
Code Extraction from a Dependently Typed Language
to a Stack Based Language

Louis Milliken
Supervisor(s): Jesper Cockx, Lucas Escot

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

1

Code Extraction from a Dependently Typed Language to a
Stack-Based Language

LOUIS MILLIKEN∗, Delft University of Technology, The Netherlands

Additional Key Words and Phrases: Agda, Forth, Dependent Types, Code Extraction

ABSTRACT
Dependently typed languages such as Agda can provide users certain guarantees about the correct-
ness of the code that they write, however, this comes at the cost of excess code that is not used at
run time. Agda code is currently compiled to another language before it is run, there are not many
target languages in popular use, so it is unclear if there are other potential target languages that
could do a better job. The purpose of this paper is to investigate the efficacy of Forth as a target
language for Extraction from Agda, in the hopes that Forth may prove to have the potential to be
a better target language than the currently used target languages, Haskell and Javascript. Forth
is a stack-based, imperative language, meaning that values are pushed and popped from a stack
through the use of ’words’ instead of passing and returning values with functions, as is the case
in most languages. Agda is a dependently typed, purely functional language. A dependent type
is a type whose definition depends on another value, which allows for types with very specific
information, such as a ’Vec n’ representing an array of length ’n’. These dependent types are used
to write code with more certainty about its correctness and behaviour. Overall, Forth can be used as
a target language to compile Agda code, however many of the advantages of Forth are squandered
by executing code written and structured with Agda in mind, making it a rather ineffective target
language when compared to other solutions such as Haskell.

1 INTRODUCTION
Dependently typed languages are a subset of programming languages whose type system allows
for dependent types. These dependent types can be powerful tools for writing code that can be
reasoned about and used with confidence in its correctness. That said, several drawbacks are
preventing dependently typed languages from being used in mainstream production. A common
strategy to alleviate these problems is to "extract" code from a dependently typed language into
another language that can be compiled and run with fewer issues. Examples of dependently typed
languages are Agda, Coq, and Idris.
Dependently typed languages are often compiled to different languages when they need to be
run. Code written in Coq can be extracted to OCaml [Danil Annenkov 2021; Letouzey 2008] and
programs written in Idris can be extracted to Scheme [Idr 2022]. Agda has support for compilation
to multiple languages, namely Javascript and Haskell [Agda Team 2022a].
This project aims to investigate the efficacy of different languages to extract Agda code to, In
the hopes of finding a language that can perform better than the two current languages used for
extraction as previously stated, Javascript and Haskell [Agda Team 2022a].

Extraction to another language is a complicated task, and several problems need to be solved
when creating an implementation. For example, if the language being extracted to uses strict
evaluation, how would one go about implementing a language that uses lazy evaluation? The same
can be said for extracting from a language with implicit memory management (Agda) to one with
explicit memory management. Finding solutions to these problems are major hurdles for writing

Author’s address: Louis Milliken, Delft University of Technology, The Netherlands, L.M.Milliken@student.tudelft.nl.

HTTPS://ORCID.ORG/1234-5678-9012
https://orcid.org/1234-5678-9012

2 Louis Milliken

an effective code extractor, and the extent to which a given language can solve these problems will
determine its suitability as a target language for extraction.

The exact question that will be answered by this research is "How effectively does Forth serve as a
target language for extraction from Agda?"
While the many differences between Agda and Forth may make the creation of such an extractor
difficult, Forth is an extremely lightweight and low-level language, meaning that if Agda could be
extracted to Forth, the resulting code could be considerably faster and less resource-intensive than
the same original code when extracted to Haskell or Javascript. Due to the limited scope of this
project, it is not expected that the compiler created for this project will outperform currently used
compilers, but it may indicate the potential of Forth as a target language. Even if Forth proves to be
an inappropriate language for this purpose, we may still find valuable insight into what properties
are valuable for a language to have when serving as a target of a dependently typed language, as
well as how exactly Forth fails to provide these properties.
This question can be broken down to better identify the criteria for evaluating the efficacy of
extracting Agda to Forth:

• How does the performance of evaluating complex data types differ between Agda code
extracted to Forth and code compiled using Haskell?

• How does the performance of evaluating higher-order functions differ between Agda code
extracted to Forth and code compiled using Haskell?

• What names/words are allowed for variables and functions in Agda, but not in Forth?

These sub-questions can be used to create easily quantifiable measures of success, which will be
used to determine the efficacy of Forth as a target language for extraction from Agda.

This paper will first provide additional information by exploring the defining features of Forth and
Agda, followed by a breakdown of how Agda code is compiled to Forth, and what additional Forth
code is needed to support this. Then, the performance of my compiler will be evaluated, using
both benchmarking and reflection on the limitations of which features can be provided in Forth.
Section 6 will discuss how I ensured that my research and findings are presented responsibly. Next,
Section 7 will provide my final thoughts, explaining why I ultimately don’t believe that Forth is an
effective target language for compilation from Agda, and finally, some discussion on related works
will be had in section 8.

2 BACKGROUND INFORMATION ON FORTH
The target language of my compiler, Forth, is an eagerly evaluated, stack-oriented, imperative
language. These characteristics make Forth’s design a far cry from the lazily evaluated, purely
functional Agda. Forth code is written by combining functions (known as ’words’ in Forth) to build
up complex features using several smaller ones. These words can be named anything, so long as
there are no black characters such as spaces, tabs, and newline characters, guaranteeing that any
Agda words will be valid in Forth.

A stack-oriented language behaves differently from others, as instead of passing values between
words, values are instead pushed onto a stack, and can then be pushed off later to be used in
an operation, the result of which would then be pushed back onto the stack. The stack used for
pushing values in this fashion is known as the data stack and is one of two stacks used in standard
implementations of Forth, along with the return stack. The return stack is primarily used when
words are called to keep track of any locally bound variables and the location that the code returns

Code Extraction from a Dependently Typed Language to a Stack-Based Language 3

to at the end of the called word.

Another feature of Forth that differentiates itself from Agda is that it is an untyped language.
all values posted to the stack are simply integer values. This means that my own implementation
of a type system will be needed to reproduce Agda features such as pattern matching. This will
be explained in more detail in a later section. Despite its apparent drawbacks, this lack of a type
system also provides flexibility in terms of what can be pushed to the data stack. Memory addresses
and execution tokens - references to words that can then be called from the data stack - are two
types of value that greatly increase the range of expressions that can be written in Forth.
Pointers to memory allow for the implementation of complex data structures, and execution tokes
allow for the creation of currying and higher-order functions.

These two features make Forth a very simple language to work with, despite being so funda-
mentally different from most, if not all, mainstream programming languages. Additionally, Forth
has a dictionary used to store the definitions and values of words and variables and allows for
functions to be used in a concatenative manner, in which words can be called one after the other,
assuming that the appropriate values are on the stack for each call. This means that more complex
words can be created by stringing several other together, to reduce repeated code and improve
readability. Examples of how complex words have been created to allow for functionality like that
of Agda’s will be shown in Section 4.3.

Forth is a language with many implementations1, with the most popular implementations typically
adhering to the ANS Forth specifications [Knaggs 1998]. Of these many implementations, I decided
to write compile with GForth [Ertl 2008] in mind. While it may not have as many specialised
features as other implementations such as RVM Forth [Stoddart et al. 2010], there is a large amount
of information about GForth and its implementation available online. This is an important factor
for me as, until starting this project, I had no experience with Forth.

3 BACKGROUND INFORMATION ON AGDA
As mentioned briefly in both the introduction and the previous section, Agda is a purely functional,
dependently typed language. This section will explain what these two properties mean, and how
they affect the design of the compiler.

A pure language is a language that can be evaluated as if all expressions are mathematical functions,
a function that maps each possible input to a single output. To guarantee this property, expressions
cannot have any side-effects which could affect the result if that expression were to be evaluated
again. Examples of side-effects include mutable variables, user input, and errors being thrown.
Agda being pure means that Agda code can be reasoned about as if it were a mathematical function,
which contributes to the certainty one can have about the correctness of Agda code.
Despite being a cornerstone of Agda’s design, Forth does not have to be a pure language as well.
This is because, by design, impure Agda cannot be written, therefore the resulting situation in
which the compiler creates impure Forth code will not arise.

Agda being dependently typed is another key feature that sets it apart from most other languages.
"What sets dependent type systems from others is that types can depend on terms" [Norell 2007].
The additional specificity provided by these dependent types means "that more errors can be caught

1https://en.wikipedia.org/wiki/Forth_(programming_language)#Implementations

4 Louis Milliken

at compile-time, rather than manifesting themselves only when the right circumstances arise at
run-time" [Brady 2005]. Dependent Types can be defined using another value to provide additional
information about a type.

data Vec (A : Set) : Nat → Set where
[] : Vec A zero
:: : {n : Nat} → A → Vec A n → Vec A (suc n)

tail : {A : Set}{n : Nat} → Vec A (suc n) → Vec A n
tail (_ :: ret) = ret

Fig. 1. Example of a dependent type, and a function that makes use of it

Figure 1 provides an example of a dependent type, ’Vec’, and a function that relies on the additional
information provided by the dependent type. The definition of ’Vec’ depends on a natural number,
which is used to indicate its length. This is then used to create a tail function which only takes
vectors with a length greater than zero. This removes the possibility of ’tail’ being called on an
empty array, which would typically raise a run time error. Guarantees such as this are used to
write Agda code with certainty that these types of errors will not occur. The values used to define
these dependent types can be treated similarly to regular arguments of functions when compiling
to Forth, there are cases in which these values can be completely ignored at compile-time, and as
such can be replaced by dummy values

4 COMPILING AGDA TO FORTH
Haskell provides functionality to read in an Agda program, break it down into Agda’s internal
syntax, and then provide a treeless representation of that syntax. This is immensely helpful as it
removes the need to manually parse the Agda code and convert it to an abstract syntax before
compilation can even begin. This section will first explain some of the key forms of Agda syntax,
and how they are converted to Forth, followed by an overview of some of the built-in types in
Agda, and how they allow for optimisations. Finally, the run-time library created to support the
newly generated Forth code will be described in detail.

4.1 Agda’s Internal Syntax
Agda’s Internal syntax provides many definitions, each corresponding to a certain type of operation
or declaration. To be able to compile any valid Agda code into Forth code, every definition in the
Agda syntax requires a corresponding definition in terms of Forth code. For the sake of brevity, not
all of these definitions will be detailed in this section.

• Constructors
In Agda, constructors are used to defining data types, as well as provide methods for creating
those data types. An example of such a constructor can be seen in Figure 2 Since Forth is
an untyped language, a rudimentary type system needed to be created to accommodate
these constructors.

data List (A : Set) : Set where
[] : List A
:: : A → List A → List A

Fig. 2. Definition and constructor of the List types [] and _::_ in Agda

Code Extraction from a Dependently Typed Language to a Stack-Based Language 5

v a r i a b l e type [] 1 c e l l s a l l o t 1 type [] !
v a r i a b l e XT []
: noname type [] here 1 f i l l A r r a y here 1 c e l l s a l l o t ; XT [] !
: noname XT [] @ makeTHUNK ; i s []
: noname . " [] " ; type [] 1 c e l l s + !

v a r i a b l e type_ : : _ 1 c e l l s a l l o t 3 type_ : : _ !
v a r i a b l e XT_ : : _
: noname type_ : : _ here 3 f i l l A r r a y here 3 c e l l s a l l o t ; XT_ : : _ !
: noname XT_ : : _ @ makeTHUNK ; i s _ : : _
: noname . " _ : : _ " ; type_ : : _ 1 c e l l s + !

Fig. 3. Definition and constructor of the List types [] and _::_ in Forth

Figure 3 shows how the same List type defined in Agda in Figure 2 is defined in Forth. A
type is defined by creating a variable in the Forth environment. The address of this variable
can then be treated as an identifier corresponding to the constructor of that type. Similarly
to other languages with manual memory management such as C, memory addresses can
be treated as arrays by reserving the subsequent locations in memory. This is used in the
constructors to represent an object as an array, with the first element of the array containing
a pointer corresponding to its type, and each element after containing an attribute of the
object. For example, the first line of the definition of ’[]’ allots one block of memory to make
it an array of length 1 as, other than its type, this object has no attributes. On the other hand,
the constructor for _::_ creates an array of length three because this type also has a head
and tail attribute. It is worth noting that it is also possible to represent data types in Forth
such that objects themselves, rather than pointers, can be pushed to the stack [Wavrik 1990].
Such a method would provide a more efficient implementation, however, would lead to
considerably more code, and a much more complicated solution to automatically generating
constructors that would be beyond the scope of this project.

• Functions
For a given Agda function, the corresponding Forth definition is made up of two parts.
The reason for this is to allow for the creation of thunks, the particulars of which will be
explained in the next subsection. The first part is a list of nameless functions, with each
function representing a lambda expression in Agda. Typically these lambda expressions
either take a single argument and return the rest of the function, or they are explicitly
defined lambda expressions to be used in the function itself. returns a pointer - or execution
token - of the actual function. The second part is a word that takes the elements of this
list and passes each word to the next, resulting in a single, fully formed word. While Forth
is a stack-based language, there is still the option of binding values on the stack to local
variables. This is a neat way of allowing a word to take an ’argument’, by taking a value off
of the stack and immediately assigning it to a local variable which can then be reused during
the execution of the word. Another solution to taking arguments would be leaving them on
the stack and retrieving them as needed by keeping track of their position, unfortunately,
the implementation of such a feature in the compiler is beyond the scope of this project, as
it would take too much time to implement.
Figure 4 Gives a simple example of a function in Agda; the ’not’ function takes a single

6 Louis Milliken

not : Bool → Bool
not true = false
not false = true

Fig. 4. Definition of the not function in Agda

d e f e r not
. . .
ENDFLAG : noname { a }
a i f 0 e l s e −1 then ;
c r e a t e XTnot f i l l H e r e
: noname XTnot fo ldThunks ; i s not

Fig. 5. Definition of the not word in Agda

Boolean value and returns the negation of that argument. Figure 5 Shows how this function
is translated into Forth. First, the word ’not’ is declared at the top of the file, which allows
other words to reference it before the actual definition of ’not’ has been provided. Then,
the actual functionality of the ’not’ function is stored in a variable called ’XTnot’, which is
retrieved and stored as a thunk when the ’not’ word is called. Again, the details of thunks
will be described in the next subsection. While the difference in size between the Agda and
Forth definition of ’not’ is fairly small, given that, more complicated expressions that are
made up of multiple lambda expressions - either by taking more arguments or creating
lambda expressions within the function - become much larger and, unfortunately, harder to
read and understand:

ite : {A : Set} → Bool → A → A → A
ite true x y = x
ite false x y = y

Fig. 6. Definition of the ite (if, then else) function in Agda

d e f e r i t e
. . .
ENDFLAG : noname { d c b a }
b i f c e l s e d then ;
: noname { c b a e }
c b a e pas s pa s s pa s s ;
: noname { b a f }
b a f pa s s pa s s ;
: noname { a g }
a g pas s ;

c r e a t e XTi te f i l l H e r e
: noname XTi te fo ldThunks ; i s i t e

Fig. 7. Definition of the ite word in Agda

Code Extraction from a Dependently Typed Language to a Stack-Based Language 7

Figure 7 shows the translation of the ’ite’ function, Figure 6. Despite only taking two more
arguments, the size of the resulting word is much greater than that of ’not’. You can see that
for each additional argument, another word is defined. Starting from the bottom and going
up, each word takes the next word as its first (leftmost) argument, then all of the previous
word’s arguments and finally one additional argument.
While many implementations of Forth would face this same issue, there are some, such as
RVM Forth that supports nested lambda functions[Stoddart and Lynas 2006]. Such a feature
would greatly reduce the amount of code generated, as functions consisting of multiple
lambda expressions, such as ’ite’, could still be written as a single Forth word.

• Function application
Agda allows for functions to take arguments in both an in-order and a post-order fashion,
however, this ordering is disregarded once the code has been converted to the abstract
syntax. arguments are passed to words in Forth by pushing values to the stack before calling
the word in question, the resulting function application must structure the application
in reverse polish notation, where arguments are given first, followed by the word that
the arguments are being passed to. Agda is an implicitly curried language, meaning that
providing a function an argument just returns a new function that takes one less argument
until all arguments have been passed. This is not the case in Forth, and as such the ’pass’
word is used to manually create a curried version of a given function, with one argument
being passed at a time. Since only one argument can be passed at once, the order in which
the arguments are written in Forth is the opposite of how they would be written in Agda,
as shown in the figure below.

AGDA:
foo x y

FORTH :
y x foo pas s pa s s

Fig. 8. Function application in Agda and Forth

Figure 8 Shows how function application works in the two languages, with the ’pass’ word
serving to create a curried version of ’foo’. I created this word by making use of the ’curry’
word defined in Rosetta Code 2. It takes a thunk and an argument as a function, and returns
a new thunk containing an execution token with the argument applied. It is important to
note that every time an argument is passed, a new dictionary entry is created to store that
word. This means that over time, as more and more new words are created, the dictionary
may fill up, causing a dictionary overflow. This will be discussed further in 5.

While there are other definitions in Agda’s syntax, these make up a large portion of the definitions
that are converted to Forth in a noteworthy manner.

4.2 Built-Ins and Optimisations
Agda supports "built-in’ definitions of several types, meaning that, while a definition of a type and
the functions that make use of it can be specified in code, another, more efficient implementation
can be used at run time.
2https://rosettacode.org/wiki/Currying#Forth

8 Louis Milliken

data Nat : Set where
zero : Nat
suc : Nat → Nat

{-# BUILTIN NATURAL Nat #-}

Fig. 9. Definition of the Nat type, with the built-in flag

Figure 9 Shows an implementation of the ’Nat’ type in Agda, along with a line indicating that the
built-in definition for ’Nat’ can also be used. This means that the definition of Nat being made up
of ’zero’ and ’suc’ can still be used in other functions, however, at run time, natural numbers will
be represented as actual natural numbers, rather than the recursively defined objects as defined in
the code. Agda provides built-ins for several other types, such as Booleans, Integers and Strings
[Agda Team 2022b].

4.3 The Forth Run-time Library
As explained in Section 2, Forth is a fundamentally different language to Agda, and as such does
not support many features of Agda such as laziness, partial application and pattern matching. That
said, Forth words can be created to provide an environment in which these concepts can be used.
This is through the creation of a type system, along with a pattern matching method, as well as the
creation of the thunk and result classes, which can be used alongside the type system to provide
lazy evaluation and partial application.

• The Obj= Word and Pattern Matching
Functions in Agda often rely on pattern matching to allow for functions with specific
outputs for different input patterns. As such, a method to compare an object with a given
pattern, and return any bound variables in the case of a successful match is required. Making
use of the constructors described in Section 4.1, an ’Obj=’ method was created to iterate
through two given objects at once to ensure that they are both of the same type, and then
recursively call itself for each of the two objects’ attributes. This word is rather long and
for the sake of brevity, will not be included in this report.
When pattern matching in Agda, the provided pattern can consist of an incomplete object,
with missing attributes being represented as a variable, which will then have the argument’s
corresponding attribute being bound to that variable for use within the function. Such
functionality is achieved in Forth through the use of a ’wildcard’ object, to fill in any gaps
in the provided pattern.

. . .
dup @ WILDCARD = i f

drop
w i l d c a r d s p o i n t e r @ c e l l s + !
p o i n t e r @ 1 + po i n t e r !
−1

. . .

Fig. 10. Identifying wildcards in the ’Obj=’ word in Forth

Figure 10 shows the portion of the ’Obj=’ function that identifies and handles these wildcard
objects. Simply put, if the type of the pattern being compared is ’WILDCARD’, then the

Code Extraction from a Dependently Typed Language to a Stack-Based Language 9

value of the object that is being compared is added to the ’wildcards’ array. The values in
this array are then pushed to the stack and bound to local variables if the whole pattern is
matched, allowing them to be reused later in the word.
With this ’Obj=’ word, Agda’s style of pattern matching can easily be achieved through the
use of nested ’if, then, else’ statements to iterate through each possible pattern and execute
the correct code.

• Thunks and Results Thunks are a data structure used to enable lazy evaluation in eagerly
evaluated languages. Typically, they are represented as an object with two attributes: a flag
to indicate whether the thunk has been evaluated, and either an expression waiting to be
evaluated or a value, depending on the value of the flag. For the sake of readability, my
implementation splits this object into two, each only containing either an expression or
value and with their type replacing the flag.

v a r i a b l e THUNK 1 c e l l s a l l o t 2 thunk !
: makeTHUNK (x t −− [THUNK xt])

thunk here 2 f i l l A r r a y
here
2 c e l l s a l l o t

;
: noname . " T : " ; THUNK 1 c e l l s + !
v a r i a b l e RESULT 1 c e l l s a l l o t 2 thunk !
: makeRESULT (v a l −− [RESULT va l])

r e s u l t here 2 f i l l A r r a y
here
2 c e l l s a l l o t

;
: noname . " R : " ; RESULT 1 c e l l s + !

Fig. 11. Definition of the THUNK and RESULT types in Forth

Figure 11 Shows the definition of the two types, ’thunk’, which is used to store expressions,
and ’result’ which is used to store the result of evaluating said expressions. Since the types
of objects in this type system are stored in the same way as variables, it is a simple matter of
replacing the first attribute of a thunk, a pointer to the ’thunk’ variable, with the pointer to
the ’result’ variable to indicate that a thunk has been evaluated. These definitions provide a
simple way of delaying evaluation by storing the execution tokens of words which, when
given as an argument to the ’pass’ word as described in Section 4.1, can easily take additional
arguments before they are evaluated.

My run-time library contains two different methods of evaluating these thunks, depending
on the situation.
The first, and simpler of the two, ’dethunk’ takes an object and, if it is a ’thunk’, executes
the execution token stored within and returns the result. If the argument is not a thunk,
then it is immediately returned instead. While it would be fair to assume that this method
would return the result of fully evaluating the expression represented by the thunk, the
token executed is still executed lazily, meaning that the object returned could still contain

10 Louis Milliken

other thunks as attributes. This could be equated to a single act of innermost evaluation;
’dethunk’ only really evaluates a single part of the whole expression.
To fully evaluate, or ’force’ an expression, the word ’deepdethunk’ was created. This word
first calls ’dethunk’ on the argument to ensure that it is working with an object that is not a
thunk. It then recursively calls itself on all attributes of the objects, to fully evaluate the
expression and return an object that does not contain any thunks.

5 PERFORMANCE EVALUATION
This section will present the results of benchmarking Agda code when compiled to Forth, as
well as other target languages, Haskell, Scheme, HVM and LLVM. These results will be discussed
to determine Forth’s performance in comparison to other solutions. The limitations that have
been found when working with Forth will also be discussed, outlining the problems that I have
encountered while developing the compiler to Forth, as well as the runtime library used to support
the execution of the Forth code.

5.1 Bench Marking
While not all functions can be compiled to Forth and run, it is still valuable to measure Forth’s
performance when running the functions it can run. The following section will compare the
compiled Forth code to three other subjects: Haskell, Scheme and a version of the target Agda code
handwritten in Forth by myself. I chose to include handwritten Forth code to identify the difference
between the performance of my compiler with an ’optimal’ solution. The handwritten Forth code
will have many benefits over the compiled code; it will be eagerly evaluated, removing the need
for thunks, and it will have tail call optimisation, meaning that it can handle a recursive function
of arbitrary size. To improve the reliability of my results, the run times displayed for each of the
inputs are the average of ten separate runs.
The first test is the consume function, which simply takes a number and recursively decreases that
number until it reaches zero. The expected complexity of this function is linear, however, the X-axis
for the following graphs are on a logarithmic scale for the sake of readability, so at x = 3, the input
value to consume is 8. While this function may seem trivial, simply taking a large number and
always returning zero, in the end, it does serve a useful purpose by testing each of the versions’
ability to handle simple recursive functions with very large depths.

(a) Consume for inputs between 0 and 15 (b) Consume for inputs between 0 and 25

Fig. 12. Run times of the consume function

Code Extraction from a Dependently Typed Language to a Stack-Based Language 11

Figure 12 Shows the run times of the four different versions of the consume function for in-
puts between 0 and 25, with Figure 12a being between 0 and 15, and Figure 12b being between
0 and 25. 12a stops at 15 since, past that point, the compiled Forth version reaches a dictionary
overflow, causing it to crash. In the case of all languages, the run time seems to not change for
most of the inputs. An explanation for this is that the overhead time for the languages to start is
much greater than the time it takes to actually evaluate the function, making the change in time
unnoticeable. Two differences between the languages can be observed: the first being that the
overhead of Forth and Haskell is considerably lower than that of Scheme, and the second being
that time taken to evaluate consume becomes noticeable much earlier in compiled Forth, with
Forth’s run time starting to visibly increase at an input of 13, whereas Schemes run time doesn’t
visibly change until an input of 18. and Haskell and handwritten Forth don’t show an increase
until 23. It is worth noting that an input of 18 is 25 times larger than an input of 13. The graphs
clearly show that both the Forth and Scheme compilers are not able to handle nearly as many
levels of recursion as Haskell or the handwritten Forth solution. Even without being able to see the
run time for larger inputs in compiled Forth, the difference in run time between it and the other
can easily be predicted given how early its runtime starts to increase compared to the other versions.

The second function being compared is quick sort, which typically has a time complexity of
𝑛𝑙𝑜𝑔(𝑛). This is to test how effectively each implementation handles increasingly more complex,
data types, in this case, an array, which is defined recursively in Agda. For Forth to be able to run
this function, the version of quick sort used here makes use of two other comparison functions in
place of the lambda expressions typically used for filtering the input list.

(a) Quick sort for inputs between 0 and 2000 (b) Quick sort for inputs between 0 and 200000

Fig. 13. Run times of the quick sort function

Similarly to the run times shown for consume, the compiled Forth code performs the worst of
the four versions, both in runtime and maximum input. Figure 13a run times for the quick sort
code for inputs up to 2000, the compiled Forth code is only able to sort a list of length 1300 before
encountering a dictionary overflow, whereas Figure 13b shows that the other versions are not only
able to run quick sort for an input list with length 200000, but they can all perform the task in less
time than it took the compiled Forth code to sort a list of length 1300, other than Scheme, who’s
run time is shown to increase at a much greater rate than the other two versions still running at
the higher input lengths. These two shortcomings, low maximum input and poor performance,

12 Louis Milliken

are both indicative of the compiled Forth’s representation and handling of large data structures
being very inefficient. On the other hand, the handwritten Forth implementation of quick sort can
maintain a performance similar to Haskell’s and even starts to surpass it for input lengths of 80000
and more. The handwritten implementation takes a list defined as a series of adjacent memory
addresses making up each index, instead of the recursively defined definition used by the other
three versions here. Figure 13 clearly shows that this is the more efficient way of handling such
data structures in Forth.

5.2 Limitations
Agda and Forth are wildly different languages, and it seems unavoidable that these differences lead
to limitations when executing Forth code structured with Agda in mind. The greatest limitation I
have found is Forth’s inability to implement tail call optimisation. Tail call optimisation is a way of
reducing the number of nested function calls in situations where the last action made in a function
is making a call to another, potentially itself. This optimisation is achieved by replacing this final
function call with a ’jump’ to the other function, removing the need to push a return address to the
return stack, as there is no need to return to the function making the call afterwards. It is important
to note that typical Forth words can be optimised for recursive tail calls through the use of the
’begin, again’ control structure.

: FOO (n − 0)
dup 0 = i f

EXIT
e l s e

1 −
r e c u r s e (the word used to make a r e c u r s i v e c a l l i n Fo r th)

then
;
: FOO (n − 0)

BEGIN
dup 0 = i f

EXIT
then
1 −
AGAIN (jump back to the BEGIN word)

;

Fig. 14. The function ’foo’ with (top) and without (bottom) recursive tail call optimisation

Figure 14 Shows two different versions of a recursive function, with the second making use of tail
call optimisation to avoid making recursive calls and filling up the return stack. Unfortunately,
Agda code - even Agda code that is originally tail-recursive - will not have this structure which
allows for optimisation. This is due to the implementation of lazy evaluation and the ’dethunk’
word; even if an Agda function is tail-recursive, the resulting Forth word would be evaluated with
mutual recursion between the given function and the ’dethunk’ function, meaning that at no point
is a recursive call made. This serves to severely limit the size of problems that can be solved, as
inputs to recursive functions that are too large will lead to return stack overflows.

Code Extraction from a Dependently Typed Language to a Stack-Based Language 13

Another limitation of Forth - or at least most standard implementations of Forth - as a language
is its inability to support nested lambda expressions. This limitation and its effects were briefly
discussed in Section 4.1, though to summarise what was said there, my solution to emulate the
nested lambda expressions that make up many of Agda’s functions, the compiled functions needed
to be represented in the form of several different ’words’ which are then passed to each other to form
a single function. This results in even relatively simple Agda functions’ Forth equivalents being very
long and hard to read. With this lack of readability came a much more difficult debugging process,
which greatly slowed down development progress. As such, not all Agda functions, when compiled
to Forth, will be able to run correctly, or give correct results when they are run. While Forth’s lack
of support for nested lambda functions is a limitation of Forth, resulting in longer, harder-to-read
code, it is arguable whether the resulting incompleteness of my compiler is a limitation of Forth as
a language, or just a symptom of my unfamiliarity with writing and working with Forth.

6 RESPONSIBLE RESEARCH
As with any research, this report and investigation must be carried out responsibly. Since no parties
are affected by the results of this work, or by the process through which the results were obtained,
there is little room to conduct this research irresponsibly. That said, I could not have accomplished
what I have in this report without the abundance of resources online regarding Forth, Agda and
Dependently typed languages in general. Therefore, I should ensure that my findings and the work
done for this report are also available online, for others to access if they need information about
compiling dependently typed languages, specifically for Forth. To achieve this, my report, the
poster used in my final presentation and the code base containing both the compiler and run time
library will be available on public repositories.
The repository for my compiler and run time library can be found here: https://github.com/
LMMilliken/agda2Forth, and the repository for the benchmarking can be found here: https://
gitlab.ewi.tudelft.nl/jcockx/agda-extractors

7 CONCLUSION
Despite their differences, Forth has proven capable of supporting many features of Agda such as lazy
evaluation, partial application, and a type system that enables pattern matching. That said, there is
a difference between supporting these features and supporting them well. Many of the solutions to
the problems posed by compilation from Agda are at the cost of the strengths of Forth; binding to
local variables to allow words to take arguments sacrifices the low memory cost that comes with
working with values on the stack, and while thunks can emulate laziness and partial application,
they also prevent the tail call optimisation, limiting the size of inputs to recursive functions. On the
other hand, an implementation with tail call optimisation could be written, with the caveat that the
compiled Agda code would be evaluated eagerly, and without support for partial application. It
is possible to write Agda code that does not require laziness or partial application, meaning that
there would be a use case for this implementation with tail call recursion, but ultimately there are
other target languages that can achieve both.

The notion that other target languages can achieve what Forth can more effectively is what
leads us to the answer to the initial question, "How effectively does Forth serve as a target language
for extraction from Agda?". While Forth can be used as a target language, its clear limitations
when compared to other potential languages such as Haskell prevent it from being regarded as
an ’effective’ target for compilation. Even though there are several ways to improve the efficiency
of the compiler and run-time library written for this project such as a more efficient method of
generating constructors as described in Section 4.1, adding more builtin optimisations, or even

https://github.com/LMMilliken/agda2Forth
https://github.com/LMMilliken/agda2Forth
https://gitlab.ewi.tudelft.nl/jcockx/agda-extractors
https://gitlab.ewi.tudelft.nl/jcockx/agda-extractors

14 Louis Milliken

writing the compiler with a different implementation of Forth in mind, ultimately I believe that
such improvements would not be beneficial enough to outweigh the limitations of Forth as a target
language for compilation from Agda.

8 RELATEDWORK
While much more feature-rich than Forth, there is another stack-based language currently being
used as the target of a dependently typed language: Michelson[Michelson Team 2002], which
is primarily used on the Tezos blockchain3. This language is "stack-based, with high-level data
types and primitives, and strict static type checking"[Michelson Team 2002], and is the target
language of compilation for the dependently typed language, Juvix4. While Michelson’s additional
features allow it to avoid some of the challenges I faced when compiling to Forth, there are still
some similarities between the challenges faced, as well as the some of the solutions reached, when
comparing compilation from Agda to Forth, and Juvix to Michelson [Metastate Team 2020].
The first of these is both Forth and Michelson’s approach to functions and their application. As
mentioned in Section 5.2, Forth is unable to support nested lambda functions, and as such the
Agda2Forth compiler breaks down functions with multiple arguments into multiple single argu-
ment words. The Juvix to Michelson compiler also endeavours to have functions only take a single
argument at a time, however for a different reason; Michelson functions only take a single function
with the workaround for such a limitation being very expensive. To avoid such costs, two different
solutions are proposed: "when we come across an exact application: we just inline it immediately
. If we come across a partially applied function, we name the arguments on the stack for future
reference, and push a virtual closure on the stack that can be later fully applied."[Metastate Team
2020]. While the second solution is very similar to my own ’pass’ method for partial application,
their method of inlining functions that have been fully applied is a very interesting one, however, it
would not be as simple for me to implement, certain functions that contain lambda functions would
still be impossible for me to inline, as they would still need to be defined elsewhere and passed
into the function. That said, this solution would be possible in other cases if I were able to identify
whether a function contains lambda expressions and compile-time, and treat their application
differently.
Another problem faced when compiling to a stack-based language is how to handle variables
that are now stored on a stack, rather than as a named variable. section 4.1 explains how my
implementation binds arguments that have been pushed to the stack as local variables, however,
the Juvix to Michelson compiler instead leaves arguments on the stack, and keeps track of their
location to reuse with the ’dug’ and ’dup’ commands, which retrieve values from the stack and
push a copy of the top item of the stack respectively. This method results in much less memory
usage and eliminates the need to look up the value of a variable each time it is used, resulting in
a faster and more efficient implementation than mine. I would have liked to implement such a
solution, it would have taken too much time for the scope of this project.

While the comparison between my compiler and the Juvix to Michelson compiler may make
Michelson seem like a more attractive choice for a stack-based target language than Agda, it comes
with some severe drawbacks as well. Michelson does not support custom data types, meaning that
code needs to be written with Michelson in mind to easily accommodate the data types used. This
is a huge limiting factor, and severely limits the variety of uses that Michelson could have as a
target language for Agda.

3https://tezos.com/
4https://juvix.org/

Code Extraction from a Dependently Typed Language to a Stack-Based Language 15

REFERENCES
2022. Chez Scheme code generator. Chez Scheme Code Generator - Idris2 0.0 documentation. https://idris2.readthedocs.io/en/

latest/backends/chez.html
Agda Team. 2022a. Agda GHC Backend. Compilers - Agda 2.6.2.1 documentation. https://agda.readthedocs.io/en/v2.6.2.1/

tools/compilers.html#ghc-backend
Agda Team. 2022b. Agda GHC Backend. Compilers - Agda 2.6.2.1 documentation. https://agda.readthedocs.io/en/v2.6.2.1/

language/built-ins.html
Edwin Brady. 2005. Practical Implementation of a Dependently Typed Functional Programming Language. Ph. D. Dissertation.

Durham University.
Bas Spitters Danil Annenkov, Mikkel Milo. 2021. Code Extraction from Coq to ML-like languages. In ML-family workshop.
Anton Ertl. 2008. GForth Manual. https://www.complang.tuwien.ac.at/forth/gforth/Docs-html/index.html#Top
Peter J Knaggs. 1998. ANS Forth: Standardising. (1998).
Pierre Letouzey. 2008. ’Extraction in Coq: An Overview.’ In Logic and Theory of Algorithms. In Lecture Notes in Computer

Science, Vol. 5028. 359–369.
Metastate Team. 2020. Compiling Juvix to Michelson | PLT Type Theory RD at METASTATE. https://research.metastate.

dev/juvix-compiling-juvix-to-michelson/
Michelson Team. 2002. Michelson: the language of Smart Contracts in Tezos. https://tezos.gitlab.io/active/michelson.html
Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. (2007), 14.
Bill Stoddart and Robert Lynas. 2006. Adding Lambda Expressions to Forth. (2006).
Bill Stoddart, Robert Lynas, and Frank Zeyda. 2010. A virtual machine for supporting reversible probabilistic guarded

command languages. Electronic Notes in Theoretical Computer Science 253, 6 (2010), 33–56.
John J Wavrik. 1990. Handling multiple data types in Forth. Journal of Forth Application and Research 6, 1 (1990), 65–76.

https://idris2.readthedocs.io/en/latest/backends/chez.html
https://idris2.readthedocs.io/en/latest/backends/chez.html
https://agda.readthedocs.io/en/v2.6.2.1/tools/compilers.html#ghc-backend
https://agda.readthedocs.io/en/v2.6.2.1/tools/compilers.html#ghc-backend
https://agda.readthedocs.io/en/v2.6.2.1/language/built-ins.html
https://agda.readthedocs.io/en/v2.6.2.1/language/built-ins.html
https://www.complang.tuwien.ac.at/forth/gforth/Docs-html/index.html#Top
https://research.metastate.dev/juvix-compiling-juvix-to-michelson/
https://research.metastate.dev/juvix-compiling-juvix-to-michelson/
https://tezos.gitlab.io/active/michelson.html

	1 Introduction
	2 Background Information on Forth
	3 Background Information on Agda
	4 Compiling Agda to Forth
	4.1 Agda's Internal Syntax
	4.2 Built-Ins and Optimisations
	4.3 The Forth Run-time Library

	5 Performance Evaluation
	5.1 Bench Marking
	5.2 Limitations

	6 Responsible research
	7 Conclusion
	8 Related Work
	References

