TU Delft

Reducing LLLM Hallucinations with Retrieval Prompt Engineering
Minimising the Need for Re-prompting in Automatic Understandable Test Generation

Angelika Mentzelopoulou!
Supervisors: Andy Zaidman', Amir Deljouyi'

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Angelika Mentzelopoulou
Final project course: CSE3000 Research Project
Thesis committee: Andy Zaidman, Amir Deljouyi, Asterios Katsifodimos

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Automated test generation is the means to produce
correct and usable code while maintaining an effi-
cient and effective development process. UTGen is
a tool that utilizes a Large Language Model (LLM)
to improve the understandability of a test suite gen-
erated by a Search-Based Software Testing tool,
namely EvoSuite. Often while the LLM attempts
to improve a given test case, it generates code that
is too far from the original, changing the test’s pur-
pose. Alternatively, it may generate code that does
not compile. Such behaviour is called “LLM Hal-
lucination”.

The current hallucination handling of UTGen is
time-consuming and resource-expensive. To ad-
dress this, we propose two alternative approaches
that use information retrieval prompt engineering
techniques to minimise hallucinations. Our respec-
tive techniques include incorporating the source
code under test and the errors thrown by the latest
generated test case to the LLM prompt. We assess
our methods through a comparison study against
the base UTGen version. We observe that source
code retrieval enhances the generation of compil-
able test cases for complex classes. Error code re-
trieval shows similar hallucination performance to
base UTGen, with a decrease in the number of re-
prompts for classes with a high normalised Lack of
Cohesion of Methods (*LCOM).

Index Terms - Automated Test Generation, Large
Language Models (LLMs), LLM Hallucination,
Prompt Engineering

1 Introduction

Thorough software testing is necessary to produce correct
code that fits a client’s requirements, is usable and maintain-
able code [1]. The automation of test generation aims for an
efficient and effective test development process [2]. Search-
Based Software Testing (SBST) tools are one of the main
test generation tool types, that focus on creating a suite that
achieves a high coverage [3]. A common issue amongst such
tools is the limitation of the generated tests’ understandabil-
ity [4]; there is no focus by the tools on generating human-
intuitive test data, test method names and code comments. To
resolve that issue while maintaining the high coverage and ef-
ficiency advantages of SBST, UTGen ' was developed. UT-
Gen combines an SBST tool, namely EvoSuite [5], and Large
Language Models (LLMs) to enhance the understandability
of the automatically generated test cases in the three factors
mentioned above.

While UTGen successfully improved the understandability
of many of the tests compared to the ones generated by Evo-
Suite, the LLM usage to accomplish that is ineffective. The
involvement of the LLM slightly decreased the overall cover-
age achieved by the test suite. Additionally, the LLM often

' A paper on UTGen has not yet been published.

“hallucinated” throughout the test generation process by pro-
ducing invalid responses. Hallucination is a larger challenge
within language generation models and refers to generations
that are “nonsensical or unfaithful to the provided source con-
tent” [6]. Specifically in the UTGen context, it produced code
that did not compile, or it altered the context of the EvoSuite-
generated test too much, changing its purpose in the test suite.
UTGen includes verification processes for each area, where
re-prompting currently handles LLM hallucinations. There is
a maximum amount of iterations for which each verification
process can be repeated. If that maximum amount is reached
and no valid response has been generated, UTGen uses the
original EvoSuite test for the result, defeating its purpose of
improving understandability.

Figure 1 showcases this process and the result for two tests
generated by UTGen that were discarded. On the left-hand
side example, even though the understandability was greatly
improved by the explicit comments added by the LLM, the
test needed to be reverted due to the fact that the ‘Robot’
object constructor missed one argument. Respectively, the
right-hand side showcases the same for a generated test that
was too different to the original EvoSuite test. Again here,
comments have been added, but one method call is missing,
dropping the similarity score between the Evosuite-generated
and the LLM-improved test cases significantly. In both cases,
the LLM has already been prompted to the maximum amount
allowed for each respective process, and therefore, time and
expenses have been wasted without achieving any improve-
ment.

As said, handling hallucinations with re-prompting leads to
a time-consuming and expensive test generation process, as
every step may be repeated multiple times. In this research,
we focus on decreasing the need for re-prompting to handle
hallucinations by grounding the LLM using prompt engineer-
ing to generate contextful test cases. Prompt engineering in-
volves developing effective prompting techniques that enable
foundation models to solve specific tasks better [7]. Specif-
ically, we are investigating the change in performance using
information retrieval methods, where knowledge from the in-
put is extracted and inserted in the prompt to the LLM. We fo-
cus on the Post-Processing stage of UTGen, where the LLM
is prompted to add understandable identifiers and comments
to the test case. That is the only phase where the test code’s
structure may be altered, and therefore the mentioned hallu-
cinations may occur.

In this project, we explore the following research ques-
tions:

1. RQI: Is it possible to reduce the hallucination of LLMs
used in UTGen during the Post-Processing phase, to
minimise the need for re-prompting, using prompt en-
gineering with source code retrieval?

2. RQ2: Is it possible to reduce the hallucination of LLMs
used in UTGen during the Post-Processing phase, to
minimise the need for re-prompting, using prompt en-
gineering with error code retrieval?

The key contributions of our paper are outlined as follows:

* Our approach that integrates the source code to the LLM

EvoSuite generated test
RobotScoreKeeper arg2 = new RobotScoreKeeper () ;

Robot arg0 = new Robot ("net.virtualinfinity.atrobots.robot.RobotS$1",

arg2.killedRobot (arg0); arg0.getTotalKills();
assertEquals (0, arg0.getRoundKills());
assertEquals (1789, arg0.getId()):

Response: non-compiling test
// Given a Robot object and a RobotScoreKeeper object

Robot robot = new Robot (
"net.virtualinfinity.atrobots.robot.Robot$l", 1789);
// <--- 1 argument missing

RobotScoreKeeper scoreKeeper = new RobotScoreKeeper();
// When the robot is killed by another robot
scoreKeeper.killedRobot (robot) ;

// Then the robot's total kills count should be 0
assertEquals (0, robot.getTotalKills());

// Bnd the robot's round kills count should be 1789

assertEquals (1789, robot.getId());

Final Comment Used: Reverted test
// rollbacked to EvoSuite

// EvoSuite generated test here

1789, arg2);

Response: dissimilar test

// Create a new RobotScoreKeeper instance

RobotScoreKeeper arg2 = new RobotScoreKeeper () ;

// Create a new robot with an ID of 1789 and assign it to arg0

Robot arg0 = new Robot (
"net.virtualinfinity.atrobots.robot.Robot$l", 1789, arg2):;

// Call the killedRobot method on the RobotScoreKeeper

instance with arg0 as an argument

arg2.killedRobot (arg0) ;

// arg0.getTotalKills() is never called!!!

/ Assert that the round kills count for arg0 is equal to 0
assertEquals (0, arg0.getRoundKills());

/ Assert that ID of arg0 is equal to 1789
assertEquals (1789, argO.getId()):

Final test Used: Enhancement Stagnation
// No comments were added

// EvoSuite generated test here

Figure 1: Examples of processes resulting in a reverted test and enhancement stagnation

prompt UTGen utilises to enhance the understandability
of generated unit tests.

* Our approach that integrates the error codes produced by
the latest generated test to the LLM prompt.

* The application of our two approaches on 3 classes that
have shown ineffectiveness in improving understand-
ability, to examine the understandability and effective-
ness of the generated unit tests.

¢ A comparison study between the UTGen prompt and the
prompts used by our approaches to improve understand-
ability on the same base Evosuite-generated unit tests.

* We release a publicly available package with our imple-
mentation and experiment [8].

2 Background & Related Work

In this section, we provide background information on the
term “LLM hallucinations” and how UTGen functions. We
also briefly compare how our approach compares to relevant
other initiatives for reducing the need for re-prompting LLMs
in automatic test generation.

2.1 LLM Hallucinations

Outside of LLMs, hallucination is a psychological term, as
defined by Blom [9] as “a percept, experienced by a waking
individual, in the absence of an appropriate stimulus from the
extracorporeal world”, an unreal phenomenon that feels real.
Similarly, in the context of LLMs used for code generation,
hallucinated code may appear syntactically valid, despite us-
ing inexistent variables or methods.

LLM hallucinations for code generation arise from vari-
ous fundamental principles of LLM functionality [10]. The
causes can be rooted in an incomplete, biased or flawed

dataset used to train the model and the training architecture
itself [11]. Yet, hallucinations can also be caused by a prompt
that gives false information or a prompt phrased with infor-
mal language [12]. This variety and especially the fact that
hallucinations may be independent of training, indicate that
hallucination cannot be directly prevented; but the chances of
it occurring may be decreased.

Existing research explores different avenues to decrease
the possibility of an LLM hallucinating; by utilising software-
specific insights for fine-tuning and training [13], or using
grounding techniques. Grounding involves providing the
LLM with additional information during generation time.
The provided information is related only to the specific
prompt and is retrieved accordingly, possibly from source
code, API references, or databases [14; 15].

2.2 UTGen

UTGen combines search-based software testing, namely
EvosSuite [5], and LLMs to enhance the understandability
of automatically generated test cases.

UTGen is an enhancement built on top of EvoSuite. The
input to the tool is comprised of the source code files of the
classes we desire to generate tests for, the same as for the
base version of EvoSuite. The tests are generated by Evo-
Suite using search-based techniques. After the EvoSuite test
suite is available, UTGen incorporates the LLM to improve
its understandability in three steps, which are also illustrated
in Figure 2:

1. Test Data Improvement: UTGen prompts the LLM to
generate new test data that is more understandable. It
uses an enhanced parser of the LLM output to ensure
that each line that would cause an error in the new test
case is replaced by the original line.

2. Post-
Processing

- 1. Test Data 3. Test Name
. ' Improvement Suggestion

Compilation &
Verification

Figure 2: Overview of UTGen’s test generation process

2. Post Processing: Enhancement of Variable Identi-
fiers and Comments After the test data has been fi-
nalised, UTGen moves to the Post-Processing phase.
The modifications on the code from now onwards aim
purely to improve understandability and clarity, with-
out altering the functionality of the test. To ensure the
purpose of the test remains unchanged, the CodeBLEU
metric is used. CodeBLEU effectively assesses syntactic
and semantic similarities between two sequences [16].

3. Test Method Name: Finally, the focus of UTGen is on
generating an understandable test method name. The
LLM is re-prompted until it produces a name unique to
the test suite.

Hallucinations within UTGen appear in two main forms;
the LLM may produce code that does not compile, e.g., add
extra parameters to a method call. Alternatively, it may gen-
erate lines that deviate from the original test case changing
the test’s purpose. UTGen’s original approach does not par-
ticularly attempt to decrease hallucinations, but does include
hallucination handling. Specifically, after a test case is gener-
ated, UTGen attempts to compile it. If any issues are raised
there, the LLM is re-prompted till a valid case is generated.
There is a budget for the maximum amount of re-prompts
for a test case; if it is reached, the test case is discarded. The
same process is followed when the generated test by the LLM
deviates from the EvoSuite test above a given threshold, eval-
uated by the enhanced parser or CodeBLEU according to the
generation phase.

2.3 Retrieval Prompt Engineering for Code
Generation

With Retrieval Prompt Engineering, we refer to any prompt
engineering technique where, according to the task to be ex-
ecuted, the prompt is adapted by including relevant infor-
mation retrieved from a resource. The additional informa-
tion may aid in grounding the LLM. Said resource may vary,
as different such grounding techniques may make use of a
database or previous LLM responses. In our case, the data is
retrieved from the source code to be tested and the execution
results of the tests last generated by UTGen.

Eghbali and Pradel [14] introduced De-Hallucinator, a
code completion technique that iteratively augments the
prompt by including API references in decreasing relevance
to the code to be completed. Contrary to our techniques, the
prompt here is augmented instead of altered after every failed
attempt of the LLM to generate the code. Additionally, a
point to consider is that De-Hallucinator executes a comple-
tion task, while UTGen generates new independent pieces of
code.

Nashid et al. introduce CEDAR [15], a systematic ap-
proach to retrieve the most effective code examples from a
pool, to include as part of a few-shot engineered prompt, that
follows the notion of learning from the desired task descrip-
tion, along with a few examples [17]. Similarly, Parvez et
al. [18] suggest REDCODER, a framework that incorporates
related code to the prompt for code generation and summa-
rization tasks. Both papers suggest methods that require a
database of code, while our suggestions retrieve information
only from the current code generation task to enhance the
prompts to the LLM.

3 The Proposed Approaches

The three-stage communication bridge with the LLM raises
the need for re-prompting, often due to hallucinations. This
makes the process more time-consuming and expensive. In
this research, we focus on the Post-Processing phase, specif-
ically in the enhancement of variable identifiers and com-
ments. This interaction phase is the only stage that may cause
a test to be reverted or stagnate enhancement and, therefore,
cause the severest drawbacks to understandability. The ra-
tionale behind this is that it represents the sole phase during
which the structure of EvoSuite test code can be modified,
unlike the test data and test method name phases.

3.1 Source code retrieval

We investigated whether incorporating source code in the
prompt can reduce the hallucination of LLMs in UTGen.
When researching what information we can retrieve for the
prompt, source code stood out due to its consistent reliabil-
ity and availability. Additionally, source code is inherently
relevant to the domain under test, as it is used to execute it.

The implementation was built on top of the latest UTGen
version. We retrieve the source code of all methods the unit
test generated by EvoSuite is calling, from the class under
test. Those methods are forwarded to the LLM server. For
the method code extraction, we used the source code analysis
library for Java ‘SPOON’ [19]. In the LLM server, the meth-
ods are incorporated into the prompt simply by stating that the
source code of the methods under test is available and plac-
ing it between [SRC_CODE]/[/SRC_CODE] tags. These tags
adhere to the existing prompt format for the Post-Processing
phase of UTGen. This integration process is illustrated in
Figure 3a.

Listing 1 showcases the template for the understandability
prompt of the base version of UTGen. In red is the adjust-
ment made to the base UTGen prompt to include the relevant
source code:

<<SYS>>
You are a Java developer optimizing JUnit tests for clarity.

<</SYS>>

Your task is to make a previously written JUnit test more understandable.

The returned understandable test must be between the [TEST] and [/TEST] tags

Add comments with the Given, When, Then Structure to the code which explain
what is happening and the intentions of what is being done.

Only Change variable names to make them more relevant leaving the test data
untouched.

Overall, it is the goal to have a more concise test which is both descriptive

as well as relevant to the context.
The previously written test to improve is between the [CODE] and [/CODE] tags

The source code snippet being tested is between the [SRC_CODE] and [/SRC_CODE
] tags.
[CODE]

Use SPOON to
retrieve source
code under test

1. Test Data
Improvement

information to the

B. Incorporate new
prompt

the LLM server

2. Post-
Processing

[Forward code to]

Incorporate
source code to
the prompt

Compilable test
case, error
and
line are sent to
the LLM server

3. Test Name
Suggestion

C ilation &
Verification

(b) Errors from latest test case

3. Test Name

Suggestion

Compilation &

Verification
(a) Source Code

Figure 3: Overview of UTGen incorporating information to the un-
derstandability prompt

(TEST CODE)

[/CODE]

[SRC_CODE]
(SOURCE CODE OF RELATED METHOD 1)
(SOURCE CODE OF RELATED METHOD 2)

[/ SR‘C‘_‘CODE]

Listing 1: Source Code Retrieval Approach Prompt

Error code retrieval We explored the effect of incorpo-
rating test compilation error codes to the understandability
prompt on the hallucination of LLMs in UTGen. This re-
search was motivated by the phenomenon that a large part
of the hallucinations source from the generation of non-
compilable code. The main idea of our approach is to de-
crease the number of re-prompts needed to make the code
compile by providing the error codes thrown by the previ-
ously generated test case to the LLM and asking it to fix those
directly.

Figure 3b showcases the overview of our approach. After
a generated test case fails to compile during UTGen’s ‘Com-
pilation & Verification’ phase, the diagnostics from the com-
pilation tool are gathered. All diagnostics contain an error
message, a source file at which the error was thrown, as well
as the line number where the error was thrown. We use the
source file and the line number to retrieve the exact code from
the test case that threw the error. The message, the erroneous
line of code, as well as the whole generated test case, are then
sent to the LLM server, which in turn incorporates them into
the prompt. The final prompt is shown in Listing 2, where we
emphasize the main changes from the base prompt in red.

<<SYS>>

You are a Java developer optimizing JUnit tests for clarity.
<</SYS>>
This is the prompt you received earlier in this role:

Your task is to make a previously written JUnit test more understandable. The
returned understandable test must be between the [TEST] and [/TEST]
tags.

Add comments to the code which explain what is happening and the intentions
of what is being done.

Overall, it is the goal to have a more descriptive test.

Unfortunately, the test you previously generated raised some errors.
The test case you previously generated is between the [CODE] and [/CODE] tags

The errors and the lines of code they were raised in are between the [ERRORS]
and [/ERRORS] tags.
With that information, try again,

**while fulfilling the task requirements

Tip: if there is a "cannot find symbol" error, then remove that line.
Add comments with the Given, When, Then Structure to the code which explain
what is happening and the intentions of what is being done.

Only Change variable names to make them more relevant leaving the test data
untouched.
Overall, it is the goal to have a more concise test which is both descriptive
as well as relevant to the context.
[CODE]
(PREVIOUSLY GENERATED TEST CODE)
[/CODE]
[ERRORS]
(ERROR 1)
(ERROR 2)
[/ERRORS]

Listing 2: Error Code Retrieval Approach Prompt

4 Experimental Setup

In this section, we describe the methodology of evaluation of
our approach. We investigated the following research ques-
tions:

RQ; Is it possible to reduce the hallucination of LLMs used
in UTGen during the Post-Processing phase, to min-
imise the need for re-prompting, using prompt engineer-
ing with source code retrieval?

RQ s it possible to reduce the hallucination of LLMs used
in UTGen during the Post-Processing phase, to min-
imise the need for re-prompting, using prompt engineer-
ing with error code retrieval?

The experiment setup was similar for both questions, while
the same metrics were measured to answer each question.

4.1 Hallucination Metrics

To identify and measure LLM hallucination during UTGen’s
test generation process for a given class under test, we defined
the following metrics:

Number of re-prompts: The number of times the LLM
needed to be re-prompted. This is identifiable through the log
files of the LLM server. Specifically, we count the number of
times the comment “Trying again with the same prompt” is
logged by the server.

Enhancement Stagnation rate: During the Post-
Processing phase we are investigating, part of the LLM’s role
is to add comments to the test code. If the LLM reaches the
maximum number of re-prompts allowed by UTGen without
generating a test that is similar to the EvoSuite test case ac-
cording to CodeBLEU, the comment “no comments added”
is added to the original test case instead. Therefore, for the
Enhancement Stagnation rate, we measure the percentage
of tests that contain the mentioned replacement comment in
their code.

Reverted Tests rate Similarly to Enhancement Stagnation,
there exists handling by UTGen for when the LLM fails to
produce compilable code within the set amount of prompts
allowed for the respective verification. In that case, the test
in the resulting test suite is rolled back to the original Evo-
Suite test case, and UTGen adds the comment “rollbacked to
EvoSuite” to it. For the Reverted Tests rate metric, we, there-
fore, measure the percentage of tests containing the comment
mentioned in their code.

Index Project Class
1 51 jiprof MethodWriter
2 86_at-robots2-j Robot
3 51 jiprof ClassReader
Re-Prompts # Enhancement Stagnation
1 9 14
2 40 6
3 80 14
Reverted Tests ~ # Tests
1 35 86
2 6 61
3 11 34

Table 1: Hallucination-Relevant Metrics of the High-Hallucination
Performing Classes

42 LILM

For our experiments, the prompt component of UTGen uses
the code-1lama:7b-instruct model from Meta [20] as
provided by Hugging Face 2. We selected this model because
the base version of UTGen also uses it; this allows for a more
reliable comparison with the benchmarks. Contrary to the
benchmarks, we decided to source and run it on Hugging Face
since it would allow faster execution of our experiments’ it-
erations.

4.3 Dataset

UTGen developers utilized the DynaMOSA dataset com-
posed of 346 non-trivial Java classes from 117 open-source
projects [21]. The classes are selected from four different
benchmarks, with the primary source being the 204 non-
trivial classes of SF110 [22]. We use the resulting test
suites and logs of UTGen’s execution on these projects as our
benchmarks for measuring LLM hallucination.

4.4 Subjects

Three classes were deemed the ideal number of classes to run
our experiment on, considering the tight time constraints of
our project. We selected our classes from two categories:
classes with many reverted tests and tests to which enhance-
ment stagnation occurred, therefore many problematic tests,
and classes with a low rate of the former two types of tests.
For the measurements required for the selection, the bench-
marks available from the evaluation of UTGen were used. An
overview of the chosen classes and their values for the hallu-
cination metrics are shown in Table 1.

Firstly we wanted to select two classes with a high number
of problematic test cases in the benchmarks. The reason we
prioritised this selection metric was the opportunity to inves-
tigate the application of our approaches to a wider range. This
allows us to observe to what extent our approaches are consis-
tent and not context-specific. To select the exact classes, we
ran a Python script that measured the number of reverted tests
and enhancement stagnation tests of all available classes from
the benchmarks. The mean and standard deviation of each of
the metrics were then calculated, and we isolated the classes

“https://huggingface.co/

in the third high standard deviation for both metrics. This left
us with four classes. To avoid prioritising either metric, we
randomly selected two classes from that set: MethodWriter
and ClassReader.

For our third experiment class, we selected one with low
rates of problematic tests compared to the total number of
tests in its test suite. The motivation for investigating this
class was to assess whether our approaches could lower the
understandability performance of classes with good bench-
mark results. Using a Python script, we measure the total
amount of tests and calculate the enhancement stagnation and
reverted test rates. By narrowing down the classes to only
ones with low rates of problematic test cases, we identified
ones with a relatively high number of total tests. The rea-
son was again to have a larger range on which to test our
approaches. Out of the resulting set, the Robot class was se-
lected.

4.5 Experimental Procedure

The experimental procedure specific to each RQ is described
in this section.

RQ1 We apply two versions of UTGen to our dataset: the
base version of UTGen originally developed and the one that
includes relevant source code to the LLM prompt. The two
versions are run on the same base EvoSuite-generated tests.
This means that only after the LLM is involved in improv-
ing understandability do our two test suites begin to differ.
It is important to note we do not run the test data improve-
ment and test method name phases for either experiment. We
then compare the two methods by measuring 1) the number
of re-prompts, 2) the enhancement stagnation rate, and 3) the
reverted test rate.

The same experiment is repeated thrice for each class for
us to generate more objective and unbiased results. We en-
sure that the three iterations use distinct randomness seeds
for EvoSuite’s search-based test generation. To compare the
hallucination performance between the two UTGen versions,
we analogise the average metrics values for each class over
all three iterations.

We also correlate these values to the code complexity of
each class, specifically by measuring the Lines Of Code
(LOC), Normalised Lack of Cohesion of Methods (*LOCM)
and Weighed Method Count (WMC) from the CK met-
rics [23]. To measure the code complexity metrics for each
class, we use the CK tool by Mauricio Aniche 3.

RQ2 We apply two versions of UTGen to our dataset: the
base version of UTGen originally developed and the one that
includes the errors thrown by the latest generated test to the
LLM prompt. The experimental process, setup and evaluation
follow the exact same methods as for RQ1.

5 Results

In this section, we present and discuss our experiment results
per research question.

*https://github.com/mauricioaniche/ck

5.1 RQ1: Source Code Retrieval

Figure 4 showcases the average values of the metrics from
three iterations of our experiment. The metrics are shown
for base UTGen and for the version that includes the source
code in the prompt, respectively. The aim of the research
was to see a decrease from the base version to our approach
for all of the number of re-prompts, reverted tests rate, and
enhancement stagnation rate.

During the three iterations of our experiment, UTGen suc-
cessfully generated a total of 1128 tests. Out of the total num-
ber of tests, 311 of them were reverted to the original Evo-
Suite test case, because the LLM did not achieve producing
compilable code within the allowed amount of tries. Addi-
tionally, a total of 276 tests of the resulting suites did not have
understandable comments, because the LLM did not manage
to produce understandable code that was similar enough to
the original EvoSuite test case, according to the CodeBLEU
metric.

The rates of problematic test cases are not uniform amongst
the three classes, as can be seen in Figure 4. Firstly,
ClassReader, one of the two classes with high problem-
atic test cases in the benchmarks, shows improvement in all
three areas when using our source code approach, with the
greatest decrease in the reverted tests rate, from almost 50%
to 10%. MethodWriter, the second highly problematic test
case class, has a decrease in reverted test rates but an increase
in both other metrics. It presents the greatest change in the
number of re-prompts, with our source code approach in-
creasing that measure by an average count of 111 re-prompts.
Finally, the Robot class, our third experiment class with a low
rate of problematic test cases compared to the complete test
suite in the benchmarks, shows an increase in all three met-
rics. Our approach increases LLM hallucinations for Robot
in all three areas, with the highest average change appearing
in the Enhancement Stagnation rate, with an increase of ap-
proximately 17%.

We also plot the correlation matrix between the increase in
hallucinations produced by the LLM on a class according to
the three metrics and the class’ code complexity in Figure 5.
We observe the strongest correlations with code complexity
to appear with the Reverted Tests Rate. For classes with a
high *LCOM, the base version of UTGen results in less re-
verted tests. Conversely, our approach decreases the reverted
test rate for classes with high LOC or WMC. Nevertheless,
for the same category of classes, the number of re-prompts is
lower with the base version of UTGen. There are no strong
positive or negative correlations concerning the increase in
enhancement stagnation rate.

5.2 RQ2: Error Code Retrieval

Figure 6 showcases the average values of the metrics from
three iterations of our experiment. We now compare base
UTGen with the version that includes the error codes in the
prompt in the case where the LLM produces non-compilable
code. Here, we aim to see a decrease in the reverted test rate
and the number of re-prompts since they are the metrics rele-
vant to compilation.

During the three iterations of this experiment, UTGen suc-
cessfully generated a total of 1138 tests. Of the total number

Number of Re-prompts

Base Prompt.
W Source Code Prompt

Average Count

ClassReader
Q
3 MethodWriter
a
Robot

Reverted Tests Rate

05
Base Prompt

04 = Source Code Prompt

Average Rate

ClassReader
Robot

o)
& MethodWriter
@

Enhancement Stagnation Rate

Base Prompt
= Source Code Prompt

Average Rate

Robot

o o
o &
ClassReader .

Q
@ MethodWriter
@

Figure 4: Comparison of Metrics between Base UTGen and Source
Code retrieval version

reverted_tests_rate

--0.25

--0.50

046 0.03 051
-075

v . i - -1.00
loc Icom wmc

number-of-re-prompts

Figure 5: Correlation Matrix of Code Complexity and Increase in
Average Hallucination Metrics

of tests, 398 were reverted to the original EvoSuite test case,
while a total of 118 tests of the resulting suites did not have
understandable comments.

Our error code retrieval approach shows considerably more
uniform results than when including source code in the
prompt. Overall, MethodWriter and ClassReader show
no or slight increase in all metrics of the average count of

Number of Re-prompts

@
=}

Base Prompt
| mmm Error code Prompt

o
=]

.

Base Prompt
W Error Code Prompt

Average Count
B ow ow &
- B8 8 8 8

Robot

ClassReader
MethodWriter

Class

Reverted Tests Rate

Average Rate
=4 o e e o
° [N Y

Robot

ClassReader
MethodWriter

Class

Enhancement Stagnation Rate

Base Prompt
EEE Error Code Prompt

Average Rate
s o o o o
s o = £ B
8 & s & B

ClassReader
Robot

)
© MethodWwriter
&

Figure 6: Comparison of Metrics between Base UTGen and Source
Code retrieval version

re-prompts and average rates of reverted tests and enhance-
ment stagnation. Nevertheless, with our approach, there are
fewer hallucinations regarding the number of re-prompts and
reverted test rate when generating tests for Robot, compared
to base UTGen. Especially for the former, we see the greatest
difference between our two approaches over our entire exper-
iment; the average decrease in the number of re-prompts from
base UTGen to our error code retrieval version for Robot is
approximately 34.3%.

We correlate the increase in hallucinations the LLM en-
counters during generating tests for a given class and the
class’ code complexity in Figure 7. We observe strong corre-
lations between class complexity and the increase in number
of re-prompts, as our approach appears to benefit classes with
a high *LCOM. The positive correlation between high WMC
and LOC and the number of re-prompts indicates that base
UTGen is the favoured version for such classes. The same
correlations apply with the reverted test rate but to a weaker
extent. Again, we observe no strong positive or negative cor-
relations concerning the increase in enhancement stagnation
rate.

6 Responsible Research

In this section, we discuss the ethical considerations taken
into account while conducting our research. Additionally, we

reverted_tests_rate

Y
ol
g
E

Figure 7: Correlation Matrix of Code Complexity and Increase in
Average Hallucination Metrics

concern the possible ethical implications our approaches may
introduce.

6.1 Reproducibility

For the reproducibility of our research, we provide a replica-
tion package which includes: the implementation of our two
approaches (UTGen with source code and error code retrieval
grounding), our resulting test cases and the server logs from
their generation, and the scripts used to measure our metrics.

The replication package has been conducted adhering to
the FAIR framework [24]. All information is findable since
the data used for our experiments are publicly available as
part of the DynaMOSA dataset [21]. The base UTGen-
generated results used as our benchmarks are freely available
as part of our replication package. Our implementation is ac-
cessible as we require no authentication for the accessing of
our replication package. Relevant data is grouped in common
folders with a common format, allowing for their easy inter-
action, making our data interoperable. Finally, we ensure the
reusability of our package by formulating a clear folder struc-
ture with an understandable file naming system that allows for
the identification of relevant data necessary for reuse.

6.2 Possible Ethical Implications

There are possible ethical implications concerning our re-
search that should be taken into consideration.

LLM Training Set There may be bias sourced from the
training set of the LLM. For that reason, we decided to con-
duct our measurements to evaluate our approaches with an
open-source LLM.

Information Retrieval Retrieval techniques allow for the
input of external information in the prompt used by UTGen to
enhance test understandability. Especially in the source code
retrieval approach, we must note that a malicious party can
include malicious content in the prompt through the source
code files and manipulate the LLM response.

Privacy All of the EvoSuite generated test cases, the source
code and the error codes may comprise sensitive information

of UTGen’s users. It shall be considered that any data that is
part of the prompt is shared with the LLM.

7 Discussion

In this section, we discuss our results, possible future im-
provements, and the limitations faced during our research.

7.1 Revisiting the Research Questions

RQ1: Is it possible to reduce the hallucination of LLMs
used in UTGen during the Post-Processing phase, to min-
imise the need for re-prompting, using prompt engineering
with source code retrieval? When comparing our source code
retrieval approach to the base version of UTGen, the change
in hallucination varies. We observe that our approach de-
creases the reverted test rate for classes with low *LCOM. We
hypothesize that supplying the LLM with source code directs
its focus towards generating compilable code, thereby reduc-
ing the rate of reverted tests. Additionally, the enhancement
stagnation rate increases for classes with different complex-
ity and benchmark performance. We hypothesize that this
phenomenon may result from the same shift in focus towards
producing compilable code; the LLM prioritizes compilation
over improving existing test cases. Consequently, the similar-
ity scores by CodeBLEU decrease, resulting in high enhance-
ment stagnation rates.

We analyzed the LLM’s mentioned shift in focus towards
producing compilable code and determined it may be related
to the increased length of the input prompt. LLMs experi-
ence accuracy limitations with longer prompts because the
ability to batch multiple examples from their training set and
produce a response is constrained by limited available mem-
ory [25]. A possible avenue to explore is the switch to a
model trained on a higher number of parameters, such as
the code-1lama:70b-instruct model [20]. Such mod-
els are likely to provide more appropriate responses to longer
prompts due to their increased capacity. Additionally, we
recommend further research on prompt engineering to assess
the possibility of constructing a more concise prompt that in-
cludes source code while remaining focused on improving an
initial given test case. A possible route to explore is limiting
the provided source code to a single method.

RQ2: Is it possible to reduce the hallucination of LLMs
used in UTGen during the Post-Processing phase, to min-
imise the need for re-prompting, using prompt engineering
with error code retrieval? We compared base UTGen and our
version that includes error codes in the prompt on their hal-
lucination performance while attempting the understandabil-
ity enhancement of the same EvoSuite-generated test suite.
The experiment resulted in very similar average performance
by the two UTGen versions, with the exception of our ap-
proach minimising the number of re-prompts for classes with
high *LCOM, compared to base UTGen. We investigated the
LLM server logs to see how it behaves after receiving the
prompt with the previously generated test case and the com-
pilation errors it generated. We observed that a common oc-
currence is for the LLM to mention in the text response that
the issues have been resolved but still provide the erroneous
test code.

We hypothesize that the issue arises from the high com-
plexity of our prompt, which contains additional information
beyond what the LLM directly requires to fix the generated
test case. Specifically, we include information about the ini-
tial prompt to enhance the understandability of a given Evo-
Suite test case. We recommend that future researchers adopt
our approach using a simplified prompt that solely requests
the correction of a non-compilable test case based on the re-
trieved errors.

Another area of interest is examining the similarity be-
tween the final test suite generated by our approach and the
initial EvoSuite test suite using CodeBLEU. In our imple-
mentation, the response to the prompt that includes the errors
is not directly compared to the EvoSuite test case. Instead, we
use CodeBLEU to compare the new response to the previous
LLM-generated test case. This decision aims to maintain a
concise prompt and aligns with the UTGen implementation,
which checks CodeBLEU similarity on the LLM server. We
therefore recommend further investigation to assess the effec-
tiveness of the final test suite.

7.2 Limitations

Here, we discuss our general limitations while conducting
our experiments and suggest how future researchers can avoid
them.

Lack of Documentation UTGen is a tool built directly on
the EvoSuite source code, comprising over 3000 Java source
code files. Additionally, it lacks proper documentation for
each functionality, making it challenging to integrate our ap-
proaches since the exact means of its functionality are not
immediately transparent.

Time needed for Test Generation The initial
approach to executing our experiments used the
code-1lama:7b-instruct model provided by OIl-
lama #. The execution of a test suite generation for one Java
class by UTGen with this model had an average duration of
8 hours on the available computer of a 2,3 GHz 8-Core Intel
Core 19 processor. This led to the decision to narrow the

experiments down to three classes.

Incompatibility of Ollama model with GPU Even though
UTGen successfully completed its process on the available
computer with the local Ollama version of the LLM model,
the results generated by that configuration were deemed in-
valid. The reason for that is the incompatibility of the men-
tioned version of the model with the available computer’s
graphical processing unit (GPU), AMD Radeon Pro 5500M.
Ollama could only run on the CPU, often failing to meet time-
out constraints due to limited resources and eventually pro-
ducing unrealistic results.

Financial Limitations The GPU incompatibility and the
extensive time needed for execution led to our decision to use
an external version of the model from Hugging Face. This
reduced the time needed to generate a test suite for a single
class to an average of 1 hour. The number of classes needed
to remain at three due to the high financial cost of using Hug-
ging Face and our limited resources.

*https://https://ollama.com/

Measuring Number of Re-Prompts The number of re-
prompts is a crucial metric we employed in our research due
to its relevance to our goal of reducing re-prompts. However,
the manner in which UTGen’s LLM server handles error log-
ging meant that the message we used to count re-prompts was
not always pertinent to LLM hallucinations. Specifically, the
same message was printed in the event of a timeout while
awaiting the LLM response, making the two events indistin-
guishable. We advise future researchers to refine UTGen’s er-
ror logging by creating a message that specifically addresses
hallucinations detected after the CodeBLEU evaluation or the
failure of the generated test case to compile.

8 Conclusions and Future Work

UTGen aims to enhance the understandability of automati-
cally generated test suites by utilizing LLMs. The primary
obstacle to achieving this effectively and efficiently is LLM
hallucinations, where the LLM may produce code that is not
compilable or significantly diverges from the initial test case
UTGen intended to improve. To address this, we propose
two approaches to prompt engineering that incorporate infor-
mation retrieval, where the additional information can better
guide the LLM towards a valid response. These approaches
involve including the source code under test or the compila-
tion errors generated by the latest LLM-produced test case in
the prompt.

We evaluated the effectiveness of our approaches by com-
paring the hallucination performance to the base version of
UTGen while attempting to enhance the understandability of
the same EvoSuite test suite. The comparison was performed
for three Java classes that have caused high hallucinations
in the past. Including relevant source code in the prompt
shows an improvement in the reverted test rate for classes
with high LOC and WMC, while base UTGen performs better
for ones with high *LCOM. On the other hand, adjusting the
prompt by incorporating error codes minimizes the number
of re-prompts and the reverted test rate for classes with high
*LCOM. Still, classes with high LOC and WMC hallucinate
less with base UTGen.

Further research shall explore how our approaches may be
adapted to minimize the need for re-prompting more effec-
tively. We recommend research in prompt engineering with a
focus on making the prompts of either approach more concise
and concentrated on the goal to be achieved. Additionally, we
suggest the use of an LLM trained on more parameters for
more accurate responses.

References

[1] Shalini Joshi and Indra Kumari. Analyses of Software
Testing Approaches. In 2022 International Interdis-
ciplinary Humanitarian Conference for Sustainability
(IIHC), pages 1276-1281, November 2022.

[2] Kent Beck. Test-driven Development: By Example.
Addison-Wesley Professional, 2003. Google-Books-1D:
CUISAQAAQBALI.

[3] Shaukat Ali, Lionel C. Briand, Hadi Hemmati, and Ra-
jwinder Kaur Panesar-Walawege. A Systematic Re-
view of the Application and Empirical Investigation of

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

Search-Based Test Case Generation. [EEE Transac-
tions on Software Engineering, 36(6):742-762, Novem-
ber 2010.

Andrea Arcuri. An Experience Report On Applying
Software Testing Academic Results In Industry: We
Need Usable Automated Test Generation. Empirical
Software Engineering, 23(4):1959-1981, August 2018.
arXiv:1901.03865 [cs].

Gordon Fraser and Andrea Arcuri. EvoSuite: automatic
test suite generation for object-oriented software. In
Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of soft-
ware engineering, ESEC/FSE "11, pages 416419, New
York, NY, USA, September 201 1. Association for Com-
puting Machinery.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Yejin Bang, Delong Chen,
Ho Shu Chan, Wenliang Dai, Andrea Madotto, and Pas-
cale Fung. Survey of Hallucination in Natural Lan-
guage Generation. ACM Computing Surveys, 55(12):1-
38, December 2023. arXiv:2202.03629 [cs].

Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carig-
nan, Richard Edgar, Nicolo Fusi, Nicholas King,
Jonathan Larson, Yuanzhi Li, Weishung Liu, Rengian
Luo, Scott Mayer McKinney, Robert Osazuwa Ness,
Hoifung Poon, Tao Qin, Naoto Usuyama, Chris White,
and Eric Horvitz. Can Generalist Foundation Models
Outcompete Special-Purpose Tuning? Case Study in
Medicine, November 2023. arXiv:2311.16452 [cs].

BSc-Thesis-
Available:

Angelika ~ Mentzelopoulou.
LLM-Hallucination, June 2024.
https://doi.org/10.5281/zenodo.12511024.

Jan Dirk Blom. A Dictionary of Hallucinations.
Springer International Publishing, Cham, 2023.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian
Han, Qizhang Feng, Haoming Jiang, Bing Yin, and
Xia Hu. Harnessing the Power of LLMs in Prac-
tice: A Survey on ChatGPT and Beyond, April 2023.
arXiv:2304.13712 [cs].

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen, Wei-
hua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu.
A Survey on Hallucination in Large Language Mod-
els: Principles, Taxonomy, Challenges, and Open Ques-
tions, November 2023. arXiv:2311.05232 [cs].

Vipula Rawte, Prachi Priya, S. M. Towhidul Islam Ton-
moy, S. M. Mehedi Zaman, Amit Sheth, and Ami-
tava Das. Exploring the Relationship between LLM
Hallucinations and Prompt Linguistic Nuances: Read-
ability, Formality, and Concreteness, September 2023.
arXiv:2309.11064 [cs].

Nikitha Rao, Kush Jain, Uri Alon, Claire Le Goues,
and Vincent J. Hellendoorn. CAT-LM: Training Lan-
guage Models on Aligned Code And Tests, October
2023. arXiv:2310.01602 [cs].

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Aryaz Eghbali and Michael Pradel. De-Hallucinator:
Iterative Grounding for LLM-Based Code Completion,
January 2024. arXiv:2401.01701 [cs].

Noor Nashid, Mifta Sintaha, and Ali Mesbah. Retrieval-
Based Prompt Selection for Code-Related Few-Shot
Learning. In 2023 IEEE/ACM 45th International Con-

ference on Software Engineering (ICSE), pages 2450—

2462, May 2023. ISSN: 1558-1225.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. CodeBLEU: a Method for Au-
tomatic Evaluation of Code Synthesis, September 2020.
arXiv:2009.10297 [cs].

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. Pre-train,
Prompt, and Predict: A Systematic Survey of Prompting
Methods in Natural Language Processing, July 2021.
arXiv:2107.13586 [cs].

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat
Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Re-
trieval Augmented Code Generation and Summariza-
tion, September 2021. arXiv:2108.11601 [cs].

Renaud Pawlak, Martin Monperrus, Nicolas Petitprez,
Carlos Noguera, and Lionel Seinturier. SPOON:
A library for implementing analyses and transfor-
mations of Java source code. Software: Practice
and Experience, 46(9):1155-1179, 2016. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2346.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu
Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin,
Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code Llama:
Open Foundation Models for Code, January 2024.
arXiv:2308.12950 [cs].

Annibale Panichella, Fitsum Meshesha Kifetew, and
Paolo Tonella. Automated Test Case Generation as a
Many-Objective Optimisation Problem with Dynamic
Selection of the Targets. IEEE Transactions on Soft-
ware Engineering, 44(2):122—-158, February 2018.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya
Lyubarskiy, Shubho Sengupta, Shin Yoo, and Jie M.
Zhang. Large Language Models for Software Engi-
neering: Survey and Open Problems, November 2023.
arXiv:2310.03533 [cs].

Talha Burak Alakus, Resul Das, and Ibrahim Turkoglu.
An Overview of Quality Metrics Used in Estimating
Software Faults. In 2019 International Artificial Intel-
ligence and Data Processing Symposium (IDAP), pages
1-6, September 2019.

Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan
Aalbersberg, Gabrielle Appleton, Myles Axton,

[25]

Arie Baak, Niklas Blomberg, Jan-Willem Boiten,
Luiz Bonino da Silva Santos, Philip E. Bourne, Jildau
Bouwman, Anthony J. Brookes, Tim Clark, Merce
Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds,
Chris T. Evelo, Richard Finkers, Alejandra Gonzalez-
Beltran, Alasdair J. G. Gray, Paul Groth, Carole Goble,
Jeffrey S. Grethe, Jaap Heringa, Peter A. C. °t Hoen,
Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok,
Scott J. Lusher, Maryann E. Martone, Albert Mons,
Abel L. Packer, Bengt Persson, Philippe Rocca-Serra,
Marco Roos, Rene van Schaik, Susanna-Assunta
Sansone, Erik Schultes, Thierry Sengstag, Ted Slater,
George Strawn, Morris A. Swertz, Mark Thompson,
Johan van der Lei, Erik van Mulligen, Jan Velterop,
Andra Waagmeester, Peter Wittenburg, Katherine
Wolstencroft, Jun Zhao, and Barend Mons. The FAIR
Guiding Principles for scientific data management and
stewardship. Scientific Data, 3(1):160018, March 2016.
Publisher: Nature Publishing Group.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, b ukasz
Kaiser, and Illia Polosukhin. Attention is All you Need.
In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

	Introduction
	Background & Related Work
	LLM Hallucinations
	UTGen
	Retrieval Prompt Engineering for Code Generation

	The Proposed Approaches
	Source code retrieval

	Experimental Setup
	Hallucination Metrics
	LLM
	Dataset
	Subjects
	Experimental Procedure

	Results
	RQ1: Source Code Retrieval
	RQ2: Error Code Retrieval

	Responsible Research
	Reproducibility
	Possible Ethical Implications

	Discussion
	Revisiting the Research Questions
	Limitations

	Conclusions and Future Work

