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Model-Based Estimation of Ankle Joint Stiffness During
Dynamic Tasks: a Validation-Based Approach

Christopher P. Cop', Guillaume Durandau', Alejandro Moya Esteban', Ronald C. van ’t Veld',
Alfred C. Schouten!2, and Massimo Sartori!

Abstract— Joint stiffness estimation under dynamic condi-
tions still remains a challenge. Current stiffness estimation
methods often rely on the external perturbation of the joint.
In this study, a novel ’perturbation-free’ stiffness estimation
method via electromyography (EMG)-driven musculoskeletal
modeling was validated for the first time against system identi-
fication techniques. EMG signals, motion capture, and dynamic
data of the ankle joint were collected in an experimental setup
to study the ankle joint stiffness in a controlled way, i.e. at
a movement frequency of 0.6 Hz as well as in the presence
and absence of external perturbations. The model-based joint
stiffness estimates were comparable to system identification
techniques. The ability to estimate joint stiffness at any instant
of time, with no need to apply joint perturbations, might help to
fill the gap of knowledge between the neural and the muscular
systems and enable the subsequent development of tailored
neurorehabilitation therapies and biomimetic prostheses and
orthoses.

I. INTRODUCTION

Joint stiffness is a mechanical property that is, in most
of the cases, subconsciously modulated in humans across
movements [1]. This modulation allows us to naturally adapt
to different terrains and conditions [2]. Even though joint
stiffness has been extensively investigated in the past decades
[3], its regulation mechanisms are not completely understood
yet. The dependency of this mechanical property on loading
conditions, muscle contractile properties and neural control
strategies represent a challenge for its estimation in vivo.
Moreover, the availability of different definitions of joint
stiffness make it difficult to develop a generic formulation
for stiffness estimation [4]. Two examples of formulations of
joint stiffness include short-range stiffness (SRS) and quasi-
stiffness.

SRS is only valid during isometric muscle contractions.
During dynamic conditions (i.e. dynamic stiffness) joint
stiffness has been widely investigated using the notion of
quasi-stiffness, which is easily calculated by computing the
derivative of the joint torque-angle curve with respect to the
angle. However, quasi-stiffness is only equivalent to joint
stiffness in passive conditions, i.e. without muscle activation
[5]. Therefore, methods that take into account the specific
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movement and muscle activation are necessary to derive
dynamic, i.e. non-static, joint stiffness.

During the last decades, effort has been made to quantify
joint stiffness, especially on the ankle joint because of its
crucial role during locomotion. This effort is justified by
the desire to gain a better understanding of human motor
control both in healthy and diseased individuals, the need to
devise personalized rehabilitation treatments or the ability to
produce biomimetic actuated prostheses and orthoses [6].

Several techniques have been proposed to study dynamic
joint stiffness: ultrasound elastography, system identification,
and musculoskeletal modeling.

Ultrasound elastography can characterize tissue mechani-
cal properties in vivo by measuring the deformation caused
by an external stress or force [7]. This is enabling the study
of muscle and tendon stiffness at the tissue level during
isometric conditions, but stiffness measurements at the joint
level still remain a challenge.

System identification has been employed extensively to
estimate joint stiffness in isometric or postural conditions.
Dynamic conditions, e.g. human gait, are the current focus
of study [8]. Even though there exist many developed system
identification algorithms, there is a common characteristic
all methods share: the external perturbation of the joint
[9]. The presence of a perturbation (produced by a robotic
platform or a wearable robot) makes it difficult to perform
physiological and natural movements, not to mention the
complications associated to applying these perturbations on
weaker individuals, e.g. patients suffering from stroke or
spinal cord injury. Moreover, to integrate stiffness estimates
in wearable robot controllers, the ability of decoding stiffness
from bioelectrical signals would be desired.

Musculoskeletal modeling has been widely used to analyze
the biomechanics of a variety of functional tasks in silico.
Electromyography (EMG)-driven musculoskeletal modeling
uses EMG recordings to drive musculoskeletal models [10],
providing more realistic simulations from a physiological
point of view. EMG-driven musculoskeletal modeling allows
the estimation of joint stiffness during dynamic tasks without
the need of perturbing the joint [3].

In this study, we present an EMG-driven ankle muscu-
loskeletal model and validate it against system identification
techniques in a controlled dynamic ankle stiffness estimation
experiment. To the best of our knowledge, a comparison
of system identification techniques and EMG-driven muscu-
loskeletal modeling on the same dataset to estimate dynamic
joint stiffness has never been done before. This provides an
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experimental, theoretical and computational framework for
extending model-based methods for stiffness estimation.

II. METHODS
A. Data collection

Five healthy subjects (age: 24.2 + 1.0 years; weight: 70.0
+ 5.4 kg; height: 1.78 £ 0.06 m) participated in this study.
The Ethical Committee of the University of Twente approved
all experimental procedures and all particpants gave writ-
ten informed consent. The Achilles Rehabilitation Device
(MOOG, Nieuw-Vennep, The Netherlands), an admittance
controlled single axis manipulator, was used to measure the
ankle joint’s position and torque during dynamic trials. Mo-
tion capture data were acquired using a Visualeyez II tracker
(PTI, Vancouver, Canada) at 100 Hz. EMG activity was
recorded at 2048 Hz by the Porti system (TMSi, Oldenzaal,
The Netherlands). The main elements of the experimental
setup can be seen in Fig. 1.

Position tasks (i.e. dynamic) were performed using the
Achilles Rehabilitation Device. In the rest of this manuscript,
the term Achilles device will be used to refer to it. Subjects
were asked to follow sinusoidal position targets with an
amplitude of 0.15 rad at 0.6 Hz, both in unperturbed and
perturbed conditions. The perturbations consisted of rotations
of 0.03 rad with a switching time of 0.15 s that were pseudo-
randomly applied to the ankle joint by the Achilles device.

The Achilles device was configured to reproduce a virtual
inertia, damping, and stiffness of 1 kg-m?, 2.5 N-m-s-rad ™!,
and 60 N-m-rad~!, respectively. These parameters rendered
a viscoelastic virtual environment that made the Achilles
device resist movement, contrary to what happens in minimal
impedance mode, i.e. the controller follows the user and
behaves as a “transparent” device.

Based on what was done in [3], the EMG data were
acquired from five lower leg muscles: tibialis anterior, soleus,
gastrocnemius medialis and lateralis, and peroneus longus.
EMG linear envelopes were obtained after band-pass filtering
(30-300 Hz), full-wave rectifying, and low-pass filtering
(6 Hz) raw EMG signals using a zero-lag second-order
Butterworth filter [3]. Three maximum voluntary contraction
(MVC) trials were performed by each subject to normalize
the EMG linear envelopes.

Motion capture data were recorded using 12 optical mark-
ers placed on the subjects’ right leg. Several bony landmarks

Fig. 1. Experimental setup. The Achilles Rehabilitation Device (A) was
used to perturb and track the kinematics and dynamics of the ankle joint.
Muscle activity (B) was recorded by the Porti system. Visualeyez optical
LED markers (C) were used to capture the knee and ankle angles.

(i.e. greater trochanter, lateral epicondyle of the femur, head
of the fibula, lateral malleolus, calcaneus, and the fifth
metatarsal bone) were used for scaling a generic lower
limb model [11]. In addition to the markers on the bony
landmarks, three markers on the thigh and three markers on
the shank were used to track the knee and ankle angles during
the whole experiment.

B. EMG-driven musculoskeletal modeling pipeline and dy-
namic stiffness computation

The open-source software OpenSim [12] was used to
perform inverse kinematics on optical marker data to obtain
joint angles, and to obtain the moment arms of the differ-
ent musculotendon units (MTUs). The open-source toolbox
Calibrated EMG-Informed Neuromusculoskeletal Modelling
(CEINMS) [13] was used to estimate the ankle torque and the
force of the MTUs as a function of recorded EMGs and joint
angles and moment arms generated by OpenSim (Fig. 2).
The model was firstly scaled using optical marker data and
calibrated on the experimental torque recordings. The com-
puted MTU variables were further used for dynamic stiffness
computation. For a detailed description of the EMG-driven
musculoskeletal modeling pipeline, the reader is referred to
[10].

The stiffness model developed and described by Sartori
et al. [3] was adapted and used to estimate the ankle joint
stiffness (K?). This model follows a bottom-up approach to
obtain joint stiffness. This means that the stiffness estima-
tions of muscle fibers and tendons are projected to the MTU

3D joint MTU moment
angle arms
Achilles device MTU

Joint Joint stiffness
dynamics

MoCap system
&

kinematic:

\

/@@/4 MTU forces Predicted
e 2 & stiffness torque
- /&MTU —_— Model
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EMG 5 Parameter deviee
muscles |MTU W adjustment
activation |

Fig. 2. Schematic diagram of the EMG-driven musculoskeletal modeling
pipeline used in this study. It consists of five blocks: model calibration, MTU
activation, MTU kinematics, MTU dynamics, and joint dynamics. Firstly,
the model calibration block uses EMG-signals, three-dimensional (3D) joint
angles and experimental ankle torques from several calibration trials to
find the optimal set of model parameters that minimize the error between
reference and computed torques. Once the model is calibrated, it is run
in open-loop (i.e. the experimental ankle torque is no longer needed). The
MTU activation block maps the EMG activity recorded from five muscles to
non-linear activations of seven MTUs (peroneus brevis and peroneus tertius
were also modeled). The MTU kinematics block derives MTU lengths and
moment arms from experimental 3D ankle angles. MTU force and stiffness
are computed as a function of MTU activation and MTU kinematics in the
MTU dynamics block. Lastly, the joint torque and stiffness are obtained by
projecting the resulting MTU forces and stiffness on the ankle plantar-dorsi
flexion degree of freedom in the joint dynamics block. Figure adapted from

[3].
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level. Then, the stiffness of each MTU is projected to the
joint level. A complete description of this stiffness model
can be found in [3].

C. Data analysis

The EMG-driven model was validated at both the torque
and the stiffness levels for the first time. At the torque level,
ankle torques estimated by the model were compared to
the experimental torques measured by the Achilles device.
Results were compared both in shape and magnitude by the
coefficient of determination (R”) and the root mean squared
error (RMSE), respectively.

At the stiffness level, stiffness estimations from the EMG-
driven model were compared to the stiffness obtained by
system identification techniques. The stiffness estimation via
system identification on the same dataset was computed
using a closed-loop ensemble-based system identification
algorithm [9]. Results were compared both in shape and
magnitude by the R? and the RMSE normalized with respect
to the maximum stiffness (nRMSE), respectively. Addition-
ally, to include a more global feature to compare results,
an estimate of the total amount of ankle stiffness in each
condition was defined as the area under the curve (AUC) of
the stiffness profile.

III. RESULTS

Across all cycles (2060 in total), estimated torques were
compared to the experimental torques to check the dynamical
consistency of the EMG-driven musculoskeletal model (Fig.
3). R? values ranged from 0.60 to 0.98 (mean value = 0.93;
standard deviation = 0.03). RMSE values ranged from 0.8
N-m to 5.1 N-m (mean value = 2.1 N-m; standard deviation
= 0.6 N-m).

Our stiffness estimations were compared to the ones
obtained via system identification. The results of all subjects
were averaged (Fig. 4). Numerical values of this comparison
are presented in Table 1. In this experiment, R*> and nRMSE
values were 0.47 and 0.18, respectively. AUC values were
also in agreement: 1251 N-m-rad™' and 1240 N-m-rad™!
for EMG-driven modeling and system identification, respec-
tively. Additionally, 76% of the average stiffness values
obtained by the EMG-driven model were within a standard
deviation interval of the mean stiffness value obtained via
system identification.

1500 1500
) n=2060
< 1000 1000
9
w 500 500
%6 o8 1 0% 2 3
R2 RMSE [Nm]

Fig. 3. Distribution of goodness-of-fit indices computed from experimental
and modeled ankle torques across all cycles (n = 2060). Goodness-of-fit
indices include the coefficient of determination (R?) and the root mean
squared error (RMSE). Histograms gather the R> and RMSE values in eight
intervals with a fixed width in the (0.6, 1) and (0, 6) ranges, respectively.

Dynamic task at 0.6 Hz

40
== EMG-driven modeling
o T == System identification
£ 8 01
£g
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0 . . . .
0 20 40 60 80 100
% of cycle
Fig. 4. Comparison of the stiffness estimations of the proposed model

against system identification techniques for the dynamic task at 0.6 Hz.
The thick red line represents the average stiffness across cycles and subjects
obtained by the EMG-driven model, and the red shaded area corresponds to
its standard deviation. The thick blue line represents the average stiffness
estimation via system identification, and the blue shaded area depicts its
standard deviation.

TABLE I
COMPARISON OF STIFFNESS ESTIMATIONS VIA
EMG-DRIVEN MODELING AND SYSTEM
IDENTIFICATION

Modeling  System ID
AUC [Nm/rad] 1251 1240
Max. Stiff. [Nm/rad] 26 16
Min. Stiff. [Nm/rad] 5 8
R? 0.47
nRMSE 0.18

We could not observe clear differences between the per-
turbed and unperturbed trials among our model-based esti-
mations.

IV. DISCUSSION

In this study we aimed to validate the dynamic stiffness
model proposed in [3] against system identification tech-
niques in a controlled experiment. Additionally, the effects
of external perturbations were investigated.

The validation of the EMG-driven musculoskeletal model
at the torque level (Fig. 3) showed that the model was
dynamically consistent and able to predict the joint torque
satisfactorily.

At the stiffness level, however, differences between our
proposed methodology and a system identification algorithm
adapted for this specific experiment were greater. Since there
is no golden standard in stiffness estimation, it is difficult
to assess which results are closer to the real joint stiffness.
It is important to mention that, whereas our model is able
to predict instantaneous stiffness, the system identification
algorithm needs many cycles to compute the stiffness esti-
mation of a single period. Doing this, it assumes that the
position, torque, and stiffness of the ankle joint are perfectly
periodic, while our model is able to access instantaneous
stiffness, taking unexpected changes in position and torque
into account.

Results showed rather low stiffness peaks in dorsi-flexion
(DF) (Fig. 4), likely due to fact that the model only included
a sub-set of the ankle dorsi-flexor muscles, i.e. tibialis
anterior and peroneus tertius. Future work will include all
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DF muscles and evaluate the effect on stiffness estimation.
Another reason for this low stiffness in DF may be wrongly
calibrated MTUs with parameters that hit the pre-defined
boundaries. Optimization algorithms such as the one pre-
sented by Modenese el al. [14] might improve the calibration
of highly sensitive parameters such as the tendon slack
lengths and the optimal muscle fiber lengths, which would
most likely improve the overall performance of our model-
based approach.

We did not observe significant differences between the
perturbed and the unperturbed trials. Our model does not in-
clude history-dependent force generating mechanisms, such
as SRS. SRS has an effect in the initial instants of time after
the muscle fibers are being stretched or shortened, e.g. during
an external perturbation. Future studies should implement
a modification of the Hill-type muscle model to include
SRS, as proposed by De Groote et al. in [15]. Additionally,
the unperturbed trials were always performed before the
perturbed ones. Therefore, it could be that the subjects were
still adapting to the new condition in the unperturbed trial,
which might have led to a stiffer response than expected.

Joint stiffness is a property that depends on the task that
is being performed. Hence, comparison with international
literature is complex since the experimental conditions were
probably different. Nevertheless, our stiffness estimations are
in line with other studies. Lee et al. [16] reported ankle
stiffness values between 30 N-m-rad~! and 60 N-m-rad~!
for different stages of the human gait cycle. Our estimations
were roughly between 5 N-m-rad~! and 30 N-m-rad~'.

Future systematic analyses must be conducted to in-
vestigate joint stiffness estimation across larger condition
repertoires including different task velocities and loads. Ad-
ditionally, the stiffness estimations for the different subjects
were averaged in this study. Extensions of this work will
investigate inter-subject variability.

Our proposed methodology possesses some limitations.
We have seen that the calibration of model parameters is
a sensitive step during the stiffness estimation process that
still needs improvement. Additionally, not all the muscles
spanning the ankle joint were included. Another limitation
is that structures such as the skin and ligaments, which some-
how contribute to the global joint stiffness, are not modeled.
Moreover, certain stages of the experiment, such as sensor
placement, MVC trials or model scaling, are dependent on
the subject or the investigator and are therefore an important
source of uncertainties. Lastly, problems associated to the
utilization of single-channel surface EMG electrodes, such
as cross-talk, may be solved by using high density EMG
electrodes in conjunction with decomposition techniques
[17]. This would allow to drive individual motor units with
a high spatial resolution.

Being able to access instantaneous dynamic joint stiffness
will have tremendous implications in understanding human
movement, as well as the development of tailored neurore-
habilitation therapies and biomimetic control of prostheses
[18] and orthoses [19].
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