

Delft University of Technology

Evolution of the Unix System Architecture
An Exploratory Case Study
Spinellis, Diomidis; Avgeriou, Paris

DOI
10.1109/TSE.2019.2892149
Publication date
2021
Document Version
Final published version
Published in
IEEE Transactions on Software Engineering

Citation (APA)
Spinellis, D., & Avgeriou, P. (2021). Evolution of the Unix System Architecture: An Exploratory Case Study.
IEEE Transactions on Software Engineering, 47(6), 1134-1163. Article 8704965.
https://doi.org/10.1109/TSE.2019.2892149

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSE.2019.2892149
https://doi.org/10.1109/TSE.2019.2892149

Evolution of the Unix System Architecture:
An Exploratory Case Study

Diomidis Spinellis , Senior Member, IEEE and Paris Avgeriou , Senior Member, IEEE

Abstract—Unix has evolved for almost five decades, shaping modern operating systems, key software technologies, and development

practices. Studying the evolution of this remarkable system from an architectural perspective can provide insights on how to manage

the growth of large, complex, and long-lived software systems. Along main Unix releases leading to the FreeBSD lineage we examine

core architectural design decisions, the number of features, and code complexity, based on the analysis of source code, reference

documentation, and related publications. We report that the growth in size has been uniform, with some notable outliers, while

cyclomatic complexity has been religiously safeguarded. A large number of Unix-defining design decisions were implemented right

from the very early beginning, with most of them still playing a major role. Unix continues to evolve from an architectural perspective,

but the rate of architectural innovation has slowed down over the system’s lifetime. Architectural technical debt has accrued in the

forms of functionality duplication and unused facilities, but in terms of cyclomatic complexity it is systematically being paid back through

what appears to be a self-correcting process. Some unsung architectural forces that shaped Unix are the emphasis on conventions

over rigid enforcement, the drive for portability, a sophisticated ecosystem of other operating systems and development organizations,

and the emergence of a federated architecture, often through the adoption of third-party subsystems. These findings have led us to

form an initial theory on the architecture evolution of large, complex operating system software.

Index Terms—Unix, software architecture, software evolution, architecture design decisions, operating systems

Ç

1 INTRODUCTION

UNIX1 has a long and celebrated history. Its evolution
spans five decades and is a result of the work by

thousands of developers, including several distinguished
pioneers. As an operating system, it has left an undeniable
mark on the history of computing, while it has influenced tre-
mendously the current state of the art in software, network,
and hardware engineering.

Studying the evolution of operating system software is
not just significant from a historical perspective; it can pro-
vide valuable insights into evolvability best practices and
anti-patterns, for large, complex, and long-lived systems.
Unix is a unique case among all operating systems, both
due to its longevity, and its impact on the operating sys-
tems that followed. The evolution of a system of this size,
complexity, and age can shed light on how similar systems
can sustainably grow without the perils of software aging,
such as soaring technical debt or uncontrolled architectural
decay.

In this paper we study the evolution of Unix along the
FreeBSD lineage from a software architecture perspective.
While there have been studies on how Unix evolved (see
Section 2), these have mostly focused at the source code level
and were limited to the kernel. On the contrary, we turn our
attention to the system architecture and study a) the core
architectural design decisions across the main releases, and
b) the evolution in the number of the system’s features
(obtained from the Unix reference documentation) and in the
code’s complexity. The former entails qualitative analysis,
while the latter quantitative. These analyses subsequently
lead to forming an initial theory on the architecture evolution
of large and complex operating systems, regarding their
form, pace, driving forces, as well as the accumulation of
architectural technical debt.

The rest of the paper is structured as follows: In Section 2
we present related work, whereas in Section 3 we elaborate
on the case study design. In Sections 4 and 5 we present the
qualitative results (main architectural design decisions), and
the quantitative results (evolution of size and complexity)
respectively. Next, in Section 6 we discuss the main findings,
and in Section 7 the threats to this study’s validity. Finally, in
Section 8 we conclude the paper with a summary and discus-
sion of our findings.

2 RELATED WORK

The work reported here covers mainly two areas: a) software
evolution in general, which has been intensely studied, and
b) the evolution of Unix in particular, where related work is
more thin on the ground.

1. UNIX� is a registered trademark of The Open Group. For the sake
of simplicity, in this paper we use the word “Unix” to refer both to
UNIX systems developed at Bell Labs and to Unix-like systems, such as
FreeBSD, that descended from them.

� D. Spinellis is with the Athens University of Economics and Business,
Athina 104 34, Greece. E-mail: dds@aueb.gr.

� P. Avgeriou is with the University of Groningen, Groningen 9712,
Netherlands. E-mail: paris@cs.rug.nl.

Manuscript received 19 May 2018; revised 18 Dec. 2018; accepted 28 Dec.
2018. Date of publication 2 May 2019; date of current version 14 June 2021.
(Corresponding author: Diomidis Spinellis.)
Recommended for acceptance by R. Mirandola.
Digital Object Identifier no. 10.1109/TSE.2019.2892149

1134 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4231-1897
https://orcid.org/0000-0003-4231-1897
https://orcid.org/0000-0003-4231-1897
https://orcid.org/0000-0003-4231-1897
https://orcid.org/0000-0003-4231-1897
https://orcid.org/0000-0002-7101-0754
https://orcid.org/0000-0002-7101-0754
https://orcid.org/0000-0002-7101-0754
https://orcid.org/0000-0002-7101-0754
https://orcid.org/0000-0002-7101-0754
mailto:
mailto:

2.1 Software Evolution

There have been several studies on the longitudinal evolution
of large systems. The seminalwork of Lehman [1] and its sub-
sequent refinements attempted to establish laws of software
evolution, not unlike those of biological evolution. Those
laws have been the subject of much discussion and research
work [2]: their validity has been long debated, their nature
and scope have been iteratively refined by many researchers,
while several studies have examined whether the laws hold
for particular cases. The phenomenon of software evolution
has also been studied under different terms, such as Software
Aging [3], Software Decay [4], and more recently Technical
Debt [5].

One of themost popular ways to study software evolution
focuses on the growth of the source code. Hatton et al. con-
ducted the largest study to date on software growth rate; spe-
cifically they studied the growth rate of over 404 million lines
of both open source and proprietary software and concluded
that code doubles about every 42 months [6]. Similarly, a
large study on 6000 open source systems byKoch [7] revealed
that while themean growth is linear, there is a significant per-
centage of systemswith super-linear growth.

Several papers examine the evolution of open source soft-
ware from diverse angles [8]. Many take a quantitative
approach, using statistics to determine relationships between
various attributes, such as modularity and complexity [9],
growth and change rate [10], complexity and cumulative
change [11], or even the contributions and collaborations of
the user community through social network analysis [12].
Some papers examine evolution of systems written in C in
terms ofmodularity and complexity, and are thus directly rel-
evant to this work. An early study of the Linux kernel growth
by Godfrey and Tu [13] argued that the kernel’s super-linear
growth rate could be attributed to the linear growth of several
subsystems; this is related to our finding (Section 6.3) that the
accumulation of large subsystems plays an important role in
the modern evolution of Unix. A subsequent study on the
same topic [14] also looked at the issue of code complexity
and found that “the average complexity per function, and the
distribution of complexities of the different functions, are
improving with time.” Roughly similar trends, along with
what appears to be a self-correcting process, are shown in a
study of Unix programming practices [15].

There has also been a significant number of studies on the
evolution of operating systems, particularly Linux. MacCor-
mack et al. [16] studied Linux in terms of its structure and
compared it with the first and an evolved version of Mozilla;
the results emphasize the modularity of Linux and how
Mozilla evolved from a less to a more modular structure
(compared to Linux) in a matter of years. In addition to the
aforementioned Linux study by Godfrey and Tu [13], which
mostly measured lines of code of the operating system and
its major subsystems, a subsequent study of the Linux kernel,
conducted by Israeli and Feitelson [17], aimed at characteriz-
ing the operating system according to Lehman’s laws of
evolution. They used a number of quantitative metrics in
addition to lines of code, such as number of system calls and
cyclomatic complexity [18]. They were able to confirm sev-
eral of Lehman’s laws, while one of the interesting findings
is that complexity decreases over time. In a follow-up study,
Feitelson studied the Linux kernel evolution lifecycle [19],

summarizing it as a linear piece-wise model with increasing
slopes.

In addition to studying software evolution at the level of
source code, a number of studies have focused on the architec-
ture level. Behnamghader et al. [20] proposed a method for
architecture recovery and subsequently used this method to
study 23 open source systems examining the architectural
changes during long periods of system evolution. Other
approaches have also looked at architecture evolution, but
using source code artifacts, such as classes and packages, as
first-class entities. For example, D’Ambros et al. [21] proposed
architectural metrics derived from source code analysis, and
subsequently visualized those metrics to illustrate different
aspects of the evolution of both the code and the architecture.
Similarly, Wettel and Lanza [22] focused on the visualization
of ‘coarse-grained’ characteristics of software evolution (pack-
ages and classes) as well as ‘fine-grained’ ones (methods).
A final example is the work of Bouwers et al. [23], who pro-
posed an architecture metric for architecture partitioning into
components based on the evolution of numerous open source
and proprietary systems.

Compared to the discussed related work, our work has the
following differences: a) we focus on Unix; b) we analyze
the architecture evolution not at the component level but at
the level of architecture decisions, the seven key Unix feature
types (user commands, system calls, libraries etc.), as well as
the form and pace of architecture evolution, architectural
technical debt, and notable architectural characteristics; c) we
use data sources that span 48 years and 30 system releases.

2.2 Work on the Design and Evolution of Unix

The importance of Unix and its pedigree, rooted first in
industrial (AT&T Bell Labs) and then in academic (University
of California at Berkeley) research, has endowed it with
numerous publications that detail the system’s structure
and evolution. These cover snapshots, subsystems, or specific
periods.

Bell Labs staff published tens of papers on Unix and its
applications as technical reports [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33]. Most of these were also distributed
with each Unix release as Volume 2—Supplementary Docu-
ments, of the accompanying Unix Programmer’s Manual. Two
issues of The Bell System Technical Journal, which appeared in
1978 and 1984, were entirely devoted to Unix; these were
later also published in book form [34], [35]. Bell Labs staff
also published in outlets covering more diverse topics [36],
[37], [38], [39], [40], [41]. This tradition of open publication
was continued by staff and alumni of Berkeley’s Computer
Science Research Group (CSRG), as well as other systems
researchers and developers [42], [43], [44], [45], [46], [47],
[48], [49], [50]. These papers and many others provide rich
insights regarding the functionality and evolution of specific
facilities as well as the whole system.

Of particular importance to this study are: the CACM
paper introducing the features, ideas, and design of Unix [36];
Ritchie’s retrospective, detailing the system’s strengths and
weaknesses [51]; Thompson’s overview of the implementa-
tion of Unix [52]; Rosler’s paper on the evolution of C [53];
the study of portability as a design-shaping force [54]; and
a subsequent report by Ritchie on the evolution of Unix,
focusing on the filesystem, process control, I/O redirection,

SPINELLIS AND AVGERIOU: EVOLUTION OF THE UNIX SYSTEM ARCHITECTURE: AN EXPLORATORY CASE STUDY 1135

and high-level languages [55]. More recent articles have cov-
ered the restoration and curation of historical artefacts, such
as early editions of Unix [56], [57] and repositories of
them [58], or their subsequent study [15], [59].

Another category of material related to this study is
books detailing the internal workings of Unix and thereby
also parts of its architecture. The thing that started it all is a
slim two volume set prepared in 1977 by John Lions as
teaching material for his operating systems course at the
University of New South Wales. The first volume contains a
line-by-line listing of the Sixth Edition Unix kernel, while
the second volume is a source code commentary explaining
the functionality of each listed element. Confusion regard-
ing the associated intellectual property rights resulted in it
circulating for two decades in samizdat photocopies or digi-
tal scans, before legal hurdles were lifted to allow its formal
publication [60].

A decade later, Maurice Bach published a book covering in
abstract terms, without reference to specific source code ele-
ments, the design of the Unix kernel, with an emphasis on Sys-
tem V Release 2 [61]. The book, based on material the author
prepared for a course he taught at AT&T Bell Laboratories,
covers most important data structures and algorithms. Mean-
time, on the West Coast, researchers who had worked on the
Berkeley versions of Unix, published another book detailing
the design of BSD Unix [62]. This work was expanded and
updated at regular intervals to cover new editions of BSD
Unix [63] and then its FreeBSDdescendant [64], [65].

In this area we also mention Organick’s high-level architec-
ture analysis of theMULTICS operating system [66]—a system
much larger and considerably more ambitious than several
early versions of Unix. This is relevant, because AT&T Bell
Labs was developing the system together with MIT and Gen-
eral Electric. When AT&T pulled out from the development of
MULTICS, the Bell Labs team was left without a system on
which to experiment with operating system design and, also,
with valuable lessons learned from theMULTICS project.

This paper is not directly comparable to the work sum-
marized here, but it builds on it (see Section 3.3) and on
empirical data to study the evolution of Unix over a half-
century period.

3 CASE STUDY DESIGN

The case study as an empirical method is used for investigat-
ing a phenomenon in its real life context [67]. Themain reason
for selecting to perform a case study rather than other types of
empirical studies, is that we want an in-depth understanding
of how and why architecture evolution phenomena occurred
within the Unix ecosystem. This case study has been des-
igned and is presented according to the guidelines of
Runeson et al. [67].

3.1 Objectives and Research Questions

The goal of this study, stated here using the Goal-
Question-Metric (GQM) approach [68], is to “analyze the
Unix operating system for the purpose of evaluation and char-
acterization of its architecture evolution with respect to its
main architecture design decisions, size and complexity
from the point of view of software developers in the context of

the Unix ecosystem”. The aforementioned goal can be
achieved by answering the following research questions.

RQ1 What are the main architectural design decisions
along the major releases of the system?

RQ2 How did complexity and the number of features
evolve along the main releases of the system?

The first question aims at investigating the architecture’s
evolution from a qualitative perspective. An architecture is the
set of main design decisions [69], [70]. Therefore, we study
architecture evolution by identifying the major design deci-
sions that were introduced along a number of themost signifi-
cant releases (see Section 4). Such design decisions are mainly:
(a) architecture components, including their interfaces, such
as the kernel, shells, and libraries; (b) architecture connectors
such as pipes and C header files; (c) architecture patterns [71]
that were applied in the system, such as layering and reflec-
tion; and (d) the principles that guide the system architecture,
such as modularity and separation of concerns. Architecture
components and connectors, patterns, and principles consti-
tute some of the key architecture decisions of software systems
[69], [72]. We also report other types of decisions that cannot
be classified in these categories, e.g., naming conventions.
Every design decision is accompanied by a rationale, which is
themost important section in decision documentation [70].

The second question looks also at the evolution of the Unix
architecture, but from a quantitative point of view. Specifically
we look at how metrics of size and complexity evolve over
time; these metrics concern system features (e.g., number of
user commands or system calls), as determined by the Unix
reference documentation (for more details see Section 5.1).
This gives us a complementary perspective to the qualitative
results, as we can discern overall trends across decades rather
than notable architecture changes in individual releases.
Eventually, we combine the quantitative and qualitative
results during our discussion (see Section 6) in order to derive
findings and conclusions.

We note that in such quantitative analyses, it is common to
also measure cohesion and coupling. However, in the case of
Unix, this would require substantially more manual work for
each revision ofUnix.Namely, itwould entail: a) the develop-
ment of custom tools to analyze PDP-7 and PDP-11 assembly
as well as early dialects of C; b) the configuration of analysis
tools for the file layout and linking policies of each revision.
Therefore, this is considered as out of scope for this work, but
it does constitute appealing future work.

The answers to both research questions are interesting
beyond the case of Unix. Thus, they will be used as raw data
to form an initial theory on the architecture of large and com-
plex operating systems (see Section 6).

3.2 Case Selection and Units of Analysis

The case study of this paper is characterized as single-case and
embedded [67]: the Unix operating system is the case, while
the different versions are the units of analysis. Our study starts
with the unnamed 1970 PDP-7 version that became Unix,
followed by the so-called “Research” editions that came
out of Bell Labs, then continues with the Berkeley Software
Distributions (BSD), and finisheswith versions of the FreeBSD
operating system distribution that carries on its development
until today (see Fig. 7 in Section 6). We could not study Unix

1136 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

versions that derive from the Research editions via AT&T
System V, such as Solaris, AIX, and HPUX, because most of
the corresponding code remains proprietary and inaccessible.
We chose not to study the evolution of Research editions into
Plan 9 [41], due to the system’s limited adoption and lack of
packaged release distributions. Other systems deriving from
the BSD source code base are NetBSD,which focuses onwide-
spread architecture portability, especially among embedded
devices, and OpenBSD, which focuses on security. Although
these projects differ in terms of vision and technologies, all
frequently exchange among them code and ideas. This paper
examines the architectural evolution in the popular FreeBSD
line, to capitalize on the first author’s inside knowledge of
FreeBSDand on the system’s excellent publisheddesign docu-
mentation [64], [65].

An overview of the major releases that comprise the units
of analysis in this study appears in Table 1.L1,2 For the
Research editions the release date is derived from the corre-
sponding manual date; in the remaining cases from the time-
stamp of the newest file. Cases where the code associated
with specific releases has not been preserved are marked

with a question mark. Details about that release were
obtained by studying its manual, which, thankfully, is avail-
able for all versions of Unix. Further quantitative data for
each one of these versions appear in Fig. 3 in Section 5.1.

3.3 Data Collection

In order to answer the research questions, we collected both
qualitative and quantitative data. More specifically, for both
RQ1 and RQ2 we used two data collection techniques [73]:
documentation analysis on a number of documents (qualita-
tive data) aswell as static analysis of the source code (quantita-
tive data). For the latter we examined the source code for each
of the Unix releases, obtained from the Unix history reposi-
tory [58].3 For the formerwe used the following documents.

� The documentation (Unix Reference Manual pages)
associated with each release [74]. In the cases where
this was not available it was reconstructed from the
source code markup.4

� Books and research papers described in Section 2.2.
� Recollections of Unix pioneers [75], [76], [77], [78],

[79], [80], [81].
The use of multiple data sources, allowed us to perform

data source triangulation, i.e., we were able to confirm the
findings from different types of data sources. More details
are given on Section 7.

A large part of our study is based on a data set of the Unix
reference documentation and its visualization in the form of
timelines [74]. This documentation is available from the First
Research Edition onwards in what is known as “Volume I” of
the Unix Programmer’s Manual [82]. Note that Volume II [83]
contains supplementary documents, which provide an in-
depth treatment of specific tools and topics, such as the
shell [84], the C programming language [85], the lint program
checker [86], the tbl table formatter [87], and so on. Fortu-
nately, the Unix documentation is maintained in electronic
format (as troff [33] files) together with the system’s source
code. For releases where the source code has been lost,
(denoted by a question mark in Table 1) scanned copies of the
manual are still available.

To answer RQ1, a data set of all the system’s architectural
design decisions for every available release was created,
based on the documentation. The data format and their
collection process are described in reference [74]. The corre-
sponding data and generation scripts are available online.5

To answer RQ2we collected data primarily through source
code analysis (tomeasure complexity) and document analysis
on theUnix referencemanuals (tomeasure feature set size).

3.4 Data Analysis

Quantitative data are analyzed through simple descriptive
statistics and illustrated through histograms and scatter plots.
To calculate the cyclomatic complexity [18] at the component
level, we looked at themean value over all functions compris-
ing the corresponding component. This follows recently pub-
lished results indicating that the mean and median rather
than the sum are better defect predictors [88].

TABLE 1
Units of Analysis: Key Releases, Dates and Size Metrics

Lines of Code

Release Date Kernel Library Programs

Research PDP7 1970 2,489 0 9,095
Research V1 3 Nov 1971 4,768 ? ?
Research V2 12 Jun 1972 ? 1,075 16,968
Research V3 15 Feb 1973 ? ? ?
Research V4 30 Nov 1973 7,141 ? ?
Research V5 Jun 1974 8,778 5,634 53,428
Research V6 May 1975 12,347 7,092 137,723
Research V7 Jan 1979 19,710 14,251 290,142
Bell 32V 28 Aug 1979 16,572 14,224 297,688
BSD 3 22 Mar 1980 25,096 4,637 545,942
BSD 4 16 Nov 1980 35,616 20,522 674,912
BSD 4.1c/2 2 Apr 1983 85,312 32,817 1,003,134
BSD 4.2 1 Jan 1985 91,309 31,296 1,265,337
BSD 4.3 4 Mar 1987 127,725 40,740 2,402,062
BSD 4.3/Tahoe 6 Jan 1990 218,783 150,883 2,552,789
BSD 4.3/Reno 2 Jan 1991 357,466 125,267 2,894,582
BSD 4.3/Net 2 20 Aug 1991 295,677 265,316 2,405,218
386BSD 0.0 4 Mar 1992 92,565 176,680 777,114
386BSD 0.1 15 Jul 1992 129,884 176,387 2,604,563
386BSD p/k 20 Jun 1993 210,828 176,810 2,894,027
FreeBSD 1.0 28 Oct 1993 233,262 143,091 2,218,098
FreeBSD 2.0 22 Nov 1994 381,206 262,920 2,932,865
BSD 4.4 25 Jul 1995 730,422 246,184 6,362,709
BSD 4.4/Lite2 25 Jul 1995 648,069 250,281 5,348,342
FreeBSD 3.0.0 21 Jan 1999 957,625 395,846 5,024,207
FreeBSD 4.0.0 20 Mar 2000 1,371,122 450,225 6,442,184
FreeBSD 5.0.0 16 Jan 2003 2,180,639 613,034 7,919,274
FreeBSD 6.0.0 3 Nov 2005 2,796,311 567,130 9,183,131
FreeBSD 7.0.0 24 Feb 2008 3,561,595 632,643 10,238,166
FreeBSD 8.0.0 20 Nov 2009 4,099,266 746,689 10,747,631
FreeBSD 9.0.0 2 Jan 2012 5,371,628 761,459 15,135,803
FreeBSD 10.0.0 16 Jan 2014 6,599,640 699,317 17,780,699
FreeBSD 11.0.0 22 Sep 2016 8,518,968 733,620 21,529,326

2. Footnotes prefixed by I (IN) document the derivation of numbers
and tables through correspondingly numbered listings appearing in
the supplementary online material, which can be found alongside this
paper at https://doi.org/10.1109/TSE.2019.2892149.

3. DOI: 10.5281/zenodo.2525587
4. DOI: 10.5281/zenodo.2525571 DOI: 10.5281/zenodo.2525574
5. DOI: 10.5281/zenodo.2525613 DOI: 10.5281/zenodo.2525612

SPINELLIS AND AVGERIOU: EVOLUTION OF THE UNIX SYSTEM ARCHITECTURE: AN EXPLORATORY CASE STUDY 1137

https://doi.org/10.1109/TSE.2019.2892149

In order to analyze qualitative data we have performed cod-
ing using Constant Comparison [89]. Specifically we performed
Constant Comparison iteratively, refining the codes with their
relationships in each iteration. The codes correspond to the
architecture designdecisions thatweredeemedworth reporting
permajor release of the system; in that sense the codes were not
pre-formed but post-formed (i.e., they were created during the
coding process). As is common in Constant Comparison (see
reference [89]),we focusedonunifying explanations for the var-
ious studied decisions, in particular why those decisions were
made andhow.

In the following sectionswe attempt to answer the research
questions: Section 4 focuses on RQ1 by showing the evolution
of the architecture design decisions in themajor Unix releases;
Section 5 tackles RQ2 by presenting the evolution of Unix size
and complexity.

4 QUALITATIVE RESULTS

To answer the first research question, we examine the main
architectural design decisions in major releases of the system
(see Table 1). Each sub-section first introduces the Unix release
and subsequently provides a short discussion of the principal
design decisions for that release, such as components (e.g., com-
mands, routines etc.), connectors (e.g., system calls, sockets etc.),
patterns (e.g., Layers, Pipes and Filters, Reflection etc.), and
principles (e.g.,modularity, virtualization, low coupling etc.).

We used the detailed interactive timelines described in refer-
ence [74] to notewhen each feature appeared andwhen features
disappeared. Hyperlinks from the timelines to the documenta-
tion allowed us to assess the type and importance of each new
feature. Fig. 1 summarizes the nine online timeline diagrams
into a single timeline of the principal design decisions ofUnix.

In the following text, when documentation regarding
a particular architectural design decision appeared in a
given version of Unix then a reference is made to the
corresponding “manual page” using the conventional
name(SECTION) format. for example ls(I) refers to the ls
command in Section I of the Unix reference manual.6 In

other cases, our text may refer to Unix source code,
using a footnote such as this.S1 This can be used to find
and access the associated release, file, and line through a
correspondingly numbered note provided in the supple-
mentary online material.

4.1 PDP-7 Unix

Unix was originally written (as an unnamed system) in
PDP-7 assembly language. A recently found and restored
artifact from mid-1970s [59], allows us to examine its struc-
ture and techniques employed in its construction. The
following design decisions stand out. Many of these survive
until today.

Kernel Despite the system’s diminutive size of 13,691L2

lines, there is a clear separation between an operating system
kernel that offers a few tens of services and user-level com-
mands. The kernel loads and executes user-level commands,
provides the file abstraction, virtualizes the hardware interfa-
ces, and establishes ownership of files.

Layering and Partitioning The system is structured into
two layers: the kernel and the commands. Following the
Layers pattern [71, p. 33], the commands call the kernel,
but the kernel does not depend on the commands.
Furthermore, the commands adhere to the principle of
low coupling: the code of each command is not coupled
to code in other commands. This partitioning is estab-
lished through a file naming convention: file names start-
ing with the same sequence (e.g., ed for ed1.s and ed2.s)
belong to the same partition.

System Call The transfer of control between the user
programs and the kernel is implemented through special
connectors: system calls. The kernel source code files
define 35L3 labels whose name starts with a period.
These are the names of system call entry points. A subset
of 28L4 labels are grouped in a table,S2 which allows
them to be called from user programs using the sys

instruction (some labels, such as those for low-level disk
access, are not exported.) In the Second Edition manual
we find the system calls documented in a dedicated sec-
tion (II) of the manual.

Fig. 1. Timeline of Unix’s major releases and architectural design decisions.

6. Note that Roman section numbering (I–VIII) was employed from
the First to the Sixth Research Edition. We follow the same convention
in our references to these editions.

1138 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

Listing 1. The inode definition in PDP-7 Unix

ii: .=.+1

inode:

i.flags: .=.+1

i.dskps: .=.+7

i.uid: .=.+1

i.nlks: .=.+1

i.size: .=.+1

i.uniq: .=.+1

.= inode+12

Interpreter At least two system commands ind (indenta-
tion) and lcase (lower case conversion) are written in a (rela-
tively) high-level language, namely B. This is implemented
with a threaded code interpreter [90].

Monolithic Implementation The kernel is structured as nine
assembly-language files (s1.s – s9.s) lacking easily discern-
ible decomposition and partitioning. The same is also
observed for the editor ed, which consists of two similarly
named files (ed1.s and ed2.s).

Process Management The kernel can create an indepen-
dently scheduled copy of a running process through the eas-
ily-implementable fork system call,S3 which is named and
modeled afterMelvin Conway’s fork and join proposedmulti-
tasking primitives [91]. The replacement of the running pro-
cess copy with another program through the exec system call
was not implemented at the time. Instead, the shell overlays
the running code by reading the code of the other process
from the disk, and then transfers execution to its entry point
with a jump instruction [55], [59].

By the First Research Edition, the process manage-
ment interface had evolved into four system calls that
define the way processes: are created—fork(II), have their
code loaded—exec(II), are terminated—exit(II), and are
monitored for termination—wait(II). This basic model
has been standardized under POSIX [92] and survives
until today. The split of a new process creation from the
loading of the corresponding code may seem like a pecu-
liar architectural choice, because its benefits (the ability
to create an identical sibling of an existing process) are
small; typically a call to fork is immediately followed by
one to exec. The reason behind this choice seems to be
historical. Given the existence of the fork system call, it
was easier to add an exec call than to create from scratch
a call that would combine the two.

DescriptorManagement The kernel provides I/O functional-
ity, such as read andwrite, through special connectors, the file
descriptor handles; these are small integers that map I/O calls
to the underlying file or device. The kernel fgetS4 and fputS5

routines provide a bare-bones interface for obtaining and dis-
posing file descriptors to other kernel system calls (e.g., creat,S6

open,S7 seekS8).
Separation of File Metadata from File Naming The PDP-7

kernel separates a file’s metadata (user-id, size, disk
block locations, number of links) from the file’s directory
name by introducing the concept of a file information
node (inode; see Listing 1). A function (nameiS9) can
obtain the inode associated with a path name, while
other functions (igetS10 and iputS11) deal with open files
through their inodes. This elegant connector simplifies
many file administration tasks.

Devices as Files The kernel follows the virtualization
principle by abstracting devices, such as the console, the
second terminal, and the paper tape drive, into files that are
accessible via the file system’s system directoryS12 (/dev
in later versions). This type of binding, allows arbitrary
programs to communicate with any device.

File I/O A simple yet powerful interface, based on
the system calls open,S13 read,S14 write,S15 seek,S16 tell,S17 and
close,S18 allows programs to access files as a flat sequence of
bytes in both sequential and random access fashion. This
interface has survived until today, both as Unix system calls
and as the I/O API in popular programming languages.

Filesystem Four system calls allow the manipulation of
files within the filesystem: creat,S19 rename,S20 link,S21 and
unlink.S22 All have survived until today. The functionality of
the creat system call has been usurped in a generalized form
by open.S23 Furthermore, the system calls rename, link, and
unlink were extended in 2008 with siblings that work on file
descriptors in order to avoid race conditions.S24 Note that
this problem could not have been foreseen, because direc-
tory support did not exist at the time.

4.2 First Research Edition

The First Research Edition (November 3, 19717) was a
rewrite of the PDP-7 Unix targeting the PDP-11 processor.
The following architectural design decisions are visible in
this edition. Note that, the shell-related design decisions
may have also been available in the PDP-7 edition, but the
corresponding shell does not seem to have survived in
order to study their implementation.

System Calls Although the first edition Unix was a com-
plete rewrite of PDP-7 Unix, it retained a large number of the
defined system calls, thus establishing the core architecture
of the Unix system call interface. Specifically, from the 28L6

system calls implemented in the PDP-7 versionS25 and the
34L7 calls implemented in the First Edition,S26 18L8 are com-
mon between the two:L9 chdir, chmod, chown, close, creat, exit,
fork, getuid, link, open, read, rele, seek, setuid, tell, time, unlink,
write. More impressively, from the 34L10 system calls imple-
mented in the First edition, 18L11 have also survived in the
modern FreeBSD-11.0.1 version:S27,L12 chdir, chmod, chown,
close, creat, fork, fstat, getuid, link, mkdir, mount, open, read,
setuid, stat, unlink,wait,write.

Binary-Code API At the CPU level, system calls are typi-
cally dispatched through a memory address vector contain-
ing the location of the code implementing each call. At the
programming level, system calls are referred to by names,
such as open or exec. Rather than dynamically allocating sys-
tem call names to entries in this table, the First Edition
established a numbering scheme to place system calls in sta-
ble positions within the table. This allows Unix systems to
maintain binary API compatibility of compiled programs
between successive releases and even between different
implementations, such as Linux, without requiring expen-
sive adaptation layers. As can be seen from system calls
defined in the 1971 First EditionS28 (Listing 2L13) and the cor-
responding calls defined in the 2016 FreeBSD-11.0.1S29

(Listing 3L14) the established numbering scheme persists
until today.

7. The dates provided here are given by Salus [77, p. 43].

SPINELLIS AND AVGERIOU: EVOLUTION OF THE UNIX SYSTEM ARCHITECTURE: AN EXPLORATORY CASE STUDY 1139

Listing 2. System calls 0–10 defined in the 1971 First
Edition Unix

sysrele / 0

sysexit / 1

sysfork / 2

sysread / 3

syswrite / 4

sysopen / 5

sysclose / 6

syswait / 7

syscreat / 8

syslink / 9

sysunlink / 10

Listing 3. System calls 0–10 defined in the 2016 FreeBSD-
11.0.1

0 { int nosys(void); } syscall nosys_args int

1 { void sys_exit(int rval); } exit

sys_exit_args void

2 { int fork(void); }

3 { ssize_t read(int fd, void *buf,

size_t nbyte); }

4 { ssize_t write(int fd, const void *buf,

size_t nbyte); }

5 { int open(char *path, int flags, int mode); }

6 { int close(int fd); }

7 { int wait4(int pid, int *status,

int options, struct rusage *rusage); }

8 { int creat(char *path, int mode); }

9 { int link(char *path, char *link); }

10 { int unlink(char *path); }

Abstraction of Standard I/O The First Edition shell offers
the ability to associate user-specified files in the place of the
program’s standard input and standard output, through the
corresponding I/O redirection symbols (< and >). This fol-
lows the virtualization principle by abstracting a program’s
standard I/O away from the terminal, allowing programs
to operate on arbitrary files. The design decision is imple-
mented by closing the default input or output file descriptor
(typically associated with the terminal) and opening it again
to associate it with the specified file.S30

Generic File I/O Layer Over a number of successive
releases we see the evolution of a layer between the read
and write system calls and the device drivers [50]. This han-
dles read (readiS31) and write (writeiS32) through an inode,
read/write functionality common to both (rdwrS33), as well
as the mapping of data to disk blocks (bmapS34).

User-Contributed Tools and Games The First Edition manual
contains a section (VI) documenting “User Maintained Pro-
grams”. Amazingly, this happeneddecades before open source
operating system distributions, such as Debian and FreeBSD,
started organizing third-party code contributions in the form of
so-called “packages” or “ports”. Operating systems by defini-
tion host user-written code. The architectural significance of
this First Edition design decision is that the user-maintained
components are documented in the system’s manual, and are
installed in a system-wide visible directory (typically /usr/

bin—user binaries) rather than in the authors’ home

directories. This method supports a lightweight method for
users to contribute code to the system, which can later mature
to become an officially supported part of it.

The First Edition user-contributed programs included pro-
gramming languages (basic), games (bj—black jack, chess, moo,
ttt—tic-tac-toe), tools (das—disassembler), peripheral interfac-
ing (dli, dpt—load DEC paper tapes), and nowadays familiar
utilities (cal, sort). Documenting the user-contributed software
was enforced through an interesting technical measure: a
scheduled (cron) job would remove software that lacked up-to-
date manual pages [80]. Currently, section VI of the Unix man-
ual documents games, while some tools documented in the
First Edition are nowstandardizedUnix user commands. Third
parties can still contribute code to Unix distributions through
their ports or packagesmechanisms.

The Shell as a User Program The documentation of the
password file—passwd(V)—details that each record’s fifth
field contains the program to use as the shell. This allows
arbitrary components to be specified as the ones with which
a logged in user will interact; an editor for clerical staff and
games were given as examples [36].

Interoperability through Documented File Formats Section V of
the First Editionmanual documents nine file formats. These act
as connectors, allowing diverse programs to interoperate
through an external coupling mechanism by reading and writ-
ing the corresponding files. Two more were added in the Sec-
ond Edition, and more continued to be added in future
editions. File formats used bymore than one program are listed
in Table 2. The files demonstrate two of the system’s architec-
tural principles: using flat files rather than elaborate file struc-
tures, and adhering to conventions (use of documented
formats) rather than implementing complex enforcement
mechanisms (e.g., APIs).

Tree Directory Structure Two system calls, mkdir(II) and
chdir(II), provide the interface used for creating a new file
directory and for establishing a directory as the current one.
Other elements required for creating a tree directory structure
are established by convention, whichminimizes architectural
complexity. Specifically, directories are plain files containing
file entries in a known documented format—directory(V). In
addition, two directory entries with special names, “.” and

TABLE 2
Documented File Formats and Their Users in the First and

Second (*) Research Edition

Format Description Clients

a.out Assembler and linker
output

as, ld, strip, nm, un

Archive Object code libraries ar, ld
Core Crashed program image Kernel, db
Directory Filesystem directories du, find, ls, ln,

mkdir, rmdir
Filesystem Filesystem format check, dump,*

mkfs, restor*
Password User accounts and

passwords
chown, find,
getpw,* login,* ls,
passwd*

Tape* DECtape file format mt,* tap*
utmp Logged in users init, login,* who,*

write*
wtmp* Users login history acct, date, init,

login, tacct, who

1140 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

“..”, point to the current and parent directory respectively.
A number of commands provide the required user-level sup-
port: chdir(I), find(I), ln(I), ls(I), stat(I), mkdir(I), mv(I), rm(I),
and rmdir(I). They perform administrative chores and enforce
restrictions by operating directly on the directory data.

Mountable Filesystem Interface Two system calls,mount(I) and
umount(I), and two administrator programs with the same
name provide an interface for connecting storage units contain-
ing filesystems to abritrary points of the directory structure. Its
existence supports a single tree-structured name space for all
files, hiding from users and programs the complexity and ugli-
ness of “drives” or “devices”. It also guided by example the
philosophy of using a single consistent naming scheme for all
files, which proved important as the system evolved.

4.3 Second Research Edition

The Second Edition (June 12, 1972) source code has only sur-
vived as a few system utility program fragments, which
were recovered from a subset of a disk dump’s DECtapes.
Fortunately, this edition’s manual survived as a printed
document and provided the basis for this section’s observa-
tions of architectural evolution.

Software Library The Second Edition manual contains a sec-
tion (III) documenting 23 “subroutines”, with a considerably
wider scope than the fewdocumented in the First Edition. These
components mainly consist of a floating point math emulator,
trigonometric, logarithmic, and conversion math functions,
buffered I/O, memory management, sorting, and string proc-
essing. More than half (14) of them have survived as functions
with the same name and functionality in the modern C library:
atan(III), atof(III), atoi(III), ctime(III), cos(III), exp(III), getc(III), hypot
(III), itoa(III), log(III), putc(III), qsort(III), sin(III), and sqrt(III). Their
survival showcases the power ofwell-chosen abstractions.

4.4 Third Research Edition

The Third Edition (February 1973) is available through its
manual pages—14,982L15 lines of troff code—and the C com-
piler—2,751L16 lines of C code.

Pipes and Filters This pattern was introduced in the Third
Edition [77, p. 50], but the corresponding kernel assembly
code has not survived. Even in the C source code of the
Fourth Edition kernel, the pipe system call is only a stub redi-
recting to the nosys system call entry point. It seems proba-
ble that the corresponding system call was implemented in
the assembly version of the kernel, which coexisted with it,
and the C version had not caught up. However, the Third
Edition manual documents the pipe system callS35 and the
construction of pipelines through the shell.S36 (The syntax
used for pipelines was at the time different from the current
one.) Furthermore, the interface to diverse commands was
changed overnight to allow them to run as filters, i.e., receive
input from another process through their standard input
stream and provide their output to another process through
their standard output stream [75]. For example, the cat, od, pr,
and sort commands are documented in the Second Edition
manual with a mandatory input file argument. In the corre-
sponding Third Edition manual pages, the file argument is
optional—when missing the commands process their stan-
dard input. Moreover, the documentation of numerous com-
mands—crypt(I), hyphen(I), od(I), opr(I), ov(I), pr(I), sort(I)—
explicitly states that they can be used as a filter.

4.5 Fourth Research Edition

The Fourth Edition (November 1973) is available through
its manual pages—18,975L17 lines of troff code—and the ker-
nel—7,141L18 lines of which just 768L19 are written in PDP-11
assembly and the rest are written in C. Interestingly, the ker-
nel exhibits a division of effort on architectural boundaries:
Ken Thompson (ken) appears to have worked more on the
main part of the kernel,S37 while Dennis Ritchie (dmr)
appears to havemainlyworked on device drivers.S38

Structured Programming in a High-Level Language The rewrit-
ing of the system kernel from PDP-11 assembly language in a
high-level language that later became C (at the time it was
known as “new B”) imposed discipline in the scoping of identi-
fiers. This increased thekernel’smodularity by allowing thedef-
inition of small (on average about 17.9L20 lines long) functions.
Thus, the Fourth Edition kernel defines 105L21 C functions and
50L22 assembly language symbols. Contrast these numbers with
the 200L23 (global) symbols defined in the PDP-7 kernel and the
248L24 symbols defined in the First Edition (PDP-11) kernel.

User Groups The kernel introduces user groups and two sys-
tem calls to manage them: getgid(II) and setgid(II). A few com-
mands such as chmod(I) and ls(I) are correspondingly adjusted,
andfile permissions are extended to include groupones in addi-
tion to the existing ‘owner’ and ‘others’ settings. Despite its
spartan interface, the concept is extremely powerful. Coupled
with group ownership of files (which include devices mapped
to the filesystem name space), permissions associated with a fil-
e’s group, and the ability to have programs assume the identity
of a specified group, it allows the administrative control of
resource access according to a user’s group and action. For
example, appropriate group permissions can provide all opera-
tors tape and disk drive access for backup purposes, without
requiring a complex access control list to be associated with
each corresponding device. The concept is an elegant case of
solving a problemby adding another level of indirection.

Language-Independent API The gradual implementation of
the system in a high-level language necessitated an API that
would be compatible with both assembly language code
and code written in C. Consequently, the system calls are
provided and documented through an API that is callable
from both languages—an example can be seen in Fig. 2. Such
mechanisms supporting language coexistence under the
same roof were later extended to cover Fortran and Pascal,
and nowadays serve diverse languages ranging from Java
andGo to JavaScript and Python.

Data Structure Definition Reuse The kernel contains in its
top level directory 12L25 C header files that are used in

Fig. 2. The pipe(II) system call interface documented both for assembly
language (using registers r0 and r1) and for C callers.

SPINELLIS AND AVGERIOU: EVOLUTION OF THE UNIX SYSTEM ARCHITECTURE: AN EXPLORATORY CASE STUDY 1141

165L26 instances by 35L27 kernel source code files. (Regard-
ing header adoption by user-space programs the—closest
available—Fifth Edition source code has 17L28 instances of
header file use in 13L29 files.) Header files provide a shared
mechanism for communicating through reused data struc-
tures, something that in the past was performed simply by
copying the data structure’s definition from a manual into
the code of each program. The use of header files allows the
evolution of data structures by the addition of fields and
changes to their types. This in turn can be used to promote
portability, through the use of types that are appropriate for
each CPU architecture.

Dynamic Resource Management Two routines, mallocS39 and
mfree,S40 are introduced to manage the dynamic allocation
and release of main memory blocks for in-memory processes
and of continuous disk swap area blocks for swapped-out
processes. Through these routines both allocations reuse the
same underlying data structure, a map. Each of the two maps
(coremapS41 and swapmapS42) is an array of structures contain-
ing the position and size of each allocated block [60, p. 5–1].

Device Driver Abstraction The manual documents in
section IV 16 “special files”, which are located under the
/dev directory. These correspond to diverse devices,
including the cat(IV) phototypesetter interface, the da(IV)
voice response unit, the dc(IV) data-phone interface, the
kl(IV) console typewriter, the pc(IV) paper tape reader/
punch, the tm(IV) magnetic tape interface, and various
disk drive types. These files are implemented by device
drivers.S43

At the kernel level each character device driver provides
through the cdevsw table what we would call today an
object-oriented interface with five methods:S44 d_open,
d_close, d_read, d_write, and d_sgtyy. Block devices
provide through the similar bdevsw interface three func-
tions: d_open, d_close, and d_strategy. These func-
tions have mostly obvious semantics, transforming
hardware-agnostic I/O requests into the protocol required
by the corresponding devices. The d_strategy function is
responsible for queuing read and write requests and the
d_sgtty function for getting and setting a terminal’s speed
and processing flags. This standardized interface hides
device-specific hardware intricacies from the rest of the ker-
nel and from user level programs, thus virtualizing the
underlying devices. In a departure from this modular inter-
face, the interrupt functions associated with the devices are
directly hard-coded in the interrupt table.S45

Remarkably, both the cdevsw and the bdevsw interface
(renamed into devsw), extended with a few more functions
still exist in modern versions of Unix, demonstrating the
design’s enduring relevance and utility.S46,S47

Buffer Cache The buffer cacheS48 stores in main memory
a copy of data read from or written to secondary storage.
This bridges the performance gap between the high-latency
secondary storage and the lower-latency main memory.
Offered as a service to all block device I/O, it improves the
performance of both kernel and user-process disk I/O, at
the expense of complicating the maintenance of consistent
disk structures.

The buffer cache is another pattern that has persisted
through time to the current version FreeBSD-11, even down
to the names of three buffer structure flags.S49,S50

4.6 Fifth Research Edition

The surviving Fifth Edition (June 1974) is only missing the
source markup of the manual pages. This edition was officia-
llymade available to universities for educational use [93, p. 8].

Command Files Already from the Second Edition the shell
documents its ability to run with the name of a file contain-
ing commands as an argument. In the Fifth Edition we see
four files containing such sequences of commands. These
are used to configure the system at boot time,S51 to update
the C-compiler’s archive containing nonce-language expres-
sion template tables,S52 to compile, link, and install diverse
system files,S53,S54 and to create the manual’s table of con-
tents and index.S55 At just 69L30 lines the amount of code
embedded into these files is very modest. However, this use
marks the beginning of scripting in Unix, which will later
become a dominant paradigm.

4.7 Sixth Research Edition

The Sixth Edition (May 1975), is the first that became widely
available outside Bell Labs through licenses to commercial
and government users. John Lions studied and documented
the kernel’s structure as material for teaching two operating
systems courses at the University of New South Wales in
Australia in 1977 [60].

Portable C Library A libraryS56 of routines implemented in
the C programming language is provided with the explicit
goal to improve portability among the three operating systems
on which the language was made available: PDP 11 Unix,
Honeywell 6000 GCOS, and IBM 370 OS. The library imple-
ments in C, functionality that was at the time coded in assem-
bly language, such as the formatted printingS57,S58 and
dynamic memory allocation.S59,S60 In the Sixth Edition release
it seems that both the portable library and the original routines
coexisted, and that Unix tools relied on the assembly language
routines. Some routines—e.g., printf(III)—were offered as
plug-compatible alternatives, while other functionality (e.g.,
memory allocation) was provided using different interfaces.
Over time the portable C library influenced the design and
implementation of the Unix C library. The modern standard
C library defines both routines stemming from the original
assembly language implementation and those, such as system
(3), that were introduced by the portable library version.

4.8 Seventh Research Edition

The Seventh Edition (January 1979), includes many new
influential commands, and is the version that was widely
ported to other processor architectures.

Unix as a Virtual Machine Early problems in porting pro-
grams written in C between diverse operating systems [54,
p. 2025] convinced Dennis Ritchie that it would be easier to
port the operating system between diverse hosts than to
port the application programs between operating sys-
tems [81]. An Interdata 8/32 computer was purchased and
used to prove this point. The project involved

� the implementation of a C compiler whose code gen-
eration part could be adapted for various CPU
architectures [94];

� the extension of the C programming language to aid
the portability of code written in it;

1142 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

� the abstraction through libraries and header file defi-
nitions of elements that varied between different
machines; and

� the identification, revision, and isolation of the
kernel’s machine dependent parts from the bulk
(95 percent) of the code that could remain the same
across all systems [54].

Dynamic Memory Allocation A main memory allocator,
malloc(3) is offered as part of the C library. It allows pro-
grams to dynamically allocate memory space for storing
data, rather than reserve fixed amounts of space. The void
filled by it, is evident by its rapid and widespread adoption.
It is directly used by 26 user-mode programs (out of about
160) and also in the implementation of other library func-
tions, namely by the standard I/O and by the multiple pre-
cision arithmetic libraries.

Static Analysis A dedicated program, lint(1) [25], is
offered to check C code for issues that are not caught by the
C compiler. It performs strict type checking, detects poten-
tial portability problems, and identifies error-prone or
wasteful constructs. Static program fault analysis was, and
still is, a resource-demanding and imprecise task. Imple-
menting it as a separate program frees the compiler from its
demands and also provides an isolated experimentation
venue that cannot easily disrupt the day-to-day develop-
ment of production code.

Environment Variables The kernel,S61 the shell,S62 and the
C libraryS63 act in concert to support environment variables—
environ(5). These allow an array of arbitrary strings (by con-
vention key-value pairs) to be passed down the process
invocation tree, thus establishing a simple, low-overhead,
open-ended, one-directional, parameter-passing connector.
Environment variables appear in the shell as ordinary varia-
bles, and can be accessed in C code with a single function
call—getenv(3). By being part of a process’s operating-system
context data, they are inherited down to arbitrary levels of
process invocation, without requiring any coordination with
intermediate layers.

An important environment variable is PATH, which speci-
fies a list of directory pathswhere the shell looks for executable
programs. Changing these paths allows end-users to extend or
substitute the programs supplied by the operating system.
End-user operating-system configuration was later extended
to other areas, including the location of manual pages (MAN-
PATH) and dynamically linked libraries (ID_RUN_PATH) as
well as the filesystem hirearchy—chroot(2). This line of evolu-
tion culminated into the modern operating-system-level virtu-
alization systems, such as Linux kernel name spaces and
control groups, FreeBSD Jails, and Solaris Zones.

Language Development Tools The lexical analyzer genera-
tor, lex(1) [29], introduced in the Seventh Edition comple-
ments the parser generator, yacc(1) [28], already present in
the Sixth Edition. Together these two offer the basis for
constructing programming language front ends [95]. This
significantly simplifies the implementation of a program-
ming language parser to a task achievable by a competent
programmer rather than an expert on automata theory.
The utility of this approach is exemplified by the existence
of twelve tools whose grammar is written in yacc: awk(1), bc
(1), cpp(1), egrep(1), eqn(1), lex(1), m4(1), make(1), pcc(1),S64

neqn(1), and struct(1). Through the availability of compiler

tools, the implementation of many complex facilities is
abstracted into the development of a domain-specific lan-
guage which acts as a platform for solving the correspond-
ing problem.

Domain-Specific Languages Aided by the availability of
compiler tools, several tools based on little or domain-specific
languages [96], [97], [98] support a variety of generic process-
ing tasks in a way that allows end-users to write specialized
code in order to achieve their particular goals. Tools intro-
duced in the Seventh Edition include the Bourne shell [84],
[99]—sh(1), awk(1) for processing field-oriented records [100],
sed(1) for manipulating plain-text files [101], find(1) for
filesystem hierarchy traversals, expr(1) and bc(1) for evaluat-
ing expressions, egrep(1) for finding lines that match an
extended regular expression, m4(1) for performing macro
processing [102], and make(1) for maintaining program
dependencies [103]. Some of the languages, such as those
employed by find, expr, and egrep are fairly basic, and code
written in them rarely spans more than a single line. The rest
are more sophisticated, and some have been occasionally
(mis-)used to build large applications.

Filesystem Directory Hierarchy The documented layout—
hier(7)—for the filesystem hierarchy specifies the role and
contents of 51L31 directories. The structure has remained
mostly stable over the years. It has even been adopted and
standardized by the Linux community, in the form of the File-
system Hierarchy Standard. The documented structure offers
another example of establishing flexible conventions over
implementing rigid enforcement mechanisms. It also demon-
strates the formalization of a structure that evolved organi-
cally over the years. Although the directory hierarchy
changed a lot before the Seventh Edition, as the Unix team
experimented with various layouts, it stabilized after it was
documented and evolved only gradually. An example of an
early change is that the /usr directory was initially used for
user programs, but was later repurposed to denote a general
purpose directory, typically residing on a large mounted file-
system. Significant developments after the Seventh Edition
include the addition of the /home directory for user files and
the /var directory for system files that change while the
system is running. Importantly, the documented hierarchy
contains all parts of a self-hosted system: source code, devel-
opment tools, libraries, and documentation.

4.9 First and Second Berkeley Software
Distributions

The first Berkeley Software Distribution (BSD), released in
early 1978, contained the Berkeley Pascal System [104],
the ex line editor [105], and a number of tools. The Second
Berkeley Software Distribution (2BSD), included the full-
screen editor vi [106], the associated terminal capability
database and management library termcap, and many more
tools, such as the csh shell [107].

Software Packages The two Berkeley distributions intro-
duced to the user community third-party software packages
targeting Unix. Over the years packages proliferated and
got distributed, initially through USENET [108, pp. 958–959]
newsgroups and later over the internet in the form of ports to
a specific operating system distribution. The established file-
system directory hierarchy, provided a template for laying
out the source code, the documentation, and the manual

SPINELLIS AND AVGERIOU: EVOLUTION OF THE UNIX SYSTEM ARCHITECTURE: AN EXPLORATORY CASE STUDY 1143

pages. In addition, the use ofmake(1) provided a commonway
for expressing compilation and deployment rules. In total

2BSD camewith 32L32makefiles.

4.10 3BSD

The 3BSD release, which came out in late 1979, extended
Unix 32V, a direct port of the Seventh Edition Unix to the
DEC/VAX architecture, with support for virtual memory
and the 2BSD additions.

Virtual Memory Paging The virtual memory (VM) [42]
subsystem is a major component introduced in the 3BSD
kernel, comprising 17 percent of the main kernel code (2808
out of 16039 C source code lines).S65 It is delineated from
the rest of the kernel code, by having its eleven source code
files begin with a unique prefix (vm), a method followed by
other elements in future releases.

The VM system primarily supports allocating memory to
processes when no free main memory is available by swap-
ping out suitable VM pages to disk (paging). In addition,
new forms of the read(2), write(2), and fork(2) system calls
are provided, which utilize VM for performing the I/O—
vread(2) and vwrite(2)—and for reusing a process’s memory
space—vfork(2). This violation of abstraction proved to be a
short-lived experiment. Subsequent releases abstracted the
use of VM by the common I/O routines—read(2) and write
(2)—removing the need to call separate routines in order to
benefit from VM capabilities. Furthermore, the use of vfork
(2) is discouraged in modern FreeBSD versions.

4.11 4BSD

The 4BSD release (October 1980) was developed by the newly
established Computer Systems Research Groupworking on a
contract for the Defense Advanced Research Projects Agency
(DARPA). The contract aimed at standardizing, at the operat-
ing system level through the adoption of Unix, the comput-
ing environment used by DARPA’s research centers
[77, p. 159–160]. The release included a 1k block filesystem,
support for the VAX-11/750, enhanced email, job control,
and new signal semantics that addressed existing race condi-
tions—the so-called reliable signals [109, pp. 270–283].

Regular Expression Library Regular expressions feature
prominently in numerous Unix tools, such as ed(1), grep(1),
egrep(1), awk(1), sed(1), and expr(1). Consequently, supporting
the corresponding functionality as part of the C library—
regex(3)—is an obvious design decision. The provision of the
regular expression library in 4BSD is an important enhance-
ment, foreshadowing the widespread support for regular
expressions inmostmodern programming languages.

However, the regular expression library’s development
took time and its adoption was lackluster. Initially, each tool
had its own regular expression engine.S66,S67,S68,S69,S70 The rea-
son for thismay have been incompatibilities between the regu-
lar expressions processed by diverse tools, primitive support
for libraries, or tool owners too fond of their own regular
expression implementation to demanda common library [110].
Even when the library was provided, few programs adopted
it. In 4BSD only a single program, more(1), made use of the
library.S71 By 4.3BSD (1986) just two more (new) programs
were using it: dbx(1) and rdist(1). The reason for this
slow-paced adoption may be that BSD Unix developers did

not feel owners of the tools and code developed at Bell Labs.
By the release of FreeBSD 11.0 (2016) the situation had
changed, and four of the tools referred in the preceding para-
graph—ed(1), grep(1), sed(1), and expr(1)—were rewritten as
open source software, and used the contemporary version of
the regular expression library.

Optimized Screen Handling The curses(3) library addresses
the problem of placing characters on arbitrary positions
of diverse incompatible terminal displays over a low-
bandwidth connection. Cursor-addressable displays used to
require different, incompatible, escape sequences for per-
forming tasks such as clearing the screen, using a highlighted
font, or placing the cursor in a specific screen position. More-
over, refreshing an entire screen sized 80� 24 characters over
a 300–1200 baud serial terminal connection can take a long
time. Consequently, for the sake of efficiency, usable screen
content must be preserved and only content differences
should be sent down the line. To solve these problems the
curses library abstracts the character escape sequences
required to manipulate cursor-addressable terminals into a
set of C library routines and a database—termcap(5)—that
stores the sequences associated with each terminal type. The
library also optimizes the display’s updates by mirroring its
content in internal data structures and using those data to
minimize the transmitted data.

Modern command-line interfaces work on terminal emu-
lators running on bitmap displays with high-bandwidth con-
nections, and almost all emulators are standardized to follow
the XWindow System xterm escape sequences. Thus, none of
the original requirements associated with the curses library
hold today. However, the library is still used to maintain the
functionality of programs designed for completely different
hardware.

4.12 4.2BSD

The 4.2BSD release (September 1983) was based on a design
described in an architecture manual written by Bill Joy
and his colleagues [111]. It included many important
features delivered in 4.1BSD and three more informal
interim releases [78]: 4.1BSD (performance improvements);
4.1aBSD (TCP/IP networking and networking tools);
4.1bBSD (Berkeley Fast Filesystem [43] and symbolic links);
and 4.1cBSD (new signal code). Compared to the pre-
releases, the final release improved networking support and
added new signal facilities and disk quotas.

Internet Protocol Family Support for the internet protocol
family was arguably one of the most influential Unix design
decisions that appeared in the second decade of the system’s
life. With 6,586L33 lines of code implementing five protocols
(ARP, IP, TCP, UDP, AND ICMP) the effort appears very
modest by today’s standards. This protocol stack was widely
used as a reference implementation in routers and other oper-
ating systems. From an architectural perspective, the decision
to implement this functionality in the kernel rather than as a
user space program (as was e.g., the case for the KA9Q imple-
mentation [112]) may have contributed to the performance,
standardization, and widespread adoption of these protocols
and the corresponding implementation.

Local and Remote Interprocess Communication Both local
and remote bidirectional interprocess communication (IPS)
between arbitrary processes is established through the, now

1144 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

ubiquitous, socket(2) API for setting up and accepting net-
work connections. In earlier versions IPS was mainly imple-
mented through the pipe(2) system call realization of the
corresponding pattern. This establishes only a one-direc-
tional communication path between processes of a common
ancestor.

In contrast to the parsimony of earlier Unix system call
additions the new API is based on a plethora of new system
calls (Table 3L34). There are arguments to be made for and
against shoehorning new facilities on existing system calls,
as could be done in this case by reusing the open(2), read(2),
write(2), and close(2) API. Reusing or improving an existing
API reduces the system’s API surface and the associated
learning curve, but can also negatively affect the compatibil-
ity of existing code, runtime performance, and the API’s
ease of use. Certainly however, the exhibited profligacy
marks a departure of architectural style from the parsimony
of earlier Unix editions.

The sockets API is used in the 4.2BSD release by two
library functions—rcmd(3X) and rexec(3X); eleven system
daemons—comsat(8C), ftpd(8C), gettable(8C), implogd(8C),
rexecd(8C), rlogind(8C), af(8C), rshd(8C), rwhod(8C), telnetd
(8C), and tftpd(8C); and eight user-mode programs—ftp(1C),
rlogin(1C), rsh(1C), talk(1C), telnet(1C), tftp(1C), whois(1C),
and sendmail(1C). Based on the, sometimes small, number of
the provided system calls uses in client code (Table 3) one
could claim that the provided API was over-engineered.

Also, in retrospect, the abstraction from the TCP protocol
to stream sockets and from the UDP protocol to datagram
sockets was another instance of over-engineering, because
for decades mainstream systems maintained a one-to-one
relationship between the two protocols and the correspond-
ing abstractions. However, the proliferation and evolution
of networking protocols at that time forced the networking
stack’s designers to adopt the abstraction as a precaution
for other evolutionary avenues. This is expressed in a Caveat
section in the inet(4F) manual page.

“The Internet protocol support is subject to change as the
Internet protocols develop. Users should not depend on
details of the current implementation, but rather the
services exported.”

Directory Processing Abstraction Three new system calls—
mkdir(2), rename(2), rmdir(2)—and the directory(3) access
library comprising the opendir(3), readdir(3), telldir(3), seekdir
(3), and closedir(3) functions—individually documented in
4.3BSD—abstract the processing of directory entries. Before
the introduction of this feature, directory operations were
performed by directly accessing and manipulating the
contents of the corresponding disk structures. This
abstraction promotes innovation in filesystem design, such
as the long file names introducted with the Berkeley Fast
Filesystem [43].

Network and User Database Access A series of library func-
tions provide an interface for accessing entries stored in the
filesystem table—getfsent(3X), the user group file—getgrent(3),
the hosts database—gethostent(3N), the networks database—
getnetent(3N), the protocols database—getprotoent(3N), the
user details file—getpwent(3), and the network services data-
base—getservent(3N). Abstracting this functionality into reus-
able libraries reduces code duplication, errors,
incompatibilities, and also makes programs using this func-
tionality easy to adapt in the future. For example, in modern
FreeBSD the same routines can be configured—via the
nsswitch.conf(5) file—to provide data: from local files (as was
the case in the original implementations), from a local key/
value database, from the Internet Domain Name System,
fromNIS/YP servers, or from a caching daemon.

Pseudo-Terminal Driver The pseudo-terminal driver—pty
(4)—allows the creation of software-controlled terminal-like
devices. These appear as a pair of master-slave devices.
A process, such as a shell or an editor, attached to the slave
end has the illusion of working on a physical terminal.
However its I/O does not come from an actual terminal, but
from another process controlling the master end. Through this
connector mechanism arbitrary user processes can create vir-
tual terminals that can be used by other processes without any
prior arrangement or adjustment. The facility is used in
4.2BSD by the remote login daemon—rlogind(8), the (similar)
telnet daemon—telnetd(8), and the terminal session typescript
program—script(1).

4.13 4.3BSD Tahoe

The 4.3BSD Tahoe release (June 1988) supported the CCI
Power 6/32 minicomputer (code-name Tahoe) and improved
TCP algorithms.

Multiple CPU Architecture Support The kernel is split
into machine-dependent and machine-independent parts. The

machine-dependent parts support the original VAXS72 archi-
tecture and the new TahoeS73 architecture. The split places
code for interfaces,S74 system configuration,S75 and bootingS76

into separate directories. In total from the 218,783L35 lines of the
system’s kernel source code, 104,279L36 lines reside in the vax
directories and 42,112L37 reside in the tahoe directories. Thus,
a significant part of the kernel code (72,392L38 lines) appears to
be portable between different processor architectures.

Third-Party Software Contributions The system contains
59L39 files comprising 25,739L40 lines that are marked as
“software contributed to Berkeley”. These come
from individuals (Arthur Olson, Chris Torek, and Rick
Adams), as well as corporations (Computer Consoles Inc,
Excelan Inc, Harris Corp, Sun Microsystems, Inc, and
Symmetric Computer Systems). Although the size of the

TABLE 3
Uses of the Socket API in 4.2BSD

System call Uses

bind 23
connect 15
accept 13
select 12
listen 11
sendto 10
shutdown 9
recvfrom 8
getsockname 6
recv 2
send 2
sendmsg 1
getsockopt 0
recvmsg 0
socketpair 0

SPINELLIS AND AVGERIOU: EVOLUTION OF THE UNIX SYSTEM ARCHITECTURE: AN EXPLORATORY CASE STUDY 1145

contributions is modest, the phenomenon is important,
because it marks the beginning of growing the system
through what evolved to become an open source software
community. By the next release (4.3BSD Reno) the third
party software contributions had swelled to 896L41 files,
218,455L42 lines, from about 70L43 entities.

Timezone Handling The release incorporates a public
domain timezone handling package developed outside
Berkeley [64, p. 9].S77 The package stores the timezone
change rules into a database, allowing it to be updated inde-
pendently from the code that interprets those rules. This
allows end-users to individually configure their local time-
zone, and administrators to easily update the database
as new rules come into effect. This is the approach now
followed by the majority of Unix systems.

4.14 4.3BSD Reno

The 4.3BSD Reno release (June 1990) supported virtual file-
system implementations through the vnode interface, Hew-
lett-Packard 9000/300 workstations, and OSI networking. It
also incorporated a new virtual memory system adapted
from Carnegie-Mellon’s MACH microkernel operating sys-
tem, a Network File System (NFS) implementation done at
the University of Guelph,S78 and an automounter daemon.
Considerable code was released by Berkeley with a license
allowing its easy redistribution and reuse.

Kernel Packet Forwarding Database The kernel provides a
special network socket domain, PF_ROUTE, that user-level
programs can use to query and manipulate its network
packet routing database—route(4). The kernel uses this data-
base to act as a router by forwarding packets between net-
work interfaces, while user-level programs, such as routed(8)
andXNSrouted(8), implement routing protocols by communi-
cating with other hosts over the network. Following elegantly
the separation of concerns principle, this minimizes the
amount of complex code that must be maintained within
the kernel, while avoiding the context switching overhead
of a user-mode routing program.

Virtual Filesystem Interface Disk operations that were per-
formed on inodes are virtualized through an object-oriented
interface of vnode operations (vnodeops).S79 A structure of
function pointers provides access to storage, with functions
such as open, read, and write, as well as to file naming
with functions such as mkdir, rename, and readdir.
The two groups were split in 4.4BSD in order to simplify
the implementation of different storage methods, such as
a log-structured filesystem [64, p. 244]. This interface is
used to implement three filesystems: UFS, the original
Unix filesystem; MFS, a filesystem storing files in virtual
memory; and NFS, a filesystem operating over network
connections.

Database Access Methods The db(3) library and API allow
programs to store and retrieve key-value pairs in a file or
memory–resident lightweight database [113]. Elements can
be stored using btree, hashed, or flat-file data structures. An
object-oriented interface, implemented through function
pointers, provides get, put, delete, and sequential access
methods. In contrast to the lethargic adoption of the regular
expression library added in 4BSD, the provided functional-
ity is reused by tens of programs, with the corresponding
db.h header file included 105L44 times in FreeBSD 11.1.

4.15 4.3BSD Net/2

The 4.3BSD networking release 2 (June 1991) came with a
(what is now called) open source reimplementation of almost
all important utilities and libraries that used to require an
AT&T license. It also included a kernel that had been cleaned
from AT&T source code, requiring just six additional files to
make a fully-functioning system. This was the version used
by Bill Jolitz to create a compiled bootable Unix system for
Intel 386–based PCs.

Stream I/O Functions The funopen(3) family of functions
allow C programs to access arbitrary data through the
widely-used stdio(3) interface. The object-oriented con-
structor-like functions take as arguments read, write, seek, and
close function pointers and return an opaque FILE pointer
that supports all the usual operations, such as getchar(3) and
printf(3). This elegant interface can be used for providing
stream-like access to compressed—zopen(3), application-
protocol—fetch(3), or encrypted data. However, the specific
interface, the few library functions that build on it, and its
GNU library equivalent—funopencookie(3), which was added
in FreeBSD 11, have not seen significant adoption.

4.16 4.4BSD

The 4.4BSD release (June 1994) came out following two
years of litigation and settlement talks regarding the alleged
use of proprietary AT&Tmaterial. As a result of the negotia-
tion this release removed three files that were included in
the Net/2 release, added Unix System Laboratories (USL)
copyrights to about 70 files, and made minor changes to a
few others. The release included additional work done on
the system, such as support for the portal filesystem.

Stackable Filesystems The creation of a vnode stack allows a
new filesystem type to use an existing one’s operations. The
simplest use of this concept is the null filesystem—mount_-
null(8), which allows an existing filesystem’s sub-tree to
appear in an arbitrary place of the global filesystem name
space. This concept was extended in 4.4BSD/Lite1 with the
union filesystem—mount_union(8), which allows the translu-
cent addition of one (e.g., writable) filesystem on top of
another (e.g., a CD-ROM).

Generic System Control Interface The generic system con-
trol interface—sysctl(3,8)—provides a library function—
sysctl(3)—and an administrator utility—sysctl(8)—for exam-
ining or setting the kernel’s state, later documented through
its internal interface—sysctl(9). This interface replaces
the original method that involved directly accessing the
kernel’s memory space through a special file—/dev/kmem.
The sysctl facility offers significant portability, efficiency,
security, and maintainability benefits compared to the
/dev/kmem access method it replaces [64, pp. 612–614].

However, offering a standalone hierarchical view of the
kernel space through the commonly-adopted “management
information base” (MIB) abstraction, it sits at odds and com-
petes with alternative architectural concepts, namely the pro-
vision of interfaces through the Unix hierarchical filesystem,
and kernel interfacing through system calls, as could be done
through the kernfs, procfs, and fdesc filesystems [63, p. 238].
KirkMcKusick, a principal BSD designer and developer, in an
email to this paper’s authors explained this choice stating that
BSD users resoundingly found the sysctl facility a far more
convenient way for remote systemmanagement compared to

1146 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

the hierarchical filesystem access method. He added that the
sysctl interface is also considerablymore efficient.

4.17 386BSD Patch Kit

386BSD was a derivative of the BSD Networking 2 Release
targeting the Intel 386 architecture developed by Lynne and
William Jolitz [45]. The 386BSD patch kit contains 171 com-
mits associated with patches made to 386BSD 0.1 by a group
of volunteers from mid-1992 to mid-1993.

Organized Community Contributions The patch kit function-
ality adds to the Unix architecture a mechanism for accepting
and distributing contributions coming from a decentralized
team of individuals. Unix was first distributed with an
open source license through the 4.3BSD networking release 1
(Net/1) in November 1988. This was a subset of the code that
did not include material requiring an AT&T license. It was
released to help vendors create standalone networking prod-
ucts without incurring the AT&T binary license costs, but did
not include all the material required to run the system. This
was later addressed by the 386BSD version. However, none
of the two releases offered a way to manage third-party con-
tributions. This essential characteristic of an open source proj-
ect (as opposed to open source software) was formed more
than four years after the release of 4.3BSD Net/1. Patch kit
elements contain their changes in Unix “context diff” format,
and can therefore be applied automatically to the 386BSD dis-
tribution. Each patch is accompanied by a metadata file list-
ing its title, author, description, and prerequisites.

4.18 Overview of FreeBSD Releases

The FreeBSD Project started in early 1993 with the release of
FreeBSD 1.0 to address difficulties in maintaining 386/BSD
through patches and working with its author to secure the
future of 386/BSD [114]. The focus of the project was to sup-
port the PC architecture, appealing to a large, not necessar-
ily highly technically sophisticated audience [64, p. 11]. For
legal reasons associated with the settlement of the USL case,
while FreeBSD versions up to 1.1.5.1 were derived from the
BSD Networking 2 Release, later ones were derived from
the 4.4BSD-Lite Release 2 with 386/BSD additions.

4.19 FreeBSD 1.1

Package Manager The software ports facilityS80 provides a
mechanism to compile and install third-party packages
and their dependencies. It was first documented—ports
(7)—in FreeBSD 2.2.6 and is available and growing on
modern FreeBSD systems. It handles the modifications
(patches) required for making a software package work
under FreeBSD, the installation of required dependen-
cies, and the installation and de-installation of the corre-
sponding package. The loose coupling of packages to the
operating system and the automatic handling of depen-
dencies, allow the FreeBSD system to grow in functional-
ity in diverse directions without excessively burdening
its core.

4.20 FreeBSD 2.0

Process Filesystem The /proc filesystem—procfs(5)—provides
a two-level view of running processes in the form of files
appearing in the filesystem hierarchy [115]. It was originally

introduced in a different form in 4.4BSD/Lite1.S81 At its top is
a list of directories corresponding to running processes. Each
process directory contains files allowing the monitoring and
control of the process’s status and state, such as its CPU regis-
ters,memory, and resource use. The architectural significance
of the process directory is that it supplies an alternative inter-
face to functionality typically provided through system calls
such as ptrace(2), and (for application within a process con-
text) getrlimit(2) and getrusage(2).

Dynamically Loadable Kernel Modules The loadable kernel
module facility—lkm(4)—allows the dynamic loading and
unloading of kernel code at runtime. It has been replaced in
FreeBSD 3.0.0 with the similar dynamic kernel linker facility—
kldload(8), kldstat(8), kldunload(8)—to support the dynamic
linking of kernel code at boot time [116, pp. 636–637]. Load-
able kernel modules allow the provision of significant func-
tionality to the kernel, such as device drivers, filesystems,
emulators, and system calls. This reduces the kernel’s
default memory footprint and attack surface. The recent
(11.1) version of FreeBSD provides 992L45 loadable kernel
modules.

4.21 FreeBSD 2.1

Linux Emulation Although the Linux kernel was developed
independently from the Unix systems examined here, it fol-
lows theUnix system call API down to its numbering scheme.
Nevertheless, some of its system calls are not directly sup-
ported by FreeBSD, while others have subtle differences in
their interface specification. In addition, its executable file for-
mat differs from the FreeBSD one. A set of kernel filesS82

allows FreeBSD to load and run executable programs com-
piled for the GNU/Linux operating system. This is accom-
plished by suitably marking the corresponding process in
order to emulate the behavior of Linux-specific system calls.

Packet Capture Library The efficient capturing and monitor-
ing of network packets is an important diagnostic facility. The
packet capture library pcapS83—documented in FreeBSD 8.0 as
pcap(3)—togetherwith the tcpdump(1) programallow the spec-
ification of packets to be captured, the compilation of the cor-
responding filter into a virtual machine program that can be
dynamically injected for execution into the operating system
kernel, and the retrieval and analysis of the captured packets.
Developed by an independent group, the library abstracts
diverse packet capturemechanisms into a portable interface.

4.22 FreeBSD 3.0

Common Access Method I/O Subsystem The common access
method (CAM) I/O subsystem abstracts operations to storage
devices based on a (draft) ANSI standard. It started by sup-
porting SCSI and CD-ROM disks, but by the release of
FreeBSD 9.0 it evolved to also cover the commonly used ATA
and SATA disk drives [65, Section 8.1]. Its three layers com-
prise (from kernel to the device) the device-specific (e.g.,
SATA drive) peripheral access, the scheduling and dispatch
of I/O commands, and the routing of commands to devices
through the host bus adapter.

4.23 FreeBSD 3.4

Graph-based Kernel Networking and User Library The netgraph(4)
subsystem allows the implementation of sophisticated net-
working protocols by following a data-flow model. Diverse

SPINELLIS AND AVGERIOU: EVOLUTION OF THE UNIX SYSTEM ARCHITECTURE: AN EXPLORATORY CASE STUDY 1147

network packet processing nodes are connected through hook
functions into a graph data structure by means of an object-
oriented interface. Netgraph nodes can implement protocols,
such as the point-to-point protocol—PPP, ng_ppp(8)—or pro-
vide utility functions, such as the Berkeley packet filter—BPF,
ng_bpf(8). The FreeBSD 11.1 netgraph subsystemS84 contains

177L46 files offering netgraph functionality through 90,471L47

lines of code.

4.24 FreeBSD 4.0

OpenSSL Framework The OpenSSL—secure sockets layer
(SSL) and transport layer security (TLS) frameworkS85—
provides two C libraries and a user command, openssl, that
allow programs and users to work with these protocols. In
addition, the framework’s elements expose a variety of sym-
metric and public key encryption algorithms, message
digest functions, and certificate handling operations. The
framework’s size is considerable, comprising 1,127L48 files
and 227,118L49 lines of code. From an architecture perspec-
tive the framework’s incorporation is notable due to its size,
its development method (it was implemented by a separate
team), and the fact that it brings on board its own command
interface method, namely the provision of 22L50 sub-com-
mands accessible from the openssl(1) command.

Jails The jail (2,8) system call and command allow the sys-
tem’s administrator to isolate a set of processes in a confined
environment, restricting the operations the processes can per-
form [117]. This extends the chroot(2) system call, which
can offer a process a restricted view of the filesystem name
space, to cover the virtualization of networking, interprocess
communication, and filesystem mounting. Jails thus allow
administrators to run processes with complex or brittle
requirements in separate virtualized container environments,
such as those provided by Docker [118]. Jails also allow
cloud-service providers to host many clients with full admin-
istrative access to their (virtual) host on the same server.
Such clients cannot run their own operating system, as they
might be able to do under a full-blown hypervisor, but the
service is very efficient in terms of resource utilization. In
terms of architecture, jails provide an additional lightweight
level of virtualization on top of the operating system.

Access Control Lists A library—acl(3)—provides an inter-
face for extending the traditional Unix user/group/all read/
write/execute discretionary access control model with access
control lists (ACLS). Later releases add support for ACLs in
the UFS filesystemS86 and for the finer-grained permissions of

NFSv4.S87 In the current FreeBSD 11.1 version ACLS allow
the specification of more than a dozen permissions for an
arbitrary number of principals (users or groups).

4.25 FreeBSD 5.0

Symmetric Multiprocessing The kernel’s code can run on mul-
tiple processors or CPU cores by synchronizing access to
shared resources through a hierarchically ordered set of
locking primitives [64, p. 93]. A large part of this extensive

change involves the addition of 3,764L51 mutex-based

thread synchronization calls, which exist in 7.3L52 percent of
the kernel’s 4,873L53 source code files.

Modular Disk I/O Request Transformation Framework The
GEOM modular disk I/O request transformation frame-
work—geom(3, 4, 8)—allows storage subsystem requests to be

transformed in order to support disk partitioning, aggregation,
encryption, journaling, and I/O statistics collection. It is
designed around a scheme where each functionality (e.g.,
striping) is implemented in a separate class. Object instances
with provider and consumer interfaces are connected in a
directed acyclic graph,which forms the transformation layers.

Mandatory Access Control The mandatory access control
framework—mac(4)—supports fine-grained control of a sys-
tem’s security policies through diverse pluggable policy
modules. Examples of supported policies include multilevel
security [119], low-watermark, Biba [120], and process par-
tition. The kernel associates policy-agnostic labels with file-
system objects, network interfaces, terminals, and users.
This then allows the relevant kernel subsystems (filesystem,
network, IPS, process management, VM) to obtain access
control permissions from the framework, and inform it
regarding objects’ life cycle events [65, Section 5.10].

Pluggable Authentication Module The pluggable authenti-
cation module (PAM) architecture provides a way to imple-
ment and abstract diverse low-level user authentication
methods, while presenting client programs with a single
high-level API—pam(3). In addition to authentication, the
library supports account, session, and password manage-
ment. Retrofitting the Unix authentication system with
PAM simplifies the introduction of sophisticated authenti-
cation methods, such those using one-time passwords and
directory access, through the installation of corresponding
modules.

4.26 FreeBSD 5.3

Streaming Archive Access Library More than a dozen ways to
package multiple files into a single one have become wide-
spread over the past half century. Typically each format is
associated with corresponding packaging and compression
programs, such as ar(1), tar(1), cpio(1), gzip(1), compress(1), or
bzip2(1). The archive(3) access library consolidates these
disparate formats. It allows programs using it to read and
write most common archive formats, interfacing between
an archive’s files and those resident on a filesystem.

Miniport Driver Wrapper A kernel facility and an applica-
tion program allow the use of network interface hardware
device drivers conforming to the Microsoft Windows Net-
work Driver Interface Specification (NDIS)miniport API to be
used under FreeBSD. Thus, binary (compiled code) compo-
nents developed for a radically different operating system
can become FreeBSD device drivers. This mechanism add-
resses the difficulty of building or obtaining FreeBSD-specific
device drivers for network interfaces.

4.27 FreeBSD 6.2

Basic Security Module Auditing The Basic Security Module
Auditing (BSM) facility comprises kernel changes, system
calls—audit(2), a library libbsm(3), configuration files—e.g.,
audit_control(5), a binary file format—audit.log(5), and support
programs—praudit(1), auditreduce(1), audit(8), auditd(8)—to
generate and process streams of records that are required for
security auditing. The audited events include both kernel-
level events, such as filesystem or network accesses, and
application-level events, such as a user’s authentication [65,
Section 5.11].

1148 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

4.28 FreeBSD 7.0

Zettabyte Filesystem The Zettabyte filesystem (ZFS) is an evo-
lution of the 4.4BSD log-structured filesystem derived from
Sun’s OpenSolaris code base. It is based on the concept of
checkpoints, which allow the filesystem to move from one
consistent state to another [48]. Furthermore, by utilizing the
availability of abundant memory and processing power
resources inmodern servers, it ensures data integrity through
end-to-end checksums, it offers various levels of software
RAID, and it provides massive (zettabyte-sized) scalability
through (potentially hybrid) device pooling [65, Chapter 10].
The filesystem’s code is organized around a layered architec-
ture of considerable size, starting at 80,107L54 lines in
FreeBSD 7.0 and growing to 205,899L55 lines in FreeBSD 11.1.

4.29 FreeBSD 7.1

Dynamic Tracing TheDTrace facility, brought over from Sun’s
Solaris, builds on the reflection architectural pattern [71, p.
193] to allow the monitoring of the system’s operation
through thousands of probes. The probes can be configured
and monitored through programs written in the D domain-
specific language [49]. The dtrace(1) command executes these
programs to enable the specified probes and report the col-
lected details. DTrace has two important advantages over
alternative approaches, such as system call tracing, kernel
counter statistics, or profiling. First, it can monitor the whole
application stack, including function boundaries, network-
ing, scheduling, filesystems, system calls, and application
code. Second, by installing only the required probes through
dynamic code patching its performance impact on produc-
tion systems is negligiblewhen no data are collected.

4.30 FreeBSD 9.0

Para-virtualized I/OA set of devices conforming to the VirtIO
specification—virtio(4)—allow efficient I/O in cases where
FreeBSD runs on top of a hypervisor. The provided net-
work, storage, and memory interfaces can eliminate the cost
of emulating legacy hardware and of memory copying
between the hypervisor and the guest operating system.

InfiniBand Support InfiniBand is a computer network com-
munications standard offering high-speed (10–300 Gb/s) and
low-latency (140–2600 ns). These design decisions make it
attractive in high-performance computing applications as
well as in other areas requiring fast interconnects between
computers or between computers and storage systems. The
technology is complex and demanding. Therefore, a group
named the OpenFabrics Alliance is developing a cross-plat-
form InfiniBand stack for diverse operating systems and dis-
tributing it as open source software. FreeBSD’s InfiniBand
support incorporates this large (325,818L56 lines) code base.S88

Application Compartmentalization The capsicum(4) operating
system capability and sandbox framework allows applica-
tions and libraries to be compartmentalized into isolated
components in order to reduce the impact of security vulner-
abilities. It works by allowing applications to enter a reduced
capability mode, and by offering a system call API to restrict
an application’s access to global name spaces, such as the file-
system. For example, a potentially vulnerable application’s
processing part can be given only the right to write to a file
previously opened by another part of the application that has
retained ambient authority.

4.31 FreeBSD 10.0

Virtual Machine Monitor The bhyve(4,8) virtual machine moni-
tor allows a FreeBSD system to host instances of other unmodi-
fied operating systems running on top of it. Supported
operating systems include FreeBSD, NetBSD, OpenBSD,
GNU/Linux, Windows, and SmartOS. At 30,391L57 lines of
code (rising to 62,906L58 lines in FreeBSD 11.1) it is a modest
implementation effort, relying heavily on the virtualization
support offered bymodern CPUS and supporting hardware.

Fast User Space Raw Packet Processing The netmap(4) frame-
work [121] provides anAPI throughwhich user space applica-
tions can access and inject packets associated with network
interfaces, the system’s network stack, or the vale(4) virtual
switch. Through direct synchronized access to the kernel’s cor-
responding ring buffers, applications avoid the overhead of
data copying and can thus process millions of packets per sec-
ond. This allows FreeBSD systems to implement network devi-
ces such as routers, switches, and firewalls [65, Section 13.8].

4.32 FreeBSD 11.0

Network Blacklisting The blacklistd(8) daemon listens from
other networking daemons for notifications regarding suc-
cessful or failed connection attempts. The blacklistd.conf(5)
configuration file specifies the conditions under which the
blacklist daemonwill setup the system’s packet filter to block
connections associated with ports on which abusive behavior
has been detected. The libblacklist(3) library implements the
protocol for communicating between the daemons.

5 QUANTITATIVE RESULTS

From 1970 until today the system’s source code grew by three
orders of magnitude, from 13 thousand to more than ten mil-
lion lines of code. Is this growth rate reflected in terms of the
number of features? What types of features are responsible
for the main growth and what does their growth rate look
like? What are the outliers and how can they be potentially
explained? Is the size growth accompanied by a growth in
code complexity? In order to answer these questions, as afore-
mentioned in Section 3.3, we used the system’s reference doc-
umentation aswell as source code analysis.

5.1 Feature Growth

We analyzed the system’s reference documentation rather
than other categories of features (e.g., the system partitions as
shown in Fig. 5 or 6), because its structure has remained
essentially unchanged. Specifically, throughout its lifetime,
the Unix reference documentation is divided into nine sec-
tions. In this study we ignore two: Section 6, which has
evolved to document a few games, and Section 7, which
documents miscellaneous elements ranging from the ASCII
character set, to email addresses, to formatting macros, to the
system’s directory hierarchy. The remaining seven sections
are listed in the first two columns of Table 4. The evolution in
the number of their features is illustrated in Fig. 3.

As we can see in the corresponding figure, over the past
half century the Unix system grew in similar proportion in
the number of all feature types. Some outliers can be
explained by constraints or choices associated with particular
releases. For example, the decrease in the number of com-
mands in 386BSD is probably due to the fact that this release

SPINELLIS AND AVGERIOU: EVOLUTION OF THE UNIX SYSTEM ARCHITECTURE: AN EXPLORATORY CASE STUDY 1149

shoehorned a system that was distributed through tapes to
run on VAX minicomputers into one that was distributed
through floppy disks to run on PCS. Over the same period the
system got released as open source software, which resulted
in releases that purged items containing proprietary code.
These were then gradually reimplemented or replaced with

open source alternatives. The temporarily high number of
user commands in 4.3BSD Reno stems from the inclusion of
diverse user-contributed programs, such as Emacs, USENET
News, and the X-Window System. These were later distrib-
uted as separate packages.

Turning our attention to specific feature types we see that
growth has not been uniform across them; there is evidence
of interesting trends for which we can hypothesize specific
reasons. Growth in user and system administration com-
mands as well as file formats has been relatively uniform.
This can be expected, if we regard an operating system as a
platform hosting (an expanding set) of programs and files.

The evolution in the number of system calls tells a more
interesting story. There are two periods of relative stability.
One over the Research Unix editions, which can be under-
stood if one considers that its developers took pride in dem-
onstrating “that a powerful operating system for interactive
use need not be expensive either in equipment or in human
effort” [36]. Consequently, they avoided bloating the kernel
with functionality of marginal utility. A subsequent rise in
the number of system calls followed by stability can be seen
over the Berkeley releases. The rise can be attributed to
research targetting specific areas: networking, filesystems,
and interactive use. The subsequent stability marks a con-
solidation phase where the developed interfaces are used
by an expanding number of user and system administration
commands. The continuous rise in the number of system
calls over FreeBSD releases can be attributed to a commu-
nity keen on operating system innovation, and, maybe, one
in which a large number of volunteer developers are eager
to leave their mark on the kernel.

The evolution of C library functions tells a similar story. A
restrained timidity over the Research Unix editions resulted in
a core set of functions, most of which were later standardized
as the C programming language library. Berkeley releases
broke that tradition by introducing many new functions to
accommodate newly provided functionality. That period’s atti-
tude seems to be that if some functionality is generally useful,
then it should bemade available as a library. This established a
tradition for providing library interfaces to access the system’s
files and to package into libraries complex functionality, such
as regular expression matching and embedded database sup-
port. Having broken the taboo of limiting the C library to a core
set of portable functions, the rise in the provided functionality
continued with the FreeBSD releases, resulting in a substan-
tially larger number of library functions. Modern frameworks,
such as .NET, Jakarta EE, and Python, have followed this lead
by providing extensive support for diverse functionality.

Changes in the number of supporteddeviceswere probably
driven by external factors, namely availability of such devices,
demand for using them, and resources for implementing their
driver code. The drop in the number of devices from 386BSD
to FreeBSD 1.0 stems from the cleanup of obsolete non-work-
ing device drivers: from the acc(4) local/distant host DARPA
IMP interface to the vx(4) dialup communicationsmultiplexor.

Documentation for the kernel APIS (Unix Reference
Manual Section 9) was only introduced in the late 1990s,
so there is less to observe in the corresponding Figure.
The initial rise probably stems from a vigorous effort to
document existing interfaces, while subsequent growth
may have been organic.

Fig. 3. Evolution in the number of feature types across key releases.

1150 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

To judge in context the evolution of supported features,
the remaining columns of Table 4 list the number of docu-
mented feature types in diverse current operating systems:
FreeBSD 11.1.0, Apple macOS 10.13.3, OpenBSD 6.3, Oracle
Solaris 11.3, Ubuntu Linux 16.04.5 LTS, and Microsoft Win-
dows 10 (build 16,299). The numberswere obtained as follows:
for FreeBSD and OpenBSD by processing the source code and
Makefiles;L95 for Solaris by processing the indices of Oracle’s

on-line reference library;8,L96,L97 for Windows by processing
the source code of the Windows Server documentation9 and
the HTML markup of the Windows UAP umbrella library
index;10,L98 for Ubuntu and macOS by counting the num-
ber of manual page files or processing the kernel’s source
code in servers offered by the Travis CI continuous inte-
gration platform11,L99 through a small project constructed
for this purpose.12 To keep the figures comparable we tried
to provide numbers that reflect server rather than desktop
installations.

As is evident from the table, the number of feature types
is similar in magnitude across systems with different histo-
ries, architectures, or evolutionary paths. Where marked
differences exist these can be readily explained. For exam-
ple, in the case of device drivers, the differences stem
either from the use of standardized hardware (macOS) or
from widespread adoption (Ubuntu Linux). Also, because
the Windows API does not clearly distinguish between
kernel interfaces and user-level utility functions, the entry
points of its API appear in the table spanning the rows for
system calls and for C library functions. None of the
systems exhibits the economy evident in, say, the 1979
Seventh Edition Unix. We interpret this as a sign that
requirements from a modern operating system drive the
corresponding essential complexity (and sometimes the
accidental complexity). The observed quantitative rise in
supported feature types is not coincidental, but a response
to environmental pressures.

5.2 Cyclomatic Complexity

We also looked at the cyclomatic complexity evolution of the
system’s twomajor partitions the kernel-space code (C source
code files—those with a .c suffix—nowadays residing under
the sys directory), and the user space code. For the latter, we
further distinguish between the libraries shared among

multiple programs (C files in lib), and the user, administra-
tor and system commands (all other C files). The reason for
this distinction is that libraries are reused by other programs
and therefore required to be more maintainable (have lower
complexity).

Fig. 4 shows the cyclomatic complexity evolution trends
over time for the three aforementioned types. In broad terms
this follows a steep rise followed by a gradual decline.
A possible explanation for the rise could be that improved
technology (e.g., 9,600 baud glass terminals replacing 110
baud teletypewriters) might allow the adoption of more com-
plex program structures [15]. The curve’s steepness could be
explained by the rapid introduction of these technologies,
which enjoy the exponential growth benefits associated with
Moore’s Law [122]. The gradual fall could correspondingly
be attributed to corrections addressing excessive complex-
ity, implemented by adding better new code or by refactor-
ing existing code. The reason behind such changes could
be to satisfy the implicit quality requirements associated
with the construction of a large and sophisticated software
artefact [123]. This hypothesis is corroborated by the fact
that the cyclomatic complexity of the three areas follows
their relative criticality and importance. Is is lower for the
kernel where a fault can bring down a complete system, as
well as for the libraries where a problem can affect many
programs. In fact the curves for the kernel and the libraries
are surprisingly similar, especially after the mid-1990s. In
contrast, it is higher for user, administrator and system
commands where the code is isolated in separate processes
and where problems typically affect only a single com-
mand. However, in all three cases the mean cyclomatic
complexity at the end of the studied period is around 6,
which is considered overall rather low [124, pp. 342–344]
for such a complex long-lived system.

An enabling factor for battling cyclomatic complexitymay
be advances in CPU clock speeds and in compiler technol-
ogy, such as the inter-procedural analysis offered by GCC
and later LLVM [125]. These have allowed developers who
crammed code into a single function, in order to avoid the
performance penalty of function calls, to write smaller, more
modular functions.

To put the evolution of cyclomatic complexity into per-
spective, the bottom part of Fig. 4 illustrates the correspond-
ing complexity evolution of the GNU coreutils, the GNU C
library, and the Linux kernel, juxtaposed with that of the
Unix commands, library, and kernel respectively. We note
that the measured periods are not identical, as the top part
starts from the mid-70s, while the bottom part starts from
1995 or slightly earlier; we therefore leave out the first two
decades of Unix in our comparison. The resemblance in each

TABLE 4
Number of Documented Features in Current Operating Systems

8. https://docs.oracle.com/cd/E53394_01/
9. https://github.com/MicrosoftDocs/windowsserverdocs/
10. https://docs.microsoft.com/en-gb/windows/desktop/

apiindex/windows-umbrella-libraries
11. https://travis-ci.org/dspinellis/documented-facilities/builds/

459375741
12. https://github.com/dspinellis/documented-facilities

SPINELLIS AND AVGERIOU: EVOLUTION OF THE UNIX SYSTEM ARCHITECTURE: AN EXPLORATORY CASE STUDY 1151

https://docs.oracle.com/cd/E53394_01/
https://github.com/MicrosoftDocs/windowsserverdocs/
https://docs.microsoft.com/en-gb/windows/desktop/apiindex/windows-umbrella-libraries
https://docs.microsoft.com/en-gb/windows/desktop/apiindex/windows-umbrella-libraries
https://travis-ci.org/dspinellis/documented-facilities/builds/459375741
https://travis-ci.org/dspinellis/documented-facilities/builds/459375741
https://github.com/dspinellis/documented-facilities

pair of curves is striking: the same initial incline and subse-
quent descent is observed.

We conjecture that the inverted U-curve in the GNU/Linux
case is caused by reasons similar to Unix: steadily improving
hardware capabilities throughout the 80s and 90s lead to the
incline, followed by corrective actions to improve quality, as the
complexity started to become overwhelming. It appears that the
GNU/Linux community exhibits a similar maturity to that of
FreeBSD [123], striving for code quality through re-working
and refactoring the code. The actual cyclomatic complexity also
fluctuates around the same figures: 7 to 9 for the commands, 6
to 7 for the libraries (after 1995), and 4.5 to 7.5 for the kernel.

There are however some pronounced differences as well.
While the Unix commands had their complexity gradually
reduced until the end of our measurements, reaching 6.5, the
GNU user-space commands stabilized after 2010 at approx. 8.
The reason behind this may be lower stability and main-
tainability requirements regarding individual commands
compared to the monolothic kernel. Also, the peak in the
two curves differs by about a decade, which indicates that
the GNU/Linux community started to incorporate quality
improvement guidelines and practices later than the Unix
community. Moreover, the GNU C library had a second
period of increasing complexity, albeit much more moderate.
This may indicate again a creeping lack of attentiveness
regarding design quality as the lessons of the preceding drive
were forgotten, or be a side effect of the effort to adjust to a
new version of C (C11). Finally, regarding the complexity of
the kernel, while reaching its climax in the mid-90s in both
cases, the Linux kernel complexity improved at a faster rate,
dropping even lower than its starting point. This indicates a
strong drive in the Linux community to refactor and remove
technical debt, probably lead by key members in the kernel
development team.

6 TOWARDS AN INITIAL THEORY OF OPERATING

SYSTEM ARCHITECTURE EVOLUTION

Our findings from the qualitative and quantitative analysis
are interesting not just for the case of Unix, but for similar
operating systems. Thus, they can form the basis to establish
an initial theory on how the architecture of operating systems
evolves. Building theories in Software Engineering has been
argued, among others, as a necessary means to analytically
generalize results, thus going beyond individual findings
[126]. To build this theory, we follow the first four steps,
as prescribed by Sjøberg et al. [127]. We thus we derive:
constructs, which are the main entities of the theory; proposi-
tions, which establish relations between the constructs; explan-
ations, which shed further light into the propositions; and
scope which determines where the theory applies. The fifth
step, which entails testing the theory through further empiri-
cal studies is regarded as futurework.

The constructs in our case include the main concepts from
the research questions, i.e., architecture decisions, evolution,
system lifetime, features, size and complexity. They also
extend to technical debt, conventions, portability, software
ecosystems and third-party systems. This set of constructs is
grounded in the collected data as described in Section 3.3 and
comprises the main concepts that were derived during
the data analysis (particularly Constant Comparison—see
Section 3.4). Accordingly, the scope includes large, complex
and long-lived operating systems.

The derived propositions and explanations are elabo-
rated in the following sub-sections, grouped into those con-
cerning: a) the form and pace of architectural evolution,
b) the accumulation of architectural technical debt, and
c) forces for architectural evolution. Each proposition is for-
mulated as one sentence (in italics) and briefly elaborated,
followed by a paragraph with the explanation.

Fig. 4. Mean cyclomatic complexity of code over time. Top: for this study’s Unix systems’ user-space commands, C libraries, and kernel. Bottom: for
the GNU coreutils user-space commands, the GNU C library, and the Linux kernel.

1152 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

6.1 Form and Pace of Architectural Evolution

Proposition 1. Many core architecture decisions are taken at the
beginning of the system’s lifetime.

Asurprisingfinding of our studywas the large number ofUnix-
defining design decisions thatwere implemented right from the
very early beginning. This can clearly be seen in the evolution
timeline (Fig. 1). Despite the diminutive size of the PDP-7 and
the First Research editions, they included themost important of
the system calls still used today, the notion of devices as files,
the abstraction of standard I/O, and a tree directory structure.

The influence of the early architectural decisions is also
apparent if one compares the high level architecture (mod-
ule view) of the First Edition architectural diagram (Fig. 5)
with the system’s current architecture (Fig. 6).13 The sys-
tem’s first-level decomposition has remained essentially the
same. The permanence of many early design decisions is
illustrated through highlighted items in the two diagrams.
Note that, as the current architecture diagram is drawn at a
much coarser scale, many of the First Edition features
appear in the current architecture grouped together under
an entity with the same colour. For example, the File I/O
system call box in Fig. 6 includes the open, read, write, close
system calls depicted individually in Fig. 5, while the math,
stdio, stdlib, and time parts of the C Standard library in Fig. 6
contain among others the colored library functions in Fig. 5.

Explanation The developers of early Unix sought to “distill
and simplify” [59] three powerful and influential opera-
ting systems: Multics, Project Genie, and CTSS [76], some
of which had already suffered from the “second system
syndrome” [128], [79, p. 463]. Consequently, the Unix devel-
opers’ experience guided them to implement the system
around a few key ideaswith enduring value.

Proposition 2. Most important architecture decisions survive
over the system lifetime.

The number of long-lived architectural design decisions in
Unix is impressive. Of the 15,596L100 elements documented
over the past half-century 12,043L101 (more than 75 percent)
are still documented in the current edition of FreeBSD. Most
deprecated commands offer functionality that is nowadays
available through add-on packages (number factoring, form
generation, voice synthesis, hyphenation, Fortran compila-
tion) or deal with deprecated technology (GCOS and UUCP
communication, DECtape handling). On the system call side,
the few removed ones are mainly those that have been
replaced bymore general mechanisms. For example, the func-
tionality of the Third Edition’s signal handling calls—cemt(II),
fpe(II), ilgins(II), and intr(II)—is nowadays provided by the sin-
gle sigaction(2) call. In contrast, device drivers have seen a very
high churn rate. This is to be expected due to big and visible
changes in hardware device technologies; nobody nowadays
uses punched card readers, paper tape punches, dataphones,
orwashingmachine–sized 121MBRA80 disk units.

Moreover, we observed the longevity of not only explicit
design decisions, but also implicit ones. Specifically, we saw

Fig. 5. High-level architecture of the first research edition (1972).

13. We encourage readers to focus on the overall structure, because
many may find the text labels illegible due to their small font size.
Further details can be readily obtained by zooming in on the man-
uscript’s digital version.

SPINELLIS AND AVGERIOU: EVOLUTION OF THE UNIX SYSTEM ARCHITECTURE: AN EXPLORATORY CASE STUDY 1153

that implicit design decisions that are not part of a docu-
mented API can also survive over decades and even influ-
ence the design of other systems. For example, the virtual
filesystem interface (Section 4.14) has been adopted by the
Linux kernel [129, Chapter 13], while the device driver so-
called strategy routine (Section 4.5) could also be found in
the design of Linux device drivers [130, Section 14.4.3].

Explanation The longevity of architectural decisions is
mainly due to the desire to maintain backward compatibil-
ity and the benefits derived from it. From as early as 1977
this was instituted through—initially informal and later
formal—standardization. First, a committee sponsored by
the AT&T Bell Laboratories Computer Technologies Area
monitored and promoted the portability and evolution of
the C programming language and associated libraries [53,
p. 1687]. Later, Unix standardization was formalized through

efforts such as POSIX [92], [131], [132] and the C language
standards [133], [134], [135].

Proposition 3. New architecture decisions are continuously
made, further fueling architecture evolution.

Despite the influence and permanence of the early
architecture, the study also demonstrates that the Unix
architecture continues to evolve significantly many years
after the system’s foundations have been cast into stone.
For example, many important architectural design decisions
of Unix, such as system portability, dynamic memory allo-
cation, environment variables, language development tools,
little languages, and static program analysis, first made
their appearance in the Seventh Edition; ten years after the
PDP-7 prototype was implemented. In more recent decades,
Unix has continued to grow significantly in size and

Fig. 6. High-level architecture of FreeBSD 11.0 (2017).

1154 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

complexity through the addition of large third-party sub-
systems (see Table 6) integrated to the system’s core
features.

Explanation The reason for the continuing evolution is,
unsurprisingly, new requirements. These stem from the
need to accommodate more sophisticated user programs,
which appears to be mirrored in the rise of supported C
library functions and system calls seen in Fig. 3, or support
new hardware, which can be observed through the rising
number of supported devices depicted in the same figure.
Requirements can also arise from advances made by other
operating systems—work aimed at keeping up with the
Joneses, as it were.

Proposition 4. The rate of architecture decisions declines over
the system’s lifetime.

Despite evidence of continued architectural evolution,
by looking at the elements listed in the evolution time-
line (Fig. 1) it is also evident that the rate of it has
slowed down over the system’s lifetime in terms of new
significant design decisions introduced. One can observe
three major ‘waves’: the first comprising the Research
Editions, which featured a significant number of major
design decisions; the second and third in the 1990s and
2000s respectively, which featured fewer and fewer such
significant design decisions.

Explanation Two plausible explanations can be given. First,
architectural changes become more difficult as the system
ages, due to the system’s increased volume and complexity.
For example, when pipes were introduced in the Third
Research Edition, the few members of the Unix team worked
overnight to convert most of the system’s utilities into filters
(see Section 4.4). Introducing such a change in a modern sys-
tem would be orders of magnitude more difficult and com-
plex. Second, due to the system’s maturity, new major or
even disruptive features are seldom required—to a large
extent we arewitnessing functional saturation.

6.2 Accumulation of Architectural Technical Debt

Proposition 5. A major source of architecture technical debt is
architecture decisions offering features that are either similar to
existing ones or remain under-used.

As one might expect in a system developed over half a cen-
tury, our study also revealed symptoms of architectural
technical debt. We use the definition of technical debt from
a recent Dagstuhl seminar [136].

“Technical debt consists of design or implementation
constructs that are expedient in the short term, but set
up a technical context that can make a future change
more costly or impossible. Technical debt is a contin-
gent liability whose impact is limited to internal system
qualities, primarily maintainability and evolvability.”

Technical debt comes in many flavors; our proposition
concerns two different types of technical debt that were pre-
dominantly observed in Unix.

The first type refers to adding functionality that is the same
or similar to existing functionality, without removing the
existing one or merging them into a single source. Retaining
two or more competing facilities that provide analogous

functionality hurts understandability and maintainability.
Examples include:

� the proliferation of system calls that perform slightly
different functions, such as the nine variants for
reading data—read(2), pread(2), readv(2), preadv(2),
recv(2), recvfrom(2), recvmmsg(2), recvmsg(2), sctp_ge-
neric_recvmsg(2)—and a similar number for writing
data, or the 14 ...at siblings of existing system calls—
bindat(2), connectat(2), fstatat(2), faccessat(2), linkat(2),
mkdirat(2), mkfifoat(2), mknodat(2), openat(2), readlinkat
(2), symlinkat(2), unlinkat(2), renameat(2) [137];

� the support of multiple logging mechanisms: writing
to plain files in /var/log, logging via syslogd(8),
process accounting via act(2), and BSM auditing via
auditd(8) (Section 4.27);

� the coexistence of the traditional user-group-others
file permission settings, with access control lists
(Section 4.24), and a separate mandatory access con-
trol framework (Section 4.25); and

� the coexistence of two multitasking primitives:
threads and processes.

We found one striking example of this type of technical
debt that relates to loss of conceptual integrity. An important
innovation of the Unix operating system is the mapping of
storage devices, terminals, communication links, and memory
onto special files. According to the system’s creators, this
homogeneous treatment has three advantages: it makes the
device I/O API similar to the file API; it allows ordinary pro-
grams to be used on special files by supplying their corre-
sponding file names; and it reuses the existing file protection
mechanism on special files [138, pp. 1909–1910]. Over time,
competing approaches have breached the conceptual integrity
of this approach by not using special files and thus losing the
above advantages. For example, the monitoring and control of
the system and its processes can be achieved following the
special file approach, through the procfs(5) filesystem (Section
4.20). However, such functionality is also provided through
system calls—ptrace(2), getrusage(2), getrlimit(2), and through
the dtrace(1) system. Similarly, special files can be used to con-
trol the operating system’s configuration, as is for example
done through Linux’s sysfs filesystem [129, 355–361]. How-
ever, most of this functionality is implemented through
numerous system calls—e.g., acct(2), adjtime(2), auditctl(2),
getfsstat(2), gettimeofday(2), kenv(2), mincore(2), modfind(2),
procctl(2), quotactl(2), settimeofday(2), and also through the hier-
archical but distinct sysctl interface (Section 4.16).

Explanation The main driver behind amassing similar
competing features is a lack of ownership regarding the
conceptual integrity of the whole system [79, p. 460]. As the
evolution of Unix moves between groups and individuals,
these may be more interested in leaving their mark through
new functionality than in consolidating existing work and
refactoring old code to work with incrementally improved
features. This can be seen in Fig. 3, where the move from
Bell Labs to Berkeley and then to FreeBSD is marked by
an increase in the number of system calls. Furthermore,
each generation of code stewards may be hesitant to
radically change code of their predecessors. In addition, as
the system is increasingly built by bringing together code
developed by diverse teams to serve multiple projects,

SPINELLIS AND AVGERIOU: EVOLUTION OF THE UNIX SYSTEM ARCHITECTURE: AN EXPLORATORY CASE STUDY 1155

it becomes very difficult to coordinate extensive refactoring
changes.

The second type of technical debt has to do with compli-
cated functionality that was offered but never quite used.
This violates the YAGNIprinciple (‘you aren’t gonna need
it’) and incurs extra maintenance effort for functionality
that is not actually in use. Removing this redundancy and
cleaning up the system would remedy the technical debt. A
typical example of this is the socket-based IPS with its large
number of system calls (see Table 3).

Explanation This type of technical debt is almost always
inadvertent: certain architectural decisions appear sound at
a given time, but later become problematic because of
changes in the technology or the application domain. For
instance, the elaborate socket stream and datagram abstrac-
tions that were designed as part of the network protocol
API in 4.2BSD (Section 4.12) were rendered irrelevant by
the universal adoption of Internet protocols and the eclipse
of competing technologies [139, p. 87]. However, the
accompanying complexity still burdens the API. On the
positive side, the networking API’s generality allowed sup-
port for version 6 of the Internet Protocol to be introduced
without requiring any new system calls.

Proposition 6. The architecture technical debt is systematically
paid back despite increasing system size and complexity.

The evidence of technical debt we found in Unix is sub-
stantial and it does hurt the system’s maintainability and
evolvability. However, for a system of its size, complexity,
and age, the technical debt of Unix is impressively limited.
Usually the growth in size and complexity over a long period
of time results in incurring technical debt at an increasing
rate; thusmost systems of similar size have become ‘big balls
of mud’. On the contrary, Unix has maintained compara-
tively high internal quality and does not manifest many
architectural ‘quick fixes’ or ‘workarounds’. Evidence of cor-
rective action following the accumulation of technical debt is
visible in Fig. 4, where increases in cyclomatic complexity
are followed by a subsequent decrease.

Explanation One could argue that the system’s high over-
all internal quality may be due to the dedication and excep-
tional talent of the developers who worked on the system,
coupled with the lack of commercial pressure to follow
shortcuts for the sake of expediency. However, when the
quality of the FreeBSD Unix kernel is compared against that
of three other systems (Linux, Solaris, and the Windows
Research Kernel) they all appear to be at similar levels [123].
We therefore argue that the main reason for the low techni-
cal debt is a natural selection process: the size (eight million
lines in the case of FreeBSD) and complexity of a modern
operating system kernel as well as the reliability require-
ments [51, p. 1960] are such that sub-par quality is either
weeded out or the corresponding system is abandoned. The
way stringent reliability requirements force high internal
quality can be observed in Fig. 4, where the mean cyclo-
matic complexity lowers as we move from stand-alone user
commands, to the C library used by all of them, to the large
monolithic kernel on which everything depends. A counter
example is the case of Multics, which Thompson has charac-
terized as overdesigned, overbuilt, and close to unusable [79,
p. 463]; it never thrived.

6.3 Forces of Architectural Evolution

An architecture is driven by requirements but also by forces,
such as technology, organization culture, or design philoso-
phy. The following propositions concern such forces.

Proposition 7. The preference for conventions instead of
enforcement facilitates evolution by reducing effort and offering
flexibility.

The system’s developers often established and followed
lightweight conventions rather than implementing rigid
enforcement mechanisms. In early editions, such conventions
included the grouping of related files through their names,
the setup of identifier name spaces through a prefix
(Section 4.1), the processing of directories as files, the creation
of a navigable tree directory structure through arbitrary file
links, the adoption of simple text files as a common data for-
mat, and the use of documented file formats as a program
coupling mechanism (Section 4.2). In the Seventh Research
Edition (Section 4.8) the same principle was applied in the
setup of environment variables as key-value pairs and the
detailed documentation of the system’s directory layout.

Explanation The practice of convention over enforcement
minimized the system’s implementation effort and promoted
experimentation. Problems arising through undisciplined
behavior were addressed when they truly became insur-
mountable [76]. This practice was a major contributing factor
for the unusually rich functionality compared to their code
size that earlyUnix systems provided. The approach’s flexibil-
ity also allowed the effortless adaptation and morphing of the
conventions to changing needs.We argue that,with good taste
and some discipline, such an approach can yield superior out-
comes than what will result from a rigid enforcement mecha-
nismdesigned in advance for fuzzy requirements. Oncemore,
agile, descriptive approaches thrive over prescriptive ones.

Proposition 8. Portability, due to its inherent complexity, is a
key driver of evolution.

Another major force that has been driving the software
architecture is portability. A key contribution of Unix was the
implementation of an operating system that could be easily
ported between different machine architectures. In the words
of Johnson and Ritchie [54] the system should be “easily por-
table unchanged” between different hosts, but also “easy to
change” so as “to take full advantage ofmachinesmuchmore
powerful along many possible dimensions”. The hard porta-
bility requirements between diverse hardware architectures
and devices forced the system’s designers to adopt numerous
sophisticated methods of abstraction in order to tame the
associated complexity.

Explanation Portability has driven architecture evolution
mostly through the use of layers used to hide non-portable
functionality behind portable abstractions [50]. Early on, the
need for portability influenced the design of the system, the C
programming language, the portable C library (Section 4.7),
as well as header files (Section 4.8) and static analysis
tools (Section 4.8) [54]. Furthermore, a portability approach
adopted by Unix’s designers was to define abstract machine
models for C and Unix [54, pp. 2041–2046]. During the long
evolution of Unix, many architecture decisions were made
to facilitate portability, e.g., the introduction of the vnode

1156 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

interface for abstracting diverse filesystems (Section 4.14),
and the modern CAM (Section 4.22), negraph (Section 4.23),
andGEOM (Section 4.25) stacks.

Proposition 9. A sophisticated ecosystem of other operating sys-
tems and third parties constantly shapes the architecture
evolution.

At the organizational level, the architecture evolution of
Unix systems in general and the FreeBSD lineage studied
here in particular has been influenced by technology devel-
oped by other related systems and organizations. Fig. 714

depicts how diverse Unix variants and releases cross-polli-
nated one another through the adoption of code. In addition,
the ideas behind Unix have influenced even more operating
systems that were independently developed, including
Android, GNU/Linux,MicrosoftWindows, Minix [140], MS-
DOS, QNX, and Z/OS. Some of this influence was applied
through formal standardization via the POSIX effort [92],
[131], [132] and the SingleUNIX Specification.

An early influencer of Unix was DARPA, which funded
CSRG to produce 4BSD (see Section 4.11). This under-
taking’s success brought increased scrutiny, criticism
regarding the system’s performance, and, as a response, a
systematically tuned kernel released as 4.1BSD [78].

Further acknowledged third party software contributions
can be traced back to 4.3BSD Tahoe (see Section 4.13). More
details regarding influences from diverse systems and
organizations can be derived by looking at individual con-
figuration management system code commits. Since 1994
commit messages in the systems studied here have often
included an “Obtained From:” header, which allowed us
to track direct influences via the adoption of code. In total
we foundL104 7,685 such commits, from 1,283 sources, total-
ing 7,742,678 code lines. Sources with more than 50 commits
each, are listed in Table 5.L102,L103 We see that FreeBSD has
been mainly influenced by its close siblings, such as
NetBSD, OpenBSD, and DragonflyBSD, as well as closely
affiliated projects, such as the TrustedBSD and KAME

projects. Furthermore, influencers also include companies
using FreeBSD, such as Semihalf, Juniper, NetApp, Yandex,
Wheel Systems, and Apple. Finally, we also see influence
from systems that are less closely related to FreeBSD, such
as Linux, Illumos, and OpenSolaris. Additional third-party
influence comes from wholesale-integrated components
(Table 6) described in the next proposition.

The architecture evolution of Unix was also influenced
over time through many non-technical decisions and devel-
opments. Chief among them were those associated a) with
source code availability, which initially promoted third-
party contributions and later led to organizations built
around open source software development, b) the develop-
ment of competing versions (Fig. 7) and (mostly uninspired)
efforts to combine them, and c) the movement of people
between organizations [79, p. 454], which resulted in a
cross-pollination of ideas.

Explanation A significant part of developing operating
systems takes place among a family of systems derived from
the same source code base (Fig. 7) or influenced by the same
key ideas (first column of Table 5). To remain compatible and
competitive with other operating systems, the FreeBSD team
routinely imports code from them (Table 5). Furthermore, its
permissive distribution license allows FreeBSD elements to
be easily reused in derived systems and in related develop-
ment efforts, such asApple’smacOS.

Non-technical factors were influencing Unix right from
its birth. In the 1970s AT&T was still operating under a 1956
“consent decree” [141]. Under its terms, the Bell Labs

TABLE 5
Major FreeBSD Third-Party Influences

Source Commits LoC

TrustedBSD Project 1,215 413,339
NetBSD 1,166 2,665,223
OpenBSD 726 113,195
KAME 451 163,874
Semihalf sp. 330 214,289
DragonflyBSD 179 675,906
Linux 151 109,600
Qualcomm Atheros, Inc. 139 46,608
ABT Systems Ltd 133 8,704
Juniper Networks, Inc. 125 66,971
NetApp, Inc. 120 8,044
Illumos 97 56,618
OpenSolaris 95 125,503
Wheel Systems, Inc. 81 3,552
Yandex LLC 64 3,630
Apple, Inc. 58 13,378

TABLE 6
Major Third-Party Subsystems in FreeBSD 11.1

Subsystem kLoC LoC %

llvm 3,413 10.81
gcc 1,576 4.99
binutils 1,111 3.52
ntp 873 2.76
heimdal 756 2.39
openssl 661 2.09
subversion 558 1.77
gdb 488 1.54
groff 438 1.39
ofed 404 1.28
libstdc++ 394 1.25
wpa 380 1.20
libarchive 310 0.98
sqlite3 281 0.89
ncurses 242 0.77
netbsd-tests 239 0.76
zfs 230 0.73
dtrace 205 0.65
sendmail 205 0.65
unbound 189 0.60
gcclibs 187 0.59
openssh 179 0.57
byacc 150 0.48
libc++ 142 0.45
tcpdump 123 0.39
compiler-rt 121 0.38
ldns 115 0.36
tcsh 109 0.34
openbsm 102 0.32
elftoolchain 101 0.32

14. Based on a diagram by Eraserhead1, Infinity0, and Sav_vas,
licensed under Cc BY-SA 3.0, via Wikimedia Commons.

SPINELLIS AND AVGERIOU: EVOLUTION OF THE UNIX SYSTEM ARCHITECTURE: AN EXPLORATORY CASE STUDY 1157

owners, Western Electric and AT&T, were prohibited from
manufacturing and offering non-telecommunications
equipment and services. Consequently, AT&T could not
market or license Unix for profit; Unix was initially liberally
licensed royalty-free through simple letter agreements
[77, p. 60], and its source code became widely available.
This allowed staff at universities around the world to study
its code and contribute improvements. AT&T’s legal restric-
tions also left ample room for the development of compet-
ing versions of Unix from organizations such as USG
(AT&T’s Unix Support Group), Microsoft (XENIX), Berke-
ley (BSD), and tens of hardware vendors [77, p. 209–210].
Many companies lacked resident experts to act as ‘arbiters
of taste’ [77, p. 211] in the place of the original Unix devel-
opers. As a result, companies involved in the so-called ‘Unix
wars’ [77, p. 225] between competing implementations were
often aggressively and indiscriminately piling up features,
which were haphazardly ‘taped together’ [77, p. 211]. Then,
in the 1980s and 1990s AT&T’s licensing terms became
more intricate and restrictive, limiting the availability of
Unix source code [142], which was carefully guarded as a

trade secret [93, p. 20]. These restrictions led Berkeley’s
CSRG and others to work on open source implementations
of Unix, and the emergence of a structure that was conduc-
tive to open source development.

Proposition 10. The adoption of third-party subsystems facili-
tates evolution through reusability but incurs technical debt.

Another observed force has been the adoption of many
large subsystems, which are developed by independent
efforts and periodically integrated into the released versions.
Table 6L105 lists current ones whose size exceeds one hundred
thousand lines of code (including documentation and tests).
With the exception of DTrace and ZFS, which are deeply inte-
grated within the FreeBSD source code tree, the other 90L106

subsystems reside in two separate directoriesS89,S90 and can
be easily upgraded as new upstream versions are released.
In contrast to the FreeBSD ports(7), the subsystems in these
directories form an integral part of the operating system, and
are typically required for its construction and operation.
Many of these subsystems offer functionality that was in the
past developed within the system’s boundaries. This practice

Fig. 7. A simplified diagram of Unix variants and releases related through code. The highlighted elements form this study’s examined lineage.

1158 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

outsources the development of key system parts, leaving to
the FreeBSD core team the responsibility for choosing among
alternative implementations, such as the choice between the
GCC or LLVMas the compiler infrastructure.

Explanation The reasoning behind adopting third-party
subsystems is simple: the increasing size and complexity
of these subsystems entails substantial effort savings for
the FreeBSD and multiple other operating system distri-
butions, such as GNU/Linux and macOS, that reuse them.
On the other hand, a downside of this approach is that the
third-party subsystems are developed to utilize only the
least common denominator functionality of all operating
systems that host them. Consequently, each operating
system that adopts them also inherits some technical debt:
providing functionality that might be required by some
third-party packages requires the coordinated addition of
this facility by all operating systems where the third-party
software runs. This makes it more likely for each third
party tool to duplicate some required functionality (result-
ing in redundancy) in a slightly different manner (damag-
ing understandability).

Proposition 11. Large subsystems form their own architecture,
independently of the architecture of the encompassing system.

We have observed a strong force towards federating the
architecture. Many large subsystems, such as the Graph-
based Kernel Networking and User Library (netgraph—
Section 4.23), OpenSSL Framework (SSL—Section 4.24),
Mandatory Access Control (MAC—Section 4.25), Pluggable
Authentication Module (PAM—Section 4.25), Modular Disk
I/O Request Transformation Framework (GEOM—Section
4.25), Basic Security Module Auditing (BSM—Section 4.27),
Zettabyte Filesystem (ZFS—Section 4.28), and Dynamic Trac-
ing (DTrace—Section 4.29), have their own architecture, with
distinct principles, layers, components, plug-in mechanisms,
subcommands, design patterns, and conventions. Some of
these constituent structures can be observed in Fig. 6.

Explanation The main reason for this phenomenon is
that the size and complexity of Unix may have grown way
beyond the point by which it can be maintained as a mono-
lith (see Table 1). In addition, many subsystems are now
independently developed by third parties (see Table 6).
This makes it difficult to coordinate their architecture with
that of the FreeBSD core.

7 THREATS TO VALIDITY

Our study is subject to limitations that can be categorized
into construct validity, external validity, and reliability
following the guidelines of Runeson et al. [67]. Internal
validity is not a concern for this study because we did not
examine causal relations [67].

7.1 Construct Validity

This type of validity concerns to what extent the studied
items really represent what the researchers aim at
according to the research questions [67]. In our case, the
research questions inquire about the main architectural
design decisions of Unix over time, as well as the evolu-
tion of the system’s size and complexity. Regarding the
former, we classified as architectural design decisions

some of the most significant architectural components,
connectors, patterns, and principles [69], [72]. To mitigate
a potential mis-interpretation of architecture design deci-
sions, the first author independently performed the con-
stant comparison, and the second author controlled the
coded design decisions in a second iteration. In case of
disagreement, the two authors discussed until a consensus
was reached; several architectural design decisions were
removed as a result of this process.

Another potential risk regards whether we were exhaus-
tive during data collection: i.e., whether wemay have missed
any significant architectural design decision and at the same
time whether all reported architectural design decisions are
significant. This risk cannot be completely mitigated as the
significance of architecture design decisions is to a large
extent subjective. However, our data source triangulation did
help in spotting those architectural design decisions that
were given attention bymore than one data source: decisions
derived from the code and the Unix documentation that were
also prominently discussed in books and recollections of
Unix pioneers, were given priority in our selection process.
Furthermore, even if we cannot claim exhaustiveness, we
used an extensive amount of data sources to increase the
chances of reaching correct decisions.

Regarding the quantitative results, the size of the system is
measured in terms of number of features (e.g., user com-
mands or system calls), and complexity is measured in terms
of cyclomatic complexity. While these may not be unique
ways to measure size and complexity, they are certainly valid
ones [124]. Moreover, both the architectural feature data set
and the tool used for measuring cyclomatic complexity are
based on published peer-reviewed research [15], [74] thus
partially mitigating threats associated with the validity of the
measurement instrument.

7.2 Reliability

This type of validity concerns to what extent the data collec-
tion and analysis depend on the actual researchers. This risk
has been partiallymitigated as the codingwas performed iter-
atively by the first author, with the second author controlling
the results. However we need to acknowledge that the first
author has decades of Unix experience. While this has been
instrumental in understanding the details of the object of
study and subsequently performing the coding, it may have
introduced a certain bias on selecting the architectural design
decisions (an expert may not be able to look at the system
objectively and may be biased regarding the importance of
the different design decisions). Again, data source triangula-
tion has helped to partially deal with this bias, as we made
sure that all selected architectural design decisions were
described in more than one data source—typically documen-
tation and source code.Moreover the reliability of the study is
strengthened by being open and explicit about the process of
data collection and analysis, and publishing online or in this
paper’s supplement all used tools and data.

7.3 External Validity

This type of validity concerns whether the findings can be
generalized to other cases and contexts [67]. This study is
rather unique in the sense that it does not aim at providing a
general conclusion about a population (i.e., category of

SPINELLIS AND AVGERIOU: EVOLUTION OF THE UNIX SYSTEM ARCHITECTURE: AN EXPLORATORY CASE STUDY 1159

systems or an application domain). In addition, the history of
Unix is exceptional, with numerous stakeholders and envi-
ronments influencing its development, therefore the validity
of extending any findings to other systems is debatable. Con-
sequently, we do not claim that either our qualitative or our
quantitative findings should also hold for other large operat-
ing systems. However Unix has been the dominant operating
system for decades, and its development has strongly influ-
enced subsequent widely-used operating systems, such as
GNU/Linux, macOS, and Android. In that sense, particularly
the qualitative results regarding the architecture design deci-
sions of Unix are relevant for other operating systems,
because they providemany of the significant design decisions
and accompanying rationale.

8 CONCLUSION

We looked closely into the evolution of Unix from an architec-
tural perspective by examining 30 core releases from the PDP-7
Research Edition to FreeBSD 11. We triangulated data sources
(source code, documentation, research papers and books, pio-
neers’ recollections) to extract valid and up-to-date data. We
have procured and produced a wealth of data and made it
available to the community [58], [74] for further studies.

Our analysis yielded both qualitative and quantitative
results. The qualitative examination allowed us to establish a
timeline with the most important milestones that shaped the
Unix architecture; those milestones are detailed as compo-
nents, connectors, patterns and principles as well as other key
architecture decisions. We also discussed the rationale of
those decisions and how they affected future developments.
Through the quantitative analysis we showed the trends on
size growth for the seven principal feature types (user com-
mands, system calls, libraries etc.), as well as complexity. We
found a uniform growth in size but also some outliers, for
which we conjectured corresponding explanations. We dis-
covered that cyclomatic complexity grew at first, but was sub-
sequently reduced especially for the library and the kernel,
where code quality matters the most. Finally, we put the Unix
evolution in context. First, by comparing the number of cur-
rent FreeBSD featureswith that of five other current operating
systems, we found a similar magnitude, indicative of their
essential complexity. Second, by contrasting the cyclomatic
complexity with the GNU coreutils, C library and the Linux
kernel, we observed overall an inverted U-curve with some
marked differences.

Based on the results, we ventured on generalizing them
by developing an initial theory on the architecture evolution
of operating systems; the theory is comprised of eleven
propositions and their corresponding explanations. Numer-
ous early design decisions survive the test of time and are
still visible decades after their introduction. Nevertheless,
innovation continues uninterruptedly to accommodate
changes in computing technology and networking,
although with a slower pace as decades go by. Furthermore,
architectural technical debt creeps in mostly by retaining
two or more functionally-equivalent facilities, but also by
offering complicated under-used functionality that adds
maintenance effort without much actual value. However,
architectural technical debt does not reach critical levels, as
its remediation is systematic despite increasing size and

complexity. Moreover, the philosophy of lightweight infor-
mal mechanisms instead of formal prescriptive ones, the
drive for portability, and an intricate ecosystem of other
operating systems and third parties are factors that shape
the architectural evolution of large, long-lived operating
systems. Nevertheless, given the current size and complex-
ity of Unix, its evolution can only be sustained through the
adoption of third-party subsystems, while many large sub-
systems have formed an architecture of their own.

Looking forward, progress in hardware and applications
will continue to exert evolutionary pressure on Unix’s
architecture on several fronts. Flash storage and universal
memory computing change how secondary storage is used
and addressed; CPUs with tens of cores require support for
finer-grainedparallelism;GPUcomputing calls for appropriate
high-level abstractions; deep learning methods change the
nature of computation by elevating data into its main determi-
nant; security and privacy demand fresh approaches both at
the data center and at the edges; mobile and IOT devices
impose demanding constraints on computing resources,
power, and real-time performance. In addition, the operating
system’s large code base and the backward compatibility
requirements of existing applications hinder radical changes.
In short, the Unix operating system architects have their work
cut out.

ACKNOWLEDGMENTS

The authors thank themembers of theUnixHeritage Society15

and in particular Warren Toomey and Kirk McKusick for
preserving and making available many important early Unix
artifacts. They also thank the TUHS mailing list participants
for their input and encouragement regarding this research.
The authors are especially grateful to the anonymous
reviewers and to Kirk McKusick, George Neville-Neil,
Warren Toomey, and Alexios Zavras, for their detailed and
insightful comments regarding earlier versions of this docu-
ment. The research described has been carried out as part of
the CROSSMINER Project, which has received funding from
the European Union’s Horizon 2020 Research and Innovation
Programmeunder grant agreement No. 732223.

REFERENCES

[1] M. M. Lehman, “On understanding laws, evolution, and conser-
vation in the large-program life cycle,” J. Syst. Softw., vol. 1,
pp. 213–221, Sep. 1984.

[2] I. Herraiz, D. Rodriguez, G. Robles, and J. M. Gonzalez-Barahona,
“The evolution of the laws of software evolution: A discussion
based on a systematic literature review,” ACM Comput. Surv.,
vol. 46, no. 2, pp. 28:1–28:28, Dec. 2013.

[3] D. L. Parnas, “Software aging,” in Proc. 16th Int. Conf. Softw. Eng.,
1994, pp. 279–287.

[4] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus,
“Does code decay? Assessing the evidence from change manage-
ment data,” IEEETrans. Softw. Eng., vol. 27, no. 1, pp. 1–12, Jan. 2001.

[5] P. Avgeriou, P. Kruchten, R. L. Nord, I. Ozkaya, and C. Seaman,
“Reducing friction in software development,” IEEE Softw., vol. 33,
no. 1, pp. 66–73, Jan. 2016.

[6] L. Hatton, D. Spinellis, and M. van Genuchten, “The long-
term growth rate of evolving software: Empirical results
and implications,” J. Softw.: Evolution Process, vol. 29, no. 5,
pp. e1847–n/a, 2017, e1847 smr.1847.

15. https://www.tuhs.org/

1160 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

https://www.tuhs.org/

[7] S. Koch, “Software evolution in open source projects—A large-
scale investigation,” J. Softw. Maintenance Evolution: Res. Practice,
vol. 19, no. 6, pp. 361–382, 2007.

[8] H. Breivold, M. Chauhan, and M. Babar, “A systematic review of
studies of open source software evolution,” in Proc. 17th Asia
Pacific Softw. Eng. Conf., 2010, pp. 356–365.

[9] C. A. Conley and L. Sproull, “Easier said than done: An empiri-
cal investigation of software design and quality in open source
software development,” in Proc. 42nd Hawaii Int. Conf. Syst. Sci.,
2009, pp. 1–10.

[10] J. W. Paulson, G. Succi, and A. Eberlein, “An empirical study of
open-source and closed-source software products,” IEEE Trans.
Softw. Eng., vol. 30, no. 4, pp. 246–256, Apr. 2004.

[11] A. Capiluppi, A. E. Faria, and J. F. Ramil, “Exploring the relation-
ship between cumulative change and complexity in an open
source system,” in Proc. 9th Eur. Conf. Softw. Maintenance Reengin-
eering, 2005, pp. 21–29.

[12] M. Aram, S. Koch, and G. Neumann, “Long-term analysis of the
development of the open ACS community framework,” in Proc.
Open Source Solutions Knowl. Manage. Technological Ecosystems,
2017, pp. 111–145.

[13] M. Godfrey and Q. Tu, “Evolution in open source software: A case
study,” inProc. Int. Conf. Softw.Maintenance, 2000, pp. 131–142.

[14] A. Israeli and D. G. Feitelson, “The Linux kernel as a case study
in software evolution,” J. Syst. Softw., vol. 83, no. 3, pp. 485–501,
Mar. 2010.

[15] D. Spinellis, P. Louridas, and M. Kechagia, “The evolution of C
programming practices: A study of the Unix operating system
1973–2015,” in Proc. 38th Int. Conf. Softw. Eng., May 2016,
pp. 748–759.

[16] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the
structure of complex software designs: An empirical study of
open source and proprietary code,” Manage. Sci., vol. 57, no. 7,
pp. 1015–1030, 2006.

[17] A. Israeli and D. G. Feitelson, “The Linux kernel as a case study in
software evolution,” J. Syst. Softw., vol. 83, no. 3, pp. 485–501, 2010.

[18] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng.,
vol. SE-2, no. 4, pp. 308–320, Jul. 1976.

[19] D. G. Feitelson, “Perpetual development: A model of the Linux
kernel life cycle,” J. Syst. Softw., vol. 85, no. 4, pp. 859–875, 2012.

[20] P. Behnamghader, D. M. Le, J. Garcia, D. Link, A. Shahbazian,
and N. Medvidovic, “A large-scale study of architectural evolu-
tion in open-source software systems,” Empirical Softw. Eng.,
vol. 22, no. 3, pp. 1146–1193, Jun. 2017.

[21] M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger, “Analysing
software repositories to understand software evolution,” in Soft-
ware Evolution. Berlin, Germany: Springer, 2008, pp. 37–67.

[22] R. Wettel and M. Lanza, “Visual exploration of large-scale
system evolution,” in Proc. 15th Working Conf. Reverse Eng.,
Oct. 2008, pp. 219–228.

[23] E. Bouwers, J. P. Correia, A. v. Deursen, and J. Visser, “Quantifying
the analyzability of software architectures,” in Proc. 9th Working
IEEE/IFIP Conf. Softw. Archit., Jun. 2011, pp. 83–92.

[24] S. C. Johnson and B. W. Kernighan, “The programming language
B,” Bell Laboratories, Murray Hill, NJ, USA, Computer Science
Tech. Rep. 8, Jan. 1977. [Online]. Available: http://web.archive.
org/web/20180831015050/https://www.bell-labs.com/usr/
dmr/www/bintro.html

[25] S. C. Johnson, “Lint, aCprogramchecker,” Bell Laboratories,Murray
Hill, NJ, USA, Comput. Sci. Tech. Rep. 65, Dec. 1977. [Online]. Avail-
able: http://web.archive.org/web/20160412071448/http://files.
cnblogs.com:80/files/bangerlee/10.1.1.56.1841.pdf

[26] B. W. Kernighan and L. L. Cherry, “A system for typesetting
mathematics,” Bell Laboratories, Murray Hill, NJ, USA, Comput.
Sci. Tech. Rep. 17, May 1974. [Online]. Available: https://web.
archive.org/web/20151029232442/http://tex.loria.fr/divers/
unix-eqn1.ps.gz

[27] J. F. Maranzano and S. R. Bourne, “A tutorial introduction to
ADB,” Bell Laboratories, Murray Hill, NJ, USA, Comput. Sci.
Tech. Rep. 62, May 1977. [Online]. Available: https://web.
archive.org/web/20040324013641/https://wolfram.schneider.
org/bsd/7thEdManVol2/adb/adb.pdf

[28] S. C. Johnson, “Yacc—yet another compiler-compiler,” Bell Labo-
ratories, Murray Hill, NJ, Comput. Sci. Tech. Rep. 32, Jul. 1975.
[Onl ine] . Avai lab le : ht tps ://web.arch ive .org/web/
20170810013946/https://www.isi.edu/pedro/Teaching/
CSCI565-Fall15/Materials/Yacc.pdf

[29] M. E. Lesk, “Lex—a lexical analyzer generator,” Bell Labora-
tories, Murray Hill, NJ, Comput. Sci. Tech. Rep. 39, Oct.
1975, [Online]. Available: https://web.archive.org/web/
20040324060316/http://wolfram.schneider.org:80/bsd/
7thEdManVol2/lex/lex.pdf

[30] B. W. Kernighan, “UNIX for beginners,” Bell Laboratories, Mur-
ray Hill, NJ, USA, Comput. Sci. Tech. Rep. 75, Feb. 1979. [Online].
Available: https://web.archive.org/web/20170711222622/
http://wolfram.schneider.org/bsd/7thEdManVol2/beginners/
beginners.pdf

[31] R. Morris and K. Thompson, “Password security: A case histo-
ry,” Bell Laboratories, Murray Hill, NJ, USA, Comput. Sci. Tech.
Rep. 71, Apr. 1978. [Online]. Available: https://web.archive.
org/web/20180317102420/http://wolfram.schneider.org/bsd/
7thEdManVol2/password/password.pdf

[32] S. I. Feldman, “Make—A program for maintaining computer
programs,” Bell Laboratories, Murray Hill, NJ, USA, Comput.
Sci. Tech. Rep. 57, Apr. 1977. [Online]. Available: https://web.
archive.org/web/20040805040247/http://wolfram.schneider.
org:80/bsd/7thEdManVol2/make/make.pdf

[33] B. W. Kernighan, “A typesetter-independent TROFF,” Bell Labo-
ratories,MurrayHill, NJ, USA,Comput. Sci. Tech. Rep. 97, 1982.

[34] AT&T, Ed., UNIX System Readings and Applications, vol. I.
Englewood Cliffs, NJ, USA: Prentice Hall, 1978 (Bell Syst. Tech. J.,
vol. 57, no. 6, Jul./Aug. 1978).

[35] AT&T, Ed., UNIX System Readings and Applications, vol. II.
Englewood Cliffs, NJ, USA: Prentice Hall, 1987 (AT&T Bell
Laboratories Tech. J., vol. 63, no. 8, Oct. 1984).

[36] D. M. Ritchie and K. Thompson, “The UNIX time-sharing
system,” Commun. ACM, vol. 17, no. 7, pp. 365–375, Jul. 1974.

[37] K. L. Thompson, “Reflections on trusting trust,” Commun. ACM,
vol. 27, no. 8, pp. 761–763, Aug. 1984.

[38] B. W. Kernighan, “PIC—A language for typesetting graphics,”
Softw.: Practice Exp., vol. 12, pp. 1–21, 1982.

[39] J. L. Bentley, L. W. Jelinski, and B. W. Kernighan, “CHEM—A
program for phototypesetting chemical structure diagrams,”
Comput. Chemistry, vol. 11, no. 4, pp. 281–297, 1987.

[40] R. Pike and K. Thompson, “Hello world,” in Proc. USENIX Tech.
Conf. Proc., Winter 1993, pp. 43–50.

[41] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson,
H. Trickey, and P. Winterbottom, “Plan 9 from Bell Labs,” Com-
put. Syst., vol. 8, no. 2, pp. 221–254, 1995.

[42] O. Babaog
̃
lu and W. Joy, “Converting a swap-based system to do

paging in an architecture lacking page-referenced bits,” in Proc. 8th
ACMSymp.Operating Syst. Principles, 1981, pp. 78–86.

[43] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry, “A fast
file system for UNIX,” ACM Trans. Comput. Syst., vol. 2, no. 3,
pp. 181–197, Aug. 1984.

[44] R. Sandberg, “Thedesign and implementationof the Sunnetworkfile
system,” inProc. USENIXAssoc. Conf. Proc., Jun. 1985, pp. 119–130.

[45] W. F. Jolitz and L. G. Jolitz, “Porting UNIX to the 386: A practical
approach. Designing a software specification,” Dr. Dobb’s J.,
vol. 16, no. 1, Jan. 1991.

[46] W. R. Stevens and J.-S. Pendry, “Portals in 4.4BSD,” in Proc. USE-
NIX 1995 Tech. Conf. Proc., Jan. 1995, pp. 1–1.

[47] M. K. McKusick and G. R. Ganger, “Soft updates: A technique for
eliminating most synchronous writes in the fast filesystem,” in
Proc. USENIX Annu. Tech. Conf. Freenix Track, Jun. 1999, pp. 1–18.

[48] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and
M. Shellenbaum, “The zettabyte file system,” in Proc. 2nd Usenix
Conf. File Storage Technol., Apr. 2003.

[49] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic
instrumentation of production systems,” in Proc. USENIX Annu.
Tech. Conf., Jun. 2004, pp. 15–28.

[50] D. Spinellis, “Another level of indirection,” in Beautiful Code:
Leading Programmers Explain How They Think, A. Oram and
G. Wilson, Eds. Sebastopol, CA, USA: O’Reilly and Associates,
2007, ch. 17, pp. 279–291.

[51] D. M. Ritchie, “A retrospective,” Bell Syst. Tech. J., vol. 56, no. 6,
pp. 1947–1969, Jul./Aug. 1978.

[52] K. Thompson, “UNIX time-sharing system:UNIX implementation,”
Bell Syst. Tech. J., vol. 56, no. 6, pp. 1905–1929, Jul/.Aug. 1978.

[53] L. Rosler, “The evolution of C—Past and future,” Bell Syst. Tech.
J., vol. 63, no. 8, pp. 1685–1699, Oct. 1984.

[54] S. C. Johnson and D. M. Ritchie, “Portability of C programs and
the UNIX system,” Bell Syst. Tech. J., vol. 57, no. 6, pp. 2021–2048,
Jul./Aug. 1978.

SPINELLIS AND AVGERIOU: EVOLUTION OF THE UNIX SYSTEM ARCHITECTURE: AN EXPLORATORY CASE STUDY 1161

http://web.archive.org/web/20180831015050/https://www.bell-labs.com/usr/dmr/www/bintro.html
http://web.archive.org/web/20180831015050/https://www.bell-labs.com/usr/dmr/www/bintro.html
http://web.archive.org/web/20180831015050/https://www.bell-labs.com/usr/dmr/www/bintro.html
http://web.archive.org/web/20160412071448/http://files.cnblogs.com:80/files/bangerlee/10.1.1.56.1841.pdf
http://web.archive.org/web/20160412071448/http://files.cnblogs.com:80/files/bangerlee/10.1.1.56.1841.pdf
https://web.archive.org/web/20151029232442/http://tex.loria.fr/divers/unix-eqn1.ps.gz
https://web.archive.org/web/20151029232442/http://tex.loria.fr/divers/unix-eqn1.ps.gz
https://web.archive.org/web/20151029232442/http://tex.loria.fr/divers/unix-eqn1.ps.gz
https://web.archive.org/web/20040324013641/https://wolfram.schneider.org/bsd/7thEdManVol2/adb/adb.pdf
https://web.archive.org/web/20040324013641/https://wolfram.schneider.org/bsd/7thEdManVol2/adb/adb.pdf
https://web.archive.org/web/20040324013641/https://wolfram.schneider.org/bsd/7thEdManVol2/adb/adb.pdf
https://web.archive.org/web/20170810013946/https://www.isi.edu/pedro/Teaching/CSCI565-Fall15/Materials/Yacc.pdf
https://web.archive.org/web/20170810013946/https://www.isi.edu/pedro/Teaching/CSCI565-Fall15/Materials/Yacc.pdf
https://web.archive.org/web/20170810013946/https://www.isi.edu/pedro/Teaching/CSCI565-Fall15/Materials/Yacc.pdf
https://web.archive.org/web/20040324060316/http://wolfram.schneider.org:80/bsd/7thEdManVol2/lex/lex.pdf
https://web.archive.org/web/20040324060316/http://wolfram.schneider.org:80/bsd/7thEdManVol2/lex/lex.pdf
https://web.archive.org/web/20040324060316/http://wolfram.schneider.org:80/bsd/7thEdManVol2/lex/lex.pdf
https://web.archive.org/web/20170711222622/http://wolfram.schneider.org/bsd/7thEdManVol2/beginners/beginners.pdf
https://web.archive.org/web/20170711222622/http://wolfram.schneider.org/bsd/7thEdManVol2/beginners/beginners.pdf
https://web.archive.org/web/20170711222622/http://wolfram.schneider.org/bsd/7thEdManVol2/beginners/beginners.pdf
https://web.archive.org/web/20180317102420/http://wolfram.schneider.org/bsd/7thEdManVol2/password/password.pdf
https://web.archive.org/web/20180317102420/http://wolfram.schneider.org/bsd/7thEdManVol2/password/password.pdf
https://web.archive.org/web/20180317102420/http://wolfram.schneider.org/bsd/7thEdManVol2/password/password.pdf
https://web.archive.org/web/20040805040247/http://wolfram.schneider.org:80/bsd/7thEdManVol2/make/make.pdf
https://web.archive.org/web/20040805040247/http://wolfram.schneider.org:80/bsd/7thEdManVol2/make/make.pdf
https://web.archive.org/web/20040805040247/http://wolfram.schneider.org:80/bsd/7thEdManVol2/make/make.pdf

[55] D. M. Ritchie, “The evolution of the UNIX time-sharing system,”
AT&T Bell Laboratories Tech. J., vol. 63, no. 8, pp. 1577–1593,
Oct. 1984.

[56] W. Toomey, “The restoration of early UNIX artifacts,” in Proc.
USENIX Annu. Tech. Conf., 2009, pp. 20–26.

[57] W. Toomey, “First edition unix: Its creation and restoration,”
IEEE Ann. History Comput., vol. 32, no. 3, pp. 74–82, Jul.-Sep.
2010.

[58] D. Spinellis, “A repository of Unix History and evolution,”
Empirical Softw. Eng., vol. 22, no. 3, pp. 1372–1404, 2017.

[59] W. Toomey, “Unix: Building a development environment from
scratch,” in Reflections on Operating Systems—Historical and Philo-
sophical Aspects, L. Demol and G. Primiero, Eds. New York, NY,
USA: Springer, 2017.

[60] J. Lions, Lions’ Commentary on Unix 6th Edition with Source Code.
Peer-to-Peer Communications, San Jose, CA, USA, 1996.

[61] M. J. Bach, The Design of the UNIX Operating System. Englewood
Cliffs, NJ, USA: Prentice Hall, 1986.

[62] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman,
The Design and Implementation of the 4.3BSD Unix Operating Sys-
tem. Boston, MA, USA: Addison-Wesley, 1988.

[63] M. K. McKusick, K. Bostic, and M. J. Karels, The Design and Imple-
mentation of the 4.4BSD Unix Operating System. Reading, MA,
USA: Addison-Wesley, 1996.

[64] M. K. McKusick and G. V. Neville-Neil, The Design and Implemen-
tation of the FreeBSD Operating System. Reading, MA, USA: Addi-
son-Wesley, 2004.

[65] M. K. McKusick, G. Neville-Neil, and R. N. Watson, The Design
and Implementation of the FreeBSD Operating System, 2nd ed. Read-
ing, MA, USA: Addison-Wesley Professional, 2014.

[66] E. I. Organick, The Multics System: An Examination of its Structure.
Cambridge, MA, USA: MIT Press, 1972.

[67] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study
Research in Software Engineering: Guidelines and Examples, 1st ed.
Hoboken, NJ, USA: Wiley Publishing, 2012.

[68] V. Basili, C. Caldiera, and D. H. Rombach, “Goal question metric
paradigm,” in Encyclopedia of Software Engineering. New York,
NY, USA: Wiley, 1994, vol. 2, pp. 528–532.

[69] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Archi-
tecture: Foundations, Theory, and Practice. Hoboken, NJ, USA:
Wiley Publishing, 2009.

[70] J. Tyree and A. Akerman, “Architecture decisions: Demy-
stifying architecture,” IEEE Softw., vol. 22, no. 2, pp. 19–27,
Mar. 2005.

[71] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture, Volume 1: A System
of Patterns. Hoboken, NJ, USA: Wiley, 1996.

[72] N. Harrison, P. Avgeriou, and U. Zdun, “Using patterns to capture
architectural decisions,” IEEE Softw., vol. 24, no. 4, pp. 38–45,
Jul./Aug. 2007.

[73] J. Singer, S. E. Sim, and T. C. Lethbridge, “Software engineering
data collection for field studies,” in Guide to Advanced Empirical
Software Engineering, F. Shull, J. Singer, and D. I. K. Sjøberg, Eds.
London, U.K.: Springer, 2008, pp. 9–34.

[74] D. Spinellis, “Documented Unix facilities over 48 years,” in Proc.
15th Conf. Mining Softw. Repositories, May 2018, pp. 58–61.

[75] M. McIlroy, “Interview with Michael S. Mahoney,” Aug. 1989,
current Dec. 2018. Archived doi: 10.5281/zenodo.2525529.
[Online]. Available: https://www.princeton.edu/ hos/mike/
transcripts/mcilroy.htm

[76] K. Thompson, “Interview with Michael S. Mahoney,” Jun. 1989,
current Dec. 2018. Archived doi: 10.5281/zenodo.2525529.
[Online]. Available: https://www.princeton.edu/~hos/mike/
transcripts/thompson.htm

[77] P. H. Salus, A Quarter Century of UNIX. Boston, MA, USA: Addi-
son-Wesley, 1994.

[78] M. K. McKusick, “Twenty years of Berkeley Unix: From AT&T-
owned to freely redistributable,” in Open Sources: Voices from the
Open Source Revolution, C. DiBona, S. Ockman, and M. Stone,
Eds. Newton, MA, USA: O’Reilly, 1999, pp. 31–46.

[79] P. Seibel, Coders at Work: Reflections on the Craft of Programming.
NewYork,NY,USA:Apress, 2009, ch. 12: Ken Thompson, pp. 449–
483.

[80] J. Schilling, “User maintained programs in the second edition,”
TUHS—The Unix Heritage Society mailing list, Dec. 2016.
[Online]. Available: http://minnie.tuhs.org/pipermail/tuhs/
2016-December/007561.html

[81] S. Johnson, “What sparked lint? [was: Unix stories],” The Unix
Heritage Society mailing list, Jan. 2017, Accessed on: 21, Nov.
2017, Archived by WebCite at [Online]. Available: http://www.
webcitation.org/6v8TXa7kK

[82] Bell Laboratories, UNIX Programmer’s Manual. Volume 1, 7th ed.
Murray Hill, NJ, USA: Bell Telephone Laboratories, 1979.

[83] Bell Laboratories, UNIX Programmer’s Manual. Volume 2—Supple-
mentary Documents, 7th ed. Murray Hill, NJ, USA: Bell Telephone
Laboratories, 1979.

[84] S. R. Bourne, “An introduction to the UNIX shell,” in UNIX Pro-
grammer’s Manual. Volume 2—Supplementary Documents, 7th ed.
Murray Hill, NJ, USA: Bell Telephone Laboratories, 1979.

[85] D. M. Ritchie, “The C programming language—reference man-
ual,” in UNIX Programmer’s Manual. Volume 2—Supplementary
Documents, 7th ed. Murray Hill, NJ, USA: Bell Telephone Labora-
tories, 1979.

[86] S. C. Johnson, “Lint, a C program checker,” in UNIX Pro-
grammer’s Manual. Volume 2—Supplementary Documents, 7th ed.
Murray Hill, NJ, USA: Bell Telephone Laboratories, 1979.

[87] M. E. Lesk, “TBL—A program to format tables,” in UNIX Pro-
grammer’s Manual. Volume 2—Supplementary Documents, 7th ed.
Murray Hill, NJ, USA: Bell Telephone Laboratories, 1979.

[88] F. Zhang, A. E. Hassan, S. McIntosh, and Y. Zou, “The use of
summation to aggregate software metrics hinders the perfor-
mance of defect prediction models,” IEEE Trans. Softw. Eng.,
vol. 43, no. 5, pp. 476–491, May 2017.

[89] C. B. Seaman, “Qualitative methods,” in Guide to Advanced Empir-
ical Software Engineering, F. Shull, J. Singer, and D. I. K. Sjøberg,
Eds. London, U.K.: Springer, 2008, pp. 35–62.

[90] K. Thompson, “Users’ reference to B,” Internal Bell Labs Technical
Memorandum. [Online]. Available: https://archive.org/details/
users-ref-to-b, Jan. 1972,MM-72-1271-1, filing case 39199-11.

[91] L. Nyman and M. Laakso, “Notes on the history of fork and join,”
IEEEAnn. History Comput., vol. 38, no. 3, pp. 84–87, Jul. 2016.

[92] IEEE Standard for Information Technology—Portable Operating Sys-
tem Interface (POSIX) Base Specifications, Issue 7, IEEE Standard
1003.1–2017, 2017s.

[93] D. Libes and S. Ressler, Life with UNIX. Englewood Cliffs, NJ,
USA: Prentice Hall, 1989.

[94] S. C. Johnson, “A tour through the portable C compiler,” in
UNIX Programmer’s Manual. Volume 2—Supplementary Documents,
7th ed. Murray Hill, NJ, USA: Bell Telephone Laboratories, 1979.

[95] S. C. Johnson and M. E. Lesk, “Language development tools,”
Bell Syst. Tech. J., vol. 56, no. 6, pp. 2155–2176, Jul./Aug. 1978.

[96] J. L. Bentley, “Programming pearls: Little languages,” Commun.
ACM, vol. 29, no. 8, pp. 711–721, Aug. 1986.

[97] P. Hudak, “Domain-specific languages,” in Handbook of Program-
ming Languages, vol. III: Little Languages and Tools, P. H. Salus, Ed.
Indianapolis, IN, USA: Macmillan Technical Publishing, 1998.

[98] M. Fowler, Domain-Specific Languages. Boston, MA, USA: Addi-
son-Wesley, 2010.

[99] S. R. Bourne, “The UNIX shell,” Bell Syst. Tech. J., vol. 56, no. 6,
pp. 1971–1990, Jul.-Aug. 1978.

[100] A. V. Aho, B. W. Kernighan, and P. J. Weinberger, “Awk—A pat-
tern scanning and processing language,” Softw.: Practice Exp.,
vol. 9, no. 4, pp. 267–280, 1979.

[101] L. E. McMahon, “SED—A non-interactive text editor,” in UNIX
Programmer’s Manual. Volume 2—Supplementary Documents, 7th
ed. Murray Hill, NJ, USA: Bell Telephone Laboratories, 1979.

[102] B. W. Kernighan and D. M. Ritchie, “The M4 macro processor,”
in UNIX Programmer’s Manual. Volume 2—Supplementary Docu-
ments, 7th ed. Murray Hill, NJ, USA: Bell Telephone Laborato-
ries, 1979.

[103] S. I. Feldman, “Make—A program for maintaining computer
programs,” Softw.: Practice Exp., vol. 9, no. 4, pp. 255–265, 1979.

[104] W. N. Joy, S. L. Graham, C. B. Haley, M. K. McKusick, and
P. B. Kessler, “Berkeley Pascal user’s manual,” in UNIX
Programmer’s Manual—Volume 2c—Supplementary Documents:
4.2 Berkeley Software Distribution. Berkeley, CA, USA: Com-
puter Systems Research Group, Department of Electrical
Engineering and Computer Science, University of California,
Aug. 1983.

[105] W. N. Joy and M. Horton, “Ex reference manual,” in UNIX
Programmer’s Manual—Volume 2c—Supplementary Documents: 4.2
Berkeley Software Distribution. Berkeley, CA, USA: Computer Sys-
tems Research Group, Department of Electrical Engineering and
Computer Science, University of California, Aug. 1983.

1162 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

http://dx.doi.org/10.5281/zenodo.2525529
https://www.princeton.edu/ hos/mike/transcripts/mcilroy.htm
https://www.princeton.edu/ hos/mike/transcripts/mcilroy.htm
http://dx.doi.org/10.5281/zenodo.2525529
https://www.princeton.edu/~hos/mike/transcripts/thompson.htm
https://www.princeton.edu/~hos/mike/transcripts/thompson.htm
http://minnie.tuhs.org/pipermail/tuhs/2016-December/007561.html
http://minnie.tuhs.org/pipermail/tuhs/2016-December/007561.html
http://www.webcitation.org/6v8TXa7kK
http://www.webcitation.org/6v8TXa7kK
https://archive.org/details/users-ref-to-b
https://archive.org/details/users-ref-to-b

[106] W. Joy, “An introduction to display editing with vi,” in UNIX
Programmer’s Manual—Volume 2c—Supplementary Documents: 4.2
Berkeley Software Distribution. Berkeley, CA, USA: Computer Sys-
tems Research Group, Department of Electrical Engineering and
Computer Science, University of California, Aug. 1983.

[107] W. Joy, “An introduction to the C shell,” in UNIX Programmer’s
Manual—Volume 2c—Supplementary Documents: 4.2 Berkeley Soft-
ware Distribution. Berkeley, CA, USA: Computer Systems
Research Group, Department of Electrical Engineering and Com-
puter Science, University of California, Aug. 1983.

[108] J. S. Quarterman and J. C. Hoskins, “Notable computer net-
works,” Commun. ACM, vol. 29, no. 10, pp. 932–971, Oct. 1986.

[109] W. R. Stevens, Advanced Programming in the UNIX Environment.
Reading, MA, USA: Addison-Wesley, 1992.

[110] A. Hume, “Grep wars: The strategic search initiative,” in Proc.
EUUG Spring 88 Conf., 1988, pp. 237–245.

[111] W. Joy, E. Cooper, R. Fabry, S. Leffler, K. McKusick, and
D. Mosher, “4.2BSD system manual,” in UNIX Programmer’s
Manual—Volume 2c—Supplementary Documents: 4.2 Berkeley Soft-
ware Distribution. Berkeley, CA, USA: Computer Systems
Research Group, Department of Electrical Engineering and Com-
puter Science, University of California, Aug. 1983.

[112] P. Karn, “The KA9Q internet (TCP/IP) package: A progress
report,” in Proc. 6th ARRL Comput. Netw. Conf., 1987, pp. 91–94.

[113] M. Seltzer and M. Olson, “LIBTP: Portable, modular transactions
for UNIX,” in Proc.Winter 1992USENIXConf., Jan. 1992, pp. 9–26.

[114] FreeBSD Handbook, Revision 47376 ed., The FreeBSD Documenta-
tion Project, Oct. 2015.

[115] T. S. Killian, “Processes as files,” in Proc. USENIX Summer 84
Conf., 1984, pp. 203–207.

[116] G. Lehey, The Complete FreeBSD, 4th ed. Newton, MA, USA:
O’Reilly Media, 2006.

[117] P.-H. Kamp and R. N. M. Watson, “Jails: Confining the omnipo-
tent root,” in Proc. 2nd Int. Syst. Admin. Netw. Conf., May 2000.

[118] D. Merkel, “Docker: Lightweight Linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239,
May 2014.

[119] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathe-
matical foundations,” Mitre Corp., Bedford, MA, USA, Tech.
Rep. MTR-2547, vol. 1, Nov. 1973.

[120] K. J. Biba, “Integrity considerations for secure computer
systems,” Mitre Corp., Bedford, MA, USA, Tech. Rep. MTR-
3153, Rev. 1, Apr. 1977.

[121] L. Rizzo, “Netmap: A novel framework for fast packet I/O,” in
Proc. USENIX Annu. Tech. Conf., 2012, pp. 101–112.

[122] G. E. Moore, “Cramming more components onto integrated
circuits,” Electron., vol. 38, no. 8, pp. 114–117, Apr. 1965.

[123] D. Spinellis, “A tale of four kernels,” in Proc. 30th Int. Conf. Softw.
Eng., May 2008, pp. 381–390.

[124] H. v. Vliet, Software Engineering: Principles and Practice, 3rd ed.
Hoboken, NJ, USA: Wiley Publishing, 2008.

[125] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proc. Int. Symp.
Code Generation Optimization, Mar. 2004.

[126] D. Sjøberg, G. Bergersen, and T. Dyba
�
, “Why theory matters,” in

Perspectives on Data Science for Software Engineering, T. Menzies,
L. Williams, and T. Zimmermann, Eds. Boston, MA, USA:
Morgan Kaufmann, 2016, pp. 29–33.

[127] D. I. K. Sjøberg, T. Dyba
�
, B. C. D. Anda, and J. E. Hannay, “Building

theories in software engineering,” in Guide to Advanced Empirical
Software Engineering, F. Shull, J. Singer, and D. I. K. Sjøberg, Eds.
London,U.K.: Springer, 2008, pp. 312–336.

[128] F. P. Brooks, The Mythical Man Month. Reading, MA, USA: Addi-
son-Wesley, 1975.

[129] R. Love, Linux Kernel Development, 3rd ed. Upper Saddle River,
NJ, USA: Addison-Wesley, 2010.

[130] D. Bovet, Understanding the Linux kernel, 3rd ed. Sebastopol, CA,
USA: O’Reilly, 2006.

[131] Information Technology—Portable Operating System Interface
(POSIX)—Part 1: System Application Programming Interface (API)
(C Language) ISO Standard ISO/IEC 9945–1:1996, 1996 (IEEE/
ANSI Std 1003.1, 1996 Edition).

[132] Information Technology—Portable Operating System Interface (POSIX)—
Part 2: Shell and Utilities ISO Standard ISO/IEC 9945–2:1993, 1993
(IEEE/ANSI Std 1003.2-1992 & IEEE/ANSI 1003.2a-1992).

[133] American National Standard for Information Systems—programming
language—C, ANSI Standard ANSI X3.159–1989, Dec. 1989, (also
ISO/IEC 9899:1990).

[134] Programming Languages—C ISO Standard ISO/IEC 9899:1999, 1999.
[135] Programming Languages—C ISO Standard ISO/IEC 9899:2018, 2018.
[136] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing

technical debt in software engineering (Dagstuhl seminar
16162),” Dagstuhl Rep., vol. 6, no. 4, pp. 110–138, 2016. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2016/6693

[137] M. Bagherzadeh, N. Kahani, C.-P. Bezemer, A. E. Hassan,
J. Dingel, and J. R. Cordy, “Analyzing a decade of Linux system
calls,” Empirical Softw. Eng., vol. 23, no. 3, pp. 1519–1551,
Jun. 2018.

[138] D. M. Ritchie and K. Thompson, “The UNIX time-sharing system,”
Bell Syst. Tech. J., vol. 57, no. 6, pp. 1905–1929, Jul./Aug. 1978.

[139] W. R. Stevens, UNIX Network Programming: Networking APIs:
Sockets and XTI, vol. 1, 2nd ed. Englewood Cliffs, NJ, USA: Pren-
tice Hall, 1998.

[140] A. S. Tanenbaum, Operating Systems: Design and Implementation,
2nd ed. Englewood Cliffs, NJ, USA: Prentice Hall, 1997.

[141] A. Lewis, AT&T Settles Antitrust Case; Shares Patents. New York,
NY, USA: New York Times, Jan. 25, 1956, pp. 1,16.

[142] N. Takahashi and T. Takamatsu, “UNIX license makes Linux the
last missing piece of the puzzle,” Ann. Bus. Administ. Sci., vol. 12,
pp. 123–137, 2013.

Diomidis Spinellis is a professor of software
engineering with the Department of Management
Science and Technology, Athens University of
Economics and Business, Greece and director of
the University’s Business Analytics Laboratory.
He is the author of two award-winning books,
Code Reading and Code Quality: The Open
Source Perspective. His most recent book is
Effective Debugging: 66 Specific Ways to Debug
Software and Systems. He has contributed code
that ships with Apple’s macOS and BSD Unix,

and is the developer of CScout, UMLGraph, dgsh, and other open-
source software packages, libraries, and tools. He served as an editor in
chief for IEEE Software over the period 2015–2018. He is a senior mem-
ber of the IEEE.

Paris Avgeriou is a professor of software
engineering with the University of Groningen,
The Netherlands where he has led the Software
Engineering research group since September
2006. His research interests lie in the area of soft-
ware architecture, with strong emphasis on archi-
tecture modeling, knowledge, evolution, patterns
and technical debt. He is an editor in chief of
the Journal of Systems and Software, as well as
an associate editor for IEEE Software. He has
co-organized several international conferences

(e.g., ECSA and ICSA) and workshops (mainly at ICSE). He is a senior
member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

SPINELLIS AND AVGERIOU: EVOLUTION OF THE UNIX SYSTEM ARCHITECTURE: AN EXPLORATORY CASE STUDY 1163

http://drops.dagstuhl.de/opus/volltexte/2016/6693

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

