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Abstract

Disruptions in public transport have major impact on passengers and disproportional effects on passenger satisfaction. The 
availability of smart card data gives opportunities to better quantify disruption impacts on passengers’ experienced journey travel 
time and comfort. For this, accurate journey inference from raw transaction data is required. Several rule-based algorithms exist 
to infer whether a passenger alighting and subsequent boarding is categorized as transfer or final destination where an activity is 
performed. Although this logic can infer transfers during undisrupted public transport operations, these algorithms have 
limitations during disruptions: disruptions and subsequent operational rescheduling measures can force passengers to travel via 
routes which would be non-optimal or illogical during undisrupted operations. Therefore, applying existing algorithms can lead 
to biased journey inference and biased disruption impact quantification. We develop and apply a new transfer inference algorithm 
which infers journeys from raw smart card transactions in an accurate way during both disrupted and undisrupted operations. In 
this algorithm we incorporate the effects of denied boarding, transferring to a vehicle of the same line (due to operator 
rescheduling measures as short-turning), and the use of public transport services of another operator on another network level as 
intermediate journey stage during disruptions. This results in an algorithm with an improved transfer inference performance 
compared to existing algorithms. 
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1. Introduction

Disruptions in public transport can have a major impact on passengers’ nominal and perceived journey travel 
time. The operation of public transport services without disruptions is considered a key quality aspect of public 
transport by passengers (Golob et al., 1972; Van Oort, 2011). Therefore, it is important to get insight in passenger 
behaviour during disruptions. Passive data availability the last decades provides an opportunity to get more insight in 
this. Automated fare collection (AFC) data,  automated vehicle location (AVL) data, and data from automated 
passenger count (APC) systems sources are used for many purposes by scientists and practitioners on a strategic, 
tactical and operational level (Pelletier et al. 2011). Passive data availability allows a comparison of the realized 
journey travel time during a disruption with the undisrupted travel time on an individual level, and therefore allows 
quantification of disruption costs. 

A first important requirement for this comparison is that journeys can be inferred in a valid way. When no valid 
distinction is made between transfers and destinations, this can result in a biased journey identification and thus a 
biased journey level quantification of disruption impacts. Last decade several studies are performed to estimate
origin-destination (OD) matrices based on individual AFC transaction data (see for example Trépanier et al. 2007; 
Zhao et al. 2007; Seaborn et al. 2009; Wang et al. 2011; Munigaza and Palma 2012; Gordon et al. 2013; Nunes et al. 
2016). These studies propose advanced algorithms to infer journeys from passive data for regular circumstances. 
However, these algorithms are based on a certain logic in passenger route choice. For example, when the next 
transaction is made in the same public transport line as the previous transaction, current algorithms infer an activity 
since there is no other reason why passengers would alight a vehicle and then board a next vehicle of the same line 
again (Gordon et al. 2013). However, during disruptions passengers might have to adjust their route choice due to 
limited service availability, which can result in routes which would be illogical in case there were no disruptions. For 
example, due to operator rescheduling measures as deadheading or short-turning during disruptions, passengers 
might have to make an additional transfer to the subsequent vehicle of the same line. This means that the logic on 
which current transfer inference algorithms are based is not suitable to infer transfers during disruptions, given the 
illogical route and transfer choice passengers might be forced to during disruptions. Applying existing algorithms 
leads to biased transfer inference and thus to a biased OD matrix estimation. As a consequence, quantifying 
disruption costs on an OD level will be biased as well.

To be able to infer transfers during disruptions therefore places additional challenges to transfer inference 
algorithms, since these algorithms must be robust to infer transfers during disruptions, while still providing valid 
results for undisrupted situations as well. This is necessary, since it is often difficult to infer the exact time 
demarcation between disrupted and undisrupted circumstances from disaggregated AVL and AFC data sources. This 
research develops such transfer inference algorithm. Chapter 2 discusses the methodology. The developed algorithm 
is applied to a case study, of which results are presented in chapter 3. Conclusions and recommendations for further 
research are formulated in chapter 4.

2. Methodology

2.1. The Hague case study network

In our study we use passive data from HTM, the urban public transport operator of The Hague, The Netherlands. 
The urban network in The Hague consists of light rail, tram and bus lines. The set of public transport lines is 
denoted by 𝐿𝐿𝐿𝐿. Each public transport line 𝑙𝑙𝑙𝑙 ∈ 𝐿𝐿𝐿𝐿 is defined as an ordered sequence of stops 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙 = (𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,1, 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,2. . 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,|𝑙𝑙𝑙𝑙|). Each 
line 𝑙𝑙𝑙𝑙 ∈ 𝐿𝐿𝐿𝐿 is operated by an ordered set of runs (run sequence), denoted by 𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙. A run 𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙 is performed by one 
vehicle serving the ordered stop sequence 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙 in one direction. For each run 𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙 there exists a schedule with 
scheduled arrival times 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎� and departure times 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑� for each stop 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,𝑗𝑗𝑗𝑗 ∈ 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙.

When travelling in light rail, trams or busses in The Netherlands by smart card, passengers are required to tap in 
and tap out at devices which are located within the vehicle. This means that the passenger fare is based on the exact 
distance travelled in a specific public transport vehicle. Especially for busses, this is different from many other cities 
in the world where often an open, entry-only system with flat fare structure is applied, for example in London 
(Gordon et al. 2013) and Santiago, Chile (Munigaza and Palma 2012). This means that for each individual 



 M.D. Yap  et al. / Transportation Research Procedia 27 (2017) 1042–1049 1043

Available online at www.sciencedirect.com

ScienceDirect
Transportation Research Procedia 00 (2017) 000–000

www.elsevier.com/locate/procedia

2214-241X © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 20th EURO Working Group on Transportation Meeting.

20th EURO Working Group on Transportation Meeting, EWGT 2017, 4-6 September 2017, 
Budapest, Hungary

A robust transfer inference algorithm for public transport journeys 
during disruptions

M.D. Yapab *, O. Catsa, N. van Oortab, S.P. Hoogendoorna

aDepartment of Transport and Planning, Delft University of Technology, The Netherlands
b Goudappel Coffeng, The Netherlands

Abstract

Disruptions in public transport have major impact on passengers and disproportional effects on passenger satisfaction. The 
availability of smart card data gives opportunities to better quantify disruption impacts on passengers’ experienced journey travel 
time and comfort. For this, accurate journey inference from raw transaction data is required. Several rule-based algorithms exist 
to infer whether a passenger alighting and subsequent boarding is categorized as transfer or final destination where an activity is 
performed. Although this logic can infer transfers during undisrupted public transport operations, these algorithms have 
limitations during disruptions: disruptions and subsequent operational rescheduling measures can force passengers to travel via 
routes which would be non-optimal or illogical during undisrupted operations. Therefore, applying existing algorithms can lead 
to biased journey inference and biased disruption impact quantification. We develop and apply a new transfer inference algorithm 
which infers journeys from raw smart card transactions in an accurate way during both disrupted and undisrupted operations. In 
this algorithm we incorporate the effects of denied boarding, transferring to a vehicle of the same line (due to operator 
rescheduling measures as short-turning), and the use of public transport services of another operator on another network level as 
intermediate journey stage during disruptions. This results in an algorithm with an improved transfer inference performance 
compared to existing algorithms. 

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 20th EURO Working Group on Transportation Meeting.

Keywords: Disruptions, public transport, smart card data, transfer inference

* Corresponding author. Tel.: +31 (0)15 278 93 41
E-mail address: M.D.Yap@TUDelft.nl

2 Yap et al. / Transportation Research Procedia 00 (2017) 000–000

1. Introduction

Disruptions in public transport can have a major impact on passengers’ nominal and perceived journey travel 
time. The operation of public transport services without disruptions is considered a key quality aspect of public 
transport by passengers (Golob et al., 1972; Van Oort, 2011). Therefore, it is important to get insight in passenger 
behaviour during disruptions. Passive data availability the last decades provides an opportunity to get more insight in 
this. Automated fare collection (AFC) data,  automated vehicle location (AVL) data, and data from automated 
passenger count (APC) systems sources are used for many purposes by scientists and practitioners on a strategic, 
tactical and operational level (Pelletier et al. 2011). Passive data availability allows a comparison of the realized 
journey travel time during a disruption with the undisrupted travel time on an individual level, and therefore allows 
quantification of disruption costs. 

A first important requirement for this comparison is that journeys can be inferred in a valid way. When no valid 
distinction is made between transfers and destinations, this can result in a biased journey identification and thus a 
biased journey level quantification of disruption impacts. Last decade several studies are performed to estimate
origin-destination (OD) matrices based on individual AFC transaction data (see for example Trépanier et al. 2007; 
Zhao et al. 2007; Seaborn et al. 2009; Wang et al. 2011; Munigaza and Palma 2012; Gordon et al. 2013; Nunes et al. 
2016). These studies propose advanced algorithms to infer journeys from passive data for regular circumstances. 
However, these algorithms are based on a certain logic in passenger route choice. For example, when the next 
transaction is made in the same public transport line as the previous transaction, current algorithms infer an activity 
since there is no other reason why passengers would alight a vehicle and then board a next vehicle of the same line 
again (Gordon et al. 2013). However, during disruptions passengers might have to adjust their route choice due to 
limited service availability, which can result in routes which would be illogical in case there were no disruptions. For 
example, due to operator rescheduling measures as deadheading or short-turning during disruptions, passengers 
might have to make an additional transfer to the subsequent vehicle of the same line. This means that the logic on 
which current transfer inference algorithms are based is not suitable to infer transfers during disruptions, given the 
illogical route and transfer choice passengers might be forced to during disruptions. Applying existing algorithms 
leads to biased transfer inference and thus to a biased OD matrix estimation. As a consequence, quantifying 
disruption costs on an OD level will be biased as well.

To be able to infer transfers during disruptions therefore places additional challenges to transfer inference 
algorithms, since these algorithms must be robust to infer transfers during disruptions, while still providing valid 
results for undisrupted situations as well. This is necessary, since it is often difficult to infer the exact time 
demarcation between disrupted and undisrupted circumstances from disaggregated AVL and AFC data sources. This 
research develops such transfer inference algorithm. Chapter 2 discusses the methodology. The developed algorithm 
is applied to a case study, of which results are presented in chapter 3. Conclusions and recommendations for further 
research are formulated in chapter 4.

2. Methodology

2.1. The Hague case study network

In our study we use passive data from HTM, the urban public transport operator of The Hague, The Netherlands. 
The urban network in The Hague consists of light rail, tram and bus lines. The set of public transport lines is 
denoted by 𝐿𝐿𝐿𝐿. Each public transport line 𝑙𝑙𝑙𝑙 ∈ 𝐿𝐿𝐿𝐿 is defined as an ordered sequence of stops 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙 = (𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,1, 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,2. . 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,|𝑙𝑙𝑙𝑙|). Each 
line 𝑙𝑙𝑙𝑙 ∈ 𝐿𝐿𝐿𝐿 is operated by an ordered set of runs (run sequence), denoted by 𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙. A run 𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙 is performed by one 
vehicle serving the ordered stop sequence 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙 in one direction. For each run 𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙 there exists a schedule with 
scheduled arrival times 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎� and departure times 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑� for each stop 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,𝑗𝑗𝑗𝑗 ∈ 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙.

When travelling in light rail, trams or busses in The Netherlands by smart card, passengers are required to tap in 
and tap out at devices which are located within the vehicle. This means that the passenger fare is based on the exact 
distance travelled in a specific public transport vehicle. Especially for busses, this is different from many other cities 
in the world where often an open, entry-only system with flat fare structure is applied, for example in London 
(Gordon et al. 2013) and Santiago, Chile (Munigaza and Palma 2012). This means that for each individual 



1044 M.D. Yap  et al. / Transportation Research Procedia 27 (2017) 1042–1049
Yap et al. / Transportation Research Procedia 00 (2017) 000–000 3

transaction the boarding time and location, and the alighting time and location of each journey stage are known. 
Also, it is known in which public transport line, vehicle number and trip number (a unique number assigned to each 
one-directional run 𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙) each passenger boarded with their unique smart card number. The AVL data provides 
the scheduled times 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎� and 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑� , and the realized times 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎and 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑 for each run at each stop, where each run is indicated 
by the same trip number as appears in the AFC data. By integrating AFC and AVL data based on the corresponding 
trip number, vehicle occupancy can be inferred for each run between each stop 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,1, 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,2.

2.2. Full validation of destination inference algorithm

Before starting the analyses, data cleaning and data processing is required. First, transactions where a system 
error occurred are removed from the dataset. In these cases there occurred an error in the AFC devices, leading to 
unrealistic alighting times or alighting locations, or to missing or unrealistic trip numbers. For The Hague, this 
percentage varies between 0.05% and 0.50% of the daily transactions. The closed within-vehicle AFC systems 
means that in general destinations of journey stages are directly available from the data, so no destination inference 
is needed. Therefore, destination inference needs to be performed only for transactions where there was a missing 
tap out. This occurs when passengers unintendedly forget to tap out when alighting from the vehicle, or deliberately 
do not tap out if the distance based travel costs are higher than the deposit deduced from the card when boarding for 
relatively long trips. The daily percentage of transactions with a missing tap out in The Hague varies between 1% 
and 2% on average. For destination inference we apply the well-known trip chaining algorithm as applied by 
Trépanier et al. (2007), Zhao et al. (2007) and Wang et al. (2011). The aim is to estimate the alighting stop �̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎  of 
the 𝑗𝑗𝑗𝑗th journey stage of the total number of journey stages 𝑚𝑚𝑚𝑚 made by passenger 𝑝𝑝𝑝𝑝 on day 𝑘𝑘𝑘𝑘. The indices 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 and 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏
reflect the alighting and boarding stop, respectively. The following basic assumptions as applied in this algorithm:
• If 𝑚𝑚𝑚𝑚 > 1 and 𝑗𝑗𝑗𝑗 ≠ 𝑚𝑚𝑚𝑚: the most likely alighting location of 𝑗𝑗𝑗𝑗 is the stop which is closest to 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗+1)𝑝𝑝𝑝𝑝

𝑏𝑏𝑏𝑏 .
• If 𝑚𝑚𝑚𝑚 > 1 and 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚: the most likely alighting location of 𝑗𝑗𝑗𝑗 is the stop which is closest to 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗=1)𝑝𝑝𝑝𝑝

𝑏𝑏𝑏𝑏 . Assumed is
that passengers return to the location where the first journey stage started (e.g. home) at the end of the day.

• If 𝑚𝑚𝑚𝑚 = 1: trip chaining is not possible and no destination can be inferred. In that case, the transaction is removed
from the dataset. Contrary to Trépanier et al. (2007), we did not incorporate travel behavior made by the same 
card number on previous days in the algorithm. Since destination inference is not the main research goal of this 
study, we aimed to prevent too much noise in the dataset from complex destination inference algorithms. 

The set of candidate stops 𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝 for �̂�𝑠𝑠𝑠𝑗𝑗𝑗𝑗𝑎𝑎𝑎𝑎 in case 𝑚𝑚𝑚𝑚 > 1 and 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚 is shown by Eq.(1) and contains all stops from the 
registered boarding stop 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏  at line 𝑙𝑙𝑙𝑙 downstream to 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,|𝑙𝑙𝑙𝑙|. In case 𝑚𝑚𝑚𝑚 > 1 and 𝑗𝑗𝑗𝑗 ≠ 𝑚𝑚𝑚𝑚 an additional constraint is added,
which guarantees that the realized arrival time 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 of run 𝑟𝑟𝑟𝑟 at stop 𝑠𝑠𝑠𝑠 should be earlier than the boarding time at 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏 of 
the next journey stage 𝑗𝑗𝑗𝑗 + 1. This is expressed by Eq.(2).

𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝 = �𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗𝑏𝑏𝑏𝑏 . . 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗+�, 𝑗𝑗𝑗𝑗 < 𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (1)

𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝 = �𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗𝑏𝑏𝑏𝑏 . . 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗+�, 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡. 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗 < 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑗𝑗𝑗𝑗+1) (2)

The selection of �̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎 from 𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝  is based on minimizing the Euclidean distance 𝑑𝑑𝑑𝑑 between the candidate alighting 
stop and 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗+1)𝑝𝑝𝑝𝑝

𝑏𝑏𝑏𝑏 or 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗=1)𝑝𝑝𝑝𝑝
𝑏𝑏𝑏𝑏 . We minimize the Euclidean distance, instead of the generalized travel time as 

proposed by Munigaza and Palma (2012) and Sánchez-Martinez (2017). Using generalized travel time is mostly 
beneficial if the set of candidate stops contains stops of a public transport line in both directions. Minimizing the 
Euclidean distance could then infer a stop of the line in the opposite direction which is just slightly closer to the  
next boarding location, while neglecting the substantially longer in-vehicle time to reach that stop. Since our 
candidate set is one-directional and only contains stops downstream the boarding location, we can minimize the 
Euclidean distance without problems. A maximum walking distance threshold 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝is applied. If no candidate stops 
can be found within a reasonable walking distance, it is likely that this passenger used another mode as intermediate 
journey stage. In that case no destination can be inferred. Eq.(3) shows the applied destination inference algorithm.

�̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑑𝑑𝑑𝑑�𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗+1)𝑝𝑝𝑝𝑝
𝑏𝑏𝑏𝑏 , �̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎 ��       ∀ �̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝,𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 > 1      𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡.𝑑𝑑𝑑𝑑 ≤ 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝 (3)
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Validation of the applied destination inference algorithms shows to be difficult in other studies. Inferred 
destinations can be validated with passenger counts in vehicles or at stops, or by using surveys to a small sample of 
the population. Besides, a variety of walking distance thresholds is applied, varying between 400m (Zhao et al. 
2007), 750m (Gordon et al. 2013), 1000m (Wang et al. 2011; Munizaga and Palma 2012) and 2000m (Trépanier et 
al. 2007). The fact that in the Dutch urban public transport network both tap in and tap out are required, however 
enables a full validation of the algorithm and allows the selection of an optimal value for 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 resulting in the most 
accurate destination inference. We selected all complete transactions made on the HTM network on one working 
day (≈286,000 transactions) and removed the alighting location. We applied the destination inference algorithm 
with varying values for 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 to predict back these alighting locations and considered the percentage of destinations 
what was correctly, incorrectly and not inferred, respectively. Table 1 and Figure 1 provide the results. From Table 1 
can be seen that, depending on 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, in total between 70% and 87% of all destinations could be inferred. This is 
higher than percentages found by Trépanier et al. (2007) and Zhao et al. (2007) ranging between 66% and 71%. The 
higher 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, the more destinations could logically be inferred. However, with an increasing number of inferred 
destinations the number of incorrectly inferred destinations increases faster than the number of correctly inferred 
destinations. From all inferred destinations, the percentage correctly inferred drops from 71% for 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=200 to 65%
for 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=1600. This shows there is a trade-off between the quantity and accuracy of inferred destinations. 

Table 1. Destination inference results for varying values of 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Variable 𝑑𝑑𝑑𝑑200 𝑑𝑑𝑑𝑑400 𝑑𝑑𝑑𝑑600 𝑑𝑑𝑑𝑑800 𝑑𝑑𝑑𝑑1000 𝑑𝑑𝑑𝑑1200 𝑑𝑑𝑑𝑑1400 𝑑𝑑𝑑𝑑1600
% inferred destinations 69.6% 76.4% 80.6% 83.2% 84.5% 85.6% 86.1% 86.6%
% correctly inferred from all inferred destinations 70.6% 70.1% 68.3% 66.9% 66.1% 65.7% 65.4% 65.1%

% correctly inferred from total transactions 49,1% 53,6% 55,0% 55,6% 55,9% 56,2% 56,3% 56,4%
% incorrectly inferred from total transactions 20,5% 22,8% 25,5% 27,5% 28,6% 29,4% 29,8% 30,2%
% not inferred from total transactions 30,4% 23,6% 19,4% 16,9% 15,5% 14,4% 13,9% 13,4%

To find the optimal 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , we maximize the number of correctly inferred destinations �̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐 corrected for 

incorrectly inferred destinations �̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎,𝑤𝑤𝑤𝑤, as shown by Eq.(4). We increased 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 stepwise by 200m starting from 200 

to 1600 Euclidean meters. Figure 1 shows that this value is maximized when applying a maximum walking 
threshold of 400 Euclidean meters (on average ≈550 real meters). For 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=400 we investigated the error margins 
for a subset of 100 transactions. For 72% of wrongly inferred destinations, the chosen destination was only 1 stop 
further upstream or downstream. This probably reflects passengers performing an activity between two stops and 
selecting the stop on the other side of the activity for boarding again. 

𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎��̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐 − �̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎,𝑤𝑤𝑤𝑤�,  𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎{𝑑𝑑𝑑𝑑200,𝑑𝑑𝑑𝑑400. .𝑑𝑑𝑑𝑑1600} (4)

Fig. 1. Performance of destination inference algorithm for different maximum Euclidean walking distance values
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transaction the boarding time and location, and the alighting time and location of each journey stage are known. 
Also, it is known in which public transport line, vehicle number and trip number (a unique number assigned to each 
one-directional run 𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙) each passenger boarded with their unique smart card number. The AVL data provides 
the scheduled times 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎� and 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑� , and the realized times 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎and 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑 for each run at each stop, where each run is indicated 
by the same trip number as appears in the AFC data. By integrating AFC and AVL data based on the corresponding 
trip number, vehicle occupancy can be inferred for each run between each stop 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,1, 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,2.

2.2. Full validation of destination inference algorithm

Before starting the analyses, data cleaning and data processing is required. First, transactions where a system 
error occurred are removed from the dataset. In these cases there occurred an error in the AFC devices, leading to 
unrealistic alighting times or alighting locations, or to missing or unrealistic trip numbers. For The Hague, this 
percentage varies between 0.05% and 0.50% of the daily transactions. The closed within-vehicle AFC systems 
means that in general destinations of journey stages are directly available from the data, so no destination inference 
is needed. Therefore, destination inference needs to be performed only for transactions where there was a missing 
tap out. This occurs when passengers unintendedly forget to tap out when alighting from the vehicle, or deliberately 
do not tap out if the distance based travel costs are higher than the deposit deduced from the card when boarding for 
relatively long trips. The daily percentage of transactions with a missing tap out in The Hague varies between 1% 
and 2% on average. For destination inference we apply the well-known trip chaining algorithm as applied by 
Trépanier et al. (2007), Zhao et al. (2007) and Wang et al. (2011). The aim is to estimate the alighting stop �̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎  of 
the 𝑗𝑗𝑗𝑗th journey stage of the total number of journey stages 𝑚𝑚𝑚𝑚 made by passenger 𝑝𝑝𝑝𝑝 on day 𝑘𝑘𝑘𝑘. The indices 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 and 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏
reflect the alighting and boarding stop, respectively. The following basic assumptions as applied in this algorithm:
• If 𝑚𝑚𝑚𝑚 > 1 and 𝑗𝑗𝑗𝑗 ≠ 𝑚𝑚𝑚𝑚: the most likely alighting location of 𝑗𝑗𝑗𝑗 is the stop which is closest to 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗+1)𝑝𝑝𝑝𝑝

𝑏𝑏𝑏𝑏 .
• If 𝑚𝑚𝑚𝑚 > 1 and 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚: the most likely alighting location of 𝑗𝑗𝑗𝑗 is the stop which is closest to 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗=1)𝑝𝑝𝑝𝑝

𝑏𝑏𝑏𝑏 . Assumed is
that passengers return to the location where the first journey stage started (e.g. home) at the end of the day.

• If 𝑚𝑚𝑚𝑚 = 1: trip chaining is not possible and no destination can be inferred. In that case, the transaction is removed
from the dataset. Contrary to Trépanier et al. (2007), we did not incorporate travel behavior made by the same 
card number on previous days in the algorithm. Since destination inference is not the main research goal of this 
study, we aimed to prevent too much noise in the dataset from complex destination inference algorithms. 

The set of candidate stops 𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝 for �̂�𝑠𝑠𝑠𝑗𝑗𝑗𝑗𝑎𝑎𝑎𝑎 in case 𝑚𝑚𝑚𝑚 > 1 and 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚 is shown by Eq.(1) and contains all stops from the 
registered boarding stop 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏  at line 𝑙𝑙𝑙𝑙 downstream to 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙,|𝑙𝑙𝑙𝑙|. In case 𝑚𝑚𝑚𝑚 > 1 and 𝑗𝑗𝑗𝑗 ≠ 𝑚𝑚𝑚𝑚 an additional constraint is added,
which guarantees that the realized arrival time 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 of run 𝑟𝑟𝑟𝑟 at stop 𝑠𝑠𝑠𝑠 should be earlier than the boarding time at 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏 of 
the next journey stage 𝑗𝑗𝑗𝑗 + 1. This is expressed by Eq.(2).

𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝 = �𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗𝑏𝑏𝑏𝑏 . . 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗+�, 𝑗𝑗𝑗𝑗 < 𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (1)

𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝 = �𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗𝑏𝑏𝑏𝑏 . . 𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗+�, 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡. 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗 < 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑗𝑗𝑗𝑗+1) (2)

The selection of �̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎 from 𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝  is based on minimizing the Euclidean distance 𝑑𝑑𝑑𝑑 between the candidate alighting 
stop and 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗+1)𝑝𝑝𝑝𝑝

𝑏𝑏𝑏𝑏 or 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗=1)𝑝𝑝𝑝𝑝
𝑏𝑏𝑏𝑏 . We minimize the Euclidean distance, instead of the generalized travel time as 

proposed by Munigaza and Palma (2012) and Sánchez-Martinez (2017). Using generalized travel time is mostly 
beneficial if the set of candidate stops contains stops of a public transport line in both directions. Minimizing the 
Euclidean distance could then infer a stop of the line in the opposite direction which is just slightly closer to the  
next boarding location, while neglecting the substantially longer in-vehicle time to reach that stop. Since our 
candidate set is one-directional and only contains stops downstream the boarding location, we can minimize the 
Euclidean distance without problems. A maximum walking distance threshold 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝is applied. If no candidate stops 
can be found within a reasonable walking distance, it is likely that this passenger used another mode as intermediate 
journey stage. In that case no destination can be inferred. Eq.(3) shows the applied destination inference algorithm.

�̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑑𝑑𝑑𝑑�𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗+1)𝑝𝑝𝑝𝑝
𝑏𝑏𝑏𝑏 , �̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎 ��       ∀ �̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝,𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 > 1      𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡.𝑑𝑑𝑑𝑑 ≤ 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝 (3)
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Validation of the applied destination inference algorithms shows to be difficult in other studies. Inferred 
destinations can be validated with passenger counts in vehicles or at stops, or by using surveys to a small sample of 
the population. Besides, a variety of walking distance thresholds is applied, varying between 400m (Zhao et al. 
2007), 750m (Gordon et al. 2013), 1000m (Wang et al. 2011; Munizaga and Palma 2012) and 2000m (Trépanier et 
al. 2007). The fact that in the Dutch urban public transport network both tap in and tap out are required, however 
enables a full validation of the algorithm and allows the selection of an optimal value for 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 resulting in the most 
accurate destination inference. We selected all complete transactions made on the HTM network on one working 
day (≈286,000 transactions) and removed the alighting location. We applied the destination inference algorithm 
with varying values for 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 to predict back these alighting locations and considered the percentage of destinations 
what was correctly, incorrectly and not inferred, respectively. Table 1 and Figure 1 provide the results. From Table 1 
can be seen that, depending on 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, in total between 70% and 87% of all destinations could be inferred. This is 
higher than percentages found by Trépanier et al. (2007) and Zhao et al. (2007) ranging between 66% and 71%. The 
higher 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, the more destinations could logically be inferred. However, with an increasing number of inferred 
destinations the number of incorrectly inferred destinations increases faster than the number of correctly inferred 
destinations. From all inferred destinations, the percentage correctly inferred drops from 71% for 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=200 to 65%
for 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=1600. This shows there is a trade-off between the quantity and accuracy of inferred destinations. 

Table 1. Destination inference results for varying values of 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Variable 𝑑𝑑𝑑𝑑200 𝑑𝑑𝑑𝑑400 𝑑𝑑𝑑𝑑600 𝑑𝑑𝑑𝑑800 𝑑𝑑𝑑𝑑1000 𝑑𝑑𝑑𝑑1200 𝑑𝑑𝑑𝑑1400 𝑑𝑑𝑑𝑑1600
% inferred destinations 69.6% 76.4% 80.6% 83.2% 84.5% 85.6% 86.1% 86.6%
% correctly inferred from all inferred destinations 70.6% 70.1% 68.3% 66.9% 66.1% 65.7% 65.4% 65.1%

% correctly inferred from total transactions 49,1% 53,6% 55,0% 55,6% 55,9% 56,2% 56,3% 56,4%
% incorrectly inferred from total transactions 20,5% 22,8% 25,5% 27,5% 28,6% 29,4% 29,8% 30,2%
% not inferred from total transactions 30,4% 23,6% 19,4% 16,9% 15,5% 14,4% 13,9% 13,4%

To find the optimal 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , we maximize the number of correctly inferred destinations �̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐 corrected for 

incorrectly inferred destinations �̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎,𝑤𝑤𝑤𝑤, as shown by Eq.(4). We increased 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 stepwise by 200m starting from 200 

to 1600 Euclidean meters. Figure 1 shows that this value is maximized when applying a maximum walking 
threshold of 400 Euclidean meters (on average ≈550 real meters). For 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=400 we investigated the error margins 
for a subset of 100 transactions. For 72% of wrongly inferred destinations, the chosen destination was only 1 stop 
further upstream or downstream. This probably reflects passengers performing an activity between two stops and 
selecting the stop on the other side of the activity for boarding again. 

𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎��̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐 − �̂�𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎,𝑤𝑤𝑤𝑤�,  𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎{𝑑𝑑𝑑𝑑200,𝑑𝑑𝑑𝑑400. .𝑑𝑑𝑑𝑑1600} (4)

Fig. 1. Performance of destination inference algorithm for different maximum Euclidean walking distance values
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2.3. Robust transfer inference algorithm

We show the state-of-the-practice and state-of-the-art transfer inference algorithms and then illustrate limitations 
of these algorithms based on a theoretical network. The state-of-the-practice criterion to identify an alighting as 
transfer as applied in The Netherlands is based on a maximum time threshold between the previous tap-out and next 
tap-in with the same smart card ID. If the time between 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗  and 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑗𝑗𝑗𝑗+1) is larger than a transfer threshold time 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚, the alighting a classified as activity. In The Netherlands, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚=35 minutes. This criterion can lead to biased 
transfer inference, mainly because it tends to underestimate short journeys. If activities are performed which last 
shorter than 35 minutes, two separate journeys are incorrectly considered as one journey. If this is a back-and-forth 
trip of which 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 = 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗+1)𝑝𝑝𝑝𝑝

𝑎𝑎𝑎𝑎 , this journey is not included in the OD matrix at all. Given the high frequent services in 
urban public transport, a transfer time of 35 minutes will not often be exceeded. During disruptions longer transfer 
times are however also possible, which could also overestimate the number of journeys.

When considering state-of-the-art transfer inference algorithms, three criteria are formulated which should all be 
satisfied to define an alighting as transfer. 
• Temporal criterion. The temporal constraint as applied in practice is replaced by a criterion which expresses 

whether a passenger took the first passing vehicle at a transfer, by integrating AFC and AVL data (Gordon et al. 
2013). Based on  𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝 and the stop coordinates of the alighting stop and next boarding stop, the first realistic 
passenger arrival time at the next boarding time can be calculated. In this study, we correct the Euclidean 
distance by √2 to obtain realistic transfer distances. We use the 2.5th percentile of the walking speed distribution
derived by Hänseler et al. (2016) instead of the average walking speed, to prevent that on average 50% of 
transferring passengers might not be considered as transferring. The first realistic passenger arrival time at the 
next boarding stop is compared with realized vehicle departure times of the chosen line. If the first passing 
vehicle after the first realistic passenger arrival time is taken, the alighting is considered a transfer. A minimum 
transfer allowance of 5 minutes is applied.

• Spatial criterion. The spatial criterion constrains the maximum transfer distance to 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝. In this study we set 
𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 to 400 Euclidean meters, in line with results from chapter 2.2.

• Binary criterion. The binary constraint is whether the next boarding line is equal to the previous boarding line. In 
this case, alighting is considered a activity. Successive services in opposite direction indicate a return trip from an 
activity, whereas successive services in the same direction also indicate a performed activity (Gordon et al. 
2013). 

We adjust this state-of-the-art algorithm to make the algorithm robust to transfer inference during disruptions. To 
illustrate the relevance of this algorithm, we use a selection of the HTM case study network as shown in Figure 2. It 
shows a light rail connection between the center of the satellite city Zoetermeer (nodes A-B on the left) via 
intermediate stop D to the center of a main city (nodes F-G on the right). There is also a separate transit line between 
D-E. The public transport lines A-B-D-F-G (line 4), C-B-D-F-G (line 3), and D-E (line 19) are operated by the same 
operator (HTM). This means that both AFC and AVL data from these lines is available. Stops C and F provide 
transfer connections to the train network, which stations are indicated as C1 and F1. The train service C1-F1 is 
operated by another operator, which means that only AVL data (open data in The Netherlands) is available. 

Fig. 2.Selection of The Hague case study public transport network
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We assume a disruption (e.g. a signal failure) occurs on the light rail track between D and F, leading to reduced 
capacity between D and F. In line with HTM disruption management, 50% of the light rail services eastbound short-
turns at D, whereas 50% of the westbound light rail services short-turn at F. We consider three different passenger 
journeys over this network, shown by Table 2.

Table 2. Illustration new transfer inference algorithm for three OD journeys E-G, B-G and A-G

Boarding stop Alighting stop Smart card ID Transit line Transfer?
Current algorithm

Transfer?
New algorithm

E D 1233 19 No Yes
D G 1233 3

B C 1234 3 No Yes
F G 1234 4

A D 1235 3 No Yes
D G 1235 3

• Temporal criterion. We consider a journey from E to G. Due to reduced services between D and F, remaining 
vehicles can get very crowded. This means that transferring passengers at D (from E) can experience denied 
boarding in busy urban networks and might not be able to board the first passing vehicle. It is also possible that 
some passenger decide to wait for a next service, if they perceive the very crowded vehicle arriving at the 
station. Applying the original temporal criterion would therefore incorrectly classify the alighting of these 
passengers at D as activity, since they did not take the first passing vehicle. Under regular circumstances, 
denied boarding in The Netherlands is very exceptional. However, in disrupted situations the frequency of 
denied board and very crowded vehicles increases substantially. To account for this we adjust this criterion such 
that an alighting is considered a transfer, if a passenger takes the first reasonable passing vehicle at a transfer 
location. Boarding a reasonable vehicle is quantified by adding an extra constraint to the temporal criterion. An 
alighting is considered a transfer if a passenger boards the first vehicle of a service after the first realistic 
passenger arrival time at the stop, of which the occupancy is lower than the norm capacity. By integrating AFC 
and AVL data, vehicle occupancies are derived. When occupancies are higher than the norm capacity, it can be 
expected that passengers decide to skip this vehicle or are even denied boarding. 

• Spatial criterion. We consider a journey from B to G. These passengers adjust their route choice, by using the 
train network at the side of the city centers as alternative. By transferring from C to C1, and back from F1 to F, 
the disruption is avoided. Especially in dense urban networks, passengers can use the total multi-level public 
transport network which remains available after a disruption (see e.g. Cats et al. 2016). Since train services are 
operated by another operator, no AFC data of this journey stage is available. Since the distance between C and 
F is substantially larger than common values for 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (in this study 400m), applying the original spatial 
criterion would incorrectly classify the alighting at C as journey destination and categorize the trip F-G as new 
journey. Since urban public transport is fully covered by AFC data, there is only the higher level train network 
as multi-level alternative which is not covered in the data. Therefore, we add a binary indicator to each stop 
which equals 1 if a train station is located within the maximum transfer distance 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 . If both 𝒔𝒔𝒔𝒔𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 
 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗+1)𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏 are equal to 1, we apply the temporal condition as explained above. We determine, given the train 

AVL data, whether the boarding time of a passenger in the urban network in F shows that this passenger took 
the first reasonable train alternative from C1 to F1. If the realized boarding time at F does not exceed the 
expected travel time given the realized train departure and arrival times, it is likely that another public transport 
mode is taken as intermediate journey stage. The alighting at C is then considered a transfer. A further 
relaxation of the original spatial criterion is applied, by considering a tap out and consecutive tap in to the same 
vehicle and trip number as transfer, even if the transfer distance exceeds 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. This indicates that a passenger 
did not really alight the vehicle, but (un)intendedly tapped out and in during the ride. This can be explained by 
passengers in doubt if the tap in was successful, holding their card to the device again and then tapping out. 
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2.3. Robust transfer inference algorithm

We show the state-of-the-practice and state-of-the-art transfer inference algorithms and then illustrate limitations 
of these algorithms based on a theoretical network. The state-of-the-practice criterion to identify an alighting as 
transfer as applied in The Netherlands is based on a maximum time threshold between the previous tap-out and next 
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𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚, the alighting a classified as activity. In The Netherlands, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚=35 minutes. This criterion can lead to biased 
transfer inference, mainly because it tends to underestimate short journeys. If activities are performed which last 
shorter than 35 minutes, two separate journeys are incorrectly considered as one journey. If this is a back-and-forth 
trip of which 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 = 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗+1)𝑝𝑝𝑝𝑝

𝑎𝑎𝑎𝑎 , this journey is not included in the OD matrix at all. Given the high frequent services in 
urban public transport, a transfer time of 35 minutes will not often be exceeded. During disruptions longer transfer 
times are however also possible, which could also overestimate the number of journeys.

When considering state-of-the-art transfer inference algorithms, three criteria are formulated which should all be 
satisfied to define an alighting as transfer. 
• Temporal criterion. The temporal constraint as applied in practice is replaced by a criterion which expresses 

whether a passenger took the first passing vehicle at a transfer, by integrating AFC and AVL data (Gordon et al. 
2013). Based on  𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝 and the stop coordinates of the alighting stop and next boarding stop, the first realistic 
passenger arrival time at the next boarding time can be calculated. In this study, we correct the Euclidean 
distance by √2 to obtain realistic transfer distances. We use the 2.5th percentile of the walking speed distribution
derived by Hänseler et al. (2016) instead of the average walking speed, to prevent that on average 50% of 
transferring passengers might not be considered as transferring. The first realistic passenger arrival time at the 
next boarding stop is compared with realized vehicle departure times of the chosen line. If the first passing 
vehicle after the first realistic passenger arrival time is taken, the alighting is considered a transfer. A minimum 
transfer allowance of 5 minutes is applied.

• Spatial criterion. The spatial criterion constrains the maximum transfer distance to 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝. In this study we set 
𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 to 400 Euclidean meters, in line with results from chapter 2.2.

• Binary criterion. The binary constraint is whether the next boarding line is equal to the previous boarding line. In 
this case, alighting is considered a activity. Successive services in opposite direction indicate a return trip from an 
activity, whereas successive services in the same direction also indicate a performed activity (Gordon et al. 
2013). 

We adjust this state-of-the-art algorithm to make the algorithm robust to transfer inference during disruptions. To 
illustrate the relevance of this algorithm, we use a selection of the HTM case study network as shown in Figure 2. It 
shows a light rail connection between the center of the satellite city Zoetermeer (nodes A-B on the left) via 
intermediate stop D to the center of a main city (nodes F-G on the right). There is also a separate transit line between 
D-E. The public transport lines A-B-D-F-G (line 4), C-B-D-F-G (line 3), and D-E (line 19) are operated by the same 
operator (HTM). This means that both AFC and AVL data from these lines is available. Stops C and F provide 
transfer connections to the train network, which stations are indicated as C1 and F1. The train service C1-F1 is 
operated by another operator, which means that only AVL data (open data in The Netherlands) is available. 
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We assume a disruption (e.g. a signal failure) occurs on the light rail track between D and F, leading to reduced 
capacity between D and F. In line with HTM disruption management, 50% of the light rail services eastbound short-
turns at D, whereas 50% of the westbound light rail services short-turn at F. We consider three different passenger 
journeys over this network, shown by Table 2.

Table 2. Illustration new transfer inference algorithm for three OD journeys E-G, B-G and A-G

Boarding stop Alighting stop Smart card ID Transit line Transfer?
Current algorithm

Transfer?
New algorithm

E D 1233 19 No Yes
D G 1233 3

B C 1234 3 No Yes
F G 1234 4

A D 1235 3 No Yes
D G 1235 3

• Temporal criterion. We consider a journey from E to G. Due to reduced services between D and F, remaining 
vehicles can get very crowded. This means that transferring passengers at D (from E) can experience denied 
boarding in busy urban networks and might not be able to board the first passing vehicle. It is also possible that 
some passenger decide to wait for a next service, if they perceive the very crowded vehicle arriving at the 
station. Applying the original temporal criterion would therefore incorrectly classify the alighting of these 
passengers at D as activity, since they did not take the first passing vehicle. Under regular circumstances, 
denied boarding in The Netherlands is very exceptional. However, in disrupted situations the frequency of 
denied board and very crowded vehicles increases substantially. To account for this we adjust this criterion such 
that an alighting is considered a transfer, if a passenger takes the first reasonable passing vehicle at a transfer 
location. Boarding a reasonable vehicle is quantified by adding an extra constraint to the temporal criterion. An 
alighting is considered a transfer if a passenger boards the first vehicle of a service after the first realistic 
passenger arrival time at the stop, of which the occupancy is lower than the norm capacity. By integrating AFC 
and AVL data, vehicle occupancies are derived. When occupancies are higher than the norm capacity, it can be 
expected that passengers decide to skip this vehicle or are even denied boarding. 

• Spatial criterion. We consider a journey from B to G. These passengers adjust their route choice, by using the 
train network at the side of the city centers as alternative. By transferring from C to C1, and back from F1 to F, 
the disruption is avoided. Especially in dense urban networks, passengers can use the total multi-level public 
transport network which remains available after a disruption (see e.g. Cats et al. 2016). Since train services are 
operated by another operator, no AFC data of this journey stage is available. Since the distance between C and 
F is substantially larger than common values for 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (in this study 400m), applying the original spatial 
criterion would incorrectly classify the alighting at C as journey destination and categorize the trip F-G as new 
journey. Since urban public transport is fully covered by AFC data, there is only the higher level train network 
as multi-level alternative which is not covered in the data. Therefore, we add a binary indicator to each stop 
which equals 1 if a train station is located within the maximum transfer distance 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 . If both 𝒔𝒔𝒔𝒔𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 
 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑗𝑗𝑗𝑗+1)𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏 are equal to 1, we apply the temporal condition as explained above. We determine, given the train 

AVL data, whether the boarding time of a passenger in the urban network in F shows that this passenger took 
the first reasonable train alternative from C1 to F1. If the realized boarding time at F does not exceed the 
expected travel time given the realized train departure and arrival times, it is likely that another public transport 
mode is taken as intermediate journey stage. The alighting at C is then considered a transfer. A further 
relaxation of the original spatial criterion is applied, by considering a tap out and consecutive tap in to the same 
vehicle and trip number as transfer, even if the transfer distance exceeds 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. This indicates that a passenger 
did not really alight the vehicle, but (un)intendedly tapped out and in during the ride. This can be explained by 
passengers in doubt if the tap in was successful, holding their card to the device again and then tapping out. 
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Another explanation are passengers who deliberately tap out during a part of the trip to save travel costs, given 
the fully distance based fare. 

• Binary condition. We consider a journey from A to G. A part of the passengers who keep using the light rail 
service have to alight their short-turning vehicle at D and wait for a next service of this line headed for G. This 
means that the disruption forces these passengers to make a transfer to the same line 3. The original algorithm  
would therefore incorrectly infer the alighting at D as journey destination. We therefore adjust the algorithm 
such that when a transfer to the same line is made, this is considered a transfer if and only if a passenger boards 
the first run of this same line after the alighted run. This allows transfer inference in case of rescheduling 
measures as short-turning, stop-skipping or deadheading. By only allowing the first run after the alighted run as 
transfer, in high frequency urban networks the headway will be short. Measures as short-turning or deadheading 
are in practice especially performed if the next run already bunches behind the previous one. This means that 
false positive transfer inferences are very unlikely, since the time to perform an activity will be very short. This 
adjustment is also relevant in case part of the disrupted track is replaced by bus services operating under the 
same line number. Besides, this adjustment can be of relevance during undisturbed situations in case of non-
typical route typologies in which transfers to the same line number occur. For example, in case of lines with 
loops or in case of lines where short-services are operated under the same line number, it can occur that 
passengers have to transfer to a vehicle of the same line under planned circumstances. 

3. Results

We compare the performance of the state-of-the-practice, state-of-the-art and newly developed transfer inference 
algorithm. To this aim, we use a dataset containing individual AFC transactions during two different non-recurrent 
disruptions which occurred on the HTM network in November 2015. The dataset contains transactions from 
passengers who specifically travelled over one of the disrupted lines and disruption location, during one of these 
disruptions (in total ≈23,300 transactions). We applied the three different transfer inference algorithms to this 
dataset. For the state-of-the-practice algorithm we used a maximum transfer time of 35 minutes. For the state-of-the-
art and new developed algorithm we set 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 equal to 400 Euclidean meter. Based on a normal distributed walking 
speed 𝑁𝑁𝑁𝑁(1.34, 0.34) we applied a 2.5th percentile walking speed of 0.66 m/s (Hänseler et al. 2016).

Table 3. Performance comparison between three different transfer inference algorithms

State-of-the-practice State-of-the-art New developed algorithm
Average # trips per journey 1.44 1.18 1.21

% journeys with 0 transfers 68% 85% 82%
% journeys with 1 transfer 23% 14% 15%
% journeys > 3 transfers 0.8% 0.0% 0.1%

Table 3 shows that the algorithm as currently applied in practice results in a relatively high number of trips 
per journey (1.44), indicating that alighting is relatively often classified as transfer. This is because of the applied 

transfer threshold time without further behavioral rules. In 
the case study network, journeys with more than 3 transfers 
are almost not possible. Only additional transfer behavior
during disruptions could require more than 3 transfers in 
total in rare occasions. Given that 0.8% of all journeys have 
more than 3 transfers, it shows that this state-of-the-practice 
algorithm overestimates transfer behavior. The state-of-the-
art algorithm on the other hand shows less transfers and no 
journeys with more than 3 transfers. However, this 
algorithm is too strict in classifying an alighting as transfer,
especially in case of disruptions.

Fig. 3. Distribution of ratio travelled/Euclidean distance for state-of-the-practice, state-of-the-art and new robust transfer inference algorithm
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In our developed algorithm there is some relaxation of the transfer criteria of the state-of-the-art algorithm. This 
results in a slightly higher average number of trips per journey (1.21 instead of 1.18). As shown in chapter 2.3, this 
new developed algorithm results in an improved transfer inference during disruptions. Besides, it also shows that
still hardly journeys with > 3 transfers are identified when applying this new algorithm, despite these relaxations.

Figure 3 expresses the ratio between travelled distance by public transport and the Euclidean distance per 
identified journey. Journeys with a very high ratio are symptom for two separate journeys which are incorrectly 
identified as one (i.e. a back-and-forth travel identified as one journey). Thus, this ratio can be used to validate the 
performance of transfer inference algorithms. As can be seen, both the state-of-the-art and new algorithm prevent
journeys with unrealistic high ratios, which are found using the state-of-the-practice algorithm. Our new proposed 
algorithm thus improves transfer inference during disruptions, without compromising on general inference quality.

4. Conclusion

Several rule-based algorithms exist to infer whether a passenger alighting and subsequent boarding is categorized as 
transfer or final destination where an activity is performed. Although this logic can infer transfers during 
undisrupted public transport operations, these algorithms have limitations during disruptions: disruptions and 
subsequent operational rescheduling measures can force passengers to travel via routes which would be non-optimal 
or illogical during undisrupted operations. We developed a new transfer inference algorithm which infers journeys 
from raw smart card transactions in an accurate way during both disrupted and undisrupted operations. In this 
algorithm we incorporate the effects of denied boarding, transferring to a vehicle of the same line, and the use of 
public transport services of another operator on another network level as intermediate journey stage during 
disruptions. A further validation of the proposed transfer inference algorithm is recommended for future research. 
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Another explanation are passengers who deliberately tap out during a part of the trip to save travel costs, given 
the fully distance based fare. 

• Binary condition. We consider a journey from A to G. A part of the passengers who keep using the light rail 
service have to alight their short-turning vehicle at D and wait for a next service of this line headed for G. This 
means that the disruption forces these passengers to make a transfer to the same line 3. The original algorithm  
would therefore incorrectly infer the alighting at D as journey destination. We therefore adjust the algorithm 
such that when a transfer to the same line is made, this is considered a transfer if and only if a passenger boards 
the first run of this same line after the alighted run. This allows transfer inference in case of rescheduling 
measures as short-turning, stop-skipping or deadheading. By only allowing the first run after the alighted run as 
transfer, in high frequency urban networks the headway will be short. Measures as short-turning or deadheading 
are in practice especially performed if the next run already bunches behind the previous one. This means that 
false positive transfer inferences are very unlikely, since the time to perform an activity will be very short. This 
adjustment is also relevant in case part of the disrupted track is replaced by bus services operating under the 
same line number. Besides, this adjustment can be of relevance during undisturbed situations in case of non-
typical route typologies in which transfers to the same line number occur. For example, in case of lines with 
loops or in case of lines where short-services are operated under the same line number, it can occur that 
passengers have to transfer to a vehicle of the same line under planned circumstances. 
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We compare the performance of the state-of-the-practice, state-of-the-art and newly developed transfer inference 
algorithm. To this aim, we use a dataset containing individual AFC transactions during two different non-recurrent 
disruptions which occurred on the HTM network in November 2015. The dataset contains transactions from 
passengers who specifically travelled over one of the disrupted lines and disruption location, during one of these 
disruptions (in total ≈23,300 transactions). We applied the three different transfer inference algorithms to this 
dataset. For the state-of-the-practice algorithm we used a maximum transfer time of 35 minutes. For the state-of-the-
art and new developed algorithm we set 𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 equal to 400 Euclidean meter. Based on a normal distributed walking 
speed 𝑁𝑁𝑁𝑁(1.34, 0.34) we applied a 2.5th percentile walking speed of 0.66 m/s (Hänseler et al. 2016).

Table 3. Performance comparison between three different transfer inference algorithms

State-of-the-practice State-of-the-art New developed algorithm
Average # trips per journey 1.44 1.18 1.21

% journeys with 0 transfers 68% 85% 82%
% journeys with 1 transfer 23% 14% 15%
% journeys > 3 transfers 0.8% 0.0% 0.1%

Table 3 shows that the algorithm as currently applied in practice results in a relatively high number of trips 
per journey (1.44), indicating that alighting is relatively often classified as transfer. This is because of the applied 

transfer threshold time without further behavioral rules. In 
the case study network, journeys with more than 3 transfers 
are almost not possible. Only additional transfer behavior
during disruptions could require more than 3 transfers in 
total in rare occasions. Given that 0.8% of all journeys have 
more than 3 transfers, it shows that this state-of-the-practice 
algorithm overestimates transfer behavior. The state-of-the-
art algorithm on the other hand shows less transfers and no 
journeys with more than 3 transfers. However, this 
algorithm is too strict in classifying an alighting as transfer,
especially in case of disruptions.
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In our developed algorithm there is some relaxation of the transfer criteria of the state-of-the-art algorithm. This 
results in a slightly higher average number of trips per journey (1.21 instead of 1.18). As shown in chapter 2.3, this 
new developed algorithm results in an improved transfer inference during disruptions. Besides, it also shows that
still hardly journeys with > 3 transfers are identified when applying this new algorithm, despite these relaxations.

Figure 3 expresses the ratio between travelled distance by public transport and the Euclidean distance per 
identified journey. Journeys with a very high ratio are symptom for two separate journeys which are incorrectly 
identified as one (i.e. a back-and-forth travel identified as one journey). Thus, this ratio can be used to validate the 
performance of transfer inference algorithms. As can be seen, both the state-of-the-art and new algorithm prevent
journeys with unrealistic high ratios, which are found using the state-of-the-practice algorithm. Our new proposed 
algorithm thus improves transfer inference during disruptions, without compromising on general inference quality.

4. Conclusion

Several rule-based algorithms exist to infer whether a passenger alighting and subsequent boarding is categorized as 
transfer or final destination where an activity is performed. Although this logic can infer transfers during 
undisrupted public transport operations, these algorithms have limitations during disruptions: disruptions and 
subsequent operational rescheduling measures can force passengers to travel via routes which would be non-optimal 
or illogical during undisrupted operations. We developed a new transfer inference algorithm which infers journeys 
from raw smart card transactions in an accurate way during both disrupted and undisrupted operations. In this 
algorithm we incorporate the effects of denied boarding, transferring to a vehicle of the same line, and the use of 
public transport services of another operator on another network level as intermediate journey stage during 
disruptions. A further validation of the proposed transfer inference algorithm is recommended for future research. 
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