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Theoretical Background

* Thermal imagery - emissivity
and LST

SAR-VV and VH

NDVI - additional information

CNN - extracting spatial features

ConvLSTM - obtaining spatio-
temporal dependencies
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Hypotheses
& Research
Questions

Hypotheses:

e Clay soils gain heat slowly throughout the day but retain heat
longer due to its higher moisture content and fine-grained
texture.

e Sandy soils gain heat quickly throughout the day but loose it

rapidly given its lower moisture content and coarse-grained
texture.

Research questions:

e To what extent can CNN and Recurrent Neural Network
(RNN) deep learning methods help identify/detect different
soil/rock types with thermal imagery?

e How does the model deal with very similar rock/soil
attributes?

e How do temporal factors (diurnal and seasonal changes)
affect the classification performance?

e |f other types of data are included (SAR), does the
performance/outcomes improve?
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Villoslada de Cameros Santa Olalla del Cala
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= coONv 3x3, RelLU
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= CONV 1x1
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Learning rate
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L2 Ridge Regression
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Filters
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* |nitial number of filters used for convolutional layers
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computational time
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Ground truth SparseCategoricalCrossentropy() Equal customvalues  Slightly higher custom values Higher custom values

* The error between the model’s output  Table 1. Comparison of model performance across different weighting strategies

and the ground truth Model Setting Accuracy | Loss | F1
) ) SparseCategoricalCrossentropy | 0.698 | 2.60 | (.654
* Important to deal with class imbalances Equal values RG]
e Customizing weights aids in dealing with Slightly higher (rare classes) 0619 | 538 | 0.59%4
minority classes Higher (rare classes) 0487 | 8.83 | 0.482
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Optuna & Final configuration

Table 2. Comparison of accuracies for different hyperparameter configurations

Parameter Setting | Accuracy
Optuna (final model) — 0.7289
L2 factor
0.1 0.8045
0.05 0.7328
0.01 0.7457
0.001 0.7289
Learning rate

0.1 0.6690
0.001 0.6708
0.00001 0.8045

Batch size
4 0.8045
16 0.7324
32 0.7220

Filters base
16 0.8045
32 0.7492
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Thermal only
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Diurnal experiments - Day
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Diurnal experiments - Night
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Seasonal experiments - Winter
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Seasonal experiments - Summer
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Complementary data - SAR
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Table 3. Accuracy and F1 scores for Thermal data type

Table 4. Accuracy and F1 scores for Day data type

Region / Model Accuracy | F1 score
Puertollano CNN 0.7128 0.6739
Puertollano ConvLSTM 0.7090 0.7299
Santa Olalla CNN 0.7443 0.6694
Santa Olalla ConvLSTM 0.8106 0.7881
Villoslada CNN 0.7576 0.5156
Villoslada ConvLSTM 0.7759 0.6952

Region / Model Accuracy | F1 score
Puertollano CNN 0.6532 0.4580
Puertollano ConvLSTM 0.5804 0.5811
Santa Olalla CNN 0.5793 0.3915
Santa QOlalla ConvLSTM 0.7691 0.7607
Villoslada CNN 0.7280 0.4102
Villoslada ConvLSTM 0.7424 0.6871

Table 6. Accuracy and F1 scores for Winter data type

Region / Model Accuracy | F1 score
Puertollano CNN 0.6820 0.6004
Puertollano ConvLSTM 0.6786 0.3512
Santa Olalla CNN 0.6203 0.4504
Santa Olalla ConvLSTM 0.5748 0.3054
Villoslada CNN 0.7417 0.6159
Villoslada ConvLSTM 0.7347 0.6021

Table 7. Accuracy and F1 scores for Summer data type

Region / Model Accuracy | F1 score
Puertollano CNN 0.6873 0.5709
Puertollano ConvLSTM 0.7337 0.5652
Santa Olalla CNN 0.6400 0.5945
Santa Olalla ConvLSTM 0.8016 0.7761
Villoslada CNN 0.7407 0.5975
Villoslada ConvLSTM 0.7130 0.6886

Table 5. Accuracy and F1 scores for Night data type

Region / Model Accuracy | F1 score
Puertollano CNN 0.6587 0.5510
Puertollano ConvLS5TM 0.6255 0.4029
Santa Olalla CNN 0.5918 0.2396
Santa Olalla ConvLSTM 0.5548 0.3538
Villoslada CNN 0.7206 0.5943
Villoslada ConvLSTM 0.7185 0.4064

Table 8. Accuracy and F1 scores for SAR data type

Region / Model Accuracy | F1 score
Puertollano CNN 0.6472 0.4429
Puertollano ConvLSTM 0.5814 0.4699
Santa Olalla CNN 0.5701 0.4668
Santa Olalla ConvLSTM 0.5072 0.3455
Villoslada CNIN 0.7010 0.5901
Villoslada ConvL5TM 0.6319 0.4355
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Further
experimentation

* Patch discontinuities

* Geological map reconstruction
* Overfitting

* NDVI data

* Confidence vs. Vegetation
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Geological map reconstruction
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Final configurations

Table 12. Class Weighta asaigned for each geological region to address class imbalance

Geological Class Puertollano | Santa Olalla | Villoslada
NaNs (Background) 1.5 1.5 1.0
Table 11. Final configuration of parameters for CNN and ConvLSTM models Sand 10.0 8.0 3.5
Parameter Value Clay 10.0 1.0 2.5
L2 Regularization 0.05 Chalk 1.0 8.0 1.0
Learning Rate (CNN) 0.00001 Silt 75 10 10
Learning Rate (ConvLSTM) 0.0001 Peat 10 10 50
Batch Size 4
Base Filters 6 Loam 4.0 L0 1.0
Patch Size 64/128 pixels Detritic L0 2.5 10
Patch Overlap 50% Carbonate 1.5 3.0 2.0
Loss Function Custom + Focal Loss Volcanic 3.0 3.0 1.0
Epoch Count 150 Plutonic 1.0 3.0 1.0
Foliated 15.0 1.0 1.0
Non-Foliated 2.5 4.0 1.0
Water 1.0 4.0 1.0
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tests tests
Region / Model Accuracy | F1 score Region / Model Accuracy | F1 score
Puertollano CNN 0.7128 0.6739 Puertollano CNN 0.8220 0.7148
Puertollano ConvLSTM 0.7090 0.7299 Puertollano ConvLSTM 0.9632 0.8499
Santa Olalla CNN 0.7443 0.6694 Santa Olalla CNN 0.8673 0.6093
Santa Olalla ConvLSTM 0.8106 0.7881 Santa Olalla ConvLSTM 0.9577 0.8018
Villoslada CNN 0.7576 0.5156 Villoslada CNN 0.9252 0.7522
Villoslada ConvLSTM 0.7759 0.6952 Villoslada ConvLSTM 0.9210 0.7926
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Complementary data - NDVI
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Complementary data - NDVI
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Discussion and
Conclusions
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CLAY soils gain heat slowly throughout the day but retain heat longer due to

its higher moisture content and fine-grained texture

SANDY soils gain heat quickly throughout the day but loose it rapidly
given its lower moisture content and coarse-grained texture

Temporal Thermal Signatures by Soil Class
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To what extent can Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN) deep learning methods help identify/detect different soil/rock
types with thermal imagery?

* Both models demonstrate clear ability to perform rock and soil segmentation
* CNN was computationally more efficient with faster training times

* ConvLSTM was more accurate overall and included minority classes

Ground truth Convolutional Neural Network Convolutional Long Short-Term Memory

LI e ——




How does the model deal with very similar rock/soil
attributes?

Ground truth Convolutional Neural Network Convolutional Long Short-Term Memory

* Minority classes tend to be well represented, especially in ConvLSTM

* Detritic rocks are well differentiated from sands, silts and other soils




How do temporal factors (diurnal and seasonal

changes) affect the classification performance?

FT * Optimal timing for data collection is more

location-dependent

=
52 Gtr:::,::d * Summer proved to be the best subset due to
reduced vegetation and clearer atmospheric
4 conditions
L
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If other types of data are included (SAR), does the

performance/outcomes improve?

o3 * Managed to enhance the
representation of minority classes
during core experiments

* Clay seemed to be the most
benefited one

* Can become important

complementary information —

Ground truth Prediction CNN



Conclusions

54 —
* Sand and Clay behaved as expected in the hypotheses
* \Vegetation has a higher influence on thermal signatures than anticipated
* Both models can perform a valid classification process
* Temporal memory mechanisms provide advantages for geological segmentation
* Seasonalimpact seemed higher than diurnal dynamics
* Models performed better with day and summer datasets
* Villoslada de Cameros presented the most consistent results
* SAR improved minority class representation and demonstrated its value as complementary data
* A higher number of aligned dates with thermal data will provide further insights
* NDVIlrevealed how vegetation distribution has more impact than density alone
* Scalability could be enhanced in future work
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