
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Robustness measures
in the nonlinear
domain.
Investigating frozen-time robustness of structured
H∞ controllers in nonlinear realizations.

Y.J. Naäman

Robustness
measures in the

nonlinear domain.
Investigating frozen-time robustness of
structured H∞ controllers in nonlinear

realizations.

by

Y.J. Naäman

Instructor: S. Theodoulis
Faculty: Faculty of Aerospace Engineering, Delft

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Acknowledgements

Looking back on my time spent writing the thesis reminds me of a quote often attributed to the Brazilian
writer Fernando Sabino: “In the end, everything will be okay. If it’s not okay, it’s not yet the end.” Like
many students before me, I often had to remind myself that it was indeed not the end yet and that it
would turn out okay. However, as of now, the end has finally been reached and the product is indeed
(at least I believe) okay.

I experienced the writing as an intense effort with many ups and downs and I am unsure the end would
have been reached without the great help of my supervisor, prof. dr. ir. S. Theodoulis. He exposed me
to the field of robust control and provided me with many technical lessons during our many meetings,
encompassed by his most famous mantra ”respect the unstable”. Furthermore, he also provided me
with many personal life lessons and I will be forever grateful for his guidance.

Furthermore, I want to thank my fellow students of the AEROCON research group. The shared stories
about the thesis helped my morale and encouraged me to work harder. A special thank you to Daam,
with whom I worked on the F-16 model together and Fredrik, who helped me with the final versions of
my report.

Moreover, I am grateful to my beautiful and eternally supportive girlfriend, Ezgi, who helped me during
the times I needed it. Be it through mental support, taking care of tasks to take them out of my hands,
being excited about my progress or encouraging me before important meetings.

I’d also like to thank my family. My parents, Marianne and Eliezer, for their constant confidence and
unconditional support. My sister, Noa, for her advice, help and constant ideas for new food to try to-
gether. My cousin, Lennar, for the many long conversations and the activities that we did to allow me a
break from the everlasting thesis. My aunt and uncle, Pien and Roel, for their continual kindness and
hospitality.

Lastly, a thank you to my roommates, Gert-Jan and Jamil, with whom I often relaxed at home. A
special shoutout to Jamil who never failed to provide me with tea in the late evening hours, when I was
still working on my thesis. And lastly, I’d like to thank many more of my friends, with whom I enjoyed
many moments. From the many football matches played to the evenings in the pub, the dinner parties
and the activities away.

Y.J. Naäman
Delft, February 2024

i

Summary

The field of robust control has seen major progress and use in engineering practices after it was first
popularized in the 1980s. This coincides with the development of theH∞ control synthesis techniques,
starting with the algorithm to calculate unstructured controllers. Now modern techniques allow for struc-
tured (possibly multi-model and gain-scheduled) H∞ control synthesis. The application of this method
in aerospace is still an active area of research while practical use in industry also has become popular.

The aforementioned theory on structured H∞ synthesis is applied to two examples. A gain-scheduled
pitch-rate control system is synthesized and a direct trajectory longitudinal control system is designed
using multi-model synthesis. The pitch-rate controller is used as a relatively easy benchmark problem
while the direct trajectory longitudinal controller is included to apply the theory to a challenging coupled
MIMO system. The linear controllers are then implemented in the nonlinear domain. This transition
from the linear to the nonlinear domain can introduce problems for both the gain scheduling and the
multi-model approach. The goal of the thesis is to synthesize these two controllers and propose a
method to analyze how far the robustness degrades due to the pitfalls encountered when moving from
the linear to the nonlinear domain.

To tackle this goal, let us discuss gain scheduling and multi-model synthesis. Starting with gain schedul-
ing, the conventional gain scheduling approach was, and still is, popular in order to enable linear H∞
synthesis to control nonlinear systems. A flight envelope consisting of many equilibria points is defined
using scheduling parameters. At each equilibrium point, the system is linearized and a controller is
synthesized on the resulting linear time-invariant systems. Subsequently, in the nonlinear application,
the family of controllers is interpolated in some way. Often using the measurement of the scheduling
variables to calculate the gain values in real time. While the technique existed for a longer time, only
in the late 1990s and early 2000s were the mathematical rigorous definitions defined and the exact
disadvantages of gain scheduling mathematically formulated.

These disadvantages are caused by three pitfalls of gain scheduling. First, gain scheduling can cause
the introduction of hidden coupling terms. The introduction of the scheduling parameters in the cal-
culation of the controller gains can excite a hidden feedback loop. Secondly, conventional Jacobian
linearization can only be performed at equilibria/trim points, while real flight conditions often diverge
from these points, causing trim point uncertainty. Thirdly, the linearization process fails to capture the
inherent time-varying properties of the nonlinear system. The thesis proposes a method to assess the
first two problems. The third problem, however, is outside the scope of this research.

The multi-model approach also uses linearized systems at equilibria points. However, in contrast to
gain scheduling, one controller is synthesized using all linearized systems simultaneously. As a result,
no a posteriori interpolation using the scheduling parameters is needed and the resulting linear con-
troller can simply be implemented in the nonlinear domain. This approach contains the same pitfalls as
gain scheduling except that there are no hidden-coupling terms as there is no interpolation using the
scheduling parameters and hence no hidden feedback loop will appear in the nonlinear domain.

Now that the pitfalls are introduced, they need to be quantified. The hidden coupling terms (if applica-
ble) can be derived by linearizing the controller while taking the scheduling into account as parameters
in the system. This can be compared to the ideal linear controller without these hidden coupling terms.
These two systems should ideally be equivalent but due to the scheduling parameters inducing the
extra feedback loop in the nonlinear domain, there can be a difference. The difference between the
systems can be expressed in terms of the gap metric.

To assess trim point uncertainty at any operating point, the system has to be linearized at off-equilibrium
points. This can be done using velocity-based linearization. This linearization technique does not rely

ii

iii

on series expansions to establish a linearized system but takes the derivative of the nonlinear sys-
tem with respect to time. This will result in a system that is linear in the derivatives of the original
states. If the initial conditions are correctly chosen, the formulation of a system using the derivatives
of the original states is dynamically equivalent to the original system. Hence, by looking at the plant at
any two equilibrium and off-equilibrium points, the similarity can be quantified in terms of the gap metric.

Thus, the gap metric at any operating point with respect to both the hidden coupling terms and trim
point uncertainty can be calculated. This indicated the distance between the systems and it can be
used to identify the aforementioned two problems in itself.

Next to the gap metric, the normalized coprime stability margin can be used to assess the robustness
with respect to the hidden coupling terms and trim point uncertainty. This is referred to as frozen-time
robustness. The normalized coprime stability margin is a value between 0 and 1 that specifies robust-
ness with respect to unstructured perturbations. If the absolute value of the robustness is of interest and
not the contribution of each component, the coprime stability margin is more appropriate than the gap
metric and can be used to assess the frozen-time robustness of any operating point. Ultimately, this
application of the gap metric and normalized coprime stability margin allows us to quantify the degra-
dation when moving from the linear to the nonlinear domain; at least concerning the hidden coupling
terms and trim point uncertainty.

Contents

Acknowledgements i

Summary ii

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 2
1.3 Approach . 3
1.4 Report Outline . 3

2 F-16 Model 4
2.1 Introduction to tensors . 4

2.1.1 Rotation tensors . 5
2.1.2 Rotational derivative, velocity and acceleration 5
2.1.3 Euler transformation . 7

2.2 Model introduction and overview . 7
2.3 Aerodynamic model . 9
2.4 Equations of motion in tensor formulation . 10

2.4.1 Translational dynamics . 11
2.4.2 Translational kinematics . 14
2.4.3 Attitude dynamics . 14
2.4.4 Attitude kinematics . 15

2.5 Sensor dynamics . 16
2.6 Actuator dynamics . 17
2.7 Model verification . 18

2.7.1 Trimming . 18
2.7.2 Linearized state and input matrices . 19
2.7.3 Linearized output equations . 19

3 Quantifying the pitfalls of gain scheduling and multi-model design 21
3.1 Linearization and trim point uncertainty . 22

3.1.1 Jacobian linearization . 22
3.1.2 Velocity-based linearization . 23

3.2 Hidden coupling terms . 25
3.3 Stability of time-varying systems . 28
3.4 Quantifying frozen-time robustness using the normalized coprime stability margin 29
3.5 Controller analysis example . 31

4 Pitch-rate control 35
4.1 Short-period approximation . 35
4.2 Structure, constraints and synthesis . 36

4.2.1 Controller structure . 36
4.2.2 Hard constraints . 37
4.2.3 Soft constraints . 39
4.2.4 Controller gain surfaces . 40

4.3 Linear analysis . 40
4.4 Nonlinear implementation and analysis . 42

4.4.1 Normalized coprime stability margin . 42
4.4.2 Hidden coupling . 43
4.4.3 Trim point uncertainty . 45
4.4.4 Frozen-time stability . 48

iv

Contents v

5 Direct trajectory longitudinal control 50
5.1 Structure, constraints and synthesis . 50

5.1.1 Controller structure . 51
5.1.2 Soft constraints . 52
5.1.3 Synthesized controller . 57

5.2 Linear analysis . 57
5.3 Nonlinear implementation and analysis . 57

5.3.1 Normalized coprime stability margin . 57
5.3.2 Trim point uncertainty and frozen-time robustness 59

6 Conclusion & Recommendations 63
6.1 Conclusion . 63

6.1.1 Structured H∞ controller synthesis . 63
6.1.2 Frozen-time robustness . 64

6.2 Recommendations . 64
6.2.1 Increased frozen-time analysis and synthesis . 64
6.2.2 Velocity-based linearization using tensors . 65
6.2.3 Including uncertainty in linear synthesis . 67
6.2.4 Flight-path controller allocation problem and over-actuation 67

Bibliography 68

A Appendix: Aerodynamic model equations and implementation 71
A.1 Aerodynamic equations . 71
A.2 MATLAB code implementation . 73

B Appendix: Equations of motion and sensor dynamics MATLAB functions 77
B.1 Translational dynamics . 77
B.2 Translational kinematics . 78
B.3 Attitude dynamics . 78
B.4 Attitude kinematics . 78
B.5 Sensor dynamics . 79

C Appendix: Engine model 81

D Appendix: Stability margins of the direct trajectory controller 83

1
Introduction

1.1. Background
In the late 1960s and early 1970s, control research predominantly concentrated on mathematically-
framed optimization problems. The primary focus was on state-space concepts, such as controllability,
observability, state estimation, and Linear Quadratic Gaussian (LGQ) control [9]. Despite their success
in addressing diverse engineering challenges, these optimal control methods were not without contro-
versy, particularly concerning the gain and phasemargins of Linear Quadratic Gaussian controllers [10].

Simultaneously, the foundations of what is now known as robust control were being laid, marked by con-
cepts like the small-gain theorem [51]. However, these contributions were not immediately embraced,
leading to a widening gap between theoretical optimization and engineering practice. Frequency-based
methods, e.g. root-locus and Bode plots, were perceived as simplistic, and optimal control theory
seemed preferable due to its mathematical rigidity. In spite of that, optimal control methods often sim-
ply assumed sufficient model accuracy without explicit consideration of robustness, especially when
dealing with achievable model accuracy. Early attempts to apply these optimal multivariable feedback
controllers were not as successful as expected, such as during the LQG control design study for the
F-8C Crusader aircraft, revealing issues related to their robustness. This prompted a shift in research
focus, leading researchers to revisit earlier work on uncertainty in feedback loop design and the robust-
ness properties of frequency-based methods [39].

During this shift in focus, H∞ methods for controller synthesis became increasingly popular. While
the foundation of the concept was developed earlier, the first rigorous mathematical formulation was
presented in 1981 [50]. In this mathematical formulation, explicit model uncertainty was taken into ac-
count and the influence of disturbances on the output was considered. This was all framed through the
H∞-norm, i.e. the maximum gain in sinusoidal amplitude over the entire frequency range [10].

Developments regarding H∞ did not stop there. The proposed H∞ synthesis method could only be
applied to full-order controllers. In many practical control engineering applications, a simple structured
controller, like a PID controller, was preferred because of other considerations. Nevertheless, it took a
long time until the structuredH∞ problemwas solved, which only happened in 2006 [2]. Subsequent de-
velopments allowedH∞ control with possible useful extensions, such as incorporating multiple models.

These advancements extend beyond theoretical realms, finding many practical applications. One ex-
ample of a noteworthy application was the synthesis of the controller on board the Rosetta space probe
following a loss of efficiency in one of the thrusters[3]. Here, uncertainty in thruster behavior was di-
rectly taken into account in the synthesis. This prompts the exploration of integrating robust structured
H∞ methods into complex aerospace and control applications, considering not only linear systems but
also nonlinear systems.

1

1.2. Problem statement 2

One very popular, conventional method to design a controller for a nonlinear system is by using gain
scheduling. The design of the controller then consists of four steps. First, a linearized version of the
plant has to be created at a set of equilibria points. Careful consideration has to be put into choosing
suitable scheduling parameters that capture the nonlinearity of the plant. Subsequently, linear design
methods are used to synthesize a controller at each point. Then, in the nonlinear domain, interpolation
of the controllers can be done using the measured scheduling parameters. This allows real-time calcu-
lation of the controller values throughout operation [37]. Lastly, the controller needs to be analyzed a
posteriori, both in the linear (if necessary) and nonlinear domain.

Another approach to control a nonlinear system is by making use of multi-model H∞ synthesis. This
approach also uses the linearized plants at the equilibria points. However, in this case, one controller
is synthesized using all plants simultaneously. This allows the designer to create one unique controller
to control all linearized systems. This technique can be used to ensure robustness against parameter
variations (even failure modes) [3] or to control a larger part of the operating envelope of a nonlinear
system using one linear controller.

The incorporation of linear design methods to achieve nonlinear control is a major advantage [43].
For example, it is possible to use linear H∞-synthesis in combination with gain scheduling to design
a nonlinear gain-scheduled scheduled H∞ controller. Or the multi-model approach can be used to
control a large envelope of the nonlinear system using a single controller. However, there are also
limitations attached to these methods.

1.2. Problem statement
The H∞ gain-scheduled approach has several limitations to consider, especially in the transition from
the linear to the nonlinear domain. In practical applications, these limitations used to be avoided by
engineering heuristics that were summarized by for example ”the system should vary slowly”, ”the
scheduling parameters should capture the nonlinearity of the system” and ”the system should stay
close to the equilibria conditions” [42]. While enjoying much practical success, only in the 90s there
were multiple efforts to mathematically formalize the limitations. While not exactly equal, similar limita-
tions hold for multi-model H∞ synthesis as will become clear later.

The purpose of the thesis is to combine the efforts on gain scheduling, multi-model synthesis, nonlinear
realizations and modern structured H∞ robust control methods to design a controller and analyze, as
far as possible, the robustness property of this controller in the nonlinear domain. This brings us to the
main problem statement:

To what extent is it possible to assess the frozen-time robustness of the nonlinear realization of a
structured H∞ controller?

Normally, the main problem of a controller that is synthesized using linearized systems at equilibria
points is that it only guarantees local stability at these equilibria points. This is caused by three reasons
but the two main causes that are investigated in this thesis are hidden coupling terms [27] and trim-point
uncertainty [24].

The hidden coupling is caused by a feedback loop between the scheduling parameters and the plant
that exists in the nonlinear domain. This is only a problem for a gain-scheduled design as the multi-
model approach does not use scheduling parameters in the nonlinear implementation.

The trim-point uncertainty appears because the controller design is only considered at equilibria points.
In operation, however, the system will traverse operating points that are not necessarily equilibria points
and this is the case for both gain scheduling and multi-model controller synthesis. Ensuring robustness
regarding these two limitations (hidden coupling terms and trim-point uncertainty) is referred to in this
thesis as frozen-time robustness. The frozen-time robustness extends the local stability guarantees
to account for these limitations. Furthermore, the concept of frozen-time robustness could also help
nonlinear analysis, as it assesses the aforementioned nonlinear effects.

1.3. Approach 3

The third reason why controller design using linearization at operating points can only guarantee local
stability is because there is an inherent uncaptured discrepancy between a family of linearized systems
and a nonlinear system caused by time variations of the dynamics in the true system. This limitation
cannot be tackled by linearization at specific operating points as that can only capture a frozen-form
of the dynamics and hence a multi-model or gain scheduling approach inherits this problem. Thus,
if time-variation needs to be taken into account other methods than linearization at frozen operating
points would need to be used, however, this is deemed as outside the scope of this thesis.

1.3. Approach
To answer the research question, an F-16 aircraft model [33] is used. This aircraft is highly maneu-
verable, which allows the aircraft to sufficiently distance itself from equilibria points and possibly excite
hidden coupling loops due to fast changes in scheduling variables. An additional challenge of the the-
sis was to investigate flight dynamics from a tensor-based point of view. Tensors describe intrinsic
physical properties without falling back on an arbitrary representation such as coordinate systems [54].
This allows for a more fundamental formulation of the dynamics.

Subsequently, the pitfalls of the gain scheduling and multi-model design procedures are investigated
by looking at research done on gain scheduling and linearization in the 90s [24] [37]. The aim is to
extend the local stability guarantees and assess robustness with respect to hidden coupling terms and
trim point uncertainty when implementing a multi-model or gain-scheduled controller in the nonlinear
domain.

Thereafter, the theory is implemented by looking at two types of controllers. A pitch-rate tracker is
designed using the short-period approximation and by making use of gain-scheduling. Thereafter, a
direct trajectory longitudinal controller is also synthesized, this time using the multi-model approach.
The first controller establishes a relatively easy benchmark problem that allows for easy comparison
across methods and allows easier investigation into the theoretical process. The latter controller is
used to apply the theory to a more challenging MIMO problem. In both cases, structured H∞ methods
developed and improved upon from around 2006 [2] are used to synthesize the controller in the linear
domain. Note, that synthesizing the controllers (especially the full longitudinal controller) is already a
challenge on its own and one of the main goals of the thesis.

1.4. Report Outline
The report has been divided into the following sections:

• Chapter 2 discusses the intricacies of the used F-16 model. Furthermore, the implementation
of the model in MATLAB/Simulink using tensor form is elaborated upon. This MATLAB/Simulink
model is also validated using earlier-developed versions.

• Chapter 3 covers the pitfalls of the gain scheduling and multi-model controller synthesis methods.
Furthermore, the analysis method to be able to extend the local stability guarantees is introduced.

• Chapter 4 covers the linear H∞ controller design for a pitch-rate controller. Furthermore, the
theory of gain scheduling is applied to analyze the controller on a nonlinear system.

• Chapter 5 applies multi-modelH∞ to synthesize on a more complicated controller. Namely, a full
direct trajectory longitudinal control system is designed and analyzed.

• Chapter 6 presents the conclusion of the thesis, summarizes the pitfalls encountered in the study
and issues recommendations for further research.

2
F-16 Model

To design a flight control system, some kind of suitable model is necessary. In the case of this research,
it is no different. As the problem statement in Chapter 1 mentioned, relatively fast dynamics are most
likely to introduce problems in the nonlinear domain. Thus some kind of agile aircraft is needed, which
is why the F-16 model originally introduced by Nguyen [33] is deemed suitable. This chapter discusses
the model in detail.

Before the model can be introduced, however, the mathematical tools that are used for its develop-
ment have to be understood. Thus, Section 2.1 gives a brief summary of the required tensor mechan-
ics to understand the implementation. Thereafter, Section 2.2 introduces the model and provides an
overview. Subsequently, Section 2.3 investigates the aerodynamic modelling, after which Section 2.4
discusses how the equations of motion are formulated using tensors. Section 2.5 and Section 2.6 cover
the sensor dynamics and actuator dynamics respectively. Lastly, Section 2.7 compares the implemen-
tation with other versions to ensure the validity of the model. Note that the model is part of a larger
project. The author mostly focused on making corrections, the aerodynamic model of Section 2.3, the
translational dynamics and the verification of the model.

2.1. Introduction to tensors
The whole model is formulated by making use of tensor-based flight dynamics. Thus it is necessary
to briefly establish this mathematical tool before the model can be introduced. This section covers a
summary of the theory established by Zipfel [54] [55] [56].

From a physical point of view, tensors can be interpreted as follows [55, p. 27]:

”Tensors describe properties of intrinsic geometrical or physical objects, i.e., objects that do
not depend on the form of presentation (coordinate system).”

Physical properties are intrinsic to the world and are independent of the arbitrary selection of a coor-
dinate system. Coordinate systems are only introduced to facilitate mathematical manipulations and
enable the interpretation of results but do not entail any absolute property of the world around us.

The mathematical definition yields: ”A first-order tensor (vector) x is the aggregate of ordered triples,
any two of which satisfy the transformation law:” [55, p. 27]

[x]B = [T]BA[x]A (2.1)

Here, the term [T]BA represents a transformation matrix from coordinate system]A to coordinate sys-
tem]B . The notation]A is employed to indicate that the tensors are already projected onto a coordinate
system, specifically coordinate system A in this instance.

4

2.1. Introduction to tensors 5

Subsequently, ”A second-order tensor X is the aggregate of ordered 9-tuples, any two of which satisfy
the transformation law:” [55, p. 27]

[X]B = [T]BA[X]A[T]BA (2.2)

where, again, [T]BA denotes a transformation matrix and,]A and]B , indicate arbitrary coordinate sys-
tems. As evident from the equations, the tensor itself, denoted as x or X, remains invariant across
coordinate systems. It is only after projection on a coordinate system that a transformation matrix is
required to establish equivalence between the two expressions.

This concept strengthens the connection between frames and objects, reducing it to a fundamental
physical certainty without being influenced by an arbitrary coordinate system for expressing physical
meaning. It serves as a powerful tool to generalize equations of motion, allowing for subsequent pro-
jection onto any coordinate system.

2.1.1. Rotation tensors
An essential tool for constructing the equations of motion is the rotation tensor. Denoted as RBA, the
rotation tensor signifies the orientation from frame B in relation to frame A. Rotation is not contingent
on specific reference points and can seamlessly relate to both frames. The frames are depicted in
Figure 2.1. The orientation between the frames can be determined using the rotation tensor [55, p. 88]:

bi = RBAai, i = 1, 2, 3 (2.3)

To show that the rotation tensor is indeed a tensor, it is possible to project Equation 2.3 onto two
coordinates systems, namely]A and]B , and show that the rotation tensor is invariant to this projection.
Coordinated rotation matrices are linked to transformation matrices, that is:

[RBA]A = [RBA]B = [T]BA (2.4)

It is worth noting that the rotation tensor maintains identical coordinates in both coordinate systems.

Figure 2.1: Frames A and B and their base triads.

2.1.2. Rotational derivative, velocity and acceleration
Another tool that needs to be established is a type of derivative that remains invariant across coordinate
systems, namely the rotational derivative. Before delving into this concept, it is useful to examine why
the ordinary time derivative does not adhere to that property. As an example, take the derivative of
vector s transformed from the A coordinate system to the B coordinate system, with ω representing the
angular velocity between B and A:

ds

dt
|A =

ds

dt
|B + ω × s (2.5)

The introduction of the time derivative of vector s brought about an additional term that negates the
tensor property. Now, let’s derive the same equation in alignment with a tensor formulation, as outlined
in [55, p. 104]:

[s]A = [T]AB [s]B (2.6)

2.1. Introduction to tensors 6

Computing the time derivative by utilizing the chain rule results in:[
ds

dt

]A
= [T]AB

[
ds

dt

]B
+

[
dT

dt

]AB

[s]B (2.7)

This can be manipulated to the following expression:[
ds

dt

]A
= [T]AB

([
ds

dt

]B
+ [T]BA

[
dT

dt

]BA

[s]B

)
(2.8)

Upon comparison with Equation 2.5, it becomes apparent that ω is equivalent to [T]BA[dT/dt]
BA

. This
realization underscores that the classical interpretation of the time derivative of a transformed vector
does not adhere to the tensor property.

Instead, a time derivative that adheres is invariant to coordinate systems is introduced: ”The rota-
tional time derivative of a first-order tensor x with respect to any frame A, DAx, and expressed in any
allowable coordinate system]B is defined by” [55, p. 103]:[

DAx
]B ≡

[
dx

dt

]B
+ [T]BA

[
dT

dt

]BA

[x]B (2.9)

The frames and coordinate systems in the formula can be chosen arbitrarily, but the left side and right
side need to align. When the projected coordinate systemmatches the frame selected for the derivative,
the expression simplifies to:[

DAx
]A ≡

[
dx

dt

]A
+ [T]AA

[
dT

dt

]AA

[x]B =

[
dx

dt

]A
(2.10)

The term [dT/dt]
AA

represents the time derivative of the unity matrix, which equals zero. When this
result is combined with Equation 2.8, one can infer:[

DAx
]A

= [T]AB
[
DAx

]B (2.11)

which aligns with the definition of a tensor as per Equation 2.1.

Using the rotational time derivative, it is possible to articulate linear velocity and acceleration. In Figure
2.2, frame A, point A, point B, and the displacement vector sBA are illustrated. sBA represents the
displacement between point B and any arbitrary reference point associated with frame A. The linear
velocity of point B with respect to frame A can then be defined as [55, p. 106]:

vAB = DAsBA (2.12)

The linear acceleration can then simply be defined as the rotational derivative of the velocity:

aAB = DAvAB = DADAsBA (2.13)

The rotation tensor introduced in Section 2.1.1 can be used to define the angular velocity of frame B
with respect to frame A, namely as the change in the rotation tensor:

ΩBA = DARBARBA (2.14)

Figure 2.2: Linear velocity

2.2. Model introduction and overview 7

2.1.3. Euler transformation
The final concept to address before delving into the actual model is the Euler transformation. This can
be used to transform the rotational time derivative to another frame:

DA = DBx+ΩBAx (2.15)

Here, ΩBA represents the angular velocity matrix between frame B and A as defined earlier. This
property is frequently employed later to transition from one frame to another.

2.2. Model introduction and overview
Now that the main mathematical tools are discussed, the model can be introduced. Initially, the F-16
model was established in 1979 by Nguyen [33]. This section gives a very brief overview of the model
and outlines subsequent developments that have taken place since 1979.

The model uses six actuators, namely the engine, the elevator, the ailerons, the rudder, the speed
brakes and the leading-edge flap. The first four are used on nearly every conventional aircraft config-
uration. The primary function of the leading-edge flap is to postpone stall in case of higher angles of
attack flight and the speed brakes are used (as the name suggests) for additional braking. Moreover,
it featured comprehensive longitudinal and laterally coupled (subsonic) aerodynamics.

The main coordinate systems that are used in the model are the aerodynamic/wind coordinate system
and the body coordinate system, which can be viewed in Figure 2.3. Another often-used coordinate
system is the local-level coordinate system, associated with the earth frame. This coordinate system
aligns the z-axis downward, the x-axis north and the y-axis east.

Figure 2.3: Definitions of wind and body coordinate systems [46, p. 76].

The description of the model in Nguyen [33] is relatively extensive. This allows for the analysis of inter-
esting behavior such as pitch-out-departure at a higher angle of attack caused by inertial coupling and
a non-zero IXZ or recovering from a deep stall trim point. For the development of the aircraft itself and
its control system, the detail is useful. However, for some academic/didactic use cases with regard to
control systems in general, such an extensive model often is not necessary. Thus Stevens, Lewis, and
Johnson [46] simplified the model. The simpler model discards the speed brakes and leading-edge
flap and completely decouples the longitudinal and lateral dynamics.

Russell [38] compiles both the original and simplified versions into a C++/Matlab version. Sadly, it
can be difficult to leverage powerful MATLAB tools, such as batch linearization, as a significant part
of the model is encoded in C++. This model of Russell [38] is therefore purposed for verification but
another model, completely written in MATLAB/Simulink is developed and subsequently used for con-
troller synthesis. The new model for the thesis copies the description of Nguyen [33] but removes the
speed brakes as done by Russell [38].

2.2. Model introduction and overview 8

To further introduce the new MATLAB/Simulink model, Figure 2.4 shows the outer loop. The inputs
are the deflections of the control surfaces and the engine thrust, while the sensor outputs (logically)
provide the output of the model. Importantly, the leading-edge flap position is given by a fixed control
law, depending on the angle of attack, Mach number and altitude. This was done to align with the
model of Russell [38], as a result, the leading edge flap position and the controller contribute two extra
states to the model.

Figure 2.5 shows one sublevel of the model, namely the aiframe block. Here the environment, aerody-
namics and equations of motion are computed. The environment and aerodynamics are discussed in
Section 2.3 and the equations of motion in Section 2.4. Thereafter, the sensor dynamics, that can be
seen in the outer loop of Figure 2.4, are discussed in Section 2.5. The actuator dynamics, except for
the leading edge flap, are not included in the outer loop but are linearized separately and added later
during the synthesis. Section 2.6 discusses the actuator dynamics in detail.

Figure 2.4: Overview of aircraft model (without actuators).

Figure 2.5: Overview of aircraft airframe

2.3. Aerodynamic model 9

2.3. Aerodynamic model
The aerodynamic data was uncovered with low-speed wind tunnel tests using subscale models and
without compressibility effects. This indicates that the aerodynamic data is only valid for Mach numbers
smaller than 0.6. This data was tested in ranges of −20 ° ≤ α ≤ 90 ° and −30 ° ≤ β ≤ 30 °. Furthermore,
it is not possible to assess the landing characteristics of the aircraft as only the clean configuration is
available.

The purpose of this section is to calculate the forces and moments acting on the airframe given the
actuator positions, the current altitude, attitude, velocity and angular velocity of the aircraft. Figure 2.6
shows the schematic of how that is done in Simulink. Normally, to calculate the forces/moments, the
aerodynamic model is divided into the conventional six coefficients describing the forces and moments
in each direction. These forces and moments are subsequently governed by their aerodynamic coeffi-
cients [46]:

Axialforce, X = q S CX

Sideforce, Y = q S CY

Normalforce, Z = q S CZ

Rolling moment, l = q S Cl

Pitching moment, m = q S Cm

Yawing moment, n = q S Cn

(2.16)

Please note that these coefficients are defined with respect to the body axis shown in Figure 2.3. Fur-
thermore, note that gravity is added separately at the end of this block.

Figure 2.6: Aerodynamic model in Simulink.

Thus the calculation of the forces/moments requires the value of the aerodynamic coefficients. In
summary, the aerodynamic coefficients are a function of the following parameters, as also shown in
Figure 2.6:

C(V, α, β, p, q, r, δa, δe, δr, δl) (2.17)
Not every aerodynamic coefficient depends on all these parameters but details on the full aerodynamic
model that has been specified by Nguyen [33], including its MATLAB implementation, is provided in
Appendix A.

Lastly, the input for the aerodynamic coefficients is partly the actuator deflections but also includes
values provided by the air data computer. Importantly, the air data computer can only read the velocity
of the aircraft with respect to the air around the aircraft, not with respect to the earth. Given the velocity
of the air with respect to the earth in the local-level coordinate system [vEA]

L and the aircraft velocity
with respect to the earth in the same coordinate system [vEB]

L, this produces:

[vAB]
L = [vEB]

L − [vEA]
L (2.18)

2.4. Equations of motion in tensor formulation 10

This is the velocity of the body with respect to the air moving past the airframe and hence what the air
data sensors encounter. To calculate the velocity, angle of attack and angle of sideslip, this is converted
to the body coordinate system.

[vAB]
B = [T]BL[vAB]

L (2.19)

with:

[vAB]
B =

 uA
vA
wA

From this vector, the aerodynamic angles can be deduced:

V = ||[vAB]B ||2

α = arctan(wA

uA
)

β = arcsin(vA
V

)

(2.20)

Lastly, the speed of sound a and the atmospheric density ρ are environmental properties that are, in
this model, purely determined by altitude as proscribed by the international standard atmosphere (ISA)
model. The dynamic pressure (q̄) can simply be calculated by q̄ = 0.5ρV 2.

2.4. Equations of motion in tensor formulation
After the brief introduction to tensors of Section 2.1, it is possible to derive the equations of motion in
tensor form. This section discusses the derivation and shows the application in MATLAB/Simulink of
these differential equations. Figure 2.7 shows an overview of the Simulink implementation.

Figure 2.7: Equations of motion Simulink implementation

2.4. Equations of motion in tensor formulation 11

The purpose of the equations of motion is to calculate the translational and angular accelerations, ve-
locities and positions given the acting forces and moments. The Simulink implementation of Figure 2.7
splits this into four main parts, the attitude and translational dynamics and the attitude and translational
kinematics, containing three differential equations each. The other parts in Figure 2.7 are simply initial
conditions or constants, such as the mass moment of inertial. This results in twelve distinct states
defined in the equations of motion

x =
[
V, α, β, p, q, r, xL, yL, zL, ϕ, θ, ψ

]
(2.21)

The upcoming sections will delve into the discussion of each of the four main parts and their respective
implementations. Note that most of the mathematical derivation is retrieved from Zipfel [55], but the
derivation of the translational dynamics in the wind axis from a tensor point of view is a novelty.

2.4.1. Translational dynamics
As customary, Newton’s second law serves as the foundation for translational dynamics. In this in-
stance, the equations are approached from a tensor-based perspective, leading to [55, p. 369]:

DI(mvIB) = fa,b +mg (2.22)

Here, m denotes the vehicle mass, fa,b represents the aerodynamic and propulsion forces acting on
the vehicle, and vIB signifies the velocity of the body with respect to the inertial frame I. Assuming that
the Earth frame E serves as an inertial reference frame and the mass m remains constant over time,
this expression can be rephrased as:

mDEvEB = fa,b +mg (2.23)

Now, employing the Euler transformation, it becomes possible to express the derivative in terms of the
body frame and the vehicle incident angles, which are utilized in the aerodynamic model:

mDBvEB +mΩBEvEB = fa,b +mg (2.24)

To arrive at the familiar coordinated equations of translational dynamics, everything can be projected
onto the body coordinate system]B :

m[DBvEB]
B +m[ΩBE]B [vEB]

B = [fa,b]
B +m[g]B (2.25)

Working out the rotational derivative (see Equation 2.10) and transforming the gravity term g to the
local-level coordinate system yields:

m

[
dv

dt

]B
+m[ΩBE]B [vEB]

B = [fa,b]
B +m[T]BL[g]L (2.26)

The matrix formulation of the coordinated equations of motion becomes:

m

 du/dt
dv/dt
dw/dt

B

+

 0 −r q
r 0 −p
−q p 0

B u
v
w

B
 =

 fa,p1

fa,p2

fa,p3

B

+

 t11 t12 t13
t21 t22 t23
t31 t32 t33

BL 0
0
mg

L

(2.27)
If desirable, these can even be worked out to scalar form.

The above equation yields the values using the body coordinate system. In the application of the
thesis, the wind frame and the wind coordinate system are used as this enables immediate lineariza-
tion of the relevant states. In the derivation, it is assumed that there are no gusts and/or wind present
and that the two frames thus coincide (in that case the frame is sometimes referred to as the kinetic
frame[7, p. 46]). To start the derivation, Equation 2.24 is rewritten to the wind frame (W) using the Euler
transformation:

mDW vEB +mΩWBvEB = −mΩBEvEB + fa,b +mg (2.28)

2.4. Equations of motion in tensor formulation 12

Coordinating to the associated wind coordinate system results in:

m
[
DW vEB

]W
+m

[
ΩWB

]W [
vEB
]W

= −m
[
ΩBE

]W [
vEB
]W

+ [fa,b]
W +m[g]W (2.29)

The body rates and forces with respect to the inertial/earth frame in thewind coordinate system (
[
ΩBE

]W
and [fa,b]

W) are not known hence transformation matrices are necessary to coordinate these expres-
sions in the body coordinate system:

m
[
DW vEB

]W
+m

[
ΩWB

]W [
vEB
]W

= −m [T]
WB [

ΩBE
]B

[T]WB
[
vEB
]W

+[T]
WB

[fa,b]
B+m [T]

WB
[T]

BL
[g]L

(2.30)
To implement the equation, each unknown term in the expression is tackled separately. Starting with
the leftmost term, m

[
DW vEB

]W . As there are no gusts, W coincides with frame B, which means that[
DW vEB

]W is simply the change in velocity of the aircraft body with respect to the earth expressed in
the wind axis. Since the first component of the wind axis is defined along the direction of the velocity
this simply results in:

m
[
DW vEB

]W
= m

 V̇
0
0

W

(2.31)

To calculate [T]WB , the transformation from the body axis to the wind axis needs to be investigated.
This is defined by first a positive rotation around the y-axis, of the angle of attack, which yields an
intermediate (also known as the stability) coordinate system. Subsequently, a negative (right-handed
rotation) of the sideslip angle, from the intermediate axis, around the body z-axis produces the wind
axis. This is displayed in Figure 2.8, yielding us the following transformation matrices from the body
axis to the wind axis:

[T]BS =

 cos(α) 0 − sin(α)
0 1 0

sin(α) 0 cos(α)

BS

[T]WS =

 cos(β) sin(β) 0
− sin(β) cos(β) 0

0 0 1

WS
(2.32)

[T]WB = [T]WS [T̄]BS =

 cos(α) cos(β) sin(β) sin(α) cos(β)
− cos(α) sin(β) cos(β) − sin(α) sin(β)

− sin(α) 0 cos(α)

WB

(2.33)

Figure 2.8: Body coordinate system to wind coordinate system.

The last novel expression to derive is the angular rates of the wind frame to the body frame expressed
in the wind coordinate system, that is

[
ΩWB

]W . The angular rates between these frames are related

2.4. Equations of motion in tensor formulation 13

by a transformation dictated by the derivatives of α and β. Let us consider the non-skew-symmetric
rates

[
ωWB

]W derived similarly as done in [45, p. 179]. If the velocity vector as defined in the wind
frame changes in position, it rotates by β̇ around the zB axis from the perspective of the body frame.
Subsequently a rotation of −α̇ around the new yB axis accounts for the rotation along the other plane.
In equations, this is expressed as:

[
ωWB

]W
=

 0
0

β̇

W

+ [T]WS

 0
−α̇
0

S

=

 −α̇ sin(β)
−α̇ cos(β)

β̇

W

(2.34)

This can be transformed to skew-symmetric form (
[
ΩWB

]W
=
[
ωWB

]W × I).

Now, all the tools are present to work out the left side of equation Equation 2.30:

m
[
DW vEB

]W
+m

[
ΩWB

]W [
vEB
]W

= m

 V̇
0
0

W

+m

 0 −β̇ −α̇ cos(β)
β̇ 0 α̇ sin(β)

−α̇ cos(β) −α̇ sin(β) 0

W V
0
0

W

= m

 V

V β̇
V α̇ cos(β)

(2.35)

To solve for V̇ , β̇, α̇ (note the order), both sides of the equations are multiplied from the left by:

X =

 1 0 0
0 V −1 0
0 0 V −1 arccos(β)

In the end, we have arrived at the final equations describing the translational dynamics derived from
the wind axes:

m

 V̇

β̇
α̇

 = X
(
−m[T]WB

[
ΩBE

]B
[T]WB

[
vEB
]W

+ [T]WB [fa,b]
B +m[T]WB [T]BL[g]L

)
(2.36)

Each component is known and the differential equation as a whole has been implemented in Simulink.
Figure 2.9 shows how this has been done. The MATLAB function can be found in Appendix B.1.

Figure 2.9: Translational dynamics implementation in Simulink.

2.4. Equations of motion in tensor formulation 14

2.4.2. Translational kinematics
The translational kinematics cover the transformation of the coordinated body velocities to a coordi-
nate system that is easy to display on the inertial frame. If the definition of the rotational derivative is
employed, this results in [55, p. 371]:

DEsBE = vEB (2.37)

This can, for example, be worked out in the local-level coordinate system:

[DEsBE]
L = [T]BL[vEB]

B (2.38)

This is implemented in Simulink, as shown in Figure 2.10 and the MATLAB function can be found in
Appendix B.2.

Figure 2.10: Translational kinematics implementation in Simulink.

2.4.3. Attitude dynamics
For attitude dynamics, it is possible to formulate the equations of motion in angular form using Newton’s
Law:

DE(IBBω
BE) = mB (2.39)

with the Earth serving as the inertial frame. Here, IBB represents the vehicle inertia, ωBE denotes the
angular velocity, and mB signifies the aerodynamic and propulsion moment. Once again, taking the
derivative with respect to the vehicle body is preferred to unveil the vehicle dynamics, resulting in:

DB(IBBω
BE) + ΩBEIBBω

BE = mB (2.40)

The rigid body assumption dictates that DBIBB is equal to zero and this results in:

IBBD
BωBE +ΩBEIBBω

BE = mB (2.41)

This can be projected on the body coordinate system:[
dωBE

dt

]B
=
([
IBB
]B)−1 (

−[ΩBE]B
[
IBB]B [ωBE]B + [mB]

B
)

(2.42)

Expanding the conservation of angular momentum with the presence of other rotary devices BR intro-
duces additional terms on the left side of the equation, for example:

IBBD
BωBE +ΩBEIBBω

BE + IBR

BR
DBωBrE +ΩBEIBR

BR
ωBRE = mB (2.43)

where C is the joint center of mass of the body and the rotary device. The coordinated form yields:[
dωBE

dt

]B
=
([
IBB
]B)−1 (

−[ΩBE]B
[
IBB]B [ωBE]B + [ΩBE]B [IBR

BR
]B + [mB]

B
)

(2.44)

The differential equation implementation in Simulink is shown in Figure 2.11 and the MATLAB imple-
mentation can be found in Appendix B.3.

2.4. Equations of motion in tensor formulation 15

Figure 2.11: Attitude dynamics implemented in Simulink.

2.4.4. Attitude kinematics
Three additional kinematic equations can be introduced depending on the frame in use. For instance,
in the body frame projection, [ωBE]

B
= [p q r], and from here, a second set of differential equations

can be deduced, whether in Euler angles or quaternions.

In this application, the direct Euler angle differential equations are used [55, p 120], computed by using
a direct transformation matrix between the Euler angles and the body frame: ϕ̇

θ̇

ψ̇

 =

 1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ)/ cos(θ) cos(ϕ)/ cos(θ)

 p
q
r

 (2.45)

This formulation is how it was implemented in the MATLAB function can be seen in Section B.4.

The Euler angles are used to construct the transformation matrix [T]BL that is used in the translational
dynamics and kinematics. This is given by the equation:

[T]BL =

 cosψ cos θ sinψ cos θ − sin θ
cosψ sin θ sinϕ− sinψ cosϕ sinψ sin θ sinϕ+ cosψ cosϕ cos θ sinϕ
cosψ sin θ cosϕ+ sinψ sinϕ sinψ sin θ cosϕ− cosψ sinϕ cos θ cosϕ

 (2.46)

Note that when integrating the differential equations can produce errors due to numerical inaccuracies
when performing this on a computer [55, p 119]. To enforce orthonormality at each time, an extra
orthogonalization step on the [T]

BL is performed to ensure this property is not lost. That is done by
applying a correction term from integration step (n) to (n+ 1):

[T (n+ 1)]BL = [T (n)]BL + k(1/2)(I − [T (n)]BL[T (n)]BL)[T (n)]BL; (2.47)

with k being an arbitrary constant and I the identity matrix. For the model, k was set to 1. The MAT-
LAB function implementation can also be found in Appendix B.4. The Simulink implementation of the
differential equation and the computation of the direction cosine matrix is given in Figure 2.12.

2.5. Sensor dynamics 16

Figure 2.12: Attitude kinematics implemented in Simulink.

The aforementioned equations have not been derived from a tensor point of view but simply have been
provided. If these equations were derived using tensor differential equations, you start with:[

dRIB

dt

]B
=
[
ΩIB

]B [
REB

]B (2.48)

That is, the change in rotation tensor between the inertial (earth) frame and the body frame is defined
by the angular rates between the inertial and body frame multiplied by the current rotation tensor, in
this case, all expressed in the body frame. Reversing the frame sequence to express the formula in
the known body rates

[
ΩBE

]B using the transpose:

[
dRBI

dt

]B
= [ΩBI]

B
[RBI]

B
(2.49)

If the connection between the rotation tensor and a transformation matrix is used ([RBI]
B

= [T]
BI),

that produces the differential equations of the direct cosine matrix:[
dT

dt

]BI

= [ΩBI]
B
[T]

BI (2.50)

Normally, these are computed using the Earth as inertial frame and the local-level system. These
yield one differential equation for each element, hence nine equations, however only 3 of those are
independent. These can be explicitly computed by taking orthogonality conditions between the three
base vectors. From the elements of the direct cosine matrices, the Euler angles can be recovered.

2.5. Sensor dynamics
While many of the states are also directly the output, there is one exception in the model, namely the
normal accelerations. This is measured by an accelerometer that captures the accelerations of the
airframe itself. However, if it is not aligned with the center of gravity, the angular velocities of the sensor
with respect to the center of gravity have to be taken into account. Starting from the fact that the position
vector of the sensor/accelerometer (S) with respect to a point on the inertial frame (I) is equal to the
position of the body c.o.g (B), with respect to a point on the inertial frame and the position between the
sensor and the body [55, p 153]:

sSI = sBI + sBS (2.51)

The acceleration (second derivative) of the position is what is of interest:

DIDIsSI = DIDIsBI +DIDIsBS (2.52)

2.6. Actuator dynamics 17

DIDIsBS can be expressed in body rates after using successive Euler transformations [55]:

DIDIsBS = DI
(
DBsBS +ΩBIsBS

)
= DI

(
ΩBIsBS

)
= DIΩBIsBS +ΩBIDIsBS

= DIΩBIsBS +ΩBI
(
DBsBS +ΩBIsSB

)
= DIΩBIsBS +ΩBIΩBIsBS

(2.53)

It was assumed that the sensor position sensor is fixed (DBsBS = 0). Inserting this value back into
Equation 2.52 and replacing the second derivatives with accelerations:

aIS = aIB +DIΩBIsBS +ΩBIΩBIsBS (2.54)

This relates the acceleration of the body at the center of gravity with the acceleration of the sensor.
However, the accelerometer outputs the proper acceleration, that is the acceleration with respect to an
observer in free fall [46, p. 33]. This means that the accelerometer measurement in steady wing-level
flight ([aIS]B = 0) produces [nIS]

B
= [0, 0,−1] (body axis z points down, while the normal acceleration

is 1g up). In order to correct this gravity has to be subtracted from the accelerometer measurement
Lastly, the output of the accelerometer is normally given in terms of gravitational acceleration, and not
in m/s. This conversion is also performed:

nIS =
aIS − g

g0
=

1

g0

(
aIB +DIΩBIsBS +ΩBIΩBIsBS − g

)
(2.55)

Where nIS denotes the normal accelerations in g acting on the sensor. This equation can be projected
on any coordinate system. In this case, the body coordinate system is suitable for all components,
except for the gravitational term which has to be converted from the local tangent coordinate system:[

nIS
]B

=
1

g0

([
aIB
]B

+
d

dt
(
[
ΩBI

]B
)sBS +

[
ΩBI

]B [
ΩBI

]B
[sBS]

B − [T]
BL

[g]
L

)
(2.56)

The Earth can be used as an inertial frame. If the conventional definition that steady-state flight results
in an acceleration of (positive) 1g is necessary, the sign of the z-axis can simply be flipped. The resulting
MATLAB function can be found in Appendix B.5.

2.6. Actuator dynamics
Every control surface is simply modeled as a first-order lag with a static time constant. Additionally,
both their rate of change and absolute values are saturated. Table 2.1 shows these properties.

Table 2.1: Summary of control surfaces properties.

δa δe δr δl

Maximum deflection [°] 21.5 25 30 25
Minimum deflection [°] -21.5 -25 -30 0
Maximum deflection rate [°/s] 80 60 120 80
Bandwidth [rad/s] 20.2 20.2 20.2 7.35

The ailerons, elevator, and rudder are used as system inputs but the leading-edge flap is not, in order
to conform to the models of Nguyen [33] and Russell [38]. Instead, it is already included in the loop
with a fixed control law, as could be seen in Figure 2.4. The control law is given by:

δl,cmd = 1.38
2s+ 7.25

s+ 7.25
α− 9.05

q̄

P
+ 1.45 (2.57)

where P is the static pressure. This control law and the actuator position introduce two new states.

Lastly, the turbofan jet engine with after-burning capabilities is a bit more complex than the other ac-
tuators and hence also needs additional complexity to model. Namely, the thrust response to throttle

2.7. Model verification 18

input is modeled as a variable first-order lag. Additionally, the engine contains variations in thrust
values corresponding to the idle, military, and maximum thrust levels. Moreover, the simulation incor-
porates engine gyroscopic effects by representing the engine angular momentum at a constant value
of 216.9 kg−m2. The detailed implementation is discussed in Appendix C.

2.7. Model verification
To verify the new model, it is compared to other versions of the F-16. As was mentioned, Russell [38]
provided an open-source model that can be used as a benchmark. It is used to verify the trimming
(Section 2.7.1) and the linearized state and input matrices (Section 2.7.2). Lastly, results directly from
the book of Stevens, Lewis, and Johnson [46] are used to verify the output equations in Section 2.7.3.

2.7.1. Trimming
For trimming, steady-state wing-level flight points are considered. Each equilibria point is defined by a
certain αeq and, δe,eq and these values should correspond to the benchmark. The trim point is retrieved
numerically by establishing the settings as shown in Table 2.2. For steady-state flight, all known states
are zero except for V and zL, which are specified to provide the desired airspeed and altitude.

Table 2.2: Trim settings.

State Known Steady-state
V ✓ ✓
α ✓
β ✓ ✓
p ✓ ✓
q ✓ ✓
r ✓ ✓
xL
yL ✓
zL ✓ ✓
ϕ ✓ ✓
θ ✓
ψ ✓ ✓
δl,cmd ✓
δl ✓

The inputs are not known but simply in steady state and are an output of the trimming procedure done
in MATLAB/Simulink by making use of the findop method. The trimming is performed across the flight
envelope and compared to the model of Russell [38]. The resulting difference in steady-state angle of
attack and steady-state elevator deflection is plotted in Figure 2.13. The error reaches 0.06◦ at max for
the angle of attack and 4× 10−3◦ for the elevator deflection.

(a) Difference in the angle of attack (Russell [38] - new model) in the
flight envelope.

(b) Difference in the elevator angle (Russell [38] - new model) in the
flight envelope.

Figure 2.13: Difference in trimming results.

2.7. Model verification 19

2.7.2. Linearized state and input matrices
To further verify if the model is configured correctly, the linearized state space system across the flight
envelope is also compared to the model of Russell [38]. The resulting state (A) and input (B) matri-
ces, should be similar. The model of Russell [38] does not include sensor dynamics, hence the output
equations are separately verified in Section 2.7.3. The linearization was performed numerically using
the linearize function of MATLAB/Simulink but the theory is further investigated in Section 3.1.

To assess the similarity of the A and B matrices, the sum of square errors is used. ARuss and BRuss

denote the matrices of the model provided by Russell [38] and Anew and Bnew denote the state and
output matrices of the new model. Furthermore, the matrices are split in the longitudinal (long) and
lateral (lat) dynamics. Subsequently, the equations that define the sum of squared errors become:

SSEA,long = trace((ARuss,long −Anew,long)
′(ARuss,long −Anew,long))

SSEB,long = trace((BRuss,long −Bnew,long)
′(BRuss,long −Bnew,long))

SSEA,lat = trace((ARuss,lat −Anew,lat)
′(ARuss,lat −Anew,lat))

SSEB,lat = trace((BRuss,lat −Bnew,lat)
′(BRuss,lat −Bnew,lat))

(2.58)

Figure 2.14 shows that the SSE is generally very low across the flight envelope. It is smaller than
10× 10−4 for every matrix except for the lateral B matrix which reaches 8× 10−3.

(a) Longitudinal state transition matrix. (b) Longitudinal input matrix.

(c) Lateral state transition matrix. (d) Lateral input matrix.

Figure 2.14: Sum of squared errors of components of the matrices construction the state space.

2.7.3. Linearized output equations
The output equations cannot be verified using the model of Russell [38] as the accelerometer is not
modeled. However, Stevens, Lewis, and Johnson [46] provides the longitudinal linearized accelerome-
ter output equation in case of a distance of 0m and 4.572m (= 15 ft) between the accelerometer and the
center of gravity. Furthermore, they used a simplified aerodynamic model, which is thus also temporar-
ily used in the new model, solely to verify the output equations. Lastly, these output equations were
valid at sea-level altitude with a velocity of 153m/s. These provided equations [46, p 311], if converted
to SI units, become:

nz,0 = 0.00398V + 15.88α+ 1.481q + 1.908δe

nz,15 = 0.00398V + 16.26α+ 0.978q − 2.748δe
(2.59)

2.7. Model verification 20

The equations of the new model at the same conditions are:

nz,0 = 0.00398V + 15.87α+ 1.480q + 1.909δe

nz,15 = 0.00398V + 16.25α+ 0.978q − 2.774δe
(2.60)

As can be seen, the output equations are nearly identical, indicating that the (longitudinal) sensor
dynamics are implemented correctly.

3
Quantifying the pitfalls of gain

scheduling and multi-model design

This chapter introduces the pitfalls of the gain scheduling and multi-model design techniques that are
used in the upcoming flight control problems. Let us first consider gain scheduling. This technique
remains widespread for nonlinear control because of the simple and intuitive framework it provides,
despite the advances of other methods in control system theory [27]. However, it does not offer a priori
global stability and performance guarantees, instead relying on local stability and performance [25] [37].
It accomplishes this through a four-step divide-and-conquer approach.

First, the nonlinear model is linearized on a set of equilibria points creating a family of linear time-
invariant (LTI) systems.

Secondly, in the linear domain, many techniques can be used to synthesize a controller for each of
the LTI systems to satisfy desired performance and robustness requirements.

Thirdly, the nonlinear realization can be created by interpolating the gains a posteriori with respect
to the scheduling variables that define the set of equilibria points. In the implementation, this entails
updating the gains in real-time based on the measured values of the scheduling variables [36] [42].

Lastly, the performance of the controller has to be assessed both in the linear domain and in the
nonlinear domain. The linear analysis can be simple if the local stability and performance analysis
has been included in the synthesis, however, if necessary this analysis can be extended and points
that were not included on the grid used for design can also be analyzed. In the nonlinear domain, the
local stability and performance are often analyzed by simulation. It can be of interest if the a posteriori
nonlinear analysis can be quantified in some way instead of only relying on simulations. This is where
the concept of frozen-time robustness might be useful.

To achieve this quantification, the pitfalls that can be encountered with gain-scheduled controllers in
nonlinear control are investigated. As far as the author is aware, the three main problems are:

• Trim point uncertainty [23].
• Hidden coupling terms [21].
• Stability of time-varying systems [49].

For the multi-model approach, the main problems are similar. It does suffer the same trim point uncer-
tainty and the problem of a discrepancy in the case of a time-varying system, as it also uses linearized
plants at equilibria. However, a multi-model approach in itself does not cause any hidden coupling
terms. This is the case as it does not calculate the gains using interpolation with respect to the schedul-
ing parameters that cause these terms.

The goal of this chapter is to find a method to analyze if a gain-scheduled or multi-model controller
remains robust despite the problems of trim point uncertainty and hidden coupling terms; that is to en-
sure frozen-time robustness. This is useful to extend the local stability of the controller to a larger part

21

3.1. Linearization and trim point uncertainty 22

of the nonlinear implementation and, as mentioned earlier, can be of use when assessing the nonlinear
performance of the controller. The third problem, that of stability in the case of a time-varying system,
is not taken into account in this analysis which causes the stability guarantees to still be local in nature.
This means that the stability guarantee is only valid at a certain point and frozen at that point. Never-
theless, the increase of valid local stability points is an advantage compared to conventional design
that does not take these factors into account.

The structure of the chapter is as follows. First, Section 3.1 explains why conventional Jacobian lin-
earization introduces trim point uncertainty and how that can be omitted using velocity-based lineariza-
tion. Secondly, the cause of hidden coupling terms and the effects on the controller are discussed in
Section 3.2. Thereafter, the problem of loss of stability in fast-varying systems is briefly covered in
Section 3.3. The quantification of the effects using the gap metric and the coprime stability margin, as
far as that is possible, is discussed in Section 3.4. Lastly, an example of the quantification of these
factors and its use in posterior analysis is shown in Section 3.5.

3.1. Linearization and trim point uncertainty
Linearization concerns the process of converting a nonlinear system to a Linear Time-Invariant (LTI)
system. The conventional approach using Jacobian linearization is considered in Section 3.1.1, while
a different method called velocity-based linearization (VBL) is covered in Section 3.1.2. The main
advantage of using VBL is that it does not limit itself to equilibria points and can thus be used to quantify
trim point uncertainty.

3.1.1. Jacobian linearization
As a starting point, a general nonlinear system is considered,

ẋ = F (x, u)

y = G(x, u)
(3.1)

where x denotes the states, u the inputs and y the outputs. F (.) and G(.) are general formulations of
nonlinear functions.

Let us define a specific trajectory denoted by x̃(t), ũ(t), and ỹ(t), which represents the solution to
the following system of differential equations:

˙̃x = F (x̃, ũ)

ỹ = G(x̃, ũ)
(3.2)

This allows for the formulation of a time-varying system with respect to the trajectory through a first-
order series expansion [22].

δẋ = F (x̃, ũ) +∇xF (x̃, ũ)δx+∇uF (x̃, ũ)δu+ εF

δy = G(x̃, ũ) +∇xG(x̃, ũ)δx+∇uG(x̃, ũ)δu+ εG
(3.3)

where
δu = u− ũ, δy = y − ỹ, δx = x− x̃, δẋ = ẋ (3.4)

And the errors are simply defined by the difference between the original equation for ẋ and the approx-
imated equation δẋ, and the same thing can be done for y and δy [23]:

εF = F (x, u)− F (x̃, ũ)−∇xF (x̃, ũ)δx−∇uF (x̃, ũ)δu

εG = G(x, u)−G(x̃, ũ)−∇xG(x̃, ũ)δx−∇uG(x̃, ũ)δu
(3.5)

This serves as an exact (local to the trajectory) reformulation of the initial nonlinear system but trans-
forms into an approximation when the errors are assumed to be zero. This is the same as neglecting
the higher-order Taylor approximation terms. Additionally, to make the system linear, the series ex-
pansion should be conducted in proximity to equilibria points, ensuring that F (x̃, ũ) ≈ 0. Hence, the
nonlinear system can be locally approximated by a Linear Time-Varying (LTV) system as stated in [25],

3.1. Linearization and trim point uncertainty 23

δ ˙̂x = ∇xF (x̃, ũ)δx̂+∇uF (x̃, ũ)δu

δŷ = ∇xG(x̃, ũ)δx̂+∇uG(x̃, ũ)δu
(3.6)

Using this relationship, one can evaluate the stability of the nonlinear system. Specifically, the local
bounded input bounded output (BIBO) stability of the nonlinear system in Equation 3.1 can be con-
firmed if the expression in Equation 3.6 exhibits exponential stability when δu is zero. It’s important to
note that this assertion holds true only under the condition that the system in Equation 3.6 is robustly
stable concerning the errors εF and εG [23].

As was mentioned, the system outlined by Equation 3.6 conforms to an LTV system. LTV systems
exhibit different behavior at different times. In the realm of LTV systems, frozen-time theory proves
useful for establishing requirements for exponential stability. Using frozen-time approximation, the tra-
jectory is approximated by a single point that is reached during the trajectory. At this single point, a
simple LTI system can be established information on the time-varying properties of the LTV system is
lost during this process. The slower the LTV system changes, the smaller the effects of time variations,
and the more it resembles the LTI approximation. If the trajectory reaches a singular equilibrium point
(x1, u1) at time t1, Equation 3.6 can be assessed and assumes the following form:

δ ˙̂x = ∇xF (x1, u1)δx̂+∇uF (x1, u1)δu

δŷ = ∇xG(x1, u1)δx̂+∇uG(x1, u1)δu
(3.7)

If all eigenvalues of ∇xF (x̃, ũ) reside in the right half plane C−ϵ = s ∈ C|Re(s) ≤ −ϵ for some ϵ < 0,
and the time-variations in the elements of ∇xF (x̃, ũ) are limited, it can be demonstrated that the sys-
tem achieves exponential stability. The values for ∇xF (x̃, ũ) can be assessed by using ∇xF (x1, u1)
For precise definitions regarding the limitations on the state matrix elements, Ilchmann, Owens, and
Prätzel-Wolters [15] can be consulted.

As of now, the connection between a single LTI system and the LTV system was elaborated upon,
along with the applicable sufficient conditions for investigating this stability. This analysis can be broad-
ened to encompass a family of LTI systems instead of a single LTI system [23]. The system can be
evaluated at multiple equilibria points reached at any time τ that can be combined to express the LTV
system as multiple frozen LTI systems:

δ ˙̂x = ∇xF (x̃τ , ũτ)δx̂+∇uF (x̃τ , ũτ)δu

δŷ = ∇xG(x̃τ , ũτ)δx̂+∇uG(x̃τ , ũτ)δu
(3.8)

It is important to note that the family of LTI systems itself is an LTV/LPV system but is different from
the original LTV system it approximates. One is a collection of dynamical systems while the other is
a distinct dynamical system. The LTV system of Equation 3.6, however, does inherit the stability and
robustness properties of the family of LTI systems of Equation 3.8 given some conditions. That is, the
LTV system is: ”locally BIBO stable in the vicinity of equilibrium operation provided that the members of
its family of equilibrium linearizations are uniformly stable and the rate of variation is sufficiently slow.”
[25]. The slow variation condition ensures that the time variations of the elements of the state matrix
∇xF (x̃, ũ) are limited (LTI to LTV congruence) but simultaneously also restricts the speed with which
the system moves from one equilibrium point to the next equilibrium point to enforce F (x̃, ũ) ≈ 0 (LTV
to nonlinear model congruence).

The assessment of the stability criteria of the nonlinear model thus contains 2 steps. First, the system
is approximated by an LTV system that describes one or multiple trajectories using a Taylor approxima-
tion. The stability of the LTV system is subsequently evaluated by one or multiple LTI systems that are
found by linearizing around the equilibria points.

3.1.2. Velocity-based linearization
Velocity-based linearization aims to relax the equilibrium conditions associated with conventional lin-
earization. The system was proposed by Leith and Leithead [23][24] [26], The theoretical foundation is
summarized in this section.

3.1. Linearization and trim point uncertainty 24

Let us first derive the problems with using Jacobian linearization by, again starting from any arbitrary
nonlinear system:

ẋ = F (x, u)

y = G(x, u)
(3.9)

Additionally, consider a trajectory x(t), u(t) that attains the point x1, u1 at time t1. When employing
standard frozen-time series expansion, this yields [16] [24]:

δ ˙̂x = F (x1, u1) +∇xF (x1, u1)δx̂+∇uF (x1, u1)δu

δŷ = G(x1, u1) +∇xG(x1, u1)δx̂+∇uG(x1, u1)δu
(3.10)

where
δu = u− u1, δŷ = ŷ − y1, δx̂ = x̂− x1, δ ˙̂x = ˙̂x (3.11)

For this approximation to be accurate, it is necessary for δx̂ and δŷ to remain small, ensuring that
the approximation stays within the local region where it is valid. By substituting Equation 3.11 into
Equation 3.10, the following equation can be derived:

˙̂x = F (x1, u1)−∇xF (x1, u1)x1 −∇uF (x1, u1)u1 +∇xF (x1, u1)x̂+∇uF (x1, u1)u

ŷ = G(x1, u1)−∇xG(x1, u1)x1 −∇uG(x1, u1)u1 +∇xG(x1, u1)x̂+∇uG(x1, u1)u
(3.12)

Let us examine Equation 3.12 when approximating the derivative at the point x1 used for linearization.
In this case, ˙̂x1 becomes [23]:

˙̂x1 = F (x1, u1)−∇xF (x1, u1)x1 −∇uF (x1, u1)u1 +∇xF (x1, u1)x̂1 +∇uF (x1, u1)u1

= F (x1, u1) +∇xF (x1, u1)(x̂1 − x1) +∇uF (x1, u1)(u1 − u1)

= F (x1, u1) +∇xF (x1, u1)δx̂

= F (x1, u1) = ẋ1

¨̂x1 = ∇xF (x1, u1) ˙̂x+∇uF (x1, u1) u̇1 = ẍ1

(3.13)

Therefore, it offers a first-order estimate of ẋ and a second-order estimate of x at each operational point.
However, when solely equilibrium points are applied within the LTI systems family, it becomes evident
that this characteristic may not consistently be true since F (x1, u1) is assumed to be 0, a condition
true only at an equilibrium point. Consequently, conventional Jacobian linearization essentially forms
a zeroth-order approximation for points deviating from the equilibria.

As previously mentioned, the practice of employing series expansion around multiple operating points
is common to encompass the entire operational range with a family of series expansions approximating
the nonlinear model. It has been demonstrated [23, p. 309] that the approximation errors of a family
of series expansions around equilibrium points (zeroth-order approximation) may not converge to zero,
whereas first-order series do when increasing the gridding. This is intuitively logical since, regardless
of how many points are added to the grid, no information about off-equilibrium points is incorporated,
hence, the error at these points may not necessarily decrease. This presents a clear advantage over
Jacobian linearization, particularly noticeable at initial conditions distant from equilibrium points or dur-
ing rapid transients. It would thus be preferable to not assume F (x1, u1) ≈ 0. However, the system, as
depicted in Equation 3.10, then loses a critical property, namely linearity.

This can be resolved, however, by differentiating Equation 3.12 with respect to time, resulting in the
following system, called the velocity-based linearization:

˙̂x = ŵ

˙̂w = ∇xF (x1, u1) ŵ +∇uF (x1, u1) u̇

˙̂y = ∇xG (x1, u1) ŵ +∇uG (x1, u1) u̇

(3.14)

With the appropriate initial conditions:

x̂ (t1) = x (t1) , ŵ (t1) = ˙̂x (t1) = ẋ (t1) = F (x1, r1) , ˙̂y (t1) = y (t1) = G (x1, r1) (3.15)

3.2. Hidden coupling terms 25

this system is dynamically equivalent to the system of Equation 3.12 but is linear. This system is of the
same form as when differentiating the nonlinear system of Equation 3.9 directly which yields:

ẋ = w

ẇ = ∇xF (x, u)w +∇uF (x, u) u̇

ẏ = ∇xG (x, u)w +∇uG (x, u) u̇

(3.16)

The connection between Equation 3.16 and Equation 3.14 is straightforward. Equation 3.14 represents
the frozen-form of Equation 3.16 at the specific point x1, u1. Figure 3.1 provides a summary illustrat-
ing how the velocity-based linearization family can be directly obtained from taking the derivative of
the nonlinear model, or through the utilization of a first-order series expansion, followed by taking the
derivative of this expression.

Velocity-based linearization can thus be a useful approach to linearize a nonlinear system at any arbi-
trary operating point. In conventional gain-scheduled or multi-model design, only Jacobian linearization
is used and hence the plant can only be linearized at equilibria/trim points. The nonlinear plant is, of
course, not limited to these trim points, which introduces the trim point uncertainty. This uncertainty
can be quantified by linearizing the nonlinear system at the off-equilibrium points and comparing this
to the equilibrium points, but this is further discussed in Section 3.4.

Figure 3.1: Velocity-based representations of nonlinear system [26].

3.2. Hidden coupling terms
The issue of hidden coupling terms arises when endogenous variables are used as scheduling vari-
ables, i.e. the scheduling variables are a state or output of the system. If this is the case, the gains
vary in tandem with the system variables and cause the emergence of the hidden coupling terms [34]
[37]. In essence, a feedback loop is introduced between the scheduled variables of the controller and
the nonlinear system [21]. This extra feedback loop violates the linearization property [17]. This prop-
erty is achieved if the closed-loop system of the controlled nonlinear plant exhibits the same input-output
(linearization) properties as the closed-loop system of the linear plant and linear controller, at any given
operating point.

To further understand the nature of the problem, the derivation of the coupling terms is summarized
following the method of Lhachemi, Saussié, and Zhu [27] [28]. Let us start with any nonlinear system:

ẋ = f(x, u, w)
y = h(x, u, w)

(3.17)

3.2. Hidden coupling terms 26

x is the state vector, u is the input vector, w are the exogonous input signals that can be used for
scheduling and y contains the output signals available for control and/or scheduling.

Then, let us consider a gain-scheduled controller containing an integrator to regulate this plant. This
controller has the form:

ẋi = r − y

ẋc = Ai(θ)xi +Ac(θ)xc +Br(θ)r +By(θ)y

u = Ci(θ)xi + Cc(θ)xc +Dr(θ)r +Dy(θ)y

θ = v(y, w)

(3.18)

Here, the integrator term of the error is captured by ẋi. The states of the controller itself are contained
by xc and the input signal is denoted by r. The state matrix A(θ) and output matrix C(θ) are split into
two parts. Ai(θ) and Ci(θ) contain the state/output dynamics corresponding to the integrated error
state and Ac(θ) and Cc(θ) contain the controller state/output equations. A similar partition is done for
the input matrix B(θ) and the feedthrough matrix D(θ), albeit this time it is split with respect to the
reference signals r and the output signals y. Lastly, it is assumed that each point of the scheduling
variables θ = v(yeq, weq) corresponds to a single equilibrium point and vice versa.

Note that when the closed-loop system is at an equilibrium point, the following holds for the controller:

0 = r − y

0 = Ai(θeq)xi,eq +Ac(θeq)xc,eq +Br(θeq)req +By(θeq)yeq

ueq = Ci(θeq)xi,eq + Cc(θeq)xc,eq +Dr(θeq)req +Dy(θeq)yeq

θeq = v(yeq, weq)

(3.19)

These relations will be used later to construct the linearized controller at the equilibria points.

To derive the hidden coupling terms, first the controller from Equation 3.18 has to be linearized by
employing a first-order series expansion at an equilibrium point. The steps of Jacobian linearization
as mentioned in Section 3.1.1 are followed. Each individual term (Ai(θ)xi, Ac(θ)xc, ..., Dy(θ)ye) of the
equation can be approximated using a first-order series expansion. As an example, let us start with
the series expansion of the term Ai(θ)xi at the equilibrium point θeq and xi,eq:

Ai(θ)xi ≈ Ai(θeq)xi,eq +Ai(θeq)δxi +
∂Ai(θ)

∂θ

∣∣
(θeq)

δθ xi,eq (3.20)

This equation is valid close the the equilibrium point θeq and xi,eq. ∂xi denotes the perturbations from
the equilibrium point, ∂xi = xi−xi,eq and this definition can be applied to all states, inputs, outputs and
reference values:

∂xc = xc − xc,eq

∂r = r − req

∂y = y − yeq

∂u = u− ueq

∂θ = θ − θeq

Three terms appear in Equation 3.20, namely:

1. The equilibrium term: Ai(θeq)xi,eq.
2. The perturbation term with respect to xi, that is: Ai(θeq)δxi.
3. The hidden coupling term: ∂Ai

∂θ

∣∣
(θeq)

δθ xi,eq.

The equilibrium and perturbation terms appear as expected to achieve Jacobian linearization. However,
the hidden coupling term appears because the series expansion has to be treated as multivariate, with
respect to θ and xi, not only with respect to xi. The reason why this term is ’hidden’ is that this term
only appears in the closed-loop system. To elaborate, in the linear controller design, the scheduling

3.2. Hidden coupling terms 27

parameters are fixed, but once it is implemented as a controller in the closed-loop system, the schedul-
ing parameters vary. If this value is large during operation, the behavior of the controller can behave
differently than expected in the nonlinear domain.

This procedure can be applied to all other parts of the equation (Ac(θ)xc, Br(θ)r, ..., Dy(θ)y) and
added together. For the state equations, the sum of the equilibrium terms is equal to zero according
to Equation 3.19, and for the output equations, they are equal to ueq. The perturbation terms form
the new linear system and the hidden coupling terms can be collected resulting in the expression of
Equation 3.21:

δẋi = δr − δẏ

δẋc = Ai(θeq)δxi +Ac(θeq)δxc +Bc(θeq)δr +Bc(θeq)δy +Bθ(θeq)δθ

δu = Ci(θeq)δxi + Cc(θeq)δxc +Dr(θeq)δr +Dy(θeq)δy +Dθ(θeq)δθ

δθ =
∂ν

δy

∣∣∣
v−1(θeq)

δy +
∂ν

∂w

∣∣∣
v−1(θeq)

δw

(3.21)

With δẋi = ẋi − ẋi,eq = ẋi − 0 = ẋi and similarily δẋc = ẋc. Furthermore, the hidden coupling terms are
given by the matricesBθ(θeq) andDθ(θeq). These matrices collect the hidden coupling terms that came
to appear as shown in the example of Equation 3.20. To simplify notation, if θ is a vector containing
the scheduling variables, then θl refers to the lth term of the vector θ. Subsequently the column l of Bθ

and Dθ can be defined as:

Bθ,l(θeq) =
∂Ai

∂θl

∣∣
(θeq)

xi,eq +
∂Ai

∂θl

∣∣
(θeq)

xc,eq +
∂Bi

∂θl

∣∣
(θeq)

req +
∂Bi

∂θl

∣∣
(θeq)

yeq

Dθ,l(θeq) =
∂Ci

∂θl

∣∣
(θeq)

xi,eq +
∂Cc

∂θl

∣∣
(θeq)

xc,eq +
∂Dr

∂θl

∣∣
(θeq)

req +
∂Dy

∂θl

∣∣
(θeq)

yeq

(3.22)

This means that the lth column of the matrices Bθ(θeq) and Dθ(θeq) correspond to the hidden coupling
term caused by scheduling variable θl.

The extra hidden coupling terms violate the aforementioned linearization property that needs to hold at
each equilibrium point to establish an agreement between the nonlinear and linear closed-loop systems.
This thesis tries to assess the impact of the hidden coupling terms on a gain-scheduled controller. This
is further discussed in Section 3.4.

In addition to the equilibria points, however, the off-equilibria points are also of interest to find the hidden
coupling terms at any arbitrary operating point. To do this, the velocity-based linearization technique
of Section 3.1.2 is used. Taking the derivative of Equation 3.18, then produces:

ẍi = ṙ − ẏ

ẍc = Ai(θ)ẋi +Ac(θ)ẋc +Br(θ)ṙ +By(θ)ẏ +Bθ(θ)θ̇

ü = Ci(θ)ẋi + Cc(θ)ẋc +Dr(θ)ṙ +Dy(θ)ẏ +Dθ(θ)θ̇

θ̇ =
∂ν

δy
ẏ +

∂ν

∂w
ẇm

(3.23)

Here, the hidden coupling terms are defined as:

Bθ,l(θ) =
∂Ai

∂θl
xi +

∂Ai

∂θl
xc +

∂Bi

∂θl
r +

∂Bi

∂θl
y

Dθ,l(θ) =
∂Ci

∂θl
xi +

∂Cc

∂θl
xc +

∂Dr

∂θl
r +

∂Dy

∂θl
y

(3.24)

Now the hidden coupling terms appear because of the product rule when taking a derivative. To elab-
orate on how this happens and simultaneously explain how Equation 3.23 and Equation 3.24 were

3.3. Stability of time-varying systems 28

constructed, let us again take an example by taking the derivative of the term Ai(θ)xi, resulting in:

d(Ai(θ)xi)

dt
= Ai(θ)

dxi
dt

+
d(Ai(θ))

dt
xi

= Ai(θ)
dxi
dt

+
∂(Ai(θ))

∂θ

dθ

dt
xi

= Ai(θ)ẋi +
∂Ai(θ)

∂θ
θ̇ xi

(3.25)

The same procedure can be applied to the other terms resulting in Equation 3.23 with the hidden
coupling terms being collected in Equation 3.24. This procedure is similar compared to applying the
multivariate series expansion as in Equation 3.20.

This is not yet a linear approximation at a point but a reformulation of the original LPV controller of
Equation 3.18. According to the theory of velocity-based linearization of Section 3.1.2, Equation 3.23
is still equivalent to Equation 3.18 if the initial conditions are the same as it is simply a derivative of
the original system [24]. It becomes an LTI system when frozen-time theory is applied and values of a
specific operating point (including the values of the scheduling parameters) are inserted:

ẍi = ṙ − ẏ

ẍc = Ai(θop)ẋi +Ac(θop)ẋc +Br(θop)ṙ +By(θop)ẏ +Bθ(θop)θ̇

ü = Ci(θop)ẋi + Cc(θop)ẋc +Dr(θop)ṙ +Dy(θop)ẏ +Dθ(θop)θ̇

θ̇ =
∂ν

δy

∣∣∣
v−1(θop)

ẏ +
∂ν

∂w

∣∣∣
v−1(θop)

ẇm

(3.26)

with,

Bθ,l(θop) =
∂Ai

∂θl

∣∣
(θop)

xi,op +
∂Ai

∂θl

∣∣
(θop)

xc,op +
∂Bi

∂θl

∣∣
(θop)

rop +
∂Bi

∂θl

∣∣
(θop)

yop

Dθ,l(θop) =
∂Ci

∂θl

∣∣
(θop)

xi,op +
∂Cc

∂θl

∣∣
(θop)

xc,op +
∂Dr

∂θl

∣∣
(θop)

rop +
∂Dy

∂θl

∣∣
(θop)

yop

(3.27)

As can be seen, the values of the state space matrices are now constant as they are only dependent
on the (now fixed) values of the scheduling parameters. Furthermore, the hidden coupling terms are
also defined as they are dependent on the values of the scheduling parameters and the operating
points, which now are both fixed. This means that the system is now a collection of linear differential
equations in terms of the derivatives of the original states (ẋi and ẋc), inputs (u̇), reference values (ṙ) and
measurement values (ẏ). This linearization method has the advantage that it also allows quantification
of the hidden coupling terms at off-equilibria points. The quantification method is further discussed in
Section 3.4.

3.3. Stability of time-varying systems
Both linearization methods of Section 3.1 use frozen-time theory to obtain a linear time-invariant system.
However, the original approximated system is often time-varying or parameter-varying instead. That is,
it has the form:

ẋ(t) = A(θ(t)) x(t) +B(θ(t)) u(t)

y(t) = C(θ(t))x(t)
(3.28)

where θ(t) is a parameter varying trough time. This discrepancy between the frozen form used to ap-
proximate the LTI system and the overall time-varying closed-loop system can destabilize the system
[43][49], in even the simplest case of nominal stability. This problem was also referred to when dis-
cussing linearization in Section 3.1.1.

To establish this problem an example [1][42] is looked at in more detail. Consider the following sys-
tem:

d

dt

[
x1(t)
x2(t)

]
=

[
−a sin(2t) −a cos(2t)
−a cos(2t) a sin(2t)

] [
x1(t)
x2(t)

]
(3.29)

3.4. Quantifying frozen-time robustness using the normalized coprime stability margin 29

The eigenvalues of the system are the following:

λ1,2 =
a− 2±

√
a2 − 4

2
(3.30)

The eigenvalues are constant and lie in the left-half complex plane given a < 2, implying that the family
of frozen form systems derived from the dynamical system is stable for these values. However, if the
state transition matrix is investigated:

Φ(t, 0) =

[
e(a−1)t sin(t) e−t sin(t)
−e(a−1)t sin(t) e−t cos(t)

]
(3.31)

It can be seen that for 1 < a < 2, the dynamics are unstable, contradicting the frozen-form result.

It is possible to guarantee exponential stability of the time-varying system using frozen-time stabil-
ity, given that the rate of variations is sufficiently slow [42]. Calculating the maximum rate of variation
is quite complex (see [15]) for the F-16 aircraft model and is deemed out of the scope of this thesis.
Nonetheless, incorporating the other two effects in the frozen-time robustness already extends the local
stability guarantees and can be used for nonlinear analysis in order to rule out the other two problems.

3.4. Quantifying frozen-time robustness using the normalized co-
prime stability margin

This section looks at quantifying the robustness penalty introduced by trim point uncertainty and the
hidden coupling terms. This is achieved using the coprime stability margin and the gap metric [52].

To understand the coprime stability margin, first coprime uncertainty has to be understood. This type
of uncertainty is particularly useful for feedback system analysis [11]. Subsequently, to understand
coprime uncertainty, first, the coprime factorization of the plant has to be analyzed. In the SISO case,
it is possible to decompose the plant p into p = nm−1. Here, n and m are said to be stable coprime
transfer functions, which means that there exists a stable transfer function x and y such that:

xm+ yn = 1 (3.32)

This decomposition ensures that n contains all the right half-plane zeros of the plant p whilem contains
all the right half-plane poles [4, p. 51]. To extend this definition to the MIMO case, it must be taken into
account that multiplication from the left is different than multiplication from the right. Thus two transfer
function matrices M and N are said to be right coprime if there exist stable transfer function matrices
Xr and Yr such that [53, p. 72]:[

Xr Yr
] [M

N

]
= XrM + YrN = I (3.33)

On the other hand, they are said to be left coprime if:

[
M̃ Ñ

] [Xl

Yl

]
= M̃Xl + ÑYl = I (3.34)

With these definitions, the right coprime factorization of P is achieved by P = NM−1, while the left
coprime factorization is P = M̃−1Ñ . There are infinitely many solutions to Equation 3.33 and Equa-
tion 3.34, thus often the normalized coprime factorization is used to additionally constrain N andM or
Ñ and M̃ such that:

Right coprime: NTN +MTM = I

Left coprime: ÑT Ñ + M̃T M̃ = I
(3.35)

The (normalized) coprime factorization of the plant can be used to impose perturbations on the separate
matrices M̃−1 and Ñ . The left coprime factor perturbed plant is displayed in Figure 3.2, where ∆̃N

denotes the perturbations on Ñ and ∆̃M the perturbations on M̃ . Furthermore, ∆ can be defined as:

3.4. Quantifying frozen-time robustness using the normalized coprime stability margin 30

∆ := [∆̃N ∆̃M]. With these definitions, the closed-loop system is well-posed and internally stable for
all ∥∆∥∞ ≤ ϵ if and only if [53, p. 315]:∥∥∥∥[K

I

]
(I + PK)−1M̃−1]

∥∥∥∥
∞

≤ 1/ϵ (3.36)

One advantage of using coprime factor uncertainty is that it can describe uncertainty in the locations
of the poles and zeros well. For example, it can be used to represent a situation where uncertainty
can cause the system to become unstable. This is in contrast to additive and multiplicative uncertainty
which cannot change the number of closed right half plane poles compared to the nominal plant [4].

Figure 3.2: Left coprime factorization with indicated uncertainty blocks [53, p 316].

Subsequently, it is possible to define the normalized coprime stability margin b(P,K) as ϵ of Equa-
tion 3.36. This results in an expression between zero and one that indicates robustness with respect
to the ∆ perturbations, the higher the normalized coprime stability margin the higher the gain bounded
∆ perturbations can become before stability is lost. For the calculation of the coprime stability margin
the following equivalency can be used [53, p. 321]:

b(P,K) =

∥∥∥∥[K
I

]
(I + PK)−1M̃−1]

∥∥∥∥−1

∞
=

∥∥∥∥[I
K

]
(I + PK)−1

[
I P

]∥∥∥∥−1

∞
(3.37)

The normalized coprime stability margin thus indicates stability with respect to these gain-bounded
frequency-dependent uncertainties of ∆. It turns out that any calculated normalized coprime stability
margin using the left coprime factorization is equivalent to when using the right coprime factorization
[53, p. 323].

The reason why the coprime stability margin is used in the thesis, is twofold. First, the normalized
coprime stability margin in itself is a measure of robustness against the aforementioned uncertainties
[31] and is related to the multi-loop simultaneous stability margins [12]. A reduction of the coprime sta-
bility margin thus indicates a reduction in robustness. This concept can be applied to an off-equilibrium
plant with a controller containing hidden coupling terms.

To elaborate, let us consider a closed-loop system for which a gain-scheduled controller K(θ), which
uses real-time interpolation ofK1,K2, ...Kn, was designed usingmultiple linearized plants (P1, P2, ..., Pn).
The controllerK1 was designed at plant P1, controllerK2 at plant P2, etc. Once operating in the nonlin-
ear domain, the actual controller at a (possibly off-equilibrium) operating point will be slightly different
than any ofK1,K2, ...Kn. namely of the formKoff . This is caused by the effects of the hidden coupling
terms and because at the off-equilibrium point, the controller is constructed using the interpolation of
the closest controllers. Koff can be found using velocity-based linearization on the controller K(θ) as
seen in Section 3.2.

In addition, the closest linearized plant that was used in the design is not the same as the one that
is encountered at an operating point due to the trim point uncertainty. At this operating point, the
off-equilibrium plant can be calculated using velocity-based linearization established in Section 3.1.2,
resulting in plant Poff . Subsequently, it is possible to calculate the normalized coprime stability margin
at this operating point b(Poff ,Koff) by making use of Equation 3.37. Furthermore, it can be compared
to the coprime stability margin of the linear controller plant combination at its closest equilibrium point.
The distance of a plant to another plant is calculated using the gap metric (the gap metric is elaborated

3.5. Controller analysis example 31

upon in the next paragraph). If for example, plant 3 is the closest equilibrium plant used in the linear
design, the coprime stability margin b(P3,K3) can be calculated. To generalize the notation, if the clos-
est equilibrium plant Peq and its corresponding controller Keq are found, the stability margin b(Peq,Keq)
can be calculated. This value can be compared and the measured degradation is caused by the two
factors. Note, that as long as b(Poff ,Koff) > 0, the system is (frozen-time) stable [53] at this point.

The second reason for the suitability of the normalized coprime stability margin is its relation to the
gap metric. The gap metric measures the distance between two systems, in terms of their closed-loop
behavior on a scale from 0 to 1 (for the precise definitions and computation see [53, p 350]). This will
allow us to capture the effects of the hidden coupling terms and trim point uncertainty in itself. Let us
consider the gap metric between an off-equilibrium plant, Poff , and its closest plant used during linear
design, denoted as Peq, resulting in δ(Peq, Poff). Furthermore, let us consider the controller correspond-
ing to the off-equilibrium plant including hidden coupling terms, denoted byKoff . Thereafter,Koff can
be compared to the controller corresponding to the closest plantKeq, with the hidden-coupling terms of
the controller set to 0. This comparison can be performed using the gap metric resulting in δ(Keq,Koff).
Then, these gap metrics are related to the minimum coprime stability margins that take both factors
into account at any (possibly off-equilibrium) operating point.

The general formula that relates the coprime stability margin of a controller plant combination (P1,K1)
to another controller plant combination (P2,K2) and the gap metrics between the controllers and the
plants is given by [53, p 367]:

arcsin(b(P2,K2)) ≥ arcsin(b(P1,K1)) – arcsin(δ(P1, P2)) – arcsin(δ(K1,K2)) (3.38)

This equation can be applied to our situation. If b(Peq,Keq) denotes the coprime stability margin corre-
sponding to the closest equilibrium point to the off-equilibrium operating point, the gap metrics can be
used to compute the minimum coprime stability margin found at the off-equilibrium point, b(Poff ,Koff):

arcsin(b(Poff ,Koff)) ≥ arcsin(b(Peq,Keq)) – arcsin(δ(Poff , Peq)) – arcsin(δ(Koff ,Keq)) (3.39)

Thus, the gap metric offers a rather straightforward method to assess the effects of the trim point un-
certainty and hidden coupling in itself and the inequality enables interpretation of the gap metric with
respect to the coprime stability margin. If the main interest is the absolute value of the normalized
coprime stability margin, Equation 3.37 could directly be used to calculate b(Poff ,Koff).

Using the normalized coprime stability margin, it is possible to guarantee stability and assess robust-
ness against unstructured uncertainty at any arbitrary operating point in the presence of hidden coupling
terms and trim point uncertainty. This stability is referred to in this thesis as frozen-time stability as the
inherent time variations of a system mentioned in Section 3.3 are not included.

The upcoming design procedures of the thesis will incorporate the aforementioned theory and thus look
as follows. First, The plant is linearized at multiple operating points. Thereafter, linear control design
is employed to either construct a controller at each of the points and interpolate later (gain schedul-
ing), or the controller is synthesized using all plants simultaneously (multi-model synthesis). However,
thereafter, the a posteriori nonlinear analysis can be done more rigorously. The hidden coupling terms
of the controller are to be derived and the velocity-form of the plant is constructed. Subsequently, it
is possible to look at typical flight maneuvers and investigate the coprime stability margin and/or the
gap metrics along the trajectory of these maneuvers. Furthermore, in contrast to conventional design,
local stability can be guaranteed at each operating point. Before this is applied to the flight control sys-
tems, Section 3.5 gives an example of the a posteriori analysis using a controller design and analysis
example.

3.5. Controller analysis example
To show an application of the analysis of trim point uncertainty and hidden coupling terms, a straight-
forward example using gain scheduling is shown in this section. Let us consider the following plant:

ẋ = −x+ 2 sin(u)
y = tanh(x)

(3.40)

3.5. Controller analysis example 32

The first step is to linearize the plant around a set of operating points. To achieve this, the plant is
transformed to the velocity-form:

ẍ = −ẋ+ 2 cos(u)u̇

ẏ =
1

cosh(x)2
ẋ

(3.41)

To complete the linearization, any operating point (uop, xop) can be inserted:

ẍ = −ẋ+ 2 cos(uop)u̇

ẏ =
1

cosh(xop)2
ẋ

(3.42)

As can be seen, this system is now linear if the new state is defined as ẋ and the new input as u̇. These
are the derivatives of the original state and input.

The set of operating points used for the linear controller synthesis is the set equilibrium points given by
yeq = {−0.95, −0.9, −0.85, . . . , 0.9, 0.95}. From Equation 3.40 it can be inferred that to achieve an
equilibrium condition, it needs to hold that:

xeq = arctanh(yeq)

−xeq + 2 sin(ueq) = 0 ⇒ ueq =
arcsin(xeq)

2

(3.43)

Then for the second step, at these equilibria points, a linear controller can be designed. For the sake
of this example, a simple PI controller is used. The structure can be seen in Figure 3.3.

Figure 3.3: Controller structure and realization used for the example.

For the controller synthesis, a simple mixed-sensitivity H∞ design is used to calculate the gains. Fig-
ure 3.4 shows the closed-loop sensitivity and control effort transfer functions at all linearized equilibria
points. Furthermore, the imposed weighting functions for this optimization function are indicated. The
corresponding linear step responses can be seen in Figure 3.5. The sensitivity function is constrained
at low frequencies while the controller signal is constrained (relatively little) at high frequencies. This
has been done arbitrarily as synthesizing the controller in itself, is not the goal of the example.

(a) Sensitivity function with its weighting function. (b) Controller signal attenuation function with its weighting function.

Figure 3.4: S/KS linear design results.

3.5. Controller analysis example 33

Figure 3.5: Linear step response

Thereafter, for the third step, the controllers need to be interpolated in some manner. In the example,
simple linear interpolation is used. The P and I values of the controller across the plant envelope can
be seen in Figure 3.6.

Figure 3.6: PI controller values versus equilibrium point. Figure 3.7: Nonlinear step response.

Now, the last step concerns the (nonlinear) analysis. To start with, the nonlinear step response (with
a magnitude of 0.6) is considered. This is shown in Figure 3.7. As can be inferred this does not corre-
spond well to the linear simulation as shown in Figure 3.5.

To investigate the problem encountered in the nonlinear domain, the trim-point uncertainty and the
hidden coupling terms are quantified using the gap metric. The linearized plant at any off-equilibrium
point encountered in the trajectory can be calculated using the velocity-based linearization of the plant
that was shown in Equation 3.42, resulting in Poff . Subsequently, the closest equilibrium point can be
found and the linearized plant at that equilibrium point is calculated, resulting in Peq. Finally, the gap
metric between the two plants can be computed, resulting in δ(Peq, Poff). This can be done for every
discrete point in the trajectory.

Next, the hidden coupling terms of the controller can be derived. First, consider the controller diagram
of Figure 3.3. The system of equations describing this diagram equals:

ẋi = e

u = KP (y)e+KI(y)xi
(3.44)

The velocity-form can be calculated by taking the time derivative of Equation 3.44

ẍi = ė

u̇ = KP (y)ė+KI(y)ẋi +
∂KP (y)

∂y
ẏe+

∂KI(y)

∂y
xiẏ

(3.45)

The latter two terms of the output equation are the hidden coupling terms. To complete the linearization,
the values of an operating point (eop, xi,op, yop) can be inserted. Furthermore, numerical derivatives of

3.5. Controller analysis example 34

the gain surfaces at an operating point are known, resulting in:

ẍi = ė

u̇ = KP (y)ė+KI(y)ẋi +
∂KP (y)

∂y

∣∣∣∣
yop

ẏeop +
∂KI(y)

∂y

∣∣∣∣
yop

xi,opẏ
(3.46)

Hence the linearized controller including hidden coupling terms at an off-equilibrium operating point
(denoted by Koff) can be compared to the controller designed at the closest equilibrium point with the
hidden coupling terms set to 0 (denoted by Keq) by using the gap metric. Note that an extra input has
to be added to perform this comparison, namely the derivative of the scheduling parameter ẏ. This
results in δ(Keq,Koff).

Now, the gap metrics of both factors can be calculated at every discretized point of the trajectory.
The result can be seen in Figure 3.8. Furthermore, using Equation 3.39 the minimum coprime stability
margin along the trajectory can also be calculated, the result of which is shown in Figure 3.9. It can
be deduced that frozen-time stability cannot be guaranteed as the minimum coprime stability margin
becomes smaller than 0. Furthermore, from the gap metrics, it can be inferred that the main cause of
the degradation of the frozen-time stability is due to the hidden coupling terms as its gap metric reaches
far higher values compared to the trim-point uncertainty. This could prompt a closer investigation into
the controller realization. The varying gain was placed after the integrator which causes the extreme
hidden coupling action and the problem can be alleviated by putting the varying gain in front of the
integrator.

Figure 3.8: Gap metrics due to hidden coupling
and trim-point uncertainty.

Figure 3.9: Minimum coprime stability margin
along discretized trajectory.

Nonetheless, the purpose of the example is not to construct the perfect controller for this problem but to
clearly show that the gap metric and/or (minimum) coprime stability margin can be used for a posteriori
nonlinear analysis. Furthermore, it can extend the local stability guarantees of the linear controller
design to include the two effects. In the following two chapters, the theory is applied to two practical
flight control systems.

4
Pitch-rate control

The first application to be considered covers a pitch-rate control system using gain-scheduling and
H∞ synthesis. To simplify the design process the short-period approximation is used for the synthesis.
The inputs of the controller are the pitch-rate error and the angle of attack. The elevator is used as
the actuator to control this signal, as it is the only longitudinal actuator that has sufficient bandwidth
to control this relatively fast control problem. To enable the linear design methodology, the nonlinear
plant has been linearized using conventional Jacobian linearization from Section 3.1.1. Only equilibria
points were considered. Figure 4.1 shows the points in the flight envelope that are used for the design.

The structure of this chapter is as follows. First, the short-period approximation is briefly discussed
in Section 4.1. Subsequently, the controller structure and design requirements are formalized and the
resulting gain surfaces are shown in Section 4.2. Moreover, additional linear and robust analysis is
included in Section 4.3. Lastly, the nonlinear analysis is performed in Section 4.4.

Figure 4.1: Linearized points in flight envelope

4.1. Short-period approximation
To simplify the design of the pitch-rate controller an approximated form of the true dynamics is used.
The first reduction of the system is performed by only considering the longitudinal modes (V , θ, α, and
q). Subsequently, a second simplification is used to obtain a single input system. For a pitch-rate
controller, the fast states are dominant and can be approximated by dropping the low-frequency states
associated with the phugoid (V and θ) while retaining the fast states (α and q). The elevator is the
preferred actuator to control the short period as it is a relatively fast actuator. This yields the well-
known short-period approximation [46]. This is compared to the full longitudinal system in Figure 4.2.
As can be seen, the approximation is accurate in the high-frequency range but loses accuracy at the

35

4.2. Structure, constraints and synthesis 36

lower frequencies. This approximation can thus be used for the pitch-rate controller as that controller
is only concerned with short timescales. A full longitudinal controller, also including longer timescales,
is designed in Chapter 5.

(a) Singular values of transfer function δe → q.

(b) Singular values of transfer function δe → α.

Figure 4.2: Validity of short period approximation.

4.2. Structure, constraints and synthesis
This section discusses the structure of the controller, the imposed constraint with the resulting closed-
loop characteristics at each flight point, and ultimately the final obtained gain surfaces. Similar design
constraints as done by Theodoulis and Proff [48] are used.

4.2.1. Controller structure
The structure of the controller and I/O layout can be seen in Figure 4.3. The goal is to drive the error
in pitch-rate qe to zero. Moreover, the controller has to be robust to input disturbance dδe and output
disturbances dq and dα. The sensors are assumed to be perfect but rejection to high-frequency mea-
surement noise, introduced by nq and nα, is checked. This is mostly important for the angle of attack
measurement as this is known to be a noisy signal.

Figure 4.3: Pitch-rate control design I/O layout.

4.2. Structure, constraints and synthesis 37

The tracking is performed by a simple PI controller to ensure no steady-state error. Furthermore, an
extra loop is introduced by feedback on the angle of attack to improve the damping and transient
response. This is a classical structure for pitch-rate controllers and has been used many times [13]
[46]. This structure gives us three degrees of freedom in the parameter space, namely KP , KI , and
Kα.

4.2.2. Hard constraints
The hard constraints are inspired by classical mixed-sensitivity [4] design but incorporate an additional
tracking constraint in the time domain and a constraint on the pole locations on the imaginary plane,
also known as D-stability. Four hard constraints are considered:

1. Reference tracking
2. Output disturbance rejection
3. Control signal attenuation
4. D-stability

Sensor noise attenuation is additionally considered as a soft constraint.

Reference tracking
This constraint is added to ensure a reference trajectory is followed. It is possible to enforce this con-
straint by limiting the H∞ norm of the weighted reference error signal to less than 1 [48]. The inverted
weighting function could then ensure low gain attenuation in the low-frequency region, which translates
to a low steady-state error.

However, a more natural method to ensure reference tracking can be done in the time domain. In
that case, the H2 norm (root mean squared error between signals) is to be a constraint by a reference
model [48]. Given a reference model Tref and the actual closed-loop transfer function Tm(K), the
constraint is as follows:

HTref
=

∣∣∣∣ 1
sTm(K)− Tref

∣∣∣∣
2

erel
∣∣∣∣ 1

s (Tref − 1)
∣∣∣∣
2

≤ 1 (4.1)

where erel can be specified to enforce a maximum percentual matching error between the signals. Here
the default value of erel = 0.1 was used.

The result of this constraint is shown in Figure 4.4. The rise time and maximum overshoot are suf-
ficient. There is an additional underdamped pair of complex poles that causes oscillating behavior
before complete settling is achieved, however, the deviation from the value to be tracked is limited.

Figure 4.4: Output and reference step response.

Output disturbance rejection
This constraint concerns the rejection of plant output with respect to q. That is So is the transfer function
from dq to q. The low-frequency gain must be reduced such that disturbances in this range are rejected.
The constraint is denoted in Equation 4.2 and makes use of the weighting functionWSo

:

HSo = ||WSoSo(K)||∞ ≤ 1 (4.2)

4.2. Structure, constraints and synthesis 38

The inverted weighting function WSo is chosen such that the low-frequency attenuation converges to
−60dB, reaches the value of 0dB at 1.5 rad/s and subsequently constraints the high-frequency gain at
6dB. The bode plot of the inverted weighting function can be viewed in Figure 4.5. Furthermore, the
figure shows the resulting output sensitivity function of the closed-loop systems.

Figure 4.5: Output sensitivity and inverted weighting function.

Control signal attenuation
To ensure the actuator is within its bandwidth limits, the transfer function from the reference command
to the actuator command signal is restricted. This is mathematically formulated by restrictingKS (which
is defined as qr to δe,cmd) using the weighting functionWKS :

HKS = ||WKSKS(K)||∞ ≤ 1 (4.3)

The elevator is modeled as a low-pass filter with a cut-off frequency of 20.2 rad/s. Thus the inverted
weighting function is defined to ensure−18dB gain attenuation at that frequency. Furthermore, the high-
frequency signals are limited to the aforementioned value of −18dB to limit resonance in the actuator,
while the low-frequency signals are in principle free but arbitrarily limited here to −10dB. The weighting
function and the resulting closed-loop transfer functions can be seen in Figure 4.6.

Figure 4.6: Control signal attenuation and inverted weighting function.

The resulting command signal attenuation satisfies the requirements enforced by the weighting function
at low frequencies. However, at high frequencies, the requirement is very tight at some equilibrium
points and a trade-off needs to be considered between high-frequency control signal attenuation and
transient time. This is a classical trade-off during control system design and the value of −18dB was
used as a compromise.

D-Stability
This requirement ensures the location of the closed poles of the system resides within a specific subset
of the complex plane, denoted as D, across all design points. This ensures the fulfillment of certain
criteria, including rapid decay and damping [48]. This region is defined as [8]:

D =
{
z ∈ C : fD(z) = L+ zM + zMT < 0

}
(4.4)

4.2. Structure, constraints and synthesis 39

where L = LT , M and L are real matrices that define a region on the complex plane. In this case,
a minimum decay rate of 0.4 and a damping ratio of 0.6 were used to define a conic section on the
complex plane. The conic section and the resulting locations of the poles can be seen in Figure 4.7.

Figure 4.7: Pole location requirement.

4.2.3. Soft constraints
The soft constraints are of less importance than the hard constraints and are only optimized after the
hard constraints are satisfied. For the pitch-rate controller, only one soft constraint is used, namely to
enforce sensor noise attenuation with respect to the noisy angle of attack sensor.

Sensor noise attenuation
In this case, the sensor noise attenuation requirement covers the rejection of noise from nα to q, of
which the transfer is denoted by Tα. The sensor dynamics were assumed to be 1 and this transfer
function can be recognized as the off-diagonal element of the output complementary sensitivity matrix
function To. Even though this is an off-diagonal component, only this element of the transfer function
matrix is considered because the angle of attack measurement is most susceptible to noise and the aim
is to limit its effect on the pitch-rate output. If the weighting function is defined as WTα

, the constraint
becomes:

minSTα
= ||WTα

Tα(K)||∞ (4.5)
The inverted weighting function and resulting closed-loop value can be seen in Figure 4.8. The max
gain of the inverted weighting function is set to −15dB (equal to a magnitude of 0.178). However,
a more stringent requirement is needed for higher-frequency noise. To establish this noise rejection
requirement, a simple model of the angle of attack filter is considered as defined by Nguyen [33]. Here,
the filter is defined as a simple lag filter with a bandwidth of ω = 10. Thus, at that frequency, the gain is
set to be −30dB. Furthermore, the very high-frequency values are to be attenuated by at least −40dB,
and a second-order transfer function is used for the inverted weighting function to ensure a sharper
cutoff. The results can be seen in Figure 4.8.

Figure 4.8: nα to q constraint and closed-loop transfer function.

Note that since the sensor is modeled as an ideal sensor, i.e. the transfer function is equal to one, the
transfer function from nα to q is equal to the transfer function from dα to q. The latter governs the output

4.3. Linear analysis 40

disturbance rejection which requires low-frequency attenuation. As can be seen in Figure 4.8 this is
also the case.

4.2.4. Controller gain surfaces
The resulting controller surfaces can be seen in Figure 4.9. These surfaces are constructed by linear
interpolation between the chosen design points. The surfaces are very smooth, which is beneficial for
the nonlinear implementation later. An interesting note is that at the highest altitude and lowest velocity
equilibrium point, the gain values seem a little bit off compared to the others. This is also the most
difficult point to satisfy which explains this (very minor) anomaly.

(a) Gain surface describing proportional value KPq . (b) Gain surface describing integral value KIq .

Figure 4.9: Gain surfaces describing the pitch-rate controller.

(c) Gain surface describing inner alpha loop Kα.

Figure 4.9: Gain surfaces describing the pitch-rate controller (continued).

4.3. Linear analysis
This section covers additional analysis of the system concerning parts that were not explicitly taken into
account in the design procedure. That is, these criteria are only checked a posteriori. The two criteria
that are considered here are:

1. Input disturbance rejection
2. Stability margins

Input disturbance rejection
To ensure rejection of the plant disturbance dδe to q, this transfer function also called the load sensi-
tivity function (PSi), is checked. The low-frequency gain should be low to ensure robustness against

4.3. Linear analysis 41

inverse multiplicative uncertainties at the actuator input. The frequency response can be seen in Fig-
ure 4.10. As can be seen, low-frequency attenuation is achieved, without explicitly constraining the
transfer function.

Figure 4.10: Closed loop value of input sensitivity times plant, that is the transfer function from dδe to q.

Stability margins
An important property that needs to be inspected is the stability margins of the system. There are many
ways to look at the margin criteria. Here the symmetric, disk phase and gain margins are investigated.
These can be expressed using the S − T functions [41]:

αmax =

∣∣∣∣∣∣∣∣S − 1

2

∣∣∣∣∣∣∣∣−1

∞
=

∣∣∣∣∣∣∣∣S − T

2

∣∣∣∣∣∣∣∣−1

∞
(4.6)

The disk margins can consider each loop separately but can also be used to look at the simultaneous
input/output disk margins. In this case, all permutations are looked at but there is only one input thus
the simultaneous input margin is equivalent to the loop-at-a-time input disk margin.

The 6dB gain margin and 45◦ phase margin minimum prescribed by the DoD Mil-Spec [32] require-
ments can be used as guidelines for the requirements on the margins. Even though this requirement
refers to the classical gain and phase margin, all disk margins except for one satisfy the requirement
as well. The disk margins are significantly more conservative than the classical margins therefore the
requirement is more than sufficiently satisfied. The only disk margin that does not in itself adhere to
the 6dB, 45◦ guideline is the simultaneous input/output stability margin. This is the most conservative
measure possible and only falls short with 1dB on the gain margin. However, this is still a very robust
value given that it is such a conservative margin. Thus it can be concluded that the controller as a
whole also displays very robust stability margins.

(a) Loop at a time input (δCe) stability margin. (b) Loop at a time output (q) stability margin.

Figure 4.11: Disk based stability margins.

4.4. Nonlinear implementation and analysis 42

(c) Loop at a time output (α) stability margin. (d) Simultaneous output stability margin.

(e) Simultaneous input and output stability margin.

Figure 4.11: Disk based stability margins (continued).

4.4. Nonlinear implementation and analysis
This chapter uses the theory from Chapter 3 to establish frozen-time robustness of the closed-loop
system using the gap metric and minimum normalized coprime stability margin. First, the baseline
normalized coprime stability margin is calculated in Section 4.4.1. Subsequently, in Section 4.4.2, the
hidden coupling terms are derived for the used nonlinear realization and it is discussed if the chosen
realization limits the hidden coupling sufficiently. Then the trim point uncertainty is explored in Sec-
tion 4.4.3. Lastly, the influence of the two factors on the normalized coprime stability margin is looked
at in Section 4.4.4. The goal of this section is to discover if the controller shows frozen-time robustness
in the nonlinear domain and what the possible factors of concern are.

4.4.1. Normalized coprime stability margin
By making use of Equation 3.37 for b(P,K), the normalized coprime stability margin can be calculated
for the linear controller-plant combination at each equilibrium point in the flight envelope. The result
can be seen in Figure 4.12.

4.4. Nonlinear implementation and analysis 43

This normalized coprime stability margin is only valid in the linear domain and at the equilibria points.
It will degrade in the nonlinear domain because of trim point uncertainty and hidden coupling. In the
upcoming sections, precisely this degradation of the normalized stability margin, because of these
phenomena, is calculated and investigated.

Figure 4.12: Normalized coprime stability margin of pitch-rate controller at the equilibria points.

4.4.2. Hidden coupling
The extent to which hidden coupling has an effect greatly depends on the specific controller realization in
the nonlinear domain. Even the location of the scheduled controller gains with respect to the integrator
has an effect. The two realizations that are considered are as follows:

1. Subtract the equilibrium values and varying these using the real-time scheduling parameters (Fig-
ure 4.13a).

2. Subtract a fixed nominal condition (Figure 4.13b).

The suitability of the realizations is assessed at the equilibria points. The effect of hidden coupling at
off-equilibrium points is not explicitly calculated in this section, but only when specific trajectories/ma-
neuvers are considered.

As can be seen in Figure 4.13a, this implementation uses the scheduling parameters to interpolate
the corresponding trim condition (αeq) at any operating point in the flight envelope. In theory, this
achieves equivalence with the linearized system, however, it introduces an extra feedback loop based
on the scheduling parameters. This causes a kind of hidden coupling effect which is difficult to calculate
as derivatives of the trim conditions appear in the expression. In practice, this may be a hard value to
precisely estimate on a physical system [28]. Thus this implementation is deemed unsuitable for the
pitch-rate controller.

In contrast, the second method chooses, a priori, a fixed trim condition to establish a nominal value
α0. The nominal value can for example correspond to the equilibrium point in the middle of the flight
envelope. This formulation induces coupling effects that can be estimated well, now only depending
on the derivatives of the controller gain functions. The disadvantage is that this formulation loses direct
equivalency with the linearized system due to the nominal condition not being valid for every controller-
plant combination. This effect is largest at points away from the nominal condition. However, it will
be shown later that this realization does retain frozen-time robustness very well. Thus the fixed trim
realization is appropriate for our pitch-rate controller.

4.4. Nonlinear implementation and analysis 44

(a) Realization using varying trim conditions.

(b) Realization using fixed trim condition.

Figure 4.13: Different controller realizations.

To calculate the exact effect of the hidden coupling terms, the theory exposed in Section 3.2 can be
used. Consider the fixed trim realization of the controller as shown in Figure 4.13b:

ẋi = KI(V, z
E)e

δe = xi +KP (V, z
E)e+Kα(V, z

E)(α− α0)
(4.7)

Linearization using the velocity-linearization framework yields:

ẍi = KI(V, z
E)ė+

∂KI(V, z
E)

∂V

∣∣∣∣
op

eopV̇ +
∂KI(V, z

E)

∂zE

∣∣∣∣
op

eopż
E

δ̇e = ẋi +KP (V, z
E)ė+

∂KP (V, z
E)

∂V

∣∣∣∣
op

eopV̇ +
∂KP (V, z

E)

∂zE

∣∣∣∣
op

eopż
E+

Kα(V, z
E)α̇+

∂Kα(V, z
E)

∂V

∣∣∣∣
op

(αop − α0)V̇ +
∂Kα(V, z

E)

∂zE

∣∣∣∣
op

(αop − α0)ż
E

(4.8)

Note that at equilibrium eop = 0 causing many terms disappear and the equation simplifies to:

ẍi = KI(V, z
E)ė

δ̇e = ẋi +KP (V, z
E)ė+Kα(V, z

E)α̇+
∂Kα(V, z

E)

∂V

∣∣∣∣
eq

(αeq − α0)V̇ +
∂Kα(V, z

E)

∂zE

∣∣∣∣
eq

(αeq − α0)ż
E

(4.9)

4.4. Nonlinear implementation and analysis 45

Two hidden coupling terms remain, namely:

• ∂Kα(V,zE)
∂V

∣∣∣
eq
(αeq −α0)V̇ , which is caused by the coupling of the controller scheduling variable V

and the plant.
• ∂Kα(V,zE)

∂zE

∣∣∣
eq
(αeq − α0)ż

E , which is caused by the coupling of the controller scheduling variable

zE and the plant.

Now, the gapmetric can be used to quantify the robustness degradation because of the hidden coupling
terms. The gain surfaces are known and the partial derivatives of these surfaces can thus be numer-
ically approximated. The resulting controller is compared to the ideal case when no hidden coupling
terms were present, for which it was designed. This ideal controller is of the velocity-form:

ẍi = KI(V, z
E)ė

δ̇e = ẋi +KP (V, z
E)ė+Kα(V, z

E)α̇+ 0V̇ + 0żE
(4.10)

If the controller of Equation 4.9 is denoted as Khct and the controller of Equation 4.10 denoted as Keq,
the gap metric δ(Khct,Keq) can be calculated. The resulting gap metric at each equilibrium point is
shown in Figure 4.14. It can be seen, that the gap metric increases at higher altitudes and lower veloci-
ties, that is regions away from the nominal point. Upon comparison with Equation 4.9, it becomes clear
that the contribution of the derivatives of Kα(V, z

E) and the distance between the equilibrium point αeq

and the chosen fixed α0 value determine the hidden coupling terms close to equilibria. As the deriva-
tives ofKα(V, z

E) are fairly constant, due to the smooth gain surfaces, the magnitude of the effect thus
mostly depends on the distance between the nominal angle of attack α0 and the actual angle of attack
at equilibrium αeq. Hence, the error is largest at the edge of the flight envelope which corresponds to
what can be seen in Figure 4.14.

All in all, the resulting values of the gap metric (about 1 × 10−5) are very small in comparison to the
coprime stability margins (about 0.12 to 0.20) of the combined linearized plant and linearized controller
at equilibria points. Thus, it can be concluded the realization is suitable to limit the effect of hidden-
coupling terms on frozen-time robustness.

Figure 4.14: Gap metric between the ideal controller and the controller containing hidden coupling terms.

4.4.3. Trim point uncertainty
Now let us consider the trim point uncertainty by looking at a flight maneuver that traverses through
off-equilibrium points. Chapter 2 derived the equation of motions in tensor form and showed how to
coordinate the equations for implementation. If it is considered that all the equations are coordinated
and the relevant parameters are available then the nonlinear system can be summarized by:

ẋ = F (x, u)

y = G(x, u)
(4.11)

4.4. Nonlinear implementation and analysis 46

With the states (x), inputs (u), and outputs (for longitudinal motion) being defined as:

x =
(
V, α, β, p, q, r, xL, yL, zL, ϕ, θ, ψ, δl,cmd, δl

)T
u =

(
δa, δe, δr, δt

)T
y =

(
V, α, q, θ, zL, nz

)T (4.12)

In the end, this is a purely symbolic expression, except for the aerodynamic coefficients. As was
established in Section 2.3, and in more detail in Appendix A, the dependencies of the aerodynamic co-
efficients are captured by (a part of) the states and inputs through the use of look-up tables. To perform
velocity-based linearization also the derivatives of the aerodynamic coefficients are necessary. By use
of the chain and product rule, it is possible to isolate these coefficients whereafter these can be numer-
ically approximated. To show this, let us take an example using the equation for q̇. In Section 2.4.3 the
matrix form of the attitude dynamics was derived and if you convert these to scalar form and insert the
values of the inertia, the atmospheric density at (fixed) sea level, and the wing surface area it results
in the equation:

q̇ = 0.9604p · r + 4.878× 10−4V 2Cm(V, α, β, q, δe, δl)− 0.0176p2 + 0.0176r2 (4.13)

To perform the velocity-based linearization the equation has to be differentiated with respect to time:

q̈ =0.9604ṗ · r + 0.9604p · ṙ
+ 4.878× 10−4 · 2V V̇ Cm(V, α, β, q, δe, δl)

+ 4.878× 10−4V 2 ∂Cm(V, α, β, q, δe, δl)

∂t
− 0.0352p · ṗ+ 0.0352r · ṙ

(4.14)

with

∂Cm(V, α, β, q, δe, δl)

∂t
=
∂Cm(V, α, β, q, δe, δl)

∂V
V̇ +

∂Cm(V, α, β, q, δe, δl)

∂α
α̇+ ...+

∂Cm(V, α, β, q, δe, δl)

∂δl
δ̇l

This is simply a linear combination of the derivatives of the states and inputs. To simplify the notation,
let Γ denote the set of all variables used in the function of the aerodynamic coefficients, such thatCm(Γ).
This results in the expression:

∂Cm(Γ)

∂t
=
∑
n∈Γ

∂Cm(Γ)

∂n
ṅ

inserting this back into Equation 4.14 yields:

q̈ =0.9604ṗr + 0.9604pṙ + 4.878× 10−4 · 2V V̇ Cm(Γ)

+ 4.878× 10−4V 2
∑
n∈Γ

∂Cm(Γ)

∂n
ṅ− 0.0352pṗ+ 0.0352rṙ

(4.15)

As mentioned before, this is simply a linear combination of the derivatives of the states and inputs. This
might become even more clear if an operating point (op) is considered and the derivatives of the states
and inputs are collected:

q̈ =(0.9604rop − 0.0352pop)ṗ+ (0.9604pop + 0.0352rop)ṙ

+ 4.878× 10−4 · 2VopCm(Γop)V̇ + 4.878× 10−4 · V 2
op

∑
n∈Γ

∂Cm(Γ)

∂n

∣∣∣∣
op

ṅ
(4.16)

The only term that is not readily available at an operating point is the derivatives of the aerodynamic
coefficients with respect to the states and inputs (

∑
n∈Γ

∂Cm(Γ)
∂n

∣∣∣
op
). However, these terms term can

simply be found by numerical approximation using the look-up tables. This velocity-form can be derived
for every state and output equation of the model to complete the velocity-based linearization.

4.4. Nonlinear implementation and analysis 47

It can be seen that the expressions quickly become too large to handle. Hence, the differentiation
is all done using the symbolic math toolbox from MATLAB. The method can be verified, however, by
comparing it to conventional linearization at equilibria values. A similar method using the sum of square
differences of the elements as was used in the verification of the tensor model (see Section 2.7) is ap-
plied. The sum of square errors of all elements on the state space matrices (A,B,C,D) acquired with
velocity-based linearization versus Jacobian linearization can be calculated. When adding all of these
together, the resulting sum of square errors is smaller than 2 × 10−8 at each point of the flight enve-
lope, as shown in Figure 4.15. This indicates extremely good congruence between the two methods of
linearization.

Figure 4.15: SSE of all state-space matrices using Jacobian linearization vs velocity-based linearization.

Subsequently, let us apply the velocity-based linearization to quantify the trim point uncertainty along a
typical maneuver. Figure 4.16a compares a (full longitudinal) linear and a nonlinear simulation, given
the fixed-trim controller implementation, when a large pitch-rate reference value is imposed. The non-
linear simulation does not converge precisely to the reference value during both the pitch-up and pitch-
down maneuvers. Figure 4.16b shows the corresponding aircraft velocity. It can be investigated more
thoroughly if this is caused by the effect of the trim point uncertainty.

(a) Pitch-rate response. (b) Velocity response.

Figure 4.16: Nonlinear simulation of the pitch-rate controller with a large reference input.

4.4. Nonlinear implementation and analysis 48

At each operating point, the plant can be linearized using velocity-based linearization. This results in
the plant Poff corresponding to a specific operating point. Subsequently, the plant Peq denotes the
linearized plant corresponding to the closest equilibrium point from the operating point. The distance
between these plants in terms of the gap metric can be calculated resulting in δ(Peq, Poff). This can
be applied to the previously shown maneuver of Figure 4.16. The attitude and location of the aircraft
during this trajectory are shown in Figure 4.17a. This trajectory is discretized at each point, and the gap
metric is calculated indicating the trim point uncertainty. The results are shown in Figure 4.17b. Along
this trajectory, the maximum gap metric found is equal to 0.078 and occurs during the initial pitch-up
maneuver and subsequent pitch-down maneuver.

The value of 0.078 is significant compared to the normalized coprime stability margins. Hence the
effect of trim point uncertainty does seem to degrade the controller robustness in the nonlinear domain.
This also seems reflected in tracking performance, as the simulation shown in Figure 4.16 does not
completely follow the predicted linear response once the aircraft has sustained the pitch-up command
after about 2 seconds. This is in agreement with the regions where the trim point uncertainty is largest.
However, even when looking at these maneuvers with large step inputs, the frozen-time stability can
still be guaranteed. This will be seen in the next section.

(a) Trajectory and attitude of aircraft (plotted by using [40]). (b) Gap metric to equilibrium conditions along the trajectory.

Figure 4.17: Trajectory and trim point uncertainty.

4.4.4. Frozen-time stability
To conclude the nonlinear analysis, the two effects are combined bymaking use of the inequality relating
the gap metrics to the minimum coprime stability margin. The gap metric, between the linearized plant
at an operating point and the linearized plant at the closest equilibrium point, was already calculated in
the previous section and denoted by δ(Peq, Poff). Subsequently, let Koff denote the controller at the
same operating point including the hidden coupling terms. This can be calculated by using Equation 4.8.
Then letKeq denote the controller at the closest equilibrium point, but this time with the hidden coupling
terms set to zero. The distance between these systems in terms of gap metric can also be calculated
at the operating point. This results in the expression δ(Koff ,Keq). Now that all the pieces are in place,
it is possible to relate these gap metrics to the minimum coprime stability margin at the operating point
by:

arcsin(b(Poff ,Koff)) ≥ arcsin(b(Peq,Keq)) – arcsin(δ(Koff ,Keq)) – arcsin(δ(Peq, Poff)) (4.17)

Here (b(Peq,Keq) is the coprime stability margin at the closest equilibrium point from the operating point.

This equation is applied to the same maneuver as used for the trim point uncertainty. Figure 4.18
shows the resulting minimum coprime stability margin along the discretized trajectory. It can be seen
that the minimum guaranteed margin degrades from its equilibrium point, however, frozen-time stabil-
ity is still enforced as the minimum coprime stability margin remains larger than 0. Hence it can be
concluded that the local stability guarantees of gain scheduling are extended to also include the points
along this trajectory.

4.4. Nonlinear implementation and analysis 49

Figure 4.18: Minimum coprime stability margin along the trajectory.

Note, that the biggest contribution to the degradation is mostly caused by the effect of trim point uncer-
tainty as a suitable realization has been chosen to limit the effects of hidden coupling. This degrades
the normalized coprime stability margin by a maximum of about 45%. The controller had very robust
disk margins (which are related to the coprime stability margin), thus it is argued that the controller still
maintains sufficient frozen-time robustness. Nevertheless, it might be desirable to reduce the degrada-
tion.

However, since the trim point uncertainty dominates, it is difficult to improve the frozen-time stabil-
ity. Attempts were made to include additional scheduling parameters (such as q and α) in order to
capture the off-equilibrium dynamics and improve the controller performance. It turned out to be diffi-
cult to set up a scheduling scheme that properly captures these dynamics, while also having sufficiently
slowly varying scheduling parameters. Nonetheless, ideally, the knowledge of the degradation of the
controller because of the trim point uncertainty would be taken into account in the design procedure,
and this could be of interest in future research.

Moreover, in this analysis, only the example of one doublet input where qref = 7.5◦ is considered.
The pitch-rate controller is guaranteed to be frozen-time robust during this maneuver. In practical appli-
cation, this analysis can be extended to many maneuvers and cover a larger part of the flight envelope
to extend the local stability guarantees. This highlights how this technique framework can be used to
analyze the nonlinear domain and ensure frozen-time robustness.

5
Direct trajectory longitudinal control

The automatic flight control system has seen an increase in functionality over the years. The success
of the pitch-rate controllers was followed by the pitch attitude hold controller and altitude hold controller.
Thereafter, maneuvering modes such as vertical speed and altitude selection were introduced followed
by automatic landing control systems. Later, around the 1980s, the first full flight regime autothrottle
entered the, partly to ensure minimum fuel use after the increase in fuel prices [19]. Historically, these
control systems were designed using a single-input, single-output control strategy, where each loop
was closed one at a time. For a full direct trajectory longitudinal control system, the airspeed and
direction have to be controlled simultaneously and, while the loop-at-a-time approach can work, the
performance is far from optimal as there is no harmony between the loops [20]. H∞ synthesis meth-
ods allow for simultaneous loop closure in MIMO systems and improve this harmony. To enable the
controller to control a part of the nonlinear flight envelope (the same as used in Chapter 4), the multi-
model approach is used.

That also means, that while the pitch-rate controller can be designed using the short-period approxima-
tion, this is impossible when looking at direct trajectory longitudinal control. The longitudinal controller
has to be able to control the direction and speed simultaneously, i.e. the complete longitudinal velocity
vector, both on short and long timescales. Thus, the full longitudinal dynamics of the aircraft have to
be used for the controller synthesis and a MIMO controller is necessary.

Another complication of this problem is that it is prone to oversaturation of the engine. Both an in-
crease in airspeed and vertical direction require a throttle increase. In order to tackle this problem, it
has often been approached from a total energy point of view to limit the thrust and load factor/ pitch-rate
demands to the inner loop to ensure proper envelope protection of the controller [14] [18] [19]. How-
ever, in this thesis, it is assumed that the aircraft can provide enough energy to increase the speed and
altitude and the total available energy does not have to be distributed.

The last matter to discuss before the structure and constraints can be introduced is the choice of regu-
lated variables. The airspeed is a natural choice in order to control the magnitude of the velocity vector
[5] but the direction can be controlled using multiple variables. One option is to use the flight-path
angle (γ) [29] [44] but it is also possible to use the vertical speed (Vz) [5] [6] [47] as a second variable
to completely constrain the longitudinal velocity vector. In this thesis, the vertical speed (Vz) is used
to control the direction as the used H∞ synthesis methods have been observed to be more commonly
used in conjunction with Vz, however, both options are possible.

5.1. Structure, constraints and synthesis
This section is set up similarly as in the pitch-rate controller of Section 4.2 and the same flight envelope
is used. It shows the structure of the longitudinal controller, the requirements with the resulting closed-
loop transfer functions, and the obtained controller.

50

5.1. Structure, constraints and synthesis 51

5.1.1. Controller structure
Figure 5.1 shows the inputs and outputs of the controller K. The controller has two outputs, six inputs
and has two degrees of freedom since it both contains the reference and measured airspeed/vertical
speed. The inputs and outputs are the same as used in several earlier proposed designs [5] [6] [47].

The used actuators are the engine (δt) and elevator (δe) and the used measurements are the airspeed
(V), the vertical speed (Vz), the normal acceleration (nz), and the pitch-rate (q). The first two mea-
surement values are necessary for tracking and the inclusion of the latter two measurement values
significantly improves the damping and transient response of the closed-loop system. Furthermore,
the two-degrees-of-freedom controller form was necessary to satisfy all the upcoming constraints.

Moreover, Figure 5.1 also shows the disturbance and noise channels that will be used to define the
constraints in the design synthesis. The output disturbances d and sensor noise channels n consists
of:

d = [dV , dVz
, dnz

, dq]
T

n = [nV , nVz , nnz , nq]
T

(5.1)

These are both 4× 1 vectors that are added to the 4× 1 signals containing the outputs of the system.

Figure 5.1: Longitudinal controller I/O layout.

This brings us to the structure of the controllerK. It has been structured such that the main components
are decentralized and Figure 5.2 shows this controller structure. It can be described by five basic
components:

1. KVref
(s) and KVz,ref

are first-order transfer functions that adjust the command signal to match a
certain response.

2. Two integrators are acting on the error signals of the variables to be tracked, namely eV and eVz
,

to ensure no steady-state errors.
3. K1 is a 2 × 2 static matrix that ensures the integral action on both errors is propagated to both

outputs. This is necessary for the decoupling of the system.
4. K2 is a 2× 4 static matrix that also ensures decoupling of the system, this time directly using the

output measurements except for q, which is filtered using Kq(s)

5. That brings us to Kq(s). This is a first-order transfer function acting on the measurement qK It
was necessary to include a dynamic component to the pitch-rate measurement to improve the
short-period damping and reduce overshoot.

The controller is synthesized using a multi-model approach. In this part of the flight envelope, no
scheduling was required to ensure the constraints were met. Now that the controller structure has
been shown, the constraints can be introduced.

5.1. Structure, constraints and synthesis 52

Figure 5.2: Longitudinal controller structure.

5.1.2. Soft constraints
A similar approach as done in Section 4.2 is used, however, now only soft constraints are used. Since
the coupling is relevant the complete transfer function matrices are considered. The soft constraints
were initially inspired by the four-block problem but ultimately the following factors were incorporated:

1. Reference tracking
2. Output disturbance rejection
3. Control signal attenuation
4. Input disturbance rejection
5. D-stability

Reference tracking
The tracking requirements are formulated using the H2 norm. Only the reference inputs to their corre-
sponding output (that is Vref to V and Vz,ref to Vz), contained a reference tracking requirement. This
is a similar type of constraint as was used for the pitch-rate controller of Section 4.2. The reference
trajectories and the closed-loop values can be seen in Figure 5.3.

(a) Step response Vref → V and reference model. (b) Step response Vref → Vz .

(c) Step response Vz,ref → V . (d) Step response Vz,ref → Vz and reference model.

Figure 5.3: H2 tracking requirement.

5.1. Structure, constraints and synthesis 53

The off-diagonal (cross-coupling) components are constrained through a maximum gain in the fre-
quency domain of the transfer functions from the reference channel to the opposite error channel.
These are the transfer functions from Vref to eVz

and from Vz,ref to eV . This is done differently than
the used reference tracking as there is no specific preferred response. The only imposed constraint is
to limit the cross-coupling error to a maximum of 15% (about −16dB) and ensure low gain at low fre-
quencies such that the steady-state error reduces to zero. These constraints and resulting closed-loop
values can be seen in Figure 5.4. Note that the controller has two degrees of freedom which means
that the transfer function from the input reference values to the output values is not the same as the
output sensitivity function which is the case with a one-degree-of-freedom controller.

(a) Frequency response of transfer function Vref → eVz . (b) Frequency response of transfer function Vz,ref → eV .

Figure 5.4: Frequency response and constraints of the transfer functions from Vref to eVz and from Vz,ref to eV .

Output disturbance rejection
The output disturbances considered contain the transfer functions from dV , dVz

, dnz and dq to V and Vz.
The complete output sensitivity matrix is of dimensions 4 × 4 but the effect of the disturbances on the
vertical acceleration nz and pitch-rate q are not included in the synthesis. This is done as these variables
are not regulated and hence not necessarily constrained. What is left is thus a 2 × 4 matrix. First, let
us consider the 2× 2 transfer functions matrix containing the transfer functions of the disturbances dV
and dVz

to the tracked outputs V and Vz. The constraints and resulting closed-loop transfer functions
can be seen in Figure 5.5.

(a) Output sensitivity dV → V . (b) Output sensitivity dV → Vz .

(c) Output sensitivity dVz → V . (d) Output sensitivity dVz → Vz .

Figure 5.5: Output sensitivity constraints and closed-loop values.

5.1. Structure, constraints and synthesis 54

The diagonal components, which are the transfer functions dV → V and dVz → Vz need to reject the
low-frequency disturbance signals. A high pass filter is thus required for the weighting filters on the di-
agonal components. The low-frequency region is limited to −70dB while the high-frequency limit is set
to 3.5dB and 6dB respectively. Furthermore, the 0dB crossover frequency is chosen a bit differently,
with dV → V requiring a crossover frequency of ωc = 0.2 rad while dV → V is a slightly faster transfer
function with ωc = 0.75 rad.

The off-diagonal components are also limited to ensure maximum peak error and a maximum steady
state error given a disturbance in the other channel. The dV → Vz low-frequency gains are limited to
−80dB with the high-frequency gain being limited to −15dB. The other off-diagonal channel dVz

→ V
shows worse, but still sufficient, disturbance rejection with a low-frequency attenuation gain of −50dB
and high-frequency gain limit of −5dB.

Subsequently, let us consider the influence of the disturbances dnz
and dq on V and Vz. The frequency

domain specifications and their respective constraints can be seen in Figure 5.6. The effect of the dis-
turbance dnz

was constrained to 20dB at a maximum, which translates to a magnitude of 10 (ms−1
)/g,

to both outputs and it was ensured that the low-frequencies disturbances are not propagated to the
outputs of interest.

The amplification of disturbance dq to both outputs is constrained by 37.5dB at max, which is equal
to 1.3 (ms−1

)/(°s−1
) and also ensures low-frequency attenuation. Note that the singular values in Fig-

ure 5.6 are computed using the values of q in radians, while in the text they were converted to degrees
for easier interpretation.

Lastly, it can be pointed out that the transfer functions from dnz and dq to V and Vz are equal to the
transfer functions from nnz and nq on V and Vz since the sensors are modeled as ideal sensors. That
indicates high-frequency noise attenuation should be present as well. As can be seen in Figure 5.6,
this is indeed the case. Thus not only is low frequency disturbance rejection achieved, high frequency
noise attenuation is also attained.

(a) Output sensitivity dnz → V . (b) Output sensitivity dnz → Vz .

(c) Output sensitivity dq → V . (d) Output sensitivity dq → Vz .

Figure 5.6: Output sensitivity constraints and closed-loop values.

5.1. Structure, constraints and synthesis 55

Control signal attenuation
The transfer functions from Vref and Vz,ref to δt,cmd and δe,cmd are to be restricted. This is needed
to ensure that the actuator command signals are within the bandwidth of the actuator. The weighting
functions in Figure 5.7 are derived from the physical actuator limits.

Starting with the engine. The engine requires a normalized input between zero and one, which is de-
noted by δt,cmd. As a guideline, it is enforced that a change of 15ms−1 in airspeed maximally causes
a change in δt,cmd command of 1, that is ∆δt,cmd ≤ 1 in case ∆Vref = 15. Thus the KS function of this
channel at a maximum is constrained to the value of 1

15 =−23.5dB. Furthermore, a high-frequency limit
of −55dB is enforced for high-frequency noise attenuation. This transfer function from Vref to δt,cmd

and the corresponding inverted weighting function enforcing the constraint can be seen in Figure 5.7a.

Furthermore, let us consider the transfer function from Vz,ref to δt,cmd. Here, the maximum command
signal was not the main concern. Instead, the attenuation of high-frequency noise was the limiting
factor. It has been imposed that at 3 rad s−1, the maximum gain would be −30dB to achieve this goal.
This constraint can be seen in Figure 5.7c.

Now let us consider the elevator command signals. As a guideline, it is proposed that a speed input
of 1ms−1 maximally induces a commanded elevator deflection signal of 0.4 °/s which equals −43dB
in radians. Furthermore, at the bandwidth cutoff frequency of the elevator servo (22 rads−1), the am-
plification is enforced to be 10dB less, namely −53dB. An increase in airspeed does not require a lot
of elevator adjustment as in this case, it is the engine that is limiting. To account for that the weighting
function has been arbitrarily tightened, as can be seen in Figure 5.7b. On the other hand, the con-
straint on the elevator is much more relevant when a vertical speed command is given as much more
available elevator authority is needed to ensure the aircraft pitches up or down. The weighting function
and frequency response of the reference vertical speed to the elevator command signal can be seen
in Figure 5.7d.

(a) Controller signal attenuation Vref → δt,cmd. (b) Controller signal attenuation Vref → δe,cmd.

(c) Controller signal attenuation Vz,ref → δt,cmd. (d) Controller signal attenuation Vz,ref → δe,cmd.

Figure 5.7: Controller signal attenuation constraints and closed-loop values.

5.1. Structure, constraints and synthesis 56

Input disturbance rejection
The effect of disturbances at the input to the output can be capitulated by the transfer functions of dδt
and dδe to V and Vz. The reason this requirement had to be included was to enforce enough integral
action to ensure that these transfer functions contain proper attenuation of low-frequency disturbance
signals. The requirements are not very tightly formulated as only the low-frequency attenuation was of
concern. The low-frequency gain was constrained to be less than −45dB and Figure 5.8 shows that
this is achieved.

(a) Load disturbance rejection dδt → V . (b) Load disturbance rejection dδt → Vz .

(c) Load disturbance rejection dδe → V . (d) Load disturbance rejection dδe → Vz .

Figure 5.8: Load disturbance rejection.

D-Stability
Both the damping ratio and the minimum decay rate are constrained. The damping ratio has been set
to 0.4 and the minimum decay rate to 0.2. This results in the closed-loop pole locations as shown in
Figure 5.9. It can be seen that these requirements are satisfied, which ensures the desired dynamic
behavior of the linear closed-loop system.

Figure 5.9: Pole location requirement.

5.2. Linear analysis 57

5.1.3. Synthesized controller
All in all, the resulting controller values can be seen in Equation 5.2.

KVref
(s) =

1.3142(s+ 0.1603)

(s+ 0.2104)

KVz,ref
(s) =

18.219(s+ 0.2296)

(s+ 4.184)

Kq(s) =
−0.0729(s+ 0.5185)

(s+ 0.2876)

K1 =

[
−0.0168 −0.0020
−0.0002 0.0012

]
K2 =

[
−0.1099 0.0114 −0.3696 −37.274
−0.0010 0.0078 0.0538 −4.384

]
(5.2)

While the values of the first two columns in K1 and K2 might appear to be small, keep in mind that
they translate a m/s value into a radian value. Thus, they are definitely not equal to zero, and trying to
impose that condition does reduce the performance and robustness. Furthermore, the controller has
five poles. Two of these were imposed at the origin because of the integrators and the other three
correspond to the first-order filters on the input.

5.2. Linear analysis
This section covers additional a posteriori analysis of the system. The most important linear factors
were already taken into account in the optimization leading to a rather short analysis. However, the
stability margins were not included, while these are naturally important robustness properties. In this
case, this is the only factor being looked at in the a posteriori linear analysis.

Without imposing any constraints on the margins, the resulting values are sufficient. The loop-at-a-
time S − T based disk margins at the input and output are summarized in Table 5.1. At all inputs and
outputs, the (disk-based) gain margins are larger than 6dB, and the (disk-based) phase margins are
larger than 45 °. As these are more conservative than the classical gain and phase margins, it can be
deduced that the latter also comply with the inequalities. The values of the disk margins across the
whole critical frequency range can be found in Appendix D.

Table 5.1: Minimum loop-at-a-time disk margins at inputs and outputs.

Location Gain Margin [dB] Phase Margin [°]
δt,cmd 7.9 46.0
deltae,cmd 7.7 45.4
V 7.8 45.5
Vz 8.5 48.9
nz 10 54.8
q 14.1 67.8

5.3. Nonlinear implementation and analysis
This section discusses the nonlinear implementation and analysis of the direct trajectory controller. As
the controller does not use scheduling parameters, there are no hidden coupling terms. First, the
normalized coprime stability margin is calculated, and a scaling procedure to improve its interpretability
is proposed. Subsequently, the trim point uncertainty (which in this case is the only factor degrading the
frozen-time robustness) during two maneuvers is assessed. The goal of this chapter is to investigate
howmuch the frozen-time robustness is degraded and find out what the implications of this degradation
are for the controller.

5.3.1. Normalized coprime stability margin
The normalized coprime stability margin of the linear controller-plant combination at each point in the
flight envelope can be found in Figure 5.10. As can be seen, the values are very low (in the order of

5.3. Nonlinear implementation and analysis 58

1.5×10−3). This is partly caused by the large discrepancy in units. For normalized coprime uncertainty
it is assumed that the stable uncertainty blocks are constrained by: ∥

[
∆̃N ∆̃M

]
∥∞≤ ϵ [4] [35] and this

ϵ is constant across all channels. However, a perturbation of 1 rad/s at q is not equivalent in likelihood
compared to a perturbation of 1m/s applied at V . The system is not scaled well resulting in normalized
coprime uncertainty values close to zero.

Figure 5.10: Normalized coprime stability margin of direct trajectory longitudinal controller at equilibria.

To remedy this problem a slightly different formulation of the plant is used. Let us define a diagonal
n× n scaling matrix N , where n denotes the number of outputs of the system. If this scaling matrix is
introduced to the system as shown in Figure 5.11, this does not change the system. By manipulating
the block diagram, it is possible to get the following equivalent system

PK

1 + PK
= N−1 NPKN−1

1 +NPKN−1
N = N−1 P̂ K̂

1 + P̂ K̂
N (5.3)

with:
P̂ = NP, and K̂ = KN−1

Figure 5.11: Block diagram manipulations for proposed scaling procedure.

As the two systems are equivalent, the poles need to be equivalent to the original system. The multi-
plication from the left with N−1 and from the right with N does not change the location of the poles as
long as the matrix N does not contain any dynamics. To prove this consider two state space systems
P1 and P2:

P1 =

[
A1 B1

C1 D1

]
, P2 =

[
A2 B2

C2 D2

]
. (5.4)

If the two systems are cascaded, where the output of P2 is the input of P1. This results in [53, p 34]:

P1P2 =

[
A1 B1

C1 D1

] [
A2 B2

C2 D2

]

=

 A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2

 (5.5)

5.3. Nonlinear implementation and analysis 59

The stability of the cascaded state space system is purely reflected in the eigenvalues of the new state
matrix (A). If P1 is a static system this indicates that A1 = B1 = C1 = 0 and only D1 ̸= 0. The state
space realization of the cascading system reduces to:

P1P2 =

 0 0 0
0 A2 B2

0 D1C2 D1D2

 =

[
A2 B2

D1C2 D1D2

]
(5.6)

From here it can be deduced that the state matrix of P1P2 is equal to A2 and thus that they have the
same eigenvalues. The same proof can be used in case P2 is the static system instead of P1, with the
eigenvalues of the A1 matrix then being equal to the eigenvalues of the state matrix of the cascaded
system.

Hence if we can guarantee the stability of the scaled system (P̂ , K̂), it also guarantees the stability
of the original (P,K) system, given matrix N does not contain any dynamics. The matrix N can thus
be chosen such that the scaling of the system is improved. This reduces the conservativeness of the
normalized coprime stability margin and improves the intuitive interpretation of the values.

Applying this to the coprime stability margin at every point yields the values of Figure 5.12. These
are indeed higher values compared to Figure 5.11. The values used for N are:

N = diag{[0.1 0.1 0.1 0.1 0.5 3]} (5.7)

These values were found by numerical optimization using fmincon of the coprime stability margin. This
leads to an increase of 10 times the original margin values and facilitates better interpretation of the
normalized coprime stability margin. The scaled plants and controllers are used in the upcoming sec-
tion.

Figure 5.12: Scaled normalized coprime stability margin.

5.3.2. Trim point uncertainty and frozen-time robustness
Since the multi-model approach was used to design one unique controller for this part of the flight en-
velope, there are no scheduling parameters and hence also no hidden coupling terms. Thus, the only
factor of importance for the frozen-time robustness is the trim point uncertainty. Subsequently, to as-
sess the trim point uncertainty a similar analysis compared to Section 4.4.3 is included, and the same
velocity-form of the plant is used to find the off-equilibrium plant linearizations.

In this case, two typical maneuvers are considered. First, an airspeed step response is investigated
and subsequently, the response to a vertical speed square signal is looked at. Let us commence with
investigating the step response of an airspeed input. The resulting response in airspeed and vertical
air speed can be seen in Figure 5.13. The reference input is tracked very similarly to the predicted
linear response.

Now we are interested if the robustness is preserved during this maneuver. At an operating point,
the velocity-form can be used to find the linearized plant Poff . This plant can be scaled to P̂off using

5.3. Nonlinear implementation and analysis 60

the matrix N of the previous section. The scaled controller (K̂) is fixed and does not change during op-
eration. Subsequently, it is possible to calculate the absolute coprime stability margin at the operating
point, by adapting the equation for the normalized stability margin (see Equation 3.37):

b(P̂off , K̂) =

∥∥∥∥[K̂
I

]
(I + P̂off K̂)−1(MT)−1]

∥∥∥∥−1

∞
=

∥∥∥∥[I

K̂

]
(I + P̂off K̂)−1

[
I P̂off

]∥∥∥∥−1

∞
(5.8)

Now this equation can be applied at each discrete point along the trajectory of the manouvre. The
trajectory of the aircraft in 3D space is shown in Figure 5.14a and is not very surprising as the aircraft
simply retains attitude while moving forward faster. Then Figure 5.14b shows the result of Equation 5.8.
Here the absolute scaled normalized coprime stability margin can be seen at the discrete points of the
trajectory. It can be inferred that the aircraft loses a bit of coprime stability margin when it moves from
the initial equilibrium to the second equilibrium. During the acceleration, the coprime margin becomes
a little smaller but only by about 15%. It can thus be concluded that during an increase in airspeed, the
robustness with respect to the coprime stability margin is maintained. This is the case as the trajectory
moves relatively close to the equilibria points, causing the encountered trim point uncertainty during an
increase or decrease in airspeed to be limited.

(a) Airspeed step response. (b) Vertical speed response.

Figure 5.13: Nonlinear simulation of direct trajectory longitudinal controller with reference velocity input.

(a) Aircraft trajectory and attitude during manoeuvre of Figure 5.14
.

(b) Absolute coprime stability margin along
the trajectory of airspeed step response.

Figure 5.14: Nonlinear simulation of direct trajectory longitudinal controller with reference velocity input.

5.3. Nonlinear implementation and analysis 61

Subsequently, a vertical speed input is considered. Intuitively, the robustness is supposed to degrade
a little more during such a maneuver as it requires further distance from the equilibrium points. The
nonlinear response is shown in Figure 5.15. It can already be seen that the agreement with the lin-
ear simulation is slightly worse compared to the previous maneuver and, as will be seen, this is also
supported by looking at the off-equilibria conditions. The trajectory in 3D space including the aircraft
attitude is shown in Figure 5.16a. The corresponding scaled normalized coprime stability margin along
discrete points of the trajectory can be seen in Figure 5.16b. During this maneuver, the value of the
coprime stability margin becomes much smaller compared to the previous maneuver. The degradation
that is encountered is around 50%. This is caused by the aircraft having to traverse a state further from
the equilibria points for which it was not designed as it needs to pitch up to reach the desired flight path.

(a) Airspeed response. (b) Vertical speed step response response.

Figure 5.15: Nonlinear simulation of trajectory with reference vertical speed.

(a) Attitude along the trajectory.
(b) Absolute coprime stability margin along

the trajectory of the vertical speed step response.

Figure 5.16: Nonlinear simulation of longitudinal trajectory controller in 3D space following 35ms−1 vertical speed reference.

Hence what can be concluded regarding the frozen-time robustness of the controller given a vertical
speed input? First of all, it is clear that there is a significant penalty with respect to the normalized co-
prime stability margin when performing a vertical speed maneuver with a significant amplitude (which is
not the case when increasing the airspeed). This is also reflected in the performance of the controller in
the nonlinear simulation compared to the linear simulation of Figure 5.15. Since the controller showed
very robust properties on the equilibrium points this points toward sufficient robustness still being main-
tained for manoeuvres using a similar vertical speed profile.

5.3. Nonlinear implementation and analysis 62

Nevertheless, while the controller shows reasonable performance and frozen-time robustness, it could
still be an interesting topic for future research to incorporate the trim point uncertainty in the design
process. This could also ensure robustness given even larger vertical speed input signals (although
saturation of the command signal would also need to be taken into account). The multi-model frame-
work seems like a natural way to incorporate off-equilibrium plants in the design procedure.

However, while this was attempted, it turned out to greatly increase the difficulty of synthesizing a
controller that fulfills all the constraints of Section 5.1, while including off-equilibrium plants. For exam-
ple, the off-equilibrium plant that contained a coprime stability margin of around 0.035 turned out to be
very different from the closest equilibrium plant making it hard to find a single controller that can control
both plants well. Subsequently, it might be possible to use constraints that differ per operating point,
i.e. varying goals for each plant. However, this increases the complexity of the synthesis significantly
because of the many possible off-equilibrium plants that could be taken into account. Furthermore,
there are also no clear guidelines for off-equilibria design constraints which will have to be created.
However, this topic could be of interest in further research with the aim of reducing the degradation of
the frozen-time robustness due to trim-point uncertainty.

6
Conclusion & Recommendations

This final chapter concludes the research. The problem statement is examined and the extent to which
this question could be addressed is summarized. Thereafter, topics that were touched upon during this
research and could be of interest in further research are discussed, even though, as of now they were
not able to come to full fruition.

6.1. Conclusion
To establish the conclusion of the thesis, let us return to the overall problem statement posed in the
introduction:

To what extent is it possible to assess the frozen-time robustness︸ ︷︷ ︸
6.1.2

of the nonlinear realization of a

structured H∞ controller︸ ︷︷ ︸
6.1.1

?

The conclusion is split into two parts. First, the design and synthesis of robust scheduled structured
H∞ controllers are analyzed. The achieved goals are discussed in Section 6.1.1. Secondly, the non-
linear controller implementation and how it relates to (frozen-time) robustness is concluded upon in
Section 6.1.2.

6.1.1. Structured H∞ controller synthesis
Chapter 4 and Chapter 5 discussed the procedure of synthesizing a pitch-rate and a direct trajectory
longitudinal controller using gain-scheduled H∞. The design procedure was performed by optimizing
and/or analyzing the following properties:

• Reference input tracking
• Output disturbance rejection
• Controller signal attenuation
• Input disturbance rejection
• Stability margins
• Closed-loop pole locations
• Sensor noise attenuation

In the case of the pitch-rate controller, the design was straightforward because of the simpler structure
of the problem, as the plant only consisted of 2 outputs and 1 input. For the flight-path controller, the sit-
uation was more complicated. The plant consisted of 2 inputs and 4 outputs, two of which needed to be
tracked. Furthermore, the coupling of the system enforced constraints on the off-diagonal components
of the weighting matrices. These were individually considered for maximum control of the result.

63

6.2. Recommendations 64

6.1.2. Frozen-time robustness
Chapter 3 considered the problems encountered when using gain scheduling and multi-model synthe-
sis for nonlinear control. It was investigated how at each point in the operating domain, the effects of
hidden coupling (if applicable) and trim point uncertainty could be quantified. Ensuring robustness re-
garding these two phenomena was referred to as frozen-time robustness and this was assessed using
the coprime stability margin.

The velocity-based linearization framework of Leith and Leithead [24] allowed us to linearize at ev-
ery operating point. This could be applied to the hidden coupling terms, which were investigated using
the framework of Lhachemi, Saussié, and Zhu [27]. Furthermore, this framework was also directly
applied to the plant itself, yielding a look into the trim point uncertainty. By making use of velocity-
based linearization, the coprime stability margin along a trajectory could be quantified, with respect to
degradation because of hidden coupling and trim point uncertainty. This can be extended to the whole
operating envelope of the aircraft to ensure frozen-time stability and robustness against coprime factor
uncertainty at each point.

The theory was applied to the synthesized pitch-rate and direct trajectory longitudinal controller. By
making use of the (minimum) coprime stability margin the local stability guarantees given by linear de-
sign synthesis could be extended to include hidden coupling and trim point uncertainty. Furthermore,
the coprime stability margin could be used to identify possible problems regarding these two factors,
improving the possible analysis in the nonlinear domain.

6.2. Recommendations
During the research for the thesis, many topics and/or problems were encountered that could presently
not be solved. This section discusses the main points that seem promising for further research.

6.2.1. Increased frozen-time analysis and synthesis
The thesis only considered the coprime stability margin to assess the frozen time robustness of the con-
trolled system. This was a convenient method to assess the robustness against unstructured coprime
uncertainty, which is of course a very fundamental form of uncertainty. However in theory it is possible
to use far more extensive analysis to analyze the frozen-time systems. Possibly loop transfer function
analysis, as done in the design procedure, could be performed. Robustness against different kinds of
uncertainties could also be investigated or more emphasis could be put on guaranteeing performance
instead of only guaranteeing stability.

Furthermore, it might be possible to directly incorporate the frozen-time systems into the design proce-
dure. An example of accomplishing this could be by using additional scheduling parameters such as
α, δe and q to capture off-equilibrium dynamics in the synthesis. However, three main problems were
encountered when trying to apply this to the F-16 control systems.

First, once additional parameters are considered, it is not necessarily true anymore that each point
in the scheduling set maps to a single point in the nonlinear dynamics. To give an example, one could
envision a controller that uses V , zE and α as scheduling parameters. Now let us schedule on a point
where these are equal to 200m/s, 1000m and 3◦ respectively. In off-equilibria situations, this can be
possible at a moment during which the aircraft is pitching up with a pitch-rate of 2◦/s. However, the
aircraft could just as well be pitching down by -10◦/s. Both situations can result in different aerodynamic
coefficients and thus different dynamics. It is therefore hard to establish a scheduling scheme that prop-
erly captures the off-equilibria dynamics while using a subset of the outputs as scheduling parameters.

Secondly, the parameters that capture off-equilibrium conditions are often by nature also fast-varying.
Off-equilibrium dynamics are inherently only temporary as the aircraft constantly moves between equi-
libria points. In the case of the F-16 aircraft, these are parameters such as α and q. However, this
can cause the problem that the fast variation of scheduling parameters runs into the pitfall of LTV/LPV
discrepancy with a linearized system as described by Section 3.3. This complicates the scheduling
approach and in itself can, if not careful, destabilize the closed-loop system.

6.2. Recommendations 65

Lastly, the dimension of the controller increases exponentially with each additional scheduling param-
eter. Hence, the computational complexity of the controller also increases exponentially.

Another approach could be by incorporating off-equilibrium plants in a multi-model approach. How-
ever, this was met with another set of problems. In the application of the direct trajectory longitudinal
controller, the off-equilibria plants of interest were so different in comparison to the equilibria plants
that the same constraints for both types of plants could not be satisfied simultaneously. Thus, some
kind of varying goal would need to be used but this increases the complexity of the controller synthesis
significantly. There is no real guideline on choosing which off-equilibrium plants to include and which
constraints to enforce and there are many permutations possible. However, this could be of interest in
further research.

All in all, these encountered problems are not easy to overcome and turned out to be too complex
for the scope of this thesis. However, it seems that there could be improvements possible in this area,
either from the nonlinear analysis or from trying to improve the synthesis itself.

6.2.2. Velocity-based linearization using tensors
During the research, it was investigated if the tensor formulations could be unified with the velocity-
based linearization concept. To investigate the topic let us try to derive the velocity-form, from a tensor
point of view.

Let us start with the attitude dynamics. Equation 2.41 is used as starting point. This equation was:

IBBD
BωBE +ΩBEIBBω

BE = mB (6.1)

Multiplying both sides with DB yields:

DBIBBD
BωBE +DB(ΩBEIBBω

BE) = DBmB (6.2)

Applying the chain rule, assuming a rigid body and solving for the acceleration derivatives results in:

DBDBωBE = (IBB)−1
(
−(DBΩBE)IBBω

BE − ΩBEIBB (DBωBE) +DBmB

)
(6.3)

Now projecting on the body frame:[
DBDBωBE

]B
= (
[
IBB
]B

)−1·
(
−
[
DBΩBE

]B [
IBB
]B [

ωBE
]B −

[
ΩBE

]B [
IBB
]B [

DBωBE
]B

+
[
DBmB

]B)
(6.4)

Working this out in a coordinated form produces: p̈
q̈
r̈

B

= (
[
IBB
]B

)−1

(
−

 0 −ṙ q̇
ṙ 0 −ṗ
−q̇ ṗ 0

B

(
[
IBB
]
)B

 p
q
r

B

−

 0 −r q
r 0 −p
−q p 0

B

(
[
IBB
]B

)B

 ṗ
q̇
ṙ

B

+
[
DBmB

]B) (6.5)

With: [
IBB
]B

=

 I11 I12 I13
I21 I22 I23
I31 I32 I33

B

(6.6)

Every term is familiar except for
[
DBmB

]B , which is the derivative of the aerodynamic forces. To com-
pute this, let [mB]

B be a function, denoted by f that depends on all variables governing the aerodynamic
forces, namely V , α, β, p, q, r, δa, δe, δr, δl and let Γ denote the set of all these variables on which
[mB]

B depends; mathematically this means that:

[mB]
B = [f(V, α, β, p, q, r, δa, δe, δr, δl)]

B = [f(Γ)]B (6.7)

6.2. Recommendations 66

Then the derivative can be found by simply employing the product rule, with respect to all the dependent
variables (as was also shown in Section 4.4.3):

[
DBmB

]B
=

df1(Γ)

dt
df2(Γ)

dt
df3(Γ)

dt

B

=

∑

n∈Γ
∂f1(Γ)

∂n · dn
dt∑

n∈Γ
∂f2(Γ)

∂n · dn
dt∑

n∈Γ
∂f3(Γ)

∂n · dn
dt

B

(6.8)

That is, the derivative can thus be computed by multiplying the numerical approximated derivative of
the look-up tables with respect to the dependent variables with the partial derivatives of the depen-
dent variables with respect to time, and subsequently summing these. The former is simply a value
depending on the interpolation of the look-up tables while the latter produces states and inputs for the
velocity-form (V̇ , α̇, β̇, ṗ, q̇, ṙ, δ̇a, δ̇e, δ̇r, δ̇l).

Combining these results gives us directly the velocity-based linearization of the system. For each
operating point, the system is linear in ṗ, q̇ and ṙ. The velocity-based linearized attitude dynamics can
be directly derived from the tensor equation.

However, let us now move to the derivation of the velocity-form of the translational dynamics. Equation
2.24 is used as starting point:

mDBvEB +mΩBEvEB = fa,b +mg (6.9)
Subsequently, it is possible to multiply both sides with the rotational derivative in the body frame DB :

DB(mDBvEB) +DB(mΩBEvEB) = DBfa,b +DB(mg) (6.10)

DB(mg) is assumed to be 0, that is there are no changes in the gravitational field and the body is as-
sumed to be rigid. Furthermore, the equation can be solved for the derivatives of the linear acceleration
by making use of the chain rule (which applies to the rotational time derivative [55, p 105]):

mDBDBvEB = −m(DBΩBE)vEB −mΩBE(DBvEB) +DBfa,b (6.11)

Now coordinating to the body frame implies:[
DBDBvEB

]B
= −

[
DBΩBE

]B [
vEB
]B −

[
ΩBE

]B [
DBvEB

]B
+m−1

[
DBfa,b

]B (6.12)

Solving this in matrix form constructs: ü
v̈
ẅ

B

= −

 0 −ṙ q̇
ṙ 0 −ṗ
−q̇ ṗ 0

B u
v
w

B

−

 0 −r q
r 0 −p
−q p 0

B u̇
v̇
ẇ

B

+m−1
[
DBfa,b

]B (6.13)

This results in the velocity-form of the system in the body coordinate system. There is, however, still a
problem with this expression. For our synthesis, the linearized equations were expressed in the wind
coordinate system. The expression of Equation 6.13 is in the body coordinate system. As of now, it is
unclear to the author how to directly use tensors to express the differential equation in the wind coordi-
nate system. The procedure used to get the differential equations in the wind coordinate system was
to first coordinate the system and subsequently solve for the relevant transformation angles derivatives
that appeared in the angular velocity vectors. This is only possible after coordination as the elements
of the coordinate system are part of the result and inherently not a tensor.

A similar problem is encountered when exploring the attitude kinematics. Also here, the elements
in the transformation matrices are used to get the expression for the differential equations. It seems
possible that there could be a method to directly get an expression for both the attitude kinematics
and translational dynamics in the wind frame using tensors but further investigation would be neces-
sary. However, as of now, to perform the velocity-based linearization, the equations of Chapter 2 were
simply used in the coordinated form.

6.2. Recommendations 67

6.2.3. Including uncertainty in linear synthesis
In many applications of robust control design, the controller is also made robust to parametric uncer-
tainty. That is uncertainty analysis is performed regarding the parameters used in the model. Each
parameter always includes an uncertainty margin. For example, the actual center of gravity varies and
is not the same as the one used in the model. The same can be said for the mass, moments of inertia,
aerodynamic coefficients, and many more parameters.

In the conventional robust design procedure, this uncertainty analysis is included to ensure the con-
troller still performs well during actual flight. This analysis was omitted in the current thesis because of
time constraints.

Furthermore, a particularly interesting application of using parametric uncertainty to increase robust-
ness is Passive Fault Tolerance. There are system faults encountered in flight that can be modeled.
Examples are an increase of sensor noise/bias or complete sensor failure, actuators jamming or losing
control effectiveness and many other scenarios could be envisioned. Including these uncertainties in
the robust design procedure yields an interesting application of fault-tolerant design. This is currently
an active field of research [30] and the application on the F-16 model could be an interesting application
of the research.

6.2.4. Flight-path controller allocation problem and over-actuation
In Chapter 5, it was mentioned that the direct trajectory longitudinal control problem is inherently also
an allocation problem, in case of insufficient available thrust. In this thesis, it was assumed that this
situation would not be encountered but that is of course unrealistic. Energy allocation methods or other
control allocation methods can be interesting to apply to the F-16 longitudinal trajectory control.

This also brings us to the attention of over-actuation and integral windup which was not considered
in this design. A disadvantage of the H∞ design procedure is that it cannot directly include this nonlin-
ear phenomenon in the optimization procedure. To fully complete the robust flight-path angle controller
these issues would have to be taken into account and could be a topic for further research.

Bibliography

[1] J Aggarwal and E Infante. “Some remarks on the stability of time-varying systems”. In: IEEE
Transactions on Automatic Control 13.6 (1968), pp. 722–723.

[2] Pierre Apkarian and Dominikus Noll. “Nonsmooth H∞ synthesis”. In: IEEE Transactions on Auto-
matic Control 51.1 (2006), pp. 71–86.

[3] Pierre Apkarian and Dominikus Noll. “The H∞ control problem is solved”. In: Aerospace Lab 13
(2017), pages–1.

[4] Declan Bates and Ian Postlethwaite. Robust multivariable control of aerospace systems. Vol. 8.
IOS Press, 2002.

[5] Caroline Bérard, Jean-Marc Biannic, and David Saussié. La commandemultivariable: Application
au pilotage d’un avion. Dunod, 2012.

[6] Jean-Marc Biannic and Clément Roos. “Robust Autoland Design by Multi-Model H∞ Synthesis
with a Focus on the Flare Phase”. In: Aerospace 5.1 (2018), p. 18.

[7] Jean-Luc Boiffier. “Dynamics of flight: the equations”. In: (No Title) (1998).
[8] Mahmoud Chilali, Pascal Gahinet, and Pierre Apkarian. “Robust pole placement in LMI regions”.

In: IEEE transactions on Automatic Control 44.12 (1999), pp. 2257–2270.
[9] Peter Dorato. “A historical review of robust control”. In: IEEE Control Systems Magazine 7.2

(1987), pp. 44–47. ISSN: 0272-1708.
[10] John Doyle. “Robust and optimal control”. In: Proceedings of 35th IEEE Conference on Decision

and Control. Vol. 2. IEEE. 1996, pp. 1595–1598.
[11] Keith Glover and Duncan McFarlane. “Robust stabilization of normalized coprime factor plant

descriptions with H/sub infinity/-bounded uncertainty”. In: IEEE transactions on automatic control
34.8 (1989), pp. 821–830.

[12] Keith Glover, Glenn Vinnicombe, and George Papageorgiou. “Guaranteed multi-loop stability
margins and the gap metric”. In: Proceedings of the 39th IEEE Conference on Decision and
Control (Cat. No. 00CH37187). Vol. 4. IEEE. 2000, pp. 4084–4085.

[13] Ilkay Gumusboga. “Robust Pitch Rate Control Augmentation System for an F-16 Aircraft”. In:
Journal of Aeronautics and Space Technologies 14.2 (2021), pp. 243–249.

[14] Florian Holzapfel et al. “Flight dynamics aspects of path control”. In: AIAA Guidance, Navigation
and Control Conference and Exhibit. 2007, p. 6772.

[15] Achim Ilchmann, Dieter H Owens, and Dieter Prätzel-Wolters. “Sufficient conditions for stability
of linear time-varying systems”. In: Systems & control letters 9.2 (1987), pp. 157–163.

[16] Tor Arne Johansen et al. “Off-equilibrium linearisation and design of gain-scheduled control with
application to vehicle speed control”. In: Control Engineering Practice 6.2 (1998), pp. 167–180.

[17] Isaac Kaminer et al. “A velocity algorithm for the implementation of gain-scheduled controllers”.
In: Automatica 31.8 (1995), pp. 1185–1191.

[18] Erik Karlsson et al. “Dynamic flight path control coupling for energy and maneuvering integrity”.
In: 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV).
IEEE. 2016, pp. 1–6.

[19] A Lambregts. “Vertical flight path and speed control autopilot design using total energy principles”.
In: Guidance and Control Conference. 1983, p. 2239.

[20] AA Lambregts. “Functional integration of vertical flight path and speed control using energy prin-
ciples”. In: NASA. Langley Research Center NASA Aircraft Controls Research, 1983 (1984).

68

Bibliography 69

[21] Douglas A Lawrence and Wilson J Rugh. “Gain scheduling dynamic linear controllers for a non-
linear plant”. In: Automatica 31.3 (1995), pp. 381–390.

[22] Douglas J Leith. “Input-output linearization by velocity-based gain-scheduling”. In: International
Journal of Control 72.3 (1999), pp. 229–246. ISSN: 0020-7179.

[23] Douglas J Leith and WE Leithead. “Gain-scheduled and nonlinear systems: dynamic analysis by
velocity-based linearization families”. In: International Journal of Control 70.2 (1998), pp. 289–
317.

[24] Douglas J Leith and WE Leithead. “Gain-scheduled controller design: an analytic framework
directly incorporating non-equilibrium plant dynamics”. In: International Journal of Control 70.2
(1998), pp. 249–269. ISSN: 0020-7179.

[25] Douglas J Leith and William E Leithead. “Survey of gain-scheduling analysis and design”. In:
International journal of control 73.11 (2000), pp. 1001–1025. ISSN: 0020-7179.

[26] Douglas J. Leith and William E. Leithead. “Gain-Scheduled Control: Relaxing Slow Variation Re-
quirements by Velocity-Based Design”. In: Journal of Guidance, Control, and Dynamics 23.6
(2000), pp. 988–1000. ISSN: 0731-5090. DOI: 10.2514/2.4667. URL: https://dx.doi.org/10.
2514/2.4667.

[27] Hugo Lhachemi, D Saussié, and G Zhu. “Gain-scheduling control design in the presence of hid-
den coupling terms”. In: Journal of guidance, control, and dynamics 39.8 (2016), pp. 1871–1879.

[28] Hugo Lhachemi, David Saussié, and Guchuan Zhu. “Handling hidden coupling terms in gain-
scheduling control design: Application to a pitch-axis missile autopilot”. In: AIAA guidance, navi-
gation, and control conference. 2016, p. 0365.

[29] Bei Lu and Fen Wu. “Probabilistic robust control design for an f-16 aircraft”. In: AIAA Guidance,
Navigation, and Control Conference and Exhibit. 2005, p. 6080.

[30] Julien Marzat et al. “Model-based fault diagnosis for aerospace systems: a survey”. In: Proceed-
ings of the Institution of Mechanical Engineers, Part G: Journal of aerospace engineering 226.10
(2012), pp. 1329–1360.

[31] Duncan CMcFarlane and Keith Glover. Robust controller design using normalized coprime factor
plant descriptions. Springer, 1990.

[32] ANON MIL-STD. Department of Defence interface standard—flying qualities of piloted aircraft.
1990.

[33] Luat T Nguyen. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed
longitudinal static stability. Vol. 12854. National Aeronautics and Space Administration, 1979.

[34] Robert A Nichols, Robert T Reichert, and Wilson J Rugh. “Gain scheduling for H-infinity con-
trollers: A flight control example”. In: IEEE Transactions on Control systems technology 1.2
(1993), pp. 69–79.

[35] Ian R Petersen and Roberto Tempo. “Robust control of uncertain systems: Classical results and
recent developments”. In: Automatica 50.5 (2014), pp. 1315–1335.

[36] Wilson J Rugh. “Analytical framework for gain scheduling”. In: 1990 American Control Confer-
ence. IEEE. 1990, pp. 1688–1694.

[37] Wilson J Rugh and Jeff S Shamma. “Research on gain scheduling”. In: Automatica 36.10 (2000),
pp. 1401–1425.

[38] Richard S Russell. “Non-linear F-16 simulation using Simulink and Matlab”. In: University of Min-
nesota, Tech. paper (2003).

[39] Michael G Safonov. “Origins of robust control: Early history and future speculations”. In: Annual
Reviews in Control 36.2 (2012), pp. 173–181.

[40] Scordamaglia, Valerio. Trajectory and Attitude Plot Version 3. MATLAB Central File Exchange.
Version 3. URL: https://www.mathworks.com/matlabcentral/fileexchange/5656-trajecto
ry-and-attitude-plot-version-3.

[41] Peter Seiler, Andrew Packard, and Pascal Gahinet. “An introduction to disk margins [lecture
notes]”. In: IEEE Control Systems Magazine 40.5 (2020), pp. 78–95.

https://doi.org/10.2514/2.4667
https://dx.doi.org/10.2514/2.4667
https://dx.doi.org/10.2514/2.4667
https://www.mathworks.com/matlabcentral/fileexchange/5656-trajectory-and-attitude-plot-version-3
https://www.mathworks.com/matlabcentral/fileexchange/5656-trajectory-and-attitude-plot-version-3

Bibliography 70

[42] Jeff S Shamma, Michael Athans, et al. “Analysis of gain scheduled control for linear parameter-
varying plants”. In: (1988).

[43] Jeff S Shamma and Michael Athans. “Gain scheduling: Potential hazards and possible remedies”.
In: IEEE Control Systems Magazine 12.3 (1992), pp. 101–107.

[44] Lars Sonneveldt et al. “Nonlinear adaptive trajectory control applied to an F-16model”. In: Journal
of Guidance, control, and Dynamics 32.1 (2009), pp. 25–39.

[45] Robert F Stengel. Flight dynamics. Princeton university press, 2005.
[46] Brian L Stevens, Frank L Lewis, and Eric N Johnson. Aircraft control and simulation: dynamics,

controls design, and autonomous systems. John Wiley & Sons, 2015. ISBN: 1118870980.
[47] Julian Theis et al. “Robust autopilot design for landing a large civil aircraft in crosswind”. In: Con-

trol Engineering Practice 76 (2018), pp. 54–64.
[48] Spilios Theodoulis and Michael Proff. “Robust flight control tuning for highly agile missiles”. In:

AIAA Scitech 2021 Forum. 2021, p. 1568.
[49] M Wu. “A note on stability of linear time-varying systems”. In: IEEE transactions on Automatic

Control 19.2 (1974), pp. 162–162.
[50] George Zames. “Feedback and optimal sensitivity: Model reference transformations, multiplica-

tive seminorms, and approximate inverses”. In: IEEE Transactions on automatic control 26.2
(1981), pp. 301–320.

[51] George Zames. “On the input-output stability of nonlinear time-varying feedback systems”. In:
IEEE Transactions on Automatic Control 11 (1966), pp. 228–238.

[52] George Zames. “Unstable systems and feedback: The gap metric”. In: Proc. of the Allerton Con-
ference, 1980. 1980, pp. 380–385.

[53] Kemin Zhou and John Comstock Doyle. Essentials of robust control. Vol. 104. Prentice hall Upper
Saddle River, NJ, 1998.

[54] Peter Zipfel. “Tensor Flight Dynamics”. In: AIAA Atmospheric Flight Mechanics Conference. 2011,
p. 6725.

[55] Peter H Zipfel.Modeling and Simulation of Aerospace Vehicle Dynamics (AIAA Education). AIAA
(American Institute of Aeronautics & Ast, 2007.

[56] Peter H Zipfel. “Perturbation methods in atmospheric flight mechanics”. In: AIAA Journal 11.9
(1973), pp. 1247–1251.

A
Appendix: Aerodynamic model
equations and implementation

A.1. Aerodynamic equations
The equations to model the aerodynamics are retrieved from Nguyen [33]. Terms containing the speed
brakes have been set to 0. Note that the units of the actuators are in degrees in the upcoming equations.
Furthermore, every coefficient that is denoted as a function of specific parameters (e.g. CX,0 (α, β, δe))
can be found as a look-up-table in [33].

X-axis
First the X-axis coefficient yields:

CX =CX,0 (α, β, δe) + ∆CX,lef

(
1− δlef

25

)
+
cq

2V

[
CXq

(α) + ∆CXq,lef
(α)

(
1− δlef

25

)]
where

∆CX,lef = CX,lef (α, β)− CX,0 (α, β, δe = 0◦)

Y-axis
For the Y-axis force coefficient:

CY =CY,0(α, β) + ∆CY,lef

(
1− δlef

25

)
+

[
∆CY,δa=20◦ +∆CY,δa=20◦,1ef

(
1− δ1ef

25

)](
δa
20

)
+∆CY,δr=30

(
δr
30

)
+

b

2 V

{[
CYr

(α) + ∆CYr,lef
(α)

(
1− δlef

25

)]
r +

[
CYp

(α) + ∆CYP,lef
(α)

(
1− δlef

25

)]
p

}
where

∆CY,lef = CY,lef (α, β)− CY,0(α, β)

∆CY,δa=20◦ = CY,δa=20◦ (α, β)− CY,0(α, β)

∆CY,δa=20◦,lef
= CY,δa=20◦ ,lef (α, β)− CY,lef (α, β)− [CY,δa=20◦ (α, β)− CY,0(α, β)]

∆CY,δr=30◦ = CY,δr=30◦ (α, β)− CY,0(α, β)

71

A.1. Aerodynamic equations 72

Z-axis
For the z-axis force coefficient:

CZ =CZ,0 (α, β, δe) + ∆CZ,1ef

(
1− δlef

25

)
+

cq

2V

[
Czq (α) + ∆CZq,lef

(α)

(
1− δlef

25

)]
where

∆CZ,lef = CZ,lef (α, β)− CZ,0 (α, β, δe = 0◦)

Rolling moment
For the rolling-moment coefficient:

Cl =Cl,0 (α, β, δe) + ∆Cl,lef

(
1− δlef

25

)
+

[
∆Cl,δa=20◦ +∆Cl,δa=20◦,1ef

(
1− δ1ef

25

)](
δa
20

)
+∆Cl,δr=30

(
δr
30

)
+

b

2V

{[
Clr (α) + ∆Clr,lef (α)

(
1− δlef

25

)]
r

+

[
Clp(α) + ∆Clp,lef (α)

(
1− δlef

25

)]
p

}
+∆Clβ (α)β

where

∆Cl,lef = Cl,lef (α, β)− Cl,0 (α, β, δe = 0◦)

∆Cl,δa=20◦ = Cl,δa=20◦ (α, β)− Cl,0 (α, β, δe = 0◦)

∆Cl,δa=20◦,1ef = Cl,δa=20◦,1ef
(α, β)− Cl,1ef (α, β)− [Cl,δa=20◦ (α, β)− Cl (α, β, δe = 0◦)]

∆Cl,δr=30◦ = Cl,δr=30◦ (α, β)− Cl,0 (α, β, δe = 0◦)

Pitching moment
For the pitching moment coefficient:

Cm =Cm,0 (α, β, δe)nδe (δe) + Cz (xcg,ref − xcg) + ∆Cm,1ef

(
1− δ1ef

25

)
+

cq

2V

[
Cmq

(α) + ∆Cmq,lef
(α)

(
1− δlef

25

)]
+∆Cm(α)

where
∆Cm,lef = Cm,lef (α, β)− Cm,0 (α, β, δe = 0◦)

Yawing moment
For the yawing moment coefficient:

Cn =Cn,0 (α, β, δe) + ∆Cn,lef

(
1− δlef

25

)
− CY (xcg,ref − xcg)

c

b

+

[
∆Cn,δa=20

+∆Cn,δa=20◦,lef

(
1− δlef

25

)](
δa
20

)
+∆Cn,δr=30◦

(
δr
30

)
+

b

2V

{[
Cnr (α) + ∆Cnr,lef

(α)

(
1− δlef

25

)]
r

+

[
Cnp

(α) + ∆Cnp,lef
(α)

(
1− δlef

25

)]
p

}
+∆Cnβ

(α)β

A.2. MATLAB code implementation 73

where

∆Cn,lef = Cn,lef (α, β)− Cn,0 (α, β, δe = 0◦)

∆Cn,δa=20◦ = Cn,δa=20◦ (α, β)− Cn,0 (α, β, δe = 0◦)

∆Cn, δa=20◦,lef = Cn,δa=20◦,lef
(α, β)− Cn,lef (α, β)− [Cn,δa=20◦ (α, β)− Cn (α, β, δe = 0◦)]

∆Cn,δr=30◦ = Cn,δr=30◦ (α, β)− Cn,0 (α, β, δe = 0◦)

A.2. MATLAB code implementation
The equations of the section above have been implemented in a MATLAB function. This function can
be found below. All the lookup tables are contained in the AeroCoefficients structure that has to be
provided to the function and is unpacked.

1 function [C_X, C_Y, C_Z, C_l, C_m, C_n] = AeroCoefficients_Computation(delta_aerl, alpha,
beta, Mach, V, omega_BE_B, AeroCoefficients, b, c, x_cgR, x_cg)

2

3 %% Inputs
4

5 % Conversions
6 deg2rad = pi/180;
7 rad2deg = 180/pi;
8

9 % Control inputs
10 delta_a = delta_aerl(1,1);
11 delta_e = delta_aerl(2,1);
12 delta_r = delta_aerl(3,1);
13 delta_l = delta_aerl(4,1);
14

15 % Angular rate vector
16 p = omega_BE_B(1,1);
17 q = omega_BE_B(2,1);
18 r = omega_BE_B(3,1);
19

20 % Breakpoints
21 alpha1_vec = AeroCoefficients.alpha1;
22 alpha2_vec = AeroCoefficients.alpha2;
23 beta1_vec = AeroCoefficients.beta1;
24 delta_e1_vec = AeroCoefficients.delta_e1;
25 delta_e2_vec = AeroCoefficients.delta_e2;
26

27 %% CX
28 CX0_vec = AeroCoefficients.CX.CX0;
29 CX_lef_vec = AeroCoefficients.CX.CX_lef;
30 CX_q_vec = AeroCoefficients.CX.CX_q;
31 CX_qlef_vec = AeroCoefficients.CX.CX_qlef;
32

33 % Interpolate
34 CX0 = interpn(alpha1_vec, beta1_vec, delta_e1_vec, CX0_vec, alpha, beta, delta_e, '

linear');
35 CX_lef = interpn(alpha2_vec, beta1_vec, CX_lef_vec, alpha, beta, 'linear');
36 CX_q = interp1(alpha1_vec, CX_q_vec, alpha, 'linear');
37 CX_qlef = interp1(alpha2_vec, CX_qlef_vec, alpha, 'linear');
38 CX0_e0 = interpn(alpha1_vec, beta1_vec, delta_e1_vec, CX0_vec, alpha, beta, 0, 'linear')

;
39

40 % Computations
41 DCX_lef = CX_lef - CX0_e0;
42 C_X = CX0 + DCX_lef * (1-delta_l / (deg2rad * 25)) + (c * q) / (2 * V) * (CX_q + CX_qlef *

(1-delta_l / (deg2rad * 25)));
43

44 %% CY
45 CY0_vec = AeroCoefficients.CY.CY0;
46 CY_rud30_vec = AeroCoefficients.CY.CY_rud30;
47 CY_r_vec = AeroCoefficients.CY.CY_r;
48 CY_p_vec = AeroCoefficients.CY.CY_p;
49 CY_lef_vec = AeroCoefficients.CY.CY_lef;
50 CY_ail20lef_vec = AeroCoefficients.CY.CY_ail20lef;

A.2. MATLAB code implementation 74

51 CY_ail20_vec = AeroCoefficients.CY.CY_ail20;
52 DCY_plef_vec = AeroCoefficients.CY.DCY_plef;
53 DCY_rlef_vec = AeroCoefficients.CY.DCY_rlef;
54

55 % Interpolate
56 CY0 = interpn(alpha1_vec, beta1_vec, CY0_vec, alpha, beta, 'linear');
57 CY_rud30 = interpn(alpha1_vec, beta1_vec, CY_rud30_vec, alpha, beta, 'linear');
58 CY_r = interp1(alpha1_vec, CY_r_vec, alpha, 'linear');
59 CY_p = interp1(alpha1_vec, CY_p_vec, alpha, 'linear');
60 CY_lef = interpn(alpha2_vec, beta1_vec, CY_lef_vec, alpha, beta, 'linear');
61 CY_ail20 = interpn(alpha1_vec, beta1_vec, CY_ail20_vec, alpha, beta, 'linear');
62 CY_ail20lef = interpn(alpha2_vec, beta1_vec, CY_ail20lef_vec, alpha, beta, 'linear');
63 DCY_plef = interp1(alpha2_vec, DCY_plef_vec, alpha, 'linear');
64 DCY_rlef = interp1(alpha2_vec, DCY_rlef_vec, alpha, 'linear');
65

66 % Computations
67 DCY_lef = CY_lef - CY0;
68 DCY_ail20 = CY_ail20 - CY0;
69 DCY_ail20lef = CY_ail20lef - CY_lef - (CY_ail20 - CY0);
70 DCY_rud30 = CY_rud30 - CY0;
71 C_Y = CY0 + DCY_lef*(1 - delta_l / (25 * deg2rad)) + (DCY_ail20 + DCY_ail20lef * (1 - delta_l

/ (25 * deg2rad))) * (delta_a / (20 * deg2rad)) ...
72 + DCY_rud30 * (delta_r / (30 * deg2rad)) + b / (2 * V) *((CY_r + DCY_rlef * (1 -

delta_l / (25 * deg2rad))) * r + (CY_p + DCY_plef * (1 - delta_l / (25 * deg2rad)))
* p);

73

74

75 %% CZ
76 CZ0_vec = AeroCoefficients.CZ.CZ0;
77 CZ_lef_vec = AeroCoefficients.CZ.CZ_lef;
78 CZ_q_vec = AeroCoefficients.CZ.CZ_q;
79 CZ_qlef_vec = AeroCoefficients.CZ.CZ_qlef;
80

81 % Interpolate
82 CZ0 = interpn(alpha1_vec, beta1_vec, delta_e1_vec, CZ0_vec, alpha, beta, delta_e, '

linear');
83 CZ_lef = interpn(alpha2_vec, beta1_vec, CZ_lef_vec, alpha, beta, 'linear');
84 CZ_q = interp1(alpha1_vec, CZ_q_vec, alpha, 'linear');
85 CZ_qlef = interp1(alpha2_vec, CZ_qlef_vec, alpha, 'linear');
86 CZ0_e0 = interpn(alpha1_vec, beta1_vec, delta_e1_vec, CZ0_vec, alpha, beta, 0, 'linear')

;
87

88 % Computations
89 DCZ_lef = CZ_lef - CZ0_e0;
90

91 C_Z = CZ0 + DCZ_lef * (1-delta_l / (25 * deg2rad)) + (c * q) / (2 * V) * (CZ_q + CZ_qlef *
(1-delta_l / (25 * deg2rad)));

92

93

94 %% CL
95 CL0_vec = AeroCoefficients.CL.CL0;
96 CL_rud30_vec = AeroCoefficients.CL.CL_rud30;
97 CL_r_vec = AeroCoefficients.CL.CL_r;
98 CL_p_vec = AeroCoefficients.CL.CL_p;
99 CL_lef_vec = AeroCoefficients.CL.CL_lef;
100 CL_ail20lef_vec = AeroCoefficients.CL.CL_ail20lef;
101 CL_ail20_vec = AeroCoefficients.CL.CL_ail20;
102 DCL_plef_vec = AeroCoefficients.CL.DCL_plef;
103 DCL_rlef_vec = AeroCoefficients.CL.DCL_rlef;
104 DCL_beta_vec = AeroCoefficients.CL.DCL_beta;
105

106 % Interpolate
107 CL0 = interpn(alpha1_vec, beta1_vec, delta_e2_vec, CL0_vec, alpha, beta, delta_e,

'linear');
108 CL_rud30 = interpn(alpha1_vec, beta1_vec, CL_rud30_vec, alpha, beta, 'linear');
109 CL_r = interp1(alpha1_vec, CL_r_vec, alpha, 'linear');
110 CL_p = interp1(alpha1_vec, CL_p_vec, alpha, 'linear');
111 CL_lef = interpn(alpha2_vec, beta1_vec, CL_lef_vec, alpha, beta, 'linear');
112 CL_ail20 = interpn(alpha1_vec, beta1_vec, CL_ail20_vec, alpha, beta, 'linear');
113 CL_ail20lef = interpn(alpha2_vec, beta1_vec, CL_ail20lef_vec, alpha, beta, 'linear');
114 DCL_plef = interp1(alpha2_vec, DCL_plef_vec, alpha, 'linear');

A.2. MATLAB code implementation 75

115 DCL_rlef = interp1(alpha2_vec, DCL_rlef_vec, alpha, 'linear');
116 DCL_beta = interp1(alpha1_vec, DCL_beta_vec, alpha, 'linear');
117 CL_e0 = interpn(alpha1_vec, beta1_vec, delta_e2_vec, CL0_vec, alpha, beta, 0, '

linear');
118

119 % Computations
120 DCL_lef = CL_lef - CL_e0;
121 DCL_ail20 = CL_ail20 - CL_e0;
122 DCL_ail20lef = CL_ail20lef - CL_lef - (CL_ail20 - CL_e0);
123 DCL_rud30 = CL_rud30 - CL_e0;
124

125 C_l = CL0 + DCL_lef*(1 - delta_l / (25 * deg2rad)) + (DCL_ail20 + DCL_ail20lef * (1 - delta_l
/ (25 * deg2rad))) * (delta_a / (20 * deg2rad)) ...

126 + DCL_rud30 * (delta_r / (30 * deg2rad)) + b / (2 * V) *((CL_r + DCL_rlef * (1 -
delta_l / (25 * deg2rad))) * r + (CL_p + DCL_plef * (1 - delta_l / (25 * deg2rad)))
* p) + DCL_beta * beta;

127

128

129 %% CM
130 CM0_vec = AeroCoefficients.CM.CM0;
131 CM_lef_vec = AeroCoefficients.CM.CM_lef;
132 CM_q_vec = AeroCoefficients.CM.CM_q;
133 DCM_qlef_vec = AeroCoefficients.CM.DCM_qlef;
134 DCM_vec = AeroCoefficients.CM.DCM;
135 eta_delta_e_vec = AeroCoefficients.CM.eta_delta_e;
136

137 % Interpolate
138 CM0 = interpn(alpha1_vec, beta1_vec, delta_e1_vec, CM0_vec, alpha, beta, delta_e, '

linear');
139 CM_lef = interpn(alpha2_vec, beta1_vec, CM_lef_vec, alpha, beta, 'linear');
140 CM_q = interp1(alpha1_vec, CM_q_vec, alpha, 'linear');
141 DCM_qlef = interp1(alpha2_vec, DCM_qlef_vec, alpha, 'linear');
142 DCM = interp1(alpha1_vec, DCM_vec, alpha, 'linear');
143 eta_delta_e = interp1(delta_e1_vec, eta_delta_e_vec, delta_e, 'linear');
144

145 CM0_e0 = interpn(alpha1_vec, beta1_vec, delta_e1_vec, CM0_vec, alpha, beta, 0, 'linear')
;

146

147 % Computations
148 DCM_lef = CM_lef - CM0_e0;
149 C_m = CM0 * eta_delta_e + C_Z * (x_cgR - x_cg) + DCM_lef * (1-delta_l / (25 * deg2rad)) + (c

* q) / (2 * V) * (CM_q + DCM_qlef * (1-delta_l / (25 * deg2rad))) + DCM;
150

151

152 %% CN
153 CN0_vec = AeroCoefficients.CN.CN0;
154 CN_rud30_vec = AeroCoefficients.CN.CN_rud30;
155 CN_r_vec = AeroCoefficients.CN.CN_r;
156 CN_p_vec = AeroCoefficients.CN.CN_p;
157 CN_lef_vec = AeroCoefficients.CN.CN_lef;
158 CN_ail20lef_vec = AeroCoefficients.CN.CN_ail20lef;
159 CN_ail20_vec = AeroCoefficients.CN.CN_ail20;
160 DCN_plef_vec = AeroCoefficients.CN.DCN_plef;
161 DCN_rlef_vec = AeroCoefficients.CN.DCN_rlef;
162 DCN_beta_vec = AeroCoefficients.CN.DCN_beta;
163

164 % Interpolate
165 CN0 = interpn(alpha1_vec, beta1_vec, delta_e2_vec, CN0_vec, alpha, beta, delta_e, '

linear');
166 CN_rud30 = interpn(alpha1_vec, beta1_vec, CN_rud30_vec, alpha, beta, 'linear');
167 CN_r = interp1(alpha1_vec, CN_r_vec, alpha, 'linear');
168 CN_p = interp1(alpha1_vec, CN_p_vec, alpha, 'linear');
169 CN_lef = interpn(alpha2_vec, beta1_vec, CN_lef_vec, alpha, beta, 'linear');
170 CN_ail20 = interpn(alpha1_vec, beta1_vec, CN_ail20_vec, alpha, beta, 'linear');
171 CN_ail20lef = interpn(alpha2_vec, beta1_vec, CN_ail20lef_vec, alpha, beta, 'linear');
172 DCN_plef = interp1(alpha2_vec, DCN_plef_vec, alpha, 'linear');
173 DCN_rlef = interp1(alpha2_vec, DCN_rlef_vec, alpha, 'linear');
174 DCN_beta = interp1(alpha1_vec, DCN_beta_vec, alpha, 'linear');
175 CN_e0 = interpn(alpha1_vec, beta1_vec, delta_e2_vec, CN0_vec, alpha, beta, 0, 'linear')

;
176

A.2. MATLAB code implementation 76

177 % Computations
178 DCN_lef = CN_lef - CN_e0;
179 DCN_ail20 = CN_ail20 - CN_e0;
180 DCN_ail20lef = CN_ail20lef - CN_lef - (CN_ail20 - CN_e0);
181 DCN_rud30 = CN_rud30 - CN_e0;
182 C_n = CN0 + DCN_lef * (1 - delta_l / (25 * deg2rad)) - C_Y * (x_cgR - x_cg) * c / b + (

DCN_ail20 + DCN_ail20lef * (1 - delta_l / (25 * deg2rad))) * (delta_a / (20 * deg2rad))
...

183 + DCN_rud30 * (delta_r / (30 * deg2rad)) + b / (2 * V) *((CN_r + DCN_rlef * (1 -
delta_l / (25 * deg2rad))) * r + (CN_p + DCN_plef * (1 - delta_l / (25 *
deg2rad))) * p) + DCN_beta * beta;

184

185

186

187 end

B
Appendix: Equations of motion and

sensor dynamics MATLAB functions

Section 2.4 discussed the derivation of the equations of motion from a tensor point of view. For com-
pleteness, the MATLAB implementation is posted here. Furthermore, the sensor dynamics from Sec-
tion 2.5 can also be found here.

B.1. Translational dynamics
Equation 2.36 in Section 2.4.1 showed the derivation of the translational equations of motion in the
wind frame:

m

 V̇

β̇
α̇

 = X
(
−m[T]WB

[
ΩBE

]B
[T]WB

[
vEB
]W

+ [T]WB [fa,b]
B +m[T]WB [T]BL[g]L

)
This is implemented in MATLAB using the following function:

1 function [Vabdot, vdot_BE_B, v_BE_B] = Translation_Dynamics_Computation(Vab, omega_BE_B,
f_B_B, m_B)

2

3 %% Inputs
4

5 V = Vab(1);
6 alpha = Vab(2);
7 beta = Vab(3);
8

9 p = omega_BE_B(1);
10 q = omega_BE_B(2);
11 r = omega_BE_B(3);
12

13 %% Auxiliary variables
14

15 X = [1, 0, 0;
16 0, 1/V, 0;
17 0, 0, 1/(V*cos(beta))];
18

19 T_W_B = [cos(alpha)*cos(beta), sin(beta), cos(beta)*sin(alpha);
20 -cos(alpha)*sin(beta), cos(beta), -sin(alpha)*sin(beta);
21 -sin(alpha), 0, cos(alpha)];
22

23 Omega_BE_B = [+0 -omega_BE_B(3) +omega_BE_B(2); ...
24 +omega_BE_B(3) +0 -omega_BE_B(1); ...
25 -omega_BE_B(2) +omega_BE_B(1) +0];
26

27

28 %% Translational Dynamics (TD)
29 Vbadot = X*(-m_B*T_W_B*(Omega_BE_B)*(T_W_B.')*[V; 0; 0]+T_W_B*f_B_B)/m_B;

77

B.2. Translational kinematics 78

30

31 Vdot = Vbadot(1);
32 alphadot = Vbadot(3);
33 betadot = Vbadot(2);
34 Vabdot = [Vdot; alphadot; betadot];
35

36 % Compute uvw dynamics
37 u = V*cos(alpha)*cos(beta);
38 v = V*sin(beta);
39 w = V*sin(alpha)*cos(beta);
40

41 udot = cos(alpha)*cos(beta)*Vdot - cos(beta)*sin(alpha)*V*alphadot - cos(alpha)*sin(beta)*V*
betadot;

42 vdot = sin(beta)*Vdot + cos(beta)*V*betadot;
43 wdot = cos(beta)*sin(alpha)*Vdot + cos(alpha)*cos(beta)*V*alphadot - sin(alpha)*sin(beta)*V*

betadot;
44

45 %% Outputs
46 v_BE_B = [u; v; w];
47 vdot_BE_B = [udot; vdot; wdot];

B.2. Translational kinematics
The translational kinematics could be found in Section 2.4.2. There the following equation was intro-
duced:

[DEsBE]
L = [T]BL[V E

B]B

Which is implemented in the following function:
1 function v_BE_L = Translation_Kinematics_Computation(v_BE_B, T_BL)
2

3 %% Translational Kinematics (TK)
4

5 % Local velocity vector (body)
6 v_BE_L = T_BL'*v_BE_B;

B.3. Attitude dynamics
For the attitude dynamics, Section 2.4.3 showed the derivation of:[

dωBE

dt

]B
=
([
IBB
]B)−1 (

−[ΩBE]B
[
IBB]B [ωBE]B + [ΩBE]B [IBR

BR
]B + [mB]

B
)

And also this equation has a MATLAB implementation:
1 function omegadot_BE_B = Attitude_Dynamics_Computation(omega_BE_B, m_B_B, I_BB_B, l_BrE_Br_B)
2

3 %% Auxiliary variables
4

5 % Angular rate SS matrix (body)
6 Omega_BE_B = [+0 -omega_BE_B(3) +omega_BE_B(2); ...
7 +omega_BE_B(3) +0 -omega_BE_B(1); ...
8 -omega_BE_B(2) +omega_BE_B(1) +0];
9

10 %% Attitude Dynamics (AD)
11 omegadot_BE_B = I_BB_B\(-Omega_BE_B*(I_BB_B*omega_BE_B + l_BrE_Br_B) + m_B_B);

B.4. Attitude kinematics
The last differential equation of the equations of motion was shown in Section 2.4.4: ϕ̇

θ̇

ψ̇

 =

 1 sin(ϕ)tan(θ) cos(ϕ)tan(θ)
0 cos(ϕ) −sin(ϕ)
0 sin(ϕ)/cos(θ) cos(ϕ)/cos(θ)

 p
q
r

B.5. Sensor dynamics 79

1 function edot_BL = Euler_Angle_Computation(e_BL, omega_BE_B)
2

3 % Euler angles (BVR)
4 phi_B = e_BL(1,1);
5 theta_B = e_BL(2,1);
6 psi_B = e_BL(3,1); %#ok<NASGU>
7

8 %% Auxiliary variables
9

10 % AK matrix
11 T_edotomega = [1 +sin(phi_B)*tan(theta_B) +cos(phi_B)*tan(theta_B);...
12 0 +cos(phi_B) -sin(phi_B);...
13 0 +sin(phi_B)*sec(theta_B) +cos(phi_B)*sec(theta_B)];
14

15 %% Euler angle computation
16 % Euler angle rate (BVR)
17 edot_BL = T_edotomega*omega_BE_B;

Furthermore, Section 2.4.4 showed the computation of the transformation matrix [T]BL:

[T]BL =

 cosψ cos θ sinψ cos θ − sin θ
cosψ sin θ sinϕ− sinψ cosϕ sinψ sin θ sinϕ+ cosψ cosϕ cos θ sinϕ
cosψ sin θ cosϕ+ sinψ sinϕ sinψ sin θ cosϕ− cosψ sinϕ cos θ cosϕ

and the organisation step:

[T (n+ 1)]BL = [T (n)]BL + k(1/2)(I − [T (n)]BL[T (n)]BL)[T (n)]BL;

This was combined in the following MATLAB function:
1 function [T_BL, e_BL] = DCM_Computation(k, e_BL)
2

3 %% Inputs
4

5 % Euler angles (BVR)
6 phi_B = e_BL(1,1);
7 theta_B = e_BL(2,1);
8 psi_B = e_BL(3,1);
9

10 %% DCM computation
11

12 % Euler angles (BVR)
13 phi_B = phi_B - 2*pi*floor((phi_B+pi)/(2*pi)); % -pi <= phi <= +pi
14 theta_B = theta_B; %#ok<ASGSL>
15 psi_B = psi_B; %#ok<ASGSL> % -pi <= psi <= +pi
16

17 % DCM matrix (BVR)
18 T_BL = [+cos(psi_B)*cos(theta_B) +sin(psi_B)*cos(theta_B)

-sin(theta_B);...
19 +cos(psi_B)*sin(theta_B)*sin(phi_B)-sin(psi_B)*cos(phi_B) +sin(psi_B)*sin(theta_B)*

sin(phi_B)+cos(psi_B)*cos(phi_B) +cos(theta_B)*sin(phi_B);...
20 +cos(psi_B)*sin(theta_B)*cos(phi_B)+sin(psi_B)*sin(phi_B) +sin(psi_B)*sin(theta_B)*

cos(phi_B)-cos(psi_B)*sin(phi_B) +cos(theta_B)*cos(phi_B)];
21

22 % Orthogonality
23 T_BL = T_BL + k*(1/2)*(eye(3)-T_BL*T_BL')*T_BL;
24

25 %% Outputs
26

27 e_BL = [phi_B; theta_B; psi_B];

B.5. Sensor dynamics
Lastly, the equation for the sensor dynamics was given by:[

nIS
]B

=
1

g0

([
aIB
]B

+
d

dt
(
[
ΩBI

]B
)sBS +

[
ΩBI

]B [
ΩBI

]B
[sBS]

B − [T]
BL

[g]
L

)
This was introduced in Section 2.5. To compute this equation, the following function was used:

B.5. Sensor dynamics 80

1 function n_SE_B = fcn(a_BE_B, omega_BE_B, omegadot_BE_B, T_BL, s_SB_B, g0)
2

3 %% Inputs
4

5

6 %% Auxiliary variables
7

8 % Angular rate SS matrix (body)
9 Omega_BE_B = [+0 -omega_BE_B(3) +omega_BE_B(2); ...
10 +omega_BE_B(3) +0 -omega_BE_B(1); ...
11 -omega_BE_B(2) +omega_BE_B(1) +0];
12

13 % Angular acceleration SS matrix (body)
14 Omegadot_BE_B = [+0 -omegadot_BE_B(3) +omegadot_BE_B(2); ...
15 +omegadot_BE_B(3) +0 -omegadot_BE_B(1); ...
16 -omegadot_BE_B(2) +omegadot_BE_B(1) +0];
17

18 g_L = [0; 0; g0];
19

20 %% Grubin transformation
21

22 % Acceleration
23 a_SE_B = a_BE_B + Omega_BE_B*Omega_BE_B*s_SB_B + Omegadot_BE_B*s_SB_B - T_BL*g_L;
24 % Modify sign of normal acceleration
25 a_SE_B = [1 0 0; 0 1 0; 0 0 -1]*a_SE_B;
26

27 % Load factor
28 n_SE_B = a_SE_B/g0;

C
Appendix: Engine model

The engine simulation of Nguyen [33] is expanded upon in this section. Furthermore, theMATLAB/Simulink
implementation is shown. This can be seen in Figure C.1. It basically consists of 3 steps. Firstly, a
conversion from normalized throttle command δt to a commanded power is performed. Secondly, the
engine dynamics have to be simulated. Lastly, the conversion from power to thrust has to be performed,
that depends on the current operating condition of the engine.

Figure C.1: Simulink implementation of engine model.

Starting with the first step, the conversion from normalized throttle command to power (in percentage)
command. This is done using a piece wise linear equation, where the region of δt > 0.77 activates the
afterburner and the region δt ≤ 0.77 is referred to as the military mode:{

Pcmd = 64.94δt; δt ≤ 0.77 (military)
Pcmd = 217.38δt − 117.38; δt > 0.77 (afterburner)

(C.1)

Subsequently, the commanded power is the input for the engine dynamics. The logic diagram to com-
pute the differential equation is shown in Figure C.2. It splits the computation of P2 and 1

τ into four
regions based on the value of the commanded engine power Pcmd and the current engine power P
depending if these are bigger or smaller than 50. The values of P2 and 1

τ are used for the differential

81

82

equation. If necessary the following formula is used to calculate the time constant:

fτ

1
τ = 1; (P2− Pcmd) < 25
1
τ = 1.9− 0.036(P2− Pcmd) 25 ≤ (P2− Pcmd) ≤ 50
1
τ = 0.1; (P2− Pcmd) > 50

(C.2)

Lastly, the conversion from percentage power to thrust has to be performed. Here, the values of Tidle,
Tmil and Tmax are retrieved from lookup tables, depending on the Mach number and altitude. The
tables can be found in Nguyen [33].{

T = Tidle + (Tmil − Tidle)
P
50 ; P < 50

T = Tmil + (Tmax − Tmil)
P−50
50 ; P ≥ 50

(C.3)

Figure C.2: Logic diagram for engine dynamics [33].

D
Appendix: Stability margins of the

direct trajectory controller

In Chapter 5, only the worst-case stability margins were shown. For completeness, the margins along
the most important frequency range are added here.

(a) Loop at a time input (δt,cmd) stability margin. (b) Loop at a time input (δe,cmd) stability margin.

(c) Loop at a time output (V) stability margin. (d) Loop at a time output (Vz) stability margin.

Figure D.1: Direct trajectory controller disk margins.

83

84

(e) Loop at a time output (nz) stability margin. (f) Loop at a time output (q) stability margin.

(g) Simultaneous input stability margin. (h) Simultaneous output stability margin.

(i) Simultaneous input/output stability margin.

Figure D.1: Direct trajectory controller disk margins (continued).

	Acknowledgements
	Summary
	Introduction
	Background
	Problem statement
	Approach
	Report Outline

	F-16 Model
	Introduction to tensors
	Rotation tensors
	Rotational derivative, velocity and acceleration
	Euler transformation

	Model introduction and overview
	Aerodynamic model
	Equations of motion in tensor formulation
	Translational dynamics
	Translational kinematics
	Attitude dynamics
	Attitude kinematics

	Sensor dynamics
	Actuator dynamics
	Model verification
	Trimming
	Linearized state and input matrices
	Linearized output equations

	Quantifying the pitfalls of gain scheduling and multi-model design
	Linearization and trim point uncertainty
	Jacobian linearization
	Velocity-based linearization

	Hidden coupling terms
	Stability of time-varying systems
	Quantifying frozen-time robustness using the normalized coprime stability margin
	Controller analysis example

	Pitch-rate control
	Short-period approximation
	Structure, constraints and synthesis
	Controller structure
	Hard constraints
	Soft constraints
	Controller gain surfaces

	Linear analysis
	Nonlinear implementation and analysis
	Normalized coprime stability margin
	Hidden coupling
	Trim point uncertainty
	Frozen-time stability

	Direct trajectory longitudinal control
	Structure, constraints and synthesis
	Controller structure
	Soft constraints
	Synthesized controller

	Linear analysis
	Nonlinear implementation and analysis
	Normalized coprime stability margin
	Trim point uncertainty and frozen-time robustness

	Conclusion & Recommendations
	Conclusion
	Structured H controller synthesis
	Frozen-time robustness

	Recommendations
	Increased frozen-time analysis and synthesis
	Velocity-based linearization using tensors
	Including uncertainty in linear synthesis
	Flight-path controller allocation problem and over-actuation

	Bibliography
	Appendix: Aerodynamic model equations and implementation
	Aerodynamic equations
	MATLAB code implementation

	Appendix: Equations of motion and sensor dynamics MATLAB functions
	Translational dynamics
	Translational kinematics
	Attitude dynamics
	Attitude kinematics
	Sensor dynamics

	Appendix: Engine model
	Appendix: Stability margins of the direct trajectory controller

