

loads or renewable generation).

The line power flows between nodes n and m are given by the non-linear AC power flow
expressions in (2-3)

P (n,m)(k) = fP (n,m)(a(k)),
Q(n,m)(k) = fQ(n,m)(a(k)),

(A-5)

where
a(k) = {v(n)(k), v(m)(k), θ(n)(k), θ(m)(k)} (A-6)

collects the voltage magnitudes v(·)(k) and phase angles θ(·)(k) at the line end nodes. Define
the corresponding changes

∆a(k) = a(k + 1)− a(k). (A-7)

A first-order Taylor expansion of (A-5) around the operating point a(k) yields

P (n,m)(k + 1)≈P (n,m)(k) + ∂fP (n,m)

∂a

∣∣∣∣
a(k)

∆a(k), (A-8a)

Q(n,m)(k + 1)≈Q(n,m)(k) +
∂fQ(n,m)

∂a

∣∣∣∣
a(k)

∆a(k), (A-8b)

which implies

∆P (n,m)(k) = ∂fP (n,m)

∂a

∣∣∣∣
a(k)

∆a(k),

∆Q(n,m)(k) =
∂fQ(n,m)

∂a

∣∣∣∣
a(k)

∆a(k).
(A-9)

Stacking (A-9) for all lines (n, m)∈E yields[
∆P (n,m)(k)
∆Q(n,m)(k)

]
=
[
HP θ(k) HP v(k)
HQθ(k) HQv(k)

] [
∆θ(n)(k)
∆v(n)(k)

]
, (A-10)

where

∆P (n,m)(k) =


∆P (1,2)(k)

...
∆P (|E |)(k)

 , ∆Q(n,m)(k) =


∆Q(1,2)(k)

...
∆Q(|E |)(k)

 ,

∆θ(n)(k) =


∆θ(1)(k)

...
∆θ(|N |)(k)

 , ∆v(n)(k) =


∆v(1)(k)

...
∆v(|N |)(k)

 ,
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and the matrices HP θ(k), HP v(k), HQθ(k), and HQv(k) are the Jacobians of line active and
reactive power flows with respect to the nodal voltage angles and magnitudes, evaluated at
time k.

The nodal active and reactive powers are given by the non-linear power balance equations in
(2-2)

P (n)(k) = fP (n)(b(k)),
Q(n)(k) = fQ(n)(b(k)),

(A-11)

where
b(k) = {v(1)(k), . . . , v(|N |)(k), θ(1)(k), . . . , θ(|N |)(k)} (A-12)

collects the voltage magnitudes and angles at all nodes. Denote the corresponding change

∆b(k) = b(k + 1)− b(k). (A-13)

A first-order Taylor expansion of the nodal powers yields, for each node n,

∆P (n)(k) = ∂fP (n)

∂b

∣∣∣∣
b(k)

∆b(k), (A-14a)

∆Q(n)(k) =
∂fQ(n)

∂b

∣∣∣∣
b(k)

∆b(k). (A-14b)

Stacking these for all nodes gives[
∆P (n)(k)
∆Q(n)(k)

]
=
[
JP θ(k) JP v(k)
JQθ(k) JQv(k)

] [
∆θ(n)(k)
∆v(n)(k)

]
, (A-15)

where

∆P (n)(k) =


∆P (1)(k)

...
∆P (|N |)(k)

 , ∆Q(n)(k) =


∆Q(1)(k)

...
∆Q(|N |)(k)

 ,

and the Jacobian submatrices are defined as

JP θ(k) = ∂P (|N |)(k)
∂θ(n)(k)

, JP v(k) = ∂P (|N |)(k)
∂v(n)(k)

,

JQθ(k) = ∂Q(|N |)(k)
∂θ(n)(k)

, JQv(k) = ∂Q(|N |)(k)
∂v(n)(k)

.

(A-16)

Assuming that the nodal Jacobian

J(k) :=
[
JP θ(k) JP v(k)
JQθ(k) JQv(k)

]
(A-17)

is nonsingular at the operating point, (A-15) can be inverted to express the voltage angle and
magnitude changes in terms of the nodal power changes:[

∆θ(n)(k)
∆v(n)(k)

]
= J(k)−1

[
∆P (n)(k)
∆Q(n)(k)

]
. (A-18)
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Substituting (A-18) into the line-flow relation (A-10) gives[
∆P (n,m)(k)
∆Q(n,m)(k)

]
=
[
HP θ(k) HP v(k)
HQθ(k) HQv(k)

]
J(k)−1

[
∆P (n)(k)
∆Q(n)(k)

]
. (A-19)

Define the composite sensitivity matrix

G(k) :=
[
HP θ(k) HP v(k)
HQθ(k) HQv(k)

]
J(k)−1 =

[
Gpp(k) Gpq(k)
Gqp(k) Gqq(k)

]
, (A-20)

where the block matrices Gpp(k), Gpq(k), Gqp(k), and Gqq(k) have dimensions |E | × |N |
and collect the sensitivities from nodal active/reactive power changes to line active/reactive
power changes. The relation between nodal and line power changes can then be written as[

∆P (n,m)(k)
∆Q(n,m)(k)

]
=
[
Gpp(k) Gpq(k)
Gqp(k) Gqq(k)

] [
∆P (n)(k)
∆Q(n)(k)

]
. (A-21)

Writing (A-21) component-wise, for each line (n, m)∈E ,

∆P (n,m)(k) =
∑
l∈N

g(n,m),l
pp (k) ∆P (l)(k) +

∑
l∈N

g(n,m),l
pq (k) ∆Q(l)(k), (A-22a)

∆Q(n,m)(k) =
∑
l∈N

g(n,m),l
qp (k) ∆P (l)(k) +

∑
l∈N

g(n,m),l
qq (k) ∆Q(l)(k), (A-22b)

where g
(n,m),l
pp (k) is the sensitivity of the active power flow on line (n, m) with respect to a

change in active power injection at node l; g
(n,m),l
pq (k) is the sensitivity of the same active line

flow with respect to a change in reactive power injection at node l; g
(n,m),l
qp (k) and g

(n,m),l
qq (k)

are defined analogously for reactive line flows.

Stacking the coefficients in (A-22) for all lines yields the block matrices

Gpp(k) =


g

(1,2),1
pp (k) . . . g

(1,2),|N |
pp (k)

... . . . ...
g

(|E |),1
pp (k) . . . g

(|E |),|N |
pp (k)

 ,

Gpq(k) =


g

(1,2),1
pq (k) . . . g

(1,2),|N |
pq (k)

... . . . ...
g

(|E |),1
pq (k) . . . g

(|E |),|N |
pq (k)

 ,

Gqp(k) =


g

(1,2),1
qp (k) . . . g

(1,2),|N |
qp (k)

... . . . ...
g

(|E |),1
qp (k) . . . g

(|E |),|N |
qp (k)

 ,

Gqq(k) =


g

(1,2),1
qq (k) . . . g

(1,2),|N |
qq (k)

... . . . ...
g

(|E |),1
qq (k) . . . g

(|E |),|N |
qq (k)

 .

(A-23)

J. van der Weerd Master of Science Thesis



73

The matrices Gpp(k), Gpq(k), Gqp(k), and Gqq(k) therefore describe how changes in nodal
active and reactive powers propagate to changes in active and reactive power flows on the
transmission lines. These sensitivity matrices can then be used to assemble the time-varying
matrices S(k) and T (k) in (A-1), yielding a linear, discrete-time dynamic model of the AC
network that captures both controllable and uncontrollable power variations.
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Abstract—The rapid growth of renewable energy sources
(RES) and electrification of transport, heating, and industry are
transforming the Dutch power grid. While crucial for climate
goals, these trends introduce uncertainty and complicate network
control. Existing Congestion Management (CM) approaches often
overlook the stochastic nature of Renewable Energy Source
(RES) generation, simplify network models, or ignore market
constraints. This work formulates market-based CM for the
Dutch grid as a Chance-Constrained Model Predictive Control
(CC-MPC) problem. A linearised high-voltage network model is
integrated with a mixed-integer formulation of market offers.
RES uncertainty is represented via Seasonal AutoRegressive Inte-
grated Moving-Average (SARIMA)-based forecasts. To favour the
trade off between congestion cost and constraint satisfaction, a
Reinforcement Learning approach is introduced, to actively tune
a scaling parameters for the variance of the uncertainty. Then, the
sampling-based approximation of the CC-MPC determines which
flexibility offers need to be accepted. Using real data from Energie
Data Services Nederland (EDSN) and Grid Operators Platform for
AnCillary Services (GOPACS), results show that the Reinforcement
Learning (RL)-enhanced CC-MPC improves constraint satisfaction,
demonstrating superior results compared to other traditional CM
methods.

I. INTRODUCTION

The Paris Agreement set global commitments to limit the
temperature rise by rapidly reducing greenhouse gas emissions
[1]. RESs such as wind and solar are central to this effort,
with governments pledging to triple renewable capacity by
2030 [2]. Simultaneously, electrification of transport, heating,
and industry is accelerating electricity demand, driven by both
climate and energy security goals [3]. Meeting this demand
requires substantial grid investments, estimated at C70 billion
annually in the European Union until 2050 [4].

This large-scale transformation challenges grid operators, as
existing networks were designed for centralized, unidirectional
power flows. Increasing RES penetration introduces intermit-
tency, while reduced conventional generation limits system
flexibility, amplifying congestion risks [5]. Such congestion
can cause voltage instability, equipment overloading, and

costly remedial actions, amounting to C4.26 billion in 2023
alone [6].

Efficient CM is thus vital to ensure secure, economical,
and sustainable grid operation. Traditional methods are of-
ten overly simplistic, while advanced optimisation-based ap-
proaches proposed in the literature frequently neglect real-
world limitations. To bridge this gap CC-MPC has emerged as
a promising framework for handling complex system dynam-
ics, operational constraints, and uncertainty. In this context,
statistical models and RL techniques are used to enhance
adaptability and performance by learning from evolving grid
conditions.

This work makes three key contributions to the field of
market-based CM:

• It introduces a novel hybrid CC-MPC–RL control frame-
work that enables adaptive, uncertainty-aware CM. The
reinforcement learning layer dynamically adjusts uncer-
tainty parameters to improve robustness and constraint
satisfaction.

• It presents a data-driven methodology for uncertainty
quantification using real-world EDSN data. This approach
directly embeds statistical forecasts into the predictive
control problem, demonstrating a practical route for inte-
grating real-world variability into model-based decision-
making.

• It validates the proposed methods through case studies
on the Dutch transmission grid, comparing the hybrid
approach with greedy and deterministic baselines. The
results show consistent improvements in congestion mit-
igation and robustness under uncertain operating condi-
tions.

The remainder of this paper is organised as follows. Section II
introduces the modelling framework, describing the grid topol-
ogy, linearised network dynamics, and market representation.
Section III outlines the data sources and stochastic forecasting



approach used to represent renewable generation uncertainty.
Sections IV and V presents the proposed CC-MPC formulation
and its reinforcement learning enhancement. Section VI details
the case study and simulation results, demonstrating the effec-
tiveness of the proposed approach. Finally, Section VII sum-
marises the main findings and discusses potential directions
for future work.

II. MODELLING

This section presents the model of the high-voltage grid
of the Netherlands (Section II-A), the linearised dynamical
model of a high-voltage transmission network (Section II-B),
and the market model derived from the Dutch CM platform
GOPACS (Section II-C), which together form the basis of the
proposed CC-MPC framework.

A. Grid model

The Dutch high-voltage grid is represented as a undirected
mathematical graph, based on the map made by Tennet [7],
consisting of nodes and edges in the following way:

G = (N ,E )

N := {0, . . . , |N | − 1}
E ⊆ {(n,m) | n,m ∈ N , n ̸= m}

(1)

where G is the undirected graph, N denotes the set of nodes
and E denotes the set of edges. The number of nodes and edges
are represented by |N | and |E | respectively. A schematic of
the graph is presented in Figure 1. The nodes {39, . . . , 46}
are the the 8 medium-voltage rings that connect all the con-
sumption and production to the high-voltage grid. For each of
these regions the aggregated consumption and production data
is acquired from EDSN. The rest of the nodes are connecting
nodes that do not have consumption or production.

Fig. 1: Graph of the studied high-voltage power grid, where
each node represents a coupling substation and each edge
represents a transmission line connection between substations.

B. Linearised Dynamical Network Model

The transmission network is represented by a linear time-
varying model:

x(k + 1) = A(k)x(k) +B(k)u(k) +B(k)w(k), (2)

where x(k) denotes the current active and reactive power
injections and line flows, u(k) the controllable nodal power
adjustments, and w(k) the uncontrollable nodal power adjust-
ments defined as

x(k) =
[
P (1)(k), . . . , P (|N |)(k),

Q(1)(k), . . . , Q(|N |)(k),

P (1,2)(k), . . . , P (|E|)(k),

Q(1,2)(k), . . . , Q(|E|)(k)
]T
,

u(k) =
[
∆P (1)

u (k), . . . ,∆P (|N |)
u (k),

∆Q(1)
u (k), . . . ,∆Q(|N |)

u (k)
]T
,

w(k) =
[
∆P (1)

w (k), . . . ,∆P (|N |)
w (k),

∆Q(1)
w (k), . . . ,∆Q(|N |)

w (k)
]T
,

(3)

where P (n) and Q(n) denote the real and reactive power at
node n, P (n,m) and Q(n,m) denote the real and reactive power
through transmission line (n,m), ∆P

(1)
u , ∆Q

(1)
u denote the

controlled real and reactive power change at node n, and
∆P

(1)
w , ∆Q

(1)
w denote uncontrolled real and reactive power

change at node n. The state dynamics of nodal powers are
defined as follows:

P (n)(k + 1) = P (n)(k) + ∆P (n)
u (k)+∆P (n)

w (k)

∀n ∈ N

Q(n)(k + 1) = Q(n)(k) + ∆Q(n)
u (k)+∆Q(n)

w (k)

∀n ∈ N .

(4)

The transmission line flows are linearised using first-order
Taylor expansion of the AC power flow equations [8]:

∆P (n,m)(k) =
∑

l∈N

g(n,m),l
pp (k)∆P l(k)

+ g(n,m),l
pq (k)∆Ql(k) ∀(n,m) ∈ E

∆Q(n,m)(k) =
∑

l∈N

g(n,m),l
qp (k)∆P l(k)

+ g(n,m),l
qq (k)∆Ql(k) ∀(n,m) ∈ E ,

(5)

where g
(n,m),l
pp (k) are Alternating Current (AC) power transfer

distribution factors from real power change in node l to real
power transmission in line (n,m) similar to the work in [8].
The model in (2) is for a single time step but can easily be
adapted to include all time steps in the prediction horizon in
the following way

x(k + 1) = S(k)x(k) + T (k)u(k) + T (k)w(k) (6)

where the matrices S(k) and T (k) are defined as

S(k) =



I(2|N |+2|E |)×(2|N |+2|E |)

...
I(2|N |+2|E |)×(2|N |+2|E |)


 ,

T (k) =



B(k) 0 0

...
. . . 0

B(k) . . . B(k)




(7)



with

x(k + 1) =




x(k + 1)
x(k + 2)

...
x(k + np)


 ,

u(k) =




u(k)
u(k + 1)

...
u(k + np − 1)


 ,

w(k) =




w(k)
w(k + 1)

...
w(k + np − 1)


 ,

B(k) =




I|N |×|N | 0
0 I|N |×|N |

Gpp(k) Gpq(k)
Gqp(k) Gqq(k)


 ,

(8)

where the bold symbols indicate that the quantities rep-
resent vectors over the entire prediction horizon np and
Gpp(k), Gpq(k), Gqp(k), Gqq(k) are defined as in (36). To
ensure the validity of the linearisation, small voltage angle
differences are required (< 3.5%), which is appropriate for
high-voltage networks [9]. The apparent power transmission
limit for a transmission line, commonly referred to as the
thermal limit, defines the maximum apparent power transfer. It
is formulated as a quadratic constraint on the apparent power
magnitude as follows [10], [11]:

S(n,m)(k + 1) =
(
P (n,m)(k + i)

)2
+

(
Q(n,m)(k + i)

)2

S(n,m)(k + 1) ≤
(
Smax)2 ∀i ∈ {1, . . . , np}, (n,m) ∈ E ,

(9)

where Smax denotes the maximum apparent power transfer-
able through the transmission lines, and P (n,m)(k + i) and
Q(n,m)(k + i) represent the corresponding real and reactive
power flows at time step k + i.

C. Market Model

The Dutch congestion market operates as a pool-based
system where participants submit flexibility offers. Two types
of offers, the Profile Offer (PO) and Flex-Time Offer (FTO) are
developed based on the requirements formulated in [12].

1) Profile Offers: POs are only valid at a specific moment
in time and must specify a fixed power profile for each time
step. Such offers are represented by the tuple

PO(o) : (n, tstart,(o), tstop,(o), βmin,(o), P (o), c(o),m(o)), (10)

where n denotes the node index associated with offer o.
The start and end time of the offer are denoted by tstart,(o)

and tstop,(o) respectively. The minimum activation fraction is
defined as βmin,(o). The power profile associated with offer o,
denoted by P (o), defines the amount flexible power at each
time step within the offer’s start and end time. Finally, the
price per volume is denoted by c(o) and market direction by

m(o) ∈ {−1, 1} with +1 for a buy bid and −1 for a sell bid.
The power profile P (o) is defined as

P (o) = [P (n),(o)(tstart,(o)) . . . P (n),(o)(tstop,(o))] (11)

2) Flex-Time Offers: FTOs are offers with a constant max-
imum power but a flexible activation period, allowing the
market mechanism to optimally allocate its operation in time.
This offer is defined by the tuple

FTO(o) : (n, tstart,(o), tstop,(o), ℓmin,(o), ℓmax,(o), βmin,(o),

Pmax,(o), c(o),m(o)),
(12)

where n denotes the node index associated with offer o. The
set of all FTO offers is denoted by OFTO and each element
FTOo ∈ OFTO represents a single FTO. The parameters tstart,(o)

and tstop,(o) define the earliest activation and latest possible
end time, while ℓmin,(o) and ℓmax,(o) specify the minimum
and maximum consecutive activation periods. The variables
βmin,(o) and Pmax,(o) denote the minimum activation fraction
and maximum power quantity. The offer cost is denoted by
coffer,(o), and moffer,(o) indicates the market direction, with +1
for buy and −1 for sell offers.

III. DATA USAGE AND UNCERTAINTY

This section presents the derivation of an uncertainty model
as well as the out-of-sample forecasting results used to repre-
sent uncertainty in the proposed CC-MPC–RL framework.

A. Data Description

Eight Dutch regions are considered, each featuring both
electricity production and consumption. The data, provided by
EDSN, include all distribution-level connections but exclude
those above 60 MW, such as conventional power plants
directly connected to the transmission grid. The missing data is
filled by assumping power balance and allocating the missing
generation capacityx to representative generator nodes.

Consumption exhibits highly regular daily and weekly pat-
terns. As these are well predicted in existing operational fore-
casts, real measured consumption values are used directly. The
statistical modelling effort focuses on renewable generation,
which is much more volatile and constitutes the main source
of uncertainty.

B. Forecasting Model and Results

Renewable generation in each region is modelled using a
SARIMA process. For Noord-Holland, the best-fitting model is
SARIMA(5, 0, 0, 0, 1, 1, 96), capturing both short-term correla-
tions and daily seasonality. Similar structures were obtained
for other regions.

Residual diagnostics confirm good model quality:
• Residuals are centred around zero with no systematic

bias;
• Their distribution is approximately Gaussian with mod-

erately heavy tails;
• Residual autocorrelation lies within statistical bounds,

showing that temporal dependencies are well captured.



Some heteroscedasticity, i.e., time-varying variance, remains
due to weather-driven variations in renewable output, mo-
tivating the adaptive variance treatment later used in the
CC-MPC–RL framework.

Out-of-sample prediction performance is evaluated for hori-
zons consistent with the control design (np = 16}). Table I
summarises the results for np = 16 in terms of Root Mean
Square Error (RMSE) and Mean Absolute Precentage Error
(MAPE), compared to the realised generation. Most regions
achieve MAPE values between 10–30%, which is acceptable
given the inherent variability of aggregated RESs. Outliers such
as Groningen and Friesland show high MAPE due to periods of
very low production, which inflate percentage errors despite
moderate absolute deviations. Overall, the results show that

Area RMSE (mean) MAPE MAPE (variance)
Noord-Holland 6497 [kW] 13.86% 8.64%
Zuid-Holland 26608 [kW] 23.25% 20.02%
Groningen 22882 [kW] 495.45% 4959.55%
Zeeland 11765 [kW] 31.69% 32.00%
Brabant 17001 [kW] 19.89% 18.80%
Limburg 9965 [kW] 23.03% 19.24%
Friesland 7679 [kW] 41.94% 53.05%
Utrecht,
Flevopolder,
Gelderland

19864 [kW] 27.68% 27.82%

TABLE I: Out-of-sample prediction accuracy per region for
np = 16.

the fitted models capture key statistical properties of renewable
generation while maintaining acceptable forecast accuracy for
use in stochastic control.

IV. CHANCE-CONSTRAINED MPC AND RL-BASED
ADAPTATION

This section introduces the proposed market-based, sample-
approximated CC-MPC formulation for CM.

A. Flex-Time Offers

The behaviour of the FTOs is described by the following
constraints, which employ time-dependent binary activation

variables δ(o)(k):

∆P (n),(o)
u (k + i) ≤M highδ(o)(k + i)

−
k+i−1∑

j=tstart

∆P (n),(o)
u (j)

∀i ∈ {1, . . . , np}
∆P (n),(o)

u (k + i) ≥M lowδ(o)(k + i)

−
k+i−1∑

j=tstart

∆P (n),(o)
u (j)

∀i ∈ {1, . . . , np}
∆P (n),(o)

u (k + i) ≤β(o)Pmax,(o)

−
k+i−1∑

j=tstart

∆P (n),(o)
u (j)

−M low(1− δ(o)(k + i))

∀i ∈ {1, . . . , np}
∆P (n),(o)

u (k + i) ≥β(o)Pmax,(o)

−
k+i−1∑

j=tstart

∆P (n),(o)
u (j)

−M high(1− δ(o)(k + i))

∀i ∈ {1, . . . , np},

(13)

where M high and M low are large positive and negative con-
stants, respectively, bounding the feasible range of ∆P

(n)
u (k+

i). This formulation ensures that the power adjustment
∆P

(n)
u (k+ i) assumes meaningful values only when the offer

is active (i.e., δ(o)(k+ i) = 1), while it is forced to zero when
the offer is inactive (δ(o)(k+ i) = 0). The minimum activation
duration is enforced as follows:

k+ℓmin−1∑

j=i

δ(o)(k + j) ≥ ℓmin
(
δ(o)(k + i)− δ(o)(k + i− 1)

)

∀k + i ∈ {tstart, . . . , tstop − ℓmin + 1},
(14)

which guarantees that when the activation variable switches
from 0 at time k + i− 1 to 1 at time k + i, the offer remains
active for at least ℓmin consecutive time steps. In other words,
each activation must last no shorter than the minimum duration
specified in the FTO.

To limit the maximum activation duration, an upper bound
ℓmax is imposed:

tstop∑

j=tstart

δ
(o)
j ≤ ℓmax, (15)

which restricts the total number of time periods during which
the offer can remain active to the specified limit. However, this
formulation still allows multiple non-consecutive activations



within the activation window. To prevent such behaviour, the
following constraint is introduced:

tstop∑

j=i

δ
(o)
j ≤ ℓmax

(
1 + δ(o)(k + i)− δ(o)(k + i− 1)

)

∀k + i ∈ {tstart + ℓmin, . . . , tstart + ℓmax − 1},
(16)

which ensures that once the activation variable transitions from
1 at time k+ i−1 to 0 at time k+ i, all subsequent activations
are prohibited within the same time window.

B. Profile Offers

In the Dutch congestion market, only real-power offers are
currently traded; therefore, only these are considered here,
although the proposed model can also accommodate reactive-
power offers. The behaviour of the POs is modelled through the
following set of constraints, employing the binary activation
variable δ(o):

∆P (n),(o)
u (k + i) ≤M highδ(o)

−
k+i−1∑

j=tstart

∆P (n),(o)
u (j)

∀i ∈ {1, . . . , np}
∆P (n),(o)

u (k + i) ≥M lowδ(o)

−
k+i−1∑

j=tstart

∆P (n),(o)
u (k + j)

∆P (n),(o)
u (k + i) ≤ β(o)P (n),(o)(k + i)

∀i ∈ {1, . . . , np}

−
k+i−1∑

j=tstart

∆P (n),(o)
u (k + j)

−M low(1− δ(o))

∀i ∈ {1, . . . , np}
∆P (n),(o)

u (k + i) ≥ β(o)P (n),(o)(k + i)

−
k+i−1∑

j=tstart

∆P (n),(o)
u (k + j)

−M high(1− δ(o))

∀i ∈ {1, . . . , np},

(17)

where M high and M low denote sufficiently large positive and
negative constants defining the upper and lower bounds of the
feasible range for ∆P

(n),(o)
u (k). When the offer is inactive

(δ(o) = 0), the inequalities enforce ∆P
(n),(o)
u (k + i) =

−∑k+i−1
j=tstart ∆P

(n),(o)
u (j) to ensure that it is zero before ac-

tivation, and the first step after activation the output is forced
back its original value. Then the sum of all actions is forced
to zero. Conversely, when δ(o) = 1, the equations permit
∆P

(n),(o)
u (k) to take values consistent with the desired power

change determined by P
(n),(o)
u (k) and β(o).

C. Balancing requirement

The overall control input can be decomposed into the con-
tributions of individual offers. Accordingly, the total control
action at time step k is expressed as

u(k + i) =
∑

o∈O
u(o)(k + i) ∀i ∈ {0, . . . , np − 1}, (18)

where u(o)(k + i) denotes the control action associated with
the offer indexed by o. This quantity is zero for all nodes
except the one where the offer is placed, as defined by

u(o)(k + i) =





[
0 . . . 0 ∆P

(n),(o)
u (k + i) 0 . . . 0

]T

∀k + i ∈ {tstart,(o), . . . , tstop,(o)}[
0 . . . 0

]T
otherwise,

(19)

where ∆P
(n)
u (k+ i) represents the power adjustments associ-

ated with offer (o) as detailed in Subsections IV-B and IV-A.
The net effect of CM actions must not alter the overall

system power balance. This requirement is formulated as
∑

o∈O
u(o)(k + i) = 0 ∀i ∈ {0, . . . , np − 1}, (20)

ensuring that the aggregate control actions across all offers
remain power-neutral at all times.

Furthermore, once an offer is activated, it must remain
active throughout the prediction horizon. Consequently, the
total control action applied at time step k is the cumulative
sum of all past np control actions, expressed as

u(k) =

np∑

i=0

u(k|k − i) (21)

where u(k|k − i) denotes the sequence of control actions
computed at time step k − i, temporally shifted to align with
the current time step and zero-padded as necessary.

D. Dynamical model

The dynamical model in (6) is adapter for the sample
approximated CC-MPC in the following way

x(s)(k + 1) =S(k)x(k) + T (k)u(k) + T (k)w(s)(k)

∀s ∈ {1, . . . , ns}
(22)

where x(s)(k) is the state trajectory for each scenario s, u(k)
the sum of the past control actions as defined in (21), and
w(s)(k) a disturbance trajectory generated by the SARIMA
model from III.

E. Limits

Thermal limit on apparent power flow, as defined in (9), is
the only quadratic constraint. To reduce the problem from a
mixed-integer second-order cone program into a mixed-integer
linear program, a linear approximation is adopted by assuming
a high power factor (> 0.95), such that P (n,m)(k + i) ≈
S(n,m)(k+i) [13]. Under this assumption, the apparent power
limit can be expressed as

|P (n,m)(k + i)| ≤ Smax. (23)



This deterministic constraint is then replaced by a scenario-
based approximation of the stochastic constraint:

1

ns

ns∑

s=1

𝟙(|P (n,m),(s)(k + i)| − Smax ≥ 0
)
≤ 1− α, (24)

where 𝟙(·) equals 1 if the constraint is violated and 0 oth-
erwise, and α ∈ [0, 1) defines the required risk level. Since
constraint satisfaction cannot be guaranteed (even with chance-
constraints), binary variables δ(s) and shared slack variables
z(n,m)(k + i) are introduced:

|P (n,m),(s)(k + i)| − Smax ≤ z(n,m)(k + i) +Mδ(s), (25)

with z(n,m)(k+ i) capturing the maximum violation across all
scenarios. These slack variables are penalised in the objective
as follows

cs max
( ns∑

s=1

δ(s) − (1− α)ns, 0
)

+
∑

(n,m)∈E

np∑

i=1

czz
(n,m)(k + i),

(26)

where cs ensures that additional scenarios with violations incur
a higher cost than the corresponding slack magnitude. This
formulation penalises excessive violations while tolerating
those permitted by the risk parameter. Additionally, nodal
power constraints are imposed to ensure that both real and
reactive power injections remain within operational limits:

|P (n)(k + i)| < P (n),max ∀i ∈ {1, . . . , np}, n ∈ N

|Q(n)(k + i)| < Q(n),max ∀i ∈ {1, . . . , np}, n ∈ N .
(27)

F. Cost

The total cost for the network operator is given by the spread
between the buy and sell offers, defined as

C total =
∑

o∈O
m(o)β(o)c(o)

np∑

i=1

i∑

j=0

u
(o)
k+j , (28)

where c(o) is the offer price and m(o) indicates the buy/sell
direction.

G. Full dynamical model

Combining all components, the complete optimisation prob-
lem is formulated as

min
xs(k+1),u(k|k),δ,β

(26) + (28)

s.t. (19)− (22)
(25)
(27)

PO(o) : (17)

FTO(o) : (13)− (16),

(29)

where δ is the collection of δ(o) variables and β is the
collection of all β(o) variables.

V. REINFORCEMENT LEARNING-ENHANCED CC–MPC

The proposed method integrates RL with the CC-MPC for-
mulation in (29) to improve robustness and adaptability under
time-varying uncertainties. An RL-agent dynamically scales the
variance of the innovations in the SARIMA-based disturbance
models, inspired by the adaptive robustification concept intro-
duced by [14]. By learning this uncertainty scaling online, the
controller balances feasibility and performance in response to
real-time disturbances.

Figure 2 illustrates the overall control architecture. The true
system provides the state feedback x(k) and disturbance w(k)
to the AutoRegressive Moving-Average (ARMA) models, which
predicts the next np values of ws(k+ i) for ns scenarios, with
i ∈ {1, . . . , np}. The RL-agent observes the system behaviour
and recent performance to output a set of scaling factors
κb∀b ∈ {1, . . . , 8}, one per region, that adjust the innovation
variance. These predictions are passed to the CC-MPC, which
computes the optimal control input u(k), closing the loop and
continuously updating the RL policy for adaptive uncertainty
handling.

Fig. 2: Overview of the proposed closed-loop framework inte-
grating RL with CC-MPC. The RL-agent adjusts the innovation
variance in the ARMA-based disturbance predictions to enhance
robustness and adaptability.

A. RL Formulation

The agent’s state vector s(k) comprises the system state
x(k) and recent disturbance history:

s(k) = [x(k)Tw(k)Tw(k − 1)T . . . w(k − 191)T ]T . (30)

The action a(k) defines the scaling factors κb applied to the
innovation variance of each SARIMA model,

εb(k + 1) ∼ N (0, κbσ
2), ∀b ∈ {1, . . . , 8}

with κb ∈ {0.5, . . . , 2.0}
(31)

The immediate reward penalises both operational cost and
constraint violations:

r(k) = −ctotalC total(a(k), s(k))− cvioCvio(s(k + 1)), (32)



where C total is defined as in (28) and is the sum of all constraint
violations squared:

Cvio(s(k + 1)) =
∑

(n,m)∈E

max(0, |P (n,m)(k + 1)| − Smax)2.

(33)

B. Learning Framework

The policy π(a|s) is trained using a Double Dueling Deep
Q-Network (DQN) with an action-branching architecture [15].
Each branch b independently estimates the advantage of its lo-
cal action, while a shared state-value stream captures common
information:

Q(b)(s(k), a(b)(k)) =V (s(k)) +A(b)(s(k), a(b)(k))

− 1

|A(b)|
∑

a(b)∈A(b)

A(b)(s(k), a(b)), (34)

for each branch b ∈ {1, . . . , 8}. The temporal-difference loss
for training is

L(θ) = E

[
1

8

8∑

b=1

(
y
(b)
t −Q(b)(s(k), a(b)(k); θ)

)2
]
, (35)

with Double Q-learning targets to reduce overestimation bias.
Experience replay is used to decorrelate samples and improve
stability. The overall training procedure is summarised in
Algorithm 1.

Init: Initialise Qθ, target Qθ̄← Qθ, replay buffer D
while training do

Observe state s(k) and select a(k) via ε-greedy
policy;

Apply κb to SARIMA models and generate ws(k)
and compute u(k) using (29);

Execute u(k) on the plant to obtain s(k + 1) and
reward r(k);

Store (s(k), a(k), r(k), s(k + 1)) in D and update
θ using L(θ);

Every τ steps: update target Qθ̄← Qθ;
k = k + 1;

end
Algorithm 1: Training of the RL–enhanced CC–MPC
controller

The cumulative reward evolution during training is shown
in Figure 3. It exhibits oscillatory behaviour and does not
converge. Several factors may explain this outcome. First,
constraint satisfaction is not always possible due to limitations
on the available actions, which results in continuous penalties.
Second, the model may not have been trained for a sufficient
number of episodes. Finally, the presence of multiple penalties
may have introduced conflicting objectives that hinder conver-
gence.

VI. CASE STUDY AND RESULTS

This section evaluates the proposed CM strategy introduced
in Section V on the Dutch high-voltage grid. First, the

Fig. 3: Cumulative rewards during reinforcement learning
training.

simulation set-up, data usage, and offer generation procedure
is described. Then, a single simulation is highlighted, fol-
lowed by a quantitative comparison of all methods across
multiple operating scenarios. The analysis focuses on four
design dimensions: prediction horizon, forecast quality, safety
parameter α in the CC-MPC, and market flexibility (number of
offers). Finally,the impact of the RL-based enhancement of the
CC-MPC is discussed.

A. Simulation and Experimental Setup

The proposed control strategy is tested under varying mod-
elling and operational conditions and compared to different
methods. The following control schemes are compared: (i)
Algorithmic Greedy Matching, (ii) nominal Model Predictive
Control (MPC), (iii) chance-constrained MPC (CC-MPC), and
(iv) RL-enhanced CC-MPC (CC-MPC-RL). All controllers are
evaluated in terms of constraint satisfaction (total violation
magnitude and violation count) and operational cost, and
benchmarked against two reference cases: (i) an uncontrolled
scenario without CM actions and (ii) the idealised MPC-PP
using perfect future knowledge.

Two different prediction horizon lengths are considered. A
longer horizon allows the inclusion of longer admissible offers,
thereby increasing the feasibility of offer matching and overall
system flexibility. However, for linearised network models, it
also amplifies the accumulation of model mismatch away from
the operating point and increases optimisation complexity.

The safety parameter α ∈ [0, 1) in the chance constraints is
used to control the trade-off between robustness and perfor-
mance in the CC-MPC. Two values of α are tested to assess how
more conservative (higher α) or more aggressive (lower α)
operation affects violations and cost.

To quantify the effect of forecast quality, the MPC is eval-
uated under two prediction settings: (i) stochastic forecasts
generated by the SARIMA models introduced in Section III,
and (ii) perfect disturbance information (MPC-PP). This com-
parison isolates the impact of forecast errors on closed-loop
performance.

Finally, market flexibility is varied by changing the number
of available offers. Four offer sets are analysed, combining
two prediction horizon lengths with two offer quantities (100



and 200 offers per horizon). This allows us to study how the
availability of flexibility impacts congestion mitigation and
costs.

B. Data Usage

Table II summarises the partitioning of the historical dataset
across modelling, training, and evaluation. The period from
2023-04-20 to 2024-04-20 is used to fit the ARMA models
developed in Section III, which provide the stochastic forecasts
required by the predictive controllers.

The subsequent year, 2024-04-20 to 2025-04-20, is used
both for training the RL-based enhancement and for eval-
uating all control strategies. Specifically, 85% of this data
is allocated to RL training to expose the agent to a broad
range of operating conditions, while the remaining 15% is
reserved for testing and producing the final simulation results.
The 15% test subset is randomly sampled and corresponds
to approximately 50 simulation days. This split ensures that
controller design (forecast modelling and RL policy learning)
and performance evaluation are performed on disjoint data,
providing an unbiased assessment of the proposed methods.

Data range Amount Usage
2023-04-20 to 2024-04-20 100% Training ARMA models
2024-04-20 to 2025-04-20 85% Training RL
2024-04-20 to 2025-04-20 15% Producing results

TABLE II: Data usage for forecasting, RL training, and per-
formance evaluation.

C. Offer Generation and Analysis

To emulate a realistic and diverse flexibility market, the
offer set generation algorithm randomly assigns attributes to
each offer as defined in (12) and (II-C1). The procedure
is summarised in Algorithm 2. It samples bus locations,
directions (up- or down-regulation), prices, timing, duration,
and power limits from appropriate distributions to create a
heterogeneous pool of offers.

Figure 4 shows the average aggregated flexible power for
the four offer sets. The green and red shaded regions indicate
the available up- and down-regulation power, respectively, and
the grey area denotes the matchable flexibility volume, i.e., the
maximum power that can be activated since there are sufficient
opposing offers.

Figures 4a and 4b compare two offer set sizes for a predic-
tion horizon of np = 8. As expected, increasing the number
of offers broadens both up- and down-regulation ranges and
enlarges the matchable area. Figures 4c and 4d show the same
comparison for a longer horizon of np = 16. In all cases,
the larger offer sets provide higher flexibility across the entire
horizon.

D. Case Study: 2024-08-20

A representative operating day (2024-08-20) is analysed in
detail to illustrate the qualitative behaviour of the different
control schemes. All methods are tested using the offer set
with np = 16 and 200 flexibility offers. The results are

for i = {1, . . . , Noffers} do
n ∼ {39, 40, 41, 42, 43, 44, 45, 46};
m(o) ∼ {1,−1};
if m(o) = 1 then

c(o) ∼ N (180, 40)
else

c(o) ∼ N (220, 50)
end
tstart,(o) ← UNIF(0, 96− np);
ℓmin,(o) ← UNIF(0, np);
ℓmax,(o) ← UNIF(ℓmin,(o), np);
tstop,(o) ← tstart,(o) + ℓmax,(o);
βmin,(o) ← UNIF(0, 1);
if FTO(o) then

Pmax,(o) ← N (m(o)30, 10);
O ← (n, tstart,(o), tstop,(o), ℓmin,(o), ℓmax,(o),
βmin,(o), Pmax,(o), c(o),m(o));

else
P 1,(o) ← N (m(o)30, 10);
P 2,(o) ← N (m(o)30, 10);
Pmax,(o) ← [P 1,(o) . . . P 1,(o) P 2,(o) . . . P 2,(o)];
O ←
(n, tstart,(o), tstop,(o), βmin,(o), P (o), c(o),m(o));

end
end

Algorithm 2: Offer Set Generation

summarised in three figures, highlighting constraint violations,
control activations, and aggregated performance metrics.

Figure 5 compares the temporal distribution of constraint
violations across all transmission lines. The horizontal axis
denotes time in 15-minute intervals; the vertical axis lists the
transmission lines. Colour intensity encodes the magnitude of
violation, with darker red indicating higher congestion.

The uncontrolled case exhibits persistent congestion on one
structurally overloaded line and additional overloads in the
afternoon. The Algorithmic Greedy Matching approach yields
similar patterns, as it does not effectively deploy flexibility
in this scenario. In contrast, the MPC substantially reduces
both the number and severity of violations by actively ac-
tivating flexibility. The MPC-PP further improves congestion
mitigation, confirming that forecast errors contribute to the re-
maining violations observed under nominal MPC. The chance-
constrained controllers, CC-MPC and CC-MPC-RL, provide the
most pronounced reduction in congestion, exhibiting more
preventive behaviour and mitigating minor overloads. This
demonstrates the benefits of probabilistic constraint handling
for robustness and reliability.

Figure 6 shows the corresponding control actions. Each
subplot displays the total available flexibility (grey area) to-
gether with the activated up- (green) and down-regulation (red)
power. The Algorithmic method activates no flexibility, con-
sistent with the congestion patterns observed in the heatmap.
The MPC-based controllers trigger flexibility in response to pre-



(a) np = 8, 100 offers (b) np = 8, 200 offers

(c) np = 16, 100 offers (d) np = 16, 200 offers

Fig. 4: Aggregated flexible power for each offer set, averaged
over all simulation days. The green and red areas denote
up- and down-regulation potential; grey denotes matchable
flexibility.

dicted or current overloads, with MPC-PP exhibiting somewhat
smoother activations due to its perfect knowledge of future
disturbances. The CC-MPC and CC-MPC-RL controllers activate
flexibility more broadly and more frequently, including in pe-
riods where no congestion would have occurred under perfect
foresight. This reflects a conservative, preventive strategy that
prioritises safety at the expense of higher cost.

Finally, Figure 7 presents the cumulative constraint vio-
lations (top panel) and cumulative operational costs (bottom
panel). The uncontrolled and Algorithmic cases incur the high-
est violations, highlighting the inadequacy of simple matching
or absence of control. All MPC-based methods significantly
reduce violations. The chance-constrained controllers (CC-MPC
and CC-MPC-RL) achieve the lowest cumulative violations over-
all in this specific day, despite relying on imperfect forecasts.
However, at significantly increased cost with respect to the
MPC-based methods

In terms of cost, the Algorithmic strategy is cheapest
because it never activates flexibility, but this is not acceptable
from a safety perspective. The MPC and MPC-PP incur higher
costs due to the activation of flexibility resources, with the
probabilistic methods being most expensive. The increased
cost, however, is accompanied by a slight improved conges-
tion prevention under uncertainty, underscoring the trade-off
between economic efficiency and robustness.

E. Impact of Prediction Quality

As discussed in Section III, the statistical forecasting models
exhibit non-negligible prediction errors. To quantify their
impact, the nominal MPC is compared against MPC-PP (perfect
predictions) across all combinations of prediction horizon

Fig. 5: Heatmap of constraint violations for all control strate-
gies on 2024-08-20. Darker colours indicate higher congestion
levels.

and offer set size. Tables III and IV summarise the results,
reported relative to the uncontrolled case and averaged over
50 simulation days. Comparing Tables III and IV shows that

MPC np = 8 np = 8 np = 16 np = 16
nof = 100 nof = 200 nof = 100 nof = 200

Total violation (mean) [%] -3.91 % -6.57 % -35.81 % -56.18 %
Total violation (variance) [%] 5.97 % 7.74 % 25.0 % 26.78 %
Violation count (mean) [%] -2.6 % -4.68 % -29.22 % -46.65 %

Violation count (variance) [%] 7.42 % 9.58 % 22.91 % 27.55 %
Cost (mean) [C] 16692.68 C 22527.62 C 302572.72 C 538241.63 C

Cost (variance) [C] 11060.39 C 12117.94 C 219901.91 C 241400.13 C

TABLE III: MPC performance metrics across 50 simulations
for varying prediction horizons (np) and offer set sizes (nof),
relative to the uncontrolled case.

perfect predictions consistently reduce both total violations
and violation counts, especially for larger offer sets where the
controller can better exploit accurate information. Nonetheless,
the relative differences remain moderate, indicating that the
nominal MPC retains good congestion mitigation capability
even with imperfect SARIMA-based forecasts. Forecast errors



Fig. 6: Control actions for all strategies on 2024-08-20. Grey:
available flexibility; green/red: activated up-/down-regulation.

Fig. 7: Cumulative constraint violation (top) and cumulative
cost (bottom) for all control strategies on 2024-08-20.

therefore reduce optimality but do not fundamentally compro-
mise closed-loop performance.

F. Impact of the safety Parameter

A key advantage of the CC-MPC framework is the explicit
tuning of robustness via the safety parameter α. Table V

MPC-PP np = 8 np = 8 np = 16 np = 16
nof = 100 nof = 200 nof = 100 nof = 200

Total violation (mean) [%] -4.54 % -7.43 % -41.49 % -60.32 %
Total violation (variance) [%] 7.78 % 11.49 % 27.46 % 22.55 %
Violation count (mean) [%] -1.94 % -5.0 % -32.19 % -48.8 %

Violation count (variance) [%] 6.25 % 10.77 % 25.65 % 21.13 %
Cost (mean) [C] 14042.17 C 22273.09 C 313929.35 C 562637.84 C

Cost (variance) [C] 9827.81 C 14293.88 C 230628.23 C 258304.89 C

TABLE IV: MPC-PP performance metrics across 50 simula-
tions for varying prediction horizons (np) and offer set sizes
(nof), relative to the uncontrolled case.

reports performance metrics for two values of α across all
horizon and offer set combinations.

CC-MPC α
np = 8 np = 8 np = 16 np = 16

nof = 100 nof = 200 nof = 100 nof = 200

Total violation 0.75 -3.03 % -6.71 % -39.38 % -59.2 %
(mean) [%] 0.9 -3.93 % -7.13 % -43.77 % -59.44 %
Total violation 0.75 7.93 % 11.24 % 25.52 % 24.82 %
(variance) [%] 0.9 7.56 % 11.23 % 27.51 % 24.14 %
Violation count 0.75 -1.47 % -5.06 % -32.27 % -50.77 %
(mean) [%] 0.9 -1.88 % -5.74 % -35.92 % -50.85 %
Violation count 0.75 6.38 % 12.87 % 22.9 % 23.43 %
(variance) [%] 0.9 6.02 % 12.64 % 25.61 % 22.51 %
Cost (mean) [C] 0.75 12567.14 C 25642.35 C 355028.02 C 653568.64 C

0.9 12258.20 C 25623.13 C 371277.57 C 690521.43 C
Cost (variance) 0.75 11445.64 C 16194.16 C 237708.41 C 255827.52 C
[C] 0.9 10249.82 C 17058.65 C 230599.56 C 238974.97 C

TABLE V: CC-MPC performance metrics across 50 simulations
for varying np, nof, and safety level α, relative to the uncon-
trolled case.

Lowering the safety level from α = 0.9 to α = 0.75
slightly reduces cost but generally increases violations, as
expected when relaxing the chance constraints. However, the
performance differences are modest. This is largely due to
the structural nature of the congestion: many violations are
persistent over the operating horizon and cannot be eliminated
simply by allowing a lower probability of constraint satis-
faction. In such cases, the controller has limited opportunity
to exploit the additional safety tolerance, and the gain in
economic efficiency remains small.

G. Impact of RL Enhancement

The CC-MPC-RL controller augments the CC-MPC by tuning
the variance of the disturbance model based on observed
closed-loop performance. In this study, the RL training process
did not fully converge: the learning curves displayed oscilla-
tory behaviour and no clear stabilisation to a unique policy
(see Section V-A). Nonetheless, the resulting policies can still
be evaluated.

Table VI reports performance metrics for CC-MPC-RL. For
the short prediction horizon np = 8, on which the RL agent
was trained, the CC-MPC-RL achieves slightly lower mean
violations compared to CC-MPC, indicating that the learned
adaptation of uncertainty can provide tangible improvements
despite imperfect training. For the longer horizon np = 16,
the RL policy does not yield further benefits and may even
increase cost, suggesting limited generalisation beyond the
training configuration.

Overall, these results indicate that RL-based adaptation can
enhance performance for the configuration it is trained on, but



CC-MPC-RL np = 8 np = 8 np = 16 np = 16
nof = 100 nof = 200 nof = 100 nof = 200

Total violation
(mean) [%] -4.2 % -7.43 % -41.88 % -58.59 %

Total violation
(variance) [%] 7.57 % 11.2 % 27.43 % 24.24 %

Violation count
(mean) [%] -2.2 % -5.81 % -35.82 % -50.98 %

Violation count
(variance) [%] 6.01 % 12.6 % 26.53 % 24.49 %

Cost (mean) [C] 10808.43 C 27051.14 C 387401.87 C 711028.66 C
Cost (variance)
[C] 9913.18 C 18838.99 C 225910.49 C 222442.33 C

TABLE VI: CC-MPC-RL performance metrics across 50 simu-
lations for varying prediction horizons (np) and offer set sizes
(nof), relative to the uncontrolled case.

that further work is needed to improve training stability and
robustness across a broader range of operating conditions.

H. Comparison Between Methods

Tables VII–X summarise all approaches across the four con-
figurations of prediction horizon (np ∈ {8, 16}) and offer set
size (nof ∈ {100, 200}), reported relative to the uncontrolled
case.

np = 8 & nof =
100

Greedy Matching MPC CC-MPC CC-MPC-RL MPC-PP

Total violation
(mean) [%] -0.26 % -3.91 % -3.93 % -4.2 % -4.54 %

Total violation
(variance) [%] 0 % 5.97 % 7.56 % 7.57 % 7.78 %

Violation count
(mean) [%] 0 % -2.6 % -1.88 % -2.2 % -1.94 %

Violation count
(variance) [%] 0 % 7.42 % 6.02 % 6.01 % 6.25 %

Cost (mean) [C] 1501.40 C 16692.68 C 12258.2 C 10808.43 C 14042.17 C
Cost (variance)
[C] 0 C 11060.39 C 10249.82 C 9913.18 C 9827.81 C

TABLE VII: Performance comparison of control approaches
with respect to the uncontrolled case for np = 8, nof = 100.

np = 8 & nof =
200

Greedy Matching MPC CC-MPC CC-MPC-RL MPC-PP

Total violation
(mean) [%] -0.27 % -6.57 % -7.13 % -7.43 % -7.43 %

Total violation
(variance) [%] 1.71 % 7.74 % 11.23 % 11.2 % 11.49 %

Violation count
(mean) [%] -0.32 % -4.68 % -5.74 % -5.81 % -5.0 %

Violation count
(variance) [%] 0.77 % 9.58 % 12.64 % 12.6 % 10.77 %

Cost (mean) [C] 1944.92 C 22527.62 C 25623.13 C 27051.14 C 22273.09 C
Cost (variance)
[C] 1181.43 C 12117.94 C 17058.65 C 18838.99 C 14293.88 C

TABLE VIII: Performance comparison of control approaches
with respect to the uncontrolled case for np = 8, nof = 200.

np = 16 &
nof = 100

Greedy Matching MPC CC-MPC CC-MPC-RL MPC-PP

Total violation
(mean) [%] -8.83 % -35.81 % -43.77% -41.88 % -41.49 %

Total violation
(variance) [%] 11.89 % 25.0 % 27.51 % 27.43 % 27.46 %

Violation count
(mean) [%] -7.76 % -29.22 % -35.92 % -35.82 % -32.19 %

Violation count
(variance) [%] 9.94 % 22.91 % 25.61 % 26.53 % 25.65 %

Cost (mean) [C] 102719.91 C 302572.72 C 371277.57 C 387401.87 C 313929.35 C
Cost (variance)
[C] 59598.27 C 219901.91 C 230599.56 C 225910.49 C 230628.23 C

TABLE IX: Performance comparison of control approaches
with respect to the uncontrolled case for np = 16, nof = 100.

Three consistent trends emerge:

np = 16 &
nof = 200

Greedy Matching MPC CC-MPC CC-MPC-RL MPC-PP

Total violation
(mean) [%] -10.19 % -56.18 % -59.44 % -58.59 % -60.32 %

Total violation
(variance) [%] 14.26 % 26.78 % 24.14 % 24.24 % 22.55 %

Violation count
(mean) [%] -5.53 % -46.65 % -50.85 % -50.98 % -48.8 %

Violation count
(variance) [%] 6.46 % 27.55 % 22.51 % 24.49 % 21.13 %

Cost (mean) [C] 146396.78 C 538241.63 C 690521.43 C 711028.66 C 562637.84 C
Cost (variance)
[C] 80776.80 C 241400.13 C 238974.97 C 222442.33 C 258304.89 C

TABLE X: Performance comparison of control approaches
with respect to the uncontrolled case for np = 16, nof = 200.

• Baseline performance. Across all configurations, Greedy
Matching performs worst in terms of constraint viola-
tions, confirming that simple matching without predictive
coordination is inadequate for structural CM.

• Predictive versus probabilistic control. Among predic-
tive methods, MPC-PP achieves the lowest violations by
exploiting perfect foresight, often at lower cost than the
chance-constrained methods; however, recall that this is
an ideal case, solely considered for a comparison. The
CC-MPC and CC-MPC-RL attain nearly the same level of
constraint satisfaction as MPC-PP while relying on the
same imperfect forecasts as nominal MPC. This comes at
substantially higher cost due to preventive activations of
flexibility in anticipation of possible violations that may
not materialise.

• Effect of horizon and offer quantity. Increasing the
prediction horizon from np = 8 to np = 16 significantly
improves performance for all predictive controllers. For
example, the mean total violation of MPC decreases from
−6.57% to −56.18% for nof = 200. Similarly, larger
offer sets reduce violations by providing more options to
alleviate congestion. This underscores the importance of
market design and ensuring that sufficient flexibility is
available and properly structured in time.

I. Discussion and Summary

The numerical results demonstrate that predictive and prob-
abilistic control strategies are highly effective for managing
structural congestion in transmission networks. Uncontrolled
operation and Greedy Matching fail to provide adequate safety,
whereas all model-based approaches (MPC, MPC-PP, CC-MPC,
and CC-MPC-RL) achieve substantial reductions in both the
magnitude and frequency of line overloads.

The nominal MPC coordinates up- and down-regulation ac-
tions efficiently, even when driven by imperfect SARIMA-based
forecasts. The MPC-PP benchmark shows that improved fore-
cast accuracy simultaneously enhances both safety and eco-
nomic efficiency. The chance-constrained controllers achieve
constraint satisfaction levels close to those of MPC-PP while
using the same imperfect forecasts as nominal MPC, at the cost
of higher flexibility activation and increased operational cost.

Tuning the safety parameter α provides a direct mechanism
for trading robustness against cost, although the effect is
limited in the presence of structural congestion that cannot
be fully eliminated. Increasing the number of offers and



extending the prediction horizon both enhance controllability
by enlarging the pool of matchable flexibility, but also increase
computational effort and may exhibit diminishing returns once
sufficient flexibility is present.

Finally, the RL-enhanced CC-MPC shows that learning-based
adaptation of uncertainty models can further improve perfor-
mance for specific configurations, even when training is not
fully converged. However, the lack of robust generalisation
across horizons and offer sets points to the need for more
systematic training strategies and improved RL formulations.
Overall, the results confirm that combining predictive control,
probabilistic constraint handling, and appropriately designed
flexibility markets provides a powerful approach to CM under
uncertainty, even when only approximate forecasts are avail-
able.

VII. CONCLUSION AND FUTURE WORK

A combined CC-MPC–RL framework was developed to in-
tegrate probabilistic forecasting, model-based control, and
learning-based adaptation for CM. The CC-MPC formulation ex-
pressed the CM problem as a dynamic stochastic optimisation,
explicitly accounting for uncertainty in grid conditions while
reflecting market rules from the Dutch CM framework. Real-
world data from EDSN were used to construct statistical models
of renewable generation variability, thereby grounding the un-
certainty representation in realistic conditions. The reinforce-
ment learning component provided adaptive tuning of model
uncertainty parameters, enabling improved responsiveness and
robustness under time-varying conditions.

Simulation results demonstrated that the proposed
CC-MPC–RL approach effectively anticipated congestion,
coordinated flexibility activation, and achieved superior
constraint satisfaction compared to deterministic MPC and
heuristic strategies. Incorporating probabilistic forecasts
enhanced robustness against uncertainty, while the adaptive
learning layer improved control performance over time.
Together, these results confirm the feasibility and potential of
a hybrid predictive–learning-based CM strategy in the Dutch
context.

The framework bridges the gap between control theory and
market-based CM. By embedding market mechanisms within
an advanced control architecture. Overall, this study demon-
strates that combining probabilistic forecasting, CC-MPC, and
RL provides a promising and scalable pathway for data-driven,
adaptive CM under uncertainty.T his integrated perspective not
only highlights the potential of synergizing control and market
paradigms but also opens up new research directions aimed
at enhancing the robustness, applicability, and realism of the
proposed framework. Several avenues for future research are
proposed:

• Enhanced uncertainty modelling: Integrating ensemble
forecasting, volatility models, or deep learning-based pre-
dictors could improve the representation of time-varying
stochastic behaviour and lead to more reliable control
decisions.

• Model applicability: Extending the controller to a non-
linear AC formulation or reduced-order non-linear ap-
proximation would expand its applicability to medium-
and low-voltage networks, enabling a unified approach
across grid levels.

• Market representation: Incorporating richer market of-
fer types, such as linked, block, or exclusive bids, which
could enhance flexibility participation in CM.

=

VIII. GLOSSARY

AC Alternating Current
ARMA AutoRegressive Moving-Average
CC-MPC Chance-Constrained Model Predictive Control
CM Congestion Management
DQN Deep Q-Network
EDSN Energie Data Services Nederland
FTO Flex-Time Offer
GOPACS Grid Operators Platform for AnCillary

Services
MAPE Mean Absolute Precentage Error
MPC Model Predictive Control
PO Profile Offer
RES Renewable Energy Source
RL Reinforcement Learning
RMSE Root Mean Square Error
SARIMA Seasonal AutoRegressive Integrated
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List of Acronyms

AC Alternating Current
ACF Autocorrelation Function
ARMA AutoRegressive Moving-Average
ARIMA AutoRegressive Integrated Moving-Average
CC-MPC Chance-Constrained Model Predictive Control
CM Congestion Management
DC Direct Current
DQN Deep Q-Network
EDSN Energie Data Services Nederland
FTO Flex-Time Offer
GOPACS Grid Operators Platform for AnCillary Services
MAPE Mean Absolute Precentage Error
MPC Model Predictive Control
PACF Partial Autocorrelation Function
PO Profile Offer
RES Renewable Energy Source
RL Reinforcement Learning
RMSE Root Mean Square Error
SARIMA Seasonal AutoRegressive Integrated Moving-Average
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