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Abstract: The identification of symmetric tensor network MIMO Volterra models has been
studied earlier via the computation of a Moore-Penrose pseudoinverse in tensor network form.
The current state of the art requires the construction of a tensor network of a repeated Khatri-
Rao product of a matrix with itself. This construction has a computational complexity that
is dominated by one singular value decomposition (SVD) of an RI × IN matrix, where N
is the number of measurements, I depends linearly on the number of inputs and input lags
and R is the maximal tensor network rank. In this article, we prove an alternative method
for constructing this tensor network without any computation whatsoever. The pseudoinverse
can then be computed through an orthogonalization of the newly proposed tensor network.
Furthermore, the proposed algorithm allows for the recursive identification of symmetric Volterra
models of increasing degree D, which reduces the computation to one SVD of a RI ×N matrix
per step. Through numerical experiments we demonstrate how the proposed algorithm enables
up to ten times faster identification of symmetric tensor network MIMO Volterra systems.
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1. INTRODUCTION

Truncated Volterra series are a popular nonlinear model
structure due to their conceptual simplicity as higher-
order generalizations of finite impulse response models,
which also makes them easier to interpret. The parametric
identification of truncated Volterra series, however, suffers
from the curse of dimensionality as the total number of
parameters grows exponentially with the degree of the
model. For example, using I time-lagged inputs the Dth
Volterra kernel contains ID parameters. As a consequence,
learning these parameters from data comes with a com-
putational complexity of O(I3D), which limits the direct
identification of multiple-input-multiple output (MIMO)
truncated Volterra systems through standard methods to
weakly-nonlinear systems.

One way to lift this curse of dimensionality is through solv-
ing the equivalent nonparametric dual problem by choos-
ing a suitably parameterized kernel function (Birpout-
soukis et al., 2017, 2018; Dalla Libera et al., 2021). These
methods suffer however from a computational complexity
that is cubic in the number of measurements O(N3).
Tensor decompositions, on the other hand, allow to solve
the parametric primal problem iteratively through the ad-
dition of a low-rank constraint (Shi and Townsend, 2021).
In Favier et al. (2012) both the canonical polyadic (Harsh-
man, 1970; Carroll and Chang, 1970) and Tucker tensor
decompositions (Tucker, 1966) were used to describe each
Volterra kernel separately. A more convenient description
is found in Batselier et al. (2017a,b); Batselier (2022),
where tensor networks are used to describe all Volterra
kernel coefficients at once through one tensor, which can

be directly identified from data. Low-rank tensor networks
also have the advantage that the complexity of estimating
the model parameters scales linearly in both the degree
D of the truncated Volterra series and in the number of
measurements N . This linear scaling of the computational
complexity opens up the possibility of identifying systems
that are highly nonlinear and hence require high-degree
approximations.

The problem of enforcing symmetry on the estimated
Volterra kernels directly through low-rank tensor networks
was recently solved in Batselier (2021). The main idea of
the proposed solution for a degree-D Volterra system is
to first compute a tensor train matrix of a D-times re-
peated Khatri-Rao product of a matrix Ũ with itself. This
computation can be done through Algorithm 2 (Batselier
et al., 2018, p. 191) with a computational complexity of
O(NI3R2) and a storage complexity of O(DIR2), where
N is the sample size, I depends linearly on the number of
inputs P and input lags M , and R is the maximal rank of
the resulting tensor network.

The main contribution of this article is the proof for an
exact representation of this required tensor network that
can be constructed without any computation and with a
storage complexity of O(NI). This efficient representation
is key in enabling the computation of previously infeasible
symmetric Volterra systems. A second contribution is an
algorithm that computes the pseudoinverse of this new
representation and allows for the recursive identification
of Volterra models of increasing degree D with a com-
putational complexity of O(NI2R2) per step. Numerical
experiments demonstrate the effectiveness of the proposed
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exact representation of this required tensor network that
can be constructed without any computation and with a
storage complexity of O(NI). This efficient representation
is key in enabling the computation of previously infeasible
symmetric Volterra systems. A second contribution is an
algorithm that computes the pseudoinverse of this new
representation and allows for the recursive identification
of Volterra models of increasing degree D with a com-
putational complexity of O(NI2R2) per step. Numerical
experiments demonstrate the effectiveness of the proposed
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The problem of enforcing symmetry on the estimated
Volterra kernels directly through low-rank tensor networks
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the proposed solution for a degree-D Volterra system is
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is key in enabling the computation of previously infeasible
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where tensor networks are used to describe all Volterra
kernel coefficients at once through one tensor, which can
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also have the advantage that the complexity of estimating
the model parameters scales linearly in both the degree
D of the truncated Volterra series and in the number of
measurements N . This linear scaling of the computational
complexity opens up the possibility of identifying systems
that are highly nonlinear and hence require high-degree
approximations.

The problem of enforcing symmetry on the estimated
Volterra kernels directly through low-rank tensor networks
was recently solved in Batselier (2021). The main idea of
the proposed solution for a degree-D Volterra system is
to first compute a tensor train matrix of a D-times re-
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computation can be done through Algorithm 2 (Batselier
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N is the sample size, I depends linearly on the number of
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The main contribution of this article is the proof for an
exact representation of this required tensor network that
can be constructed without any computation and with a
storage complexity of O(NI). This efficient representation
is key in enabling the computation of previously infeasible
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putational complexity of O(NI2R2) per step. Numerical
experiments demonstrate the effectiveness of the proposed

N L

N L

I

I

I

Y

U (1)

U (2)

U (D)

H(1)

H(2)

H(D)

Fig. 1. Tensor diagram of equation (3). Both matrices U
and H are represented by tensor train matrices. Row
indices point to the left and column indices point to
the right.

algorithm, where a speedup of up to factor of 10 is observed
compared to the state of the art described in Batselier
(2021).

2. TENSOR NETWORK MIMO VOLTERRA
SYSTEMS

In this section a brief overview of the MIMO Volterra iden-
tification problem as described in Batselier et al. (2017a);
Batselier (2022) is given. A multiple-input-multiple-output
(MIMO) truncated Volterra model extends the single-
input-single-output (SISO) linear finite impulse response
model

y(n) = h0 +

M
m1=0

h1(m1)u(n−mj) (1)

to higher degrees of nonlinearity by adding homogeneous
polynomials in the lagged inputs u(n) to (1). Suppose there
are L outputs and P inputs, which implies that

y(n) = (y1(n) y2(n) · · · yL(n))T ∈ RL,

u(n) = (u1(n) u2(n) · · · uP (n))
T ∈ RP .

Defining the notation shorthand I := (1 + (M + 1)P ) and
using the same notation as in Batselier et al. (2017a), for
a given memory (= input lags) M the vector un is defined
as

un :=
�
1 u(n)T · · · u(n−M)T

T ∈ RI .

All N vectors un can be collected into the N × I matrix

Ũ :=




uT
1

uT
2
...

uT
N


 .

All monomials in the lagged inputs from degree 0 up to D
are constructed by taking the D-times repeated Kronecker
product

uD
n :=

D times  
un ⊗ un ⊗ · · · ⊗ un ∈ RID

.

The output of a MIMO Volterra system can then be
written as

y(n)T =
�
uD
n

T
H , (2)

where column l of the matrix H ∈ RID×L contains
all Volterra kernel coefficients from degree 0 up to D

responsible for output l. Writing out equation (2) for
n = 1, . . . , N results in a system of N linear equations

Y
N×L

= U
N×ID

H
ID×L

. (3)

The nth row of U is the D-times repeated Kronecker
product of un, which implies that U can be written as
the D-times repeated row-wise Khatri-Rao product

U =

D times  
Ũ ⊙ Ũ ⊙ · · · ⊙ Ũ . (4)

It is proven in Proposition 4.1 of Batselier et al. (2017a)
that this Khatri-Rao structure of U results in a rank-
deficiency, which implies that the linear system (3) has
infinitely many solutions. Some form of regularization is
therefore recommended in order to select a particular
solution.

One way of regularizing the problem is the symmetric
Volterra system identification problem, which is to solve
equation (3) for the unknown H matrix with the con-
straint that each column l of H is the vectorization of a
symmetric tensor Hl. A symmetric tensor Hl ∈ RI×···×I

is a D-dimensional array for which

Hl(i1, i2, . . . , iD) = Hl(π(i1, i2, . . . , iD)),

where π(i1, i2, . . . , iD) denotes any possible permutation of
the D indices. It was proven in Proposition 4.2 of Batselier
et al. (2017a) that the minimum norm solutions of (3)
are the desired symmetric tensors. Therefore, the desired
symmetric Volterra models can be obtained by solving the
linear system (3) using the pseudoinverse of U .

However, the exponential number ID columns of U and
rows of H quickly make it infeasible to explicitly construct
these matrices and compute the pseudoinverse of U . This
curse of dimensionality is lifted by replacing these matrices
by particular tensor networks called tensor train matri-
ces (Oseledets, 2010, 2011), as shown in the tensor diagram
of Figure 1. In a tensor diagram each node represents
a tensor, and each edge represents an index. An edge
that connects two nodes represents a summation over that
particular index.

The tensor train matrix of the N × ID matrix U splits
the single column index i of size ID into D indices
i1, i2, . . . , iD, each of size I, over D separate tensors

U (d) ∈ RRd×Nd×I×Rd+1 .

These D separate indices 1 ≤ id ≤ I (1 ≤ d ≤ D) relate
to the original column index i through

i = [i1i2 . . . iD] := i1 +

D
d=2

(id − 1) Id−1.

The storage complexity of U is reduced in this way from
NID to the sum of the storage complexities of each of the
node tensors. It follows from Figure 1 that N1 = N and
N2 = · · · = ND = 1. The dimensions Rd (1 ≤ d ≤ D + 1)
are called the ranks of the tensor train matrix. As shown in
Figure 1 by the connected edges, the indices corresponding
with these ranks are all summed over. A similar tensor
train matrix structure is used for the representation of the
matrix H.
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algorithm, where a speedup of up to factor of 10 is observed
compared to the state of the art described in Batselier
(2021).

2. TENSOR NETWORK MIMO VOLTERRA
SYSTEMS

In this section a brief overview of the MIMO Volterra iden-
tification problem as described in Batselier et al. (2017a);
Batselier (2022) is given. A multiple-input-multiple-output
(MIMO) truncated Volterra model extends the single-
input-single-output (SISO) linear finite impulse response
model

y(n) = h0 +

M
m1=0

h1(m1)u(n−mj) (1)

to higher degrees of nonlinearity by adding homogeneous
polynomials in the lagged inputs u(n) to (1). Suppose there
are L outputs and P inputs, which implies that

y(n) = (y1(n) y2(n) · · · yL(n))T ∈ RL,

u(n) = (u1(n) u2(n) · · · uP (n))
T ∈ RP .

Defining the notation shorthand I := (1 + (M + 1)P ) and
using the same notation as in Batselier et al. (2017a), for
a given memory (= input lags) M the vector un is defined
as

un :=
�
1 u(n)T · · · u(n−M)T

T ∈ RI .

All N vectors un can be collected into the N × I matrix

Ũ :=




uT
1

uT
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...

uT
N


 .

All monomials in the lagged inputs from degree 0 up to D
are constructed by taking the D-times repeated Kronecker
product

uD
n :=

D times  
un ⊗ un ⊗ · · · ⊗ un ∈ RID

.

The output of a MIMO Volterra system can then be
written as

y(n)T =
�
uD
n

T
H , (2)

where column l of the matrix H ∈ RID×L contains
all Volterra kernel coefficients from degree 0 up to D

responsible for output l. Writing out equation (2) for
n = 1, . . . , N results in a system of N linear equations

Y
N×L

= U
N×ID

H
ID×L

. (3)

The nth row of U is the D-times repeated Kronecker
product of un, which implies that U can be written as
the D-times repeated row-wise Khatri-Rao product

U =

D times  
Ũ ⊙ Ũ ⊙ · · · ⊙ Ũ . (4)

It is proven in Proposition 4.1 of Batselier et al. (2017a)
that this Khatri-Rao structure of U results in a rank-
deficiency, which implies that the linear system (3) has
infinitely many solutions. Some form of regularization is
therefore recommended in order to select a particular
solution.

One way of regularizing the problem is the symmetric
Volterra system identification problem, which is to solve
equation (3) for the unknown H matrix with the con-
straint that each column l of H is the vectorization of a
symmetric tensor Hl. A symmetric tensor Hl ∈ RI×···×I

is a D-dimensional array for which

Hl(i1, i2, . . . , iD) = Hl(π(i1, i2, . . . , iD)),

where π(i1, i2, . . . , iD) denotes any possible permutation of
the D indices. It was proven in Proposition 4.2 of Batselier
et al. (2017a) that the minimum norm solutions of (3)
are the desired symmetric tensors. Therefore, the desired
symmetric Volterra models can be obtained by solving the
linear system (3) using the pseudoinverse of U .

However, the exponential number ID columns of U and
rows of H quickly make it infeasible to explicitly construct
these matrices and compute the pseudoinverse of U . This
curse of dimensionality is lifted by replacing these matrices
by particular tensor networks called tensor train matri-
ces (Oseledets, 2010, 2011), as shown in the tensor diagram
of Figure 1. In a tensor diagram each node represents
a tensor, and each edge represents an index. An edge
that connects two nodes represents a summation over that
particular index.

The tensor train matrix of the N × ID matrix U splits
the single column index i of size ID into D indices
i1, i2, . . . , iD, each of size I, over D separate tensors

U (d) ∈ RRd×Nd×I×Rd+1 .

These D separate indices 1 ≤ id ≤ I (1 ≤ d ≤ D) relate
to the original column index i through

i = [i1i2 . . . iD] := i1 +

D
d=2

(id − 1) Id−1.

The storage complexity of U is reduced in this way from
NID to the sum of the storage complexities of each of the
node tensors. It follows from Figure 1 that N1 = N and
N2 = · · · = ND = 1. The dimensions Rd (1 ≤ d ≤ D + 1)
are called the ranks of the tensor train matrix. As shown in
Figure 1 by the connected edges, the indices corresponding
with these ranks are all summed over. A similar tensor
train matrix structure is used for the representation of the
matrix H.
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Fig. 2. The figure on the left is the tensor diagram of the
3-way tensor Ũ constructed from a matrix Ũ . The
figure on the right shows how the nonzero elements
of Ũ are the matrix Ũ fixed as a diagonal slice of the
tensor.
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Fig. 3. Tensor network diagram of the tensor train matrix

that represents Ũ ⊙ Ũ ∈ RN×I2

.

3. EXACT TENSOR TRAIN MATRIX OF
REPEATED KHATRI-RAO PRODUCT

In Batselier (2021) the symmetric solution for H is com-
puted via the pseudoinverse of U in tensor train form. A
first and necessary step is the computation of the tensor
train matrix of U via Algorithm 2 (Batselier et al., 2018,
p. 191), which computes repeated Khatri-Rao products
together with truncated singular value decompositions
(SVDs). The total computational complexity to construct
the tensor train matrix of U in this way is O(N2I3R). In
this article we replace the construction of this tensor train
matrix through an exact representation that involves no
computation whatsoever as only instance of the matrix Ũ
needs to be stored. The following 3-way tensor constructed
from a matrix plays a crucial role in the representation.

Definition 1. For a given matrix Ũ ∈ RN×I we define the
3-way tensor Ũ ∈ RN×I×N such that

Ũ(n, i, n) = Ũ(n, i),

and all other elements of Ũ are exactly zero.

Figure 2 illustrates how all nonzero elements of Ũ are
the matrix Ũ itself, placed on the diagonal slice that is
obtained from restricting the first and third index of Ũ to
be the same value n.

Before we can state the main theorem we first need the
following lemma that relates the outer product of two
vectors with the corresponding Kronecker product.

Lemma 1. (Golub and Van Loan, 2013, p.28) Let u ∈ RI ,
then

vec(uuT ) = u⊗ u,

where vec() denotes the vectorization operation that con-
catenates all columns of a given matrix into a single vector.

We can now formulate the main theorem on which the
exact tensor train matrix representation of the matrix U
is based.

Theorem 1. Let U2 := Ũ ⊙ Ũ ∈ RN×I2

, then

UT
2 ([i1i2], n) =

N
n1=1

Ũ(n1, i1) Ũ(n1, i2, n) (5)

Proof. The index summation of equation (5) can be
rewritten as the following matrix-matrix product

ŨT Ũ(1)

= (u1 u2 · · · uN )




uT
1 0 0 · · · 0 0
0 uT

2 0 · · · 0 0
. . .

0 0 · · · · · · 0 uT
N




where Ũ(1) ∈ RN×IN is the matrix obtained from reshap-

ing the tensor Ũ along the first dimension. The diagonal
matrix slice structure of Ũ then results in a row-diagonal
structure of Ũ(1) such that its nth main-diagonal vector is

uT
n . Computing the matrix-matrix product results in the

I × IN matrix �
u1u

T
1 u2u

T
2 · · · uNuT

N


,

which consists of N rank-1 matrix blocks of size I × I
concatenated column-wise. Applying the vec() operator
from Lemma 1 on each of the I × I rank-1 matrices unu

T
n

results in the I2 ×N matrix

(u1 ⊗ u1 u2 ⊗ u2 · · · uN ⊗ uN ) = UT
2 ,

which concludes the proof.

The tensor diagram representation of Theorem 1 is shown
in Figure 3. The summation over the n1 index is indicated
in the diagram by the connected edge between the two
nodes. The extension of Theorem 1 to D factor matrices
in the Khatri-Rao product is now straightforward. Since

U3 := U2 ⊙ Ũ ∈ RN×I3

,

we can apply Theorem 1 again by connecting the top
edge of dimension N in Figure 3 to another Ũ node.
Repeated use of Theorem 1 for D factor matrices Ũ
results in the tensor diagram of Y = U H as shown in
Figure 4. Contrary to Batselier (2021), the tensor train
matrix representation of U requires no computation as
it consists of D copies of Ũ and U is never explicitly
computed. It is therefore sufficient to store the matrix Ũ
only once in memory, which reduces the storage complexity
of U from NID down to NI.

4. ALGORITHM TO COMPUTE PSEUDOINVERSE

Once the tensor train matrix of U is available, the next
step in the identification of a symmetric Volterra model
is the computation of the pseudoinverse U † of U through
the thin SVD

U = Q S V T ,

where Q ∈ RN×R,V ∈ RID×R have orthonormal columns
and S ∈ RR×R is diagonal. If the inputs are persistently

Ũ

N

N

I

Ũ
I

H(D−1)

H(D)

N

ŨN I H(1) L

N
Y

L

Fig. 4. Tensor diagram of equation (3) where the tensor
train matrix of U has been constructed using Theo-
rem 1. This construction involves no computation and
has a total storage complexity of NI.

exciting of at least degree D, then it was proven in Bat-
selier et al. (2017a) that R =

(
D+I−1
I−1

)
. The pseudoinverse

is then

U † = V S−1 QT ,

from which the symmetric Volterra kernels can be com-
puted in tensor train matrix form as H = U † Y . The
exponential number of rows of V means that this matrix
needs to be computed in tensor train matrix form.

4.1 Proposed algorithm

With the newly proposed way to represent the tensor
train matrix of U based on Theorem 1, also a new way
of computing the pseudoinverse is required. This is now
achieved through D orthogonalization steps. The whole
algorithm is presented as pseudocode in Algorithm 1 and
involves computing D SVDs, retaining the left singular

vectors as V(d) and multiplying SQT with the next node
of the tensor train matrix. It is always assumed that all
inputs are persistently exciting of at least degree D.

Figure 5 illustrates the first orthogonalization of Algo-
rithm 1 as a tensor network diagram. First, the thin SVD
of ŨT = V SQT is computed. All zero singular values are
truncated and the resulting matrix V is retained as the
new first node in the network. The matrix factor SQT is
then multiplied with the second node Ũ and the process
repeats.

The multiplication of SQT with Ũ is done via Theorem 1
as ŨT ⊙ SQT . It is therefore not necessary to ever
construct the tensors Ũ tensors during the algorithm.
This process of orthogonalization and multiplying SQT

with the next node in the network results finally in the
tensor train matrix for V and two matrices S and Q of
the thin SVD. The most expensive computational step of
Algorithm 1 is the SVD computation of the Dth matrix
ŨT ⊙SQT with a complexity of O(N2RDI), since IRD >
N .

4.2 Alternatives to full SVD in Algorithm 1

When the input signals are persistently exciting of at least
degree D, then according to Batselier (2021) the tensor

SQT NR2V

I

Ũ N

I

Fig. 5. Tensor network diagram of the first orthogonaliza-
tion in Algorithm 1. The multiplication of SQT with
the second node Ũ , indicated by the dashed line, can
be computed through Theorem 1 as ŨT ⊙ SQT .

Algorithm 1 Pseudoinverse of U

Input : N × I matrix Ũ , degree D of Volterra model
Output : U † = V S−1 QT

1: [V ,S,Q] ← SVD(ŨT )
2: Truncate V ,S,Q to rank R2 = I

3: V(1) ← reshape(V , [1, I, I]) %R1 = 1
4: for d = 2 : D do
5: [V ,S,Q] ← SVD(ŨT ⊙ SQT )

6: Truncate V ,S,Q to rank Rd+1 =
(
d+I−1
I−1

)

7: V(d) ← reshape(V , [Rd, I, Rd+1])
8: end for
9: Return tensor train matrix V and matrices S−1,QT

train matrix-ranks of U are guaranteed to be

Rd+1 =

(
d+ I − 1

I − 1

)
(0 ≤ d ≤ D).

As a consequence, the full SVD of the RdI × N matrix
ŨT ⊙ SQT does not need to be computed since its rank
is known to be Rd+1. Instead, a rank-Rd+1 truncation can
be computed directly with methods such as the implicitly
restarted Lanczos method (Baglama and Reichel, 2005)
or the randomized SVD (Halko et al., 2011). The com-
putational benefit of using such methods is expected to
be larger when the full SVD cannot be stored in memory
anymore.

4.3 Efficiency for multiple experiments with increasing D

The identification of a symmetric MIMO Volterra ten-
sor network model requires the specification of the two
nonnegative integer-valued hyperparameters D and M .
A common way to find suitable values for these hyper-
parameters is via a grid search. In the case where the
value of M is fixed and D increases with unit increments,
an additional computational gain can be achieved with
Algorithm 1 since all computations for D can be reused
for the case D + 1. The only computation required to
update the results forD toD+1 is one Khatri-Rao product
ŨT ⊙SQT , and one additional SVD with a total compu-
tational complexity of O(N2RD+1I). A major bottleneck
of the algorithm is still the binomial increase of required
N . Nevertheless, numerical experiments in Section 5 show
that a speedup of up to ten times can be achieved via this
recursive way.
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Ũ
I

H(D−1)

H(D)

N
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Fig. 4. Tensor diagram of equation (3) where the tensor
train matrix of U has been constructed using Theo-
rem 1. This construction involves no computation and
has a total storage complexity of NI.

exciting of at least degree D, then it was proven in Bat-
selier et al. (2017a) that R =

(
D+I−1
I−1

)
. The pseudoinverse

is then

U † = V S−1 QT ,

from which the symmetric Volterra kernels can be com-
puted in tensor train matrix form as H = U † Y . The
exponential number of rows of V means that this matrix
needs to be computed in tensor train matrix form.

4.1 Proposed algorithm

With the newly proposed way to represent the tensor
train matrix of U based on Theorem 1, also a new way
of computing the pseudoinverse is required. This is now
achieved through D orthogonalization steps. The whole
algorithm is presented as pseudocode in Algorithm 1 and
involves computing D SVDs, retaining the left singular

vectors as V(d) and multiplying SQT with the next node
of the tensor train matrix. It is always assumed that all
inputs are persistently exciting of at least degree D.

Figure 5 illustrates the first orthogonalization of Algo-
rithm 1 as a tensor network diagram. First, the thin SVD
of ŨT = V SQT is computed. All zero singular values are
truncated and the resulting matrix V is retained as the
new first node in the network. The matrix factor SQT is
then multiplied with the second node Ũ and the process
repeats.

The multiplication of SQT with Ũ is done via Theorem 1
as ŨT ⊙ SQT . It is therefore not necessary to ever
construct the tensors Ũ tensors during the algorithm.
This process of orthogonalization and multiplying SQT

with the next node in the network results finally in the
tensor train matrix for V and two matrices S and Q of
the thin SVD. The most expensive computational step of
Algorithm 1 is the SVD computation of the Dth matrix
ŨT ⊙SQT with a complexity of O(N2RDI), since IRD >
N .

4.2 Alternatives to full SVD in Algorithm 1

When the input signals are persistently exciting of at least
degree D, then according to Batselier (2021) the tensor

SQT NR2V

I

Ũ N

I

Fig. 5. Tensor network diagram of the first orthogonaliza-
tion in Algorithm 1. The multiplication of SQT with
the second node Ũ , indicated by the dashed line, can
be computed through Theorem 1 as ŨT ⊙ SQT .

Algorithm 1 Pseudoinverse of U

Input : N × I matrix Ũ , degree D of Volterra model
Output : U † = V S−1 QT

1: [V ,S,Q] ← SVD(ŨT )
2: Truncate V ,S,Q to rank R2 = I

3: V(1) ← reshape(V , [1, I, I]) %R1 = 1
4: for d = 2 : D do
5: [V ,S,Q] ← SVD(ŨT ⊙ SQT )

6: Truncate V ,S,Q to rank Rd+1 =
(
d+I−1
I−1

)

7: V(d) ← reshape(V , [Rd, I, Rd+1])
8: end for
9: Return tensor train matrix V and matrices S−1,QT

train matrix-ranks of U are guaranteed to be

Rd+1 =

(
d+ I − 1

I − 1

)
(0 ≤ d ≤ D).

As a consequence, the full SVD of the RdI × N matrix
ŨT ⊙ SQT does not need to be computed since its rank
is known to be Rd+1. Instead, a rank-Rd+1 truncation can
be computed directly with methods such as the implicitly
restarted Lanczos method (Baglama and Reichel, 2005)
or the randomized SVD (Halko et al., 2011). The com-
putational benefit of using such methods is expected to
be larger when the full SVD cannot be stored in memory
anymore.

4.3 Efficiency for multiple experiments with increasing D

The identification of a symmetric MIMO Volterra ten-
sor network model requires the specification of the two
nonnegative integer-valued hyperparameters D and M .
A common way to find suitable values for these hyper-
parameters is via a grid search. In the case where the
value of M is fixed and D increases with unit increments,
an additional computational gain can be achieved with
Algorithm 1 since all computations for D can be reused
for the case D + 1. The only computation required to
update the results forD toD+1 is one Khatri-Rao product
ŨT ⊙SQT , and one additional SVD with a total compu-
tational complexity of O(N2RD+1I). A major bottleneck
of the algorithm is still the binomial increase of required
N . Nevertheless, numerical experiments in Section 5 show
that a speedup of up to ten times can be achieved via this
recursive way.
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5. NUMERICAL EXPERIMENTS

The main contribution of this article is an alternative
method to the state of the art algorithm described in Bat-
selier (2021) for constructing the tensor network of U
and its pseudoinverse. For this reason we compare in this
section the proposed Algorithm 1 to the aforementioned
state of the art. All experiments were run on a desktop pc
running an 8-core Intel Xeon processor at 3.60 GHz and
with 16 GB RAM. A Matlab implementation to reproduce
these experiments can be freely downloaded from https:
//github.com/kbatseli/SymmetricVolterra.

5.1 Incremental increase degree D experiment

We consider the identification of symmetric SISO Volterra
systems with a fixed valueM = 5 and whereD is increased
from 3 up to 10. A zero-mean Gaussian white noise signal is
used as the input signal to ensure persistency of excitation
for any degree D. The total number of samples is fixed to
N =

(
10+6−1

6−1

)
= 3003 such that all systems up to degree

10 can be uniquely identified.

For each value of D the matrix U is then constructed
in tensor network-form and its pseudoinverse is computed
using the state of the art algorithm in Batselier (2021) and
Algorithm 1. Figure 6 shows the mean runtime over 10
runs. Starting from D = 7 a corner can be observed in the
mean runtime of Algorithm 1, which results in a ten times
faster identification for D = 10. The numerical values of
the mean runtimes are shown in Table 1, together with the
total number of entries ID of the identified Volterra tensor
H and a “Speedup” column that is obtained from dividing
the mean runtime of (Batselier, 2021) by the mean runtime
of Algorithm 1.

Table 1. Numerical values of mean runtimes
over 10 runs that are visualized in Figure 6.
SOTA stands for state of the art (Batselier,
2021). The column Speedup was computed

from dividing column 2 by column 3.

Degree D ID Runtime Runtime Speedup
SOTA (s) Algorithm 1 (s)

3 216 .028 0.02 1.7
4 1296 .117 0.04 2.6
5 7776 .496 0.15 3.2
6 46656 1.89 0.78 2.4
7 279936 8.45 5.13 1.6
8 1679616 19.1 7.05 2.7
9 10077696 54.0 8.16 6.6
10 60466176 137 9.93 13.8

6. CONCLUSIONS

This article described a new representation of the tensor
train matrix for U without any computation. Further-
more, an algorithm was provided to efficiently determine
the pseudoinverse of this matrix for the identification of
symmetric MIMO tensor network Volterra systems. Given
the computational bottleneck of the binomial growth of
the required number of measurements N due to the pseu-
doinverse, an alternative method would be to iteratively
identify low-rank symmetric Volterra tensors Hl. Future
work is then required on how to impose the symmetry

Fig. 6. The mean runtime over 10 runs to compute the
pseudoinverse of U in tensor network form for a
Volterra system with M = 5 and where D varies from
3 up to 10. The blue line with square markers is the
mean runtime of the state of the art (Batselier, 2021).
The red line with circle markers is the mean runtime
of the proposed Algorithm 1. Starting from D = 7
there is a sudden change in growth of the average
runtime, resulting in a speedup of 10 for D = 10.

directly during the optimizations. Other future work is on
imposing other regularization structures such as a triangu-
lar structure onto the Volterra kernel coefficients in tensor
network form.
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