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Theoretical Background

• Thermal imagery – emissivity 
and LST

• SAR – VV and VH

• NDVI – additional information

• CNN – extracting spatial features

• ConvLSTM – obtaining spatio-
temporal dependencies
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Hypotheses 
& Research 
Questions
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• Clay soils gain heat slowly throughout the day but retain heat 
longer due to its higher moisture content and fine-grained 
texture.

• Sandy soils gain heat quickly throughout the day but loose it 
rapidly given its lower moisture content and coarse-grained 
texture.

Hypotheses:

• To what extent can CNN and Recurrent Neural Network 
(RNN) deep learning methods help identify/detect different 
soil/rock types with thermal imagery?

• How does the model deal with very similar rock/soil 
attributes?

• How do temporal factors (diurnal and seasonal changes) 
affect the classification performance?

• If other types of data are included (SAR), does the 
performance/outcomes improve?

Research questions:



Methodology
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Villoslada de Cameros Puertollano Santa Olalla del Cala

9

200 m 200 m 200 m

2 km 2 km 2 km

N

N

N

N

N

N



Classification 
systems
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Rocks and soils

• 0 – NaNs

• 1 – Sand

• 2 – Clay

• 3 – Chalk

• 4 – Silt

• 5 – Peat

• 6 – Loam

• 7 – Detritic

• 8 – Carbonate

• 9 – Volcanic

• 10 – Plutonic

• 11 – Foliated

• 12 – Non-Foliated

• 13 - Water
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Training and 
Parametrisation
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Learning rate

21

• Amount of parameter adjustment per step
• Higher values produce oscillating loss 

functions and fluctuating accuracy
• Lower rates produce more stable loss 

functions
• If too low, learning becomes too slow
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L2 Ridge Regression
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0.1 0.05

• Added penalty as complexity increases
• Prevents overfitting by avoiding weights 

becoming too big
• Higher L2 factor, higher initial loss function 

value
• An intermediate value provides balance 

between reducing overfitting and accuracy
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Batch Size
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• Subsets of data used at the same time
• Larger sizes produce smoother losses
• Smaller sizes produce slightly more 

fluctuations
• With smaller sizes, model learns finer 

details in one go
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Filters
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• Initial number of filters used for convolutional layers
• A higher number of filters exponentially increases 

computational time
• Higher number also presented higher overfitting
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Loss function

25

• The error between the model’s output 
and the ground truth

• Important to deal with class imbalances
• Customizing weights aids in dealing with 

minority classes

SparseCategoricalCrossentropy()Ground truth Equal custom values Slightly higher custom values Higher custom values
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Optuna & Final configuration
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Results
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Thermal signatures
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Thermal only
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Diurnal experiments - Day
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Diurnal experiments - Night
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Seasonal experiments - Winter
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Seasonal experiments - Summer
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Complementary data - SAR
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Further 
experimentation
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• Patch discontinuities
• Geological map reconstruction
• Overfitting
• NDVI data
• Confidence vs. Vegetation



Geological map reconstruction
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Final configurations
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Further experimentation
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Puertollano
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Puertollano
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Santa Olalla del Cala
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Ground truth CNN
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Santa Olalla del Cala
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Ground truth ConvLSTM
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Villoslada de Cameros
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Ground truth CNN
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Villoslada de Cameros
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Complementary data - NDVI
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Complementary data – NDVI
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Discussion and 
Conclusions
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CLAY soils gain heat slowly throughout the day but retain heat longer due to 
its higher moisture content and fine-grained texture
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SANDY soils gain heat quickly throughout the day but loose it rapidly 
given its lower moisture content and coarse-grained texture

VillosladaPuertollano



To what extent can Convolutional Neural Network (CNN) and Recurrent Neural 
Network (RNN) deep learning methods help identify/detect different soil/rock 
types with thermal imagery?
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• Both models demonstrate clear ability to perform rock and soil segmentation
• CNN was computationally more efficient with faster training times
• ConvLSTM was more accurate overall and included minority classes

Ground truth Convolutional Long Short-Term MemoryConvolutional Neural Network
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How does the model deal with very similar rock/soil 
attributes?
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• Minority classes tend to be well represented, especially in ConvLSTM
• Detritic rocks are well differentiated from sands, silts and other soils

Ground truth Convolutional Long Short-Term MemoryConvolutional Neural Network
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How do temporal factors (diurnal and seasonal 
changes) affect the classification performance?

52

• Optimal timing for data collection is more 
location-dependent

• Summer proved to be the best subset due to 
reduced vegetation and clearer atmospheric 
conditions

Day Night Winter Summer
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truth
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If other types of data are included (SAR), does the 
performance/outcomes improve?

53 • Managed to enhance the 
representation of minority classes 
during core experiments

• Clay seemed to be the most 
benefited one

• Can become important 
complementary information

Ground truth Prediction CNN
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Conclusions
54

• Sand and Clay behaved as expected in the hypotheses
• Vegetation has a higher influence on thermal signatures than anticipated 
• Both models can perform a valid classification process
• Temporal memory mechanisms provide advantages for geological segmentation
• Seasonal impact seemed higher than diurnal dynamics
• Models performed better with day and summer datasets
• Villoslada de Cameros presented the most consistent results
• SAR improved minority class representation and demonstrated its value as complementary data
• A higher number of aligned dates with thermal data will provide further insights
• NDVI revealed how vegetation distribution has more impact than density alone
• Scalability could be enhanced in future work
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Thank you for watching
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