
Operator Learning for Loss Parameter
Estimation in Dredging

Operations

Marius Kielhöfer

Operator Learning for Loss

Parameter Estimation in

Dredging Operations

To optimize the suction production on Trailing Suction Hopper

Dredgers.

Marius Kielhöfer

A thesis presented for the degree of

Master of Applied Mathematics, to be defended publicly on Thursday October

23, 2025.

Student number: 5125502
Project duration: September 30, 2024 — October 23, 2025
Thesis committee: A. Heinlein, TU Delft, Supervisor

G. Jongbloed, TU Delft
M. van Gijzen, TU Delft

Operator Learning for Loss Parameter

Estimation in Dredging Operations

Marius Kielhöfer

Abstract

Accurate modeling of vacuum dynamics in Trailing Suction Hopper Dredgers

(TSHDs) is critical for optimizing suction production and mitigating sensor

anomalies. This study proposes a data-driven, physics-guided operator learn-

ing framework to estimate the vacuum pressure loss parameter θ, a variable

derived from physical principles in dredging operations. Leveraging a modified

Deep Operator Network (DeepONet), we introduce attention-based interactions

between branches and the trunk network to capture complex dependencies in

the sensor data. A local trunk mechanism is introduced to preserve temporal

locality across dredging trips.

Due to the nature of a lagging density sensor, we integrate a real-time rolling

mean error correction mechanism. This addresses training biases for refined

predictions, as well as offering an anomaly detection mechanism. The model is

trained and validated on real-world vessel data, including synthetic simulations

of vacuum processes, and evaluated using trip-wise and global metrics. Exper-

imental results show that the proposed architecture significantly outperforms

the rolling mean baseline setups and the classical DeepONet across accuracy

metrics such as the root mean square error (RMSE).

This work demonstrates the value of combining domain knowledge with op-

erator learning techniques in maritime engineering. The proposed framework

offers a scalable framework, allowing application across entire fleets for real-time

suction production estimation and anomaly detection, contributing to efficient

dredging operations.

1

Foreword

This project has taken me a little over a year to complete, longer than

anything else I have consistently worked on. There were many bumps on the

road and I would not have been able to overcome those bumps without the help

of my supervisors around me. First of all I would like to thank my supervisors

from Boskalis: Oscar and Willem. Thank you for offering me this project, the

weekly meetings, and all the help you provided along the way. From Boskalis I

also wish to express my gratitude to the domain experts: Roland Higler, Arno

Nobel and Chris van den Berg. I would have been very lost without you! I

would also like to extend my thanks to my daily TU Delft supervisor, Alexander.

Thank you for guiding me throughout the thesis, giving constant (and a lot of)

feedback, and making the project an overall enjoyable experience. Finally, thank

you to my girlfriend Emma for always believing in me and encouraging me to

believe in myself. I could not have completed this project without the help of

everyone involved!

Marius Kielhöfer

Rotterdam, October 2025

Note on artificial intelligence

Portions of the wording and explanations in this thesis were refined with

the assistance of artificial intelligence, more specifically, ChatGPT, to improve

clarity and readability of the report.

2

Contents

1 Introduction 5

2 Application Domain 7

2.1 Dredging . 7

2.2 Vacuum process . 11

2.3 Suction production optimization 14

2.4 Delayed density sensor . 16

3 Related Work 20

4 Methodology 24

4.1 Technical framework . 24

4.2 Model architecture . 42

4.3 Local trunk . 48

4.4 Corrector model . 50

5 Data & Implementation 54

5.1 Data . 54

5.2 Implementation . 69

6 Results 81

6.1 Modified DeepONet performance 81

6.2 Performance with corrector model 88

6.3 Sensitivity analysis . 93

6.4 Evaluation on real data . 99

6.5 Suction production simulation . 107

7 Conclusion 111

8 Future Research 113

3

A Testing Relations 126

A.1 Final data set . 131

B Classical DeepONet and MIONet Results 133

C Results For Every Trip 140

4

1 Introduction

As per the Boskalis 2023 sustainability report [5], the dredging and inland

infra division accounted for 529,000 metric tons of carbon dioxide emissions in

2023. To combat these high emissions, control systems are being implemented

on dredging vessels. These control systems are estimated to save a minimum 5%

of emissions per dredging vessel, which could save about 25,000 metric tons of

emissions every year. This would not only result in a 5% increase in production

because the saved fuel can be used for other purposes, but also make the process

more sustainable. The crews on the dredging vessels however, do not yet make

much use of the control systems yet.

The control systems operate through sensor readings. Since the sensors are

known to be faulty at times, the crews onboard do not trust the exact readings

(O. van de Ven, personal communication, November 2024). Boskalis vessels can

operate in harsh conditions from storms and strong currents, causing damage

and misalignment of the sensors. This in turn causes the unwillingness for the

crews to operate the control systems.

The focus of the report will be on the vacuum process and the sensors related

to it. The goal of the report is double fold. First, we set up a system ourselves

with the aim of increasing production and reducing emissions. The second aim

is that by implementing this system, several sensors are checked in the process,

thus improving the trustworthiness of the sensors.

The system that we implement consists of estimating a pressure loss param-

eter: θ. According to dredging literature [57], we know what variables this loss

parameter depends on. These variables are all logged in the sensor data. The

training and testing datasets were generated by defining relations that simulate

the behavior of the loss parameter θ. This way, we avoid having to rely on

unreliable sensor data, and can work in a controlled environment.

We set up an operator learning model that maps multiple input variables,

such as the mixture velocity, observed over a time window of length w to the

loss parameter θ. More formally, given m input variables (f1, . . . , fm) defined

5

over time steps (tsk , . . . , tek) length w, the operator maps:

f1(tsk , . . . tek) . . . fm(tsk , . . . , tek)→ θ(f1, . . . , fm)(tsk , . . . , tek)

This operating learning model is then trained and tested on both simulated and

real life noisy data.

Throughout this report, we begin by introducing the dredging process with

a focus on relevant onboard sensors, followed by a detailed examination of the

vacuum process. A review of related literature on sensor modeling in dredg-

ing contexts is then provided in section 3 to motivate the research questions.

We then introduce the concept of operator learning and present our proposed

architecture: a modified DeepONet designed to capture complex temporal and

cross-sensor interactions. This section also discusses the corrector model and

sensor outlier detection methodology. In section 5, the structure of the dataset

and its integration into the architecture, along with a description of the training

procedures are discussed. Finally, the model’s performance results are presented

and analysed, after which the report concludes.

6

2 Application Domain

In this section, we explain all the necessary details about dredging. We

showcase how a dredging vessel works, which sensors are important, and where

they are located. We go into the specifics of the vacuum process and suction

production optimization.

2.1 Dredging

Dredging is an engineering process that involves removing and relocating

debris and other materials from the bottom of oceans. Dredging is crucial in

numerous industrial and environmental applications, including land reclamation

and infrastructure development. By clearing and relocating sediment, dredging

creates new opportunities for construction and enhances the usability of aquatic

environments.

In land reclamation, dredged material is used to create or expand land areas,

particularly in coastal and urban regions. This method is widely employed to

address the growing demand for space in densely populated areas. In addition

to land reclamation, dredging is integral to the construction of harbors and

airports, especially those built on or near water. By preparing underwater

foundations and ensuring safe waterways, dredging enables the establishment of

essential transportation.

2.1.1 Trailing Suction Hopper Dredger

There are different types of vessels associated with dredging, all of which

serve different purposes. For this research and the report, we focus on the

Trailing Suction Hopper Dredger (TSHD). A TSHD is a specialized type of

dredging vessel designed for the removal and transportation of material from

the seabed. They are used in practically all dredging operations. The primary

advantage of a TSHD is its ability to efficiently collect and transport large

volumes of dredged material over long distances.

7

The working mechanism of a TSHD involves several key components. The

dredger is equipped with one or more suction pipes, each fitted with a draghead

at the seabed end. As the vessel moves forward, the draghead is lowered onto the

seabed and sediment is loosened and ”dredged” up through the suction pipe by

powerful pumps; see fig. 1. The dredged material is then transported into one or

more hoppers: a large storage compartment within the vessel. Once the hoppers

are full, the TSHD can transport the dredged material to the designated site.

The material can be discharged in various ways, including through bottom doors

that open to release the sediment, or by using pumps to offload the material

through a pipeline. Some TSHDs are also equipped with rainbow discharge

capabilities, allowing them to spray the dredged material over specific areas.

Figure 1: Image of a TSHD dredging sand. The draghead is dragging across the
seabed to pick up the sand, this is then dredged up by the dredegepump. The
material is stored as a mixture of sand and water in the hoppers of the vessel,
ready to be offloaded when all the hoppers are full. Taken from [4].

8

2.1.2 Sensor deployment overview

This research focuses on specific processes in a dredging ship, and the sensors

related to these processes.

During the dredging process, a pump is mounted on the side of the vessel

to extract the loosened material. The system operates as a centrifugal pump,

as illustrated in fig. 2. Its lower section generates the suction needed to lift

the mixture from the seabed, while the upper section transports the dredged

material into the hoppers.

Figure 2: Dredgepump diagram with location of sensors and components. The
red arrows represent the flow of the slurry through the dredgepump. The blue
arrow shows the directions of the jet pumps, which support the dredgepump.

In front of the vacuum pump is the vacuum sensor. The vacuum sensor mea-

sures the pressure in the lower part of the pipe, which dredges up the material.

The sensors that keep track of the flow are the mixture velocity meter and the

density meter. The mixture velocity sensor is located in the upper part of the

9

dredgepump. As the name suggests, this sensor measures the velocity of the

material that passes through it. Similarly, the mixture density sensor measures

the density of the mixture passing through the dredgepump.

The jet pump nozzles on the draghead are used to assist the dredging process

by loosening seabed material before it enters the suction mouth. When acti-

vated, these high-pressure water jets cut through soil layers, reducing suction

resistance and improving the efficiency of material intake. The jet pump pres-

sure is continuously measured and can be manually adjusted, allowing control

over the cutting intensity depending on soil conditions.

Some other important sensors include the draught and hopper sensors. The

draught sensor checks the draught of the ship, which represents how deep in the

water it is. This is important as it is used in calculations for adjustments. The

hopper sensors signal how much volume is in the hopper. These are significant

because you need to know when the hopper can take its maximum capacity to

reduce the total amount of trips you have to take. Finally, we also have the

change in pressure draghead sensor, as illustrated in fig. 2. This sensor measures

the pressure changes over the draghead.

Sensor failures in dredging can lead to serious consequences such as cavi-

tation and sedimentation. Cavitation occurs when vacuum pressure drops too

low, forming vapor bubbles that collapse and damage the pump. Sedimentation

happens when the mixture velocity is too low, causing solid particles to settle in

the pump, leading to blockages, abrasions, and reduced efficiency. Both issues

can arise from inaccurate sensor readings like overreported velocity or density,

which may lead to incorrect adjustments to pump operation, ultimately decreas-

ing performance and increasing emissions.

A sensor can fail for different reasons, every sensor has a lifespan. Some

may be in working condition for six months, whilst others can last for up to

two years (O. van de Ven, personal communication, December 2024). This also

depends on the conditions that the sensors are in. A sensors lifespan can be cut

short due to harsh environmental conditions, such as storms. A pressure sensor

could fail due to high pressures and get permanently malformed. Corrosion and

10

contamination can also cause damage on sensors. Over time, sensors also need

to be recalibrated to make sure they work properly. In some, there could also

be particles stuck on top or inside, for example sand grains. This can affect

the sensor readings. After every trip, the dredgepump is flushed out to clear

out debris from the pump which should reset the sensors. This is, however,

not always the case, with some debris still influencing sensor readings after the

cleansing.

2.2 Vacuum process

The system that we focus on monitors the vacuum process, and aims to

increase productivity. This system uses the sensor signals of the velocity, vacuum

pressure, density, and draught sensors. There is a governing equation that gives

a prediction of the vacuum based on these inputs.

From a dredging handbook provided by Boskalis [57] and internal discus-

sions, the vacuum formula whilst dredging is presented as:

V =

(
1 + α+ ξ + λ

L

D

)
v2

2
ρm + (d1 − d2)ρmg − d1ρwg (1)

where we have the variables defined as:

ρm: Mixture density (kg/m3)

ρw: Water density (kg/m3)

L: Length of pipe (m)

D: Diameter of pipe (m)

v: Velocity in pipe (m/s)

d1: Water depth (m)

d2: Pump depth (m)

g: Gravitational acceleration (m/s2)

α: Entrance loss factor (dimensionless)

ξ: Sum of losses due to curves, hoses, etc. (dimensionless)

λ: Resistance factor in pipeline (dimensionless)

11

The formula shows that the pressure in the system must be in equilibrium.

The pressure from the vacuum (left hand side) must be equal to the pressure

from the right hand side. This formula can be split up in three different sections.

The first part of the right hand side:
(
1 + α+ ξ + λ L

D

)
describes the pressure

losses in the suction pipeline.

The entrance loss factor α is a parameter that measures the losses when

the mixture enters through the draghead, at the suction mouth. When the

draghead is buried deep in the soil, more pressure is needed to dredge the

material. In contrast, when the draghead is loosely hovering above the soil,

there is a weaker pull on the soil. The losses that incur depending on how the

draghead is positioned is represented by this α. Whilst dredging, this factor

fluctuates due to the repositioning of the draghead within the trip. It can also

be that debris gets stuck within the draghead, affecting the parameter value.

The variable ξ represents the losses arising from the design of the pump.

If the pump has more bends and curves, then there would be a larger loss in

the pressure. This parameter can be estimated once and is then assumed to be

constant the entire time, since it is solely based on the design of the vessel.

The resistance factor λ is also called the friction factor, this measures the

resistance from the pipeline. The friction factor is based on the Darcy-Weissbach

equation [57]:

∆h = λ
Lv2

2Dg

Where ∆h is the friction loss in the head.

This friction factor also remains constant after it has been estimated once.

The variable could gradually change over time, since the more the pump is used,

the more damage there may be to the inside walls. This could cause a different

resistance.

The next part of the equation: (d1−d2)ρmg, calculates the pressure required

to lift the mixture from the draghead at depth d2, to the pump level at depth

d1. The final part of the equation, d1ρwg, represents the hydrostatic pressure

12

of the surrounding seawater at the draghead. The surrounding water pressure

assists in driving the mixture into the suction pipe. As a result, the pump only

needs to overcome the remaining pressure difference required to lift the mixture,

after taking the pressure losses associated with α, ξ, and λ in account.

The majority of these variables such as the length and diameter of the pipes

will always remain constant on a ship. Variables such as g remain the same no

matter which circumstances, whilst the fluctuating factors such as the mixture

density (ρm) are based on the sensor reading of that value. The variables we

focus on are α, ξ, and λ.

If we solely focus on what happens at the draghead, there is another equation

that describes the pressure equilibrium at this area (C. van den Berg, personal

communication, February 2024):

∆PHead = ρwg(d1 − d2)− 1

2
ρmv

2(1 + α)− hheadρmg (2)

Where ∆PHead signifies the pressure changes at the draghead, and hhead

is the height of the draghead with respect to the pipe. The reason why this

variable is so important is because it has a direct relation with α, which is the

parameter that fluctuates the most out of α, ξ, and λ.

To prevent future issues with ill-posed problems (non-unique solutions), we

assign a new variable. We define: θ =
(
1 + α+ ξ + λ L

D

)
, where θ is dependent

on the depths and lengths of the pipes in different vessels. In practice, we

assume that only α changes over time, while the other terms remain constant

per vessel. The potential ill-posedness arises because increases in α, ξ, or λ L
D

yield mathematical indistinguishable effects; all enter the equation in the same

way. Consequently, if they were to be estimated separately, multiple parameter

combinations could reproduce the same model response, resulting in non-unique

solutions. By combining them into a single parameter θ, this reparameterization

removes ambiguity and ensures that the model is well-posed. Then, eq. (1)

simplifies to:

13

V = θ
v2

2
ρm + (d1 − d2)ρmg − d1ρwg (3)

Throughout this research, we aim to find a good estimate for θ. This way,

we can make predictions and give insight to the accuracy of the sensors. Hav-

ing accurate predictions for θ allows for the calculation of the optimal suction

production point in real-time.

2.3 Suction production optimization

To diminish emissions, as well as increase productivity, we optimize the

suction production process. We are given an equation to estimate the production

on a TSHD vessel, which is given by [59]:

Prod =
ρm − ρw
ρs − ρw

π

4
D2v ≃ K (ρm − ρw) v (4)

For ρm, ρw, ρs being the mixture, water and situ densities, respectively. The

variable D is the diameter of the pipe, whilst v is the mixture velocity and

K ∈ R is a constant. Whilst the water density and the diameter of the pipe

always remain the same, the in-situ density does not fluctuate a lot. The in-

situ density refers to the density of the mixture that is being dredged before it

enters the draghead, this is commonly taken to be 2000kg/m3. We introduced

K = 1
ρs−ρw

π
4D

2 to capture all the constant terms.

The typical production curve is shown in fig. 3. This shows a parabolic

type relation between the mixture velocity and the production for two different

vacuum pressures. The density lines in the figure indicate at which part of the

curve the dredging is being done. Where, if the mixture density is lower than

the optimum, it can be increased by adjusting the draghead, for example. Using

the vacuum equation together with a prediction for θ, we can also determine

where on the curve the dredging process is at that moment, and what has to

be done to dredge closer to optimal production. It is important to note that a

higher vacuum represents a higher optimized production, but also runs a higher

14

risk of cavitation occurring at high pressures.

Figure 3: Production curve for varying flows, mixture densities and two different
vacuums. Note that these curves are for illustrative purposes. In reality, the
measured curves exhibit more variability and irregularities than the smooth
representation shown here.

As can be seen in eq. (4) for production, there does not seem to be any

quadratic behavior that causes this curve; the relation looks linear. The curve

resembles a quadratic relation because we combine eq. (4) together with the

vacuum formula (eq. (3)).

Rearranging the vacuum formula (eq. (3)) for the mixture density:

ρm(V, d1, v, θ, d2) =
V + d1ρwg

θv2

2 + (d1 − d2)g

Plugging this into our production equation (eq. (4)) we end up with:

Prod
(
m3/s

)
= K (ρm(V, d1, v, θ, d2)− ρw) v (5)

By substituting the vacuum formula into the production equation, we obtain

a formulation in which the mixture density is expressed as a function of the

15

vacuum, pipe depths, velocity, and θ. This allows the production to be written

in terms of measurable and predictable quantities, rather than relying on delayed

density measurements (which is explained in the next section).

In practice, this provides a two-step procedure. First, for a given predicted

value of θ, a set of production curves can be constructed for different velocities.

These curves represent the expected production levels, and identify the optimal

production point. Second, by applying the same predicted θ to real-time mea-

surements of the velocity, the current mixture density at the draghead can be

inferred and the corresponding point on the production curve can be identified.

Locating the current operating point on this curve is valuable, as it enables

an assessment of how far the dredging process is from the optimal production

region. If the mixture density is too low, measures such as adjusting the drag-

head depth or angle can be advised to increase the density and move closer to

the optimum. Conversely, if the density is too high, the operator can open the

vacuum relief valve. This allows water to flow into the suction pipe, decreasing

the mixture density. This way, the combined model does not only describe the

relation between production, vacuum and mixture density, but also provides a

practical tool for operators aiming for optimized production.

2.4 Delayed density sensor

Taking another look at the location of the different sensors in fig. 2, we

see that both the mixture density and velocity are measured after the pump.

The reasoning behind this is that these sensors are radioactive, so putting them

closer to the water will result in a risk of leaking radioactive material into the

sea. This does pose a challenge in the terms of the vacuum formula, however.

As discussed in section 2.2, the vacuum formula expresses the balance between

the pressure exerted by the pump and the pressure differences within the suction

process. This balance is time-dependent: in order for the relation to hold, the

sensor data must be considered at the same time instant. Since the fluid can be

treated as incompressible [43], both the velocity and the vacuum pressure are

16

assumed to remain constant along the suction pipe. Consequently, placing the

sensors at the end of the suction pipe does not introduce any inconsistencies for

the application of the vacuum formula. Physically, this means that the pressure

and velocity conditions measured after the pump are representative of the entire

suction line, as the mixture cannot compress or expand along its path.

This assumption does not hold for the density measurement. The density

of the mixture entering through the draghead does not necessarily match the

density of the mixture after the pump. When applying the vacuum formula

at locations along the suction pipe (i.e., upstream of the pump), the density

measurement obtained downstream will exhibit a time delay of approximately

ten seconds, depending on the mixture velocity. This highlights the importance

of estimating the loss parameter θ. With knowledge of θ at any given time, the

mixture density can be inferred at any desired location along the pipe. This

capability, in turn, enables the determination of optimal suction production

configurations in real-time. We illustrate this issue in figs. 4 and 5 below.

17

Figure 4: Dredgepump diagram with slurry going through it. We would like to
know the mixture density at the draghead, at point A. The density sensor is
located at point B, after the pump.

18

Figure 5: After approximately ten seconds, the density of the mixture that was
at point A, is now measured at point B, where the sensor is located. Thus, we
see that there is a delay in the density data, and currently no way to know the
density in real-time.

19

3 Related Work

Dredging operations are complex systems where production efficiency rely

heavily on accurate modeling [3]. Previous works have addressed production

modeling in dredging using empirical and simulation-based methods. For ex-

ample, approaches such as particle filtering to improve production efficiency

on Trailing Suction Hopper Dredgers (TSHDs) have shown promise in real-

time estimation contexts [65], while numerical studies have explored predicting

the motion of the draghead to strengthen operating efficiency [9]. Deep learn-

ing approaches are also explored in combination with various classical machine

learning through a stacking approach [3]. Probabilistic and statistical models

were implemented to estimate productions of cutter suction dredgers [2] and

bulldozers [46].

The issue of sensor instability and reliability is crucial in these systems.

Faulty sensor data can undermine productivity and create conditions for me-

chanical collapse [29]. Li et al. applied several machine learning methods on

sensor data of a TSHD to predict mechanical failure [29]. The approach pro-

vided a more stable environment for TSHD construction in the form of a digital

twin-driven virtual sensor. Deep learning techniques are again utilized to design

a prevention expert system from sensor data for online faults in cutter suction

dredgers [56].

Physics-guided machine learning is an approach that incorporates physi-

cal knowledge into data-driven models in order to improve accuracy and in-

terpretability. The core idea is to combine the flexibility of machine learning

with the domain insights provided by physical laws [44]. Such methods have

proven particularly valuable in engineering and environmental systems, where

data is often limited and physical consistency is essential [64]. Some works

embed physics into the network architecture itself, such as Daw et al. in lake

temperature modeling [11] and Mohajer et al. for multistep predictions of aerial

vehicles [38]. Other articles rely on physics-informed preprocessing to prepare

more structured input data, as in [55, 48, 47]. Another method involves physics-

20

based regularization terms, prominently explored in Physics-Informed Neural

Networks (PINNs) [45] for solving forwards and inverse problems. In the con-

text of an inverse problem, PINNs have been extended to approximate time

varying parameters for a range of different applications [36, 71, 18]. Together,

these approaches demonstrate the diverse ways in which physical knowledge can

be embedded into machine learning workflows.

Operator learning has emerged as a promising direction for learning map-

pings between infinite-dimensional function spaces [35]. Operator learning is

concerned with the approximation of operators, which are mappings from one

function space to another, where the inputs and outputs are themselves func-

tions [16]. The DeepONet framework [35] was among the first to demonstrate

this research, showing strong performance in modeling complex operators, par-

ticularly for partial differential equations (PDEs). The initial architecture has

since been extended to account for multiple input functions [21], as well as for

information fusion of different layers [61]. Hybrid models that fuse PINNs and

DeepONets, like those in [33, 60, 32], aim to combine operator learning with

physical constraints. Other approaches embed physics without relying on PDE

loss functions, as in [67] through non-linear interactions of branch and trunk

outputs, and in [39] with Fourier-enhanced architectures.

Given the dependence on sensors for operational control, anomaly detection

and correction have become increasingly relevant [56]. Techniques like wavelet-

based fault detection [15], sensor drift identification [20], and abrupt-change

monitoring [72] have been used to detect sensor outliers. The combination

of sensor data and production optimization in real-time has been applied in

numerous industries such as reservoir management and oil production [42, 6, 19].

To address time-varying behavior and sensor error propagation, correction

models using online learning and transfer learning have gained traction [23, 8].

Transfer learning has been implemented together with DeepONets [66] and

PINNs [12, 8], showcasing adaptability across domains. Online correction strate-

gies, ranging from air quality forecasting [1] to hydrological predictions [51, 73]

and traffic flow [23] highlight the benefits of residual modeling to calibrate pre-

21

existing models. These efforts suggest potential for lagged value correction

models in the dredging domain, especially when paired with operator learning

or PINN frameworks.

While significant progress has been made in production modeling [65], physics-

guided machine learning [11, 38], and sensor fault detection [42, 6, 19] across

related engineering domains, research gaps remain in the context of dredg-

ing. Existing production models for TSHDs largely rely on empirical relations

or simulation studies [65, 9], which limits their generalizability to real opera-

tions. Machine learning methods have been tentatively explored in the dredging

domain [3], physics-guided approaches, however, remain largely absent. Yet,

physics-guided machine learning offers a promising route toward improved in-

terpretability and robustness [44]. At the same time, operator learning has

shown strong potential for approximating complex mappings [35], but its in-

tegration with physics-based constraints in real-time dredging settings remains

underdeveloped. Furthermore, sensor reliability has been studied through digi-

tal twins [29], wavelet-based detection [15], and transfer learning [8]. The chal-

lenge of handling noisy measurements and exploiting simulation-trained models,

all whilst providing reliable production estimates has not yet been addressed,

particularly in dredging domains. These gaps motivate the research questions

below. These focus on predicting the loss parameter θ, incorporating physics

into operator learning, designing correction mechanisms for sensor noise, and

enabling anomaly detection throughout the vacuum dredging process.

We formulate the main research question as:

To what extent can the loss parameter θ be

accurately predicted using simulated datasets, and

how well does this generalize to real-world sensor

data?

This question is explored through several supporting sub-questions:

1. How can operator learning architectures be designed to incorpo-

22

rate physics-based domain knowledge in order to improve pre-

diction accuracy and provide model interpretability?

2. In what ways can lagged sensor values be incorporated as cor-

rection mechanisms to progressively improve model outputs?

3. At which stages of the vacuum dredging process can sensor

health be monitored, and how can the model support reliable

anomaly detection in real-time?

4. To what extent can a hybrid architecture, utilizing simulated

data for training in combination with correction modules, im-

prove the robustness of suction production estimates in the pres-

ence of sensor noise?

23

4 Methodology

4.1 Technical framework

In this section, we discuss the technical details attached to the methods we

use. We start by giving a brief introduction to neural networks and transformers

in sections 4.1.1 and 4.1.2, then we go deeper into specific operator learning

architectures in section 4.1.3. This gives the basis for the designed architecture

we propose in section 4.2.

4.1.1 Neural networks

Neural networks [37] are computational models inspired by the structure of

the brain, consisting of layers of interconnected nodes (neurons). We consider a

dataset of n input–output pairs D = {(xi, yi)}ni=1 with inputs xi ∈ Rd, xi =

(xi1, xi2, . . . , xid) and corresponding outputs yi ∈ Rm. The goal of a neural

network is to approximate a mapping f : Rd → Rm such that ŷi = f(xi) ≈ yi.

The simplest case is the perceptron, which computes its prediction through

a linear transformation followed by a (possibly nonlinear) activation function α:

ŷi = α

 d∑
j=1

wjxij + b

 ,

where wj ∈ R, j = 1, . . . , d are the weights associated with each input dimen-

sion, b ∈ R is the bias, and ŷi ∈ R is the output for input xi.

Weights wi determine input importance, and the bias b shifts the output.

The variable ŷi represents the networks prediction. The parameter α is an

activation function such as ReLU or sigmoid [13]. These are essential for the

network to learn something other than linear relationships. Throughout the

project we make use of the hyperbolic tangent activation function. The plot of

which is shown in fig. 6.

24

Figure 6: Hyperbolic tangent function: tanh(x) = ex−e−x

ex+e−x with an output be-
tween [−1, 1]. It helps neural networks capture both positive and negative acti-
vations because it is centered around zero and smoothly differentiable [69].

The network’s parameters: its weights and biases, are adjusted during train-

ing to minimize a loss function such as the mean squared error (which is the

loss function that we will use during training). For a function f , which could

learned be a neural network, and dataset D = {(xi, yi)}ni=1, we define the mean

squared error as:

L(f,D) =
1

n

n∑
i=1

∥f(xi)− yi∥2 ,

where ∥ · ∥ denotes the Euclidean norm in Rm.

Extending this idea, a multilayer perceptron (MLP) introduces one or more

hidden layers between the input and the output layer. Each hidden layer consists

of several neurons, where each neuron applies a weighted sum of its inputs

followed by a nonlinear activation function.

25

Let the first hidden layer contain H1 neurons. For an input xi ∈ Rd, the

pre-activation of neuron k in this hidden layer is

Z
(1)
ik =

d∑
j=1

w
(1)
kj xij + b

(1)
k , k = 1, . . . ,H1,

with weights w
(1)
kj ∈ R and biases b

(1)
k ∈ R. Applying the activation function α

gives the hidden representation

H
(1)
ik = α

(
z
(1)
ik

)
, H

(1)
i ∈ RH1

This process repeats for subsequent hidden layers. For a network with L

layers (where layers 1, . . . , L−1 are hidden and layer L is the output layer), the

forward pass can be written recursively:

Z
(ℓ)
i = W (ℓ)H

(ℓ−1)
i + b(ℓ), H

(ℓ)
i = α

(
Z

(ℓ)
i

)
, ℓ = 1, . . . , L− 1,

where

W (ℓ) ∈ RHℓ×Hℓ−1 , b(ℓ) ∈ RHℓ ,

are the weight matrices and bias vectors, respectively. Here, H
(0)
i = xi ∈ Rd.

Finally, the output layer computes:

Z
(L)
i = W (L)H

(L−1)
i + b(L), ŷi = α

(
Z

(L)
i

)
,

where

W (L) ∈ Rm×HL−1 , b(L) ∈ Rm, ŷi ∈ Rm

Thus, the complete feedforward neural network is a composition of transfor-

mations:

NNw,b = ŷi = f(xi) =

α
(
W (L) α

(
W (L−1) α(. . . α(W (1)xi + b(1)) . . .) + b(L−1)

)
+ b(L)

)

26

Training a neural network involves minimizing the loss function

L(NNw,b,D)

This is minimized by optimizing the weights w and biases b within all the layers.

The optimization process consists of several keys stages. The first is weight

initialization, where the weights are set using random values from predefined

distributions or other methods [17]. Proper initialization helps ensure effective

gradient flow and avoids premature convergence [40]. After this, input data is

passed through each layer of the network where successive linear transforma-

tions and activation functions are applied to produce the model’s prediction.

Then, the network computes gradients of the loss function with respect to each

parameter by applying the chain rule in a recursive manner. This is called back-

propagation [63]. The computed gradients are used to update the network’s

parameters via an optimization algorithm, such as gradient descent [53].

For a given weight w
(l)
kj , the gradient descent update rule takes the form:

w
(l)
kj ← w

(l)
kj − µ∇w

(l)
kj ,

where µ is the learning rate that controls the step size of each update.

In our case, we employ a variation of gradient descent: Adaptive Moment

Estimation (adam) [24]. Adam improves the basic update rule by incorpo-

rating an exponentially decaying average of past gradients (first moment) and

an exponentially decaying average of past squared gradients (second moment).

Denoting the gradient at time step t as gt, these estimates are:

mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g2t ,

with bias-corrected forms

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

27

The parameter update then becomes

w
(l)
kj ← w

(l)
kj − µ

m̂t√
v̂t + ϵ

,

where β1, β2 ∈ [0, 1) control the decay rates and ϵ is a small constant for nu-

merical stability.

This cycle repeats iteratively until a convergence criterion is met or a pre-

defined stopping condition is satisfied. This is when, for example, the training

loss has reached a certain threshold.

One of the main reasons why neural networks are so widely used in the

literature over the past years is due to the fact that neural networks are universal

function approximators [53]:

Theorem 1 (Universal approximation theorem for neural networks). Let K ⊂

Rd be a compact set and let g : K → Rm be a continuous function in K. Then,

for every ε > 0, there exists a feedforward neural network

f : Rd → Rm,

with a single hidden layer, weight matrices W (ℓ) and bias vectors b(ℓ) such that

sup
x∈K

∥∥f(x)− g(x)
∥∥ < ε for all x ∈ K

In other words, feedforward neural network f with one hidden layer and a non-

linear activation function can approximate function g with a degree of accuracy

ε, given sufficient number of neurons in the hidden layer.

We can see that from theorem 1, given sufficient neurons and suitable acti-

vation functions, a feedforward neural network can approximate any continuous

function arbitrarily well.

28

4.1.2 Transformers

A type of architecture stemming from neural networks is the transformer,

which was originally introduced for sequence modeling and has since become

one of the most influential deep learning architectures [58]. While neural net-

works learn through layer-wise transformations and gradient-based optimiza-

tion, transformers build upon the same principles but introduce a more flexible

way to model relationships between inputs. Instead of relying solely on fixed

connections between layers, they use an attention mechanism that dynamically

determines which inputs should influence each other. This allows the model to

weigh the importance of different input elements relative to each other.

Given an input sequence X = [x1, x2, . . . , xT], each element xi is first pro-

jected into three vectors: a query qi = WQxi, a key ki = WKxi, and a value

vi = WV xi, where WQ,WK ,WV are learnable weight matrices. The attention

output for each element is then computed as a weighted combination of all value

vectors:

Attention(Q,K, V) = softmax

(
QK⊤
√
dk

)
V,

where Q,K, V are matrices collecting all queries, keys, and values, and dk is the

dimensionality of the key vectors used for normalization.

The softmax function converts the raw similarity scores into normalized at-

tention weights. For a vector z = [z1, z2, . . . , zn] ∈ Rn, it is defined as

softmax(zi) =
exp(zi)∑n
j=1 exp(zj)

, i = 1, . . . , n

29

Figure 7: Softmax function, shown here for a two-class case where the second
logit is set to zero. The output lies in the range [0, 1] and represents normalized
class probabilities that sum to one [22].

The softmax formula ensures that all weights are positive and sum to one,

effectively forming a probability distribution over the input elements. Overall,

transformers preserve the same optimization dynamics as traditional neural net-

works but enhance them through attention, enabling more expressive modeling

of dependencies within the data. This concept motivates the attention-based

interactions introduced later in our proposed architecture.

4.1.3 Operator learning

In contrast to neural networks being universal approximators of functions as

shown in theorem 1, it has been shown that a neural network with a single hidden

layer can also approximate any nonlinear operator with arbitrary accuracy [7].

Such an operator represents a mapping between infinite-dimensional function

30

spaces, extending the universal approximation property to functional inputs and

outputs (see theorem 2).

To implement this theorem into practice, DeepONets (among other architec-

tures such as Fourier Neural Operators [30] and Graph Neural Operators [31])

have been introduced in [35].

The idea is that the DeepONet consists of two subnetworks: a branch and a

trunk network. The branch network processes an input function f : Rdx → Rdf ,

sampled at n discrete sensor locations {x1, x2, . . . , xn}, where each xi ∈ Rdx .

These samples form the input vector {f(x1), f(x2), . . . , f(xn)} ∈ Rndf .

The trunk network processes evaluation points z ∈ Rdz , where the operator’s

output is evaluated. Each subnetwork encodes its respective input into a latent

feature representation, (b1, . . . , bp) ∈ Rp for the branch and (t1, . . . , tp) ∈ Rp for

the trunk. These representations are then combined to produce the operator

output

G(f)(z) ∈ Rdy

The operator G thus defines a mapping that takes an input function f and

produces a corresponding output function evaluated at z.

Here, dx and dz denote the dimensionality of the input and output domains,

respectively; df and dy represent the dimensions of the input and output func-

tion values; n is the number of sensor points at which f is sampled; and p is

the size of the feature space shared between the branch and trunk networks. In

most applications, df = dy = 1, corresponding to scalar-valued functions.

Lu et al. [35] discuss both a stacked (fig. 8a) and unstacked (fig. 8b) Deep-

ONet architecture. In the stacked version, multiple branch networks are used

to encode the input function, while in the unstacked version a single branch

network encodes the input function f . We focus on the unstacked case.

For this case, the branch network takes discrete samples of the input func-

tion,

{f(x1), f(x2), . . . , f(xn)}

31

and encodes them into a feature vector (b1, . . . , bp) ∈ Rp:

{f(x1), f(x2), . . . , f(xn)} −→
branch network

(b1(f), . . . , bp(f))

The trunk network, on the other hand, takes evaluation points z as input and

outputs a set of basis functions (t1, . . . , tp) ∈ Rp:

z −→
trunk network

(t1, . . . , tp)

The branch features (bk) depend on the input function f , while the trunk fea-

tures (tk) depend only on the evaluation points z. They are therefore not fixed

coefficients but vary with their respective inputs.

Finally, the operator output is obtained by combining the two representa-

tions through an inner product (represented by the green box in fig. 8):

G(f)(z) ≃
p∑

k=1

bk tk

32

(a) Stacked DeepONet, taken from [35].

(b) Unstacked DeepONet, taken from [35].

Figure 8: Schematic of the the stacked and unstacked DeepONet.

We present the theorem in [35] as:

Theorem 2 (Universal approximation theorem for operators). Suppose that

α is a continuous nonpolynomial activation function, X is a Banach space,

K1 ⊂ X and K2 ⊂ Rdz are compact sets in X and Rdz , respectively, V is a

compact subset of C(K1), and G is a nonlinear continuous operator that maps

33

V into C(K2). Then, for any ε > 0, there exist positive integers Lb, p, and

n, constants w
(b)
ijk, b

(b)
ik , w

(t)
k , b

(t)
k , Cik ∈ R, and sensor locations xj ∈ K1, for

i = 1, . . . , Lb, k = 1, . . . , p, and j = 1, . . . , n, such that∣∣∣∣∣∣∣∣∣∣
G(f)(z)−

p∑
k=1

Lb∑
i=1

Cik α

 n∑
j=1

w
(b)
ijk f(xj) + b

(b)
ik


︸ ︷︷ ︸

branch

α
(
w

(t)
k · z + b

(t)
k

)
︸ ︷︷ ︸

trunk

∣∣∣∣∣∣∣∣∣∣
< ε

holds for all f ∈ V and z ∈ K2.

This formalizes the idea that neural networks can approximate nonlinear

operators to arbitrary accuracy. It demonstrates that the operator G; mapping

between function spaces, can be represented using two subnetworks: a branch

network and a trunk network. The inner summation corresponds to the branch

network, which acts on the sampled input function values {f(xj)}nj=1 using

trainable weights w
(b)
ijk and biases b

(b)
ik . The coefficients Cik serve as output-

layer weights of the branch network, linearly combining the activations indexed

by i to form the branch features bk. Similarly, the trunk network acts on the

evaluation points z through its own trainable weights w
(t)
k and biases b

(t)
k . Both

subnetworks apply a nonlinear activation function α, enabling them to capture

complex, non-linear relationships in their respective inputs. The outputs of the

branch and trunk networks form feature representations, which are combined

through an inner product:
p∑

k=1

bk tk,

producing an approximation of the operator output G(f)(z). The theorem guar-

antees that with sufficient neurons and suitable activation functions, such a com-

position of neural networks can approximate any continuous nonlinear operator

within an arbitrary precision ε.

These DeepONets have been applied to solve problems related to partial

differential equations (PDEs) [35]. A DeepONet can be used to learn the solution

operator of a PDE system. Assuming we have a PDE with solution u(x, t)

34

that depends on some input function f(x) (for instance, a boundary or initial

condition), the relationship between them can be represented as an operator

G : f 7→ u = G(f),

so that u(x, t) = G(f)(x, t). After the network learns this operator, it can then

predict the solution u(x, t) across spatial and temporal coordinates of interest,

given the input function f(x), without resolving the entire PDE.

There have been numerous modifications and extensions to the DeepONet,

with one architecture accounting for multiple inputs: the multiple input opera-

tor network (MIONet) [21]. A naive approach to handle multiple input functions

would be to concatenate the functions together to act as the input of a branch

network in the DeepONet. The approach of the MIONet has shown to outper-

form the concatenation method. The main result in [21] was extending the uni-

versal approximation theorem for operators (theorem 2) from one Banach space

X, to a product of multiple Banach spaces X1, . . . Xm. This way, the input of the

operator can be expanded to multiple functions. The MIONet still works with

branch and trunk networks, with the trunk network remaining unchanged. For

m input functions f1, . . . fm, at n sensor locations: {fi(x1), fi(x2) . . . fi(xn)} ∀i,

we configure m independent branch networks. With this methodology, every in-

put function has its own corresponding branch network. Combining the output

of all the branch networks together with the trunk network with input z results

in the operator G(f1, . . . fm)(z) ∈ R (see fig. 9). Operator G now takes multiple

functions as input, instead of just one as in the classical DeepONet methodology.

Before diving into the extended universal approximation theorem: theo-

rem 3; we present a preliminary definition and property (taken from [21]):

Definition 1 (Schauder Basis). Let X be an infinite-dimensional normed linear

space. A sequence {ei}∞i=1 in X is called a Schauder basis of X, if for every

x ∈ X there is a unique sequence of scalars {ai}∞i=1, called the coordinates of x,

35

such that

x =

∞∑
i=1

aiei

We denote the coordinate functionals of the Schauder basis elements ei, by e
∗
i .

These coordinate functionals extract the coordinate of x along the basis vector

ei. That is,

x =

∞∑
i=1

e∗i (x)ei,∀x ∈ X

Property 1 (Canonical Projection). Assume that K is a compact set in a

Banach space X equipped with a Schauder basis {ei}∞i=1 and corresponding co-

ordinate functionals {e∗i (x)}∞i=1 , x ∈ X. For a canonical projection Pn, we have

lim
n→∞

sup
x∈K
∥x− Pn(x)∥ = 0

The Pn is decomposed as

Pn = ψn ◦ φn,

where φn : X → Rn and ψn : Rn → X are defined as

φn(x) = (e∗1(x), · · · , e∗n(x))
T
, ψn(α1, · · · , αn) =

n∑
i=1

αiei

The φn(x) represent the truncated coordinates for x.

We present the universal approximation theorem for multiple Banach spaces

[21]:

Theorem 3 (Universal approximation theorem for multiple Banach spaces).

Suppose that α is a continuous nonpolynomial activation function, X1, . . . , Xm, Y

are Banach spaces, Ki ⊂ Xi are compact sets for each i = 1, . . . ,m, and each

Xi has a Schauder basis with canonical projections P
(qi)
i = ψ

(qi)
i ◦φ(qi)

i . Assume

that G : K1 × · · · × Km → Y is a continuous operator. Then, for any ε > 0,

there exist positive integers Lb, pi, qi, constants w
(bi)
rℓki

, b
(bi)
rki

, w
(t)
k1,...,km

, b
(t)
k1,...,km

,

Crk1...km
∈ R, and sensor locations x

(i)
ℓ ∈ Ki, for r = 1, . . . , Lb, ℓ = 1, . . . , qi,

and ki = 1, . . . , pi, such that:

36

for each i = 1, . . . ,m, we denote the branch pre activation output as:

b
(i)
r,ki

(fi) :=

qi∑
ℓ=1

w
(bi)
rℓki

(φ
(qi)
i (fi))ℓ + b

(bi)
rki

Such that we can define the branch features for the indices (k1, . . . , km) as:

Bk1,...,km(f1, . . . , fm) :=

Lb∑
r=1

Crk1...km α

(
m∑
i=1

b
(i)
r,ki

(fi)

)

The features coming from the trunk network are given as:

Tk1,...,km
(z) := α

(
w

(t)
k1,...,km

·z + b
(t)
k1,...,km

)
Then we have that∥∥∥∥∥G(f1, . . . , fm)−

p1∑
k1=1

· · ·
pm∑

km=1

Bk1,...,km
(f1, . . . , fm) Tk1,...,km

(z)

∥∥∥∥∥ < ε

for all fi ∈ Ki and z ∈ Y .

Then, theorem 3 provides the theoretical foundation for constructing the

MIONet architecture. It formalizes that operator G : K1 × · · · × Km → Y ,

acting on multiple input functions, can be approximated by a composition of

neural subnetworks: m branch networks and one trunk network. Each branch

network processes its respective input function fi ∈ Ki, sampled through its

basis projection φ
(qi)
i (fi). The branch term:

α

(
m∑
i=1

qi∑
ℓ=1

w
(bi)
rℓki

(φ
(qi)
i (fi))ℓ + b

(bi)
rki

)

corresponds to the nonlinear transformation performed by the m branch net-

works, parameterized by weights w
(bi)
rℓki

and biases b
(bi)
rki

. The coefficients Crk1...km

act as output-layer weights, linearly combining the activations of the branch

subnetworks to form joint branch features indexed by (k1, . . . , km).

This formulation of the branch features corresponds to the high-rank version

37

of the MIONet, where Bk1,...,km is formed by a nonlinear combination of all

branch pre-activations across the m input functions. In practice, a low-rank

version of MIONet is typically adopted to reduce the number of parameters and

computational cost [21]. In this setting, the combined branch feature is defined

directly in terms of the branch activations at the final layer as the elementwise

(Hadamard) product of the individual branch representations:

Bk1,...,km
(f1, . . . , fm) =

m∏
i=1

α

(
qi∑
ℓ=1

w
(bi)
ℓki

(φ
(qi)
i (fi))ℓ + b

(bi)
ki

)
,

The resulting operator then also takes the form

G(f1, . . . , fm)(z) =

p1∑
k1=1

· · ·
pm∑

km=1

Bk1,...,km
(f1, . . . , fm) Tk1,...,km

(z) + b,

which corresponds to the default low-rank MIONet architecture proposed by

Lu et al.[21]. Parameter b ∈ R is an additional bias at the final step to help

with training [21]. The low-rank version is favored in most applications as

it provides a more compact representation of the operator while maintaining

sufficient expressive power.

The trunk term:

α
(
w

(t)
k1,...,km

·z + b
(t)
k1,...,km

)
represents the feature mapping of the evaluation points z ∈ Y through the trunk

network, which has its own learnable weights and biases. Both subnetworks use

the nonlinear activation function α to capture complex dependencies within

their respective inputs.

The outputs of the branch (Bk1,...,km(f1, . . . , fm)) and trunk (Tk1,...,km(z))

subnetworks are then coupled through a multilinear combination across all in-

dices (k1, . . . , km) (represented by the cross illustration in fig. 9), producing an

approximation of the operator output G(f1, . . . , fm)(z). This theorem guaran-

tees that, with sufficient capacity and an appropriate activation function, such

a MIONet architecture can approximate any continuous nonlinear operator be-

38

tween multiple Banach spaces to arbitrary accuracy ε.

Figure 9: MIONet, independent branch network outputs are combined linearly
with the trunk network output. The combination is illustrated by the green
cross, corresponding to

∑p1

k1=1 · · ·
∑pm

km=1Bk1,...,km
(f1, . . . , fm) Tk1,...,km

(z) + b
for the branch and trunk features, respectively. Adapted from [21].

An improved architecture to a regular DeepONet has been proposed in [61].

In the previous two architectures, it can be seen that the branch outputs are

combined linearly, which is then also linearly combined with the trunk output.

The improved architecture in [61] implements encoders for the branch and trunk

networks such that non-linearity in input signals can be discovered. Both sub-

networks interact with each other through multiple point-wise multiplications,

which lead to more accurate results when compared to the original DeepONet.

The author [61] argues that this is due to the higher resilience to vanishing

signals.

39

We go back to the situation of the unstacked DeepONet (fig. 8b) where the

input to the singular branch network is one function f , and the input to the

trunk network is z. Simultaneously that the inputs go through a first hidden

layer in the neural network, they also pass through an encoding layer (the yellow

block in fig. 10).

We denote the weights and biases of the branch encoder as w
(b,0)
ij and b

(b,0)
i ,

where i = 1, . . . , p indexes the neurons of the encoding layer and j = 1, . . . , n

indexes the sensor locations of the input function f . Similarly, the weights and

biases of the trunk encoder are denoted by w
(t,0)
i and b

(t,0)
i .

The encoder block is then given by

Ui = α
(∑n

j=1 w
(b,0)
ij f(xj) + b

(b,0)
i

)
, Vi = α

(
w

(t,0)
i · z + b

(t,0)
i

)
, i = 1, . . . , p

where α(·) denotes the activation function.

These encoded vectors U = (U1, . . . , Up) and V = (V1, . . . , Vp) constitute the

encoding block (yellow in fig. 10), which transforms the raw inputs f and z.

Next to this, the first hidden layers of each network are then computed as

H
(1)
f,i = α

(∑n
j=1 w

(b,1)
ij f(xj) + b

(b,1)
i

)
, H

(1)
z,i = α

(
w

(t,1)
i · z + b

(t,1)
i

)
, i = 1, . . . , p

For layers l = 1, . . . , L− 1, interaction between the two subnetworks occurs

through multiplication of their encoded states (represented by the * blocks in

fig. 10):

Z
(l)
f,i = α

(∑
r

w
(b,l)
ir H

(l)
f,r + b

(b,l)
i

)
, H

(l+1)
f,i = (1− Z(l)

f,i)Ui + Z
(l)
f,i Vi,

Z
(l)
z,i = α

(∑
r

w
(t,l)
ir H(l)

z,r + b
(t,l)
i

)
, H

(l+1)
z,i = (1− Z(l)

z,i)Ui + Z
(l)
z,i Vi,

for i = 1, . . . , p. This formulation allows the trunk and branch hidden layers

to exchange information at every layer through the encoded representations Ui

and Vi.

40

At the final layer,

H
(L)
f,i = α

(∑
r w

(b,L)
ir H

(L−1)
f,r + b

(b,L)
i

)
, H

(L)
z,i = α

(∑
r w

(t,L)
ir H

(L−1)
z,r + b

(t,L)
i

)
The operator output is then obtained via the standard DeepONet inner

product (green cross block in fig. 10):

G(f)(z) =

p∑
i=1

H
(L)
f,i H

(L)
z,i

This causes the branch and trunk network to interact with each other before

being combined linearly through the inner product. If there are non-linear

relations between the trunk and branch network, this will now be picked up,

improving performance (according to [61]). The architecture is illustrated in

fig. 10.

41

Figure 10: Intertwined architecture, the * blocks showcase the interaction with
the yellow encoding blocks. The cross block at the end is the inner product that
is also present in a classical DeepONet architecture. Adapted from [61].

4.2 Model architecture

We build on existing operator learning architectures to develop a new, more

expressive model. The foundation of our design is inspired by the MIONet

framework [21], which constructs m branch networks corresponding to m input

functions. The outputs of these branch networks are then (linearly) combined

with the output of a trunk network, as described in theorem 3 (fig. 9). However,

to better capture the non-linear dependencies between the input functions and

42

the trunk input z, we extend this architecture by introducing interaction mech-

anisms between the branch and trunk networks. While the MIONet relies solely

on linear combinations, our approach aims to model more complex relationships

that such linear interactions may fail to capture.

In the intertwined DeepONet [61], the interaction between the subnetworks

is implemented as a fixed weighted sum of the branch and trunk encodings

(fig. 10). At each interaction layer, this mixing follows a deterministic rule

of the form (1 − Z
(l)
f,i)Ui + Z

(l)
f,i Vi, where the coefficients (1 − Z

(l)
f,i) and Z

(l)
f,i

define a convex combination that is structurally the same across all layers. So,

while Z
(l)
f,i may vary with the layer, the form of the weighted sum remains

fixed. In our case, we need to apply this idea to multiple input functions, each

representing distinct physical phenomena that can also interact (as explained

in later sections). Since we have more than two encoder blocks interacting at

each layer (rather than only Ui and Vi), we must determine how their weighted

combination is defined. We can follow a similar procedure as in the intertwined

DeepONet [61] and fix weights by beforehand deciding on a weighted sum,

based on prior physical knowledge. We however, go one step further and take

inspiration from transformers [58] by incorporating adaptive weights that decide

the importances of each encoding at every layer.

Similar to [68, 50], we implement a softmax gating function [22] after learning

a feature representation for each encoding. To manage the increasing complex-

ity that arises when multiple input functions are present, it is not necessary for

all inputs to interact at every layer. The proposed architecture therefore al-

lows selective coupling between encoder blocks, enabling the user to determine

which interactions occur between specific branch and trunk networks. This can

be guided by prior physical knowledge or modeling considerations, allowing only

meaningful or physically relevant dependencies to be learned. Practically, the

user specifies which input functions are permitted to interact and which re-

main independent. When no interactions are defined between the encoders, the

architecture naturally reduces to the standard MIONet.

We now consider m input functions for the m branch networks, together with

43

input z for the trunk network. Each branch network processes its respective

input function fj , sampled through its basis projection φ
(qj)
i (fj), j = 1 . . .m, in

accordance with the construction of the MIONet (theorem 3). We define the

input vector as:

c =



φ
(q1)
1 (f1)

φ
(q2)
2 (f2)

...

φ
(qm)
m (fm)

z


, cj =


φ
(qj)
j (fj), j = 1, . . . ,m,

z, j = m+ 1.

Each input cj passes through its own encoding layer of i = 1, . . . p neurons with

corresponding weights and biases w
(e)
irj and b

(e)
ij (yellow block in fig. 11). This

produces the encoded features

Eij = α

(∑
r

w
(e)
irj cj(r) + b

(e)
ij

)
, i = 1, . . . , p, j = 1, . . . ,m+ 1,

where α(·) denotes the activation function, and cj(r) represents the r-th compo-

nent of the projected input vector cj . This corresponds to the basis coefficient

or, equivalently, the sampled value of the input function at sensor location xr

for the branch networks.

Each input is also independently processed through its own first hidden layer:

H
(1)
ij = α

(∑
r

w
(1)
irj cj(r) + b

(1)
ij

)
, i = 1, . . . , p, j = 1, . . . ,m+ 1

At each subsequent hidden layer l = 1, . . . , L− 1, we first compute an inter-

mediate representation:

Z
(l)
ij = α

(∑
r

w
(l)
irj H

(l)
rj + b

(l)
ij

)
, i = 1, . . . , p, j = 1, . . . ,m+ 1

For each input j, we define a set of interaction indices Ij ⊆ {1, . . . ,m+ 1},

44

which specifies the other inputs that j interacts with at layer l. The user

configures these interaction indices at the start of the model training. Attention

logits are computed for every interacting pair (j, k), where k ∈ Ij :

β
(l)
jk =

∑
r

A
(l)
rjk Z

(l)
rj + b

(A,l)
jk , k ∈ Ij

Here, A
(l)
rjk ∈ R and b

(A,l)
jk ∈ R are the trainable parameters (weights and

biases) of the attention mechanism, while β
(l)
jk denotes the resulting attention

logit. The corresponding attention coefficients are obtained via a softmax over

the interaction subset:

α
(l)
jk =

exp
(
β
(l)
jk

)
∑
k′∈Ij

exp
(
β
(l)
jk′

) , k ∈ Ij

Finally, the hidden state of each input j is updated as a weighted combination

of its interactions:

H
(l+1)
ij =

∑
k∈Ij

α
(l)
jk Eik, i = 1, . . . , p, j = 1, . . . ,m+ 1

The process of computing attention logits and applying them as a weighted

combination with the encodings happens in the * block in fig. 11.

The final stage retains the low-rank structure introduced in the default

MIONet formulation (see theorem 3). After the attention-based interactions be-

tween subnetworks, the final hidden representations of the m branch encoders

are combined through an elementwise (Hadamard) product to form the joint

branch feature:

Bk1,...,km
(f1, . . . , fm) =

m∏
j=1

H
(L)
kj , j

, kj = 1, . . . , p

The trunk network produces its own latent features indexed by the same multi-

45

index (k1, . . . , km),

Tk1,...,km
(z) = H

(L)
km+1,m+1(z),

and the final operator output is then obtained by summing over the shared

dimensions (green cross block in fig. 11):

G(f1, . . . , fm)(z) =

p∑
k1=1

· · ·
p∑

km=1

Bk1,...,km
(f1, . . . , fm) Tk1,...,km

(z) + b

This mirrors the final combination step of the low-rank MIONet. The adaptive

attention-based coupling introduced in the hidden layers generalizes the fixed

multiplicative fusion used in MIONet. When these interactions are disabled,

the architecture reduces to the standard low-rank MIONet.

Another option would be to fully incorporate self-attention within the vari-

able encodings. This, however, would significantly increase the model com-

plexity and computational cost, as additional query, key, and value projections

would need to be optimized [58]. Whilst this avenue could be interesting to pur-

sue in the future, we leave it as an extension and focus on the simpler softmax

implementation.

The motivation behind introducing these interaction layers is to enable adap-

tive coupling between the branch and trunk subnetworks, allowing the network

to model non-linear dependencies and cross-correlations between physical in-

puts. In the standard low-rank MIONet formulation, each branch contributes

independently to the operator approximation before aggregation. By contrast,

our construction allows information exchange at intermediate layers, so that

features from one branch can influence another before the final combination

step. This mechanism could also be incorporated into the high-rank MIONet

formulation, where interactions would occur across the higher-dimensional joint

feature space rather than through elementwise coupling.

We ensure that the proposed architecture remains consistent with the uni-

versal approximation theorem stated in theorem 3. Although additional in-

teraction mechanisms are introduced, the network still satisfies the structural

46

requirements for universality: each subnetwork applies continuous nonpolyno-

mial activation functions; the branch and trunk mappings remain continuous

on compact subsets of their respective Banach spaces; and the operator output

is obtained through a finite composition and summation of these continuous

nonlinear transformations. Hence, the architectural modifications preserve the

functional form required so that G can be expressed as a superposition of nonlin-

ear basis functions parameterized by neural networks. Therefore, the modified

model retains its theoretical capability as a universal operator approximator, ca-

pable of approximating any continuous nonlinear operator that maps between

infinite-dimensional function spaces, given sufficient capacity and appropriate

training. An example of a structure of the modified architecture is visible in

fig. 11.

47

Figure 11: Modified DeepONet. In this example, the branch network from input
f1 and branch network from fm interact, as well as fm with the trunk network.
The * blocks indicate interactions of the different inputs in between hidden
layers, whereas the final cross block is the combination of the final branch and
trunk features.

4.3 Local trunk

In addition to the interaction mechanism, we introduce a local trunk, which

modifies how the trunk input z is processed over its evaluation domain. In the

classical DeepONet, the trunk network operates in a global manner, where the

entire set of evaluation points z = (z1, . . . , zW) is jointly encoded into a single

global representation Tk1,...,km
(z) that is shared across all branch evaluations

within the sample. This global trunk defines a common basis of functions over

48

the input domain and is suitable when the underlying operator exhibits coherent

behavior across all zi.

In the local trunk formulation, each evaluation point zi is processed inde-

pendently by the same trunk network, i.e., with shared parameters but without

any coupling between different evaluation points. Formally, for each zi,

Tk1,...,km
(zi) = H

(L)
km+1,m+1(zi), km+1 = 1, . . . , p,

This produces a set of trunk feature vectors {Tk1,...,km
(zi)}Wi=1, each correspond-

ing to a distinct evaluation point zi in the input domain. Each branch network

is evaluated at the same positions, yielding H
(L)
kj , j

(ti) for j = 1, . . . ,m and

kj = 1, . . . , p. The joint branch feature associated with zi follows the same

low-rank fusion introduced in theorem 3:

Bk1,...,km(f1, . . . , fm; zi) =

m∏
j=1

H
(L)
kj , j

(zi)

The corresponding operator output at each local evaluation point is then

G(f1, . . . , fm)(zi) =

p∑
k1=1

· · ·
p∑

km=1

Bk1,...,km
(f1, . . . , fm; zi) Tk1,...,km

(zi) + b

The local trunk processes each evaluation point independently, providing a

distinct representation T (zi) at every zi, while sharing the same network weights

across all points. This contrasts with the global trunk, which produces a shared

basis T (z) that is reused across all evaluations. The local formulation allows the

architecture to model fine-grained or spatially varying behavior of the operator,

while the global formulation enforces a coherent basis shared across the entire

domain. Both variants retain the low-rank fusion structure and theoretical

guarantees of the MIONet formulation, differing only in how the trunk features

are generated over the input domain.

The motivation for adopting this approach arises from the practical reali-

ties of dredging. Each dredging trip can differ substantially due to changing

49

environmental conditions and operational constraints. As a result, the behavior

of onboard sensors often varies from trip to trip, even though the underlying

physical principles remain consistent. These variations introduce unobservable

factors that are challenging to model directly. Consequently, relying on a global

trunk to capture the temporal evolution across an entire trip is insufficient, as it

fails to account for localized, trip-specific dynamics. In contrast, a local trunk

encodes each time step independently, enabling the network to more effectively

capture short-term patterns and context-dependent variations within smaller

windows (as opposed to a whole trip). The effectiveness of the local trunk is

demonstrated through its superior performance compared to the global trunk,

as discussed alongside the applications of the classical DeepONet and MIONet

in appendix B.

At the same time, it remains necessary to capture broader temporal de-

pendencies across the full duration of a trip. While this could be achieved by

expanding the architecture to include a dedicated global encoder (alongside the

local trunk), we instead propose an alternative solution: the integration of a

global corrector. As discussed in section 2.4, the true value of the mixture den-

sity becomes available a few seconds after the model issues its prediction. We

leverage this delayed ground truth to construct a corrector model that compen-

sates for local biases and enhances the model’s overall generalization capability.

4.4 Corrector model

On top of the modified DeepONet, we implement an online corrector mech-

anism. We explain this mechanism at the hand of the dredging context.

Depending on the mixture velocity, the density sensor is delayed by a certain

amount of seconds. This in turn means that the true θ value is delayed by the

same amount of seconds. We implement a rolling mean error correction mech-

anism. Let θ̂i denote the model prediction at time ti, and θi the corresponding

ground truth value. We assume a lag of τ seconds, meaning that at time ti, the

most recent usable ground truth is from time ti − τ .

50

For each prediction at time ti, we define a correction window of length cw

(in seconds) ending at the latest available ground truth time ti−τ . The window

spans:

[ti − τ − cw, ti − τ]

We identify all timestamps tj such that tj ∈ [ti − τ − cw, ti − τ], and compute

the mean error over that window:

ϵi =
1

|Wi|
∑
j∈Wi

(θ̂j − θj)

where Wi = {j | tj ∈ [ti − τ − cw, ti − τ]} is the index set of valid correction

points.

The corrected prediction is then given by:

θ̂corri = θ̂i − ϵi

If no past data exists within the correction window, the prediction is left uncor-

rected.

This correction is applied continuously and independently for each times-

tamp, enabling online adjustment of predictions based on recent model perfor-

mance. The implementation of the corrector will correct for the local biases

learned from the modified DeepONet, and give a global correction of what is

happening within a trip. That is to say, the general behavior conforming to a

single trip is captured through the corrector model. The flow diagram of the

correction methodology is represented in fig. 12.

51

Figure 12: Flow diagram of how the corrected values are computed, we see how
the online correction takes the offline predictions into account.

4.4.1 Outlier detection

To improve system reliability, we incorporate an outlier detection mechanism

into the error correction pipeline. The main purpose of the correction is to

adjust future predictions, but we extend the mechanism to capture anomalies

within the system. These anomalies are present when there are abnormally

large deviations between predicted and observed values.

At each time step tj , we compute the prediction error ej = θ̂j − θj . If the

magnitude of this error exceeds a certain threshold δ, i.e.,

|ej | > δ,

then the corresponding data point is flagged as an outlier. The threshold δ can

be chosen based on expected noise levels or system behavior. These outliers

are also excluded from the correction window to prevent anomalous points from

52

biasing the rolling mean error:

Wi =

j
∣∣∣∣∣∣
tj ∈ [ti − τ − cw, ti − τ]

and |θ̂j − θj | ≤ δ


This outlier rejection procedure provides a mechanism for real-time anomaly

flagging. Persistent exceeding of the threshold may indicate faults in the sensors

or process, serving as an outlier detection method within the system.

53

5 Data & Implementation

In this section, we explain how the data is structured and which variables

we use to train the model. We spend some time explaining how the simulated

dataset is constructed. After this, we showcase how we conform the data to the

modified DeepONet described in section 4.2. Finally, we describe the procedure

to train the model.

5.1 Data

The sensors aboard the vessel records a measurement every second. This is

done for every TSHD that Boskalis is making use of. An example of a data ex-

cerpt is shown in table 1. A full dredging cycle usually lasts around 30 minutes,

depending on the task and conditions.

Table 1: Sample excerpt of process measurements (dummy data).

Date

Time

2023-11-08

11:02:02

2023-11-08

11:02:03

2023-11-08

11:02:04

Mixture density (kg/m3) 1220.2 1219.3 1219.8

Velocity in pipe (m/s) 2.25 2.35 2.13

Vacuum pressure (SB) (100 kPa) -0.25 -0.25 -0.23

In table 1 we see three different variables. All of these variables have an effect

on the parameter we are predicting, θ. In reality, there is a list of roughly 100

variables available in the dataset that can be selected as input functions. Since

the output parameter evolves over time, the trunk network naturally represents

the evaluation domain through the corresponding time steps. This allows the

operator to learn mappings from temporal sensor signals to time-dependent

target quantities. Furthermore, we have no spatial coordinates available, so the

time coordinates are the most logical.

54

5.1.1 Relations

We need to have a clean and controllable data set to test the model first.

Testing on real-world data from the beginning would make it difficult to deter-

mine whether observed model behavior is a result of architectural design or noise

and inconsistencies in the data. Since we do not have access to a clean data

set, we have to simulate it. We also do not have access to all equations relating

the input functions (for the branch networks) to the output (parameter θ). So,

in cohesion with knowledge from experts (A. Nobel, personal communication,

March 2025), we set up relations ourselves.

Before this, we decide on the variables that we want as input functions for the

branch network. We look for variables that have an effect on our loss parameter

θ. In order to build the architecture of our branch and trunk networks we also

have to know which (input) variables interact together. If two variables are

correlated linearly, then their branch networks do not intertwine and can stay

separate (since their outputs will already be combined linearly). If there is a

non-linear correlation, then the parameters of the different networks are shared.

We list the input variables below, together with the set up relations to the

output, θ.

Change in pressure draghead

Apart from the vacuum equation, we also have an equation that represents

the change in the pressure of the draghead, as mentioned in section 2. This is

given as:

∆PHead = ρwg(d1 − d2)− 1

2
ρmv

2(1 + α)− hheadρmg

We remind that ρw is the water density, g gravity, d1 the water depth, d2

pump depth, ρm mixture density, v velocity in the pipe, α the entrance loss

factor, and hhead the height of the draghead. We defined θ = (1 + α+ ξ + λ L
D)

for ξ the sum of losses due to curves, etc, λ the resistance factor in the pipeline

55

and L,D the length and diameter of the pipe, respectively. Assuming every

other variable remains fixed, from the above equation we set up the relation

between θ and ∆PHead as:

θ = c1,∆Phead
∆Phead + c2,∆Phead

Where c1,∆Phead
, c2,∆Phead

∈ R are constants.

Vacuum pressure

For this variable we refer to the vacuum equation (eq. (1)). That is, the

vacuum pressure (V) within the pipe whilst dredging is given by:

V = θ
v2

2
ρm + (d1 − d2)ρmg − d1ρwg

So, in a controlled scenario (taking the other variables fixed), we know that:

θ = c1,V V + c2,V

Again, c1,V , c2,V ∈ R are constants.

Mixture velocity

Similar to the vacuum pressure, we know the relation between the mixture

velocity: v and θ from the vacuum equation in a controlled environment:

θ =
c1,v
v2

+ c2,v

Density

For the relation between the mixture density, ρm and θ, we again already

know it based on the vacuum equation:

θ =
c1,ρm

ρm
+ c2,ρm

56

Lower pipe angle

For this variable we do not have a given equation so we will have to come up

with a relation ourselves. There are two sensors which fall under this umbrella

of the angle. Data for the roll angle of the draghead is collected This measures

the sideways angle of the draghead. The other angle is the lower pipe angle.

Both of these measurements have an effect on θ. If the draghead is deeper in

the soil, it causes a higher pressure loss. This means that the larger the lower

pipe angle is, the more pressure is lost. This is the same for the roll angle.

We make a simple assumption and say that as the pipe is lowered, causing

an increasing angle, the loss term θ follows linearly, so we have:

θ = c1,δδ + c2,δ

For δ representing the lower pipe angle with constants c1,δ, c2,δ ∈ R. The

effect of the role is more difficult to quantify because this depends solely on

where the ship is and exactly how the ground looks like. This is why we do not

take the roll angle into account at this moment.

Draghead & pump depth

The relation between the draghead depth can also be found back in the

vacuum equation. This is based on the formula for hydrostatic pressure [59]

which states that as the draghead goes deeper below sea level, the hydrostatic

pressure increases. If the pressure increases, that also means there is a higher

pressure loss in the θ parameter:

θ = c1,DD + c2,D

While there is a direct signal measuring the depth of the draghead, the

vessels draught is also recorded, expressed in pressure units. The draught rep-

resents the vertical distance between the waterline and the lowest point of the

hull, indicating how deep the vessel is submerged. By converting the pressure-

57

based draught signal to meters using the hydrostatic pressure relation, we can

determine the vessel’s submergence in the water. The limitation of the draghead

depth signal is that it is referenced to chart datum, a fixed vertical reference

level, rather than the water surface. By combining the draught signal with the

draghead depth (relative to chart datum), we obtain the true vertical distance

of the draghead below the water surface. Consequently, the D used in the equa-

tion represents the actual underwater depth of the draghead, derived from the

combination of these two signals.

Jet pressure

There are jet pumps positioned at the draghead. These can be turned on

to cut the soil before it enters the draghead. The higher the jet pump pressure

(Pj) is, the more powerful this effect is, and so more material is able to enter

the draghead. This increases the density of the mixture and in turn, decreases

the pressure lost (i.e., θ). After consulting with experts (A. Nobel, personal

communication, March 2025, [41]), we assume an inverse relation, given by:

θ =
c1,Pj

Pj
+ c2,Pj

Swellcompensator

The final variable we consider is the pressure of the swellcompensator. This

refers to a mechanism on the vessel that lifts the draghead above the seabed

[34]. If there is a higher pressure on the swellcompensator it means that the

draghead is hovering more above the seabed. This decreases the pressure losses,

i.e.,, θ. If there is less pressure on the swellcompensator (Sc), the draghead is

harder on the seabed, causing an increase in θ. We assume this relation to be

linear and define a relation as:

θ = −c1,ScSc + c2,Sc

We note that all constants c1, c2 ∈ R represent scaling factors that deter-

58

mine the relative magnitude at which the corresponding variables influence one

another. Since the present formulation focuses on establishing the general re-

lationships, no additional physical constraints or assumptions are imposed on

these coefficients. After we have simulated separate data for each variable, we

combine them with a weighted sum to come up with our final linear model:

θsim = w1θ1 + w2θ2 + w3θ3 + w4θ4 + w5θ5 + w6θ6 + w7θ7 + w8θ8

Where the weights signify the importances of the different variables. These

weights will be determined by performing a sequential least squares optimization

[14]. In fact, most of the variables are not independent of each other and this

linear model does not capture all the complexities. However, since there is

no other current model that can be used for simulating data, we opt for this

approach.

Other variables

Some variables that haven’t been mentioned yet are the draghead visor an-

gles. Larger visor angles could lead to higher losses, after internal discussions

(A. Nobel, personal communication, March 2025) this does not seem to be the

most important. Furthermore, the position of the vacuum relief valve was first

considered as a variable. This was later removed because the relief valve does

not have a direct influence on the pressure losses. It is mainly used by the crew

to change the densities of the mixture at a given moment. Another variable

that was discussed is the trailing speed of the vessel. If the vessel moves faster,

it would mean more soil is dredged. This was left out because it was deemed to

have more of an indirect effect on θ rather than directly influencing it.

5.1.2 Variable intertwinement

Most of these variables have a direct influence on each other. The question

is whether these are linear or non-linear. Based on Bernoulli’s principle and the

59

Darcy-Weissbach equation (i.e., the vacuum equation). We know that the mix-

ture velocity has a non-linear correlation with the vacuum pressure, change in

pressure draghead, draghead depths, and the mixture density. Furthermore, we

also know from the equation that the density is correlated non-linearly with both

the draghead depth, as well as the change in pressure draghead. Another non-

linear interaction that is present between variables is the correlation between the

jet pump pressure and the change in pressure at the draghead. As the jet pumps

become more powerful, there is less of a pressure loss. This correlation could

look more exponential or logarithmic, depending on the soil (A. Nobel, personal

communication, March 2025). A further non-linear relation could lie between

the pipe angle and the velocity. If the angle is steeper, the flow might experience

more resistance from gravity, this relation would be non-linear. Finally, we also

need to determine which variables interact with the trunk network which in our

case, represents the time steps. We decide to have the trunk network interact

solely with the mixture density. The motivation behind this is that every input

variable is inputted in the correct respective time step, whilst the mixture den-

sity always lags behind. This means that when building our model architecture,

the variables that have a non-linear relationship will have intertwining branch

networks, whereas the mixture density branch will intertwine with the trunk

network; which we demonstrate in section 5.2.

5.1.3 Simulated dataset

For the aforementioned equations, we run inference on real data. As in, we

find the values of the scaling factors c1, c2 . . . by testing the set up relations on

real data. We do this by generating θ values via the vacuum equation. Using

these values we find the best fit for every relation. We discuss how well the

relation fits to the process. This way, we can check whether the relations hold.

After the values of the scaling factors are determined, we create the simulated

dataset for θ from the relations and sensor inputs (of the vacuum, mixture

density, etc.). Whilst this may be a good check, it is not the most accurate

60

because a change in θ can be caused by a different variable that is not being

incorporated into a relation.

We take 150,000 data points when the vessel ”Strandway” is dredging. From

these data points we calculate θ values based on a rolling window approach.

After this, we filter out values of θ that are outliers (0 ≤ θ ≤ 5). This is about

20% of the data points. Then we fit the relations one by one. The details of the

procedure together with explanations can be seen in appendix A. We provide

the final equations to simulate data below:

θ∆PHead
= 0.80∆Phead + 2.00

θV ac = 2.00− 1.50V

θDensity =
1400

ρm
+ 1.50

θV el =
4.00

v2
+ 2.00

θAngle = 0.02δ + 2.50

θJet pumps =
2.50

Pj
+ 2.30

θSc
= −0.04Sc + 4.50

θDHDepth = 0.05D + 2.00

θSim = 0.28θ∆PHead
+ 0.18θV ac + 0.13θSc

+ 0.12θV el+

0.11θDensity + 0.08θDHDepth + 0.05θJet pumps + 0.05θAngle (6)

We generate data using this system of equations. There are different ways

we can do this. One of the options would be to sample random points of data

for all the input sensors, then use these random points to generate values for

θsim. The problem with this would be that it will not retain any structure of

a dredging trip, so the results will be difficult to analyse. Using the real sensor

data also causes issues because of how noisy & unpredictable it is, and the whole

point of simulating is that we are in control of the dataset. What we decide to

61

do is filtering real life data.

The initial step in the filtering process involves applying a rolling average

correction mechanism for the density variable. This enables the alignment of

the mixture density signal with the correct time index, accounting for the time

it takes for the mixture to travel through the pipe.

To match the lagged density signal with the appropriate physical context,

a dynamic rolling window is computed based on the current mixture velocity.

Specifically, the window size approximates the time required for the slurry to

travel the pipe length. This time varies with velocity and is therefore computed

individually for each timestep. This dynamic smoothing enables a physically-

informed correction of the density signal.

Let ρm(t) denote the measured mixture density at time t, v(t) the mixture

velocity at time t, and L the length of the pipe. The travel time of the slurry

through the pipe is then given by:

Ttravel(t) =
L

v(t)

For a time series sampled at intervals ∆t, this travel time corresponds to a

discrete window length (in samples)

wi =
Ttravel(ti)

∆t
=

L

vi ∆t
,

which is bounded between wmin and wmax to avoid extreme values:

wi = max
(
wmin, min(wmax, wi)

)
The density signal is then smoothed over the last wi samples:

ρ̃m(ti) =
1

wi

wi−1∑
k=0

ρm(ti − k∆t),

which represents an average over the time window that the slurry takes to travel

62

through the pipe. The smoothed signal is subsequently shifted forward by the

same travel time:

ρm,corr(ti) = ρ̃m(ti + Ttravel(ti))

This correction ensures that the density measurement at time ti represents the

mixture that entered the pipe approximately Ttravel(ti) seconds earlier, i.e., the

same physical section of slurry that now reaches the sensor.

Optionally, a fixed time delay Tlag can be added to simulate this effect con-

sistently:

ρm,lag(ti) = ρcorr(ti − Tlag)

This procedure introduces velocity-dependent alignment and smoothing of

the density signal, resulting in a corrected density ρm,corr(t). It is essential for

enabling physically consistent simulation and lag-aware model training. By cor-

recting the density signal, all measurements can be properly aligned in time,

ensuring that the simulated system behaviour reflects the true physical rela-

tionships. Additionally, the introduction of fixed delays allows us to train and

evaluate models under controlled lag conditions, making it possible to study the

effect of density signal delays on model performance.

63

Figure 13: Comparison of actual, corrected, and constant lagged (ten seconds)
density. The corrected and constant lagged density are smoothed with a dy-
namic rolling window.

After preprocessing the raw signals, we apply a Savitzky-Golay filter [49] on

all relevant input variables. This type of filtering is suitable in physical systems

like dredging, where sensor data often contains high-frequency noise but where

preserving the overall trend is critical. A previous study has demonstrated its

effectiveness for similar tasks in dredging applications [29].

The Savitzky-Golay filter performs local polynomial regression within a mov-

ing window to smooth the signal. For a window of size 2m+1 over n data points,

the method fits a polynomial of degree d in the form:

Pd(i) =

d∑
k=0

bki
k,

where bk are the polynomial coefficients and i referring to the position of a sam-

ple within that specific window. These coefficients are obtained by minimizing

the squared error:

E =

m∑
i=−m

(Pd(i)− y(i))
2
,

64

with y(i) representing the observed values within the window. This local op-

timization ensures that the filter retains the underlying signal characteristics

while suppressing noise.

The final step, following the smoothing procedure, involves resampling each

trip to a fixed temporal resolution using linear interpolation [26].

Let a single trip provide a sequence of measurements {yj}n−1
j=0 for a given

variable (after any prior smoothing). We reparameterize the sample index onto

the unit interval via

xj =
j

n− 1
, j = 0, 1, . . . , n− 1,

and define a fixed target grid of length N ,

x⋆k =
k

N − 1
, k = 0, 1, . . . , N − 1,

with N = target duration. The piecewise–linear interpolant L(x) through

the data {(xj , yj)} is

L(x) = yj + (yj+1 − yj)
x− xj

xj+1 − xj
, x ∈ [xj , xj+1], j = 0, . . . , n− 2.

The resampled (simulated) series {ỹk}N−1
k=0 is then obtained by

ỹk = L
(
x⋆k
)
, k = 0, 1, . . . , N − 1

Both the original and target time axes are normalized to the unit interval

[0, 1]. Hence, if a trip originally contains more or fewer samples than the target

duration, the interpolation implicitly stretches or compresses the signal in time

such that all trips share the same number of uniformly spaced points N .

This ensures that all trips share a consistent duration and number of samples,

facilitating uniform input dimensions for both model training and subsequent

analysis. Standardizing the temporal grid also simplifies the comparison of pre-

dicted and actual signals across trips of varying lengths. Only trips that meet

65

predefined criteria for duration and data quality are retained for further process-

ing. After the input variables are prepared in this manner, the corresponding

target values for θsim are computed by simulating the physical system described

in eq. (6).

We emphasize once more the importance that the model is trained on data

where no sensor outliers are present. Previous research has been done (O. van de

Ven, personal communication, November 2024) to discover time periods when

there were no sensor outliers. The period has been identified from November

8, 2023 up to November 20, 2023. We apply the filtering process for this time

period.

Regarding the specifics, we chose a minimum and maximum window size

of wmin = 1, wmax = 50 for the dynamic smoothing. A window size of 50

time steps with a polynomial of order three was chosen for the Savitsky-Golay

filtering. Finally, we opted to go for a uniform trip size of 2, 000 seconds.

The upper limit of wmax = 50 corresponds to the maximum expected time of

the slurry within the pipe at (especially) lower flow velocities. This ensures

that the moving average does not extend beyond the physically relevant time

horizon, while still providing sufficient smoothing to mitigate fluctuations. For

the Savitzky–Golay filtering, the chosen window length aligns with the physical

interpretation. A third–order polynomial was found to offer an appropriate

trade–off between smoothness and flexibility: it captures the gradual trends

of the process without introducing excessive curvature or overfitting to noise.

The trip duration of 2, 000 seconds reflects the typical operational length of a

dredging cycle, which usually lasts around 30-35 minutes. Applying this process

resulted with a uniformly sized and denoised dataset of 56 trips, each aligned

in both duration and structure.

Whilst the system appears to be accurate, its performance does not align

perfectly with the real θ (see fig. 14). However, it is important to note that the

correctness of the ‘real’ θ cannot be guaranteed, as it was simulated using an

equation that neglects several variables known to influence its’ behaviour. This

evident by fig. 14a where we can see that θ exceeds the bounds θ ∈ [0, 5] given

66

by experts. Moreover, there exists no direct measurement or alternative method

to determine the true value of θ, making it difficult to perform a reliable com-

parison. What can be stated about the simulated data is that it is controllable

and provides a reasonable representation of the behaviour of θ under idealized

conditions.

67

(a) One entire trips worth of data of actual θ. We can see how it over and under shoots
the bounds θ ∈ [0, 5], whilst also fluctuating alot.

(b) The corresponding simulated θ values from the trip in fig. 14a. The behaviour is less
erratic and does not exceed the bounds, whilst still maintaining similar characteristics
to the original trip.

Figure 14: Comparison of a trip with real θ values and the simulated trip based
off of it.

68

5.2 Implementation

Here we discuss how we apply the operator learning methodology from sec-

tion 4.2 to our data. We also go through the training procedure and the method-

ology we use to evaluate the performance of the model.

5.2.1 Architecture

The architecture learns a mapping between two function spaces: the sensor

values to the loss parameter. We also need to keep in mind what the goal for

the model: we want to get close to real-time predictions of the loss parameter,

whilst the vessel is still dredging. This means that training a model on a full

trip worth of sensor data to get a predicted output for θ on that full trip is not

of much use to us. In real-time, this would mean that we see the development of

θ for a whole trip, only after that trip is done (since we need the sensor inputs

of that whole trip to make a prediction). The aim of the project is for the crew

aboard to react to the θ value in order to optimize suction production. This is

why we will train on windows with size w within a trip instead of on a whole

trip, the details of which are explained in section 5.2.2.

The input functions fi to the branch network represent the different sensor

variables that influence the loss parameter θ. Each function corresponds to one

variable, evaluated over a temporal window of length w, such that every window

69

constitutes one training segment. For the k-th window, we define:

f1(tsk , . . . , tek) = Pj(tsk , . . . , tek)

f2(tsk , . . . , tek) = ∆Phead(tsk , . . . , tek)

f3(tsk , . . . , tek) = V (tsk , . . . , tek)

f4(tsk , . . . , tek) = v(tsk , . . . , tek)

f5(tsk , . . . , tek) = D(tsk , . . . , tek)

f6(tsk , . . . , tek) = δ(tsk , . . . , tek)

f7(tsk , . . . , tek) = Sc(tsk , . . . , tek)

f8(tsk , . . . , tek) = ρm,lag(tsk , . . . , tek)

Here, tsk and tek denote the start and end times of the k-th window, respectively,

with tek = tsk + w. We set the index i = 1, . . . , 8 to the different input vari-

ables, while k indexes the temporal window within a trip. Each fi(tsk , . . . , tek)

therefore represents the evolution of the i-th sensor variable over the k-th time

window of length w. The trunk network is defined through these windows:

z = (tsk , . . . , tek)

With the branch interactions defined in table 2 as:

70

Table 2: Branch interaction configuration using input functions fi. Each branch
may interact with other branches and, optionally, the trunk. Interacting func-
tions share attention logits between every layer, as was discussed in section 4.2.

Function Interacting Branches Trunk Interaction

f1(Jet pumps) {f1, f2} No

f2(∆PHead) {f1, f2, f4, f8} No

f3(Vacuum pressure) {f3, f4} No

f4(Velocity) {f2, f3, f4, f5, f6, f8} No

f5(Draghead depth) {f4, f5, f8} No

f6(Angle) {f4, f6} No

f7(Swellcompensator) {f7} No

f8(Lagged density) {f2, f4, f5, f8} Yes

Trunk {f8} —

Then, the operator as described in section 4.2 is denoted as:

G(f1, . . . , fm)(z) = G(f1, . . . , f8)(tsk , . . . tek) ∈ R

5.2.2 Training

As the model is trained on windows within each trip rather than on the

full trip, we adopt a windowing strategy inspired by convolutional neural net-

works [28]. This approach is closely related to sliding-window techniques widely

used in time series modeling [27, 10]. This enforces the architecture to learn

operators over temporal windows of size w. We aim to learn an operator

G(f1, . . . , f8)(tsk , . . . , tek), where each fi represents one input variable evalu-

ated over the k-th window. For a complete trip belonging to sensor input j

with n time steps, the full signal can be expressed as

fj(t1, . . . , tn) = [x1, . . . , xn]

71

This sequence is then segmented into windows of size w. The buffer size (com-

monly referred to as the stride) determines the number of time steps by which

the window moves forward after each segment. Each window k for a given trip

is defined as

f
(k)
j = [xsk , xsk+1, . . . , xsk+w−1],

where sk = (k − 1)s denotes the start index of the k-th window and s is the

stride length. This procedure is repeated for all trips in the dataset. The total

number of training samples per sensor input is therefore

T

⌊
n− w
s

+ 1

⌋
,

where T denotes the total number of trips. The model is then trained to fit its

parameters across all generated windows.

The loss function that is being used to evaluate every window to its respective

predictions is the mean squared error. We configure the activation function

in every hidden layer to be the hyperbolic tangent activation function. The

optimizer of choice is adam [24].

There is no optimal choice for window size and stride when segmenting the

time-series data; instead, these parameters must be selected with consideration

for the real-world application. In practice, we avoid long strides, as this would

reduce the frequency of predictions which is undesirable for having timely up-

dates. Given that the density sensor typically exhibits a delay of approximately

ten seconds, we set the stride (or buffer) to ten seconds, allowing the model to

produce a prediction per ten-second interval. This means that the model out-

puts a prediction for the past ten seconds, every ten seconds. A shorter stride

would lead to a much higher computational cost per trip, without necessarily

improving model performance.

For the window size, we consider the range over which variables are expected

to influence each other. A window that is too long risks incorporating outdated

information that no longer contributes meaningfully to the model’s prediction

72

at the current time step. In the end we decide for a window size of 100 seconds.

Regarding application, this choice implies that the first valid predictions from

the operator will become available after the initial 100 seconds of dredging, once

the first complete window has been observed. Given a stride of ten seconds,

subsequent predictions are then generated every ten seconds as new data arrive.

This configuration allows for near real-time monitoring of the dredging process,

with continuously updated estimates of the loss parameter θ as the operation

progresses.

To train and evaluate the model, we randomly pick 70% of trips for training

and 30% for testing. This results in 7,449 windows of length 100 for training,

and 3,247 for testing. During training, windows are randomly batched and

passed through the network; one epoch corresponds to a complete pass over all

7,449 training windows.

We note that since we constructed the modified DeepONet in such a way that

it encodes the time steps explicitly via the local trunk methodology, overlapping

windows will always give the same predictions. For example, the prediction for

t = 1000s with the same input variables will always output the same prediction

for θ with the local trunk methodology. This is not the case for the classical

DeepONet and MIONet however. Since we want to compare performances, we

define a methodology to evaluate on overlapping timesteps in different windows.

We define θ̂
(i)
t as the prediction made for time step t by window i. Furthermore,

W(t) represents the set of all window indices i that include the time step t.

The first strategy is averaging, where for every time step, we take the mean

over all the overlapping windows that cover it:

θ̂t =
1

W(t)

∑
i∈W(t)

θ̂
(i)
t

In real-time however, this is not possible since not all overlapping windows

are available at the time point we want. Instead, we select the prediction from

the first window that covers time step t:

73

θ̂t = θ̂
(i∗)
t , where i∗ = min{i ∈ W(t)}

This way, we avoid waiting for future windows when getting a real-time predic-

tion.

5.2.3 Evaluation metrics

Similar to other literature using time series forecasting with deep learning,

we test our model with three metrics [52]: root mean square error (RMSE),

mean absolute error (MAE), and the coefficient of determination (R2). We

note that we do not perform evaluation on the training windows, but that we

aggregate all predictions back into their respective trip, and evaluate on a trip

basis. Since we are evaluating on multiple trips, the metrics are then averaged

to determine the overall performance.

R2 = 1−
∑n

i=1(θ̂i − θi)2∑n
i=1(θi − θ̄)2

RMSE =

√√√√ 1

n

n∑
i=1

(
θ̂i − θi

)2

MAE =
1

n

n∑
i=1

∣∣∣θ̂i − θi∣∣∣
A smaller RMSE and MAE indicate a smaller error, whilst an R2 value closer

to 1 indicates a higher forecasting accuracy.

We analyse the performance of the modified DeepONet first, after which

we see how much the corrector model improves the predictions. We compare

metrics with the classical DeepONet, as well as with the MIONet.

Finally, we also use a baseline to compare our results to. The process of

estimating θ is currently not being done at all, so we define a simple baseline

ourselves. For this we define our baseline θt, as the rolling mean of its’ previ-

ous w (window size) values. That is, given the ground truth sequence θ(i) =

74

[
θ
(i)
1 , θ

(i)
2 , . . . , θ

(i)
n

]
and corresponding timestamps t(i) =

[
t
(i)
1 , t

(i)
2 , . . . , t

(i)
n

]
for

each trip i = 1, . . . , T , the rolling mean baseline θ̂
(i)
t at time t is defined as the

mean of all past values of θ(i) within a rolling window of size w seconds ending

at t:

θ̂
(i)
t =

1

|S(i)
t |

∑
j∈S

(i)
t

θ
(i)
j ,

where S
(i)
t =

{
j | t(i)j ∈ [t

(i)
t − w, t

(i)
t]
}

is the set of indices within the rolling

window at time t for trip i.

If no valid indices exist in the window, the prediction defaults to the mean

of all previous values (to account for the first w values within a trip):

θ̂
(i)
t =

1

t

t∑
j=1

θ
(i)
j

Once again, we need to define the length of this window. Since we split the

trips into windows of length 100 seconds for our training data, we will also take

the rolling window in our baseline as 100 seconds.

5.2.4 Hyperparameter tuning

There are a number of hyperparameters in our model architecture that need

to be optimized. The arguably most important hyperparameter is the learning

rate. This decides the steepness of the correction when doing backpropaga-

tion, as derived from the gradient descent discussions in section 4.1.1. A large

learning rate could cause the update step to overshoot the optimum, whilst

a low learning rate leads to a slow rate of convergence [17]. The batch size

is another important hyperparameter: this determines how much of the data

is seen in one training step. A batch size of one corresponds to one training

window being seen in every step. The choice of batch size reflects a trade-off

between speed and generalization. Large batches accelerate training but can

lead to poorer generalization, while small batches enhance accuracy at the cost

75

of increased training times. The final hyperparameters tuned are the number of

hidden layers and the size of each layer. Increasing the number of layers results

in a deeper network, while increasing the layer size produces a wider model. In

both cases, the total number of trainable parameters grows, leading to a more

complex model to optimize. This might improve the performance of the model

but can also cause gradients to vanish, making the training unstable [17]. In

our case there are three types of hidden layers: the encoding layer, the first

hidden layer, and the subsequent hidden layers. We differentiate between the

first hidden layer and the others because there is no attention mechanism yet

applied to this layer, so it serves a different purpose. The rest of the layers all

serve a similar purpose (other than the encoding layer). Even though these are

different types of hidden layers, we do not test configurations where they are

different sizes. The hyperparameter optimization would then take too long (as

is explained in the subsequent discussion). We also do not test for different sizes

and number of layers in different branch and trunk networks, since this would

also be too computationally expensive. We take the same structure for each

branch network, with that structure resonating with the trunk network.

The way we test the performances of the different configurations is through

K-fold cross validation [54]. K-fold cross-validation is a widely used evaluation

technique that aims to assess the generalization ability of a model. Instead of

evaluating performance on a test set, the data is divided into K equally sized

folds. The model is trained and validated K times, each time using K − 1 folds

for training and the remaining fold for validation. The average loss per fold

serves as an estimate of the model’s expected performance on unseen data. K-

fold cross-validation helps reduce the variance associated with a single train/test

split, and provides a more stable and reliable measure of model performance.

The hyperparameter grid explored in this study is detailed in table 3, com-

prising a total of 81 unique configurations. Each configuration is evaluated using

a 5-fold cross-validation on 20% of the available dataset. In four of the five folds,

the model is trained on 1,719 windows (each of length 100) and evaluated on 382

windows. The remaining fold involves training on 1,528 windows and testing on

76

573, ensuring full utilization of the 20% data split.

Each fold for every configuration is trained for ten epochs. Although this

represents a short training duration, most performance improvements are ob-

served within these initial epochs (as will be discussed in section 6). Extending

the training duration, or expanding the training set was considered but deemed

computationally excessive, since each configuration already requires approxi-

mately 40 minutes to train for ten epochs. This computational cost is largely

attributed to the high model complexity, with approximately 60,000 trainable

parameters for an architecture consisting of five (subsequent) hidden layers of

size 32 and a batch size of 32. For deeper or wider networks, this number

increases substantially, further amplifying the computational demands.

For each fold and configuration, we compute the RMSE, MAE, and R2

values. These metrics are evaluated twice: once using the predictions of the

modified DeepONet model, and once after applying the corrector model. To

assess overall performance, we report the average of each evaluation metric

across the five folds.

As the optimal correction window for the corrector model is not yet known,

a fixed correction window size of ten seconds is applied consistently across all

folds. The correction window size is optimized post-training, as detailed in

section 5.2.5, to again reduce the computational cost associated with model

optimization.

Table 3: Hyperparameter grid used for model tuning

Hyperparameter Values

Hidden layer sizes 32, 64, 128

Number of (subsequent) hidden layers 3, 5, 7

Batch size 32, 64, 128

Learning rate (LR) 0.01, 0.001, 0.0001

The hyperparameter optimization process was executed over a total of 54

77

hours on a single-GPU machine. Given this already substantial computational

investment, we chose not to explore more granular architectural variations, such

as layer-specific size differences or alternative branch/trunk designs.

In table 4, the five configurations that achieved the lowest validation losses

are presented. Among the evaluated metrics, we consider the corrected RMSE to

be the most relevant, as it most closely reflects the model’s performance in real-

world applications. Accordingly, we rank the hyperparameter configurations

based on this corrected RMSE.

As shown in table 4, the top-performing configurations consistently yield

the best scores across all metrics, both before and after applying the corrector

model.

Table 4: Performance metrics for each hyperparameter configuration. Each cell
shows the corrected value followed by the original value in parentheses.

Hidden layer

sizes
Layers

Batch

size
LR

RMSE

(corr. / orig.)

MAE

(corr. / orig.)

R2

(corr. / orig.)

32 5 32 0.010 0.054 (0.070) 0.021 (0.048) 0.201 (-0.349)

64 7 32 0.010 0.075 (0.098) 0.034 (0.065) -0.632 (-1.977)

32 7 32 0.010 0.075 (0.154) 0.029 (0.116) -1.076 (-11.231)

32 3 32 0.010 0.083 (0.492) 0.035 (0.473) -1.520 (-275.347)

32 3 64 0.010 0.089 (0.106) 0.041 (0.060) -1.391 (-2.686)

The results presented in table 4 illustrate the impact of various hyperpa-

rameter configurations on model performance. Notably, the configuration with

the smallest hidden layer size (32), a moderate network depth (5 layers), and

the smallest batch size (32) achieved the best performance across all evaluation

metrics. Specifically, it yielded the lowest corrected RMSE (0.054) and MAE

(0.021), alongside the highest corrected R2 score (0.201). This indicates that

smaller, more compact network architectures generalize better in this context,

potentially due to reduced complexity.

While all configurations shared the same learning rate (0.01) in this table, its

strong performance across architectures suggests that this value may be optimal

78

for this setup. However, since this learning rate was the highest out of the ones

tested, it implies that slightly increasing the learning rate could be a promising

direction for further tuning. Another option that could be explored in future

avenues would be to implement an adaptive learning rate [70], which alters the

learning rate based on first order (gradient) information.

Another important observation is the consistent performance improvement

across all configurations when applying the corrector model. This post-processing

module improved all metrics relative to their original values. This includes sub-

stantial improvements in the R2 score, in some cases turning negative values

into positive scores. This underlines the corrector model’s effectiveness in align-

ing predictions and correcting systematic biases (either from the predictions,

sensors, or other causations).

Overall, the R2 scores are modest, with the uncorrected outputs performing

poorly: only the best configuration attain decent R2 values. For reference, the

worst performing configuration with five hidden layers of width 128, learning

rate 0.01, and batch size 32 exhibited catastrophic divergence in one fold. Its

fold-averaged metrics were RMSE = 24,050 (uncorrected) and 3,302 (corrected),

MAE = 23,638 (uncorrected) and 1,706 (corrected), and R2 = −7.7 × 1011

(uncorrected) and −1.1 × 1010 (corrected), indicating severe instability at this

depth/width with a high learning rate. Importantly, the generally weak R2 is

not driven by such outliers. A contributing factor is limited data diversity: the

dataset comprises 56 trips, of which 20% (roughly 11 trips) are used, and each

configuration is trained for only ten epochs. This combination constrains the

model’s ability to generalize. In the full-model setting; where more data and

training are available, these issues do not arise (see section 6).

Based on these findings, the best-performing configuration was selected to

train a final model on the full dataset. For this training, we use a standard

70-30 train-test split and train the model for 100 epochs.

79

5.2.5 Corrector model

After we train the model with the modified DeepONet architecture, we im-

plement the corrector model process that was discussed in section 4.4. This is

done after the main architecture has been trained, in a post-processing context.

For this post-processing we also run a short hyperparameter tuning. We need

to decide how far back the rolling mean error should be looked at. After the

full model has been trained we test the corrector model on correction windows

for cw ∈ [1, 50], cw ∈ Z, where the window is always lagging τ = 10 seconds

behind (constant density lag). This is tested on validation (test) data. The

correction window yielding the lowest average root mean squared error per trip

is then chosen, the results of which are in section 6.2. This correction window

will then also be applied in all future iterations that use the corrector model.

In future research, the optimal correction window can be established alongside

the hyperparameter tuning of the modified DeepONet. Since we are working

with controlled, simulated data, we make sure there are no outliers present in

the preprocessing already. Hence, we do not showcase the additional outlier

detection capabilities that the corrector model possesses in our results.

80

6 Results

We evaluate the performance of the proposed model on both training and

testing trips, and benchmark these results against the classical DeepONet and

MIONet architectures, as well as to the baseline. In addition, a sensitivity

analysis is performed to evaluate the robustness of the model when exposed to

varying temporal timespans and when specific input features are omitted. The

final part of this section explores the performance of the model on real data.

6.1 Modified DeepONet performance

The network is trained using the optimized hyperparameter configuration

for a total of 100 epochs , with training taking approximately 8 hours on a

single-GPU machine (NVIDIA T4) to configure 63,523 parameters. The best-

performing model on the training set was obtained at epoch 78. The loss curve

of the training process is detailed in fig. 15.

81

(a) Loss curve of the full training. The biggest decrease in the training loss already
comes after the first ten epochs.

(b) The same loss curve but zoomed into the later epochs. We can see how the training
loss still gradually decreases by a small amount as the epochs increase. There is also a
spike in loss around epoch 30 which may have been caused by momentary instability in
the gradient updates. The loss quickly stabilizes afterward, suggesting that the model
recovered and continued to converge as expected.

Figure 15: Loss curves associated with the training. The training loss is logged
every five epochs.

Our evaluation begins with an assessment of the model’s predictive perfor-

mance without incorporating the corrector mechanism. This serves as a basis

for understanding the effectiveness of the core architecture. We then introduce

the corrector component and analyse the extent to which it improves prediction

accuracy and generalization. A comprehensive table summarizing all evaluation

82

metrics is provided in table 5.

To assess model performance, we present results on two representative trips

from both the training and testing sets: one characterized by relatively smooth

dynamics, making it easier to predict, and another exhibiting more variability

and fluctuations, posing a greater challenge to the model. This is calculated

by the total variation of the trip. According to [25], the total variation of a

function θ defined on an interval [a, b] is given by

V b
a θ = sup

n∑
i=1

|θ(ti)− θ(ti−1)|,

where the supremum is taken over all partitions a = t0 < t1 < · · · < tn = b. For

discrete time series data, this can be approximated as

V (θ) =

T∑
t=2

|θt − θt−1|

A lower total variation indicates smoother temporal dynamics, whereas higher

values correspond to stronger fluctuations and increased variability. For both

the training and the testing trips, we showcase two trips with differing amount

of total variation. The average total variation over the 56 trips is 5.84. The

total variation for every trip in the dataset is listed in appendix C.

6.1.1 Training set

On the training data, the model demonstrates strong overall performance.

Nevertheless, it exhibits occasional difficulty in capturing abrupt transitions,

leading to slight overpredictions in regions with rapid changes as seen in fig. 16.

83

(a) Predictions for a stable trip (V (θ) = 3.24). We see that the prediction overshoots
at some points.

(b) Predictions for the trip with more fluctuations (V (θ) = 13.30), we see that the
predictions follow the actual values quite well.

Figure 16: Comparison of different training trips from the Modified DeepONet.

The behavior seen from the trip in fig. 16a is seen more often in other trips,

84

whereby it overshoots the predictions slightly. For all evaluation metrics (R2,

RMSE and MAE scores), the model outperformed the baseline on every trip.

6.1.2 Test set

For the test set, we again present results for both an easier and a more

challenging trip. The model performs well overall, accurately capturing the

general pattern of the signal. However, similar to the training data, a consistent

offset is observed in the predictions. This offset can be interpreted as a local bias:

a systematic, region-specific deviation between the predicted and actual signal

that arises when the model’s local encoding introduces context-dependent shifts

in the output. This is expected, as local biases tend to be more significant on

unseen data where the model has not previously encountered similar conditions.

These local biases may stem from the way the architecture was encoded with

the local trunk network, but could also be the results of sensor values drifting,

or something occurring within the dredging system (for example interference in

the dredging operation of debris).

85

(a) Predictions for the easier test trip (V (θ) = 2.45). We see that the prediction
overshoots slightly at most points, but that the overall pattern is captured well.

(b) Predictions for the test trip with more fluctuations (V (θ) = 18.78), we see that
the model predicts the pattern well, with some overpredictions in the troughs of the
trip.

Figure 17: Comparison of different training trips from the Modified DeepONet.

86

In the more volatile trip shown in fig. 17b, the model captures the overall

pattern well until it encounters sharp drops at the troughs. While it manages

to track these decreases, it does so with a consistent offset and a tendency to

overpredict. Across the entire trip, the model exhibits varying degrees of offset.

This behavior is expected, given the fluctuating nature of the trip, which poses

a greater challenge for accurate prediction. Additionally, both testing trips

struggle to capture the pattern in the final 100 seconds of their respective trips,

which is common for the other trips as well (fig. 18). Across the entire test set,

the model outperforms the baseline in terms of RMSE and R2 for all 17 trips.

Averaged over all trips, the RMSE is reduced by 73.5% and the R2 improves

from 0.2647 to 0.9416. For the MAE, it achieves better performance than the

baseline on 16 out of 17 trips, with an average improvement of 57.1%.

We show an RMSE heatmap for every timestep corresponding to every test

trip. We see that many trips have higher errors at the start and end of a trip.

This is unsurprising due to how we set up the training in the form of windows

with a moving stride, so the start and the end timesteps of a trip would have

the least amount of data to train on. With the window size being 100 and

the stride as 10, timestep t1 . . . t10 = 1s . . . 10s is only prevalent in one training

window. Timesteps t11 . . . t20 only in two training windows, etc. The final 100

timesteps, t1901 . . . t2000 are all only in one training window since we do not

consider windows with a size smaller than 100.

The start and end of a trip also signifies the time when dredging is starting

up (initializing) or shutting down, making it difficult to predict, and also, less

important. Most trips have a relative constant RMSE throughout the trip,

whilst other trips exhibit a highly fluctuating error (like in trip with ID 60.0).

87

Figure 18: Heatmap of RMSE errors on test trips.

6.2 Performance with corrector model

We perform a search to inspect which correction window size cw ∈ [1, 50]

offers the most improvement (lowest average RMSE per trip) on the test set.

The search yielded cw = 1 as seen in fig. 19, which we will now use for all

future purposes. The powerful effect of the corrector model is that it corrects

the offset that is caused by local biases from the model. This is reflected by the

improvements in the RMSE. On the training data, averaged per trip, RMSE im-

proved from 0.0124 to 0.0066. The RMSE on the test set improved from 0.0148

to 0.0094. From fig. 20 it is evident that the RMSE improved for every single

trip. It does not improve by the same magnitude for every trip, especially for

trips with high fluctuations. It does however, significantly improve the quality

of predictions of trips suffering from a local bias offset.

88

Figure 19: Effectivity of different correction windows on the average RMSE over
every testing trip. We observe that longer correction windows result in higher
RMSE values. This behaviour can be attributed to the temporal nature of
the correction mechanism. Since the correction is applied based on past errors,
including a larger temporal span introduces outdated information that no longer
reflects the current system state. In contrast, shorter windows, particularly
cw = 1, focus on the most recent deviations. This is more representative of the
present dynamics.

89

(a) Corrector model improvements on the training trips.

(b) Improvements by the corrector model on the testing trips.

Figure 20: RMSE improvements.

It is evident that all trips consistently improve after applying the correction.

Particularly in the testing trips, the improvements seem to be by the same

amount for every trip. There are no trips that improve drastically, i.e., the

high error trips (such as trip with ID 46), remain with a high error also after

correction. For the training trips, however, we see that the trip with ID 34 and

35 did improve by a considerable amount. This implies that this trip suffered

from a persistent constant offset instead of large variability, which is adjustable

by the correction implementation. We showcase the improvement from the bias

offset of trip 2 (ID 44.0) in fig. 17a and observe how the corrected prediction

now follows the actual values seemingly perfect in fig. 21.

90

(a) Corrected, true and original predictions for trip 2 with ID 44.0. Corrected pre-
dictions seem to follow the true values perfectly, correcting the bias from the original
predictions. The end of the trip is still not predicted accurately, even with the addition
of the corrector mechanism.

(b) The same trip but zoomed into timesteps 400 to 1600. We can clearly see how the
predictions benefit from the correction.

Figure 21: Predicted, corrected, and true θ values for trip with ID 44.

91

Regarding comparisons to the baseline, the corrected model outperformed

the baseline on every single metric, for every single trip (both on testing and

training trips). The modified net (ModNet) also clearly outperforms the classical

DeepONet, as well as the MIONet. We analyse the results of these models in

appendix B. We summarize the results in table 5 and table 6 below.

Table 5: Performance metrics for the training set.

Architecture
Training time

(hours)
RMSE MAE R2

ModNet 8 0.0124 0.0106 0.9589

Corrected ModNet 8 0.0066 0.0032 0.9886

Baseline 0 0.0577 0.0354 0.3082

MIONet 3 0.0460 0.0328 0.2587

Classical DeepONet 1 0.1039 0.0883 -1.4724

Table 6: Evaluation metrics across architectures on the testing set. Interestingly,
the classic DeepONet performs better on testing trips than training trips (more
details in appendix B).

Architecture RMSE MAE R2

ModNet 0.0148 0.0115 0.9416

Corrected ModNet 0.0094 0.0036 0.9745

Baseline 0.0592 0.0359 0.2647

MIONet 0.0665 0.0487 -0.0449

Classical DeepONet 0.1003 0.0855 -1.4015

We plot a histogram of the RMSE performances across all testing trips in

fig. 22. It is evident that both the corrected, as well as the uncorrected model

instants outperform the baseline for all trips. In appendix C, the visualizations

for every individual trip in the testing set is presented.

92

Figure 22: Histogram of RMSE scores for simulated testing trips. We also
include the RMSE scores of the baseline model.

6.3 Sensitivity analysis

To examine the robustness of the model we investigate the temporal ro-

bustness: this refers to how well the model performs when evaluated on data

from a different time period it was trained on. Feature importance is evaluated

through dropout analysis, where we systematically remove one input at a time

and measure the degradation in performance. For each feature we retrain the

model with identical settings (architecture, optimizer, hyperparameters, and

splits) but with that feature excluded, and we record the evaluation metrics for

that model. This provides a transparent ranking of inputs.

6.3.1 Temporal robustness

When investigating temporal robustness, we investigate model’s ability to

generalize across different periods in time. This is particularly crucial in time-

dependent processes such as dredging. There are external factors including

93

weather conditions, sea states, sediment properties, and vessel loading patterns

that can significantly influence system dynamics. So far, the model has only

been trained and tested on 56 simulated trips that are derived from sensor data

within the same month. This could mean that the model is only accurate for

that specific dredging context for that month. Hence why we should test to see

if it can still perform under a different context, at a different time.

To evaluate temporal robustness, we use our trained model that was op-

timized for simulated trips in November 2023, and test it on simulated trips

that occured in June 2023 (43 trips), as well as January 2024 (55 trips). The

construction of simulated trips is done with the same process as is shown in

section 5. Performance is measured on trips using the standard metrics.

A temporally robust model should be consistently accurate across different

operational periods, even when the system experiences shifts due to seasonal

variations or changes in soil types.

We showcase the performance across all metrics in table 7.

Table 7: Evaluation metrics across different temporal datasets. Model was
trained on data from November 2023.

Dataset RMSE MAE R2

November 2023 (unseen testing trips) 0.0148 0.0115 0.9416

January 2024 0.0350 0.0116 0.9096

June 2023 0.0207 0.0117 0.8881

Surprisingly, we see that the dataset from January 2024 and June 2023 both

perform extremely well. The January dataset performs marginally better than

the June dataset in terms of MAE and R2 scores. The area in which the vessel

Strandway was dredging was similar in January as well as June. This area

was also part of the training trips in November. This explains why the model

performs so well for both timespans (as seen in figs. 23 and 24).

94

Figure 23: Prediction and actuals from a simulated dredging trip in January
2024 (V (θ) = 5.99). The predictions seems to follow the actuals almost exactly.
Only in the last quarter of the trip there is a visible bias offset, with the per-
formance degrading over time.

95

Figure 24: Predictions of a dredging trip that took place in June 2023 (V (θ) =
9.45). The predictions follow the actual values closely. The behaviour of θ in
this trip is notably erratic and irregular. Usually, the behaviour across one trip
is relatively smooth. This indicates that during this time period, a different
sediment such as water could have been dredged, instead of sand (which was
trained on). Even though the behaviour is erratic, the model still generalizes
well.

For this analysis, we intentionally disabled the correction module to assess

the robustness of the modified DeepONet. Across both figures, we again observe

systematic offsets in segments of the predictions, indicative of a persistent bias.

These offsets can be mitigated by enabling the correction methodology, which is

designed to compensate for slowly varying bias using recent error feedback. We

therefore expect an improvement in predictions once corrections are applied.

6.3.2 Dropout analysis

To evaluate the relative importance of each input feature to the operator

learning model’s predictive performance, we conduct dropout analysis. This

approach systematically removes one input feature at a time from the model’s

96

branch inputs, retrains a new model, and evaluates its performance on unseen

test data. The degradation in prediction metrics (RMSE, MAE, R2) provides

an estimate of that feature’s contribution to model accuracy.

Let F = {f1, f2, . . . , fm} denote the set of input functions (branches). Each

model uses a local trunk formulation with window size 100 and stride length

ten. This data is structured exactly the same as the training data used for

the original model. The hyperparameters and interactions between branch and

trunk networks used to train the individual models in the dropout analysis

remain consistent with the ones used to train the main model.

For each branch feature fi ∈ F , we conduct the following steps:

1. Drop feature: Exclude fi from the branch input set, forming a reduced

set F−i with d = |F−i|.

2. Model training: A modified DeepONet model with d branch subnet-

works and a local trunk network is instantiated. The model is trained

using mean squared error (MSE) loss for ten epochs.

3. Prediction and evaluation: The trained model is evaluated on the test

set. The corrector model is then also applied to inspect the performance

of the corrected predictions on the test set. The usual RMSE, MAE, and

R2 metrics are recorded. The average of the evaluation metrics across all

test trips is saved. This is done once for solely the model, and once with

the corrector model applied.

This analysis provides insight into the influence of each feature on the

model’s prediction quality and highlights redundancies or critical dependencies

in the input data.

We showcase the results of the analysis in tables 8 and 9 below.

97

Table 8: Dropout analysis: evaluation metrics (uncorrected) after removing
individual features. Higher RMSE/MAE and lower R2 indicate greater impor-
tance of the dropped feature.

Dropped feature RMSE MAE R2

Jet pumps 0.0647 0.0574 -0.1814

∆PHead 0.0990 0.0507 -1.9645

Vacuum pressure 0.0559 0.0452 0.1741

Mixture velocity 0.1319 0.1258 -3.5512

Draghead depth 0.0286 0.0140 0.7916

Angle 0.0234 0.0139 0.8571

Swellcompensator 0.0499 0.0317 0.3379

Lagged density 0.0761 0.0713 -0.4345

All features 0.0124 0.0106 0.9589

Table 9: Dropout analysis: evaluation metrics (corrected) after removing indi-
vidual features. Correction applied via rolling mean alignment.

Dropped feature RMSEcorr MAEcorr R2
corr

Jet pumps 0.0317 0.0115 0.7285

∆PHead 0.0796 0.0279 -0.9629

Vacuum pressure 0.0391 0.0184 0.6039

Mixture velocity 0.0376 0.0197 0.6757

Draghead depth 0.0272 0.0090 0.8067

Angle 0.0215 0.0070 0.8653

Swellcompensator 0.0392 0.0145 0.5006

Lagged density 0.0284 0.0095 0.7719

All features 0.0066 0.0032 0.9886

From tables 8 and 9, the largest degradation in performance occurs when

∆PHead, mixture velocity, or lagged density are removed. By contrast, dropping

angle or draghead depth has the smallest effect, and no model matches the

98

performance of reference model that uses all features.

These results are consistent with the relations discussed in section 2.2. In

that section we argued that the target θ depends on the entrance loss facor α,

which in turn is driven by the suction conditions at the draghead. The pressure

change across the draghead, ∆PHead, is an indication for that suction: changes

in ∆PHead modulate α and therefore the mixture composition. The mixture

velocity and mixture density constitute two of the most important parameters

in the dredging process as a whole, which is reflected in the results.

In contrast, angle and draghead depth exert a weaker influence: their ef-

fects on θ are largely mediated through the other features such as ∆PHead and

vacuum pressure, and their variation is limited. Taken together, the fact that

every feature drop degrades performance indicates that each variable contributes

complementary information needed for an accurate predictor, with the best per-

forming model being the one with all features.

Seeing as we simulated the data from eq. (6) in section 5, these results

make sense. Whilst simulating the data, we delegated specific weights for each

variable signifying their importances. This is reflected back in the dropout

analysis, where the variables given the most weight was ∆PHead, and the one

given the least weight were both the jet pumps and the angle. This analysis

further proves that the model captures the patterns of the simulated system. In

the next (sub)section, we explore the performance of our model on real data,

where the importances are unknown. Here we repeat the dropout analysis.

6.4 Evaluation on real data

We conduct experiments using real-world data. Instead of training on sim-

ulated values of θ, we now compute and use real values derived from sensor

readings. The input variables are processed identically to the simulated setup.

First, a dynamic rolling window is computed to temporally align the density

sensor with the other sensors. Based on this aligned dataset, the θ values are

calculated using the vacuum equation. To smooth the output, a rolling mean

99

with a window size of 100 is applied to the computed θ, followed by a Savitzky-

Golay filter [49] with a 50-step window and polynomial order of three, applied

to both input and output variables.

Outlier removal is performed by clipping all θ values outside the range θ ∈

[0, 5]. This means that any values outside the range are clipped to 0 or 5. Any

trips for which more than 10% of the data is clipped are excluded from analysis.

Out of 56 available trips from the November dataset, 32 met the criteria for

evaluation. This is about 60% of the trips, which demonstrates the instability

of using real data. The dataset is split in the same manner as before: 70% of

the trips are used for training and 30% for testing (randomly chosen). Trips are

segmented into windows of 100 seconds with a buffer (stride) of ten seconds.

The architecture of the branch and trunk networks remain unchanged, with the

only modification being an increase in the number of training epochs from 100

to 200 due to slower observed convergence and less training data. Training the

model on this dataset required approximately 9 hours. After training, we apply

the corrector model with a correction window of cw = 1.

100

Figure 25: Corrector model correcting local biases on a testing trip of real data
(V (θ) = 10.03). The modified DeepONet prediction suffer from varying amounts
of local biases, which is solved with the addition of the corrector model.

The results indicate that the model performs less effectively on real data

compared to the simulated case. This outcome is expected, given the higher

noise levels and unpredictability inherent in real-world sensor readings. While

the initial model’s performance on the test set is limited, the introduction of the

corrector model significantly improves the results by addressing local prediction

biases. Although local bias was only a minor issue in the simulated setting, it

becomes a significant challenge when working with real data.

It is important to note that the model and training procedure were exten-

sively tuned for the simulated dataset. With further (hyperparameter) tuning

specific to real-world conditions, the model’s performance could improve. Fur-

thermore, only 60% of the trips were valid, consequently causing there to be less

data. Perhaps with more valid trips to train on, performance may also improve.

An example of a test set prediction, with and without correction, is shown in

fig. 25. The figure illustrates the presence of local bias in the raw predictions

101

and the corrective effect introduced by the corrector model.

Not all predictions suffer from local biases, with some outputting high er-

rors in general. Overall on the testing set, the modified DeepONet with the

correcting mechanism outperformed the baseline on 9/10 trips on the RMSE,

R2 and MAE metrics. For the training data, the corrected model outperformed

the baseline on all 22 trips for the RMSE, R2 and MAE metrics. We summarize

the metrics for the real data in tables 10 and 11 below.

Table 10: Evaluation metrics for real training data. For the MIONet and the
classical DeepONet, the average prediction per time step was used for evaluation,
since this was more accurate than the first prediction.

Architecture RMSE MAE R2

ModNet 0.7312 0.6428 -1.3518

Corrected ModNet 0.2241 0.1284 0.8159

Baseline 0.3932 0.2504 0.4583

MIONet (avg) 0.8371 0.7031 -1.9146

Classical DeepONet 0.8650 0.7367 -2.0650

Table 11: Evaluation metrics for real testing data. We keep in mind that there
was one trip in the testing set that performed extremely poorly, hence why the
large average error is present in the R2 value of the uncorrected ModNet.

Architecture RMSE MAE R2

ModNet 0.9988 0.8517 -2.6209

Corrected ModNet 0.2917 0.1842 0.7182

Baseline 0.3880 0.2497 0.5394

MIONet (avg) 0.9189 0.7772 -2.0244

Classical DeepONet 0.8906 0.7401 -1.8179

We illustrate the performance on the testing trips with the histogram in

fig. 26. We can see how one trip (ID 35) perform considerably worse than the

others. This is also the only trip where the baseline outperforms our corrected

102

model. This trip is illustrated in fig. 27. The trips with ID 44, 58, 49 and 24 can

be seen to have the largest improvement from the corrector model, showcasing

the effectivity of the corrector model at dealing with local biases.

Figure 26: Histogram of RMSE scores for real testing data.

103

Figure 27: Predicted and real θ values for the only trip where the baseline
outperforms the model (V (θ) = 37.91). The flat areas in the true values is
when θ was clipped to θ = 5 whenever θ > 5. We see that both the initial
prediction, as well as the corrected one struggle to capture the pattern. This
shows that the base predictions are important, the corrector model can not be
used on its own.

In fig. 27, a trip that may have suffered from external factors, due to the

large values of θ is presented. According to deliberation with an expert (R.

Higler, personal communication, April 2025), such large values indicate, that in

this trip, the draghead may have been clogged. The draghead may have dredged

large rocks, which block the draghead, causing large pressure differences, which

could explain the high values of θ. This type of behaviour was not present in

any of the trips that the model was trained on, so it comes as no surprise that

it struggles to capture the intricacies of a clogged head. This highlights the

importance of choosing the right trips to train on. In practice this can be done

by individually analysing and collecting trips which we are confident possess

non-anomalous behaviour. Again, we see that training and testing with real

data is challenging and unpredictable, as opposed to a simulated system.

104

6.4.1 Dropout analysis on real data

We repeat the exact same process as in section 6.3.2, but this time for the

smoothed real dataset. The data was not simulated and controlled beforehand,

so the results indicate what the model believes are the most important features.

The results of the dropout analysis are visible in tables 12 and 13.

Table 12: Dropout analysis: evaluation metrics (uncorrected) after removing
individual features. Higher RMSE/MAE and lower R2 indicate greater impor-
tance of the dropped feature.

Dropped feature RMSE MAE R2

Jet pumps 0.7306 0.6253 -1.0171

∆PHead 0.9551 0.8088 -2.1533

Vacuum pressure 0.7623 0.6427 -1.1969

Mixture velocity 0.7636 0.6523 -1.1661

Draghead depth 0.8261 0.7359 -1.5616

Angle 0.8207 0.7225 -1.5479

Swellcompensator 0.8715 0.7978 -1.8928

Lagged density 0.7286 0.6281 -1.0188

All features 0.9988 0.8517 -2.6209

105

Table 13: Dropout analysis: evaluation metrics (corrected).

Dropped feature RMSEcorr MAEcorr R2
corr

Jet pumps 0.2356 0.1461 0.8300

∆PHead 0.3226 0.1478 0.6679

Vacuum pressure 0.2246 0.1406 0.8427

Mixture velocity 0.2126 0.1238 0.8576

Draghead depth 0.2582 0.1502 0.7955

Angle 0.2394 0.1475 0.8250

Swellcompensator 0.2190 0.1421 0.8530

Lagged density 0.2237 0.1387 0.8459

All features 0.2917 0.1842 0.7182

Also when using real data, it is evident that the most important feature

is the ∆PHead, since model performance diminishes the most when removing

that feature. This aligns with the theory, as well as with the analysis from the

simulated data. Besides the ∆PHead, there is not another variable that stands

out. For the uncorrected predictions the results point towards the swellcompen-

sator, whilst the corrected predictions indicate the importance of the draghead

depth. Interestingly enough, the draghead depth was concluded to be one of

the least important variables according to the dropout analysis on the simulated

data. This shows that there are still some inaccuracies in the way that the data

was simulated, which is expected. The dropout analysis results show us that

these inaccuracies have to do with misjudging the importance and relevance of

a number of variables such as the mixture velocity and vacuum pressure. In fu-

ture work, this dropout analysis can be used as a basis to rework the simulated

system to better reflect dredging dynamics.

An interesting observation is that all the evaluation metrics taken from the

dropout analysis (apart from the one where ∆PHead is taken out) are better than

the main model performance. This indicates that the main model struggled

with the training data. The main model was trained for 200 epochs, whilst the

106

ones in the dropout analysis were trained for just ten epochs each. Removing

an additional input variable also reduces the complexity of the model with

less parameters to optimize. This indicates a superior generalization ability.

When examining the individual trips we see that this is indeed the issue. We

inspect the trip that performed poorly in fig. 27, but for the model that trained

without the swellcompensator variable. The (uncorrected) prediction is seen in

fig. 28. It is evident that the predictions for the trip are much closer to the

actuals, and the majority of the pattern is captured. It does not exhibit any

rapidly changing (eccentric) behaviour such as in fig. 27. This demonstrates the

improved generalization of this specific model.

Figure 28: Prediction and actuals for trip ID 35 on model removing swellcom-
pensator as input. It generalizes better than the main model in fig. 27.

6.5 Suction production simulation

The aim of the project was to optimize the production of a TSHD. We run

simulations to inspect how much production we could have saved if the model

107

would have been used. Due to data sensitivity reasons, we present this section

using the simulated dataset.

With the available sensor dataset, we calculate the production that would

have happened with the simulated value for θ. From the simulated θ values and

the corresponding sensor data, we calculate the simulated production from the

production formula in section 2.3:

Calculating the predicted mixture density in the pipe using the simulated θ:

ρm(V, d1, v, θsim, d2) =
V + d1ρwg

θsimv2

2 + (d1 − d2)g

Plugging this into our production equation we end up with:

Prodsim
(
m3/s

)
= (ρm(V, d1, v, θsim, d2)− ρw)

v

ρs − ρw
π

4
D2 (7)

The optimal velocity (i.e., optimal point on the curve) for which the vessel

should dredge to output the maximum production (for a constant vacuum) is

then calculated as:

v′ such that
∂Prodsim

∂v
(v′) = 0

This then gives us the maximal achievable production

Prodsim = Prodsim(v′)

To attain values for the production, we again work with windows. Since every

ten seconds, we get new predictions for the past ten values of θ, we calculate

production in windows of ten seconds, where the values are averaged over the

ten second window. This way, every ten seconds, the crew can see where they

are on the vacuum curve.

To find out the amount of potential production that was missed out with not

using the model, we generate the production curve using the predicted values of

θ, for v ∈ [1.01, 1.02, . . . 20]. The mixture velocity whilst dredging never exceeds

these bounds (R. Higler, personal communication April 2025).

108

Prodpred
(
m3/s

)
= (ρm(V, d1, v, θpred, d2)− ρw)

v

ρs − ρw
π

4
D2

The predicted optimum is then calculated by simulating all points in the

range v = [1.01, 1.02, . . . 20] such that we have the maximum achievable (pre-

dicted) production from velocity ṽ:

Prodpred = Prodpred(ṽ)

We give an illustrative example of how this would look like in real-time in

fig. 29.

Figure 29: Production simulation of trip with ID 42, from t71 → t80. The red
cross indicates where the vessel is dredging currently, which is calculated from
the predicted value of θ. This comes from Prodpred in eq. (7), averaged over
the window of ten seconds. The pink point indicates the calculated optimal
production from the predicted θ : Prodpred. The current production being
on the left side of the optimum indicates that the density should be decreased,
causing a flatter slope of the density line in green. This will push the production
closer to the optimum. Decreasing the density can be done by adding more water
to the mixture through the relief valve.

We now calculate the potential production that was missed out with the

following methodology:

For every testing trip, for every window of ten seconds, we calculate the

109

difference:

min
(
Prodpred, P rodsim

)
− Prodsim

This is because the predicted optimal point can never exceed the theoretical

optimum. This is done for every window in every testing trip, where the results

are then aggregated. The results showed that the dredging vessel missed out

on 1, 019.24m3 of production over 17 trips, which would have been an average

of an 8.52% increase in production per trip. We also checked the accuracy of

the advice, that is, whether the crew should increase or decrease the density.

We compare the advice given when using the predicted θ, with the advice given

when simulating production using the simulated θ, over every time window in

the 17 trips. Using the predicted values for θ proved to be accurate 99.88% of

the time.

These calculations are made using the perfect conditions. It is assumed that

the crew is able to get to the optimal point in that ten second time window

and then stays on it. Whilst the vacuum relief valve can be opened to decrease

the density of the mixture, increasing the density is more complex. This can

be done by moving the draghead but it is not as easy to control the exact

amount. Our assumption is that crews aim to operate near the production

optimum. In practice, operational objectives can be broader: crews may target

sub-optimal points for logistical or strategic reasons (e.g., schedule constraints,

coordination with other vessels, or competitive dynamics) (W. de Graaf personal

communication, April 2025). The modelling framework remains useful in these

settings because it characterizes the full production curve rather than a single

optimum. Consequently, fleet managers can select any desired operating point,

e.g., a target corresponding to 75% of the optimum. This flexibility is a strength

of the approach: it supports decision-making under multiple objectives, not only

maximum production.

110

7 Conclusion

We presented a data-driven and physics-guided framework based on oper-

ator learning to estimate the loss parameter θ within the vacuum process of

Trailing Suction Hopper Dredgers. The accurate prediction of this parameter

has significant value, as it facilitates real-time suction production optimization

and enhances the reliability of sensor systems.

We began by identifying the key physical processes governing the vacuum op-

eration and derived relations for the input variables with θ. A synthetic dataset

was constructed using real-world sensor readings and domain-informed equa-

tions, enabling controlled experimentation and model validation. This domain

insight informed model structure, input selection, and training procedures.

Building on the DeepONet architecture, we introduced a modified operator

learning model incorporating attention-based interactions between branch and

trunk networks. A local trunk mechanism was introduced to improve modeling

of localized temporal dynamics: a necessary adaptation due to the variabil-

ity between individual dredging trips. Our architecture outperformed classical

DeepONet and baseline methods across multiple evaluation metrics, including

RMSE, MAE, and R2.

To mitigate persistent local biases, a corrector model was designed using

a rolling mean error correction strategy, further improving performance. This

model uses lagged sensor signals to dynamically adjust predictions. This hybrid

approach: combining simulation-informed predictions with real-time correction

mechanisms, improved model robustness, and enhances generalization to real-

world conditions. The operator learning architecture accurately predicts for

simulated data, as well as for real data.

The corrector model also enables real-time anomaly detection by contin-

uously analyzing the residuals between predicted and observed sensor values.

By incorporating lagged sensor signals and tracking deviations, the model can

identify inconsistencies that indicate potential sensor failures. This supports

proactive monitoring of sensor health, allowing for timely interventions. As a

111

result, the overall reliability of the dredging process is enhanced, reducing the

risk of production inefficiencies or decision errors. Therefore, the integration of

this real-time mechanism not only strengthens model accuracy, but also adds a

maintenance benefit.

Furthermore, we demonstrated the robustness of the proposed framework

through temporal testing and dropout analysis. Under different timespans, the

model continued to perform exceptionally well. Dropout analysis further con-

firmed that the model was guided by the underlying physics. According to

theoretical understanding, the primary driver of θ is ∆PHead, which emerged as

the most influential feature in both the real and simulated models. Beyond this,

the model showed limited reliance on other features (for real data), showing its

robustness with respect to input selection.

To address the research questions directly: the operator-learning framework

predicts the loss parameter θ with high accuracy on simulated data, and this

accuracy largely transfers to real-world streams once the corrector model is

implemented. Embedding physics into the architecture via domain-guided in-

puts, attention-mediated interactions, and a local trunk improves both predic-

tive performance and interpretability relative to the classical DeepONet and

non-operator baselines; in particular with dropout analyses aligning with the

theory.

In deployment, the base operator model trained on simulation exhibits mod-

est local biases; the rolling, lag-based correction closes this gap without re-

training the operator, demonstrating improvements across all evaluation met-

rics. Leveraging residuals enables real-time sensor-health monitoring, where

threshold-based criteria detect anomalies early enough to enable corrective ac-

tion. Finally, the hybrid design: training on simulation while adapting online

through lagged-sensor corrections proves more robust than purely simulated or

purely data-driven approaches. Taken together, the experiments show that the

architecture exhibits robust suction-production estimates. The operator pro-

vides a stable production curve. In evaluations over 17 test trips, the guidance

derived from the predicted θ would have recovered 1, 019.24m3 of production in

112

total, an average 8.52 % gain per trip. These outcomes indicate that the hybrid

approach preserves decision quality by providing estimates that are reliable for

continuous selection along the production curve, even when conditions deviate

from the ideal setting.

In conclusion, this thesis presents a practical approach to integrating physics-

based insights into operator learning for dredging systems. This practical ap-

proach offers the potential for increases in production, as well as a reduction of

emissions.

8 Future Research

While the present work demonstrates that operator learning can be success-

fully applied to predict the loss parameter θ in the vacuum process of Trailing

Suction Hopper Dredgers, several directions remain open for further study.

Model and Training Extensions

A first avenue concerns the refinement of the model architecture. The atten-

tion mechanism introduced here can be extended with more expressive variants

such as multi–head or transformer-based attention layers [58]. These could allow

the model to learn richer interdependencies between input variables. On the first

of September of 2025, one month before the completion of this thesis, a paper

was published about this topic [62]. The paper discusses different methodologies

for combining the transformer self-attention mechanism with DeepONets. This

research can be compared and applied to this thesis in future works. Another

extension is to include adaptive learning rate schedules [70] or optimizers that

automatically balance the back–propagated gradients of the multiple branch

networks.

Regularization also offers potential improvement. Incorporating normaliza-

tion layers, L1 or L2 weighted penalties, and dropout [17] could enhance gen-

eralization when training on noisy sensor data. These additions would help

113

distinguish between physically meaningful fluctuations and measurement noise,

an aspect that becomes crucial when transferring the model to real data.

Regarding the modified DeepONet architecture presented in this thesis, sev-

eral further experiments can be conducted. The preprocessing procedures may

be adjusted to explore both stronger and weaker smoothing using the Sav-

itzky–Golay filter (or even removing filter altogether). In the current dataset

the lagged density was configured to be a constant of ten seconds. In the fu-

ture, the architecture can be tested on density that lags by varying amounts to

test robustness. Whilst a simple corrector model was implemented as a rolling

error correction, a more sophisticated methodology can be developed to incor-

porate lagged values into the architecture itself. The lagged true values could,

for instance, alter parameters of the network based on the behaviour of a trip.

The interaction dictionary could be reconfigured to examine how the model

behaves when all input variables interact, rather than only a selected subset.

Another opportunity for testing comes with adapting the high rank version of

the MIONet with interactions, rather than the low rank version. Finally, the

hyperparameter optimization process could be repeated and re-tuned specifically

for the real data, ensuring that the configuration is better aligned with the

noise characteristics and variability present in practice. More hyperparameter

configurations such as different layer sizes for the different branch and trunk

subnetworks can also be tested in this process.

Data and Robustness Studies

A key limitation of the current study is the absence of controlled noise in the

synthetic dataset. Introducing different levels and types of noise would make it

possible to quantify how much of the model’s performance stems from learning

true physical relationships rather than memorizing smooth trends. Such tests

could clarify whether the discrepancies observed on real data arise from sensor

noise or from unmodelled physical phenomena. Similarly, expanding the train-

ing set to include data from different vessels, dredging sites, and operational

114

conditions would improve the model’s generalizability.

Future experiments should also examine how the choice of preprocessing

parameters-such as window size, stride, and interpolation length affects model

robustness. Systematically varying these parameters could reveal trade–offs be-

tween temporal resolution and noise suppression. Combining real and simulated

data through hybrid or transfer–learning strategies represents another promising

path: simulated data provide physical consistency, whereas real data introduce

variability and noise characteristics that drive generalization.

Physics–Guided Adaptation

In practice, the end goal is to predict the mixture density directly and to

use it for computing the vacuum dynamics in real-time. Predicting the mix-

ture density was not the main focus in this thesis, but remains an important

step for suction production simulation. Moreover, future work could investigate

freezing the parameters of the pre–trained DeepONet, as suggested in [66]. The

frozen network could then serve as a fixed physical prior, onto which a corrector

model adapts to new vessels or environmental conditions without requiring full

retraining.

Practical Limitations and Validation

Several aspects remain challenging. There exists no supervised system for

θ, and the physical relations used for simulation may not perfectly describe

the dredging operations. Consequently, full validation of model accuracy will

only be possible once reliable estimates of θ become available. Until then, noise

injection on synthetic data provides a controlled way of testing model reliability.

Finally, careful selection of representative dredging trips for both training

and validation will be essential. This ensures that the model learns from phys-

ically meaningful patterns rather than vessel–specific behaviour. By progres-

sively extending the dataset, incorporating noise models, and refining the learn-

ing architecture, the proposed framework could evolve into a robust, real–time

115

predictive system applicable across fleets and operating conditions.

116

References

[1] S. Agarwal, S. Sharma, R. Suresh, M. H. Rahman, S. Vranckx, B. Maiheu,

L. Blyth, S. Janssen, P. Gargava, V. K. Shukla, and S. Batra. Air quality

forecasting using artificial neural networks with real time dynamic error

correction in highly polluted regions. Science of the Total Environment,

735:139454, 2020.

[2] S. Bai, M. Li, R. Kong, S. Han, H. Li, and Q. Liang. Data mining ap-

proach to construction productivity prediction for cutter suction dredgers.

Automation in Construction, 105:102833, 2019.

[3] S. Bai, M. Li, L. Song, Q. Ren, L. Qin, and J. Fu. Productivity analysis

of trailing suction hopper dredgers using stacking strategy. Automation in

Construction, 122:103470, 2021.

[4] Royal Boskalis. Boskalis academy. https://boskalis.plusport.com/

scripts/login.aspx. Accessed: 20-11-2024.

[5] Royal Boskalis. Sustainability report 2023. 2023.

[6] J. H. Cavalcanti, T. Kovács, and A. Kő. Production system efficiency opti-

mization using sensor data, machine learning-based simulation and genetic

algorithms. Procedia CIRP, 107:528–533, 2022.

[7] T. Chen and H. Chen. Universal approximation to nonlinear operators by

neural networks with arbitrary activation functions and its application to

dynamical systems. IEEE Transactions on Neural Networks, 6(4):911–917,

1995.

[8] X. Chen, B. T. Cao, Y. Yuan, and G. Meschke. Transfer learning based

physics-informed neural networks for solving inverse problems in engineer-

ing structures under different loading scenarios. Computer Methods in Ap-

plied Mechanics and Engineering, 405:115852, 2023.

117

https://boskalis.plusport.com/scripts/login.aspx
https://boskalis.plusport.com/scripts/login.aspx

[9] Z. Chen, J. Ye, D. Wang, and Y. Hong-li. The numerical prediction of

draghead motion of trailing suction hopper dredger in time domain. Ocean

Engineering, 91:146–151, 2014.

[10] J. Chou and N. Ngo. Time series analytics using sliding window meta-

heuristic optimization-based machine learning system for identifying build-

ing energy consumption patterns. Applied Energy, 177:751–770, 2016.

[11] A. Daw, A. Karpatne, W. D. Watkins, J. S. Read, and V. Kumar. Physics-

guided neural networks (pgnn): An application in lake temperature model-

ing. In Knowledge guided machine learning, pages 353–372. Chapman and

Hall/CRC, 2022.

[12] S. Desai, M. Mattheakis, H. Joy, P. Protopapas, and S. Roberts. One-

shot transfer learning of physics-informed neural networks. arXiv preprint

arXiv:2110.11286, 2021.

[13] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri. Activation functions in

deep learning: a comprehensive survey and benchmark. Neurocomputing,

503:92–108, 2022.

[14] M. Elad, B. Matalon, and M. Zibulevsky. Coordinate and subspace opti-

mization methods for linear least squares with non-quadratic regularization.

Applied and Computational Harmonic Analysis, 23:346–367, 2007.

[15] R. X. Gao and R. Yan. Wavelets. 2011.

[16] L. Gonon, A. Jentzen, B. Kuckuck, S. Liang, A. Riekert, and P. von

Wurstemberger. An overview on machine learning methods for partial dif-

ferential equations: from physics informed neural networks to deep operator

learning. arXiv preprint arXiv:2408.13222, 2024.

[17] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

118

http://www.deeplearningbook.org

[18] V. Grimm, A. Heinlein, A. Klawonn, M. Lanser, and J. Weber. Estimat-

ing the time-dependent contact rate of sir and seir models in mathematical

epidemiology using physics-informed neural networks. Electron. Trans. Nu-

mer. Anal., 56:1–27, 2022.

[19] B. Grimstad, V. Gunnerud, A. T. Sandnes, S. S. Shamlou, I. S. Skrondal,

V. Uglane, S. Ursin-Holm, and B. Foss. A simple data-driven approach to

production estimation and optimization. SPE Intelligent Energy Interna-

tional Conference and Exhibition, 2016.

[20] X. Han, J. Jiang, A. Xu, A. Bari, C. Pei, and Y. Sun. Sensor drift detec-

tion based on discrete wavelet transform and grey models. IEEE Access,

8:204389–204399, 2020.

[21] P. Jin, S. Meng, and L. Lu. Mionet: Learning multiple-input operators

via tensor product. SIAM Journal on Scientific Computing, 44(6):A3490–

A3514, 2022.

[22] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the

em algorithm. Neural computation, 6(2):181–214, 1994.

[23] D. Kim, Y. Cho, D. Kim, C. Park, and J. Choo. Residual correction in real-

time traffic forecasting. In Proceedings of the 31st ACM International Con-

ference on Information & Knowledge Management, pages 962–971, 2022.

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[25] A. N. Kolmogorov and S. V. Fomin. Introductory real analysis. Courier

Corporation, 1975.

[26] P. Kuffel, K. Kent, and G. Irwin. The implementation and effectiveness

of linear interpolation within digital simulation. International Journal of

Electrical Power Energy Systems, 19(4):221–227, 1997. Power Systems

Transients.

119

[27] L. Kulanuwat, C. Chantrapornchai, M. Maleewong, P. Wongchaisuwat,

S. Wimala, K. Sarinnapakorn, and S. Boonya-aroonnet. Anomaly detec-

tion using a sliding window technique and data imputation with machine

learning for hydrological time series. Water, 13:1862, 2021.

[28] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard,

and L. Jackel. Handwritten digit recognition with a back-propagation net-

work. Advances in neural information processing systems, 2, 1989.

[29] M. Li, Q. Lu, S. Bai, M. Zhang, H. Tian, and L. Qin. Digital twin-driven

virtual sensor approach for safe construction operations of trailing suction

hopper dredger. Automation in Construction, 132:103961, 2021.

[30] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stu-

art, and A. Anandkumar. Fourier neural operator for parametric partial

differential equations. arXiv preprint arXiv:2010.08895, 2020.

[31] Z. Li, N. Kovachki, C. Choy, B. Li, J. Kossaifi, S. Otta, M. A. Nabian,

M. Stadler, C. Hundt, K. Azizzadenesheli, et al. Geometry-informed neural

operator for large-scale 3d pdes. Advances in Neural Information Processing

Systems, 36:35836–35854, 2023.

[32] Z. Li, H. Zheng, N. Kovachki, D. Jin, H. Chen, B. Liu, K. Azizzadenesheli,

and A. Anandkumar. Physics-informed neural operator for learning partial

differential equations. ACM/JMS Journal of Data Science, 1(3):1–27, 2024.

[33] B. Lin, Z. Mao, Z. Wang, and G. E. Karniadakis. Operator learn-

ing enhanced physics-informed neural networks for solving partial dif-

ferential equations characterized by sharp solutions. arXiv preprint

arXiv:2310.19590, 2023.

[34] Z. Liu, F. Ni, and H. Zhou. Modeling and simulating for tshd’s swell

compensator by adams. Journal of Ocean University of China, 6(1):95–99,

2007.

120

[35] L. Lu, P. Jin, and G. E. Karniadakis. Deeponet: Learning nonlinear oper-

ators for identifying differential equations based on the universal approxi-

mation theorem of operators. arXiv preprint arXiv:1910.03193, 2019.

[36] R. Mattey and S. Ghosh. A novel sequential method to train physics in-

formed neural networks for allen cahn and cahn hilliard equations. Com-

puter Methods in Applied Mechanics and Engineering, 390:114474, 2022.

[37] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent

in nervous activity. The Bulletin of Mathematical Biophysics, 5:115–133,

1943.

[38] N. Mohajerin and S. L. Waslander. Multistep prediction of dynamic sys-

tems with recurrent neural networks. IEEE Transactions on Neural Net-

works and Learning Systems, 30:3370–3383, 2019.

[39] A. Mollaali, İ Şahin, I. Raza, C. Moya, G. Paniagua, and G. Lin. A physics-

guided bi-fidelity fourier-featured operator learning framework for predict-

ing time evolution of drag and lift coefficients. Fluids, 8:323, 2023.

[40] M. Narkhede, P. Bartakke, and M. S. Sutaone. A review on weight ini-

tialization strategies for neural networks. Artificial Intelligence Review,

55:291–322, 2021.

[41] A.J. Nobel and A.M. Talmon. Measurements of the stagnation pressure in

the center of a cavitating jet. Experiments in Fluids, 52(2):403 – 415, 2012.

[42] C. Oberwinkler and M. Stundner. From real-time data to production op-

timization. SPE Production Amp; Facilities, 20:229–239, 2005.

[43] R. L. Panton. Incompressible flow. John Wiley & Sons, 2024.

[44] R. Rai and C. K. Sahu. Driven by data or derived through physics? a review

of hybrid physics guided machine learning techniques with cyber-physical

system (cps) focus. IEEE Access, 8:71050–71073, 2020.

121

[45] M. Raissi, P. Perdikaris, and G. Karniadakis. Physics-informed neural net-

works: a deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations. Journal of Computational

Physics, 378:686–707, 2019.

[46] A. Rashidi, H. R. Nejad, and M. Maghiar. Productivity estimation of

bulldozers using generalized linear mixed models. KSCE Journal of Civil

Engineering, 18:1580–1589, 2014.

[47] M. Sadoughi and C. Hu. A physics-based deep learning approach for fault

diagnosis of rotating machinery. In IECON 2018 - 44th Annual Conference

of the IEEE Industrial Electronics Society, pages 5919–5923, 2018.

[48] M. Sadoughi and C. Hu. Physics-based convolutional neural network

for fault diagnosis of rolling element bearings. IEEE Sensors Journal,

19(11):4181–4192, 2019.

[49] A. Savitzky and M. Golay. Smoothing and differentiation of data by sim-

plified least squares procedures. Analytical Chemistry, 36:1627–1639, 1964.

[50] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and

J. Dean. Outrageously large neural networks: The sparsely-gated mixture-

of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

[51] J. Shen, C. Chang, S. Wu, C. Hsu, and H. Lien. Real-time correction of

water stage forecast using combination of forecasted errors by time series

models and kalman filter method. Stochastic Environmental Research and

Risk Assessment, 29:1903–1920, 2015.

[52] Z. Shen, Y. Zhang, J. Lu, J. Xu, and G. Xiao. A novel time series forecasting

model with deep learning. Neurocomputing, 396:302–313, 2020.

[53] A. Shrestha and A. Mahmood. Review of deep learning algorithms and

architectures. IEEE Access, 7:53040–53065, 2019.

122

[54] M. Stone. Cross-validatory choice and assessment of statistical predic-

tions. Journal of the Royal Statistical Society: Series B (Methodological),

36(2):111–133, 12 2018.

[55] J. Sun, C. Yan, and J. Wen. Intelligent bearing fault diagnosis method com-

bining compressed data acquisition and deep learning. IEEE Transactions

on Instrumentation and Measurement, 67(1):185–195, 2018.

[56] J. Tang and Q. Wang. Online fault diagnosis and prevention expert system

for dredgers. Expert Systems With Applications, 34:511–521, 2008.

[57] J. van het Hof. Advanced Training in Execution of Hydraulic Engineering

Works. Printing. Printing Publishing Protocol B.V., 2010.

[58] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural

information processing systems, 30, 2017.

[59] W. J. Vlasblom. Trailing Suction Hopper Dredger. 2005.

[60] S. Wang, H. Wang, and P. Perdikaris. Learning the solution operator of

parametric partial differential equations with physics-informed deeponets.

Science Advances, 7, 2021.

[61] S. Wang, H. Wang, and P. Perdikaris. Improved architectures and training

algorithms for deep operator networks. Journal of Scientific Computing,

92, 2022.

[62] Z. Wei, W. Chen, and P. Stinis. Efficient transformer-inspired vari-

ants of physics-informed deep operator networks. arXiv preprint

arXiv:2509.01679, 2025.

[63] P. J. Werbos. Backpropagation through time: what it does and how to do

it. Proceedings of the IEEE, 78:1550–1560, 1990.

123

[64] J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar. Integrating scien-

tific knowledge with machine learning for engineering and environmental

systems. ACM Comput. Surv., 55(4), November 2022.

[65] J. Xing. Estimation and control of the overflow loss of trailing suction

hopper dredger based on particle filter. Master’s dissertation, School of

Naval Architecture Ocean Engineering, Jiangsu University of Science and

Technology, 2012. In Chinese.

[66] W. Xu, Y. Lu, and L. Wang. Transfer learning enhanced deeponet for

long-time prediction of evolution equations. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 37, pages 10629–10636, 2023.

[67] S. Yang, Y. Lee, and N. Kang. Physics-guided multi-fidelity deeponet for

data-efficient flow field prediction. arXiv preprint arXiv:2503.17941, 2025.

[68] W. Yang, W. Wang, X. Zhang, S. Sun, and Q. Liao. Lightweight feature

fusion network for single image super-resolution. IEEE Signal Processing

Letters, 26(4):538–542, 2019.

[69] B. Zamanlooy and M. Mirhassani. Efficient vlsi implementation of neural

networks with hyperbolic tangent activation function. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 22(1):39–48, 2013.

[70] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

[71] G. Zhang, Y. Duan, G. Pan, Q. Chen, H. Yang, and Z. Zhang. Parameter

identification for partial differential equations with spatiotemporal varying

coefficients. arXiv preprint arXiv:2307.00035, 2023.

[72] H. Q. Zhang and Y. Yan. A wavelet-based approach to abrupt fault detec-

tion and diagnosis of sensors. IEEE Transactions on Instrumentation and

Measurement, 50(5):1389–1396, 2001.

124

[73] W. Zhang, Y. Jiang, J. Dong, X. Song, R. Pang, B. Guoan, and H. Yu. A

deep learning method for real-time bias correction of wind field forecasts

in the western north pacific. Atmospheric Research, 284:106586, 2023.

125

Appendices

A Testing Relations

In this section we go over how we chose the constants that made up the

construction of our simulated dataset. We go through every relation, discussing

the best fits. After this we discuss the importances of each individual variable.

Delta pressure draghead

The best fit that we receive based on the equation and the data is:

θ = 0.71∆Phead + 2.44

The best fit is decent:

Figure 30: Linear fit. It seems that the data could more of an exponential or
quadratic trend.

Mixture Density

The best fit that we received based on the equation (after adjusting the

density data to be on the same time scale without delay) was:

θ =
1404

ρm
+ 1.52

The data spread also seems to be quite all over the place.

126

Figure 31: Linear fit for the corrected density. It seems that the data does not
follow any trend and is all over the place.

Vacuum Pressure

The best fit that we receive based on the equation and the data is:

θ = −1.08V + 1.84

The fit does not capture alot:

Figure 32: Linear fit. It seems that the data does not really follow any trend
and is all over the place.

Mixture velocity

The best fit that we receive based on the equation and the data is:

θ =
4.18

v2
+ 2.24

127

With the fit capturing the data well:

Figure 33: Inverse quadratic fit. It seems that the fit follows the data decently
well.

Lower Pipe Angle

The best fit that we receive based on the equation and the data is:

θ = −0.01δ + 2.84

Figure 34: Linear trend. Data seems to not have any vertical movements but is
steady at one point.

Jet pumps

The best fit that we receive based on the equation and the data is:

θ =
2.54

Pj
+ 2.31

128

The best fitting line does not seem to capture the data that well:

Figure 35: Data does not seems to follow the trend that well, maybe a logarith-
mic fit would work better.

Swellcompensator

The best fit that we receive based on the equation and the data is:

θ = 0.02Sc + 1.47

The best fitting line does not seem to capture the data well at all:

Figure 36: Data does not seems to follow the trend that well. There are also no
data points in between 50 and 70 on the x axis.

129

Draghead Depth

The best fit that we receive based on the equation and the data is:

θ = −0.04D + 3.31

The best fitting line does not seem to capture the data that well:

Figure 37: Data does not seems to follow the trend that well. It seems random.

Weighted Sum

Constructing a sequential least squares optimization problem (with L2 regu-

larization to penalize large weights in only one variable) to find out the weights,

we end up with:

θPred = 0.08θ∆PHead
+ 0.22θV ac + 0.09θDensity + 0.13θV el+

0.07θAngle + 0.11θJet pumps + 0.20θSwellComp + 0.09θDHDepth

It is important to keep in mind that many of these values could be inaccurate,

This is because a change in the θ is caused by a combination of many different

factors, and a fluctuation of θ is definitely not caused by only one variable.

Nevertheless, we can build upon these equations and use them as a guideline to

130

simulate our own dataset.

A.1 Final data set

Based on the research done on the different variables and collaboration with

experts, we construct our final dataset in the following way.

θ∆PHead
= 0.80∆Phead + 2.00

θV ac = 2.00− 1.50V

θDensity =
1400

ρm
+ 1.50

θV el =
4.00

v2
+ 2.00

θAngle = 0.02δ + 2.50

θJet pumps =
2.50

Pj
+ 2.30

θSc
= −0.04Sc + 4.50

θDHDepth = 0.05D + 2.00

θSim = 0.28θ∆PHead
+ 0.18θV ac + 0.13θSc

+ 0.12θV el+

0.11θDensity + 0.08θDHDepth + 0.05θJet pumps + 0.05θAngle

Explanations

The struggle is to find a balance between what we know about the process,

and what the results of the testing are. We cannot rely too much on the test

because we know they are not completely accurate. At the same time we can

also not solely rely on our knowledge because then we would not be able to set

up any relations.

Regarding the ∆PHead relation, we know this is pretty much the defining

factor for θ. Since this is the factor that we are trying to estimate the best, we

increased the correlation coefficient and in turn reduced the intercept.

For the vacuum relation, we decide to increase the correlation slightly and

round the intercept. This is because at more powerful vacuums, we know for

131

certain that θ gets impacted by it. Note that there is a negative sign in front of

the vacuum, this is because the sensor outputs the vacuum pressure as negative.

The density relation was also kept the same, other than some rounding. In

the relation corresponding to the velocity, the data seemed to have a decent fit

to the equation, so the only difference made was rounding the coefficients.

The relation with the lower pipe angle was changed because the theory tells

us that an increase in the angle should cause an increase of θ. This is why the

sign was flipped to account for this. The reason why the data did not pick up on

this is that this effect is very situational. If the draghead is deep in the seabed

and the angle is lowered, θ could increase because the opening of the draghead

would be flat on the seabed.

We keep the jet pump relation relatively the same as well, only rounding the

values.

For the relation with the draghead depth, we also change it. This is because

the theory is not reflected back in the relation. We know that the relation is

correct due to its adoption from the vacuum equation. The same logic is applied

to the swellcompensator, whereby we also altered the sign of the coefficient based

on the prior knowledge. We take the gradients of both lines to be similar to the

one we explored nevertheless.

We also altered the weights of each variable towards the final θ. We can

deduce a rank of importances based on prior knowledge. We took the change

in pressure draghead as the most important variable because this signal deter-

mines the magnitude of θ. The velocity, vacuum and swellcompensator follow

because they are deemed quite important from testing (the vacuum and veloc-

ity also being influential through the vacuum equation). The draghead depth

and density are also relevant through the vacuum equation. Finally, the least

influential variables are the jet pumps and the lower pipe angle. This makes

sense because they do not directly influence θ through the vacuum equation.

Through testing they were also deemed to not be very important.

132

B Classical DeepONet and MIONet Results

We inspect the results of both the MIONet, as well as the classical DeepONet.

Both models were trained with the same hyperparameters used to train the

modified DeepONet. The MIONet functions the same as the modified net,

except that it operates with a global trunk and no interactions. For the classical

DeepONet, all inputs are concatenated into one input function. The DeepONet

also makes use of a global trunk. Due to this global trunk, the predictions

for different time windows are different. We compare the predictions by both

averaging the time steps, as well as using the first predictions per window.

For the classical DeepONet, we inspect the performance for a training and

test trip. It seems to predict a global mean across the trip, both for the test, as

well the training trip. Both predictions are straight horizontal lines. We only

present the results when averaging the results in time windows, since the first

predictions look identical.

Figure 38: Classical DeepONet performance on a training trip (averaged pre-
dictions).

133

Figure 39: Classical DeepONet performance on a testing trip (averaged predic-
tions). It still predicts a straight line.

The likely problem as to why the model performs poorly is due to two

reasons. First concatenating all input functions into one, does not represent

the data well at all. Especially since we have eight input functions to work

with. That is, for m input functions, the sole input function for the DeepONet

was constructed as: F = [f1(tsk , . . . , tek), . . . , fm(tsk , . . . tek)]. This makes it

challenging for the DeepONet to learn temporal patterns. Perhaps multiplying

or adding all input functions would yield stronger results. Then, it also works

with a global trunk. It tries to encode all the input windows with the same

representative basis functions, causing the predictions for individual windows

to smoothen out, this can be seen in a training window in fig. 40.

134

Figure 40: Training window for the classical DeepONet, this (nearly) straight
line pattern is repeated for all of the windows it trains on.

Looking at the MIONet, we see that it struggles to capture intricate patterns.

It seems to act like it smooths out the predictions, similar to a filter. It does

not capture any meaningful spikes. The overall trend is captured poorly.

135

(a) Predictions for the easier trip. Model expects the trip to fluctuate more even
though that was not that case.

(b) Predictions for the trip with more fluctuations. Blocky behaviour is present but
overall pattern is captured throughout the trip.

Figure 41: Comparison of different training trips from the MIONet.

Now when looking at the performance on a testing trip, we compare how

the averaged predictions look like together with the first predictions.

136

(a) Predictions for a test set with the values averaged from every window.

(b) Same testing trip but by taking the first prediction per time window.

Figure 42: Comparison of methodologies on a testing trip from the MIONet.
We observe that the first prediction graph exhibits a more blocky behaviour,
whereas the averaged predictions are smoother.

We also showcase a training window for the MIONet:

137

Figure 43: Training window on the MIONet. Instead of a straight line imitating
a global mean in fig. 40, this behaviour showcases a sort of smoothing on the
window, not capturing any fluctuations.

We see that the prediction windows also exhibit block-type behaviour. Sim-

ilar to the classic DeepONet, this is because a global trunk is used. Using

the global trunk does not allow for enough representation for the basis func-

tions of the time, meaning that it settles for an average effect, which causes the

smoothing. We inspect the training for a single window in fig. 43, and see that

this is also smoothed, even though you expect the model to try and overfit on

the training windows. Here we see why using a local trunk was a better idea,

and why it worked out better. We summarize the results on simulated data in

tables 14 and 15.

138

Table 14: Performance metrics for training trips.

Architecture
Training Time

(hours)
RMSE MAE R2

ModNet 8 0.0124 0.0106 0.9589

Corrected ModNet 8 0.0066 0.0032 0.9886

Baseline 0 0.0577 0.0354 0.3082

MIONet(averaged) 3 0.0460 0.0328 0.2587

MIONet(first) 3 0.0538 0.0382 0.1320

Classical DeepONet (avg) 1 0.1039 0.0883 -1.4724

Classical DeepONet (first) 1 0.1041 0.0885 -1.5014

Table 15: Evaluation metrics across architectures on the testing trips.

Architecture RMSE MAE R2

ModNet 0.0148 0.0115 0.9416

Corrected ModNet 0.0094 0.0036 0.9745

Baseline 0.0592 0.0359 0.2647

MIONet(avg) 0.0665 0.0487 -0.0449

MIONet(first) 0.0759 0.0552 -0.2646

Classical DeepONet(avg) 0.1003 0.0855 -1.4015

Classical DeepONet(first) 0.1007 0.0859 -1.4521

We can see that the classical DeepONet is the worst performing network out

of all, with the scores for the averaged and first predictions being equally bad.

We also see that the classical DeepONet performs better on the test set rather

than the training set. As we have seen in the previous figures, this network

predicts mostly a straight line for every trip. This straight line, on average,

fits the testing trips better than the training trips. This may just be because

of the choice of training and testing trips. The averaged predictions for the

MIONet narrowly outperforms the baseline, with the first predictions not being

139

much better than the baseline. The advantages that the classical DeepONet and

MIONet have, is that the training time is significantly shorter. The baseline on

the other hand, does not take any time to train at all).

C Results For Every Trip

Here we present every trip used in the testing set from the simulated data.

In all graphs the actuals are plotted together with the predicted and corrected

values. In total there are 17 testing trips. It is impressive to see how the model

manages to capture different types of behaviour extremely well.

Additionally, we list the total variation scores for every trip (train and test)

in table 16:

Table 16: Total variation per trip for theta sim

Trip ID Total variation Set

1.0 3.579897 Training

2.0 6.308544 Training

5.0 4.386708 Training

6.0 8.637192 Training

7.0 8.473776 Training

9.0 9.056531 Training

10.0 7.799481 Training

12.0 7.965652 Training

14.0 4.706631 Training

15.0 3.062204 Training

17.0 2.826278 Training

18.0 3.139688 Training

19.0 4.519754 Training

21.0 2.686614 Training

23.0 3.041902 Training

140

Table 16 (continued)

Trip ID Total variation Set

26.0 3.561921 Training

27.0 2.735935 Training

30.0 7.173509 Training

31.0 9.552793 Training

33.0 7.821018 Training

34.0 7.893401 Training

35.0 9.225170 Training

36.0 13.301205 Training

37.0 12.710077 Training

38.0 4.273602 Training

40.0 3.239353 Training

41.0 3.841955 Training

45.0 3.192325 Training

46.0 1.909604 Training

49.0 3.460514 Training

51.0 3.396717 Training

52.0 3.266302 Training

53.0 3.679815 Training

54.0 4.656152 Training

55.0 4.184005 Training

57.0 4.021062 Training

58.0 5.303052 Training

59.0 5.671699 Training

3.0 8.412444 Testing

8.0 6.982695 Testing

11.0 5.538218 Testing

16.0 4.149214 Testing

20.0 2.604748 Testing

141

Table 16 (continued)

Trip ID Total variation Set

22.0 3.120981 Testing

24.0 2.833151 Testing

25.0 4.075747 Testing

32.0 10.469907 Testing

39.0 5.407156 Testing

42.0 18.779810 Testing

44.0 2.450384 Testing

47.0 3.555539 Testing

48.0 5.108872 Testing

50.0 4.310129 Testing

56.0 5.259841 Testing

60.0 5.215833 Testing

Figure 44: Actuals, predictions and corrections for trip with ID 3.

142

Figure 45: Actuals, predictions and corrections for trip with ID 8.

Figure 46: Actuals, predictions and corrections for trip with ID 11.

143

Figure 47: Actuals, predictions and corrections for trip with ID 16.

Figure 48: Actuals, predictions and corrections for trip with ID 20.

144

Figure 49: Actuals, predictions and corrections for trip with ID 22.

Figure 50: Actuals, predictions and corrections for trip with ID 24.

145

Figure 51: Actuals, predictions and corrections for trip with ID 25.

Figure 52: Actuals, predictions and corrections for trip with ID 32.

146

Figure 53: Actuals, predictions and corrections for trip with ID 39.

Figure 54: Actuals, predictions and corrections for trip with ID 42.

147

Figure 55: Actuals, predictions and corrections for trip with ID 44.

Figure 56: Actuals, predictions and corrections for trip with ID 47.

148

Figure 57: Actuals, predictions and corrections for trip with ID 48.

Figure 58: Actuals, predictions and corrections for trip with ID 50.

149

Figure 59: Actuals, predictions and corrections for trip with ID 56.

Figure 60: Actuals, predictions and corrections for trip with ID 60.

150

	hola2.pdf
	Thesis_notes (5).pdf
	Introduction
	Application Domain
	Dredging
	Vacuum process
	Suction production optimization
	Delayed density sensor

	Related Work
	Methodology
	Technical framework
	Model architecture
	Local trunk
	Corrector model

	Data & Implementation
	Data
	Implementation

	Results
	Modified DeepONet performance
	Performance with corrector model
	Sensitivity analysis
	Evaluation on real data
	Suction production simulation

	Conclusion
	Future Research
	Testing Relations
	Final data set

	Classical DeepONet and MIONet Results
	Results For Every Trip

