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Low-Complexity First-Order Constraint Linearization
Methods for Efficient Nonlinear MPC

Giampaolo Torrisi, Sergio Grammatico, Damian Frick, Tommaso Robbiani, Roy S. Smith, Manfred Morari

Abstract— In this paper, we analyze first-order methods to
find a KKT point of the nonlinear optimization problems arising
in Model Predictive Control (MPC). The methods are based
on a projected gradient and constraint linearization approach,
that is, every iteration is a gradient step, projected onto a
linearization of the constraints around the current iterate.

We introduce an approach that uses a simple �p merit func-
tion, which has the computational advantage of not requiring
any estimate of the dual variables and keeping the penalty
parameter bounded. We then prove global convergence of the
proposed method to a KKT point of the nonlinear problem.

The first-order methods can be readily implemented in
practice via the novel tool FalcOpt. The performance is then
illustrated on numerical examples and compared with conven-
tional methods.

I. INTRODUCTION

Several methods are available to solve nonlinear Model

Predictive Control problems. The Sequential Quadratic Pro-

gramming (SQP) method consists of iteratively solving

Quadratic Programs (QPs) whose objective approximates

the Lagrangian of the original problem around the current

iterate and the constraints are obtained via linearization

of the original nonlinear constraints. Under some technical

assumptions [1], by using the solution to each QP to generate

a new iterate, the algorithm converges to a Karush-Kuhn-

Tucker (KKT) point of the original problem. The Gradient

Descent method, on the other hand, considers only first-order

information of the problem: the new iterate is obtained based

on the local gradient of the objective function (gradient step)

and is then projected onto the nonlinear constraint to guar-

antee feasibility. This projection step can be computationally

expensive, unless the constraints are “simple” [2].

In line with previous work [3], [4], we consider a projected

gradient and constraint linearization method, combining the

properties of SQP and gradient descent. In particular, we

take a gradient step and project it onto a linearization of the

original nonlinear constraint, similarly to SQP. Thus, every

intermediate iterate of the method need not be feasible for

the original problem. By itself, the method is only locally

convergent with a linear rate. Global convergence to a KKT

point of the original problem is obtained by means of a merit
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function in the form of an augmented Lagrangian. This is an

exact penalty function, i.e., for a sufficiently large value of a

penalty parameter, the problem with augmented Lagrangian

is equivalent to the original problem [5]. By showing that

each iterate allows for a reduction of the merit function,

we can prove convergence to a critical point. Note that the

penalty parameter of the augmented Lagrangian may possi-

bly become unbounded. This does not affect the convergence

guarantee, but it may slow down the convergence.

In this work, the global convergence of the proposed

projected gradient and constraint linearization method is

instead proved by means of a simplified �p merit function.

The �p merit function, with p ≥ 1, has been long established

as an exact penalty function and used in the SQP method

[6], [7] or in convexification approaches [8]. This gives two

main advantages compared to previous work. First, the dual

variables need not be estimated, which reduces the overall

number of variables in the problem and the computational

burden for their evaluation. In addition, we are still able

to (inexpensively) derive the dual optimum at the solution.

Secondly, it is possible to prove that the penalty parameter

in the �p merit function remains bounded.

II. THE OPTIMIZATION ALGORITHM

We consider an equality constrained nonlinear optimiza-

tion problem (NLP)

min
z∈Rn

J(z) s.t. h(z) = 0 (1)

where the functions J : Rn → R and h : Rn → R
m are

twice continuously differentiable. For an approach that also

includes inequality constraints, we refer to [9, Ch. 2 and 3].

We define the Lagrangian function of the NLP as

L(z, λ, ν) := J(z) + h(z)�ν,

with Lagrange multiplier vector ν ∈ R
m.

We call z� a critical point of (1) if it satisfies the first-

order conditions with strict complementarity, i.e., there exists

ν� ∈ R
m such that

∇L(z�, λ�, ν�)=∇J(z�)+∇h(z�)ν�=0, h(z�)=0. (2)

We assume that the NLP in (1) has a finite number of critical

points. In order to determine a critical point z�, iterative

methods generate a sequence
(
z(i)

)∞
i=1

. In this paper, we

generate such sequences using first-order methods, that con-

sist of taking projected gradient steps onto a linearization of

the constraint around the current iterate z(i).
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Given z(i), we define the next iterate z(i+1) as

z(i+1) := z(i) + t(i)d(i)z , (3)

where the update d
(i)
z is determined through a gradient step

that is projected onto the linearization of the constraints

around z(i), and the variable t(i) ∈ (0, 1] is a penalty function

step size. Formally,

d(i)z := ΠC(i)

(
−α(i)∇J(z(i))

)
, (4)

with bounded gradient step size α(i) ∈ R>0, and ΠC(i) (·) :
R

n → C(i) ⊆ R
n being the Euclidean projection onto the set

C(i) :=
{
dz ∈ R

n
∣∣ h(z(i)) +∇h(z(i))�dz = 0

}
. (5)

By definition of projection, it follows from (4) that:

d(i)z = argmin
dz∈Rn

1

2α(i)

∥∥∥dz + α(i)∇J(z(i))
∥∥∥2
2

s.t. h(z(i)) +∇h(z(i))�dz = 0.

(6)

For specific constraints h, the QP in (6) can be solved

analytically. This will be used in Section III. By the KKT

conditions for (6), under the assumptions below there exist

dual multipliers ν
(i)
G ∈ R

m such that

1

α(i)
d(i)z +∇J(z(i)) +∇h(z(i))ν

(i)
G = 0 (7a)

h(z(i)) +∇h(z(i))�d(i)z = 0. (7b)

Throughout the paper, let us adopt the following basic

regularity assumptions as in [1], [10].

Assumption 1: For all i ∈ N, the matrix ∇h(z(i)) has full

column rank.

Note that this implies that the dual variables ν
(i)
G in (7) are

bounded and unique.

Assumption 2: For all i ∈ N, z(i), z(i) + d
(i)
z ∈ Ω ⊂ R

n

for some compact set Ω.

Assumption 3: The functions J , h, and their first and

second derivatives are uniformly bounded in norm in Ω.

Under these assumptions, local convergence of the iteration

in (4) when t(i) = 1 for all i holds true.

Proposition 1 ([3]): Assume that (z�, ν�) is a critical

point such that ∇2L(z�, ν�) � 0, and let the initialization

z(0) be close enough to z�. Then, there exist positive step

sizes (α(i))i such that the sequence
(
z(i)

)
i

defined as in (3)

with t(i) = 1 converges to z� with linear rate. �
Since the proposed method is first-order, we do not expect

a convergence rate faster than linear. We will also utilize

Assumptions 2.1, 2.2 and a relaxed version of Assumption

2.3 in Section II-B, where we establish global convergence.

Next, we establish global convergence to a critical point. In

Section II-A, we review the available results [3]. In Section

II-B, we introduce an �p merit function and provide the

corresponding theoretical guarantees.

A. Global convergence via augmented Lagrangian function

To obtain global convergence to a critical point z�, a non-

unit step size t(i) should be used. A common approach to

determine such a step size is to introduce a penalty function

that weights the optimality and feasibility of each iterate

z(i). Note, in fact, that for general nonlinear constraints, each

iterate need not be feasible for the original problem.

Along with the primal sequence
(
z(i)

)
i

we also consider

the sequence of dual variables
(
ν(i)

)
i
, updated as[

z(i+1)

ν(i+1)

]
=

[
z(i)

ν(i)

]
+ t(i)

[
d
(i)
z

d
(i)
ν

]
, (8)

where

d(i)ν := ν
(i)
G − ν(i). (9)

We determine the step size t(i) and the update in (8) via a line

search on a merit function. First, we consider the augmented

Lagrangian:

Laug (z, ν, ρ) := J(z) + h(z)�ν + ρ
2 ‖h(z)‖22 . (10)

The penalty parameter ρ > 0 has a critical role in this

algorithm: in fact, there exists ρ� > 0 such that the

merit function in (10) is an exact penalty function for

every ρ > ρ� [5]. By defining the penalty functions

φ(t) := Laug (z + tdz, ν + tdν , ρ), we choose the step size

t(i) ∈ (0, 1] such that the following Armijo condition holds:

φ(t(i)) ≤ φ(0) + σt(i)φ′(0), (11)

where σ ∈ (0, 1) and φ′(·) is the derivative of φ(·). We

derive the value of t by safeguarded quadratic interpolation

[11]. Should a tentative step size t̃ not satisfy (11), a new

t ∈ [
τ1t̃, τ2t̃

]
is chosen, for some fixed 0 < τ1 < τ2 < 1.

To satisfy the convergence conditions, at each iteration the

penalty parameter ρ(i) is chosen such that:

φ′(0) ≤ − 1

2α(i)

∥∥∥d(i)z

∥∥∥2
2
, (12)

which implies that the gradient step d
(i)
z is a descent direction

for the augmented Lagrangian. The following Lemma gives

an update rule for the penalty parameter ρ(i).

Lemma 2 ([3]): If ρ(i) ≥ ρ̂(i) := 2
∥∥∥d(i)ν

∥∥∥
2
/
∥∥h(z(i))∥∥

2
,

then (12) holds for all i ∈ N. �
Therefore, if we define the penalty parameter at the

beginning of each iteration i as

ρ(i) :=

{
ρ(i−1) if (12) holds

max{ρ̂(i), 2ρ(i−1)} otherwise,
(13)

then the algorithm converges as stated next.

Proposition 3 ([3]): The primal and dual iterates in Al-

gorithm 1 converge to the KKT triple associated to a

critical point z� of (1), i.e., limi→∞
∥∥z(i) − z�

∥∥
2

=

limi→∞
∥∥ν(i) − ν�

∥∥
2
= 0. �

The resulting approach is summarized in Algorithm 1.
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Algorithm 1 First-order augmented-Lagrangian algorithm

INITIALIZE i ← 0 and z(0) ∈ R
n

repeat
COMPUTE d

(i)
z with step size α(i) as in (4)

DETERMINE ν
(i)
G such that (7) holds

if d
(i)
z = 0 then

SET z� = z(i), ν� = ν
(i)
G and STOP

else
if i = 0 then

SET ν(0) = ν
(0)
G

end if
SET d

(i)
ν = ν

(i)
G − ν(i)

end if
SET ρ(i) as in (13)

DETERMINE the step size t(i) that satisfies (11), e.g.

via line search

UPDATE z(i+1), ν(i+1) as in (8)

i ← i+ 1
until Convergence
return z� and ν�

B. Global convergence via �p merit function
In this section, we introduce an alternative approach that

(i) does not require a sequence of dual variables and (ii)

keeps the penalty parameter ρ bounded. Further, Assumption

3 is weakened as follows.

Assumption 4: The function J is uniformly bounded in Ω.

Note that the assumption is satisfied whenever J is continu-

ous. Then, we make use of the following �p merit function:

γp(z, ρ) := J(z) + ρ ‖h(z)‖p , (14)

with p ≥ 1 (typically either 1, 2 or ∞), which is known to

be an exact penalty function [7], [12].
By defining the function φ(t) := γp(z+tdz, ρ), we choose

the penalty function step size t(i) ∈ (0, 1] that satisfies the

following Armijo condition:

φ(t(i)) ≤ φ(0) + σt(i)Dφ(0), (15)

where σ ∈ (0, 1) and Dφ(·) is the directional derivative,

Dφ(0) = lim
t→0+

φ(t)− φ(0)

t
.

Analogously to (11), we determine the step size t via

safeguarded quadratic interpolation, such that if a tentative

step t̃ fails, then a new t ∈ [τ1t̃, τ2t̃] is tested.
With the merit function in (14), the penalty parameter ρ

can be chosen according to the following tuning rule, where

we define q such that 1
p + 1

q = 1.

Lemma 4: If ρ(i) > ρ̂(i) :=
∥∥∥ν(i)G

∥∥∥
q

then

Dφ(0) ≤ − 1

α(i)

∥∥∥d(i)z

∥∥∥2
2
.

If d
(i)
z = 0, then the algorithm has converged to a KKT point

(z�, ν�). �

Algorithm 2 First-order algorithm with �p merit function

INITIALIZE i ← 0 and z(0) ∈ R
n

repeat
COMPUTE d

(i)
z with step size α(i) as in (4)

DETERMINE ν
(i)
G such that (7) holds

if d
(i)
z = 0 then

SET z� = z(i), ν� = ν
(i)
G and STOP

end if
SET ρ(i) ≥ 0 as in (17)

DETERMINE the step size t(i) that satisfies (15), e.g.

via line search

UPDATE z(i+1) as in (3)

i ← i+ 1
until Convergence
return z� and ν�

Proof: For ease of notation we omit the iteration

index i. The directional derivative of (14) is [7, p. 115]:

Dφ(0) = = d�z ∇J(z)− ρ ‖h(z)‖p .

By (7a), (7b) and the Cauchy-Schwarz inequality a�b ≤
‖a‖p ‖b‖q , we have:

Dφ(0) = − 1

α
d�z dz − d�z ∇h(z)νG − ρ ‖h(z)‖p

= − 1

α
d�z dz + h(z)�νG − ρ ‖h(z)‖p

≤ − 1

α
d�z dz +

(
‖νG‖q − ρ

)
‖h(z)‖p ,

(16)

from which the first statement of the Lemma follows.

If dz = 0, from (7) and (2), then we have that the current

z is a critical point for (1) with dual multiplier νG.

As summarized in Algorithm 2, we can update ρ(i) as

ρ(i) :=

{
ρ(i−1) if ρ(i−1) ≥ ρ̂(i)

ρ̂(i) + ε1 otherwise,
(17)

with ε1 > 0. The next Lemma shows that, in a neighborhood

of the optimum, the penalty parameter ρ(i) is bounded.

Lemma 5: For all z� ∈ R
n, there exist ρ�, ε� > 0 such

that Dφ(0) ≤ − 1
α ‖dz‖22 for all ρ ≥ ρ� and z ∈ z� + εB,

with B being the unit ball centered at the origin. �
Proof: Assumption 1 implies that the dual variable νG

is bounded. By continuity, there exists an ε(z�) > 0 and

d(z�) > 0 such that ‖νG‖q ≤ d(z�) for all z ∈ z�+εB. Thus,

by (16), ρ� = d(z�) and the procedure in (17) increases ρ(i)

by at least ε1 only a finite number of times.

Lemma 6: Let ĩ be such that ρ(i) = ρ� for all i ≥ ĩ. Then

there exists t̄ = t̄(ρ�) > 0 such that (15) is satisfied. �
Proof: For ease of notation we omit the iteration

index i. By the continuity of the merit function in (14),

we know that there exists a sufficiently small t(i) ≤ 1
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that satisfies the Armijo condition in (15). Suppose that the

Armijo test failed for t̃, i.e.,

φ
(
t̃
)− φ(0) > σ t̃Dφ(0),

and that τ1 t̃ ≤ t(i). On the other hand, by expanding φ
(
t̃
)

to the second order, we have:

φ
(
t̃
)− φ(0) ≤ t̃Dφ(0) +

(
t̃
)2

b ‖dz‖22
with b = b(ρ(i)) > 0.

It follows from the two latter inequalities that

(σ − 1) t̃ Dφ(0) <
(
t̃
)2

b ‖dz‖22
which implies, since σ < 1, that Dφ(0) >

t̃ b‖dz‖2
2

σ−1 . By

Lemma 4, we have that Dφ(0) ≤ − 1
α ‖dz‖22, hence, due

to the last inequality, we have that t̃ b > 1−σ
α > 0. Since

ρ(i) = ρ� for sufficiently large i ≥ ĩ, b = b(ρ�) must be

bounded, hence t̃ is always strictly greater than zero. Finally,

we can derive the lower bound t̄ = τ1(1−σ)
α b for t(i) ≥ τ1t̃.

Theorem 7: The primal iterates in Algorithm 2 converge

to the KKT point associated to a critical point z� of

(1), i.e., limi→∞
∥∥z(i) − z�

∥∥
2
= 0. Further, it holds that

limi→∞
∥∥∥ν(i)G − ν�

∥∥∥
2
= 0. �

Proof: The proof consists of showing that

limi→∞
∥∥∥d(i)z

∥∥∥
2

= 0. The statement of the theorem

then follows by comparing (7) and (2). For the sake of

contradiction, suppose that there exists an ε > 0 and ĩ ∈ N

such that
∥∥∥d(i)z

∥∥∥
2

> ε for all i ≥ ĩ. From Lemma 5,

there exists a sufficiently large i such that ρ(i) is bounded.

Without loss of generality, we consider that ĩ ∈ N has such

a property. Then, in every iteration i ≥ ĩ the merit function

decreases, due to Lemma 4, and in particular:

φ(t(i))− φ(0) ≤ σt(i)Dφ(0) ≤ − 1

α(i)
σt̄

∥∥∥d(i)z

∥∥∥2
2

≤ − 1

α(i)
σt̄ε2 < 0,

since α(i) is designed to be bounded (e.g., α(i) = 1 ∀i). This

implies that the merit function decreases by a finite amount

at every iteration, thus is unbounded from below. However,

by Assumption 4, this leads to a contradiction, hence the

proof follows.

Remark: The treatment in [6] (for an l1 merit function)

establishes a weaker result under less restrictive assumptions.

In particular, under Assumptions 1 and 2, the existence of

a convergent subsequence of the iterates is proved. In MPC

problems, the objective function is typically positive semi-

definite, hence Assumption 4 is satified. �
In Algorithm 1, full-size steps t(i) = 1 are asymptotically

allowed, thus recovering the linear convergence rate of The-

orem 1 [3]. On the other hand, this does not necessarily hold

for �p merit functions, where the Maratos effect can occur,

i.e., only small steps t(i) < 1 may be allowed close to the

solution, thus requiring more iterates than expected [13]. In

contrast to SQP methods, this is a small practical disadvan-

tage of our method, since each iteration is computationally

cheap (see Section III). An increased number of iterations is

in practice preferable to typical SQP measures such as the

second-order corrections or the watchdog technique [14].

III. PRACTICAL IMPLEMENTATION

A. Inequality constraints via slack variables
An inequality constrainted problem can be equivalently

reformulated as the equality constrained problem in (1) via

squared-slack variables y [3], [11]:

min
(z,y)∈Rn×Rm

J(z) s.t. g(z) +
1

2
diag(y) y = 0.

Remarkably, in this case the projection in (4) admits a closed

form solution. In fact, we can determine the dual variable νG

as the solution of the dual problem:

νG =
(∇g(z)�∇g(z)+diag(y)2

)−1 ·(
1

α
g(z)+

1

2α
diag(y)y−∇g(z)�∇J(z)

)
. (18)

Then, the primal solution is given by[
dz

dy

]
=

[
−α∇J(z)

0

]
− α

[
∇g(z)

diag(y)

]
νG (19)

and the dual increments dν follow from (9). By the LICQ

assumption on the active inequality constraints, the resulting

equality constraints satisfy Assumption 1, thus the matrix

∇g(z)�∇g(z) + diag(y)2 in (18) is invertible.
In general, inverting the matrix in (18) has a computational

complexity that is cubic with respect to the matrix size m.

In the next section, we focus on sparse MPC problems for

which such inversion can be computed inexpensively.

B. Nonlinear Model Predictive Control problems
Let us apply the proposed Algorithms 1 and 2 to nonlinear

MPC problems. In particular, we aim to derive the projection

in (4) without numerically solving the associated QP in (6).

The general form of the problem that we wish to solve is:

min
{xk+1,uk}N−1

k=0

1
2

N−1∑
k=0

{
‖xk − x̄k‖2Q + ‖uk − ūk‖2R

}
+ 1

2 ‖xN − x̄N‖2P
s.t. xk+1 = f (xk, uk)

ak ≤ uk ≤ bk

n(uk) ≤ 0 ∀k ∈ {0, . . . , N − 1},
1
2‖xk̃ − x̄k̃‖2P ≤ c,

(20)

where the cost matrices satisfy Q,R, P � 0, f is the

discrete-time model of the dynamics, ak < bk componen-

twise, n : Rnu → R
nn is a nonlinear constraint on the input,

and the last constraint is a stability constraint with c > 0
and k̃ ∈ {1, . . . , N} (e.g., terminal constraint if k̃ = N , or

a contractive constraint for time-varying k̃ [15], [16]).

4379

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2021 at 11:17:06 UTC from IEEE Xplore.  Restrictions apply. 



The algorithm step in (4) can be computed in closed form

by appropriately recasting the problem. For ease of presenta-

tion, we do not consider the nonlinear constraint n(uk) ≤ 0.

An analogous treatment applies otherwise by augmenting

the system. We define the vectors u := [u0; . . . ;uN−1]
for the control input sequence, ū for the input reference

and Δu := u − ū. Analogously, the corresponding state

evolution is x := [x1; . . . ;xN ], the state reference is x̄,

and Δx := x − x̄. We recast the dynamics in a compact

form as x = ψ(u), where for a fixed initial state x0, the

function ψ : RNnu → R
Nnx maps the sequence of inputs

u to the predicted sequence of states x according to the

nonlinear dynamics xk+1 = f(xk, uk). The input bounds are

given by a := [a0; . . . ; aN−1] and b := [b0; . . . ; bN−1]
and we stack the state and input cost matrices Q =
blockdiag (Q, . . . , Q, P ) and R = blockdiag (R, . . . , R).
Thus, by including the nonlinear dynamics within the objec-

tive and by adding the nonlinear slacks ya,yb ∈ R
Nnu and

yc ∈ R, the MPC problem in (20) is equivalent to

min
u,y

1
2 ‖ψ (u)− x̄‖Q + 1

2 ‖u− ū‖R =: J(u)

s.t. − u+ a+ 1
2diag(ya)ya = 0

u− b+ 1
2diag(yb)yb = 0

1
2ψk̃(u)

�Pψk̃(u)− c+ 1
2y

2
c = 0.

(21)

The primal and dual variable updates in (4) are determined

as explained in Section III-A. Note that the matrix inversion

in (18) can be computed analytically offline. In fact, since

the gradient of the constraint is ∇g(u) = [ −I | I | q ],
where the vector q ∈ R

Nnu indicates the derivative of the

last constraint, the matrix is inverted as follows:(∇g(u)�∇g(u) + diag([ya;yb; yc])
2
)−1

=

[
I+diag(ya)

2 −I −q

−I I+diag(yb)
2 q

−q� q� q�q+y2
c

]−1

=

[
D+B+r(Bq)(Bq)� D−r(Bq)(Aq)� rBq

D−r(Aq)(Bq)� D+A+r(Aq)(Aq)� −rAq

r(Bq)� −r(Aq)� r

]
,

(22)

di :=
1

y2a,i + y2b,i + y2a,iy
2
b,i

, r :=

(
Nnu∑
i=1

y2a,iy
2
b,idiq

2
i + y2c

)−1

,

and D := diag(di), A := diag(y2a,idi), B := diag(y2b,idi).
Because of the diagonal structure of A and B, the vectors Aq
and Bq are cheap to compute, and this allows one to compute

the matrix multiplication in (18) in only O (Nnu) floating

point operations (FLOPS). Moreover, since the contractive

constraint in (20) has the same structure as the terminal cost

in the objective function, the computation of q is inexpensive

when performed together with the computation of ∇J(u).
The primal variable updates du and the slack updates

dy,a, dy,b and dy,c follow from (19). The computation of the

gradient of the objective function can also be done efficiently

by exploiting the causality of the nonlinear dynamics, f .

From the definition of J(u) in (21), we have

∇J(u) = ∇ψ(u)QΔx+RΔu, (23)

where the matrix ∇ψ(u) contains the standard linearization

matrices of the nonlinear dynamics Fk := ∂f
∂x (Δxk,Δuk),

Gk := ∂f
∂u (Δxk,Δuk) and it is block upper triangular,

while Q and R are block diagonal. Thus:

∇ψQx=

⎡
⎢⎢⎢⎢⎣
G�

0 . . . G�
0 F

�
N−1 . . . F

�
0

. . .
...

G�
N−2 G�

N−2F
�
N−1

G�
N−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

QΔx1

...

QΔxN−1

PΔxN

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

...

G�
N−3

(
QΔxN−2+F�

N−2

(
QΔxN−1+F�

N−1PΔxN

))
G�

N−2

(
QΔxN−1 + F�

N−1 (PΔxN )
)

G�
N−1PΔxN

⎤
⎥⎥⎥⎥⎦

which, for diagonal cost matrices Q, R and full P , can be

computed in O (
N(n2

x + nxnu)
)

FLOPS (when computing

the second last term, one need not recompute the term

PΔxN and similarly for the terms above). Since the other

steps of Algorithms 1 and 2 have lower complexity, including

the computation of the merit function φ(t) and its derivative

φ′(t) (or directional derivative Dφ(t)), this is the resulting

complexity of the algorithm. Note that this complexity is

competitive both with the Gradient Descent method for

linear MPC [17], O (
(Nnu)

2
)
, and the SQP method, whose

complexity depends on the complexity of the QP solver. The

Active Set Method would require O (
(Nnu)

2
)

FLOPS [18],

while an Interior Point Method exploiting sparsity of the

MPC requires O (
N(n3

x + n2
xnu)

)
FLOPS [19].

IV. COMPUTATIONAL RESULTS

We show the performance of the proposed algorithms in

two examples: (1) contractive MPC of a centrifugal com-

pressor; (2) MPC with a terminal constraint for an inverted

pendulum. Algorithm 1 and 2 are implemented in the open-

source tool FalcOpt [20], which allows one to automatically

generate library-free and embeddable C code solving the

nonlinear MPC problem. The generated code is specifically

tailored for the considered application and heavily exploits

sparsity in the problem data. The problem specifications can

be given either via MATLAB or Simulink and interfaced

to the C code via automatically generated MEX functions.

The computational times shown here are relative to an off-

the-shelf Windows computer with processor Intel Core i7-

3740QM 2.70Ghz.

Contractive MPC for an industrial compressor: We con-

sider the control of the compression system in [21, Section

III-C], which is a contractive MPC with box constraints.

The dimension of the problem is characterized by N = 20,

nx = 5 and nu = 2. The computational times obtained

by the code generated Algorithms 1 and 2 (with p = 1,

p = 2 and p = ∞) are given in Table I for convergence

tolerance ε = 10−6 along with commercial solvers such as

the SQP solver SNOPT [22] and the Interior-Point Method

(IPM) solver FORCES Pro NL [19]. We also consider as an

approximate solution the Real-Time Iteration (RTI), which
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TABLE I

COMPUTATIONAL TIMES FOR THE COMPRESSOR, TOL. ε = 10−6

Method (Solver) Avg. (ms) Best (ms) Worst (ms)

Algorithm 1 (FalcOpt) 0.0892 0.0724 0.169

Algorithm 2, p = 1 (FalcOpt) 0.101 0.0797 0.307

Algorithm 2, p = 2 (FalcOpt) 0.0835 0.0677 0.167

Algorithm 2, p = ∞ (FalcOpt) 0.147 0.111 0.418

SQP (SNOPT) 256 109 889

IPM (FORCES Pro NL) 1.06 0.616 2.70

RTI (FORCES Pro) 0.727 0.605 1.27

TABLE II

COMPUTATIONAL TIMES FOR THE INV. PENDULUM, TOL. ε = 10−6

Method (Solver) Avg. (ms) Best (ms) Worst (ms)

Algorithm 1 (FalcOpt) 3.05 0.411 4.74

Algorithm 2, p = 1 (FalcOpt) 0.768 0.228 1.20

Algorithm 2, p = 2 (FalcOpt) 1.189 0.176 2.10

Algorithm 2, p = ∞ (FalcOpt) 1.36 0.233 1.72

SQP (SNOPT) 9.66* 4.00 370*

IPM (FORCES Pro NL) 0.127 0.0779 0.451

RTI (FORCES Pro) 0.160 0.107 0.244

* The first MPC optimization in SNOPT exceeds the maximum
number of major iterations and is not considered here.

yields a closed-loop cost comparable with the full-nonlinear

solutions [23]. The proposed algorithms outperform both the

exact and approximate methods in the considered example

(best times are highlighted in bold).

Inverted pendulum with a terminal constraint: In our

numerical experience, we observe that the computational

advantage of �p merit functions is application dependent.

In Table II, we show the numerical results obtained for

the control of the inverted pendulum (N = 8, nx = 4
and nu = 1) with a terminal constraint, presented in [3,

Section 6]. In this case, the dynamics are highly nonlinear

and contain sinusoids, which are expensive to compute. As

a result, Algorithms 1 and 2 require at least 10 times more

iterations than IPM to converge. Using �p merit functions

(Algorithm 2) yield to a substantial improvement over the

performance obtained with Algorithm 1. In fact, Algorithm

1 requires on average 2564 iterations, compared to 582, 978
and 721 for Algorithm 2 respectively with p = 1, 2, ∞.

V. CONCLUSION

We have analyzed a projected gradient and constraint

linearization method, which consists of taking a gradient step

and project it onto a local linearization of the constraints.

We have shown global convergence to a critical point of

the nonlinear problem by means of a simplified �p merit

function, which has some beneficial theoretical properties,

such as keeping the penalty parameter bounded.

In our numerical experience, the most reasonable choice

is p = 1. When the dynamics are expensive to evaluate, the

proposed algorithms are slower than interior-point methods.
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