
Assessing Machine Learning Robustness to Sample Selection Bias
Evaluating the effectiveness of semi-supervised learning techniques

Viraj Biharie1

Supervisor: Responsible Professor1: Joana de Pinho Gonçalves, Supervisor1: Yasin Tepeli
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Abstract
This paper tackles the problem of sample selection
bias in machine learning, where the assumption of
train and test sets being drawn from the same dis-
tribution is often violated. Existing solutions in
domain adaptation, such as semi-supervised learn-
ing techniques, aim to correct this bias, but their
ability to generalize to unseen test sets remains
unexplored. To address this issue, specific semi-
supervised methods (self-training and co-training)
are trained on biased training sets and tested with an
unbiased test set drawn from the same distribution.
The results of this paper demonstrate that the semi-
supervised methods consistently outperformed or
matched the baseline models, with self-training ex-
hibiting greater improvement. Through this study,
a promising approach is presented to mitigate sam-
ple selection bias in machine learning.

1 Introduction
Sample selection bias is a widely acknowledged problem
where the dataset used to train a model may not accurately
represent the population it is intended to generalize to. This
can lead to unfairness and unintended biases that disadvan-
tage less well-represented groups. [18] In the field of health-
care, biases are of significant concern. When the training data
for medical algorithms lack representation from diverse pop-
ulations, certain demographic groups can experience under-
diagnosis or suboptimal care. [14] Another instance of selec-
tion bias emerges in finance in the decisions made by man-
agers. This bias arises from unobservable differences within
the samples, influencing managers’ choices and subsequent
outcomes. Consequently, it can result in distorted conclusions
and flawed evaluations of the actual impact of managers’ fi-
nancial decisions. [20]

One common type of sample selection bias is where the se-
lection of samples depends on both the feature space and the
class labels, and the number of labeled samples is scarce. The
issue lies in the limited understanding of the generalization
capabilities of models trained on biased data, even though bi-
ased training data are often observed in practical applications.
[1]

This study will focus on evaluating the effectiveness of
specific semi-supervised learning [5] techniques that have al-
ready received considerable attention in previous research.
The focus will be on two techniques: self-training and co-
training.

Self-training has been selected due to its unique approach
of utilizing labeled data along with valuable unlabeled data to
assist in the creation of the decision boundary. This method
stands out by using pseudo-labels, which are generated for the
unlabeled data to approximate their true labels, thereby cre-
ating a pseudo-decision boundary that enhances the learning
process. [17]

Co-training has been chosen for its distinct characteristics
that go beyond self-training. By employing multiple models,
co-training introduces a more sophisticated framework for the

learning process. This method stands out by utilizing the di-
versity of the models and their respective interpretations of
the unlabeled data, enabling a more robust decision bound-
ary. [2]

While other techniques exist, studying and evaluating these
representative approaches will provide valuable insights into
the broader field of semi-supervised learning.

Previous research in domain adaptation has focused on
learning models that correct the domain shift between the
train set and a specific test set [22] [9], but the generalizability
of these methods to any unseen test set has not yet been inves-
tigated. Some methods have been proposed to address sam-
ple selection bias, such as importance weighting, subspace
mapping, deep domain adaptation, minimax estimation, and
semi-supervised learning. [10]

Within the context of semi-supervised learning techniques,
prior studies have examined the effectiveness of various ma-
chine learning models for generating the pseudo-decision
boundary required for self-training. [19] [7] Drawing insights
from these investigations, this research employs support vec-
tor classification (SVC) [11] and logistic regression [4] as the
supervised machine learning models. These methods have
been established as effective in prior research, justifying their
selection for this study.

In regards to co-training. Previous research has focused on
generalizing domain adaptation methods from a source do-
main to a new target domain. [6] However, these studies as-
sume that the source domain is representative of the entire
domain, neglecting the presence of sample selection bias.

This research aims to evaluate the effectiveness of semi-
supervised learning techniques in reducing sample selection
bias when labeled data is limited. The study will investigate
the following research questions:

• How effectively do the synthetic datasets generated in
this research manifest the intended bias?

• How does the performance of self-training and co-
training vary with different quantities of labeled data?

• How does the performance of self-training and co-
training adapt to varying levels of bias in the data?

To accomplish this, synthetic datasets with simulated bi-
ases are generated, and an evaluation framework is imple-
mented to compare the performance of the different semi-
supervised learning techniques. The goal is to assess the gen-
eralizability performances of supervised and semi-supervised
methods trained on these biased toy datasets. By providing
insights into the suitability of different methods for address-
ing sample selection bias, this research aims to contribute to
the development of machine learning models that are more
fair and reliable.

2 Methodology
2.1 Formal Problem Description
The formal problem addressed in this research is to assess
the effectiveness of semi-supervised learning techniques,
specifically self-training and co-training, in mitigating
sample selection bias. The study aims to evaluate the per-
formance of these techniques on synthetic datasets that have



intentionally biased samples. The objective is to determine
whether these techniques can effectively learn from a limited
labeled dataset and utilize the available unlabeled instances
to improve classification performance while reducing the
impact of the biased nature of the data. By quantitatively
analyzing the results using appropriate evaluation metrics,
the research seeks to provide information on the potential
of these techniques to address sample selection bias in
real-world scenarios.

2.2 Incorporating Biased and Unbiased Datasets
for Domain Adaptation

In this research paper, an innovative approach is proposed for
domain adaptation in machine learning. Traditionally, do-
main adaptation methods learn from a labeled training set and
an unlabeled test set. [10] In this study, an approach is used
that strays from the conventional method.

This approach involves dividing the synthesized dataset
into two parts: a training set and a test set. This division
is carried out in a manner that ensures both sets have a distri-
bution similar to that of the original dataset.

After the split, the training set is further divided into two
subsets. One subset intentionally introduces bias and includes
labels, while the other larger subset remains unbiased and
doesn’t utilize the labels (representing the original distribu-
tion). Labels are assigned to all data points initially, but the
unlabeled subset does not utilize these labels. For more de-
tails on the biasing process, please refer to Section 2.6.

Once the training phase is completed, the model perfor-
mance is assessed using a separate test set, following the con-
ventional approach. The test set uses labeled data, enabling a
comprehensive evaluation of the model’s performance.

This methodology aims to investigate the effectiveness of
incorporating biased and unbiased datasets during domain
adaptation. By utilizing the labeled biased training set and
the larger, unbiased unlabeled set, this approach offers the
potential to enhance the model’s ability to adapt to different
domains and improve generalization performance.

Evaluation of the model using the separate test set enables
a rigorous comparison of its performance with established
methods, providing information on the effectiveness of the
proposed approach for domain adaptation.

In summary, this research paper introduces a new method-
ology for domain adaptation in machine learning, involving
the utilization of a biased training set alongside an unbiased
unlabeled set. The proposed method is evaluated using a sep-
arate test set, allowing for a comprehensive analysis of its
performance in comparison to traditional domain adaptation
techniques.

2.3 Self-Training with Dynamic Thresholding and
Ensemble Models

The self-training algorithm used in this research paper imple-
ments a modified version of the traditional self-training al-
gorithm, with the aim of improving its performance in semi-
supervised learning scenarios. The motivation behind modi-
fying the traditional algorithm stems from the subpar results

observed when applying it to certain models. By making ad-
justments to the algorithm, this research aims to address the
limitations and enhance its effectiveness in handling semi-
supervised learning tasks. Self-training, as a technique, in-
volves initially training a model on a labeled dataset and
subsequently updating iteratively using confident predictions
made on unlabeled data.

In this modified implementation, the self-training algo-
rithm starts by training the model on the labeled data. Then,
probabilities are predicted for the unlabeled data using the
trained model. By setting a threshold, confident predictions
are identified based on the maximum predicted probability.

One significant difference in this approach is the use of
dynamic thresholding. The concept of dynamic thresholding
draws inspiration from the ’Dash’ framework, which com-
bines semi-supervised learning with the utilization of dy-
namic thresholds. [21] The threshold value determines the
minimum confidence level that a sample must meet to be in-
cluded in the confident predictions. Instead of a fixed thresh-
old, this method adjusts the threshold value gradually with
each iteration. This flexibility allows for a more adaptable in-
clusion of confident predictions during the self-training pro-
cess.

Moreover, unlike traditional self-learning that typically
uses only one model, this approach employs an ensemble of
models to train a single model. The concept of the ensem-
ble of models was inspired by the methodology of multi-view
training, which uses multiple models to collectively make a
unified decision. [23] The reason for using this ensemble is
to improve the model’s ability to understand different patterns
and to reduce the risk of fitting too closely to the training
data. By combining the strengths of different models, each
with their own biases and learning capabilities, the ensemble
approach aims to create a more versatile and robust trained
model.

By incorporating dynamic thresholding and ensemble
models, this modified self-training implementation offers po-
tential improvements over the typical self-training approach,
as implemented in libraries like scikit-learn. These modifica-
tions enable a more refined and adaptive utilization of unla-
beled data, leading to potentially enhanced classification per-
formance in semi-supervised learning tasks. Please refer to
Appendix B for the pseudo-code implementation correspond-
ing to this modefied self-training process described in this
section.

2.4 Co-Training: Incorporating
Disagreement-based Augmentation and
Independent Modeling

The initial approach employed in this research paper was a
modified implementation of traditional co-training, a semi-
supervised learning technique where two models are trained
simultaneously using labeled and unlabeled data. However,
this custom implementation yielded somewhat disappointing
results. To address this, the CTClassifier method from the
mvlearn library [3] was adopted as an alternative. In particu-
lar, the mvlearn method is specifically designed for two-class
scenarios, whereas the previous implementation supported
multiple classes.



The CTClassifier method from the mvlearn library is a co-
training classifier used for semi-supervised learning. It takes
advantage of either two views of input data or a single matrix
with distinct estimators. The co-training approach involves
training two classifiers on different views of the data and it-
eratively updating them by sharing confident predictions on
unlabeled instances. This method aims to improve the model
generalization by leveraging diverse perspectives and com-
bining the strengths of multiple classifiers.

In comparison, the initial co-training implementation was
developed from scratch. This allowed for customization and
control over the co-training process to align with the spe-
cific requirements of the study. During each iteration of the
co-training process, both models were trained on the labeled
data. Subsequently, the models predicted labels for the unla-
beled data, and instances with significant disagreements be-
tween the models, based on a specified threshold, were identi-
fied. These disagreement instances and their predictions were
incorporated into the labeled data, augmenting its size and
enabling the models to learn from a larger set of instances
in subsequent iterations. This process of training, predicting,
identifying disagreement instances, and incorporating them
into the labeled data was repeated for a specified number of
iterations.

The motivation behind incorporating the disagreement in-
stances into the labeled data was to embrace diverse perspec-
tives offered by the two models. By capturing different as-
pects of the data and reducing the risk of overfitting, this
co-training approach aimed to enhance performance. This
strategy enabled the models to learn from multiple sources
of information, including the unlabeled data, resulting in im-
proved performance compared to relying solely on labeled
data.

In summary, while the initial bespoke co-training imple-
mentation offered customization and control, its performance
fell short of expectations. However, it is important to note that
both the initial implementation and the adopted CTClassifier
method from the mvlearn library are evaluated and described
in section 3. It is worth emphasizing that the primary focus of
this research is not to identify the best-performing methods,
but rather to comprehensively evaluate and compare different
approaches. By assessing the performance of both methods,
this study aims to provide valuable insights into their effec-
tiveness and suitability for the given problem.

2.5 Dataset generation
The datasets are generated by randomly creating a specified
number of clusters, where each cluster represents similar data
points and shares the same class label. However, a single
class can have multiple clusters representing it. The number
of clusters cannot be lower than the number of classes due
to technical limitations. The specific number of clusters does
not hold any intrinsic meaning; rather, it determines how the
data points are distributed among the clusters. The primary
objective is to distribute the data across these clusters to en-
able the application of machine learning models such as lo-
gistic regression and support vector classification, facilitating
the creation of decision boundaries between the classes. This
clustering strategy also makes it easier to visualize the data,

allowing for a clear depiction of how the decision boundary
evolves when biases are introduced.

The data used for the semi-supervised learning techniques
is generated with customizable parameters. These parameters
include:

• n samples: The total number of samples

• n features: The number of features or dimensions in
each sample

• n classes: The number of distinct classes in the data

• n clusters: The number of clusters present in the data.

• density: A parameter that controls the density between
clusters. Increasing this value results in more density
and higher density around the cluster centers.

• min dist: The minimal distance between cluster centers.
The default value is set at 0.4, ensuring that the clusters
are separated by a certain distance.

By adjusting these parameters, the generated data can be cus-
tomized to suit different experimental settings and require-
ments for the semi-supervised learning techniques. The pa-
rameter ranges for the experimental setup are defined as fol-
lows: n samples, n features, n classes, and n clusters are
all integer values. The parameter density is a floating-point
value ranging from 0 to 1, with a recommended range of 0 to
0.1 to ensure consistent clusters. Additionally, the parameter
min dist is a float between 0 and 1.

Using the given parameters, the data generation process
follows these steps:

1. Calculate the number of samples per cluster by distribut-
ing the total number of samples evenly among all clus-
ters

2. Randomly generate the specified number of cluster cen-
ters

3. Check if every pair of cluster centers is at least the spec-
ified minimal distance away from each other. If not, re-
generate a new set of random cluster centers and repeat
the distance check

4. Calculate the number of clusters that should be assigned
to each class, aiming for an even distribution by dividing
the given number of clusters over the given number of
classes using integer division

5. For each cluster center:

• Assign a class label to the cluster. This assign-
ment ensures an even distribution of clusters across
the classes. If the number of clusters per class is
not equal, the remaining clusters are randomly as-
signed to the classes with less clusters

• Create a covariance matrix where each element on
the diagonal is equal to the specified density param-
eter

• Use the cluster center and the covariance matrix to
generate the specified number of random samples
around this cluster center. The density of samples
around the center is controlled by the density pa-
rameter. Lower values of this parameter lead to



increased density around the cluster center, conse-
quently reducing the level of density observed be-
tween different clusters.

6. Return the generated data, labels, and cluster labels

Please refer to Appendix A for the pseudo-code imple-
mentation corresponding to the dataset generation process de-
scribed in this section.

To initiate the evaluation process, the semi-supervised
learning techniques were initially assessed on a single in-
stance of a generated dataset. However, relying solely on
results from a single dataset instance is insufficient to draw
meaningful conclusions about the techniques’ generalization
capabilities.

To address this limitation and enhance the robustness of
the evaluation, multiple datasets were created using different
random seeds. This approach ensures reproducibility while
also introducing diverse data distributions for testing pur-
poses. Evaluating the techniques’ performance across mul-
tiple datasets provides a more comprehensive understanding
of its efficiency and generalization capabilities.

For all dataset instances, the same parameters were used
to generate the datasets, unless explicitly stated otherwise.
Please refer to Appendix C for the exact values throughout
the experiments.

These parameters were chosen because, through manual
inspection, it has been observed that the training data con-
sistently contains a bias due to the changes in the decision
boundary. Additionally, while it is important to note that hav-
ing large datasets can be beneficial for training robust ma-
chine learning models, the sheer size of these datasets also
poses a bottleneck. The amount of time it will take to process
and execute a single experiment increases significantly when
dealing with large datasets, impacting the overall efficiency
of the algorithm’s performance evaluation over several iter-
ations. However, in this specific case, the datasets used for
evaluation are not excessively large and do not currently pose
a bottleneck in evaluating the algorithm’s performance.

2.6 Bias Induction
The generated synthetic datasets are split into a labeled train-
ing, test, and unlabeled set. The purpose is to bias the training
set such that this set is no longer representative of the origi-
nal distribution. This is done by using the clusters that are
present within the training set.

The determination of the number of clusters per class relies
on two factors: the specified total number of clusters and the
specified total number of classes. The calculation of the num-
ber of clusters is determined by dividing the total number of
clusters by the total number of classes using integer division.
This allocation ensures an even distribution of clusters among
the classes. Any remaining clusters that cannot be evenly dis-
tributed are arbitrarily assigned to the classes with the least
number of clusters.

Each cluster per class is initially assigned a weight of 1.
This ensures an equal representation of clusters within each
class.

To introduce bias, a random cluster is selected and assigned

a higher weight, currently set to 20. This weight can be ad-
justed according to the desired level of bias in the dataset.

Subsequently, based on the assigned weights, samples are
selected from the training set using weighted probabilities.
The indices corresponding to these samples determine which
ones will be included in the biased dataset. Clusters with
higher weights have a greater probability of being selected.

By modifying the weights assigned to the clusters, the bi-
asing process affects the composition of the training set, po-
tentially favoring specific clusters and introducing bias into
the learning process.

This biasing procedure aims to maintain the class balance,
whether the classes were initially balanced or unbalanced.

2.7 Performance Evaluation
Next, the self-training and co-training techniques are imple-
mented and applied to the generated biased datasets. These
techniques, both utilizing a linear and non-linear classifier,
are chosen due to their potential in utilizing unlabeled in-
stances to improve classification performance while address-
ing sample selection bias. The linear classifier used is Lin-
ear Regression, while the non-linear classifier employed is
Support Vector Classification (SVC). Linear regression is a
statistical technique that aims to model the relationship be-
tween a dependent variable and one or more independent vari-
ables by fitting a straight line that minimizes the sum of the
squared differences between the observed and predicted val-
ues. [8] SVC is a machine learning algorithm that finds the
optimal hyperplane in a high-dimensional feature space to
separate different classes of data points by maximizing the
margin between them while minimizing the classification er-
rors. [16] The paper’s implementation of the SVC algorithm
utilizes the ’sklearn.svm.SVC’ implementation from scikit-
learn (sklearn). [15] By default, it uses the non-linear ”Radial
basis function” (RBF) kernel, which is often referred to as the
Gaussian kernel.

The models are trained in an iterative manner. Initially,
a small labeled subset of the biased dataset is used to train
the models. The models then utilize the available unlabeled
instances to refine their performance.

To assess the effectiveness of the semi-supervised learn-
ing techniques, the following performance metrics are em-
ployed: accuracy, F1-score, and area under the receiver op-
erating characteristic curve (AUC-ROC). These metrics were
selected based on their frequent utilization as evaluation pa-
rameters in existing literature. The F1-score is a metric that
combines precision and recall to measure the accuracy of a
binary classification model by calculating the harmonic mean
of the two. [12] AUC-ROC is a performance metric that quan-
tifies the ability of a binary classification model to distinguish
between classes by calculating the area under the curve gener-
ated by plotting the true positive rate against the false positive
rate at different classification thresholds. [13] By comparing
the results obtained from the self-training and co-training ap-
proaches, valuable insights are gained regarding the extent to
which these techniques can address the sample selection bias,
improve classification accuracy in the presence of biased data,
and generalize effectively to unseen data. The focus lies on
assessing the models’ ability to extend their learning from the



biased dataset to new, unseen instances, thereby determining
their robustness and applicability in real-world scenarios.

In addition to the performance metrics (accuracy, F1-score,
and AUC-ROC score), a baseline comparison was conducted
to further evaluate the algorithm’s effectiveness. The base-
line evaluation was performed on the same dataset before the
application of the self-training algorithm. This comparison
allows for a direct measurement of the algorithm’s improve-
ment and effectiveness.

2.8 Experimental Setup

In order to thoroughly evaluate the performance of the self-
training and co-training techniques, comprehensive testing
has been conducted under various conditions. The techniques
were subjected to the following scenarios: the manipulation
of bias weight, the variation of the size of the unlabeled train-
ing set, and the adjustment of the number of features. In
these scenarios the baseline scores are being compared to the
scores obtained from the self-training and co-training meth-
ods, where the scores are measured using the accuracy, F1-
score and AUC-ROC score.

To comprehensively assess the performance across all
dataset instances, the scores of each individual instance were
recorded. Subsequently, the average score and its variance
were calculated for both the baseline and the self-training
scenarios. The use of error bar plots provided a visual rep-
resentation of the results, offering valuable insights into the
distribution and variability of the scores.

In the error bar plots, the line represents the average score
across all dataset instances for the metrics of accuracy, F1-
score, and AUC-ROC. This line serves as an indicator of the
overall performance trend. Additionally, error bars are in-
cluded in the plot to depict the variance associated with each
score. The length of the error bars reflects the extent of vari-
ability observed among the dataset instances.

By utilizing error bar plots, a more comprehensive un-
derstanding of the algorithm’s performance consistency and
reliability can be obtained. The average scores provide an
overview of the algorithm’s overall effectiveness, while the
error bars convey the degree of variation within the dataset
instances. This information is crucial for interpreting the ro-
bustness and generalizability of the self-training algorithm in
the context of the evaluation.

To address readability issues caused by displaying the vari-
ances of all the different scores, the results are presented
in two different ways. In the main plots, basic scores were
plotted to provide an overview of the performance, while in
the appendix, additional plots were included with error bars
representing the variances. The error bar plots in the ap-
pendix offer a more detailed depiction of the distribution and
variability of scores for accuracy, F1-score, and AUC-ROC
across all dataset instances. This approach enables a com-
prehensive assessment of the algorithm’s performance con-
sistency and reliability, enhancing the understanding of its
robustness and generalizability.

Figure 1: The entire dataset created using the method explained in
Section 2.5. Different symbols and colors are used to represent each
class in the dataset. The dataset will be split into three parts: the
training set, unlabeled set, and test set. Although all data points
have labels initially, the labels in the unlabeled set are not used for
further analysis.

3 Results
3.1 Generated Dataset
In Figure 1, a generated dataset is depicted, which consists of
6 clusters and 3 classes. The dataset comprises a total of 1000
samples.

Observing the figure, it is evident that each cluster contains
approximately an equal number of samples. Additionally, the
density around the center of each cluster appears to be similar
across all clusters (as specified by the overlap parameter).

Furthermore, it is worth noting that the cluster centers are
positioned at least a specific distance away from each other.
In this instance, the default value of 0.4 was utilized as this
minimum distance between cluster centers.

3.2 Biased Datasets
Figure 2 illustrates the training sets of the previously gener-
ated dataset. Figure 2a displays the dataset when the training
data is sampled without bias, ensuring a relatively equal num-
ber of samples are selected from each cluster. In Figure 2b,
the dataset is depicted after applying bias during the training
data sampling process. Notably, in Figure 2b, it is evident that
one cluster from each class has been sampled significantly
more times compared to the other clusters within the same
class, creating an imbalanced representation.

Finally, to demonstrate the bias induced by the sampling
process in the training set, the datasets are presented in Fig-
ure 3 after applying the decision boundary and assigning new
labels based on it. Logistic regression is utilized to calculate
the decision boundary; however, due to the complexity of dis-
playing the boundary itself, only the datasets after applying
the decision boundary are shown.

Figure 3a showcases the non-biased training set, where the
decision boundary has resulted in labeling the upper right
cluster primarily as ”Class 2”. In contrast, 3b illustrates the



(a) Non-Biased Training Set

(b) Biased Training Set

Figure 2: This figure illustrates the training set obtained from the
dataset shown in Figure 1 after the partitioning into the training
set, unlabeled set, and test set. The visualizations depict the same
dataset instance both with and without the biasing, following the
biasing process detailed in Section 2.6. In this particular represen-
tation, a bias weight of 20 is applied.

biased training set, where the same cluster is predominantly
labeled as ”Class 0” (although only a limited portion of the
cluster remains after sample selection biasing).

Furthermore, a notable change in the decision boundary is
observed for the bottom left cluster. In Figure 3a, this cluster
is mostly classified as ”Class 0,” whereas in Figure 3b, it is
nearly entirely classified as ”Class 2.”

These differences in label predictions between the two sets
emphasize that the sampling process has indeed altered the
decision boundary. Although the decision boundary itself is
not displayed, the shifts in labeling patterns demonstrate the
impact of the sampling bias on the classification outcomes.

To demonstrate the impact of manipulating the bias weight,
Figure 4 is presented, which showcases the changes in a spe-
cific dataset instance as the bias weight is altered. In Figure
4a, the bias weight is set to 5, revealing a slight bias where
certain clusters are larger for each class. However, the fig-
ure still exhibits the presence of other clusters, indicating a
relatively balanced distribution.

As the bias weight increases, as observed in Figures 4b

(a) Non-Biased Training Set

(b) Biased Training Set

Figure 3: Training Sets after applying Decision Boundary. This fig-
ure depicts the data after applying the decision boundary obtained
through logistic regression. The decision boundary separates the
data points into different classes based on their assigned labels.
The labeled data points are displayed in the figure, showcasing their
classification after the application of the decision boundary.

and 4c, these specific clusters grow in size while the remain-
ing clusters diminish. Notably, there is a threshold beyond
which further increases in the weight have minimal effect
on the dataset’s distribution. This is evident when compar-
ing Figure 4c (bias weight of 50) and Figure 4d (bias weight
of 100), where both datasets exhibit nearly identical distri-
butions. This phenomenon was consistently observed across
multiple dataset instances, resulting in testing with a maxi-
mum bias weight of 50 throughout the experiments.

3.3 Manipulating Bias Weight

This section discusses the results of manipulating the bias
weight parameter to control the level of biasing in the train-
ing data during sample selection. Both self-training and co-
training techniques were experimented with under similar cir-
cumstances, using similar data instances. The only noticeable
difference between them lies in how they used the training
data to train the model.



(a) Biased data with a
weight of 5

(b) Biased data with a
weight of 10

(c) Biased data with a
weight of 50

(d) Biased data with a
weight of 100

Figure 4: The figures presented depict the training datasets after
the entire dataset has been split into training, unlabeled, and test
datasets. These figures showcase the impact of altering the bias
weight parameter on the same dataset instance, allowing for a vi-
sualization of varying amounts of bias induced. The bias weight
parameter influences the degree of bias present in the datasets, and
these figures provide insights into how different levels of bias affect
the data distribution.

3.3.1 Self-Training Manipulating Bias Weight
Figure 5 depicts the results of ten iterations of the self-
training algorithm. It is important to note that the dataset
instances used for both sub-figures were identical. Figure
5a represents the application of logistic regression, while 5b
showcases the utilization of SVC. The dashed lines in the fig-
ure represent the baseline scores of the model obtained before
applying self-training. These scores are based on the indi-
cated supervised learning technique used solely on the train-
ing data. Please refer to Figure 11 in Appendix D for the plots
that show the variance for these figures using error bars. In
Figure 11 the scores are accompanied by error bars, where
the length indicates the level of variance around the mean.
However, due to the presence of other accuracy scores, the
visibility of these error bars may be compromised.

Upon examining these plots, it can be deduced that the bias
weight does not appear to pose a significant influence on the
performance of the self-training model. Despite the increase
in weight, the scores do not display a consistent downward
trend. Furthermore, both figures demonstrate that the self-
training algorithm surpasses the baseline approach. Addi-
tionally, when comparing Figure 5a (logistic regression) with
Figure 5b (SVC), it is evident that logistic regression exhibits
inferior overall performance relative to SVC. Moreover, Fig-
ure 11a displays larger error bars, indicating greater variabil-
ity among the tested dataset instances for logistic regression.
Another thing to notice is that especially in Figure 5b, the su-
pervised models’ performances decreases as the bias weight
increases.

In Appendix E in Figure 14 plots are displayed showing the

(a) Self-Training using Logistic Regression with varying
weights

(b) Self-Training using SVC with varying weights

Figure 5: The figure showcases the average scores of ten dataset
instances trained using ten iterations of the modified self-training
algorithm. The plots represent the scores without showing their in-
dividual variances. In Figure 5b, the accuracy and F1 score val-
ues coincide precisely, resulting in a purple-colored line, which is a
blend of the red and blue colors representing the accuracy and F1
scores, respectively.

result of executing this same experiment with the self train-
ing algorithm of sklearn, this implements the traditional way
of self learning. Comparing Figure 14 with Figure 5 it can
be seen that the for SVC both methods have a similar perfor-
mance. However, for logistic regression it can be seen that
in Figure 14a the self-training method has about the same
performance as the baseline, whereas in Figure 5a the self-
training method consistently outperforms the baseline.

3.3.2 Co-Training Manipulating Bias Weight
From the analysis of Figure 6, several conclusions can be
drawn regarding the performance of the co-training algo-
rithm. Firstly, manipulating the bias weights in co-training
does not appear to have any discernible effect on the algo-
rithm’s performance, as the performance remains consistently
unchanged.

Moreover, in both figures, it can be observed that co-
training slightly outperforms the baseline, although the per-
formance gap is consistently small (observing the difference



(a) Co-Training using Logistic Regression with varying
weights

(b) Co-Training using SVC with varying weights

Figure 6: The figure showcases the average scores of thirty dataset
instances trained using ten iterations of the implemented co-training
algorithm. The plots represent the scores without showing their in-
dividual variances. In Figure 6b, the accuracy and F1 score val-
ues coincide precisely, resulting in a purple-colored line, which is a
blend of the red and blue colors representing the accuracy and F1
scores, respectively.

in the scores gives a range of around 0.025 to 0.050 improve-
ment for logistic regression and for SVC this range is 0.001
to 0.030). This suggests that the co-training algorithm is
effective in improving the performance of the model, albeit
marginally.

Comparing Figure 6a, which utilizes logistic regression,
with Figure 6b, which employs SVC, it becomes evident that
SVC consistently outperforms logistic regression in terms of
both performance and variance. The performance of SVC is
notably higher, while exhibiting lower variability compared
to logistic regression. Please refer to Figure 12b in Appendix
D to see this variance.

These findings provide insights into the behavior and per-
formance characteristics of the co-training algorithm in the
context of bias weight manipulation.

Figure 7 presents the results obtained by training the model
using the ctc classifier from the mvlearn library (as described
in section 2.4). When comparing Figure 7a with the previ-

(a) Co-Training using Logistic Regression
with varying weights and using the ctc
classifier

(b) Co-Training using SVC with varying
weights and using the ctc classifier

Figure 7: The figure displays the identical dataset instances as the
previous experiments. However, in this figure, the ctc classifier
from the mvlearn library is employed instead of the implemented
co-training approach. The plots depict the scores without indicating
their individual variances. Please refer to Appendix F Figure 16 for
these figures with their corresponding variances. In Figure 7a, the
accuracy, F1 score, and AUC-ROC values align perfectly, resulting
in the use of a single line to represent these the lines obtained af-
ter applying co-training, whereas in Figure 7b the accuracy and F1
score align perfectly, thus only a single line has been displayed for
this.

ous approach shown in Figure 6a, it becomes evident that the
ctc approach consistently outperforms the previous approach
and the baseline by a significant margin of twenty to thirty
percent, when using logistic regression. Contrarily, Figure 7b
illustrates that the ctc classifier underperforms compared to
the baseline and the previous approach shown in Figure 6b
when using SVC, indicating that the ctc classifier does not
always outperform the other approach.

3.4 Manipulating Unlabeled Set Size
Previously, in each data generation process, the generated
dataset was divided into a test set comprising 10% of the data,
and a training set comprising 90% of the data. Subsequently,
the training set was further split into 40% labeled data, which
would be subjected to bias, and the remaining 50% unlabeled
data. It is worth noting that although the labels for the unla-
beled data were available during initialization, they were not
utilized in the experiment.

In this particular experiment, the aforementioned split of
labeled and unlabeled data will be manipulated. Specifically,



the split will be modified to range from 10% unlabeled data
up to 90% unlabeled data. Considering that the entire dataset
consists of 1000 samples this means that the range of unla-
beled data will increase from 100 to 900. By doing so, the
resulting plots will demonstrate the impact of varying pro-
portions of unlabeled data on the observed outcomes.

3.4.1 Self-Training Manipulating Unlabeled Set Size

(a) Self-Training using Logistic Regression with varying
unlabeled set sizes

(b) Self-Training using SVC with varying unlabeled set
sizes

Figure 8: This figure presents the mean scores obtained by splitting
the entire dataset into different proportions of labeled and unlabeled
data. The unlabeled data is utilized in conjunction with the labeled
biased training set for self-training. The size of the test set remains
constant at 100 samples throughout the experiment. In Figure 8b,
the accuracy and F1 score have identical values, making it not pos-
sible to display both lines simultaneously.

In Figure 8, the performance of the self-training algorithm
is illustrated after ten iterations on ten different instances of
datasets. The same datasets were used for both figures. Sev-
eral important conclusions can be drawn from these figures.

Firstly, it is evident that in both figures, the self-training
classifiers consistently outperform or match the baseline per-
formance, demonstrating their effectiveness. Importantly, the
self-training classifiers never exhibit lower performance com-
pared to their respective baseline.

Furthermore, a notable observation is the variance in per-
formance between logistic regression and SVC. In Appendix
D in Figure 13a, where logistic regression is employed,
the variance is considerably larger compared to Figure 13b,
which utilizes SVC. Moreover, as the size of the unlabeled
set increases, the variance decreases in the case of SVC, indi-
cating improved stability in performance.

Additionally, Figure 8b demonstrates that when SVC is
used, the self-training classifiers consistently exhibit favor-
able performance compared to the baseline, regardless of the
size of the unlabeled set. This suggests that the self-training
algorithm is robust and capable of achieving good results
across different unlabeled set sizes.

However, in Figure 8a, it can be observed that as the size
of the unlabeled set increases, the performance of the self-
training classifiers decreases. Despite this decrease, the self-
training classifiers consistently outperform the baseline, high-
lighting their superiority.

Overall, these findings emphasize the effectiveness of the
self-training algorithm, showcasing its ability to improve per-
formance and outperform the baseline in various scenarios.

In Appendix E in Figure 15 plots are displayed showing the
result of executing this same experiment with the self train-
ing algorithm of sklearn, this implements the traditional way
of self learning. Comparing Figure 15 with Figure 8 it can
be seen that the for SVC both methods have a similar perfor-
mance. However, for logistic regression it can be seen that in
Figure 15a the self-training method has about the same per-
formance as the baseline and even under performs under the
baseline when size of the unlabeled set increases, whereas in
Figure 8a the self-training method consistently outperforms
the baseline.

3.4.2 Co-Training Manipulating Unlabeled Set Size
The generated plots presented below are based on 30 differ-
ent dataset instances and 10 iterations of the co-training algo-
rithm. Due to its faster execution time compared to the self-
training algorithm, co-training was applied to a larger number
of datasets for comprehensive testing and evaluation.

By analyzing Figure 9, several observations can be made
regarding the impact of varying the size of the unlabeled set
on the performance of the co-training classifiers. Firstly, it
can be noted that changing the size of the unlabeled set has
minimal effect on the co-training classifiers’ performance.

When comparing the co-training classifiers to the baseline,
it is evident in both figures that when the size of the unla-
beled set is small, the co-training classifiers consistently out-
perform the baseline. However, as the size of the unlabeled
set increases, the co-training classifiers slightly underperform
in comparison to the baseline. This suggests that the co-
training algorithm may not be as effective when faced with
larger amounts of unlabeled data.

Additionally, a notable observation is that Figure 9b, which
utilizes SVC in co-training, closely resembles Figure 8b,
where SVC was used in self-training. This indicates that the
performance of the co-training classifiers with SVC is com-
parable to that of the self-training algorithm with SVC. On
the other hand, when comparing Figure 9a to Figure 9b, it
becomes apparent that SVC consistently outperforms logistic



(a) Co-Training using Logistic Regression with varying
unlabeled set sizes

(b) Co-Training using SVC with varying unlabeled set
sizes

Figure 9: This figure presents the mean scores obtained by splitting
the entire dataset into different proportions of labeled and unlabeled
data. The unlabeled data is utilized in conjunction with the labeled
biased training set for co-training. The size of the test set remains
constant at 100 samples throughout the experiment. In Figure 9b,
the accuracy and F1 score have identical values, making it not pos-
sible to display both lines simultaneously.

regression, and the variance associated with SVC is relatively
smaller (Appendix D Figure 13).

In summary, the experiments conducted on co-training
demonstrate that the size of the unlabeled set has limited
influence on the classifiers’ performance. Moreover, SVC
consistently outperforms logistic regression in co-training,
showcasing its superiority in this context, while exhibiting a
smaller variance.

Figure 10 presents the results obtained by training the
model using the ctc classifier from the mvlearn library (as
described in section 2.4). When comparing Figure 17a with
the previous approach shown in Figure 9a, the ctc approach
consistently outperforms the previous approach and the base-
line by a margin of around ten percent, when using logistic
regression. Contrarily, Figure 17b illustrates that the ctc clas-
sifier underperforms compared to the baseline and the previ-
ous approach shown in Figure 9b when using SVC, showing
the same phenomena as in the previous experiment in that

(a) Co-Training using Logistic Regression with varying
unlabeled set sizes and using the ctc classifier

(b) Co-Training using SVC with varying unlabeled set
sizes and using the ctc classifier

Figure 10: The figure displays the identical dataset instances as
the previous experiments. However, in this figure, the ctc classifier
from the mvlearn library is employed instead of the implemented co-
training approach. The plots depict the scores while varying the size
of the unlabeled set. Please refer to Appendix F Figure 17 for these
figures with their corresponding variances.

ctc outperforms when using logistic regression and underper-
forms when using SVC.

4 Responsible Research
It is important to note that since the generated data is syn-
thetic, it does not hold any intrinsic meaning or represent
real-world individuals or entities. The primary purpose of
using synthetic datasets is to create controlled environments
where biases can be intentionally introduced and systemat-
ically evaluated. This allows for a focused analysis of the
effectiveness of the semi-supervised learning techniques in
mitigating sample selection bias, without the potential ethical
concerns and privacy implications associated with real-world
data. Furthermore, by intentionally creating the bias in the
synthetic datasets, we can ensure that the training data indeed
contains the desired bias. This provides a distinct advantage
compared to using pre-existing datasets, where the presence
and extent of bias may be unknown or unintentional. The de-



liberate introduction of bias in the synthetic datasets allows
for a controlled evaluation of the semi-supervised learning
techniques’ effectiveness in addressing and mitigating bias.
This enhances the reliability and interpretability of the results,
enabling a more accurate assessment of the techniques’ per-
formance in handling biased data.

5 Discussion
The results of this study provide valuable insights into the
performance and behavior of self-training and co-training al-
gorithms in semi-supervised learning settings. Through a
comprehensive evaluation of various conditions and scenar-
ios, several key findings have emerged.

First, the manipulation of bias weight was examined, and
it was observed that increasing the bias weight had a signif-
icant impact on the clusters within the dataset. The clusters
associated with certain classes increased in size while oth-
ers diminished. However, there was a maximum bias weight
beyond which further increases had minimal effect. This
finding suggests that there is a threshold beyond which bias
weight manipulation does not significantly improve algorithm
performance. It was observed that the performance of the
self-training and co-training algorithms was not significantly
affected by changes in the bias weight. Regardless of the
weight, the algorithms consistently outperformed or matched
the baseline models. This indicates that these algorithms are
robust.

Next, the effect of the size of the unlabeled training set
was investigated. It was observed that in general self-training
and co-training outperform the baseline when there is a small
amount of unlabeled data, however they match or occasion-
ally perform worse than the baseline when this amount of un-
labeled data increases.

Furthermore, it was found that the accuracy and F1-score
had consistently similar performance, indicating that the al-
gorithms were effective in correctly classifying both the pos-
itive and negative instances. This balanced performance
across the metrics demonstrates the reliability and consis-
tency of the self-training and co-training algorithms.

In addition, the study compared the performance of the
modified version of self-training with the traditional imple-
mentation using sklearn. Remarkably, the modifier version
consistently outperformed or matched the traditional imple-
mentation. This result highlights the effectiveness of the
modification in enhancing the algorithm’s performance. The
modified self-training approach shows promise as a reliable
and improved method for semi-supervised learning tasks.

Similarly, for the most part, the co-training implementation
using the ctc classifier from the mvlearn library outperformed
or matched the modified implementation of co-training. The
ctc classifier demonstrated superior performance, indicating
its suitability for co-training algorithms. However, it is worth
noting that when using SVC and having a large unlabeled
set size, the co-training approach with the ctc classifier per-
formed worse. This same phenomena was observed when
comparing the ctc classifier when using SVC and changing
the bias weight. These exceptions suggest that the perfor-
mance of co-training can be affected by the choice of clas-

sifier and the size of the unlabeled set and the weight of the
bias. Further investigation is needed to understand and miti-
gate these limitations.

Overall, the results of this study demonstrate the effective-
ness of self-training and co-training algorithms in improving
classification performance. The algorithms consistently out-
performed or matched the baseline models across different
conditions and scenarios, exhibiting robustness and reliabil-
ity. The study also revealed insights into the impact of bias
weight manipulation, unlabeled set size, and classifier selec-
tion on algorithm performance. These findings contribute to
the understanding and practical application of self-training
and co-training algorithms in semi-supervised learning tasks.
Future research can build upon these findings to refine and
optimize these algorithms further.

6 Conclusions and Future Work
This study provides valuable insights into the performance
and behavior of self-training and co-training algorithms in
semi-supervised learning. It highlights the effectiveness of
synthetic datasets in manifesting intended biases, the adapt-
ability of these algorithms and the impact of bias weight ma-
nipulation.

How effectively do the synthetic datasets generated in this
research manifest the intended bias?

Based on visualization of the datasets, it was observed that
the decision boundary changed when the bias was introduced
among all the tested generated datasets. This indicates that
a bias was present and that the synthetic datasets effectively
manifested the intended bias. The presence of the bias al-
lowed for the examination of the impact of bias weight ma-
nipulation and its influence on the algorithm’s behavior and
performance.

How does the performance of self-training and co-training
vary with different quantities of labeled data?

The performance of self-training and co-training algo-
rithms varies with different quantities of labeled data. When
there is a small amount of unlabeled data, both self-training
and co-training algorithms tend to outperform the baseline
models. This suggests that utilizing a small number of
unlabeled instances can improve classification performance.
However, as the amount of unlabeled data increases, the
performance of self-training and co-training algorithms may
match or occasionally perform worse than the baseline.

In conclusion, the performance of self-training and co-
training algorithms is influenced by the quantity of labeled
and unlabeled data available. These algorithms demonstrate
their effectiveness and outperform the baseline models when
a small amount of unlabeled data is utilized. However, as the
quantity of unlabeled data increases, the performance may not
always surpass the baseline. This highlights the importance
of carefully considering the balance between labeled and un-
labeled data in semi-supervised learning tasks to achieve op-
timal results.

How does the performance of self-training and co-training
adapt to varying levels of bias in the data?

The manipulation of bias weight in the dataset had a sig-
nificant impact on the performance of self-training and co-



training algorithms. Increasing the bias weight affected the
clustering of classes within the dataset, with certain clusters
increasing in size while others diminished. However, there
was a threshold beyond which further increases in bias weight
had minimal effect on algorithm performance. This indicates
that the algorithms are sensitive to bias in the data and can
adapt to a certain extent, but there are limits to the benefits
gained from bias manipulation. The performance of self-
training and co-training algorithms was found to be robust
and consistent across different weights of biases. Regard-
less of the bias weight, these algorithms consistently outper-
formed or matched the baseline models. This suggests that
self-training and co-training can adapt to varying levels of bi-
ases within the training data.

In conclusion, the performance of self-training and co-
training algorithms was consistent and robust across differ-
ent quantities of labeled data. They demonstrated the ability
to adapt and leverage both labeled and unlabeled data effec-
tively. The algorithms were also sensitive to varying levels
of bias in the data, with bias weight manipulation influenc-
ing the algorithm’s performance. The synthetic datasets gen-
erated in this research successfully manifested the intended
bias, allowing for the examination of bias effects on algorithm
behavior. These findings contribute to our understanding of
the behavior and performance of self-training and co-training
algorithms in semi-supervised learning settings and provide
valuable insights for their practical application.

By addressing these recommendations, future research can
contribute to advancing the field of semi-supervised learning
and refining the application of self-training and co-training
algorithms in practical settings:

• Further Investigation of Bias Effects: While this study
successfully examined the impact of bias weight manip-
ulation, future research should delve deeper into the ef-
fects of bias in semi-supervised learning. Investigating
the influence of different types and levels of bias on algo-
rithm behavior and performance would provide a more
comprehensive understanding of how biases affect these
algorithms.

• Optimal Balance of Labeled and Unlabeled Data: Given
the varying performance of self-training and co-training
algorithms with different quantities of labeled data, fu-
ture studies should explore the optimal balance between
labeled and unlabeled data. Identifying the threshold at
which the performance starts to decline and understand-
ing the trade-offs between labeled and unlabeled data
would assist in guiding the selection of data quantities
for these algorithms.

• Enhanced Co-Training Approaches: Considering the ex-
ception where co-training using the ctc classifier per-
formed worse with a large unlabeled set size and SVC,
further research should focus on developing enhanced
co-training approaches. Exploring alternative classi-
fiers or modifying the co-training framework to mitigate
these limitations would contribute to improving the per-
formance of co-training algorithms in diverse scenarios.

• Evaluation of Other Performance Metrics: While this
study focused on accuracy and F1-score as evaluation

metrics, future research should consider exploring addi-
tional performance metrics to gain a more comprehen-
sive understanding of algorithm performance. Metrics
such as precision, recall, or area under the receiver op-
erating characteristic curve (AUC-ROC) could provide
further insights into the strengths and weaknesses of
self-training and co-training algorithms.
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Appendix A
The pseudocode provided in Algorithm 1 offers a more de-
tailed description of the data generation process:

Algorithm 1 generate data (n samples, n features, n classes,
n clusters, density, min dist)

1: n samples← number of samples
2: n features← number of features
3: n classes← number of classes
4: n clusters← number of clusters
5: density ← density parameter
6: min dist← minimal distance between cluster centers
7: samples per cluster ← distribute n samples evenly

among n clusters
8: cluster centers← randomly generate n clusters clus-

ter centers
9: while not all cluster centers are at least min dist apart

do
10: cluster centers ← randomly generate n clusters

cluster centers
11: end while
12: clusters per class← n clusters divided by n classes
13: data← empty list
14: labels← empty list
15: cluster labels← empty list
16: for each cluster id and center do
17: if cluster id is less than n classes ×

clusters per class then
18: class id ← cluster id divided by

clusters per class
19: else
20: class id ← randomly choose a class from

n classes
21: end if
22: cluster samples ←

samples per cluster[cluster id]
23: cov matrix ← create covariance matrix with

density value
24: samples← generate random samples around center

using cov matrix and cluster samples
25: add samples to data
26: add class id to labels for each cluster sample
27: add cluster id to cluster labels for each

cluster sample
28: end for
29: return data, labels, cluster labels



Appendix B
The pseudo-code provided in Algorithm 2 offers a more de-
tailed description of the modified self training algorithm:

Algorithm 2 Self-Training Algorithm

1: procedure SELF TRAINING (data labeled, la-
bels labeled, data unlabeled, num iterations, threshold,
model)

2: data labeled ← labeled data samples used for train-
ing

3: labels labeled ← labels corresponding to training
data samples

4: data unlabeled ← unlabeled data samples used for
training

5: num iterations← maximum number of iterations
6: threshold← minimum confidence level
7: model← machine learning model used for training
8: for iteration in range(num iterations) do
9: Train the model using the labeled data:

model.fit(data labeled, labels labeled)
10: Compute the predicted probabilities for

the unlabeled data: unlabeled probabilities ←
model.predict proba(data unlabeled)

11: Identify indices of unlabeled samples with con-
fidence above the threshold: confident indices ←
max(unlabeled probabilities, axis = 1) ≥ threshold

12: Select confident unlabeled samples
based on the indices: confident data ←
data unlabeled[confident indices]

13: Select corresponding confident prob-
abilities: confident probabilities ←
unlabeled probabilities[confident indices]

14: if len(confident data) == 0 then
15: break
16: end if
17: Assign labels to confident samples based

on maximum probability: confident labels ←
argmax(confident probabilities, axis = 1)

18: Add confident samples and la-
bels to the labeled data: data labeled ←
concat((data labeled, confident data))

19: Add confident labels to the la-
beled labels: labels labeled ←
concat((labels labeled, confident labels))

20: Decrease the confidence threshold: threshold←
threshold− 0.05

21: Create a list of models: models ←
[model, RandomForestClassifier(n estimators =
100)]

22: for model in models do
23: Train the model using the updated labeled

data: model.fit(data labeled, labels labeled)
24: end for
25: end for
26: return model, data labeled, labels labeled
27: end procedure



Appendix C
Table 1 provides the exact values that have been used for the
parameters throughout the experiments.

Table 1: Parameters for data generation

Parameter Value
n samples 1000
n features 2
n classes 3
n clusters 6
density 0.01

Appendix D
The figures (figure 11 - 13) presented in this appendix depict
plots of the mean scores along with error bars, which provide
a visual representation of the variance surrounding the scores.

(a) Self-Training using Logistic Regression with varying
weights

(b) Self-Training using SVC with varying weights

Figure 11: The mean scores of the Self-Training approach are dis-
played, presenting the same scores as shown in Figure 5, but now
accompanied by error bars in the plot to represent the variance.

(a) Co-Training using Logistic Regression with varying
weights

(b) Co-Training using SVC with varying weights

Figure 12: The mean scores of the co-Training approach are dis-
played, presenting the same scores as shown in Figure 6b, but now
accompanied by error bars in the plot to represent the variance.



(a) Self-Training using Logistic Regression with varying
unlabeled set sizes

(b) Self-Training using SVC with varying unlabeled set
sizes

Figure 13: The mean scores of the Self-Training approach are dis-
played, presenting the same scores as shown in Figure 8b, but now
accompanied by error bars in the plot to represent the variance.

Appendix E
The figures (figures 14 and 15) in this appendix display the
plots of the mean scores using the self-training algorithm im-
plemented by sklearn.

(a) Self-Training using Logistic Regression with varying
weights

(b) Self-Training using SVC with varying weights

Figure 14: The plot illustrates the mean scores achieved with differ-
ent bias weights using the traditional self-training algorithm imple-
mented with the sklearn library, instead of the modified algorithm
utilized previously.



(a) Self-Training using Logistic Regression with varying
unlabeled set sizes

(b) Self-Training using SVC with varying unlabeled set
sizes

Figure 15: The plot illustrates the mean scores achieved with differ-
ent unlabeled set sizes using the traditional self-training algorithm
implemented with the sklearn library, instead of the modified algo-
rithm utilized previously.

Appendix F
The figures (Figures 16 and 17) in this appendix display the
plots of the mean scores using the ctc-classifier from the
mvlearn library including the individual variances.

(a) Co-Training using Logistic Regression with varying
weights and using the ctc classifier

(b) Co-Training using SVC with varying weights and us-
ing the ctc classifier

Figure 16: In this figure, the ctc classifier from the mvlearn library
is employed instead of the implemented co-training approach. The
plots depict the scores while also indicating their individual vari-
ances. In Figure 16a, the accuracy, F1 score, and AUC-ROC values
align perfectly, resulting in the use of a single line to represent these
the lines obtained after applying co-training, whereas in Figure 16b
the accuracy and F1 score align perfectly, thus only a single line has
been displayed for this.



(a) Co-Training using Logistic Regression with varying
unlabeled set sizes and using the ctc classifier

(b) Co-Training using SVC with varying unlabeled set
sizes and using the ctc classifier

Figure 17: In this figure, the ctc classifier from the mvlearn library
is employed instead of the implemented co-training approach. The
plots depict the scores while also indicating their individual vari-
ances, while varying the size of the unlabeled set.
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