

Rock and Soil Classification Using Thermal and SAR Data in Deep Learning Models

Supervisors:

- Azarakhsh Rafiee
- Rémi Charton

Co-Reader:

- Roderik Lindenbergh

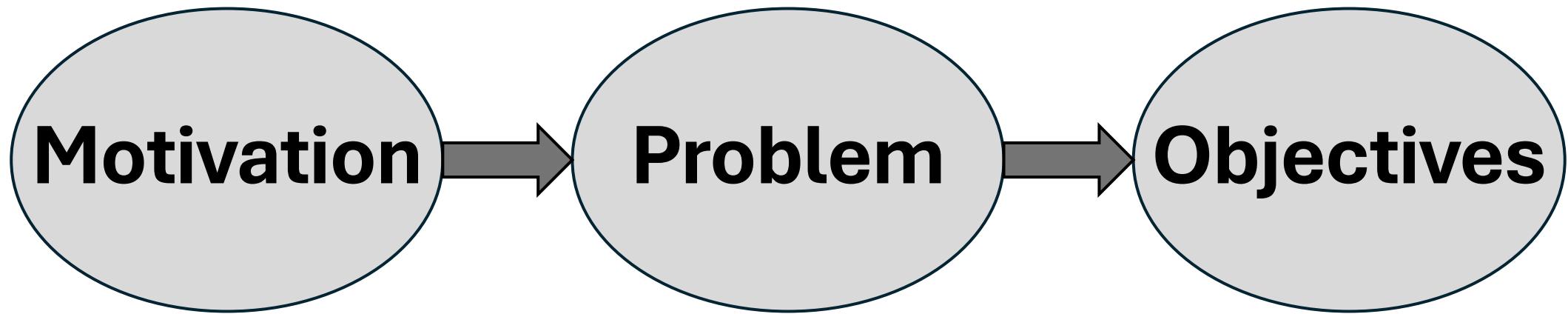
P5 – Javier Martínez Martínez

27th October 2025

Agenda

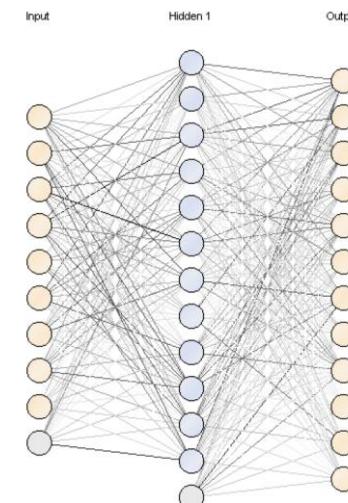
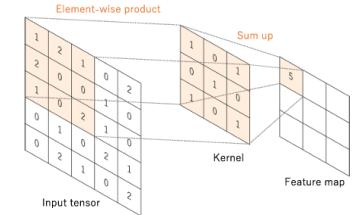
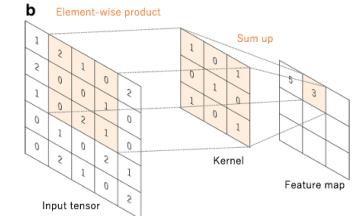
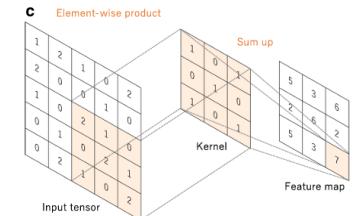
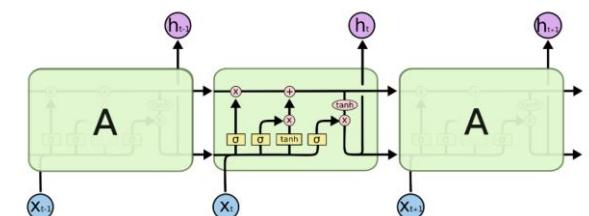
01	Introduction
02	Methodology
03	Training and parametrisation
04	Results and Further experimentation
05	Conclusions

Introduction



Theoretical Background

- **Thermal imagery** – emissivity and LST
- **SAR** – VV and VH
- **NDVI** – additional information
- **CNN** – extracting spatial features
- **ConvLSTM** – obtaining spatio-temporal dependencies



Hypotheses & Research Questions

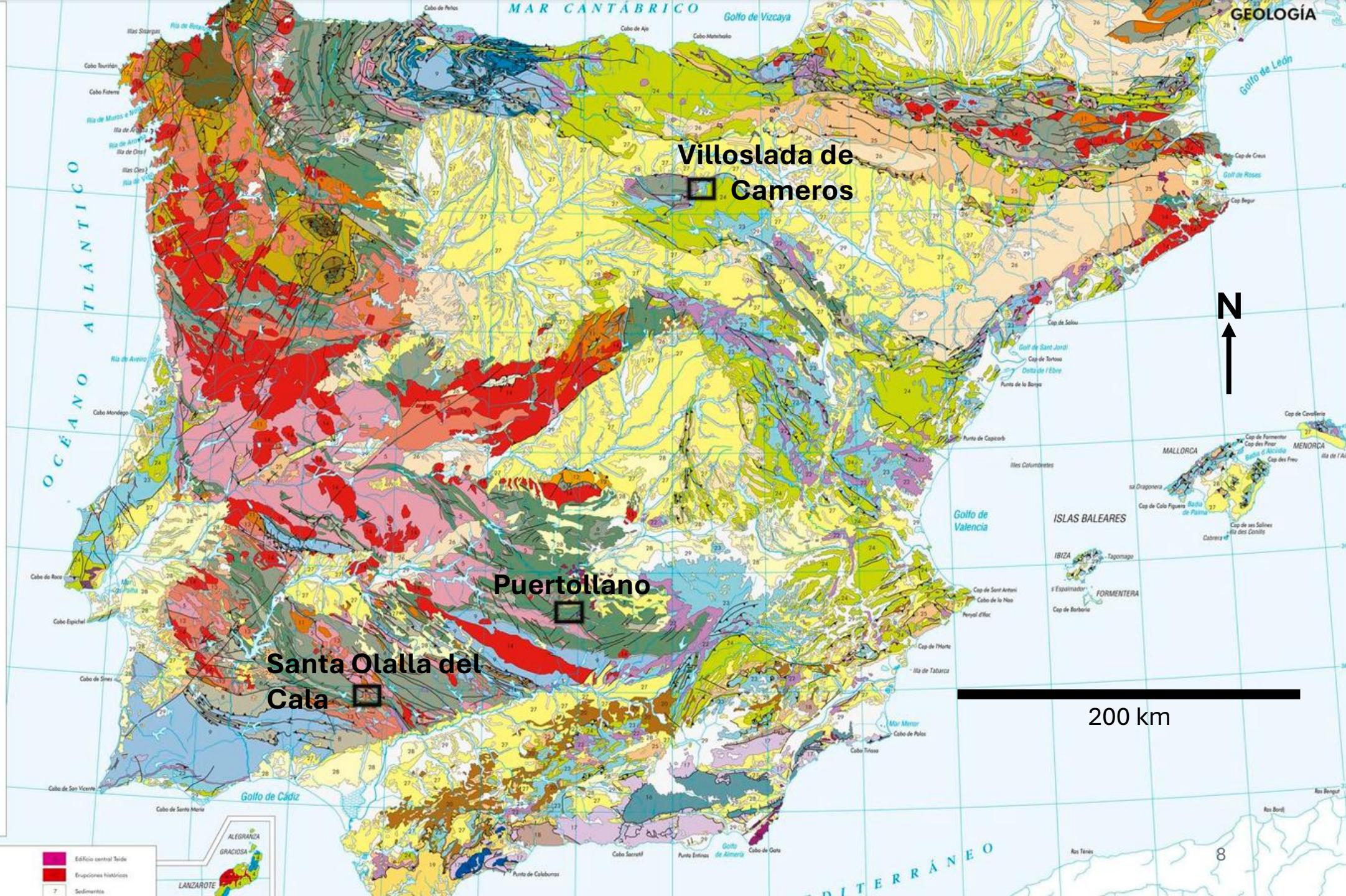
Hypotheses:

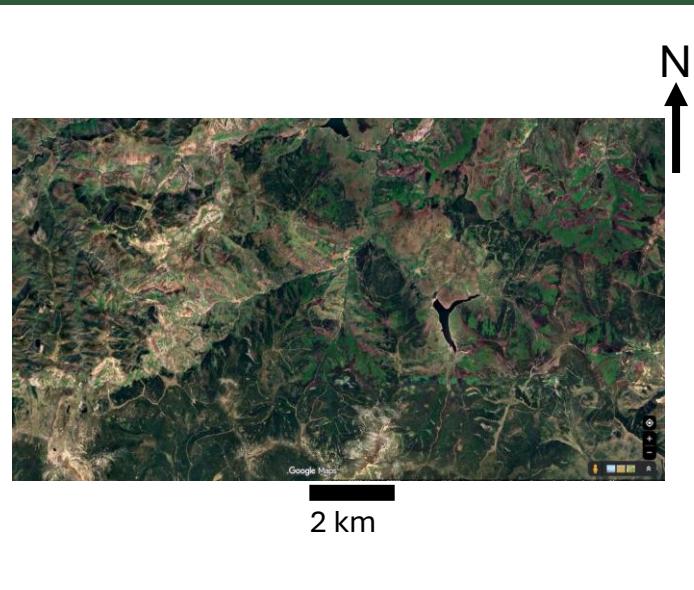
- Clay soils gain heat slowly throughout the day but retain heat longer due to its higher moisture content and fine-grained texture.
- Sandy soils gain heat quickly throughout the day but lose it rapidly given its lower moisture content and coarse-grained texture.

Research questions:

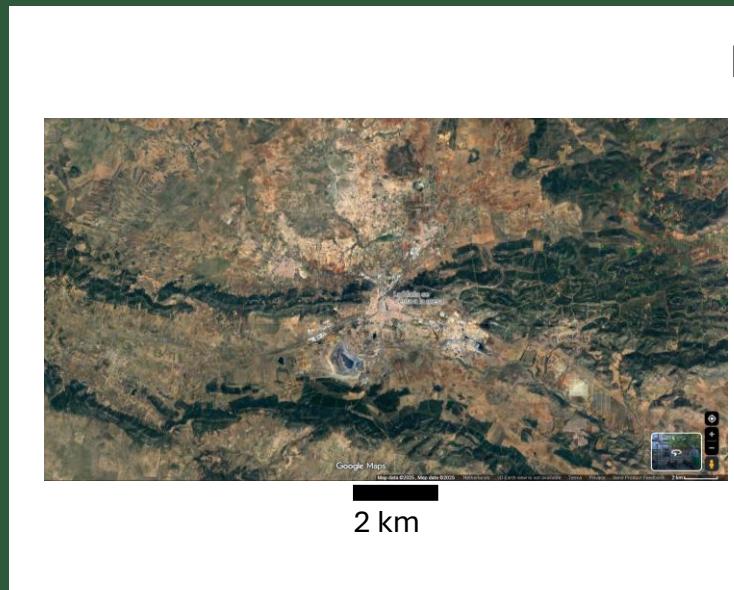
- To what extent can CNN and Recurrent Neural Network (RNN) deep learning methods help identify/detect different soil/rock types with thermal imagery?
- How does the model deal with very similar rock/soil attributes?
- How do temporal factors (diurnal and seasonal changes) affect the classification performance?
- If other types of data are included (SAR), does the performance/outcomes improve?

Methodology

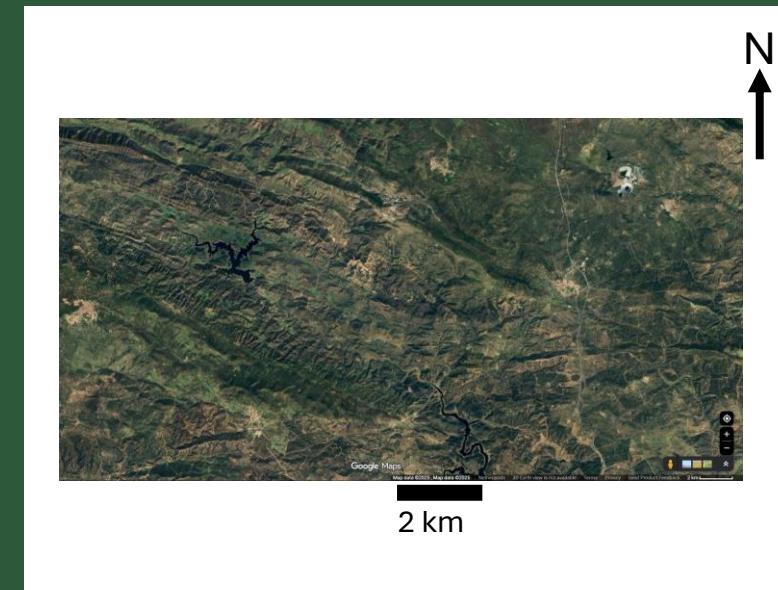




Villoslada de Cameros

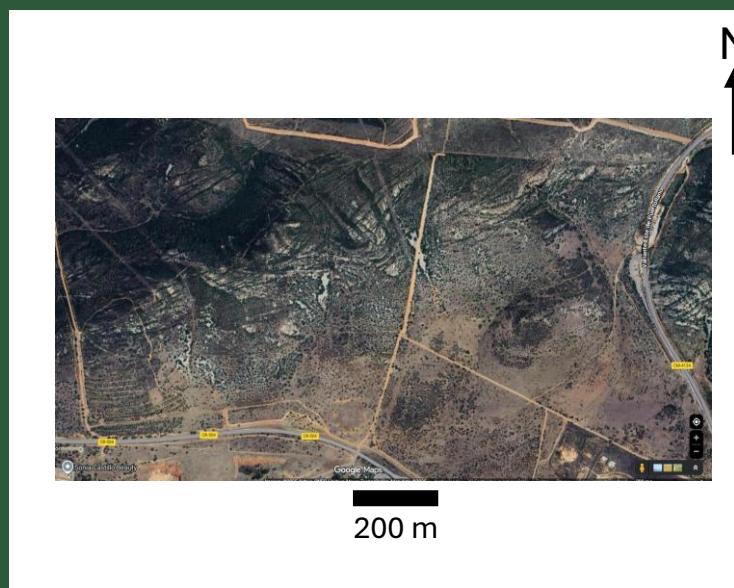


Puertollano

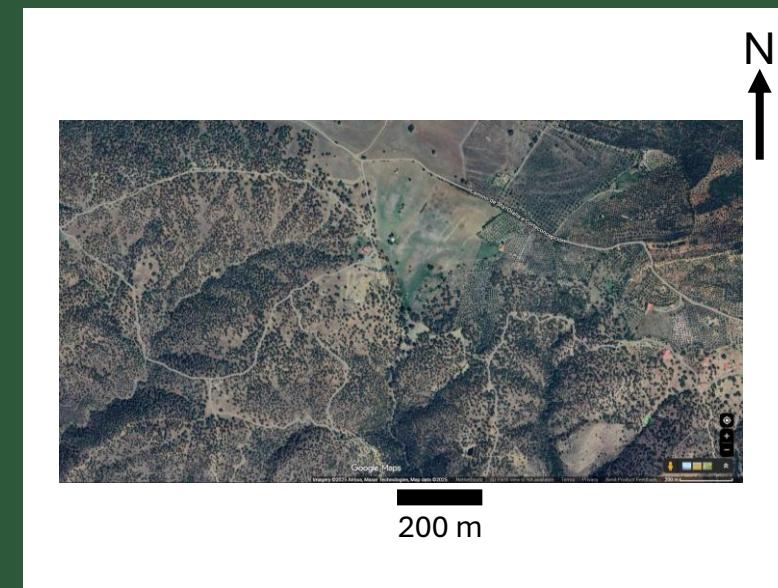


Santa Olalla del Cala

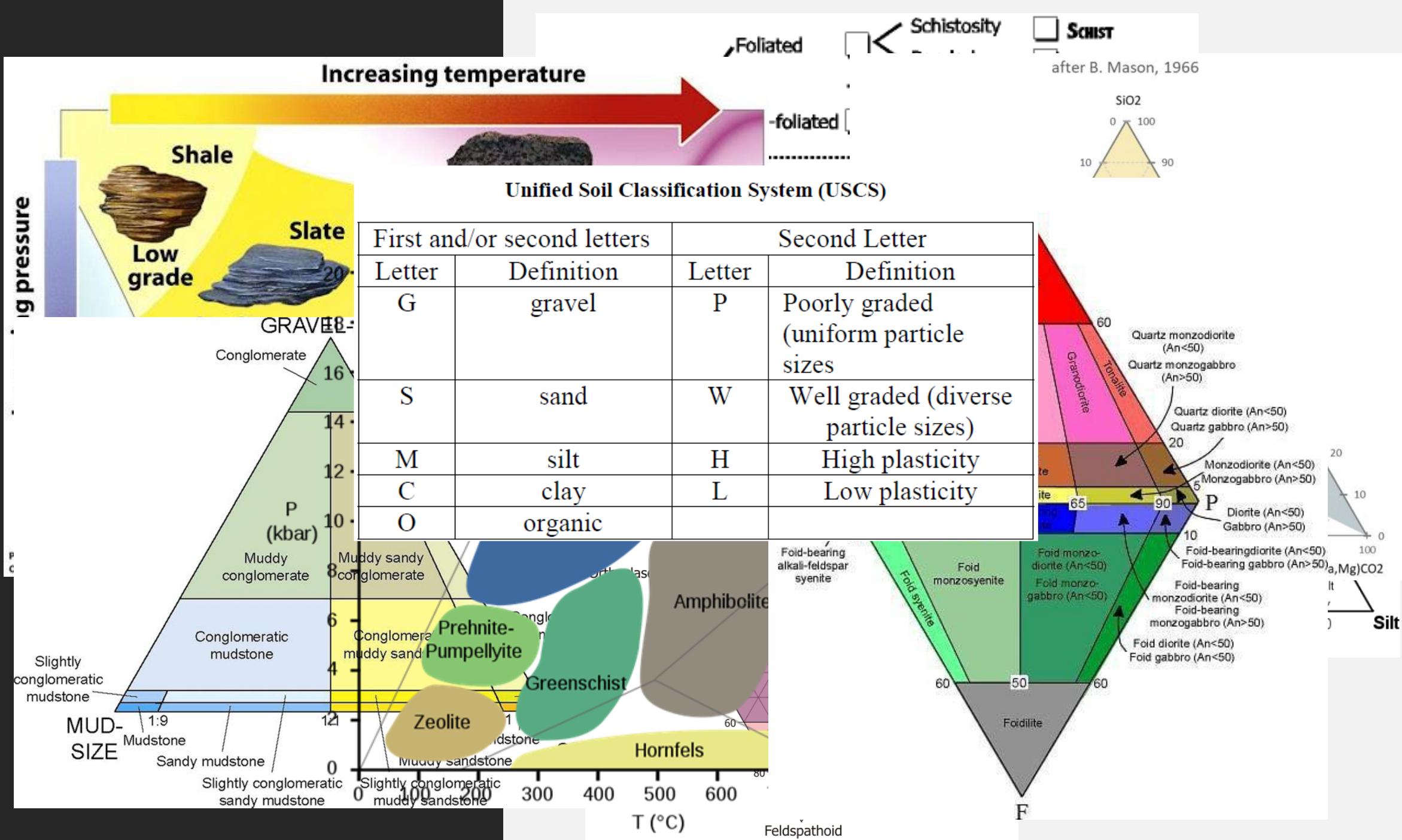
200 m

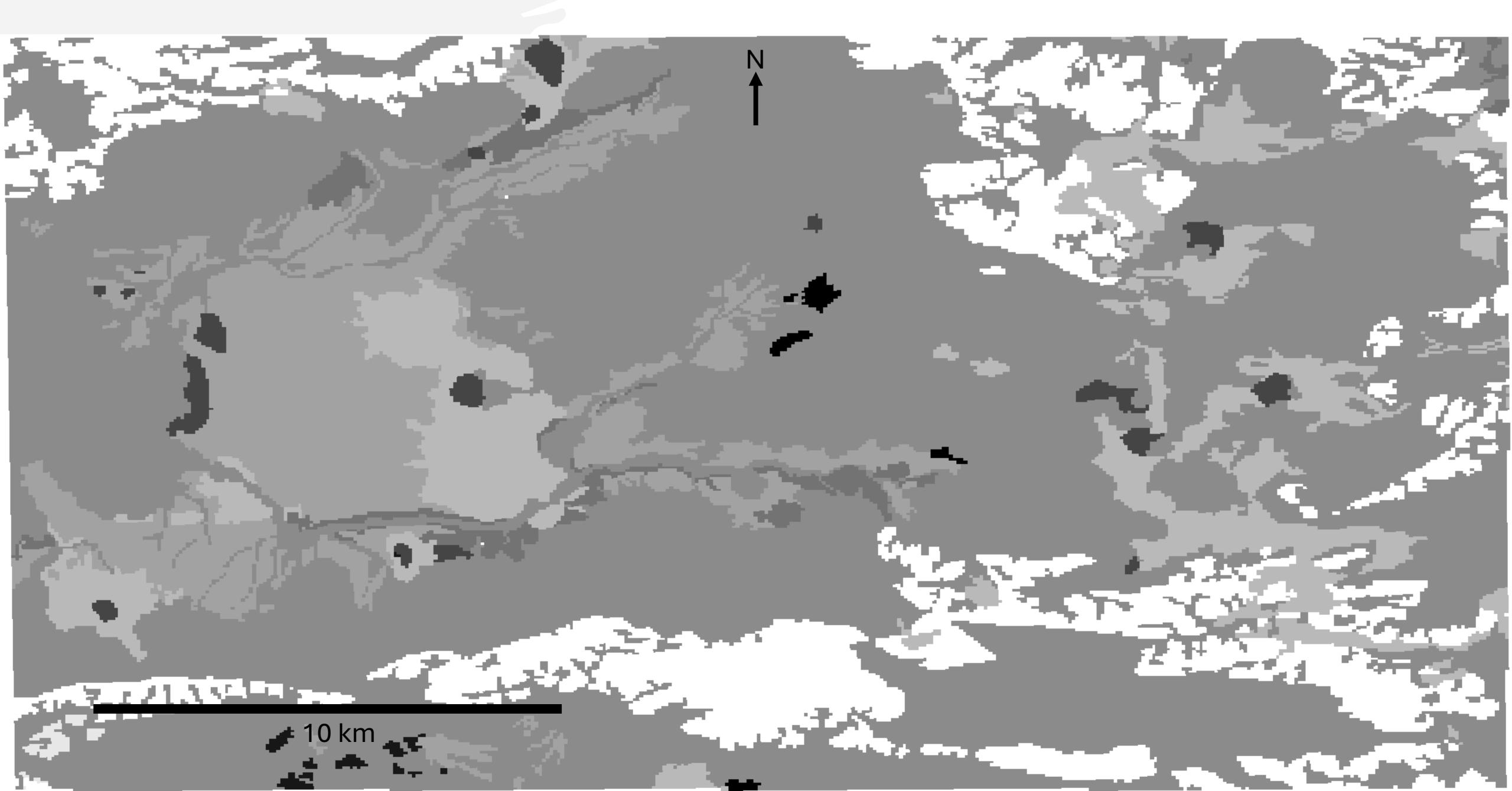


200 m

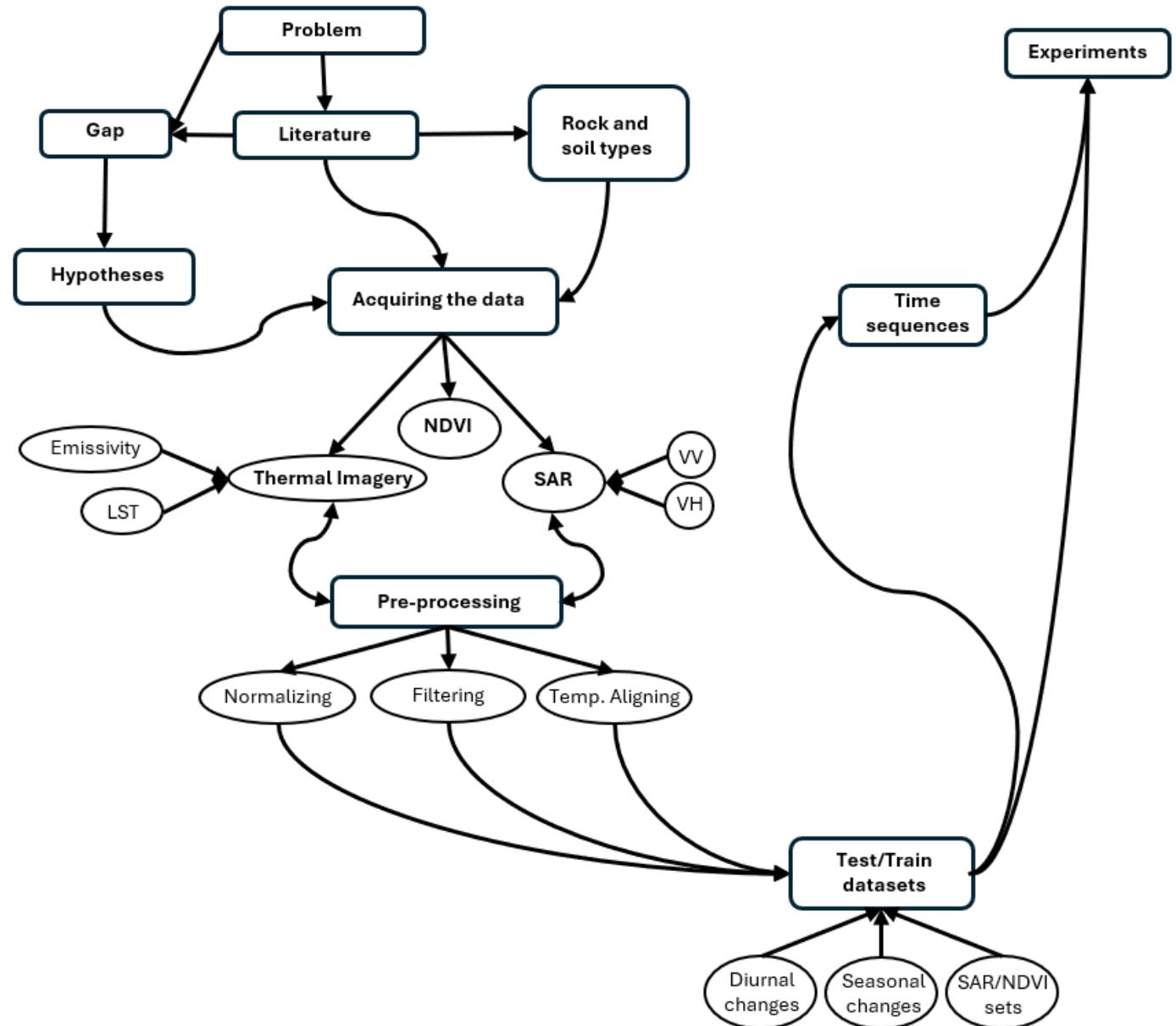


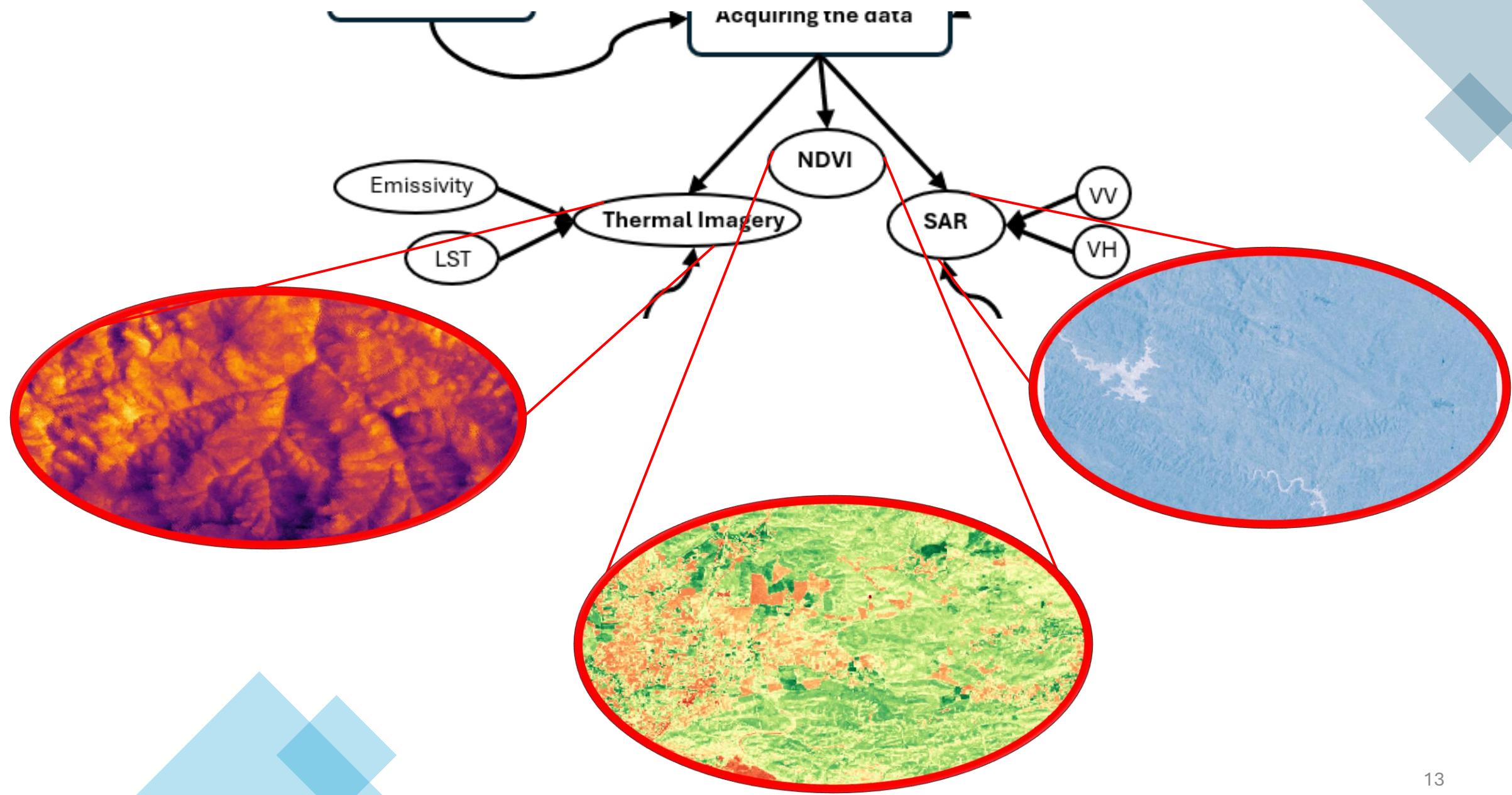
200 m

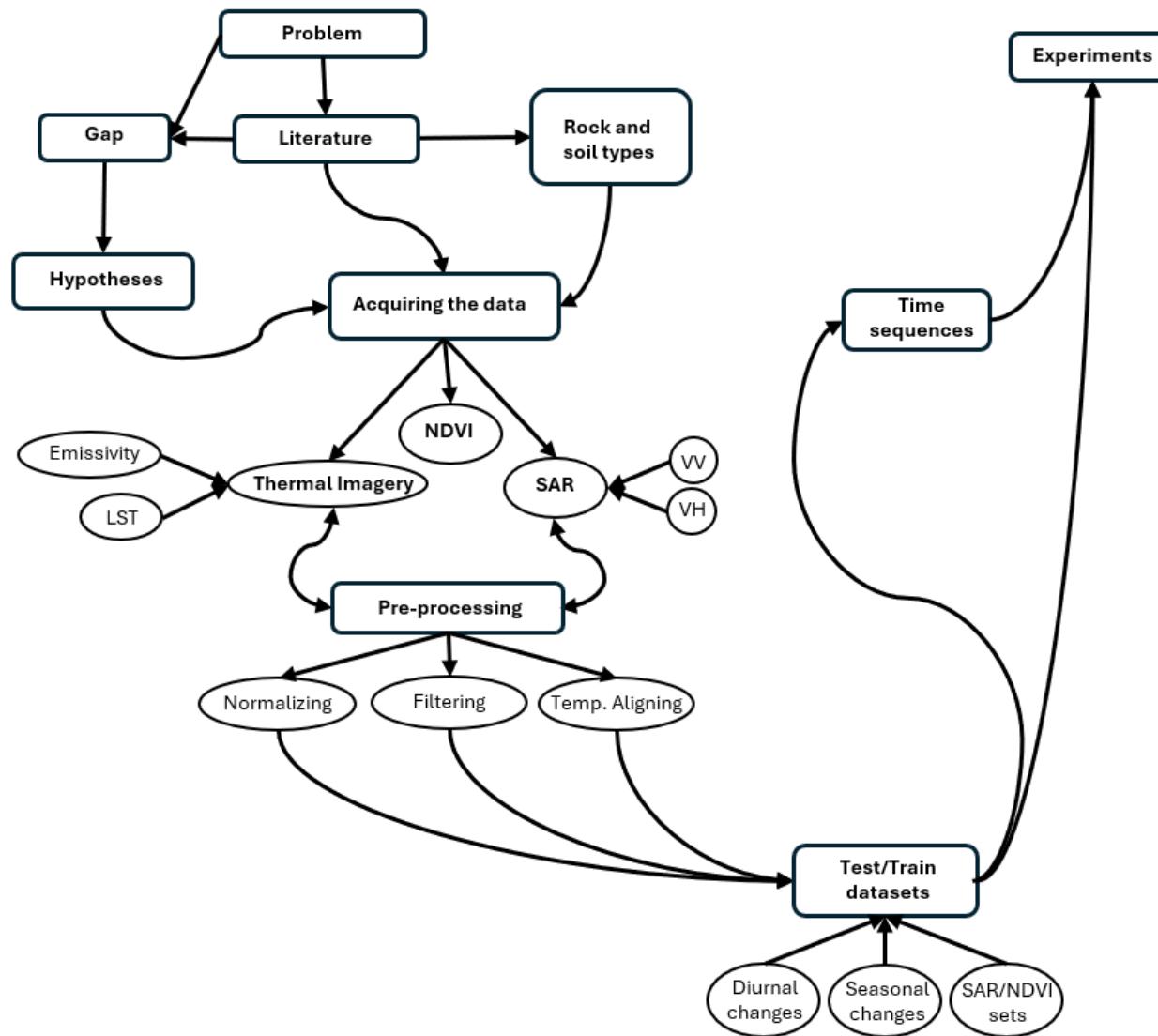




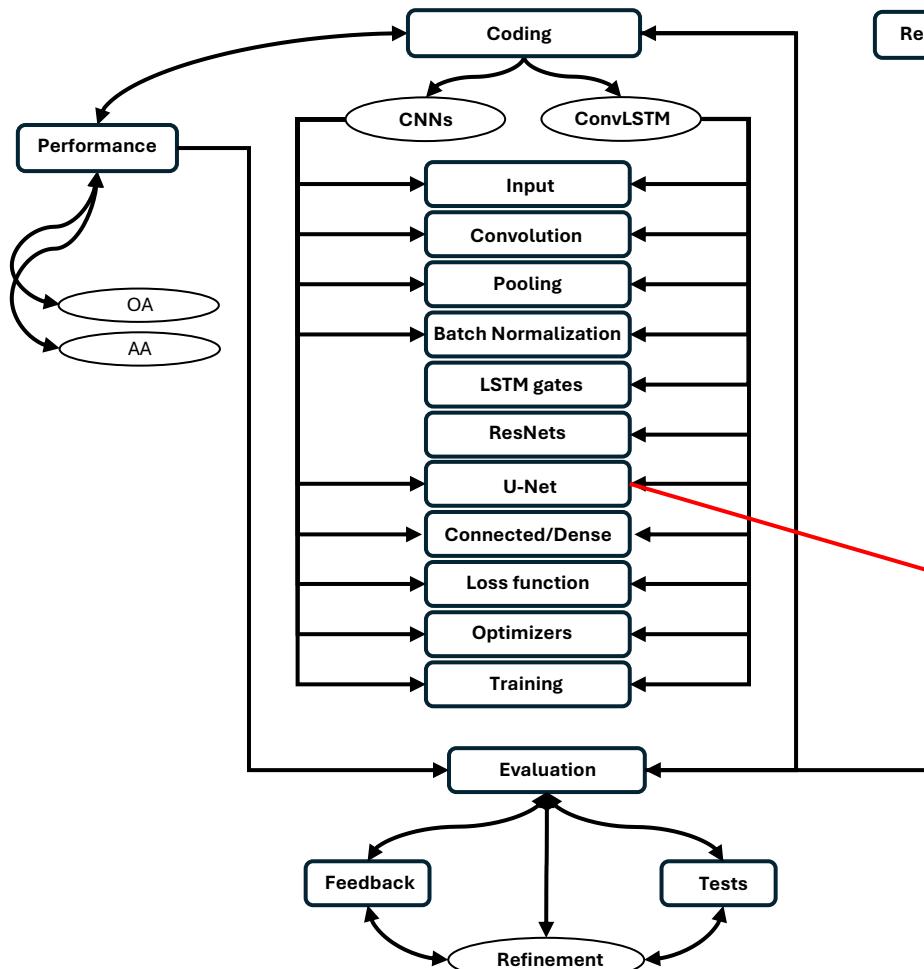
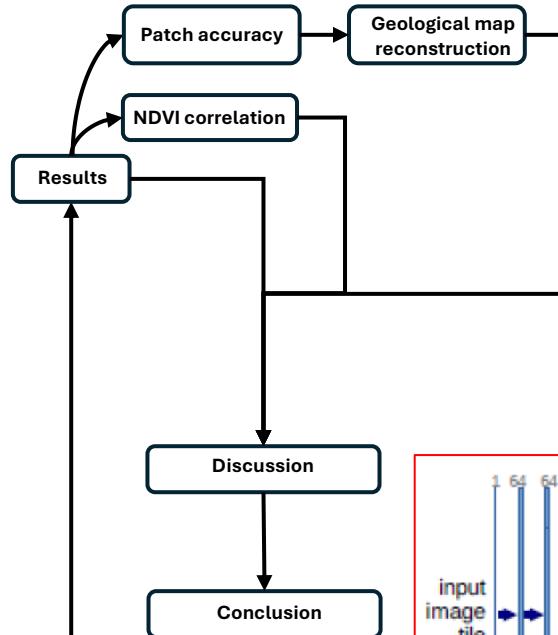
Pre- Processing stage



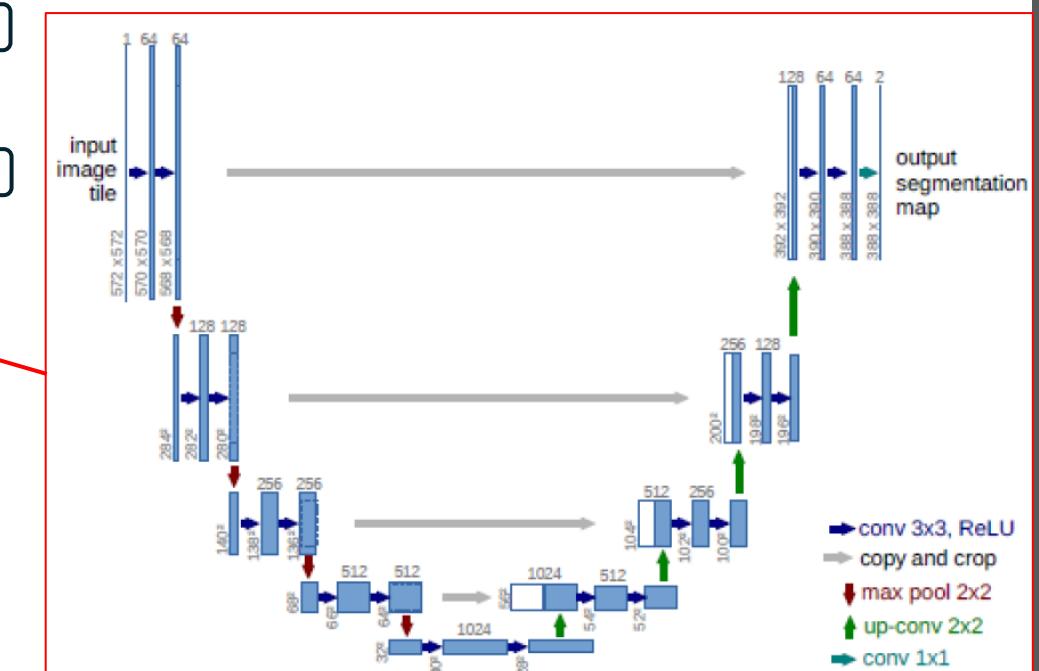




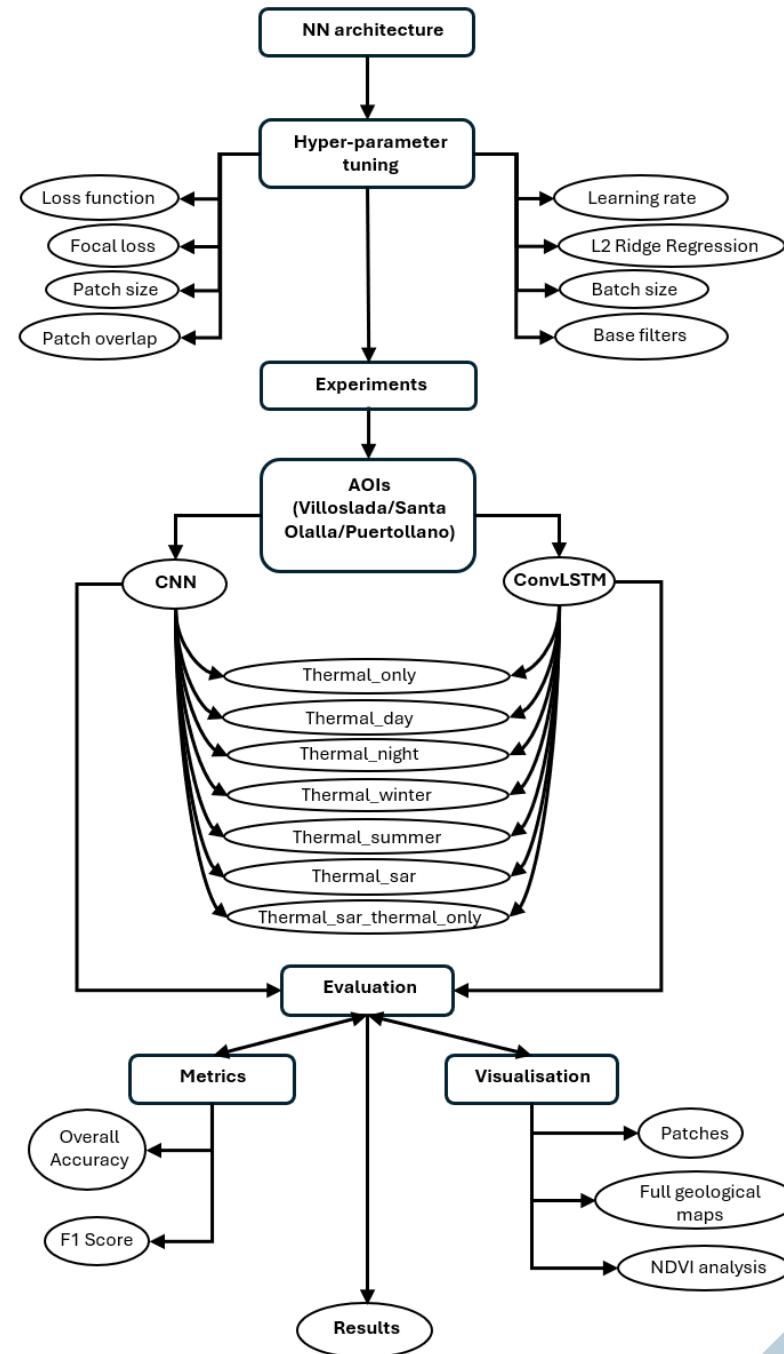
NN architectures

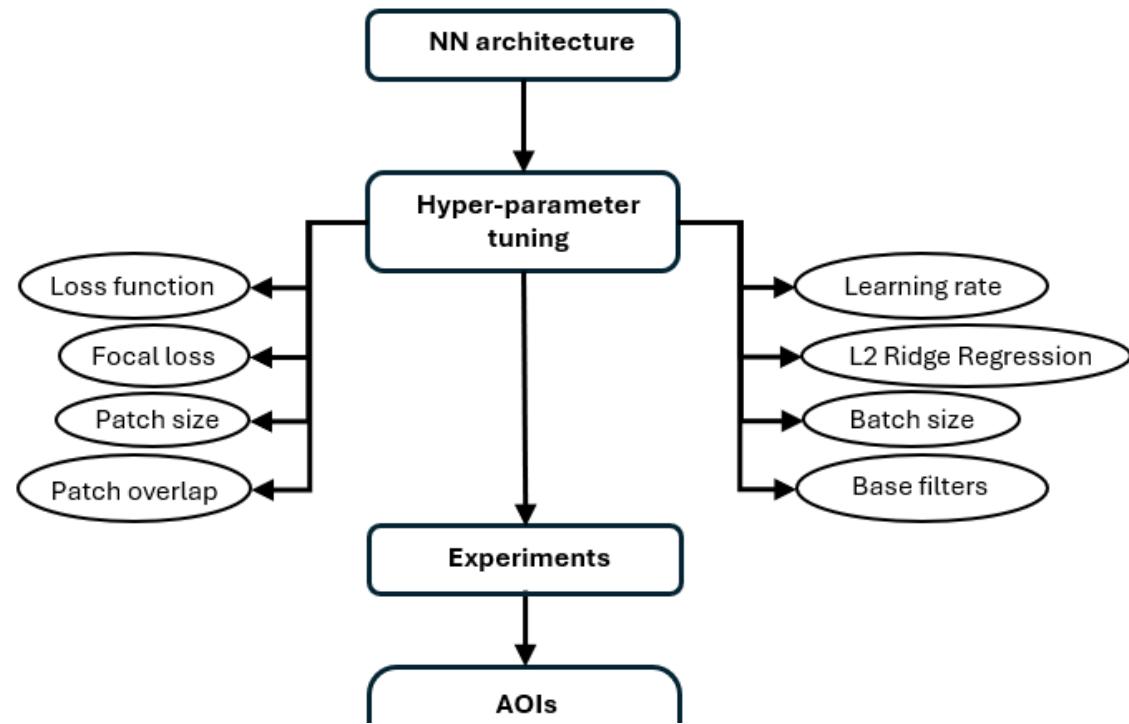


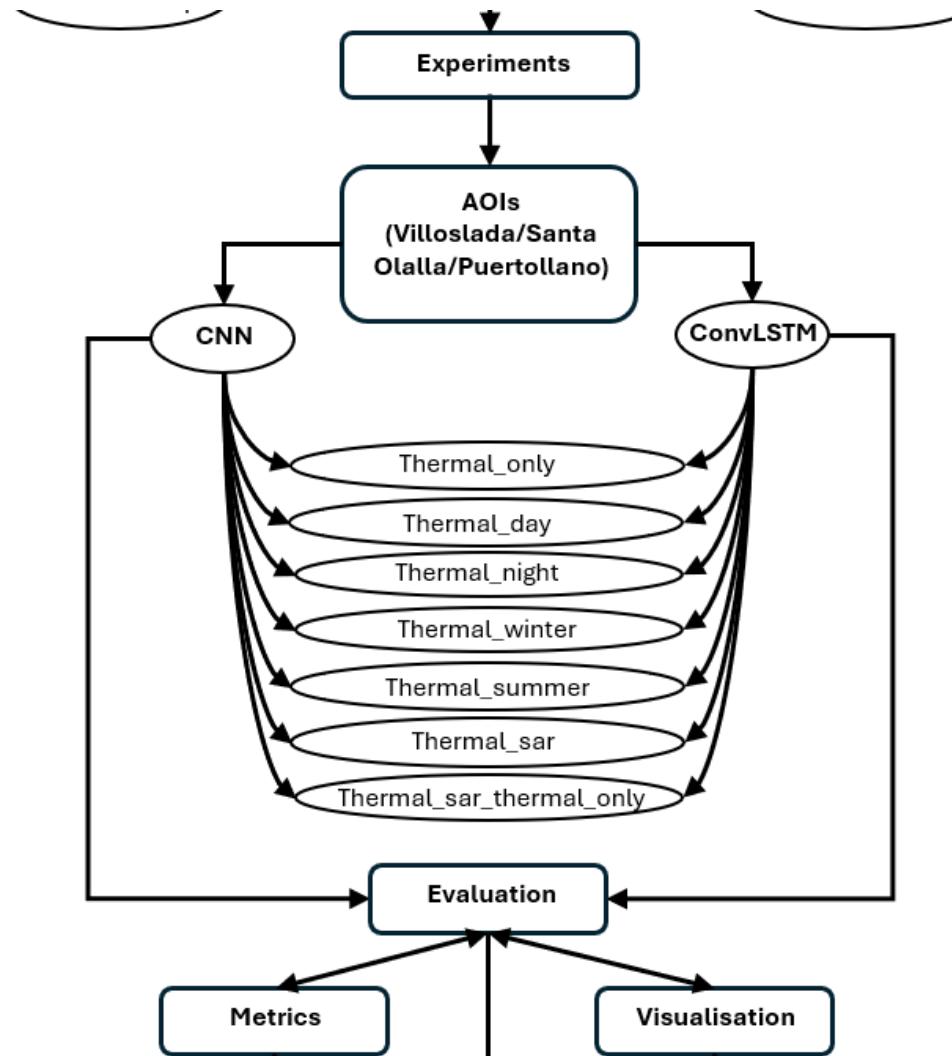
CNN
vs.
ConvLSTM

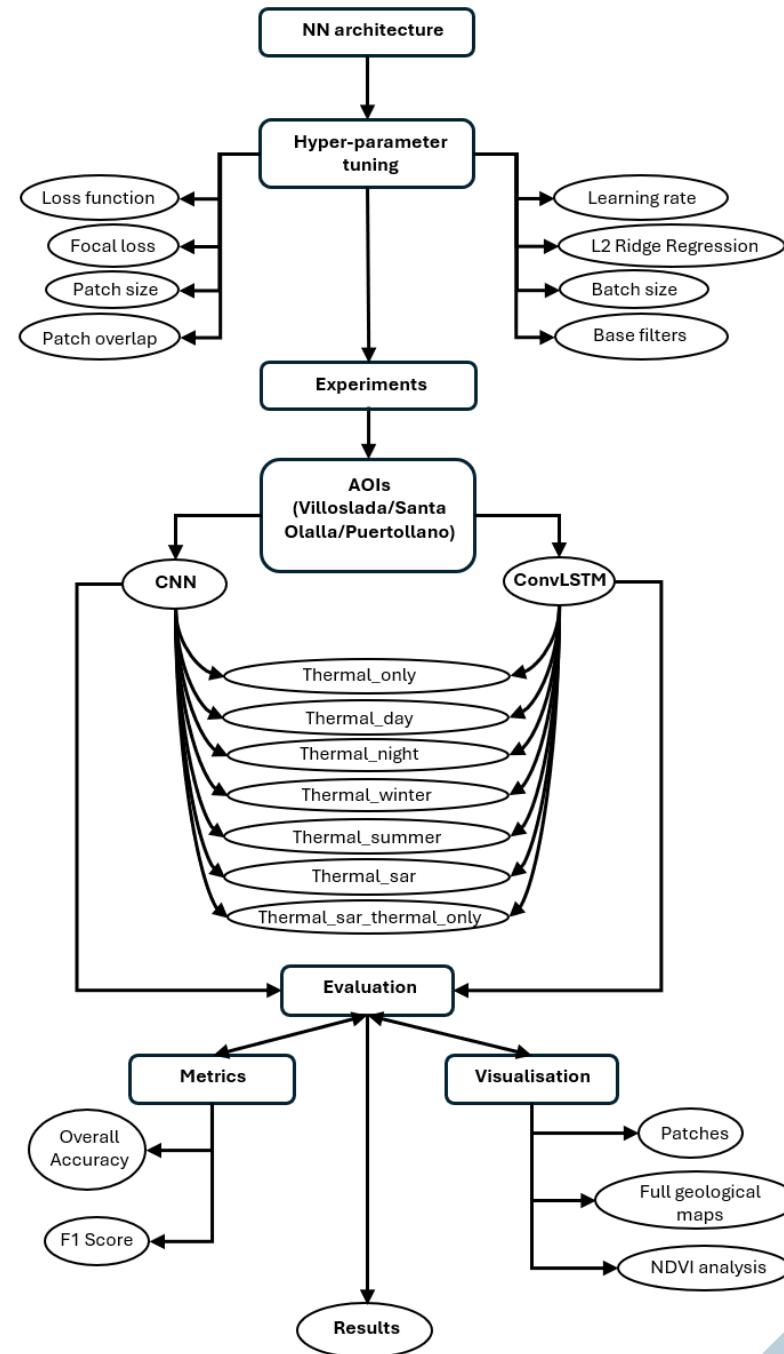


Training and Parametrisation

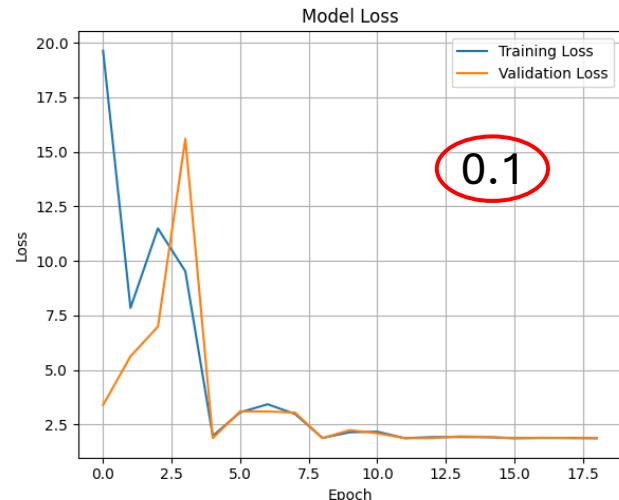
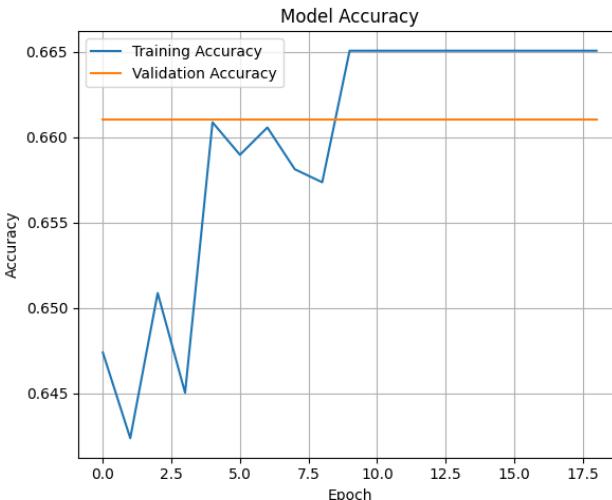
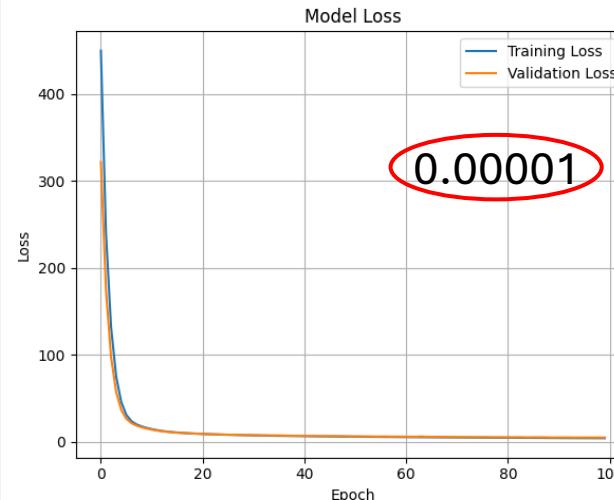
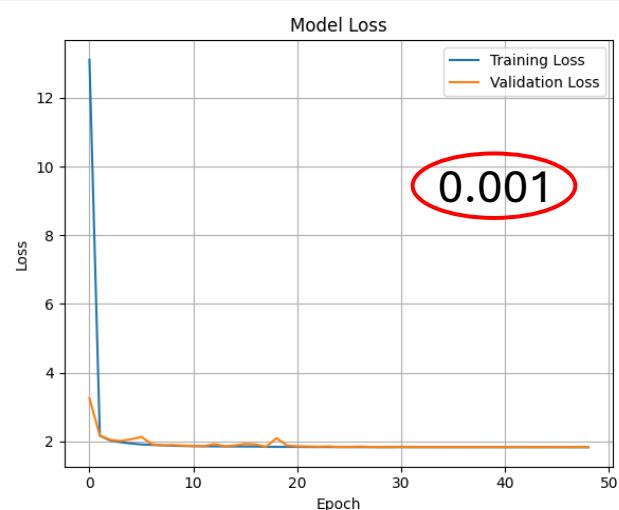
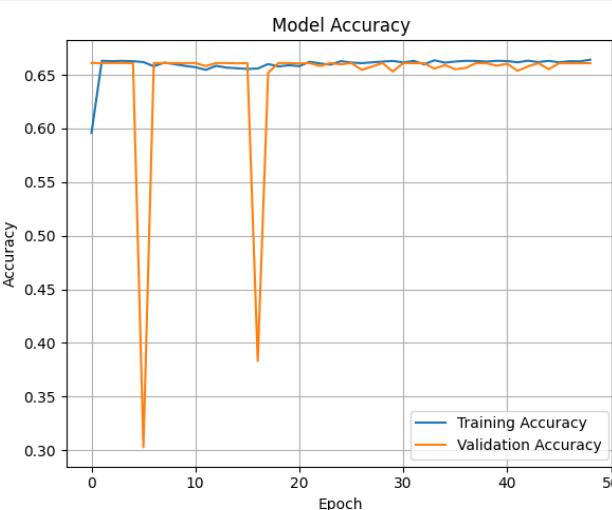






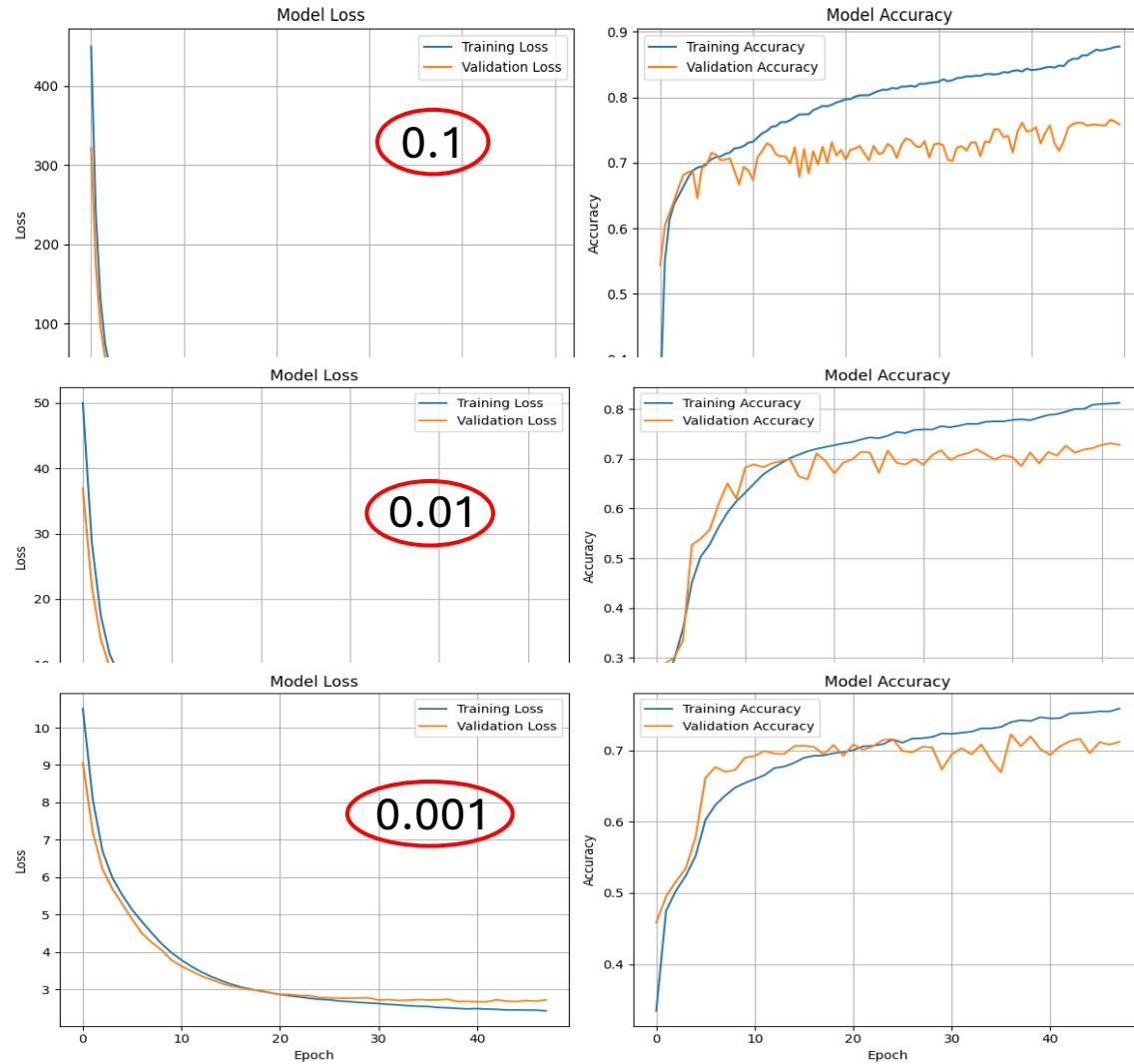
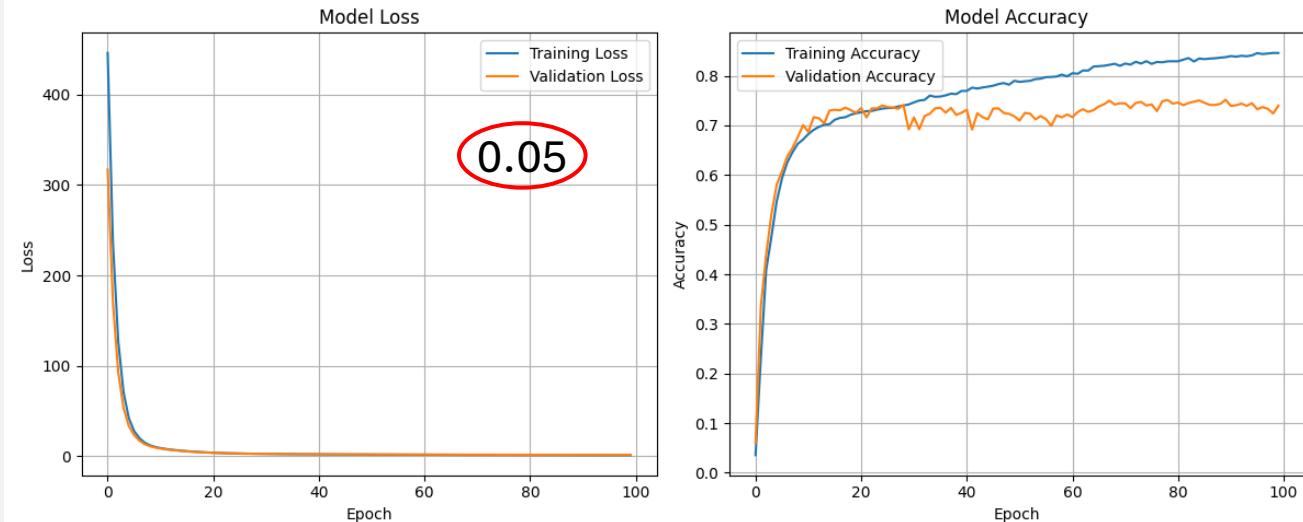


Learning rate



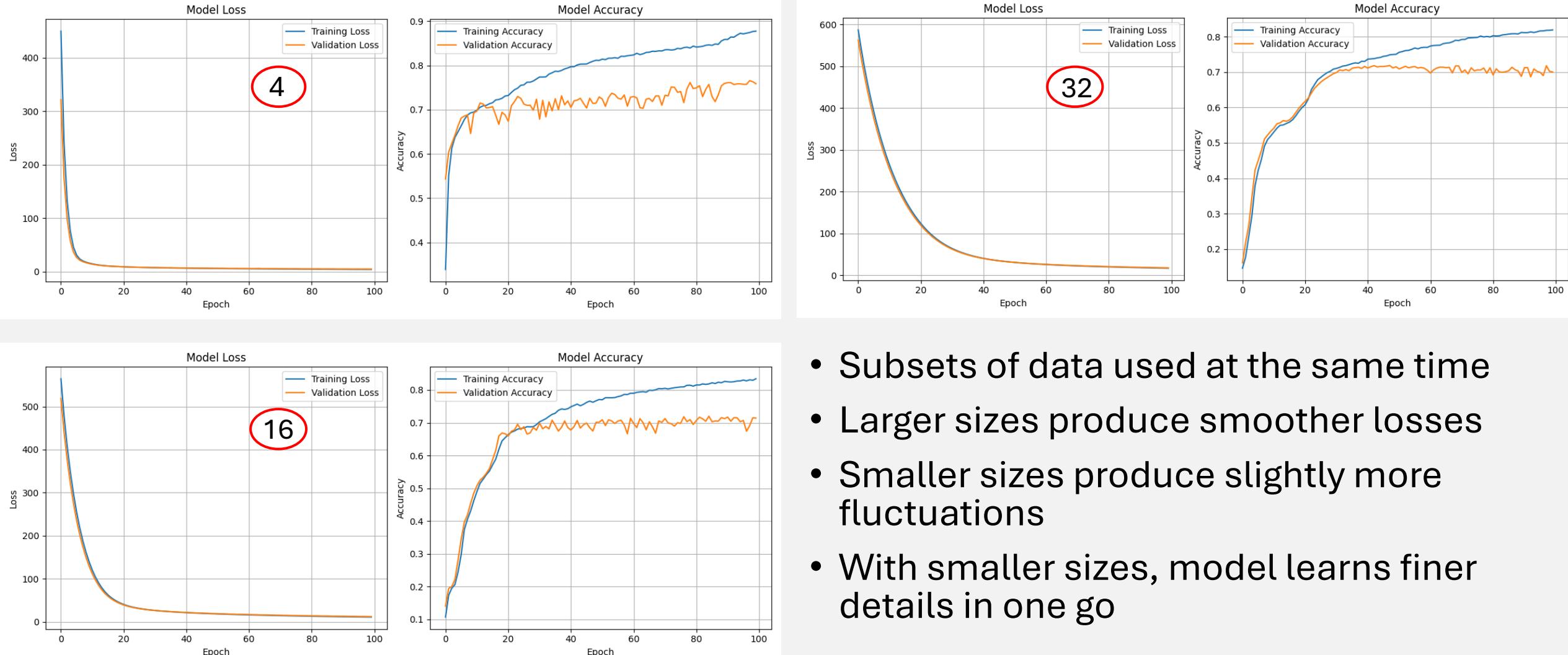
- Amount of parameter adjustment per step
- Higher values produce oscillating loss functions and fluctuating accuracy
- Lower rates produce more stable loss functions
- If too low, learning becomes too slow

L2 Ridge Regression

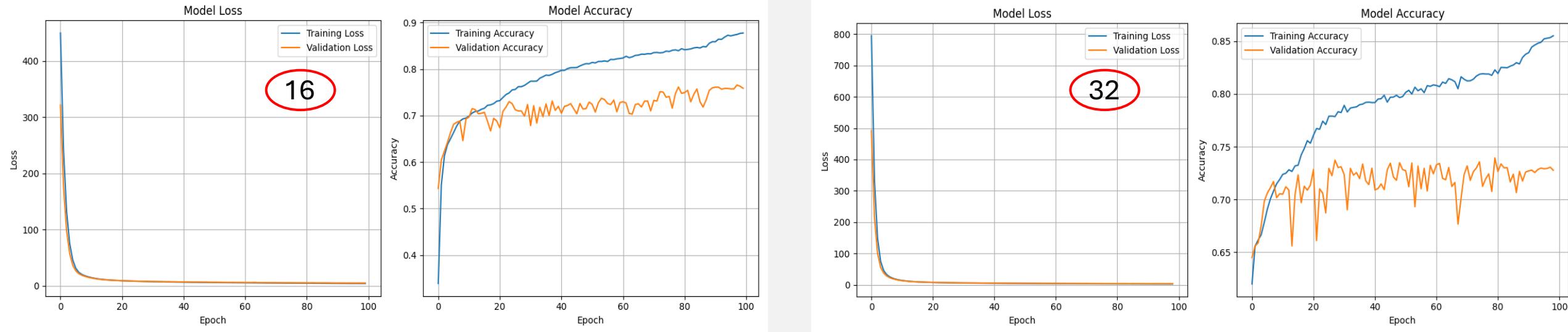


- Added penalty as complexity increases
- Prevents overfitting by avoiding weights becoming too big
- Higher L2 factor, higher initial loss function value
- An intermediate value provides balance between reducing overfitting and accuracy

Batch Size



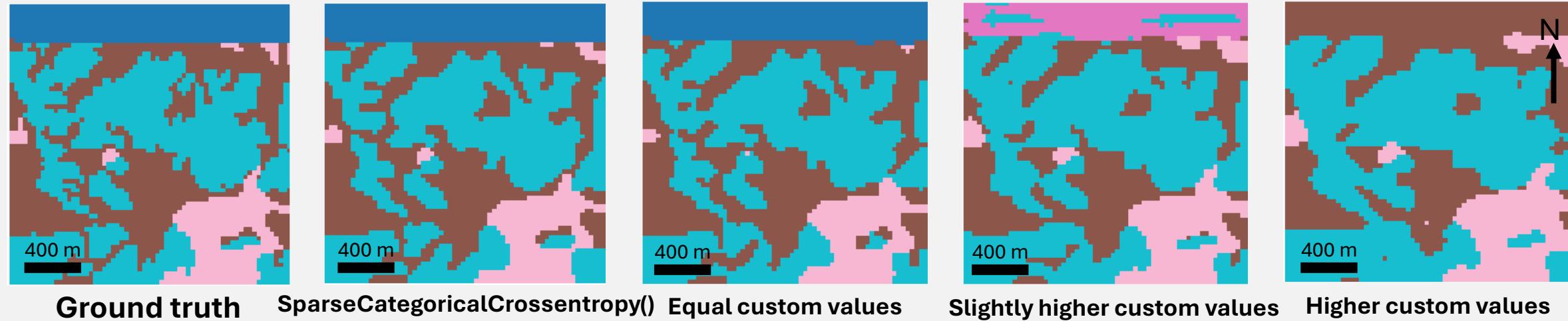
Filters



- Initial number of filters used for convolutional layers
- A higher number of filters exponentially increases computational time
- Higher number also presented higher overfitting

Loss function

25



- The error between the model's output and the ground truth
- Important to deal with class imbalances
- Customizing weights aids in dealing with minority classes

Table 1. Comparison of model performance across different weighting strategies

Model Setting	Accuracy	Loss	F1
SparseCategoricalCrossentropy	0.698	2.60	0.654
Equal values	0.692	2.52	0.651
Slightly higher (rare classes)	0.619	5.38	0.594
Higher (rare classes)	0.487	8.83	0.482

Optuna & Final configuration

26

Table 2. Comparison of accuracies for different hyperparameter configurations

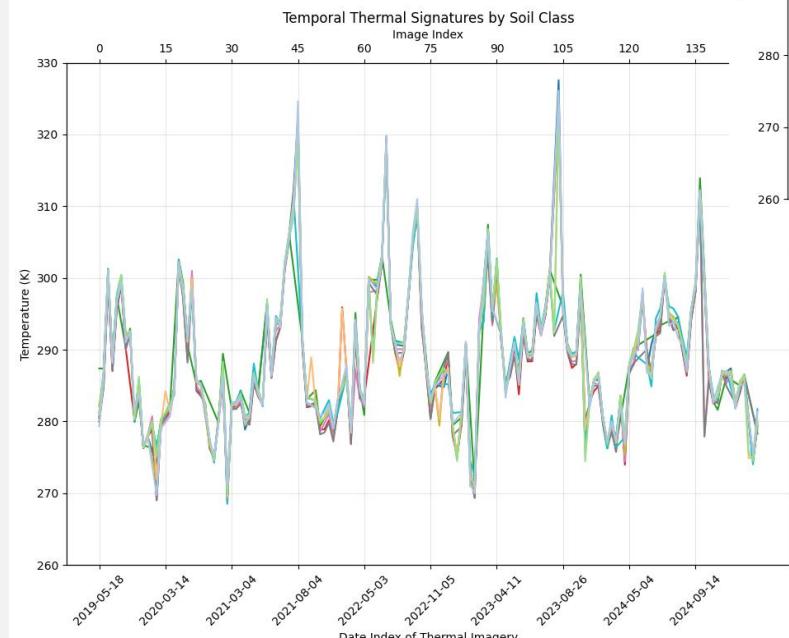
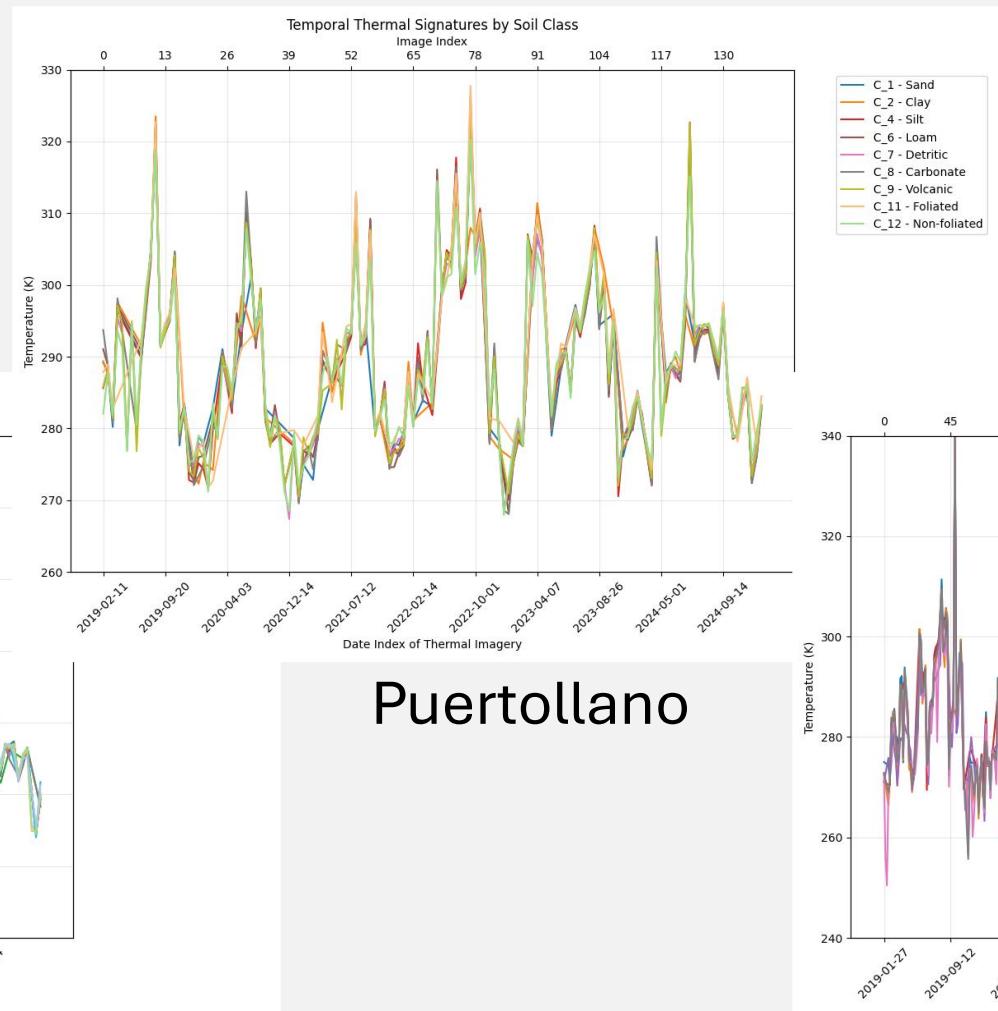
Parameter	Setting	Accuracy
Optuna (final model)	—	0.7289
L2 factor		
	0.1	0.8045
	0.05	0.7328
	0.01	0.7457
	0.001	0.7289
Learning rate		
	0.1	0.6690
	0.001	0.6708
	0.00001	0.8045
Batch size		
	4	0.8045
	16	0.7324
	32	0.7220
Filters base		
	16	0.8045
	32	0.7492

Results

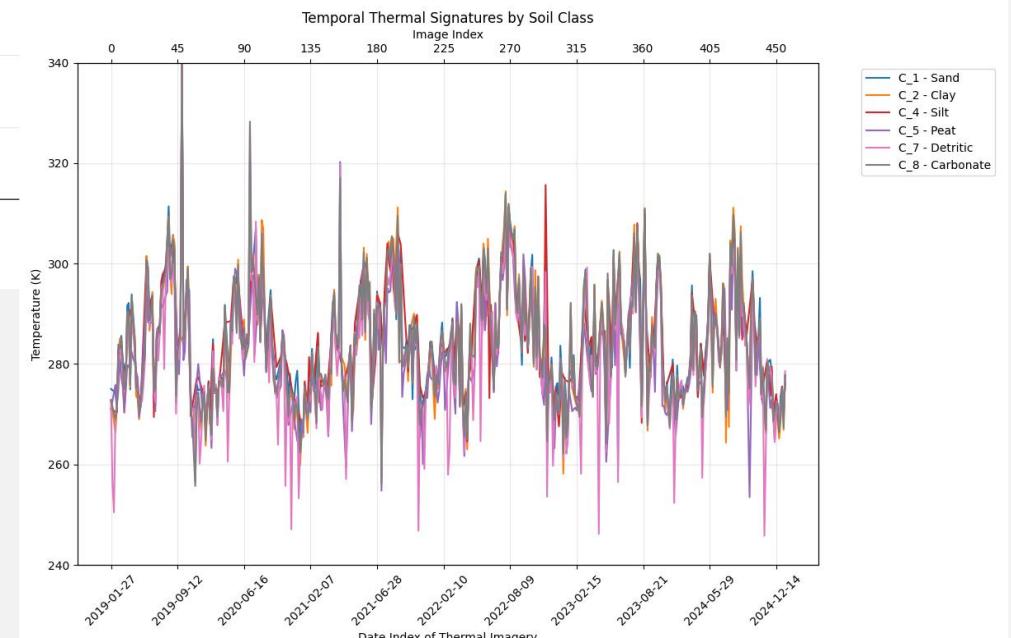
Thermal signatures

28

Santa Olalla



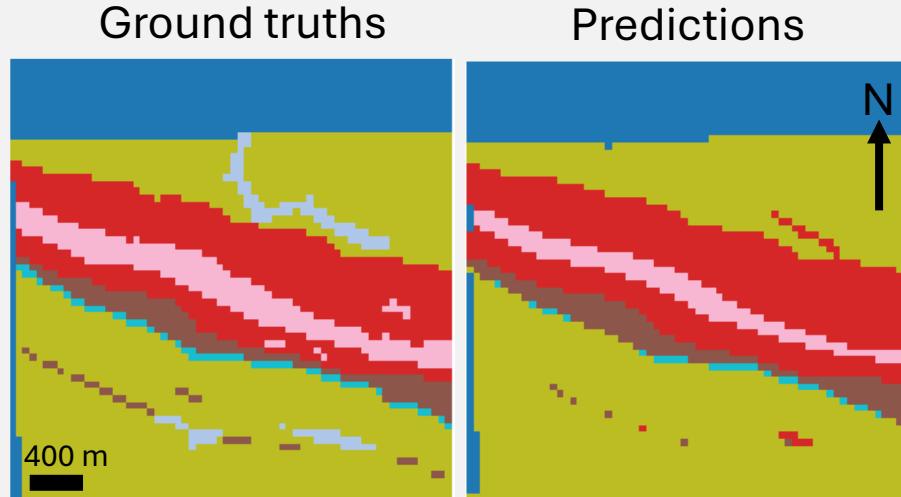
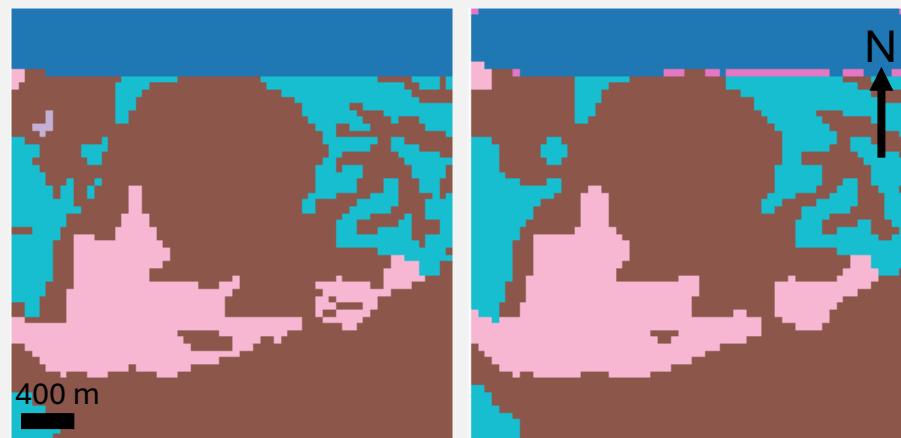
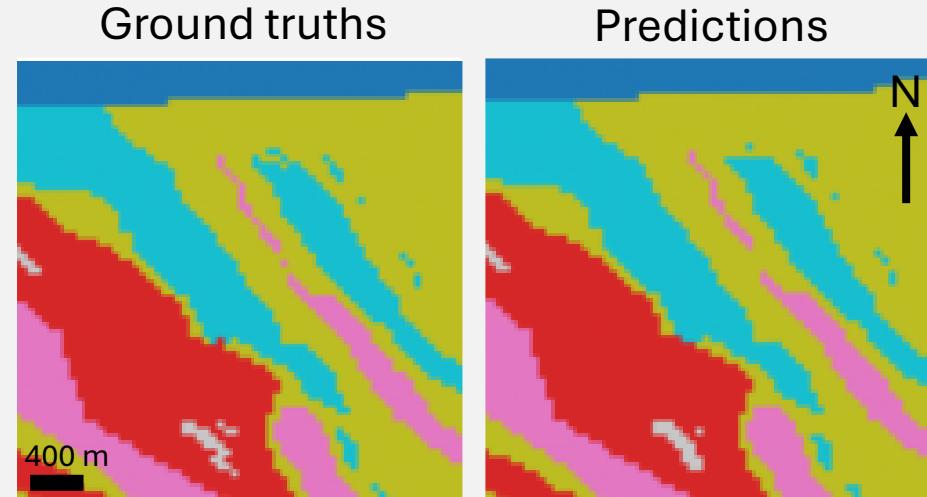
Puertollano



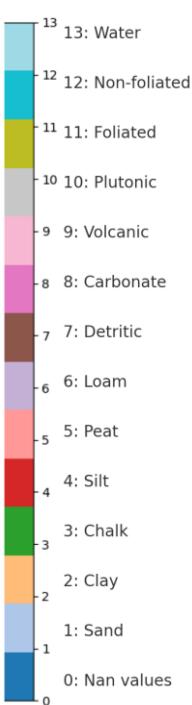
Villoslada

Thermal only

29

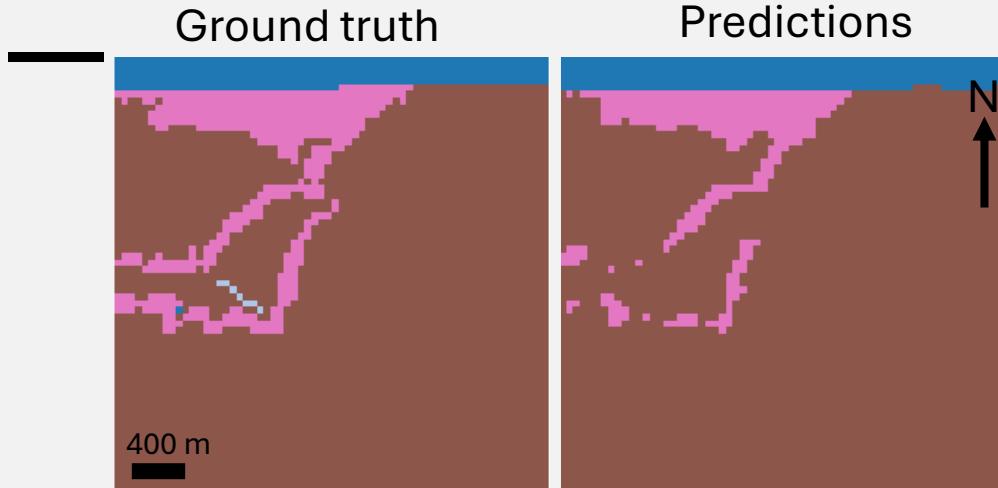


Convolutional Long Short-Term Memory

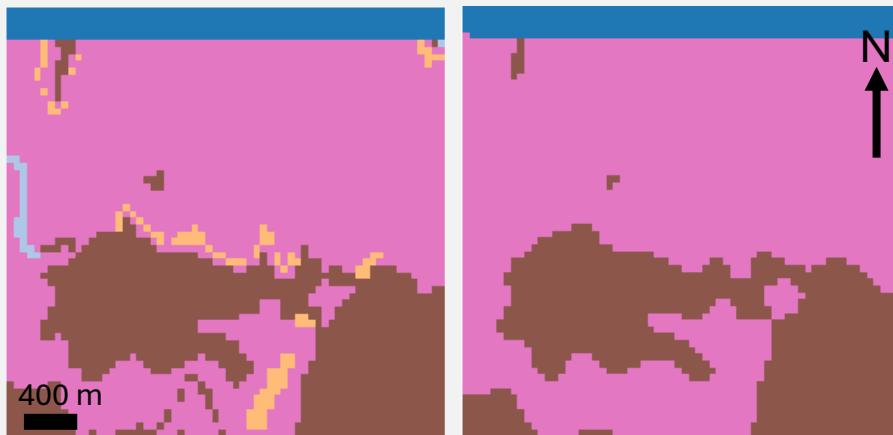
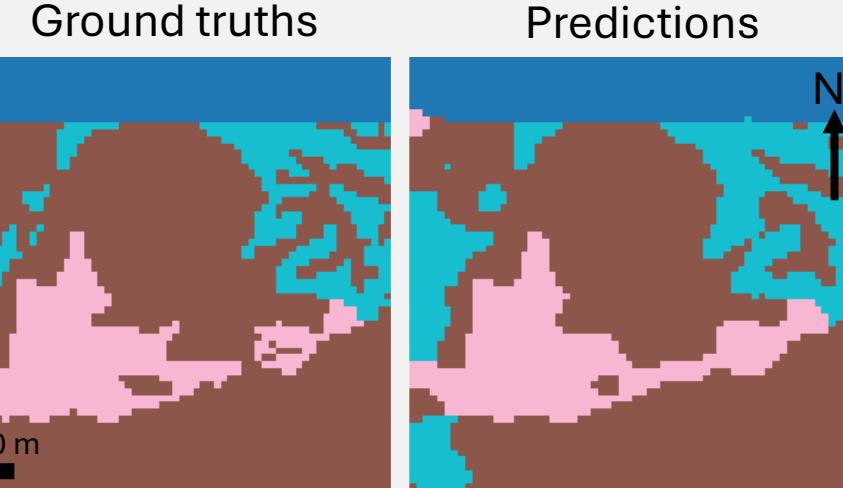


Diurnal experiments - Day

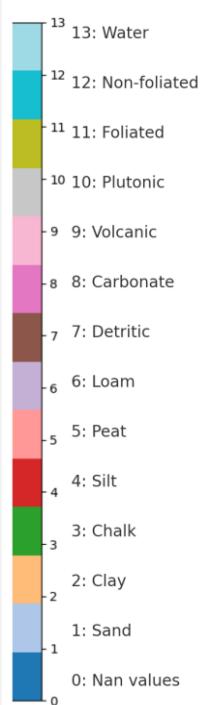
30



Convolutional Neural Network

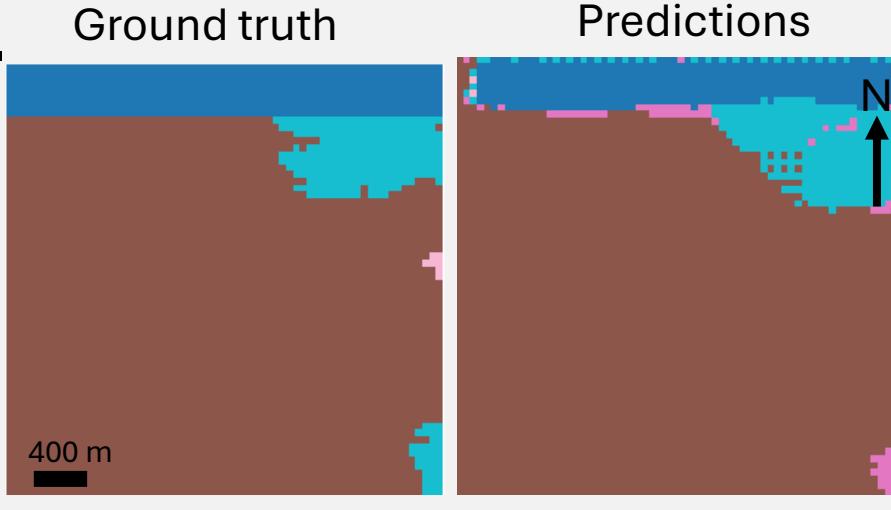


Convolutional Long Short-Term Memory

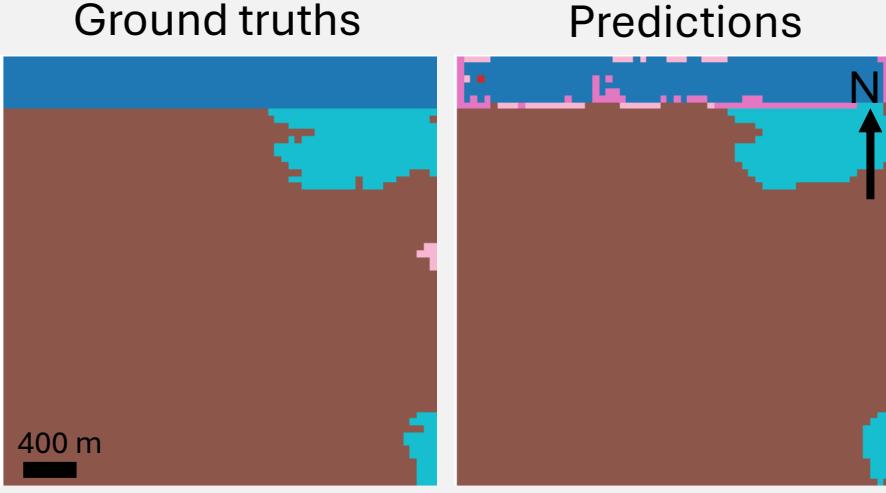


Diurnal experiments - Night

31



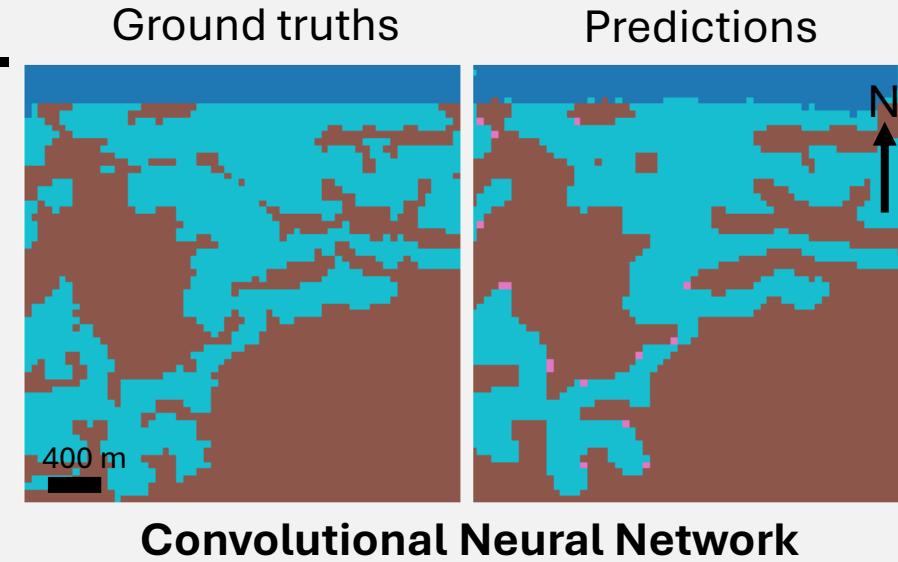
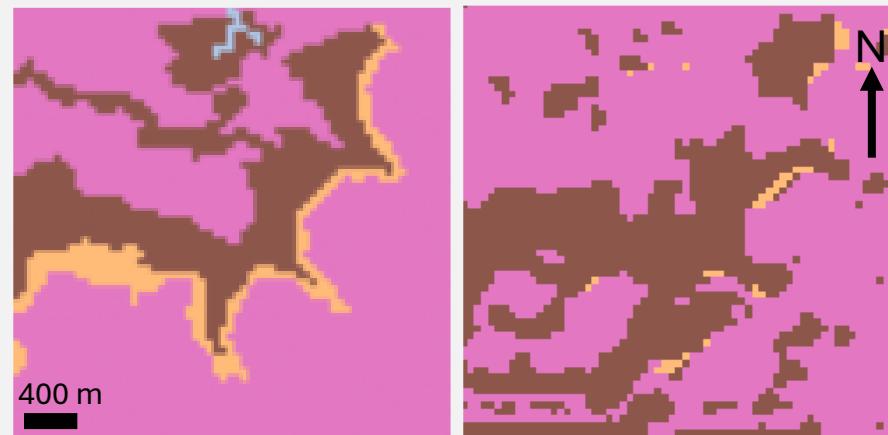
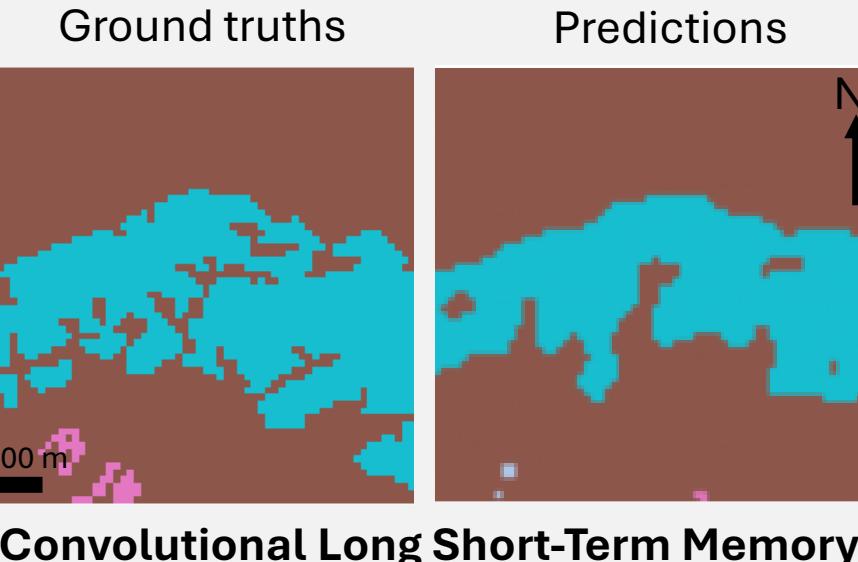
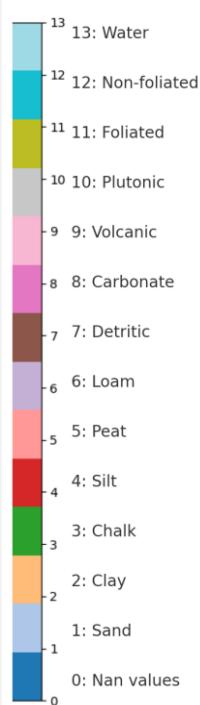
Convolutional Neural Network



Convolutional Long Short-Term Memory

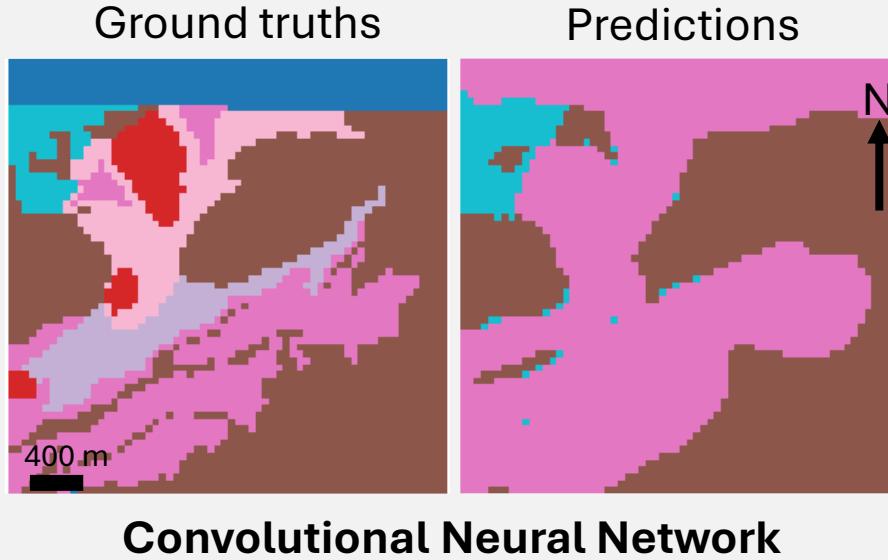
Seasonal experiments - Winter

32

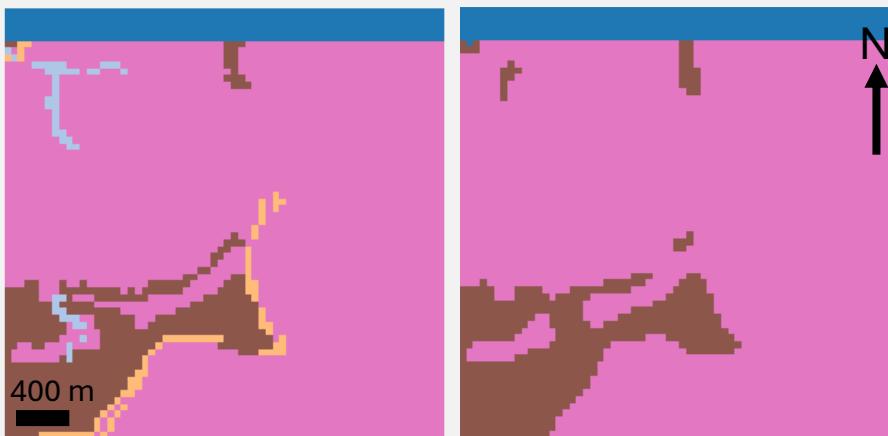
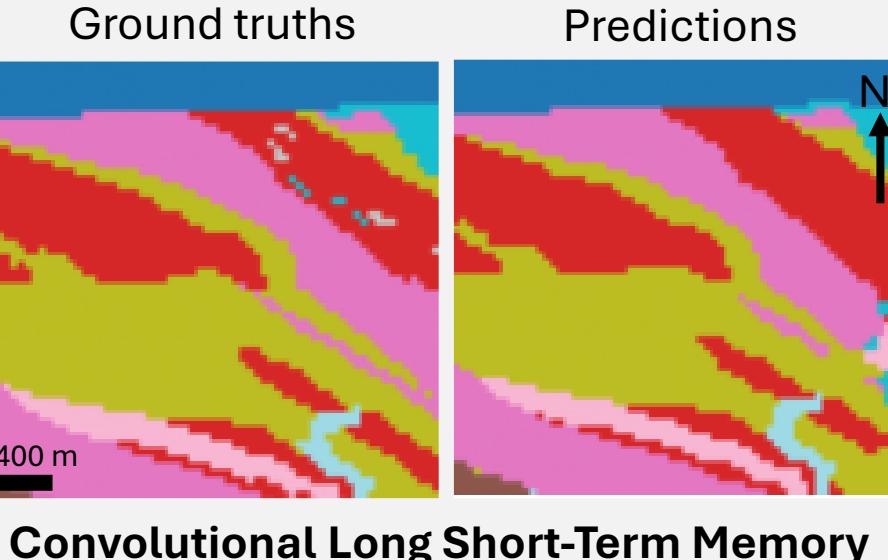


Seasonal experiments - Summer

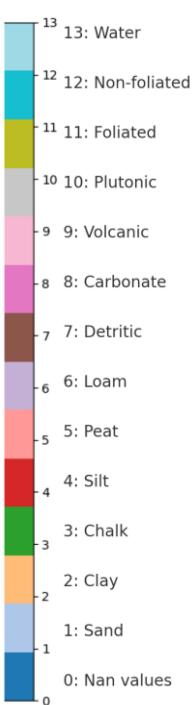
33



Convolutional Neural Network

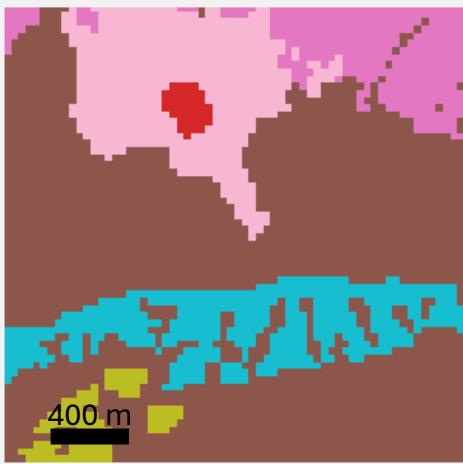


Convolutional Long Short-Term Memory

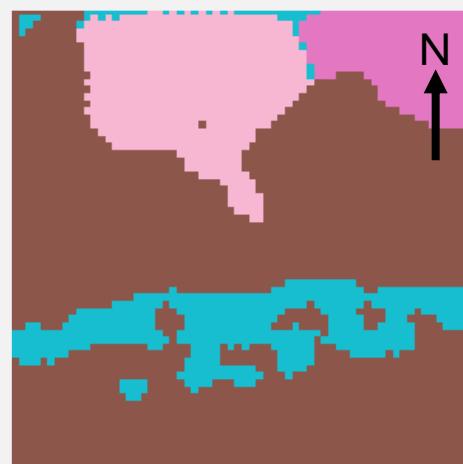
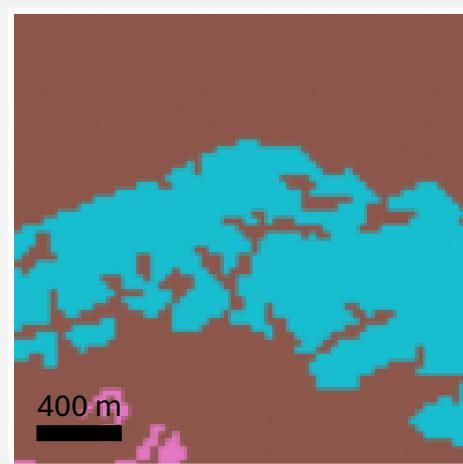


Complementary data - SAR

34



Convolutional Neural Network



Convolutional Long Short-Term Memory

Table 3. Accuracy and F1 scores for Thermal data type

Region / Model	Accuracy	F1 score
Puertollano CNN	0.7128	0.6739
Puertollano ConvLSTM	0.7090	0.7299
Santa Olalla CNN	0.7443	0.6694
Santa Olalla ConvLSTM	0.8106	0.7881
Villoslada CNN	0.7576	0.5156
Villoslada ConvLSTM	0.7759	0.6952

Table 4. Accuracy and F1 scores for Day data type

Region / Model	Accuracy	F1 score
Puertollano CNN	0.6532	0.4580
Puertollano ConvLSTM	0.5804	0.5811
Santa Olalla CNN	0.5793	0.3915
Santa Olalla ConvLSTM	0.7691	0.7607
Villoslada CNN	0.7280	0.4102
Villoslada ConvLSTM	0.7424	0.6871

Table 5. Accuracy and F1 scores for Night data type

Region / Model	Accuracy	F1 score
Puertollano CNN	0.6587	0.5510
Puertollano ConvLSTM	0.6255	0.4029
Santa Olalla CNN	0.5918	0.2396
Santa Olalla ConvLSTM	0.5548	0.3538
Villoslada CNN	0.7206	0.5943
Villoslada ConvLSTM	0.7185	0.4064

Table 6. Accuracy and F1 scores for Winter data type

Region / Model	Accuracy	F1 score
Puertollano CNN	0.6820	0.6004
Puertollano ConvLSTM	0.6786	0.3512
Santa Olalla CNN	0.6203	0.4504
Santa Olalla ConvLSTM	0.5748	0.3054
Villoslada CNN	0.7417	0.6159
Villoslada ConvLSTM	0.7347	0.6021

Table 7. Accuracy and F1 scores for Summer data type

Region / Model	Accuracy	F1 score
Puertollano CNN	0.6873	0.5709
Puertollano ConvLSTM	0.7337	0.5652
Santa Olalla CNN	0.6400	0.5945
Santa Olalla ConvLSTM	0.8016	0.7761
Villoslada CNN	0.7407	0.5975
Villoslada ConvLSTM	0.7130	0.6886

Table 8. Accuracy and F1 scores for SAR data type

Region / Model	Accuracy	F1 score
Puertollano CNN	0.6472	0.4429
Puertollano ConvLSTM	0.5814	0.4699
Santa Olalla CNN	0.5701	0.4668
Santa Olalla ConvLSTM	0.5072	0.3455
Villoslada CNN	0.7010	0.5901
Villoslada ConvLSTM	0.6319	0.4355

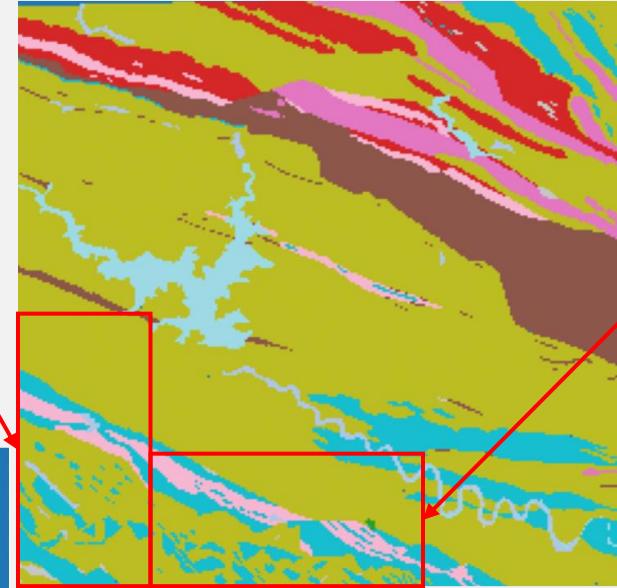
Further experimentation

- Patch discontinuities
- Geological map reconstruction
- Overfitting
- NDVI data
- Confidence vs. Vegetation

Geological map reconstruction

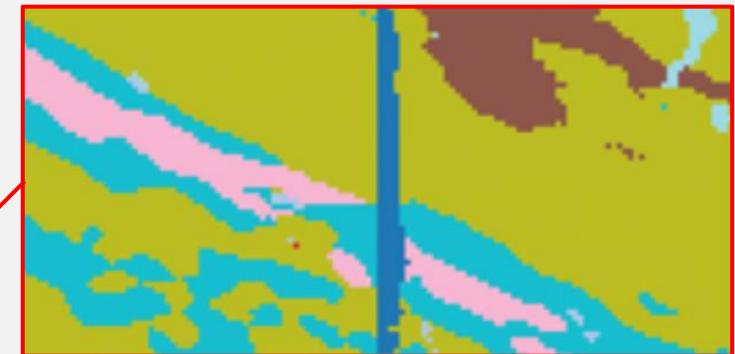
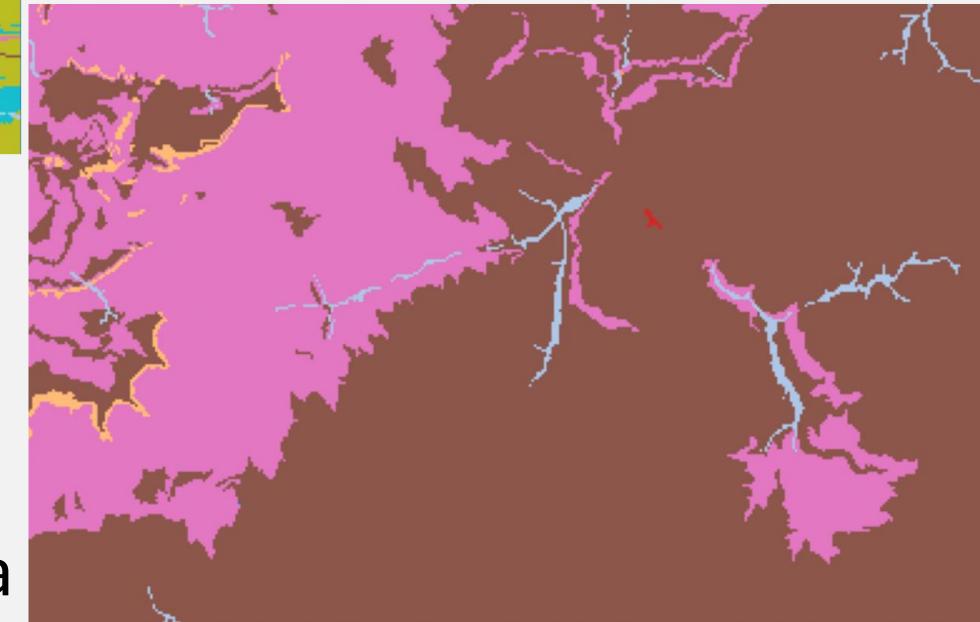
37

Puertollano



13: Water
12: Non-foliated
11: Foliated
10: Plutonic
9: Volcanic
8: Carbonate
7: Detritic
6: Loam
5: Peat
4: Silt
3: Chalk
2: Clay
1: Sand
0: Nan values

Villoslada



Final configurations

Table 11. Final configuration of parameters for CNN and ConvLSTM models

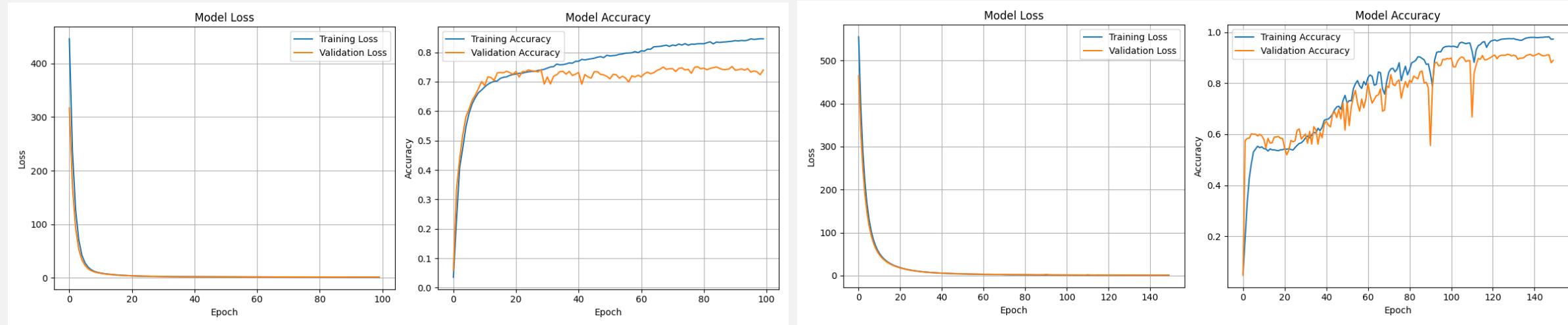
Parameter	Value
L2 Regularization	0.05
Learning Rate (CNN)	0.00001
Learning Rate (ConvLSTM)	0.0001
Batch Size	4
Base Filters	16
Patch Size	64/128 pixels
Patch Overlap	50%
Loss Function	Custom + Focal Loss
Epoch Count	150

Table 12. Class weights assigned for each geological region to address class imbalance

Geological Class	Puertollano	Santa Olalla	Villoslada
NaNs (Background)	1.5	1.5	1.0
Sand	10.0	8.0	3.5
Clay	10.0	1.0	2.5
Chalk	1.0	8.0	1.0
Silt	7.5	4.0	4.0
Peat	1.0	1.0	5.0
Loam	4.0	1.0	1.0
Detritic	1.0	2.5	1.0
Carbonate	1.5	3.0	2.0
Volcanic	3.0	3.0	1.0
Plutonic	1.0	3.0	1.0
Foliated	15.0	1.0	1.0
Non-Foliated	2.5	4.0	1.0
Water	1.0	4.0	1.0

Further experimentation

39



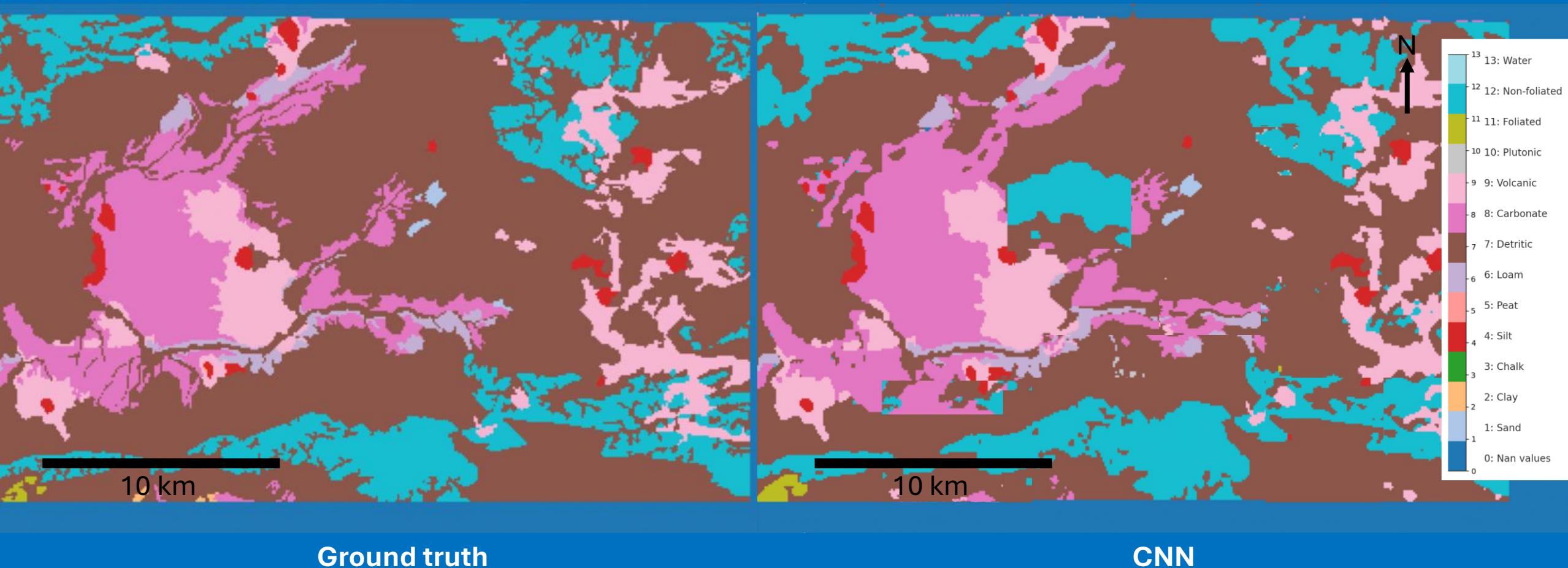
Accuracy and F1 scores of initial Thermal data tests

Region / Model	Accuracy	F1 score
Puertollano CNN	0.7128	0.6739
Puertollano ConvLSTM	0.7090	0.7299
Santa Olalla CNN	0.7443	0.6694
Santa Olalla ConvLSTM	0.8106	0.7881
Villoslada CNN	0.7576	0.5156
Villoslada ConvLSTM	0.7759	0.6952

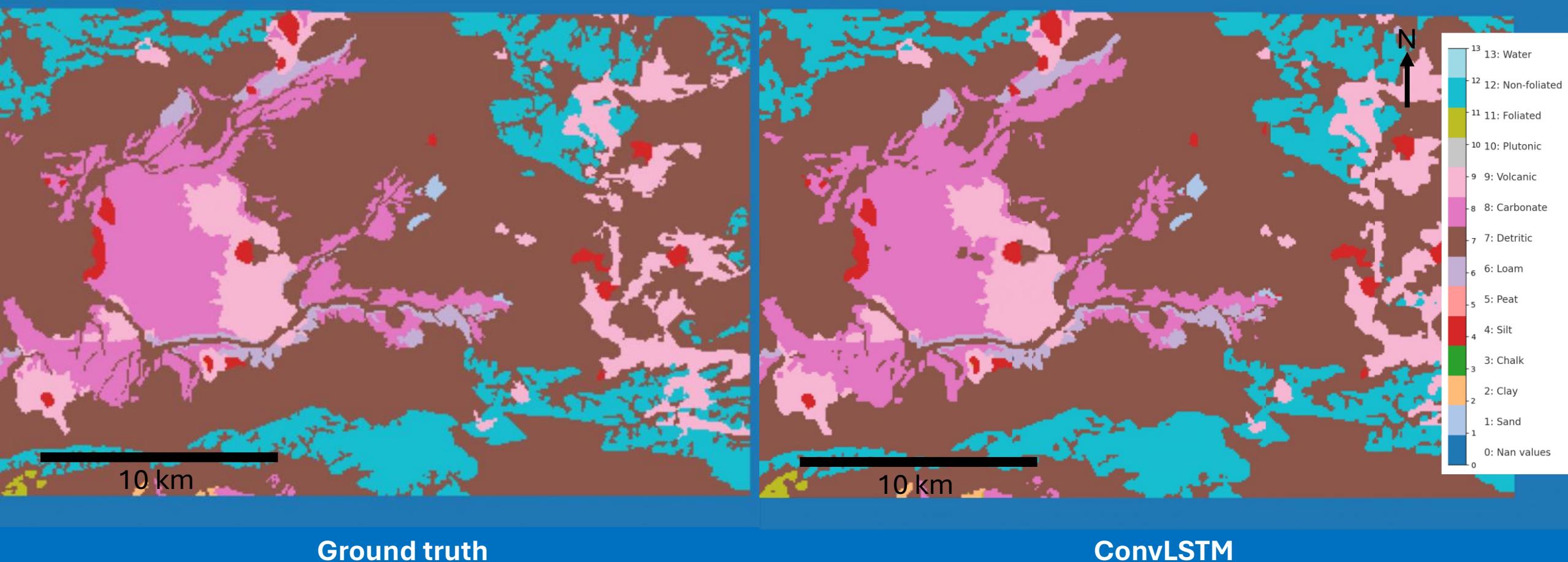
Accuracy and F1 score for final Thermal data tests

Region / Model	Accuracy	F1 score
Puertollano CNN	0.8220	0.7148
Puertollano ConvLSTM	0.9632	0.8499
Santa Olalla CNN	0.8673	0.6093
Santa Olalla ConvLSTM	0.9577	0.8018
Villoslada CNN	0.9252	0.7522
Villoslada ConvLSTM	0.9210	0.7926

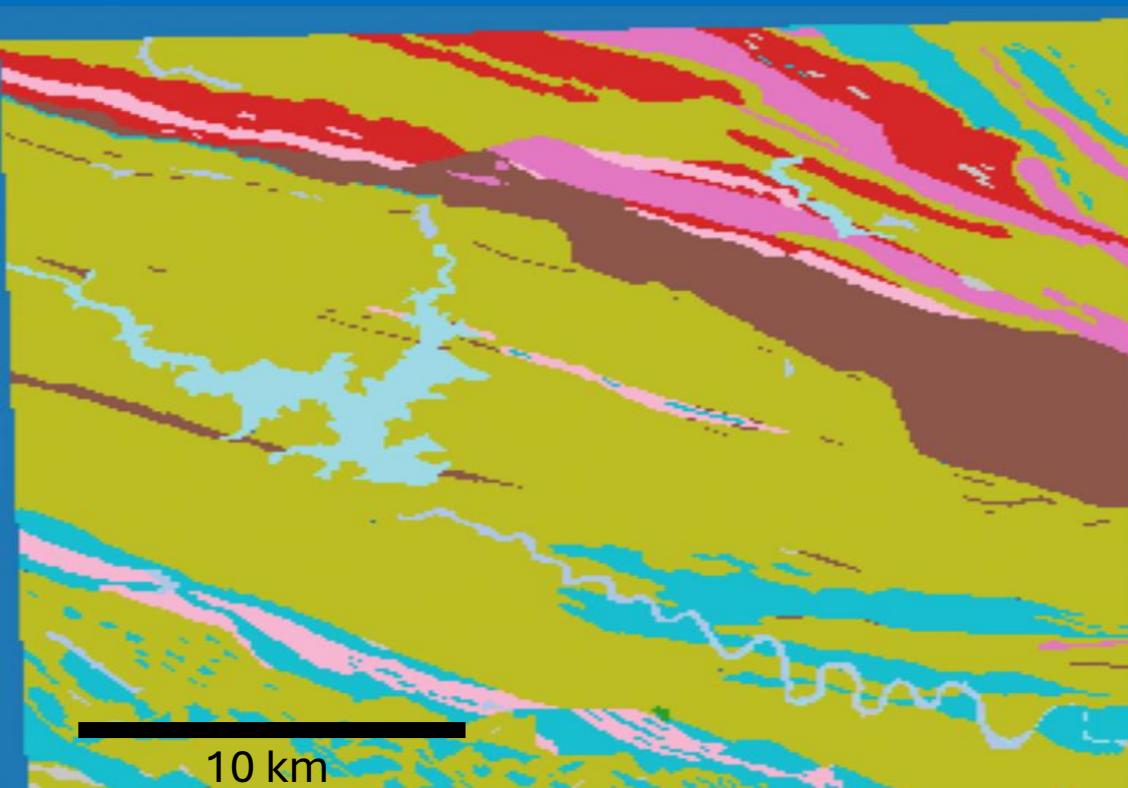
Puertollano



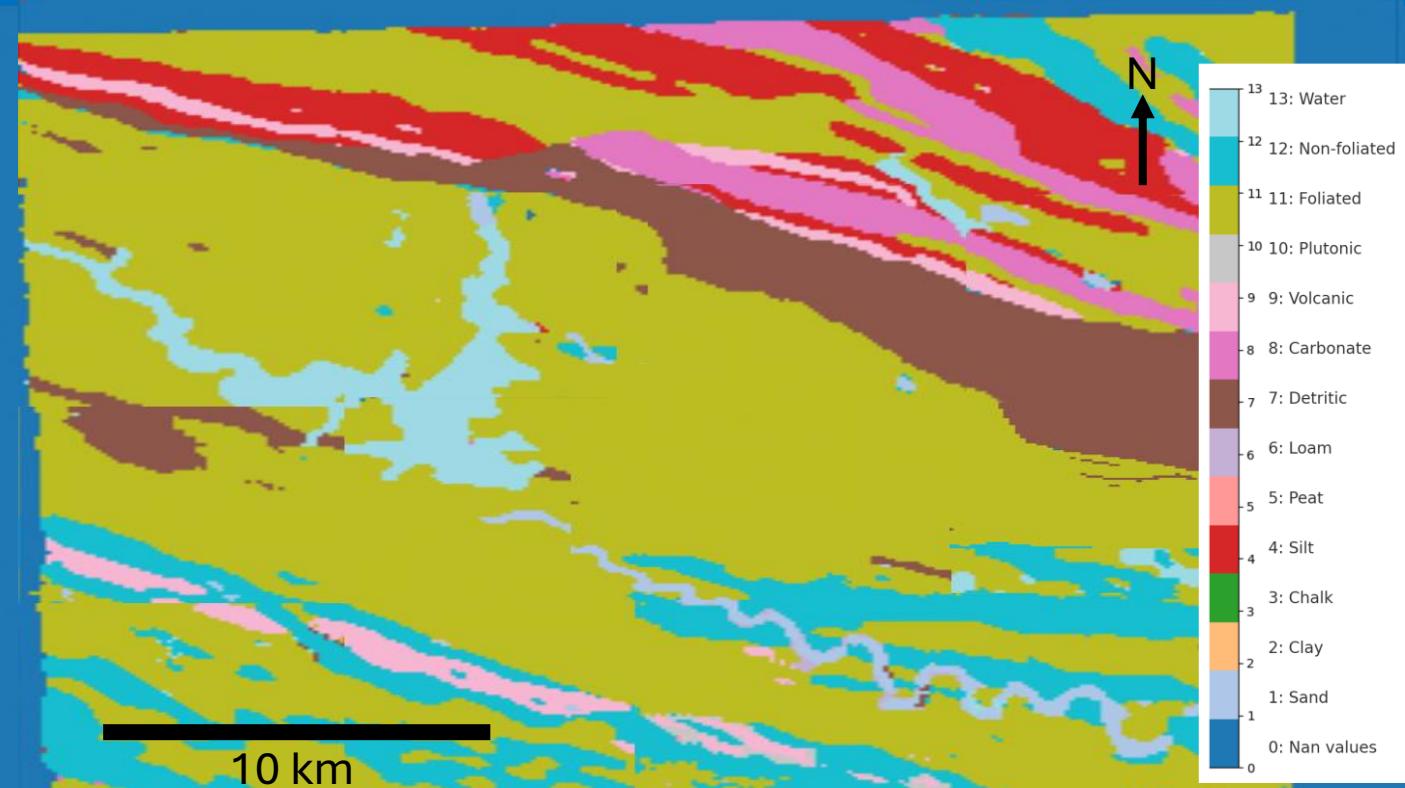
Puertollano



Santa Olalla del Cala

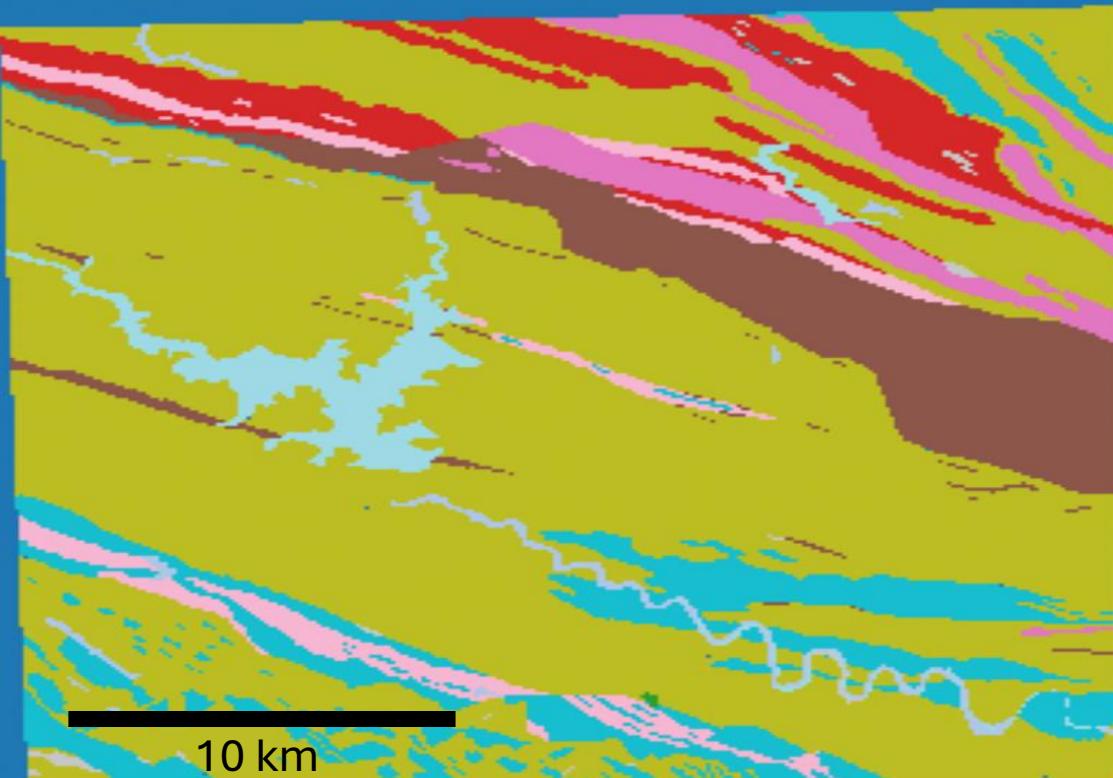


Ground truth

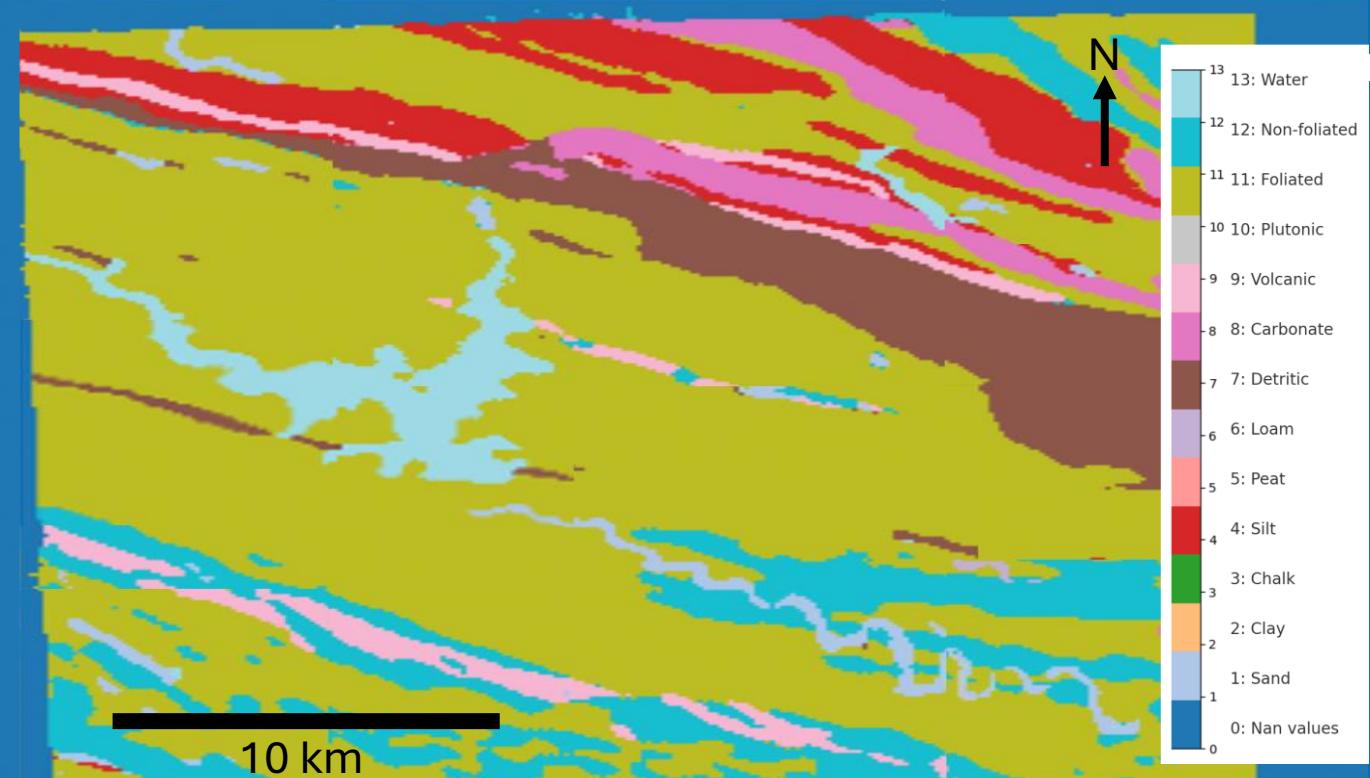


CNN

Santa Olalla del Cala

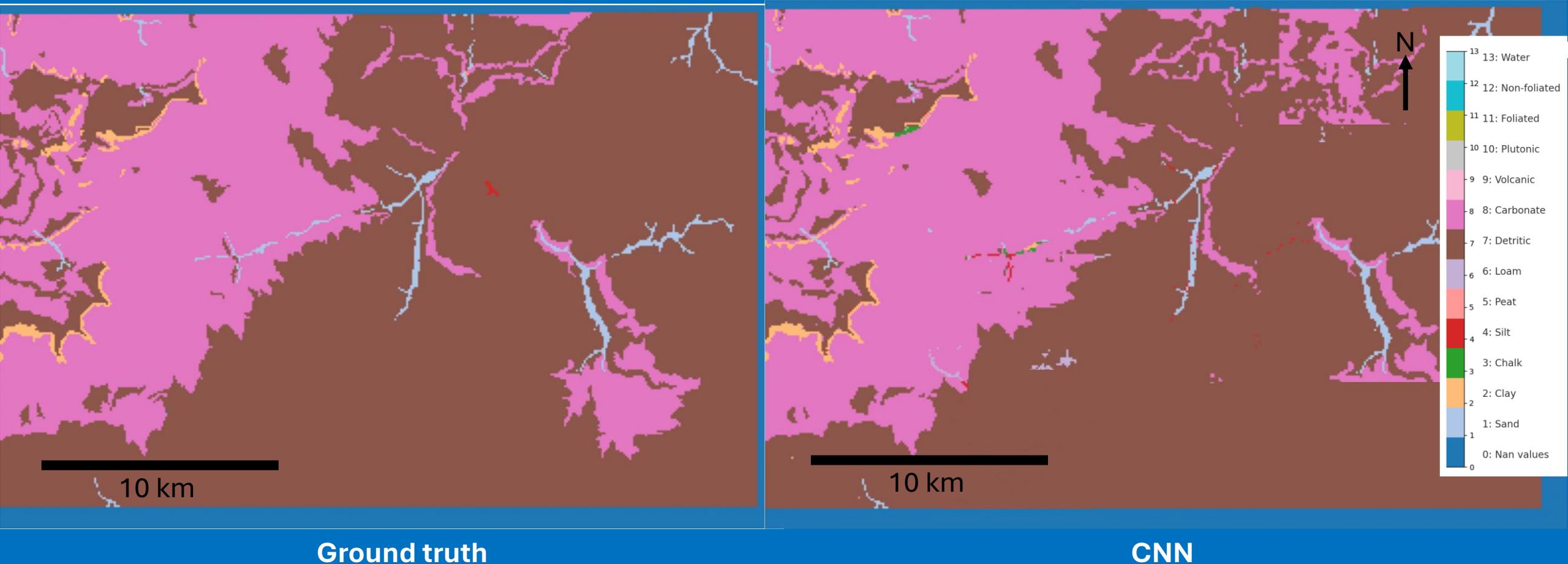


Ground truth

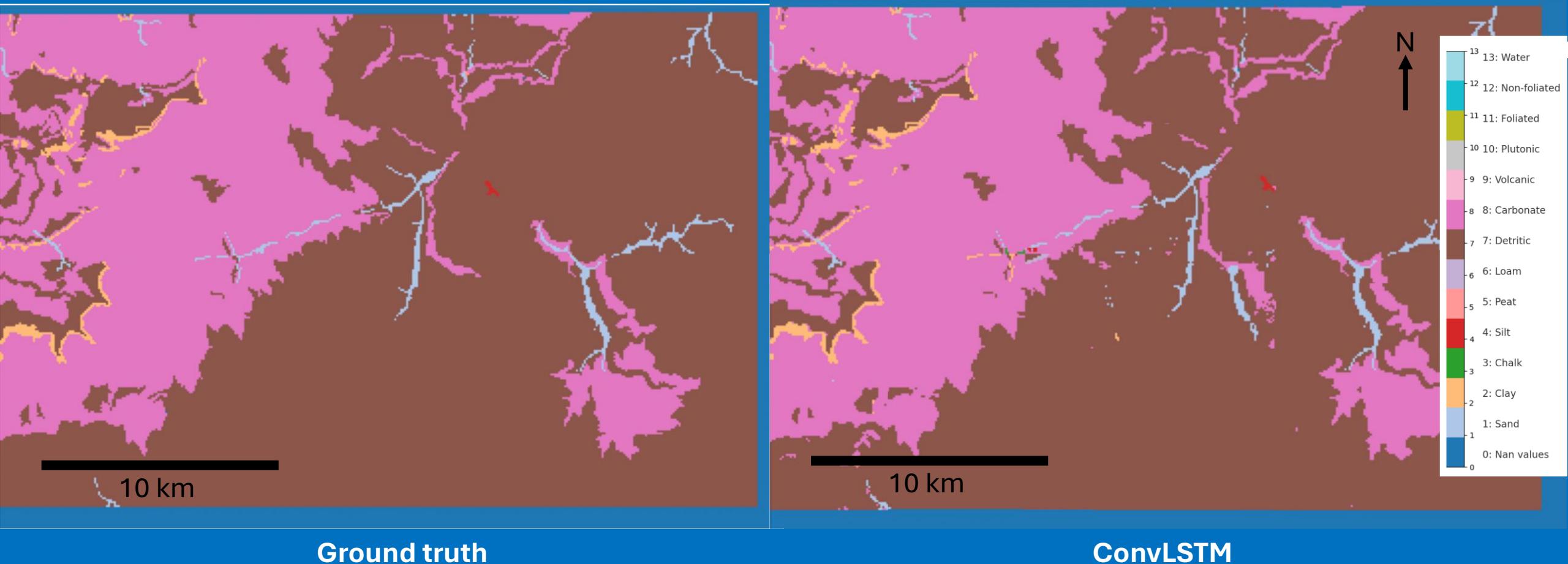


ConvLSTM

Villoslada de Cameros

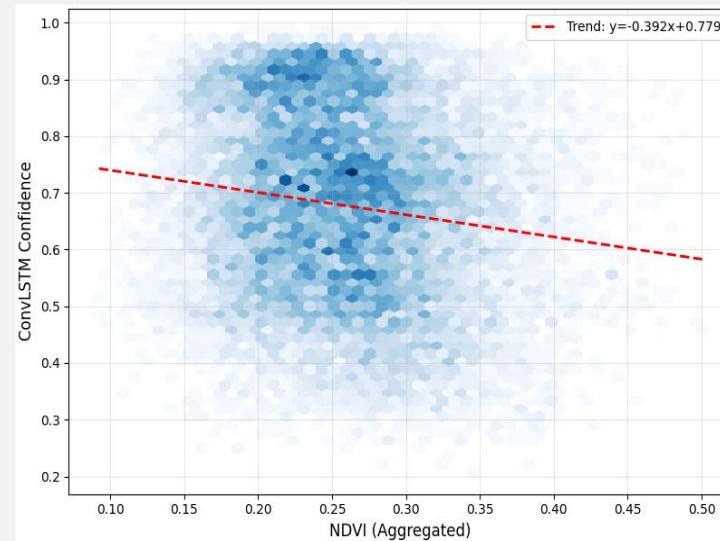


Villoslada de Cameros

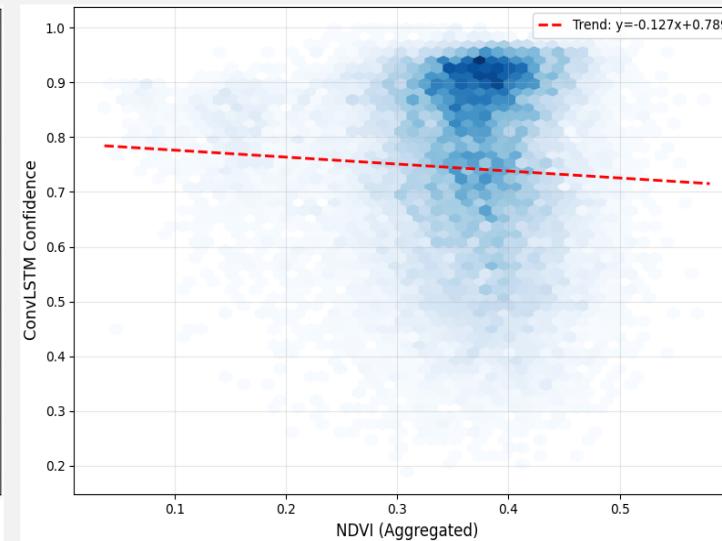


Complementary data - NDVI

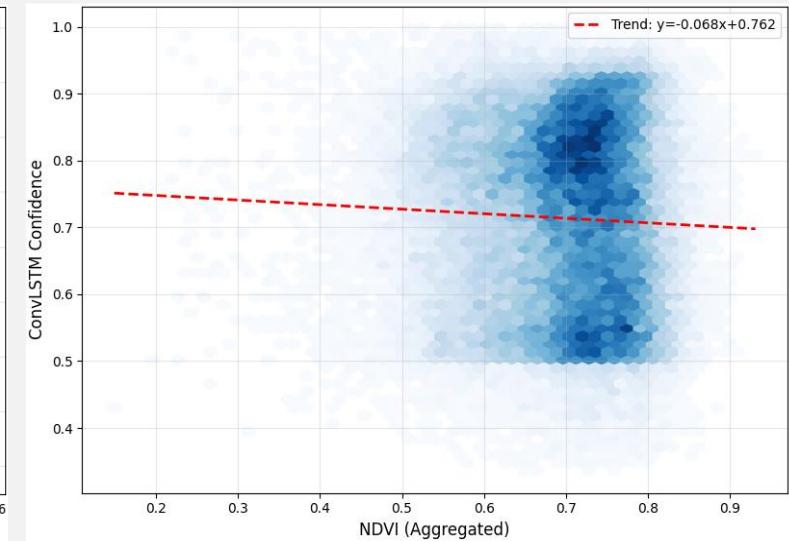
46



Puertollano



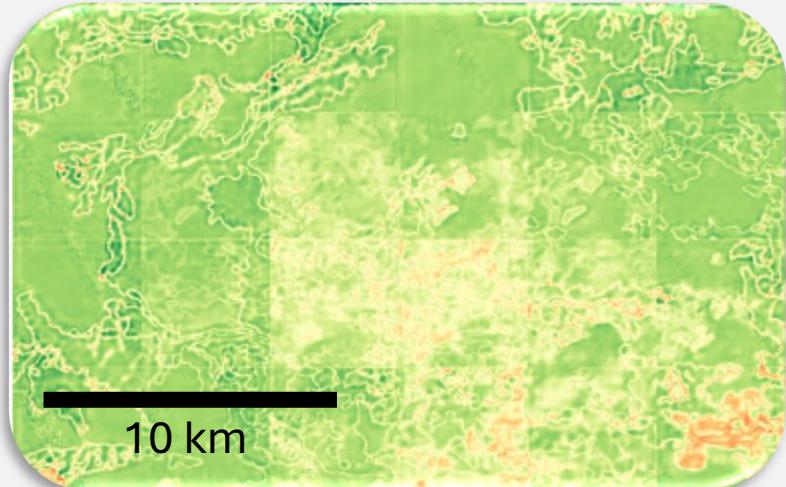
Santa Olalla



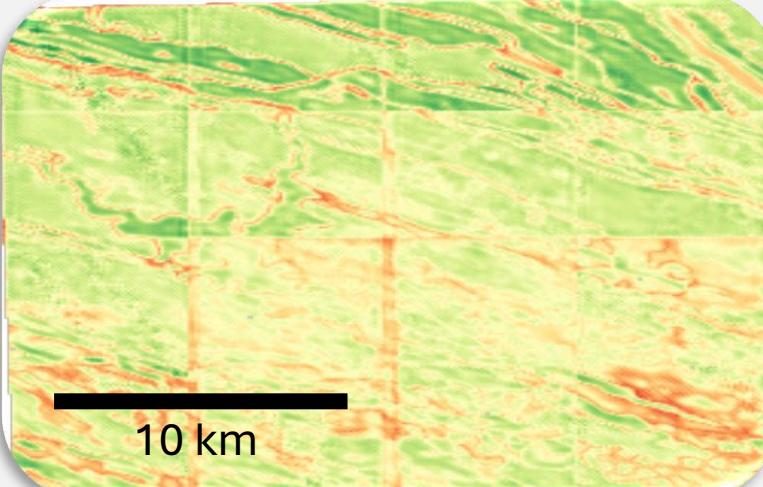
Villoslada

Complementary data – NDVI

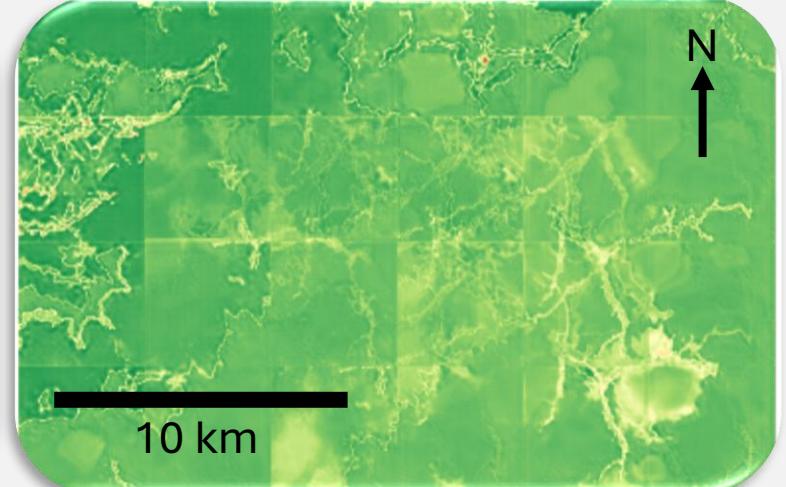
Probability maps



Puertollano



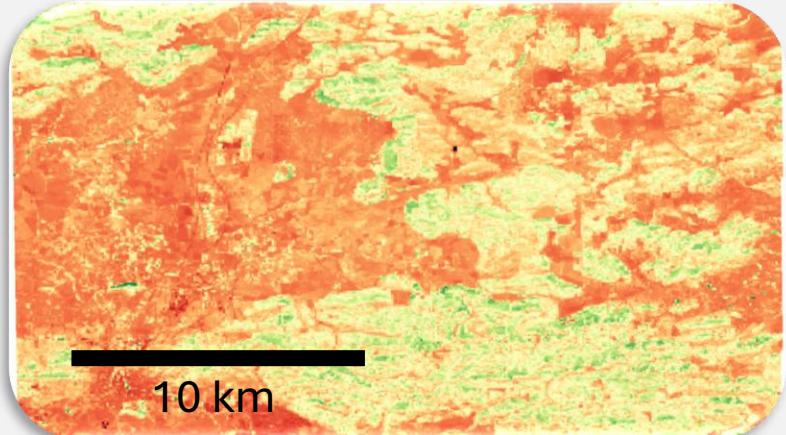
Santa Olalla



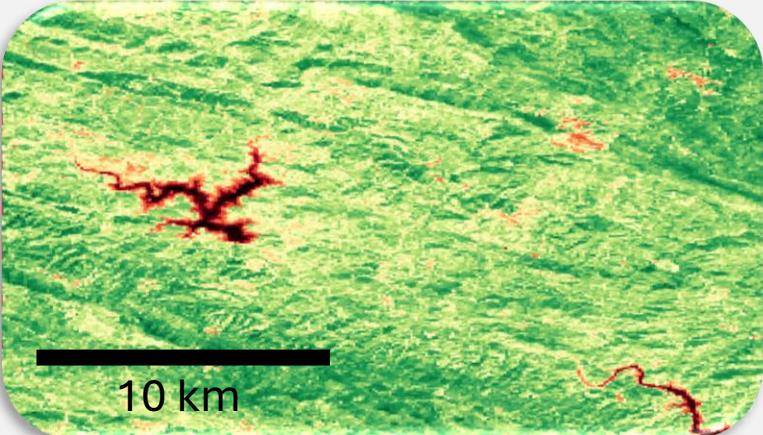
Villoslada

47

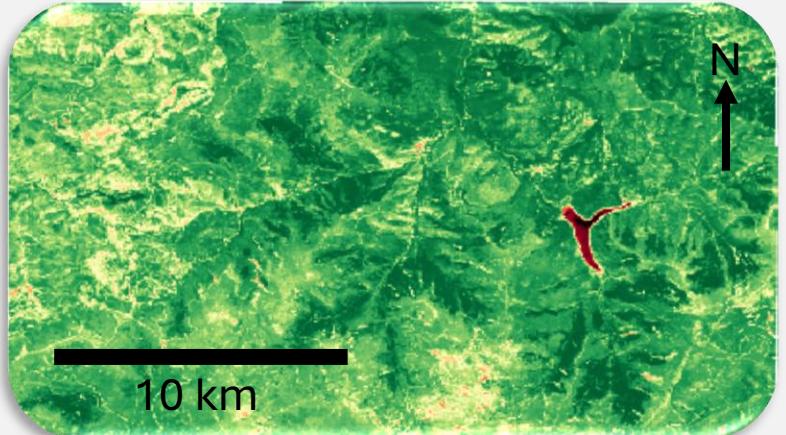
NDVI



10 km



10 km



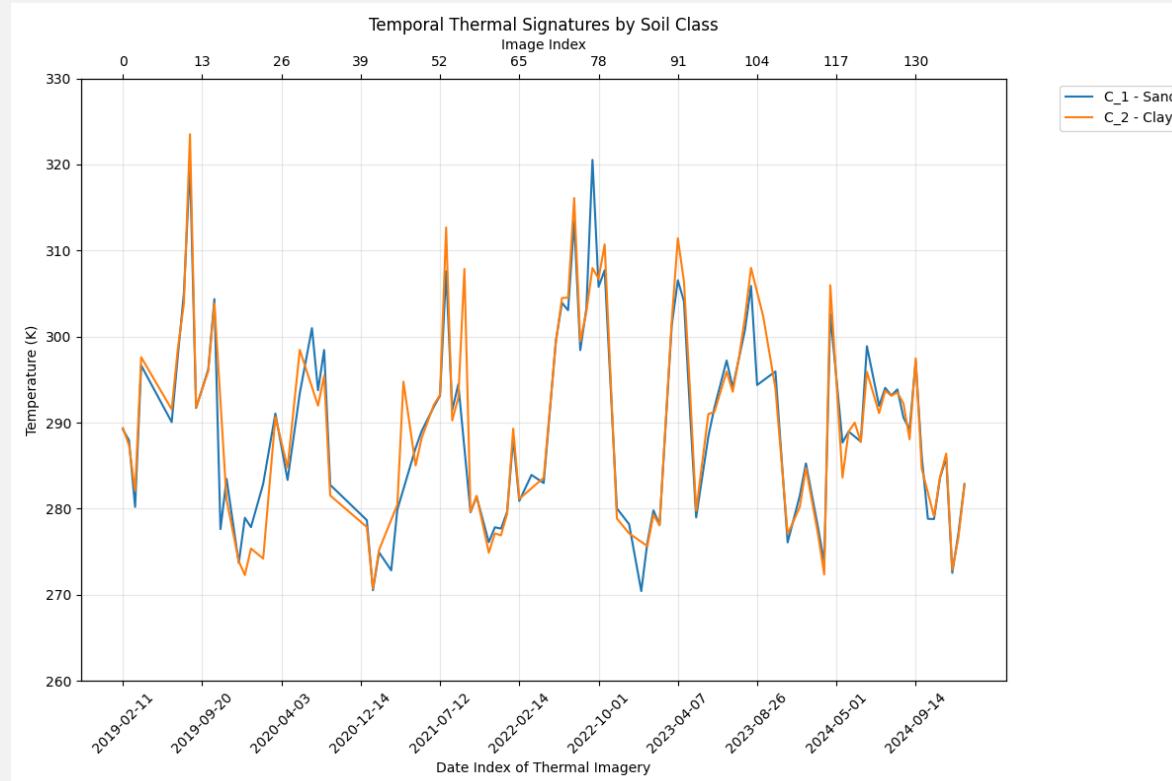
10 km

Discussion and Conclusions

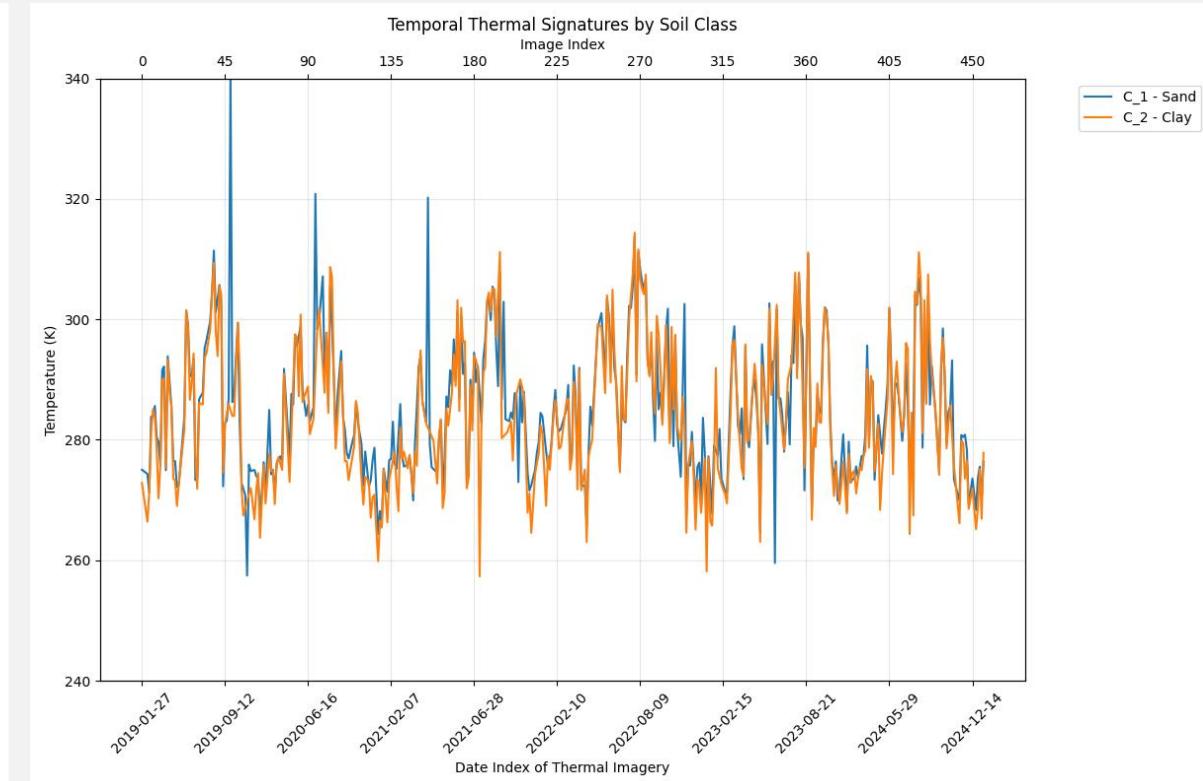
CLAY soils gain heat slowly throughout the day but retain heat longer due to its higher moisture content and fine-grained texture

SANDY soils gain heat quickly throughout the day but lose it rapidly given its lower moisture content and coarse-grained texture

49



Puertollano

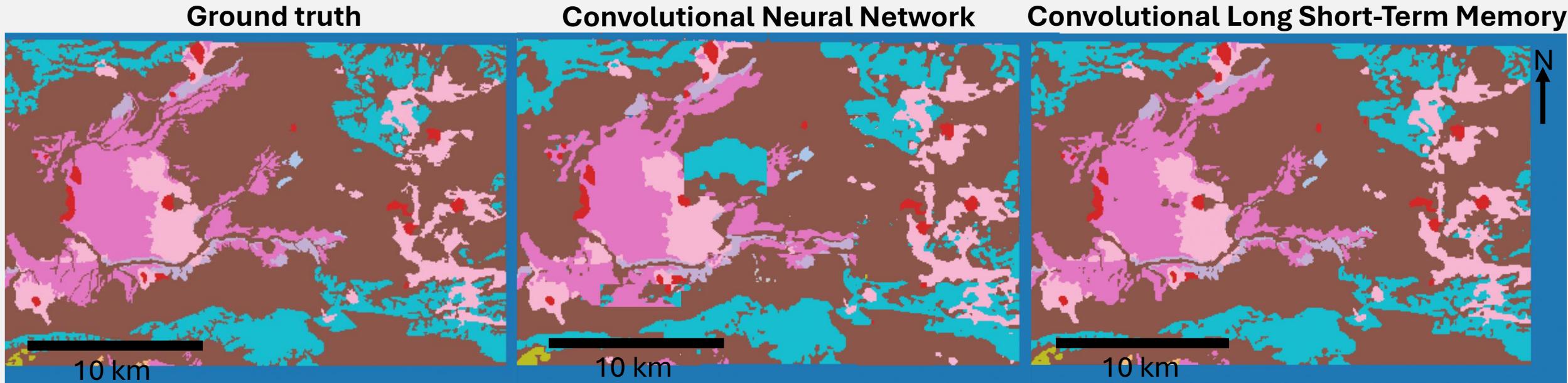


Villoslada

To what extent can Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) deep learning methods help identify/detect different soil/rock types with thermal imagery?

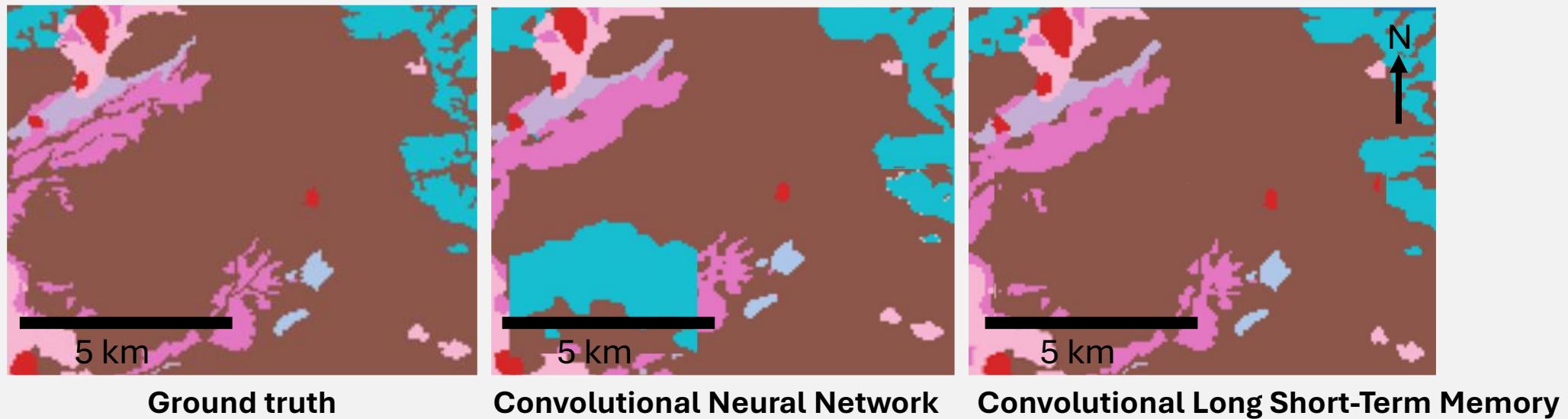
- Both models demonstrate clear ability to perform rock and soil segmentation
-
- CNN was computationally more efficient with faster training times
- ConvLSTM was more accurate overall and included minority classes

50



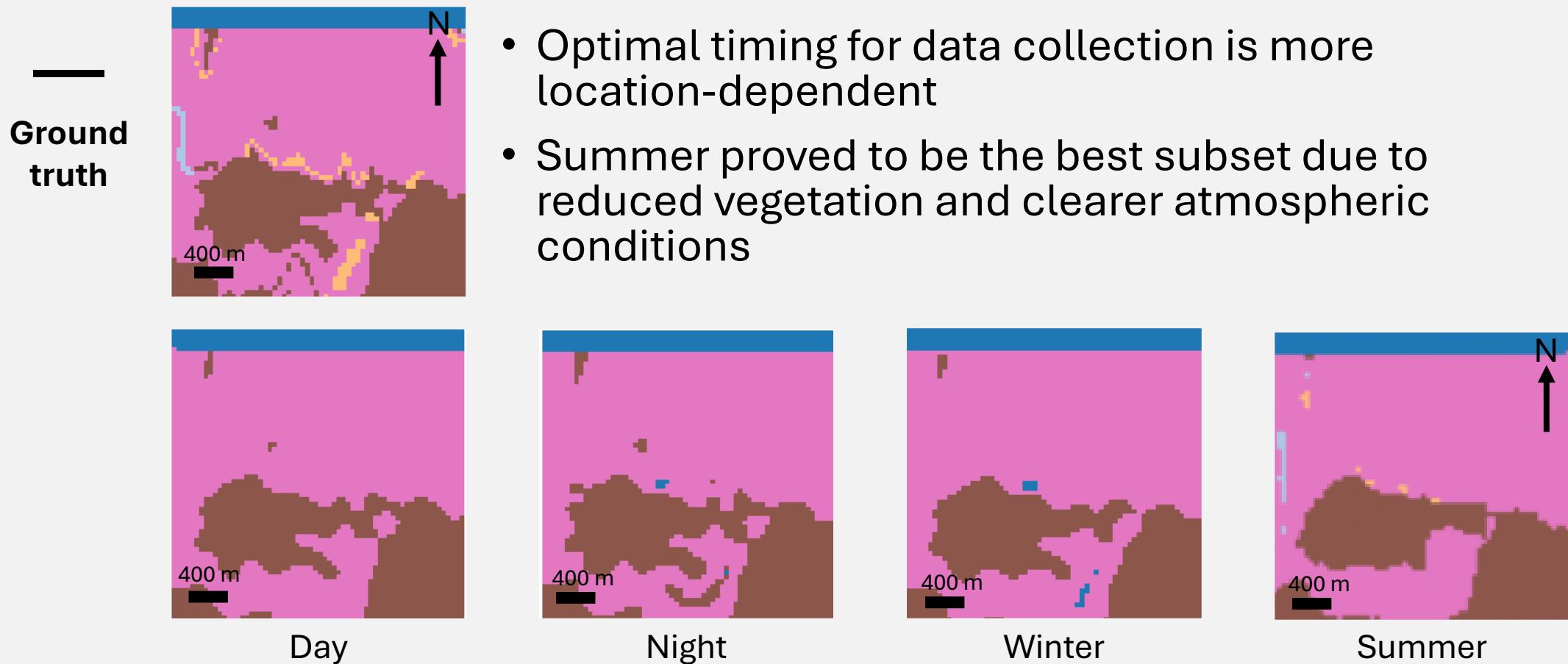
How does the model deal with very similar rock/soil attributes?

51



- Minority classes tend to be well represented, especially in ConvLSTM
- Detritic rocks are well differentiated from sands, silts and other soils

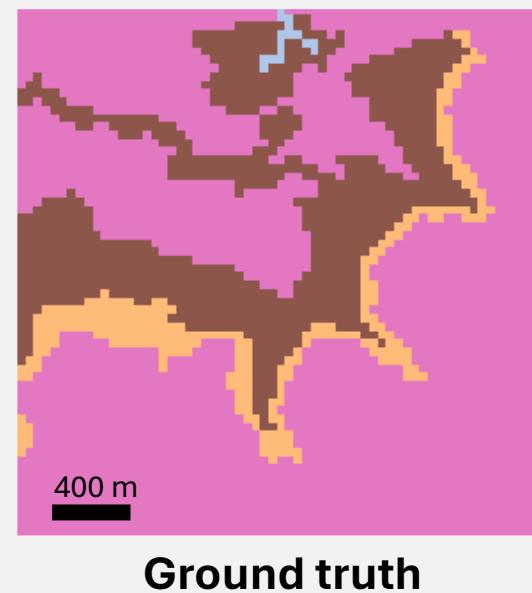
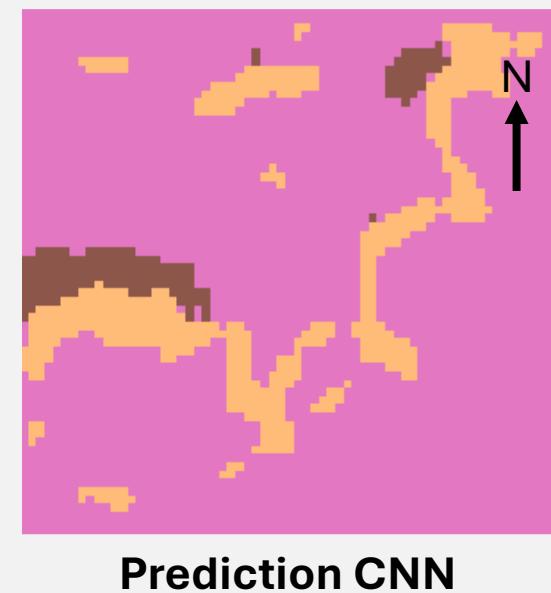
How do temporal factors (diurnal and seasonal changes) affect the classification performance?



If other types of data are included (SAR), does the performance/outcomes improve?

53

- Managed to enhance the representation of minority classes during core experiments
- Clay seemed to be the most benefited one
- Can become important complementary information



Conclusions

54

- Sand and Clay behaved as expected in the hypotheses
- Vegetation has a higher influence on thermal signatures than anticipated
- Both models can perform a valid classification process
- Temporal memory mechanisms provide advantages for geological segmentation
- Seasonal impact seemed higher than diurnal dynamics
- Models performed better with day and summer datasets
- Villoslada de Cameros presented the most consistent results
- SAR improved minority class representation and demonstrated its value as complementary data
- A higher number of aligned dates with thermal data will provide further insights
- NDVI revealed how vegetation distribution has more impact than density alone
- Scalability could be enhanced in future work

References

55

- Corominas, J., Martínez-Bofill, J., & Soler Gil, A. (2015). A textural classification of argillaceous rocks and their durability. *Landslides*, 12, 669–687. <https://doi.org/10.1007/s10346-014-0520-y>
- Geology Glasgow. (n.d.). *Metamorphic rocks*. <https://geologyglasgow.org.uk/minerals-rocks-fossils/metamorphic-rocks/>
- GeologyIn. (2015, August). *How to use QAPF diagram to classify igneous rocks*. <https://www.geologyin.com/2015/08/using-qapf-diagram-to-classify-igneous.html>
- Harlianto, P. A., Adji, T. B., & Setiawan, N. A. (2017). Comparison of machine learning algorithms for soil type classification. *2017 International Conference on Data and Software Engineering (ICoDSE)*, 1–6. <https://doi.org/10.1109/ICoDSE.2017.8285859>
- Instituto Geográfico Nacional (IGN). (2020). *Mapa geológico de España 2020 – Atlas nacional de España (ANE)* [CC-BY 4.0 License]. <https://www.ign.es/web/ane-mapa-geologico-espana>
- Manjate, V. A., Issufo, Z., & Magenge, A. L. (2020). Evaluation of clay soils from Manjacazi district (Mozambique) as potential raw material for the ceramic industry. *Helijon*, 6(10), e05189. <https://doi.org/10.1016/j.helijon.2020.e05189>
- Mason, B. (1966). *Principles of geochemistry*. John Wiley & Sons.
- James Madison University. (n.d.). *Simple metamorphic identification keys and charts*. <https://csmgeo.csm.jmu.edu/geollab/fichter/metarx/metasimpid.html>
- Olah, C. (2015). Understanding lstm networks [Accessed: 2025-07-15].

Thank you for watching