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Abstract

To cater to the increasing demand in short-range passenger air transport and the research in electric
and hybrid aircraft, there is a renewed interest in the research of propellers. Propellers are known
to have high aerodynamic efficiency, which translates to lower fuel burn in comparison to other jet
engines, making it an attractive option for airlines to operate it in regional transport. With such a
heightened interest in the research of propellers for future applications, it is crucial to study the effect of
the shape-design of the blades on its aerodynamic performance parameters. Since complex flow fields
are produced by the complex geometry of modern propellers, advanced analysis tools are needed to
accurately derive the propeller designs in the design process. Therefore, aerodynamic design sensitivity
analysis based on the implementation of advanced Computational fluid dynamics tools can provide
design insights to obtain efficient propeller designs. The goal of this dissertation is to perform the
aerodynamic analysis of a propeller using multiphysics simulation software - SU2 and ANSYS Fluent
and then perform a design sensitivity study using SU2’s adjoint capabilities.

The verification and validation of SU2’s flow solver is performed using the two propeller test cases-
straight and swept blade. A RANS method with S-A turbulence model is used to perform the aerodynamic
analysis of the propellers. For the same computational grid, a higher discretization error was estimated
for SU2 as compared to ANSYS Fluent. SU2’s flow simulation results are used to draw a comparison
between the straight and swept blade based on the aerodynamic performance. The redistribution of
the blade loading due to the introduction of sweep led to differences in the aerodynamic performance
of the blades. It was found that for a constant freestream velocity, the swept blade operated with
higher aerodynamic efficiency at high advance ratios with the largest gain of 0.47% at J=1.2. While it
experiences a marginal loss in the efficiency at lower advance ratios with the largest decrement being
0.37% at J=0.6.

SU2’s adjoint solver is used to perform discrete adjoint-based sensitivity analysis of the propellers
at multiple design points. The Free-Form Deformation method is implemented to parameterize the
propeller blades and study the sensitivity of the propeller’s performance parameters to the deformation
of the surface. This study has been performed for two objective functions- thrust coefficient and torque
coefficient. The surface sensitivities of the thrust coefficient, obtained from the adjoint analysis indicated
that the regions of high sensitivity are located at the leading-edge and outboard portion of the blade’s
suction side. The concentration of the regions of high sensitivity changed with the advance ratios. The
surface sensitivities of the torque coefficient result in regions of high sensitivities similar to the ones
seen in the case of thrust coefficient. Both blades show similar surface sensitivity contours of the two
objective functions.

Based on the gradient information, the highest gradients of thrust coefficient is attained for the
design variables located near the trailing edge of the straight blade, at a given radial position. Swept
blade shows a trend of chordwise gradient similar to the straight blade at all radial positions, except the
tip region. The introduction of a sweep at the tip results in the shift of the dominant design variable
from trailing edge to mid-chord. The gradients of the torque coefficient resulted in a chordwise trend
similar to that of the thrust coefficient for both blades, attributing to the dominant lift contribution to
thrust and torque at the computed advance ratios.

The resulting understanding of the sensitivity of the propeller’s performance parameters to the
variation in blade shape design from this study can be used as an input for future design studies aimed
at designing efficient propellers. Likewise, the RANS-based CFD methodology incorporating the adjoint
method used in this work can be aimed at developing adjoint-based multidisciplinary design capabilities
for propellers.
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Nomenclature

Abbreviations

2D = Two-dimensional
3D = Three-dimensional
AD = Algorithmic/Automatic Differentiation
ADT = Actuator Disk Theory
BEMT = Blade Element Momentum Theory
CAD = Computer Aided Design
CFD = Computational Fluid Dynamics
DES = Detached Eddy Simulation
DNS = Direct Numerical Simulation
FD = Finite Differences
FFD = Free-Form Deformation
LES = Large Eddy Simulation
MCA = Mid-Chord Alignment
NS = Navier-Stokes
NURBS = Non-Uniform Rational B-Spline
PDE = Partial Differential Equations
RANS = Reynolds Averaged Navier-Stokes
RBF = Radial Basis Functions
S-A = Spalart Allmaras
SST = Shear Stress Transport

Symbols

a = Speed of sound, m/s
Bi = Bernstein polynomial of order i
b = Local blade chord, m
CD = Drag coefficient
Cf = Skin-friction coefficient
CL = Lift coefficient
CP = P/(ρ∞n3D5), Power coefficient
Cp = Pressure coefficient
CT = T/(ρ∞n2D4) Thrust coefficient
D = Diameter of the Propeller, m
e = Total energy
J = V∞/(nD), Advance ratio of the Propeller; Objective

function
kij = Stiffness matrix
lchord = Chord length of blade section, m
M = Mach Number
Mt = Tip Mach number
Mw = Molecular weight, kg/kmol
n̂ = Unit normal vector
n = Revolutions per minute of Propeller, s−1

P = Shaft Power, W;
Prd = Dynamic Prandtl number
Prt = Turbulent Prandtl number
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p = Static pressure, Pa; Observed order of accuracy
p∗ = Theoretical order of accuracy
pt = Total pressure, Pa
Q = Torque,Nm
QC = Q/(ρ∞V 2

∞D3), Torque coefficient based on q∞
q∞ = ρV 2/2, Freestream dynamic pressure, Pa
R = Residual Vector; Universal gas constant, J/kg s
Re = Reynolds number
r = Radial position on the blade, m
S = Sutherland’s temperature, K
T = Thrust, N; Static temperature, K
TC = T/(q∞D2), Thrust coefficient based on q∞
Tt = Total temperature, K
t = Time, s
U = State Variables Vector / Flow Variables Vector
Ū = Adjoint State Variables Vector
Us(%) = Standard deviation of fit
Uϕ = Estimated discretization error
u = Velocity, m/s
u∗ = Friction velocity, m/s
−→u = Surface displacement
V∞ = Freestream velocity, m/s
Vrel =

√
(V∞)2 + (ωr)2, Relative velocity at blade section,

m/s
X = Volumetric grid
Xsurf = Surface grid coordinates
y+ = Dimensionless wall distance
yfirstlayer = First layer thickness, m
α = Design Variable, deg; Angle of attack, deg
β = Blade pitch angle, deg
δij = Kronecker delta function
δRE = Error estimator
ϵ = Energy transfer rate
ηK = Kolmogorov length scale
ηP = Efficiency of Propeller
λ = Adjoint variable vector
µ = Dynamic viscosity of the fluid, kg/m.s
ν = Kinematic viscosity of the fluid
ρ = Density, kg/m3

ρ0 = Freestream density, kg/m3

τw = Wall shear stress, Pa
τij = Deviatoric stress tensor
ϕ = Flow quantity
ω = Rotational velocity, rad/s
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1
Introduction

This chapter provides a brief introduction to the propeller research to highlight the motivation behind
this study. Based on the motivation, the research objective and research questions are presented.
Section 1.1 presents a brief discussion on the advancements in the field of propeller research in the past
and renewed motivation. Section 1.2 discusses the numerical techniques used in the design studies of
aerodynamic applications. Section 1.3 presents the propeller performance methodologies that are used in
the propeller’s design and performance analysis. The research objective and sub-objectives to meet them
are presented in Section 1.4. Section 1.5 concludes the chapter by presenting the outline of this report.

1.1. Propeller Research: Past, Present and Future
1.1.1. The Past
Propellers have been instrumental in vaulting humans into a new era of transportation by launching the
aviation era, since the day first mechanically controlled, sustained, and powered heavier-than-air flight
of Wright Flyer took place on 17th Dec 1903. Propellers used in the Wright Flyer’s propulsion system
was deemed as one of the most innovative ideas conceived by the Wright brothers. They treated the
propellers as a rotating wing that moved in a spiral course as it spun through the air. The idea was
based on the same reasoning responsible for the generation of upward force (lift) on a curved surface
placed in a stream of air and concluded that a horizontal force (thrust) would be generated when such a
surface is placed vertically and rotated through the airflow. This theory of propeller led to extensive
research during the pioneer era of aviation in order to explore the high-efficiency capabilities of the
propellers. Since then propellers have come of age, as these have often been sought as a solution to
overcome the challenges faced by the aviation industry in the past as well as in present.

Figure 1.1: Comparison of installed propulsive efficiency of turboprops and turbofans at cruise Mach no.[10]

The propeller research experienced a lull period from the mid-1950s to the mid-1970s, due to the
success of modern jet engines, i.e., turbojet and turbofan, which provided high-speed capabilities allowing
cruise flights up to Mach 0.8. But, a dramatic rise in fuel prices in the 1970s prompted NASA and

1
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several industry partners to research the propeller technology, to obtain a fuel-efficient alternative to the
jet engines. The result of this research was the development of fuel-efficient, quieter propeller with lower
internal and external noise environment that could be operated at high cruise Mach speeds and were
called prop-fans. Prop-fans are advanced propeller designs with highly swept thin blades to reduce the
noise radiation as well as losses due to compressibility effects experienced at high cruise speeds. Prop-fans
achieved higher propulsive efficiency than turbojets and turbofans for the given range of high-speed
during cruise flight, i.e., M=0.7 to M=0.8, as shown in Fig.1.1 [10, 35]. The high-propulsive efficiency
capabilities of the propellers can be attributed to its ability to induce smaller velocity increments to
a large mass of airflow and thus providing large savings in fuel consumption. Although, extensive
research was done on single- and counter-rotating prop-fans from aerodynamics, aeroacoustics, and
structural point of view but low and stable fuel prices at end of the 1980s halted various propeller
research programs.

1.1.2. The Present and Future
Turboprop engines allow up to 10-30% of fuel savings as compared to a turbofan engine operating at a
similar speed [57]. Moreover, due to its ability to generate a large amount of thrust at low speeds, the
propeller-driven aircrafts require shorter take-off/ landing lengths and climb time, making it attractive for
airports with shorter runways. This has been advantageous for the airline operators to open new routes
to the smaller destinations, thus, enhancing the regional connectivity. The aforementioned advantages
of propellers have led to the wide use of turboprop aircraft for regional transport over short distances in
civil aviation.

(a) Bombardier Q400 (b) Artistic impression of NASA X-57 Maxwell Electric
Airplane

Figure 1.2: Propeller-driven aircraft.

In the present day scenario, aviation industry faces a new challenge to meet the rapid growth in the
number of passengers while meeting the environmental regulations set by regulating authorities. To
cater to the strong growth in the number of passengers in the future, the consequent increase in the
number of flights is obvious, leading to an inherent rise in the emissions. According to ACARE’s [1]
forecast, the air traffic will grow by a rate of 4-5% annually and 16 billion passengers will be plying
annually via air transport by 2050. To keep the effect of aviation on the environment in check, ACARE
aims to introduce new technologies as well as enhance the current ones, to cut down the CO2 and NOx
emissions per passenger kilometer by 75% and 90% respectively by 2050. It aims to achieve a reduction
in noise emissions from aircraft by 65%. The growth in air traffic is driven by the creation of new routes
in the coming years, especially the regional routes. As per the market forecast, there is a continued
demand for the turboprop aircraft as the regional traffic is expected to grow by 4.5% annually up to
2037 [44]. This has led to a renewed interest in propeller research to meet the emission goals. Given the
efficient operation of the propeller system, the novel propulsion technologies are being integrated with
the propeller to derive different electric-, hybrid-, and hydrogen-powered aircraft. With the substantial
increase in propeller-driven aircraft, the inherent rise in emissions is apparent. Therefore, to adhere to
the emission standards set by the regulatory authorities, it is of great importance to study the design
of the propeller blades to develop optimal propeller designs for aerodynamically efficient operations of
turboprop aircraft.
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1.2. Sensitivity Analysis using Adjoint Methods
The capability of the computational simulations to predict the fluid flow over a surface has been
widely used in the design process of aerodynamic configurations. The Computational Fluid Dynamics
(CFD) aids the designer by bridging the pure theory with the wind tunnel experiments, by solving the
Navier-Stokes equations to obtain approximate results for a real-world phenomenon. As the field of CFD
has matured over the years, accurate aerodynamic prediction methods are being used predominantly in
the design process as compared to the wind tunnel tests, which is a comparatively expensive process.
Computational simulations are extensively used in evaluating several alternative designs during the
design phase, but it is also difficult to perform such an exhaustive evaluation of the possible design
variations without incorporating automated numerical design methods with it.

As stated by Jameson et al. [45], the true potential of CFD is realized by combining its capabilities
with the numerical design methods to produce optimum and efficient configuration based on the design of
interest. Such a coupling between the CFD analysis tools and the numerical methods can be implemented
in performing optimization and sensitivity studies of the aerodynamic designs. Such an approach was
emphasized by Sobieski [50], to extend the capabilities of CFD for performing sensitivity analysis.
Sensitivity analysis can lay the design guidelines and aid the design team, by determining the influence
of each of the design variables over the key aspects of the design. The gradient information derived from
such sensitivity studies can be useful while working on aircraft design, where the inputs from multiple
disciplines have to be integrated.

The sensitivity analysis plays a fundamental role in the gradient-based optimization algorithms which
are commonly employed to solve the aerodynamic optimization problem. The efficient and accurate
computation of the sensitivity gradients of the objective function with respect to design variables is
central to the success of the gradient-based optimization studies. It dictates the direction in which the
design variable must be changed to achieve the convergence of the objective function. There are several
approaches to evaluate the sensitivities, some of the commonly used are- Finite Differences, Complex
Variable Approach, Direct Methods, and Adjoint Methods.

The Finite Differences can be used to compute the gradient vector, but this approach comes at the
cost of computing one flow solution for each design variable, thus, leading to prohibitively expensive
computational cost for the aerodynamic designs involving a large number of design variables. Such
a computationally expensive process can be circumvented by implementing the adjoint method. The
gradient vector through adjoint method implementation is computed by solving an adjoint equation
that has the coefficients defined by the solution of the flow equation, where the computational cost of
solving the adjoint equation is comparable to that of solving the flow equations [26]. Thus, the complete
gradient vector is computed at a computational cost of two flow solutions while being independent of the
number of design variables. Pironneau [42] was first to implement adjoint method in the field of fluid
mechanics to derive adjoints of the Euler equations. Jameson’s work [24] further extended this method
to compressible inviscid flow. Finally, Nielsen and Anderson [36] and Jameson et al. [25] applied the
adjoint method to Navier-Stokes equations. Since then, the advantage of the adjoint method has led to
its wide use in the gradient-based optimization of aerodynamic designs.

1.3. Propeller Performance Methodologies in Design Studies
As aforementioned in the Section 1.1.1, the spur of development of the propeller due to increased
emphasis on the fuel efficiency of the aircraft, different numerical methodologies were adopted to design a
an optimal propeller. A brief review of the some of the methodologies used for predicting the propeller’s
aerodynamic performance coupled with optimization methods have been presented here. Most of the
classical propeller performance theories have proceeded from Rankine-Froude’s simple momentum theory,
according to which the propeller is assumed as a disc with an infinite number of blades and produces a
uniform change in the velocity and pressure of the streamwise flow passing through the disc. This simple
theory doesn’t account for the blade geometric properties and is useful for determining the theoretical
efficiency of the propeller. The details of the propeller are considered in the blade element analysis as
it computes the resultant velocity at each local airfoil section of the propeller blade using the inflow
velocity and rotational velocity component. It is further used to determine the local angles of attack at
different sections along the radial span of the blade. The theoretical prediction of thrust and torque
values are within 10% of the measured thrust and torque values [28]. Several extensions to the basic
theory have been formulated by including the hub/tip losses, swirl corrections, rotational corrections, etc.
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The blade element theory is one of the most commonly used low-fidelity methods incorporated in the
propeller design studies. Several numerical optimizations applied to propeller blade design couple the
blade element theory with an optimization routine to design optimal blades. Bernstein’s [4] feasibility
study and Mendoza’s [33] work were one of the first works to incorporate the blade element theory with
a gradient based numerical optimization method to obtain optimal propeller design.

Further, vortex theory was developed based on the simple blade element theory and the momentum
theory analysis that accounts for the influence of the vorticity in the slipstream. This method yields
propeller’s performance parameters more precisely as the thrust and torque values are computed based
on the induced velocities. While Goldstein’s lifting line model is based on modelling the propeller blade
as a series of horseshoe vortices. An exhaustive comparison between the forgoing classical propeller
modelling methodologies is presented by Zondervan [60]. Similar to blade element theory, the vortex
theory and lifting line theory have been implemented to perform propeller shape optimizations such as
work by Zhen et al.[59] used to estimate the optimal efficiency of the blade based on variation of number
of blades, operating speed and blade radius. Cho and Lee [8] implemented vortex lattice method along
with lifting surface theory to determine the propeller blade design to achieve improvement in efficiency.

The applicability of the above-mentioned theoretical methods came with certain limitations as
outlined by Korkan et al.[28]. For example, for accurate performance prediction of the high-speed
propellers, importance must be given to the wake modelling and propeller-nacelle interaction while
using the lifting line model. Additionally, the centrifugal viscous effects on the lift coefficient are not
accounted for, while using the 2D section data in blade element theory. This leads to differences in the
prediction of the propeller’s performance as first observed by Himmelskamp [23]. To compensate for
the differences in the results and account for the 3D effects, different correction factors are used in the
low-fidelity methods.

With the invent of the Computational Fluid Dynamics (CFD), a high-fidelity method allows to
perform the aerodynamic analysis of the propeller by discretizing and solving the governing equations
i.e., Navier-Stokes equations. By solving the mass and momentum equations, an accurate representation
of the propeller flowfield and its resulting slipstream can be simulated. In comparison to the low-fidelity
method, this is computationally expensive as the governing equations are solved on the computational
mesh of the domain which is dependent on the mesh density. Based on the type of simulation, the
time accurate and time-averaged simulations are performed. Amongst many propeller optimizations
works, Marinus [30] incorporated steady RANS-based CFD model along with Evolutionary Algorithms
to perform a multidisciplinary optimization of the propeller blades. Similarly, Yu et al. [40] used high
fidelity CFD method to perform an aerodynamic and aeroacoustic optimization of the propeller blade
with an implementation of a surrogate model.

Based on the works cited above, most of the design studies are aimed at optimizing the blade
for a single design operating condition, except Marinus’s work [30] where the blade is optimized for
aerodynamic and aeroacoustic performance at take-off and cruise conditions. However, few design studies
present a dedicated sensitivity analysis of the propeller’s performance to the variation in shape design
of the blade. In the past, works of Biermann and Hartman [5] and Platt[43] presented sensitivity of
the propeller’s performance with respect to change in airfoil blade sections and blade parameters by
performing wind tunnel testing. With the advent of advance numerical methods and CFD similar study
can be performed in a cost effective and less time consuming method. By coupling the high fidelity CFD
tools with the gradient-based adjoint method, a multi-point sensitivity analysis can be useful to provide
physical insights into the effect on the propeller’s performance due to variation in the blade shape design.

1.4. Research Objective
Based on the foregoing sections, it can be inferred that there is a rise in the demand for the propeller
driven aircraft whether hybrid, electric or turboprop. In the case of electric aircraft, the energy density
of the battery remains limited, it is beneficial to study the propeller blade design to develop an aircraft
with high efficiency. Likewise, an efficient design of propeller blade for a turboprop-driven aircraft is
relevant to improve fuel savings and reduce emissions to adhere to the environmental regulations, as the
passenger volume in air transport increases.

The project aims to develop a RANS-based CFD methodology incorporating adjoint method to
perform the sensitivity analysis of the propeller’s performance parameters with respect to the deformation
of the blade shape, at different operating conditions. To meet the objective of the current research,
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open-source multiphysics simulation and design software SU2, has been chosen based on its adjoint
capabilities [14]. The research objective of the current study is-

“To perform aerodynamic and sensitivity assessment of isolated propeller blades using SU2’s flow
and adjoint capabilities, to gain an improved understanding of the effect of blade shape design on its
aerodynamic performance.”

To meet the above stated research objective, following goals have been outlined-

• Perform isolated propeller simulations to verify results of SU2’s RANS-based CFD solver against
that of commercial software, ANSYS Fluent.

• Perform isolated propeller simulations for the straight and swept blades to investigate the difference
in the aerodynamic performance of the two blades.

• Perform adjoint-based sensitivity analysis of the isolated propeller configuration of the straight
and swept blades with - a) thrust and b) torque as the objective functions and assess the effect on
the shape deformation on the objective functions.

The outcomes of this work will be a preliminary step of the research field aimed at developing
adjoint-based multidisciplinary design capabilities for propellers.

1.5. Report Outline
The current report has been summarized into several chapters as explained here. Chapter 2 summarizes
the theory related to the basic principles of aerodynamics of an isolated propeller. It also presents the
review of available aerodynamic analysis models for modeling the propeller flow and estimating the
propeller’s aerodynamic performance. Chapter 3 presents a discussion on sensitivity analysis, with an
emphasis on the adjoint-method. The geometry of the propeller test cases and setup of the RANS based
CFD solver is presneted in 4. Chapter 5 presents a verification and validation of SU2’s flow solver. It
also presents the comparison and discussion on the aerodynamic performance of the swept and unswept
propellers. Chapter 6 presents the presents the results obtained from adjoint-based sensitivity analysis of
the propeller test cases. Chapter 7 concludes the report by presenting conclusions and recommendations
based on this research.



2
Basic Propeller Theory and Aerodynamics

Analysis Methods

The current chapter presents an overview of the working principles of an isolated propeller along with the
methods used to perform the aerodynamic and performance analysis of the propeller. The fundamental
working of the propellers and the parameters used to adjudge its performance are discussed in Section
2.1. Section 2.2 presents a discussion on the RANS CFD solver used for aerodynamic and performance
analysis in this research, with relevant governing equations and closure models.

2.1. Basic Propeller Theory
To analyze the performance characteristics of an isolated propeller, the aerodynamics of the propeller
and key non-dimensional parameters are discussed in the current section.

2.1.1. Isolated Propeller Aerodynamics
A propeller-driven aircraft is propelled by converting shaft power to propulsive power. The propeller
can be defined as a set of rotating lifting surfaces, radially arranged at the hub of the shaft. A propeller
blade is essentially an assembly of airfoil sections with variation in twist, chord, and thickness from hub
to tip as shown in Figure 2.1.

Figure 2.1: Variation of the blade geometry parameters along propeller blade [46].

As a blade can be discretized into a set of airfoils stacked from hub to tip, the aerodynamics of the
blade can be studied by decomposing the forces acting on each of the blade section. On rotation of the
propeller, each independent section of airfoil along the length of the blade produces lift and drag. The
thrust and torque are a consequence of the these forces, since these forces experience an angle of attack
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due to the translation and rotation of the blade. The velocity and resulting forces at a propeller blade
section are illustrated in Figure 2.2.

Figure 2.2: Velocity and force diagram acting on a blade element of a propeller [32].

The propeller generates thrust by inducing small velocity increments to a large amount of flow
passing through the propeller, resulting in high efficiency. In accordance with the momentum theory, as
the airflow passes across the propeller, the slipstream contracts downstream as shown in Fig.2.3(a). It
can be inferred from Fig. 2.3(b) and 2.3(d) the propeller accelerates the flow leading to a drop in the
static pressure. This causes a discontinuous rise in total pressure across the propeller disk as seen in Fig.
2.3(c).

Figure 2.3: Illustration of actuator disk theory based on momentum theory: a) Slipstream contraction, b) Velocity
variation, c) Total pressure variation, d) Static pressure variation across the propeller [32].

2.1.2. Propeller Performance Parameters
The propeller performance is adjudged by using non-dimensional parameters as mentioned below-
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• Advance Ratio - It is a ratio of the freestream velocity of the fluid and tip speed of the propeller.
Advance ratio of a propeller captures the forward motion traversed per unit rotational speed of
the propeller and is given by:

J =
V∞

n.D
(2.1)

where v∞ is the freestream velocity, n represents spinning rate and D is the diameter of the
propeller.

• Thrust Coefficient- The thrust coefficient is given by:

CT =
T

ρ.n2.D4
(2.2)

where T represents propeller thrust and ρ is the density of flow.
• Power Coefficient- The power coefficient is given by:

CP =
P

ρ.n3.D5
(2.3)

where P is the shaft power of the propeller.
• Efficiency- Efficiency of a propeller is defined as a ratio of the effective power and shaft power.

The efficiency of a propeller is given by:

η =
T.V∞

P
=

T.V∞

2πQ
(2.4)

where Q is the torque delivered.

2.2. RANS-based Aerodynamics Analysis Solver
An aerodynamic solver is used to model the propeller flow and estimate propeller performance along
with various flow details. Based on the theoretical ability to model the physical effects of the propeller
aerodynamics and the level of sophistication, several aerodynamic prediction methods are available. The
2D-based propeller prediction methods such as Blade element momentum theory (BEMT) or Vortex
Lattice Method (VLM) give relatively cheaper in terms of the computational time as compared to
3D-CFD methods. But, they can’t capture the flow physics around the propeller as accurately as CFD
methods. CFD analysis methods are based on the equations governing the motion of fluid flow which
are derived from the conservation laws. The techniques used for modelling the flow by resolving these
governing equations, that is, RANS, DES, and LES.

In the current section, governing equations and turbulence modelling has been reviewed. Since
the current study pertains to the use of RANS-based solver for aerodynamic analysis, an elaborated
description of the governing equations and closure models is presented. Arguments concerning the choice
to implement RANS-based solver for the computation of the flow field around the propeller is described
in the following section.

2.2.1. Governing Equations
The governing equations for compressible viscous fluid are derived from the laws of conservation of mass,
momentum and energy expressed within the confines of the continuum hypothesis. A finite control
volume is considered in the space, through which fluid flows. The finite control volume can be considered
to be stationary or moving. The equations are presented in the form of differential equations.

Conservation of mass
The law of conservation of mass states that total quantity of mass entering the control volume per unit
time is equal to the total quantity of mass leaving the control volume per unit time. The conservation of
mass is described using continuity equation and is given by,

∂ρ

∂t
+

∂(ρui)

∂xi
= 0 (2.5)

where t denotes time, ui and xi are velocity and i th direction in the Cartesian coordinate respectively.
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Conservation of momentum
Law of conservation of momentum is described using Newton’s second law of motion which states that
the rate of change of momentum of the fluid in a control volume is due to the total flow of the momentum
into the domain and external forces acting on the fluid within the control volume. The external forces
can be further divided into the body and surfaces forces. The equation for the conservation of momentum
for a compressible viscous flow is given by,

∂(ρui)

∂t
+

∂(ρujui)

∂xj
= −∂pδij

∂xi
+

∂τij
∂xj

+ fi (2.6)

where δij is the Kronecker delta function, τij denotes deviatoric stress tensor and fi is the body force.
In propeller applications, body forces are often not considered in absolute frame of reference.

Conservation of energy
Conservation of energy is described using first law of thermodynamics, which states that the energy can
neither be created nor be destroyed and can only be transformed from one form to another. The energy
conservation equation is given by,

∂(ρeo)

∂t
+

∂(ρujeo)

∂xj
= −∂ujp

∂xj
+

∂uiτij
∂xj

− fiui + q̇ (2.7)

where eo denotes total energy which is expressed as, eo = e + 1
2 ρu

2 . q̇ represents the heat flux,
which is neglected in the current research.

2.2.2. Turbulence Modeling & Simulation
Turbulence Scales
Turbulent flows with sufficiently high Reynolds number are characterized by a spectrum of eddies or
vortices with varying dimensions in space and time. The dimensions of the eddies have an upper bound
dictated by the dimension of the device or confinement of the flow field and the lower bound is dictated
by the dimension of the scale at which the diffusive action of molecular viscosity dominates. Integral
scale eddies are related to the large scale instabilities in the turbulent flow and are created by extracting
energy from the mean flow motion [29]. The integral scale eddies are unstable and break up into smaller
eddies until a certain scale is reached where viscous dissipation becomes effective.

As the concentration of the turbulent kinetic energy is largest in the neighborhood of integral scales,
these eddies are also called energy-containing eddies. Eddies at different scales contain different amounts
of turbulent kinetic energy which is determined by the intensity of the velocity fluctuation at a given
scale. The kinetic energy is transferred from the eddies at one scale to another through the concept of
energy cascading. According to the energy cascade concept, for the turbulent flows with high Reynolds
number, there exists a range of scales for which the rate of energy transfer is independent of the viscous
dissipation. This range of scale through which the turbulent kinetic energy is transferred from integral
scales to smaller ones is called inertial sub range. The rate of energy transfer from the integral scale to
the dissipative scales is given by,

ϵ =
u′3

l0
(2.8)

where, ϵ is the energy transfer rate, u ′ is the characteristic velocity fluctuation, and l0 is the integral
length scale. The kinetic energy from the integral scale eddies is supplied to smaller scales at a rate ofϵ
until eddies at dissipative length scale are reached where viscous dissipation dominates. This dissipative
length scale is called the Kolmogorov scale, ηk . Following energy conservation, the rate of energy
dissipation from the Kolmogorov eddies must be equal to the rate of energy supplied from the integral
scales. The Kolmogorov length scale is determined through dimensional analysis using energy transfer
rate, ϵ and characteristic kinematic viscosity of the fluid ν,

ηk =

(
ν3

ϵ

)1/4

(2.9)

By using the above relations, the relation between integral scale and Kolmogorov scale is determined
and is given by,
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l0
ηk

= Re3/4 (2.10)

where Re is the Reynolds number. The equation implies that disparity between the integral scale
and Kolmogorov scale increases with the turbulent Reynolds number. Thus, the turbulent flows with
high Reynolds number consist of eddies with a wide range of length scales. Therefore, making it
computationally expensive to directly solve the Navier-Stokes equations for flows with high Reynolds
number.

Turbulence Modeling
The governing equations of the turbulent flows can be solved using different computational simulation
and modeling approaches, namely- Direct Numerical Simulation (DNS), Large Eddy Simulation (LES),
and Reynolds-averaged Navier-Stokes (RANS). These approaches differ from each other based on how
one resolves the turbulent structures in the flow.

Out of the aforementioned computational approaches, DNS involves the most rigorous treatment of
the turbulent flow as it provides a direct solution to the Navier-Stokes equations. It yields solutions to
the governing equation free from the errors that occur due to turbulence modelling. It accurately resolves
all the scales present in the turbulent flow, but at the expense of enormous computational demand. For
homogenous isotropic turbulence, the computational cost of DNS scales with Re3 , making it infeasible
to computationally resolve a three-dimensional turbulent flow with high Reynolds number [16].

LES is an alternative approach used for simulating the turbulent flows, which is computationally
less expensive than DNS. LES accurately resolves the integral scales, which contains more energy than
smaller scales, and invokes turbulence models to model the effects of smaller scales. It is based on the
assumption that as one proceeds from largest to smallest scales, the smaller scales become increasingly
geometry-independent. At a certain small scale, flow is isotropic and the turbulence is modelled using
an isotropic model. Although LES is computationally less expensive than DNS, implementing it for the
sensitivity analysis of an objective function remains computationally intensive.

RANS technique is based on the statistical approach where a flow quantity is decomposed into
two parts- a mean and a fluctuating part. This approach is based on solving the mean part of all the
flow quantities in the turbulent flow. In this implementation, the averaged quantities are obtained
by averaging the non-linear Navier-Stokes equations, which must be modeled. The resulting averaged
equations require additional turbulence models to accurately represent the flow dynamics of a turbulent
flow.

Even though one has an access to the DNS solution of a turbulent flow, the amount of information
obtained, in space and time, is overwhelming and practically of little use. From the engineering point
of view, most engineers are interested in knowing a few properties of a turbulent flow. Therefore,
using the LES and DNS approach to compute these quantities is infeasible and RANS results as a
reasonable compromise between the computational load and accuracy. In the proceeding section, the
RANS approach with relevant closure models will be presented in detail.

2.2.3. Reynolds Averaged Navier-Stokes based Solver
The inherent randomness of turbulent flows can be analyzed and modeled using statistical approach by
averaging the non-linear Navier-Stokes equations. The RANS-based approach is based on decomposition
of the flow quantity of the governing equations into its mean component and time-dependent fluctuating
component. The RANS equations are derived with a combination of two types of averages- Reynolds
average and Favre average (density-weighted average), where the latter is used for compressible flows.
Equation 2.11 depicts the decomposition of the flow quantity ϕ into its mean part ϕ(x, t) and fluctuating
part ϕ′(x, t) using Reynolds averaging,

ϕ(x, t) = ϕ(x, t) + ϕ′(x, t) (2.11)

Whereas, Favre averaging is used to split the flow quantity ϕ into its Favre mean ϕ̃(x, t) and Favre
fluctuation ϕ′′(x, t) as shown in Equation 2.12.

ϕ(x, t) = ϕ̃(x, t) + ϕ′′(x, t) (2.12)
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The Favre mean is given by equation 2.13,

ϕ̃(x) =
ρϕ

ρ
(2.13)

where, ρ is the density, thus, representing a density weighted average. In the above decompositions of
the flow variable in equations 2.11 and 2.12, the mean part of the flow quantity can be derived using
different forms of Reynolds averaging, namely- time averaging, spatial averaging and ensemble averaging.
In the current study, time averaging is used for the computation of the mean part of the flow quantity.

The averaged form of the Navier-Stokes equation is obtained by applying Reynolds averaging to p
and ρ, and Favre averaging to the velocity and remaining flow quantities in the equation. The resultant
averaged equations are presented in the Einstein notation using Cartesian coordinates,

∂ρ

∂t
+

∂(ρũi)

∂xi
= 0 (2.14)

∂(ρũi)

∂t
+

∂(ρũj ũi)

∂xj
= −

∂(ρu′′
j u

′′
i )

∂xj
− ∂p

∂xi
+

∂τij
∂xj

+ fi (2.15)

∂(ρeo)

∂t
+

∂(ρujeo)

∂xj
= −∂ujp

∂xj
+

∂uiτij
∂xj

− fiui (2.16)

In addition to the averaged flow quantities, the averaged equations also include the additional terms
representing the exchanges between the fluctuating quantities. These additional terms are Reynolds
stress and turbulent scalar flux. The occurrence of these additional terms leads to a closure problem,
where the number of unknowns are more than equations and the system of equations remains unclosed.
Consequently, additional relations are needed to model these terms and close the system of equations.

Bosinuessq eddy viscosity assumption is a viable approach to take the aforementioned closure problem.
This hypothesis for the turbulent transport of flow quantities is based along the lines of molecular diffusive
transport. This approach is based on the assumption that the shear stress is linearly proportional to the
mean rate of the strain. The Reynolds stress can be written as,

− ρũ′′
i u

′′
j = 2µT S̃ij −

2

3
µT S̃kkδij −

2

3
ρk̃δij (2.17)

S̃ij =
1

2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
(2.18)

where µT is the turbulent viscosity coefficient, δij is the Kronecker delta, and Sij is the strain rate
tensor. The turbulent heat transport term is defined as;

ρũ′′
j h

′′ = −κT
∂T̃

∂xj
(2.19)

where κT is the turbulent thermal heat conductivity. To model the turbulence using the Boussinesq
hypothesis, the total viscosity, µ, is written as a sum of the laminar component, µdyn , and a turbulent
component, µtur .

µ = µdyn + µtur, µ∗ =
µdyn

Prd
+

µtur

Prt
(2.20)

where Prd and Prt are the dynamic and turbulent Prandtl numbers, respectively. To close system of
equations, the dynamic viscosity is determined using Sutherland’s law, whereas, the turbulent viscosity
is estimated through a turbulence model.

There are multiple turbulence models available to close the system of equations. SU2 suite presents
two turbulence models for the analysis and modeling of turbulent flow applications- one-equation Spalart
Allmaras (S-A) and other being the two-equation Shear Stress Transport (SST) model of Menter.
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Closure Model: Spalart Allmaras (S-A) model
The Spalart-Allmaras model is a one-equation model used to compute the turbulent viscosity [51]. It is
formulated to accurately model the applications involving wall-bounded flows. The turbulent viscosity is
computed using the following set of equations,

µtur = ρν̃fv1, fv1 =
χ3

χ3 + c3v1
, χ =

ν̂

ν
, ν =

µdyn

ρ
. (2.21)

where the ν̃ is the transport variable and obtained by solving the transport equation. The S-A model
effectively is a low Reynolds number model, requiring the near-wall y+ resolution to be properly resolved
to y+ ∼ 1. Even though the S-A model is computationally cheaper, but it faces issues in dealing with
recirculation and flow separation.

Closure Model: Shear Stress Transport (SST) model
The Shear Stress Transport (SST) model by Menter [34] is a two-equation model for the turbulent
kinetic energy, k , and the specific dissipation, ω. This model combines the superior features of two
traditional models, i.e., accurate modeling of the near-field in k − ω model and freestream independence
of thek − ϵ model in the far-field region. The turbulent viscosity is computed using,

µtur =
ρa1k

max(a1ω, SF2)
(2.22)

where a1 is the model constant, S =
√
2SiSj , and F2 is the second blending function. This model is

suitable for the wide range of flow applications involving the presence of adverse pressure gradients and
shocks. SST model has been widely used in the modeling of the propeller flow field.



3
Adjoint-based Sensitivity Analysis

Methodology

The current chapter presents the design chain, governing equations and the processes involved in the
discrete adjoint-based sensitivity analysis. Section 3.1 present a brief methodology of the computation of
the sensitivities in aerodynamic design process. A discussion on the surface parameterization and mesh
deformation techniques, which are of fundamental importance to the sensitivity analysis is presented in
Section 3.2 and 3.3 respectively. Section 3.4 presents the discrete adjoint sensitivity equations. Finally,
a discussion on the interpretation of the adjoint sensitivities is presented in Section 3.5.

3.1. Sensitivity Analysis Methodology
Sensitivity analysis is the process of computing the derivatives of one or more output quantities with
respect to several independent input variables. In a design-based study of aerodynamic applications, the
output quantities refer to objective and constraint functions of interest, while design variables defining
the geometry are used as the input. Such a capability to determine the sensitivity information is highly
desirable for performing-design optimization, error estimation, and parameter sensitivity.

In an aerodynamic design-based application, the objective function, J , can be defined as,

J = J(X,α)
where X = X(Xsurf , α)

(3.1)

where, α represents the vector of the design variables, Xsurf represents the surface grid coordinates,and
X represents the volumetric grid. Eq.3.1 shows the dependence of the objective function of the interest
on the the design variables α. Similar dependence can be depicted through the schematic of the fluid
dynamic design chain as shown in Figure 3.1.

α Parameterization

Xsurf = Xsurf (α)

Mesh Deformation

X = X(Xsurf )

Flow Solver

U = U(X)

U, J
Xsurf X

Figure 3.1: Schematic of fluid dynamic design chain for objective function computation.

The parameters in the design vector, α, depend on the parameterization method that is used to
define the geometry. A variation in the design vector leads to a change in the surface coordinates, Xsurf ,
which is translated into the movement of the volume mesh, X . The deformed mesh is given as an input
to the flow solver to compute the flow variables, U , and objective function of interest, J .

The schematic representation of the gradient computation of the total gradient is shown in Figure
3.2. As can be inferred from Figure 3.2, the gradients from different modules of the design chain are
used as an input to compute the total gradient, dJ

dα . The parameterization tool uses the vector of the
design variables as input and computes the sensitivity of the surface coordinates with respect to the

13
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α

Parameterization

Mesh Deformation

Flow Solver

Adjoint Solver

Gradient Computation

dJ
dα

= dJ
dX

dX
dXsurf

dXsurf

dα

Xsurf

X

U

dXsurf

dα

dX
dXsurf

dJ
dX

Figure 3.2: Schematic of gradient computation of the total gradient.

design variables, dXsurf

dα . The mesh deformation algorithm computes the mesh sensitivities, dX
dXsurf

. Using
the flow solution U as an input from the flow solver, the adjoint solver computes the adjoint variables.
Based on the adjoint values, the sensitivity of the objective function with respect to the volumetric
grid coordinates, dJ

dXsurf
, is further computed. The total gradient is computed by using the inputs from

different modules and given by,

dJ

dα
=

dJ

dX

dX

dXsurf

dXsurf

dα
(3.2)

3.2. Surface Parameterization
Parameterization is the process of mathematically modeling the geometry under study. It is a crucial
step in the shape optimization process of the design phase, as it impacts the formulation and the
implementation of the optimization problem [47]. The parametrization must account that the design
space is large enough to include the optimal designs while keeping geometric limitations in place.
As the complexity of the geometry increases, it becomes necessary to model the problem with an
accurate and consistent shape parameterization technique, yielding compact and effective sets of design
variables. The selection of a suitable parameterization method is a highly problem-dependent process.
Various shape parameterization techniques have been proposed and implemented in the design studies of
aerodynamic applications, which have been surveyed and reviewed by Samareh [47]. Some of the shape
parameterization techniques have been discussed below-

• Discrete Method- The discrete method parameterizes the shape of the blade by using the coordinates
on the surface grid as the design variables. It is the simplest way to parameterize the geometry and
leads to rich design space, thus, theoretically making it possible to represent any shape. Jameson
[24] and Campbell [7] had implemented this approach to parameterize the airfoils. This method
leads to a large number of design variables and it is difficult to maintain a smooth geometry.
Additionally, the requirement for multipoint constraints and dynamically adjusting the bounds to
ensure the smoothness of the airfoil, makes this complex and infeasible to apply.

• Analytical Approach- Analytical approach is based on a linear combination of basis functions and
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a set of perturbation functions added linearly to the geometry surface, either defined analytically
or numerically. Hicks-Henne’s [22] shape function method is one of the most common analytical
methods used. Hicks-Henne shape function consists of ‘bumps’ defined by equation 3.3.

Y = sin3(Xβ) (3.3)

where, β is used to control the position of the bump in the chord-wise direction of an airfoil. The
drawback of this method is that it lacks robustness as the change in shape due to the change in
the perturbation function is non-intuitive [55]. An extra set of perturbation function is required to
make the approach efficient.

• CAD-based Methods- CAD-based methods employ B-spline and/or NURBS to generate the curve
and surfaces of a blade geometry, whose control points are directly derived from defining the
characteristics and design parameters of the blade (such as thickness distribution, blade chord, etc.)
[3]. This approach allows defining the geometry intuitively which are related to the aerodynamic
design variables (camber, twist, thickness, etc.) and therefore making this approach ideal for
parametric changes in the geometry.

The main advantage of this method is its easy implementation of the geometrical constraints.
However, this comes at the cost of narrowing down the design space. Additionally, the computation
of the sensitivities is a challenge [56].

• Free-Form Deformation Methods- This method is based on the surface morphing technique which
is used to deform the solid models. In FFD method, the geometry of interest is encapsulated
within a lattice box and the box is parameterized as a Bezier box [12]. The surface of this box
is divided into a set of control points, the number of which depends on the order of the chosen
Bernstein polynomials. The expression in equation 3.4 is used to parameterize the Bezier box.

X(u, v, w) =

l,m,n∑
i,j,k=0

Pi,j,kB
l
j(u)B

m
j (v)Bn

j (w) (3.4)

where u, v ,w ∈ [0,1] and B i represents the Bernstein polynomial of order i . The Cartesian
coordinates of the points on the surface of the geometry in the physical space are transformed into
the parametric space of the FFD box (Bezier box). The control points of the box are used as the
design variables, which on perturbation deform the box, and thus deforming the enclosed geometry.
On deformation, the new Cartesian coordinates of the enclosed geometry can be calculated using
the equation 3.4.

Yu et al.[40] and Pagano et al. [37] implemented this method of parameterization in the opti-
mization of a propeller blade. As stated by Samareh [47], although FFD methods are suitable for
parameterizing complex geometries, it is hard to specify the optimization bounds and constraints
as the designers have less intuitive control over the surface of the geometry.

Amongst the above stated parameterizations methods, SU2 offers two parameterization techniques
for the definition of the design variables- Hicks-Henne’s bump functions and Free-Form Deformation [12].
For two dimensional problems, Hicks-Henne bump functions are used for the modification of the shape.
Whereas, FFD method is employed for the shape modification of the three-dimensional calculations.
Additionally, there are works where the authors have integrated the different parameterization techniques
such as CAD-based parameterization [2] and CST techniques [21] into SU2-based design cycle to perform
optimization studies. Based on the literature cited above and the reduced complexity, FFD method has
been adopted in the current research.

3.3. Mesh Deformation
In the sensitivity analysis and design optimisation studies, the design variables control the shape of
geometry, and for every perturbation in the design variables, there is a corresponding change in the
shape of the geometry. When the geometry undergoes a change, the volumetric mesh has to be deformed
to confine the changing fluid domain. At each iteration, the change in the surface mesh is governed by
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the parameterisation tool whereas the change in the volumetric mesh is implemented by either of the
approaches: mesh regeneration and mesh deformation.

Mesh regeneration involves the deletion of the old mesh and regenerating a new mesh for every
corresponding change in the shape of geometry, leading to higher computational requirements. Regener-
ating a new mesh at every time step requires special mesh quality controls and consumes high CPU
cost making it an impractical approach. Moreover, mapping the solution from old mesh to new mesh
consumes extra computational cost.

In comparison to the mesh regeneration, mesh deformation approach is computationally cheaper,
more practical, and flexible. Spring analogy, linear elasticity, and radial basis functions are some of the
commonly used mesh deformation approaches. SU2 employs spring method to perform mesh deformation.
Once the perturbation is performed using the FFD method, the vertices of the unstructured mesh are
deformed using the spring method. This method is essentially based on the definition of the stiffness
matrix connecting two ends of the spring, mesh edge in this case. Each mesh node is subjected to
equilibrium forces suing the following equation 3.5,∑

j∈Ni

kij
−→e ij

−→e T
ij

−→ui =
∑
j∈Ni

kij
−→e ij

−→e T
ij
−→uj (3.5)

where, kij is the stiffness matrix, −→ui is the unknown displacement, −→uj known surface displacement,
Ni represents the set of neighboring points to node i , and −→e ij represents the unit vector in the
direction connecting two points. The known surface displacements −→uj are used to compute the unknown
displacements −→ui . Conjugate gradient algorithm with Jacobi preconditioning is used to solve the system
of equations iteratively.

3.4. Adjoint-based Sensitivity Analysis
Sensitivity analysis is a computationally intensive operation and dictates the efficiency of an optimization
process. Based on the problem definition of shape optimization, an appropriate analysis approach is
chosen for the calculation of the sensitivities. The adjoint method is a highly efficient and effective
approach to computing sensitivity derivatives of the function of interest with respect to a large number
of design variables. As will be explained through the mathematical formulation in the current section,
the implementation of the adjoint method leads to the computation of accurate derivatives at a cost
independent of the number of design variables.

The adjoint equation for a set of PDEs can be formulated using two approaches- continuous and
discrete. In the continuous approach, adjoint equations are obtained by differentiating the PDEs followed
by discretizing them to solve them numerically. Whereas, in the discrete approach, the PDEs are
discretized followed by linearizing them to obtain adjoint equations.

3.4.1. Continuous vs. Discrete Adjoint Approach
The wealth of early works on adjoint implementations used the continuous approach which includes the
initial implementations of the adjoint methods in SU2 [14] and OpenFOAM [20] and works of Jameson
et. al.[25]. The continuous approach generates the linearized PDEs which can be solved using the
same numerical iteration techniques as the primal flow solution, thus, eliminating the need to form the
Jacobian leading to faster and low-memory adjoint implementations[27]. Whereas, the resulting low
accuracy for coarser meshes and the challenging implementation are some of the disadvantages of this
approach. Also, the PDEs of the continuous adjoint systems need to be differentiated by hand, which
can be challenging for some terms. Moreover, the boundary conditions of the linearized PDEs are not
always obvious and require careful consideration.

Lately, much of the adjoint work has made use of the discrete adjoint approach. The main advantage
of this approach is that it generates derivatives that are numerically consistent, irrespective of the
coarseness of the mesh as it is formulated from the discretized flow equations. Additionally, the partial
derivatives appearing in the discretized adjoint equations can be computed using several numerical
methods such as- Algorithmic Differentiation (AD), Complex step, and Finite differences; and do not
necessarily need to be hand differentiated [27]. While the disadvantage of the discrete adjoint approach
is the high computational cost and memory allocation, due to the need to compute and store the exact
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Jacobian. Therefore, to yield good adjoint performance, it is necessary to implement such computations
efficiently.

3.4.2. Adjoint method
The current subsection briefly presents a mathematical formulation of the adjoint method. As aforemen-
tioned, in the adjoint-based sensitivity analysis of a fluid-dynamic design problem, the objective function
to be analyzed has a non-linear dependence on the discrete variables. The objective function depends on
the physical and geometric design variables α, state variables U , and grid points X . State variables
U comprises of conserved flow variables attained from the solution of the flow governing equations
computed at grid points of an unstructured mesh. The state variables depend on the physical and
geometrical design variables, whereas, the grid points only depend on the geometrical design variables.
In practice, the physical design variables are neglected in a design process and hence neglected. The
objective function can be stated as,

J = J [U(α), X(α)] (3.6)

where U vector consists of the state variables that satisfy flow governing equations for the given vector
of design variables α. The residuals of the discretized flow governing equations is expressed as,

R[U(α), X(α)] = 0 (3.7)

where Equation 3.7 is equivalent to zero and it is an equality constraint.
Using the chain rule, the total gradient of the objective function with respect to the geometric design

variables can be expressed as,
dJ

dα
=

∂J

∂U

∂U

∂α
+

∂J

∂X

∂X

∂α
(3.8)

where it is relatively cheaper to compute the term ∂J/∂U as compared to the term ∂U /∂α. The
computation of the sensitivity of the state variable to the variation in the geometric variable, ∂U /∂α, is
a computationally intensive operation. Implementation of finite difference method to compute ∂U /∂α,
is straightforward but not advisable as it is a computationally expensive method. Alternatively, to solve
for ∂U /∂α, the total derivative of the residual of the discretized flow governing equations with respect
to the geometric design variables is written as,

dR

dα
=

∂R

∂U

∂U

∂α
+

∂R

∂X

∂X

∂α
= 0 (3.9)

To maintain the equality constraint for the flow governing equations to be feasible, the total derivative
dR/dα must be equivalent to zero. Equation 3.9 can be rearranged to obtain a linear system,(

∂R

∂U

)(
∂U

∂α

)
= −

[
∂R

∂X

∂X

∂α

]
(3.10)

The above equation can be used to compute the sensitivity ∂U /∂α, but it utilizes considerable amount
of computational memory as we need to solve the linear equations N times, where N represents the
number of columns in term [∂R/∂X ][∂X /∂α] on right-hand side, which is equivalent to the number of
geometrical design variables. Instead of solving the Equation 3.10, it can be rewritten as,

∂U

∂α
= −

(
∂R

∂U

)−1[
∂R

∂X

∂X

∂α

]
(3.11)

and by substituting the flow variable sensitivity ∂U /∂α into equation 3.8,

dJ

dα
= − ∂J

∂U

(
∂R

∂U

)−1[
∂R

∂X

∂X

∂α

]
+

[
∂J

∂X

∂X

∂α

]
(3.12)

In the above equation 3.12, term − ∂J
∂U

(
∂R
∂U

)−1

represents the adjoint variable vector. Subsequently,

the adjoint variable can be computed by resolving the adjoint system given by:
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(
∂R

∂U

)T

λ = −
(
∂J

∂U

)T

(3.13)

which represents the discrete form of the adjoint equation. By substituting above equation 3.13 into
equation 3.14 , the gradient of the objective function with respect to the design variables is given by:

dJ

dα
=

∂X

∂α

[
∂J

∂X
+ λT ∂R

∂X

]
(3.14)

It can be inferred from Equation 3.13 that as the geometric design variable does not explicitly appear
in the equation, we only need to solve this equation for the number of objective functions of interest.
Therefore, the computational cost of the adjoint method is independent of the number of design variables
and proportional to the number of objective functions.

3.5. Interpretation of Adjoint Sensitivities
As this work is based on the implementation of the adjoint method to an isolated propeller configuration,
it is crucial to state how the wealth of adjoint data generated from this research can be interpreted and
used for the design purposes. In particular, an adjoint solution results in the following data-

• Surface Sensitivities- A surface sensitivity map indicates the regions of extreme sensitivity on the
surface of the geometry in the study. The regions of high sensitivity on perturbation can have a
dominant influence on the objective function of interest.

• Gradient Vector- The gradients provide a quantitative change in the objective function with respect
to the perturbation of the design variables used to parameterize the geometry.

This information provides physical insight into the design parameters that have a dominant effect
on the objective function and can be used to drive the design process in order to achieve a gain in
the performance of interest.

• Adjoint flowfield- Similar to the flowfield attained from a CFD solver that provides the solution
of physical flow variables for a given boundary conditions, an adjoint flowfield provides adjoint
counter part of those flow variables. The adjoint flow field ties the adjoint solution to the flow
variables to gain a physical insight of how the variation in a physical flow variable due to design
modification can lead to increment in the objective function [31].



4
Propeller Geometry and CFD Solver Setup

The current chapter presents the setup of the RANS CFD method used for the aerodynamic and
performance analysis of the propellers along with a geometry of the propeller test cases. The propeller
test cases used in this research are presented in Section 4.1. Two solvers have been used for the purpose of
performing RANS based-CFD simulations of the propeller in isolated configuration- ANSYS Fluent and
SU2. As aforemetioned, to validate SU2’s Section 4.2 presents a discussion on the computational domain,
setup of the two solvers as well as the mesh strategy used for the grid generation of the computational
domains.

4.1. Propellers
To analyze the performance of the propeller, two propeller test cases have been analyzed in the current
research namely – XPROP and Optimized XPROP.

(a) XPROP (b) Optimized XPROP

Figure 4.1: Propeller test cases used in the research.

XPROP is a 6-bladed propeller used at Delft University of Technology. It has a blade radius of
Rp=0.2032 m and lacks sweep. The computational simulations for XPROP have been performed at the
blade pitch of β0 .7Rp

= 30◦.
Optimized XPROP is the second propeller test case that has been analyzed in the current research.

As the name suggests, it is an optimized version of the baseline XPROP propeller blade that has been
optimized for improved acoustic performance. The blade optimization was a result of the works of
Wouter de Haan [18]. The optimization was performed using a low-fidelity blade element method wherein
thrust-scaled acoustic pressure was the objective function to be minimized with a constraint on the
propeller efficiency and thrust. The optimized XPROP differs from the Optimized XPROP sweep

19
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distribution. Similar to the baseline XPROP blade, the computational simulations for the Optimized
XPROP blade have been performed at the blade pitch of β0 .7Rp

= 30◦. It must be noted that both the
propeller blades are operating at a blade pitch that is different from the design condition for cruise.

4.2. RANS-based CFD Setup
In the current research, the RANS-based CFD simulations have been performed using two solvers-

1. ANSYS Fluent 19.2, a commercial software.
2. SU2, an open-source collection of C++ based software tools used for performing PDE analysis

and solving PDE-constrained optimization problems on general unstructured meshes.

The choice of the above-stated software solely depends on the availability and capabilities of the two.
It is the open-source nature and the adjoint capabilities that made SU2 an attractive option to perform
the computational flow and sensitivity analysis of the propeller. Although, SU2’s computational analysis
tools have been validated and verified comprehensively in Ref. [39], but for the sake of completeness
SU2’s RANS-based flow solver is verified against the available experimental data (only XPROP) and
the results of similar simulations attained from ANSYS Fluent. Additionally, the reason to perform the
CFD validation study of SU2 is motivated by the fact that since the primal flow solver’s solution is used
as an input by adjoint solver a design study, it is important to validate the flow results for the high
accuracy of the gradients.

The current section presents a discussion on the generation of computational domain, setup of SU2’s
and ANSYS Fluent’s solvers, and the grid generation of isolated propeller configurations.

4.2.1. Computational Domain
The computational domain defines the volume around the object under consideration (propeller blade,
wing, etc.) where the discretized set of fluid flow equations are to be solved. The computational domain
mimics the physical space around the object by defining the artificial boundaries where the physical
values of the boundary conditions are specified. In the external aerodynamics such boundaries of the
computational domain are namely inlet, outlet, farfield boundary, periodic boundary and symmetry.
Enough care must be taken while constructing the computational domain such that the outer boundaries
are sufficiently far away from the object under consideration in order to reduce the influence of the
boundary conditions on the flow field near the object. Otherwise, the accuracy of the solution is
impacted.

Based on the preceding best practices, the computational domain of the two propeller cases were
constructed and are shown in Figure 4.2 for XPROP. Since same considerations have been used for
both propellers, domain of only one propeller has been shown here for conciseness. Using the rotational
periodicity boundary condition, the computational cost of the simulation was reduced by modelling a
single blade in a 60◦ wedge domain. The rotational axis of the domain is parallel to the x-axis and the
direction of the freestream flow is set to be in the positive x-direction. While, the direction of rotation
is in the counter clockwise direction as shown in the Figure 4.2. The origin of the coordinate system
i.e., (0,0,0) was defined at the nose of the spinner geometry. The dimensions of the outer boundaries of
the domain were defined in terms of propeller radius and were chosen to be sufficiently far away from
the propeller blade to minimize the effect on the flow properties near the propeller. Stokkermans [54]
recommends having the farfield top boundary atleast five times the propeller radius from the propeller
blade.
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Pressure Inlet B.C.
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Figure 4.2: XPROP’s computational domain with dimensions and boundary conditions

4.2.2. Solver Setup
The choice of the setting of the flow solver to perform the CFD simulations dictates the convergence,
stability and accuracy of the simulation. This subsection presents a discussion on the setup of the flow
solver of SU2 and ANSYS Fluent. First, a description physical problem of the simulation along with the
turbulence model is presented. It is followed by a discussion on the definition of the freestream and
boundary conditions. Finally, the numerical implementation of the solvers are presented.

Problem Description and Turbulence Modeling
In this study, the RANS equations are used to compute the flow simulation of an isolated propeller blade.
The steady-state simulation is chosen to reduce the computational cost. As the unsteady or transient
simulations are suitable to account for the unsteady phenomenon caused by the external influences
such as non-asymmetric flow or induced effects due to the environment etc., which are negligible in the
current case of isolated propeller.

A fully turbulent flow over the propeller blade is modelled using an appropriate turbulence model.
Modelling a fully turbulent boundary layer reduces the computational cost in comparison to the transition
model. Choice of turbulence model was based on the availability of the models, since SU2 offers two
turbulence models – SA and k-ω SST. One equation S-A turbulence model has been implemented for
modeling turbulence.

Free stream and Boundary Conditions
To perform the aerodynamic analysis of the isolated propeller configuration using a CFD solver accurately,
it is essential to assign correct freestream values and boundary conditions to the solver. Based on the
solver type, boundary conditions, and available freestream data, the user needs to compute additional
required flow variables to set up the solver. Accurate inputs define the convergence and the stability of
the flow simulation as they are used to initialize the solution. To perform the aerodynamic analysis of
the propeller and compare the solvers, similar freestream values and boundary conditions are used that
will be elaborated here along with relevant equations.

The ideal gas equation has been used as the equation of state for all the simulations performed in
this research, which takes the form of –

T =
p

ρ R
Mw

(4.1)
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where T is the static temperature, p is static pressure, ρ is density, R is the universal gas constant and
Mw is molecular weight. Using the above equation the static temperature is determined. The Mach
number is determined using equation 4.2,

M∞ =
V∞

a
=

V∞√
γRT

(4.2)

The dynamic viscosity is determined using Sutherland’s law shown in equation 4.3,

µ = µref

(
T

Tref

)3/2
Tref + S

T + S
(4.3)

where µ is the dynamic viscosity, µref is reference dynamic viscosity, Tref is reference static tempera-
ture and S is Sutherland temperature. The total quantities are computed using the following equation
4.4 and 4.5.

pt = p

(
1 +

γ − 1

2
M2

) γ−1
γ

(4.4)

Tt = T

(
1 +

γ − 1

2
M2

)
(4.5)

The inlet turbulence quantity for SA model, the eddy viscosity ratio is computed using recommnda-
tions of Spalart and Rumsey [52].

The boundary conditions used in the current research are highlighted in Figure 4.2. Similar boundary
definitions have been specified for the case of Optimized XPROP. For the purpose of comparing the
results of the two solvers in this research, similar boundary conditions have been used for the setup as
shown in Table 4.1. The inlet of the domain has been specified as pressure inlet where total temperature
and total pressure is assigned as an input. The total conditions are based on the freestream velocity
V∞=30 m/s. The total conditions are computed based on the static freestream that was used to perform
XPROP’s experiments. This is done to draw the comparisons of the RANS results with the experimental
runs. At the domain outlet, pressure outlet condition has been specified where the static pressure and
static temperature are prescribed. Riemann-invariant pressure farfield condition is specified at the top of
the computational domain. For the pressure farfield condition, Mach number, static pressure, and static
temperature are prescribed based on the freestream conditions. In contrary to ANSYS Fluent, no values
are to be prescribed for farfield boundary condition in SU2 as the actual values are computed based on
the other inputs by the user. The propeller, spinner and nacelle have been assigned as no-slip walls. It
must be noted that SU2 offers, namely three options for no slip walls- constant heatlfux, convection,
and isothermal. For this research, the option of constant heatflux is chosen to model the no-slip walls as
they are assumed to be adiabatic walls. Finally, conformal periodic boundary condition is specified at
the side walls of the domain by coupling the two side faces. For conformal periodic boundary condition,
the two faces comprising of the periodic pair must have identical node distribution.

Table 4.1: Boundary Conditions for XPROP and Optimized XPROP with ANSYS Fluent and SU2.

Boundary Names
Boundary Conditions

ANSYS Fluent SU2

Inlet Pressure inlet Pressure inlet
Outlet Pressure outlet Pressure outlet
Top Pressure farfield Pressure farfield

Propeller, Spinner, and Nacelle No-slip walls Constant heatflux (no-slip)
Periodic 1 & 2 Periodic Periodic

Numerical Implementation of the Solvers
The numerical schemes used for solving the flow governing equations for ANSYS Fluent and SU2 are
presented here.



4.2. RANS-based CFD Setup 23

ANSYS Fluent
ANSYS Fluent is a finite volume based CFD solver. ANSYS Fluent offers two types of solvers- pressure-
based and density-based solvers. The two solvers differ in the method used to solve the continuity,
momentum, and energy equations. In principle, pressure-based solvers have been traditionally used
to solve incompressible to mildly compressible problems. While density-based solvers are suitable for
high-Mach compressible flows. However, both the solvers have been reformulated to solve a broad range
of flows [17]. In this research, a pressure-based solver is chosen. This decision is based on the fact that
the tip Mach number for a range of advance ratios simulated in this research vary from incompressible
to moderate Mach numbers. Moreover, better convergence is achieved with the pressure-based solver
as compared to the density-based solver. The Coupled algorithm is used for solving pressure-based
continuity equation and momentum equation. 2nd order upwind discretization scheme is chosen for
solving the convection terms of the governing equations. By default, ANSYS Fluent uses 2nd order
accuracy for the viscous terms. The Green-Gauss Node-based method is used for approximating the
spatial gradients of the flow governing equations. The Courant number of 1 is used for all the simulations
with ANSYS Fluent in this research.

SU2
Jameson-Schmidt-Turkel (JST) centered scheme is used for the discretization of the convective terms
in flow governing equations. Discretization of the turbulence variable is done using 2nd order upwind
scheme. The spatial gradienst of the flow variables are approximated using Green-Gauss method. CFL
= 1 has been used for performing all the RANS simulations with SU2 in this research.

4.2.3. Grid Generation
In order to proceed with the CFD solution, the solver must be provided with a grid where the governing
equations are to be discretized. This grid is generated by discretizing the computational domain/flowfield
into discrete points and create a grid by connecting them using coordinate lines. The CFD solver further
uses the generated grid to discretize the governing equations and compute the solution of the flow field.
There are basically three types of grids-

1. Structured Grids – The structured grids are identified by the regular connectivity of the discrete
points and each grid point is uniquely identified by the indices and Cartesian coordinates. The
structured grid consists of quadrilateral in 2-D and hexahedra in 3-D.

2. Unstructured grids- The unstructured grids are identified by the irregular connectivity where
the grid cells and points have no particular order. Due to the irregularity in ordering the grid
points can not be identified by their indices. The unstructured grids consist of triangles in 2D and
tetrahedra in 3D.

3. Hybrid Grids- The hybrid grids are a mix of structured and unstructured grids. The hybrid grid
consists of hexahedra cells in the boundary layer region and tetrahedra cells in the rest of the
flowfield, thus making it a hybrid or mixed grid. Due to large number of tetrahedra cells in the
case of 3D mesh, it is often referred to as a type of unstructured mesh.

For selecting the type of grid generation, some of the differences between the structured and
unstructured/hybrid grids can be highlighted below as mentioned by Blazek [6]-

• Unstructured grids offer higher flexibility in terms of the treatment of the complex geometries as
compared to the structured grids.

• The unstructured grids have higher memory requirement to store the elements, nodes and connec-
tivity table as compared to the structured grids.

• The solution dependent grid refinement and coarsening is easier in the case of unstructured grids
as compared to the structured ones.

• Unstructured grids can handle complex flow problems in shorter turn around time with respect to
the structured grids.

Based on the above differences hybrid grid, a type of unstructured grid, in the current research. The
grids were generated using ANSYS Meshing software. The volume grid of the computational domain is
discretized using tetrahedral elements while prism layers have been used in the region adjacent to the
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walls. As mentioned in the foregoing description of the computational domain, the domain has been
divided into the near field and far field domain for the purpose of meshing. Finer grid settings have
been used in the near field domain with respect to the far field domain, to resolve the flow field near the
propeller blade accurately. Figure 4.3a shows symmetry plane cut at z=0, depicting the volume domain
around the XPROP’s blade.

The surface grid of propeller blade, spinner, and nacelle have been discretized using triangular
elements. For accurate resolution of the leading-edge curvature and trailing edges along the propeller
blade, higher grid density is assigned around these regions as shown in Figure 4.3b. In addition to the
element size of the surface grid, the growth rate as well as curvature normal angle is used to attain fine
grid along the sharp edges.

X

Y

Z

(a) XPROP’s volume mesh sliced at z=0.

X

Y

Z

(b) XPROP blade’s surface mesh.

Figure 4.3: XPROP’s Mesh domain.

Accurate resolution of the viscous region adjacent to the walls is essential for the computation of
aerodynamic forces acting on the surfaces. The viscous region is resolved by using prismatic layers and
the resolution of the prismatic layers is dictated by the thickness of the first layer and the growth rate.
The thickness of the first layer is based on the non-dimensional normal distance to the wall, defined by
y+, which is defined as:

y+ =
ρ∞u∗yfirstlayer

µ
(4.6)

where u∗ is the friction velocity at the nearest wall, y is the distance of the first mesh layer to the
nearest wall and µ is the dynamic viscosity of the fluid. In the current research, the first layer thickness
is chosen such that, y+ ≈ 1 at the 70% of the propeller blade radius for the lowest advance ratio at
which the simulation is performed. Since highest velocities are experienced at the low advance ratios
leading to thinner boundary layer thickness, the thickness of the first layer is chosen with respect to
the boundary layer thickness attained at low advance ratios. As for the requirement of the turbulence
model, the viscous region must be resolved to have y+ ≤ 1.

The velocity at 70% propeller radius is determined using equation 4.7. This velocity computation is
the resultant of the free stream velocity and the angular velocity at 70% propeller radius, while ignoring
the induced velocities.

Vrel =
√

(V∞)2 + (ωr)2 (4.7)

After determining the velocity at the 70% blade radius, the Reynolds number based on the chord of
the section is estimated using 4.7

Re =
ρ∞Vrellchord

µ
(4.8)
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Where, µ is computed using the Sutherland’s law based on equation 4.3. The skin friction coefficient
and wall shear stress can be computed using equations 4.9 and 4.10 respectively, as obtained from
Schlichting [48].

Cf = [2log10(Re)− 0.65]−2.3 (4.9)

τw =
Cf

0.5ρV 2
rel

(4.10)

Further, the friction velocity u∗ is determined using equation 4.11.

u∗ =

√
τw
ρ

(4.11)

Finally, the thickness of first layer is determined by rearranging the equation 4.6.

yfirstlayer =
y+µ

ρu∗
(4.12)

Figure 4.4 displays the slice at 70% radius, to show the inflation layers along the wall of the propeller
blade.

XY

Z

Figure 4.4: XPROP’s volume mesh with slice at r/Rp=70%

In the present research, grid dependency studies have been performed for the two propeller cases.
It is performed by generating a set of grids varying in fineness of the grid and performing simulations
on them. Therefore, a set of grids are generated by gradually refining the grid density of the whole
computational domain. Grid density is controlled by varying the volume refinement of the domain,
surface refinement of the no-slip walls, the first layer thickness of the inflation layers, and growth rates of
the surface grid. The number of inflation layers was kept constant while performing the grid refinement.
Furthermore, these grids are used to estimate the discretization uncertainty using the least squares
version of grid convergence index (GCI) as proposed by Eça and Hoekstra [11].
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Estimation of Discretization Uncertainty using GCI
According to Eça and Hoekstra, three sources contribute towards the numerical error of a CFD simulation,
namely- round-off error, iterative error, and discretization error [11]. Among these three errors, the
contribution by spatial discretization error is dominant. Discretization error is a consequence of the
transformation of governing equations meant for continuum domain into discrete algebraic equations.
The Grid convergence index (GCI) proposed by Roache is one of the most used methods to estimate the
resulting spatial discretization error. In this work, the least squares version of Roache’s GCI method is
implemented to estimate the discretization uncertainty, which is briefly presented here.

The discretization uncertainty of flow quantity or a solution U over a chosen grid is estimated using
equation 4.13

U = Fs|δRE | (4.13)

where Fs is safety factor and δRE is the error estimation.
Richardson’s extrapolation can be used to obtain the error estimation, as shown in Equation 4.14

[11].

δRE = ϕi − ϕ0 = αhp
i (4.14)

Where ϕi is the value of the flow quantity on a given grid i , ϕ0 is the estimated exact solution, hi
is average cell size of the grid i , and p is the order of convergence. The relative cell size of a grid is
computed using the ratio of the finest grid and the grid i as shown in Equation 4.15.

hi

hfine
=

Ncellsi

Ncellsfine

−1
3

(4.15)

As will be discussed in the next chapter, five grids have been used for performing grid dependency
study. Richardson extrapolation of the flow solutions ϕi on the five grids is performed using the
least-squares method. Using the solutions on the five grids, least squares method is used to compute ϕ0 ,
hi , and p by minimizing the function shown in Equation 4.16.

Us =

√√√√ ng∑
i=1

(ϕi − (ϕ0 + αhp
i ))

2 (4.16)

Where ng is the number of grids used in the study to compute the required variables. The minimisation
of the above function is performed using MATLAB’s minimization function fmincon. The standard
deviation of the fit is determined using Equation 4.17.

Us =

√∑ng

i=1(ϕi − (ϕ0 + αhp
i ))

2

ng − 3
(4.17)

Once the required parameters are determined, the resulting discretization error Uϕ is computed
using Equation 4.18 based on the value of observed order of accuracy, p. For the cases where monotonic
convergence is not observed, the uncertainty estimation is based on the ∆M . It represents the maximum
difference between the computed solutions as shown in Equation 4.19.

Uϕ =


1.25δRE + Us for 0.95 ≤ p < 2.05

min (1.25δRE + Us, 1.25∆m) for 0 < p < 0.95

max (1.25δ∗RE + U∗
s , 1.25∆m) for 2.05 ≥ p

3∆m

(4.18)

∆m = max(|ϕi − ϕj |) with 1 ≤ i ≤ ng ∧ 1 ≤ j ≤ ng (4.19)

Where, the parameters with a superscript * represent the parameters based on a least-squares fit
with theoretical order of convergence where p = 2 .
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Aerodynamic and Performance Analysis

This chapter presents the results obtained from RANS-based CFD simulations of the two isolated
propeller configurations. These results from the aerodynamic analysis are used to draw a comparison
between SU2 and ANSYS Fluent’s flow solvers, as discussed in Section 5.1. While Section 5.2 presents
the results and discussion comparing the aerodynamic performance of XPROP and Optimized XPROP
for a range of advance ratios.

5.1. Flow Solver Comparison
This section presents a comparison between the performance of the SU2 and ANSYS Fluent’s flow
solvers based on the results obtained from the aerodynamic analysis of XPROP and Optimized XPROP.
SU2’s results have been compared against that of ANSYS Fluent’s, based on the grid convergence,
discretization uncertainty, performance parameters, and pressure distributions of the blade simulations.
For all the simulations presented in this section, freestream values shown in Table 5.1 are used.

Table 5.1: Freestream operating conditions.

Variable Value
V∞ 30 m/s
p 101742 Pa
ρ 1.176 kg/m3

T 301.4 K

The aerodynamic analysis of the propeller blades has been performed for a range of advance ratios
ranging from 0.6-1.2. In this study, the advance ratio is varied by changing the rotational speed of the
propeller while keeping the freestream velocity constant, i.e., V∞=30 m/s. The operating points of the
propeller are shown in Table 5.2

Table 5.2: Operating points for the CFD simulations of propellers with β0.7R = 30◦.

J V∞ [m/s] n[s−1] Re0.7Rp
Mtip

0.6 30 123.03 225073.66 0.46
0.7 30 105.46 195318.68 0.40
0.8 30 92.27 173293.73 0.35
0.9 30 82.02 156411.59 0.31
1 30 73.82 143119.40 0.28

1.1 30 67.11 132428.70 0.26
1.2 30 61.52 123680.38 0.24

27
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5.1.1. Grid Convergence and Discretization Error Estimation
When performing CFD simulations, it is essential to choose a grid that is fine enough to estimate
results close to the exact solution. Even though it is known that finer mesh would generate a more
accurate result but, it comes at the expense of higher computational resources and time. A grid
dependency study is performed to choose a grid that would generate an accurate solution and is optimal
to perform simulations. It is a method to ensure that the results are the consequence of the flow physics
and boundary conditions but not affected by the spatial resolution. The grid dependency study and
estimation of discretization error for XPROP and Optimized XPROP is presented here.

XPROP
As aforementioned in the preceding chapter, five grids were constructed for performing a grid dependency
study and quantifying discretization error. Table 5.3 presents the grid size and refinement ratio hi/h5
for each of the five grids of XPROP’s isolated propeller configuration, where Mesh 1 is the coarsest and
Mesh 5 being finest mesh.

Table 5.3: Mesh sizes of XPROP’s domain.

Mesh Number of cells hi/h5

Mesh 1 1518725 1.54
Mesh 2 2229029 1.36
Mesh 3 2832304 1.26
Mesh 4 4018643 1.12
Mesh 5 5613054 1

For grid dependency study and estimation of the discretization error, CFD simulations have been
performed at an advance ratio of J=1.0. The motivation for choosing J=1.0 as the condition to perform
initial calculations for grid dependency study is based on the fact that in the experimental runs of
XPROP, the highest efficiency was attained for the advance ratios closer to J=1.0. This can be seen in
the performance plots from XPROP’s experimental run discussed in Subsection 5.1.2. The variation
in the thrust coefficient CT and power coefficient CP obtained using SU2 and ANSYS Fluent as a
function of mesh refinement of XPROP’s domain are shown in Figure 5.1a and 5.1b respectively. The
variation of the thrust and power coefficient is shown with respect to the value attained at the Mesh 1
i.e., coarsest mesh. The thrust and power coefficients presented in this research are the contribution
from the propeller blade and spinner.
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(a) Grid convergence for Thrust Coefficient (CT ).
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(b) Grid convergence for Power Coefficient (CP ).

Figure 5.1: Grid Convergence of XPROP mesh with SU2 and ANSYS Fluent.

A convergent behaviour is observed for the CT obtained from both the solvers as seen in Figure
5.1a. The difference between the two solvers lies in the sensitivity of the CT to the mesh refinement.
For every mesh refinement beyond Mesh 2, the deviation in thrust coefficient CT is minimal with the
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ANSYS Fluent. The variation of the ANSYS Fluent’s solution from Mesh 1 to 5 is 0.4%. Whereas,
variation in SU2’s solution from Mesh 1 to Mesh 5 is 2.93%. Thus, SU2’s solutions are relatively more
sensitive to the mesh refinement as a higher deviation in thrust coefficient CT is observed on refining
the same grids as compared to that with ANSYS Fluent. Beyond Mesh 4, CT from SU2 results in a
change of 0.3%. While, CT from ANSYS Fluent results in a change of 0.1% on refining Mesh 4. This
deviation on mesh refinement is within an acceptable tolerance.

The variation of power coefficient CP with grid refinement is shown in Figure 5.1b. It can be observed
that the solution from the two solvers converges. Although, the convergence behaviour of the solutions
from the two solvers differs, as the difference between the solutions from ANSYS Fluent tends to change
the sign on refinement. Thus, the convergence observed for ANSYS Fluent is not monotone as explained
by Philips and Roy [41]. In comparison to the CT , the solutions of CP with SU2 are less sensitive to
mesh refinement as lower differences are attained. For both the solvers, power coefficient CP deviates
negligibly on refining Mesh 4 indicating a converged solution. On refining Mesh 4, the CP obtained at
Mesh 5 results in a deviation of 0.04% and 0.03% for ANSYS Fluent and SU2, respectively.

Based on the inferences made from the grid convergence study, Mesh 4 was chosen for further
computations for XPROP’s isolated propeller configuration. Error analysis was performed for CT

andpower coefficient CP of XPROP using the least-squares version of the GCI method. Table 5.4 shows
the quantities computed for the estimation of discretization error with SU2 and ANSYS Fluent for both
the performance parameters. It presents the observed order of accuracy, the standard deviation of fits,
error estimation and the estimated discretization error for Mesh 4.

Table 5.4: Grid dependency study of XPROP.

Boundary Names
Thrust coefficient CT Power coefficient CP

ANSYS Fluent SU2 ANSYS Fluent SU2

p - 1.09 - -
Us(%) - 0.39 - -
δRE(%) - 5.23 - -

p∗ 2 2 2 2
|Uϕ|(%) 0.31 6.85 0.38 5.58
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(a) Grid convergence of XPROP with ANSYS Fluent for
Thrust Coefficient (CT ).
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(b) Grid convergence of XPROP with SU2 Thrust
Coefficient (CT ).
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(c) Grid convergence of XPROP with ANSYS Fluent for
Power Coefficient (CP ).
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(d) Grid convergence of XPROP with SU2 for Power
Coefficient (CP ).

Figure 5.2: Grid convergence plots of XPROP using least squares method of GCI.

For CT calculations with ANSYS Fluent, a converging behaviour is observed with the observed order
of accuracy of 17.96. Such high order of observed accuracy could be a consequence of the scatter in the
data, potentially due to Mesh 1 as seen in Figure 5.2a. This results in the use of theoretical order of
accuracy for estimating the discretization error. As inferred from from the table, the discretization error
is estimated to be 0.31% for CT computed with the ANSYS Fluent. Whereas, a monotonic converging
is observed for the thrust coefficient CT with SU2 as seen in Figure 5.2b. On using the observed order
of accuracy of p =1.09 to compute the discretization error, a high numerical uncertainty of 6.85%
is achieved. It is interesting to see that even though the convergence behaviour of CT with SU2 in
Figure 5.1 depicts Mesh 4 to be converged with respect to Mesh 5, but based on the GCI results high
discretization error is observed with the best fit curve.

Solutions of CP with ANSYS Fluent results in a best fit curve to be diverging. This could be
attributed to the differences between the solutions being small and, therefore adding scatter to the data
as shown in Figure 5.2c. The theoretical order of accuracy is used for estimating the discretization
error which is estimated to be 0.38%. Similar to the ANSYS Fluent, SU2’s best fit for solution of CP

is observed to be diverging. Moreover, oscillatory convergence is observed for SU2’s data. For CP ,
convergence was found to have a discretization error of 5.58%.

Optimized XPROP
Similar to the case of XPROP, five grids were constructed for Optimized XPROP case to perform a grid
dependency study and estimation of discretization error. Table 5.5 presents the grid size and refinement
ratio hi/h5 for each of the five grids of Optimized XPROP’s isolated propeller configuration.
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Table 5.5: Mesh sizes of Optimized XPROP’s domain.

Mesh Number of cells hi/h5

Mesh 1 1646243 1.54
Mesh 2 2391334 1.36
Mesh 3 3056077 1.26
Mesh 4 4259850 1.12
Mesh 5 6056295 1

The variation in thrust coefficient CT and power coefficient CP obtained using SU2 and ANSYS
Fluent as a function of grid refinement of Optimized XPROP’s domain are shown in Figure 5.3a and
5.3b, respectively. Similar to XPROP, case the variation of the performance is shown with respect to
the value attained at the Mesh 1 i.e., coarsest mesh.
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(a) Grid convergence of Optimized XPROP with SU2
and ANSYS Fluent for Thrust Coefficient (CT ).

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

10
6

-0.5

0

0.5

1

1.5

2

2.5

3

(b) Grid convergence of Optimized XPROP with SU2
and ANSYS Fluent for Power Coefficient (CP ).

Figure 5.3: Grid Convergence of Optimized XPROP mesh with SU2 and ANSYS Fluent.

From Figure 5.3a, converging behaviour of thrust coefficient is observed for both the solvers. A larger
relative difference in the thrust coefficient CT is attained for the SU2’s solutions as compared to that of
the ANSYS Fluent on grid refinement. The variation of the ANSYS Fluent’s solution from Mesh 1 to
Mesh 5 is 0.35%. Whereas, variation in SU2’s solution from Mesh 1 to Mesh 5 is 2.79%. For the case of
ANSYS Fluent, there is negligible change in the CT on refining the mesh beyond Mesh 2 and therefore
the mesh seems to be converged quickly at Mesh 2 itself. While a significant difference in the value of
thrust coefficient is seen on refining up to Mesh 4 for SU2. On refining Mesh 4, the CT obtained at
Mesh 5 results in a deviation of 0.02% and 0.05% for ANSYS Fluent and SU2, respectively.

From Figure5.3b, it can be inferred that the difference in the solutions of power coefficient CP on
successive refinements is lower for ANSYS Fluent as compared to SU2. As seen for XPROP’s case,
ANSYS Fluent’s convergence behaviour is less uniform as compared to SU2’s solutions and is termed
as non-monotone. In comparison to the CT , the solutions of CP with SU2 are less sensitive to mesh
refinement as lower differences are attained. For both solvers, negligible differences are attained on
refining Mesh 4, indicating a converged solution. On refining Mesh 4, the CP obtained at Mesh 5 results
in a deviation of 0.04% and 0.005% for ANSYS Fluent and SU2, respectively.

Mesh 4 was chosen for performing further computations for Optimized XPROP’s isolated propeller
configuration. The error analysis was performed for CT and CP for Optimized XPROP using the
least-squares version of the GCI method. Table 5.6 shows the quantities computed for the estimation
of discretization error with SU2 and ANSYS Fluent for both the performance parameters. It presents
the observed order of accuracy, the standard deviation of fits, error estimation and the estimated
discretization error for Mesh 4.

High order of observed accuracy was attained for the grid convergence of Optimized XPROP’s thrust
coefficient CT using ANSYS Fluent. This can be attributed to the solutions from different grid being
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Table 5.6: Grid dependency study of Optimized XPROP.

Boundary Names
Thrust coefficient CT Power coefficient CP

ANSYS Fluent SU2 ANSYS Fluent SU2

p - 1.67 - -
Us(%) - 0.72 - -
δRE(%) - 3.0 - -

p∗ 2 2 2 2
|Uϕ|(%) 0.40 3.9 0.42 11.78
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(a) Grid convergence of Optimized XPROP with SU2
and ANSYS Fluent for Thrust Coefficient (CT ).
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(b) Grid convergence of Optimized XPROP with SU2
and ANSYS Fluent for Power Coefficient (CP ).
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(c) Grid convergence of Optimized XPROP with SU2
and ANSYS Fluent for Thrust Coefficient (CT ).
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(d) Grid convergence of Optimized XPROP with SU2
and ANSYS Fluent for Power Coefficient (CP ).

Figure 5.4: Grid convergence plots of Optimized XPROP using least squares method of GCI.

very close to each other, thus introducing scatter in the data [53]. The theoretical order of accuracy
is used to estimate the discretization error for CT which is 0.4%. Whereas, monotonic convergence is
observed for the thrust coefficient with SU2. This results in a best fit with a observed order of accuracy
3.9%. Therefore, a good fit is achieved as shown in Figure 5.4b. However, in comparison to ANSYS
Fluent, a higher discretization error is estimated.

From Figure 5.4c, a diverging behaviour is observed for the best fit of solutions of power coefficient
CP with ANSYS Fluent. Similar to CT , the solutions for CP are very close to each other for a large
variation in the grid sizes, thus introducing scatter in the data. A discretization error of 0.42% is
estimated with the theoretical order of accuracy. Similar to the ANSYS Fluent, SU2’s solution of power
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coefficient CP results in a diverging fit. A large discretization error of 11.78% is achieved for SU2.

5.1.2. Performance Parameters
The curves of performance parameters of the two propeller test cases are compared and discussed in
the following paragraphs. The aerodynamic analysis of the propeller blades has been performed for a
range of advance ratios ranging from 0.6-1.2. In this study, the advance ratio is varied by changing the
rotational speed of the propeller while keeping the freestream velocity constant, i.e., V∞=30.

XPROP
Figure 5.5 and 5.6 depicts the trends of thrust coefficient and power coefficient over a range of advance
ratios. The CT and CP curves obtained from the RANS simulations using SU2 and ANSYS Fluent have
been compared against the experimental data. The curves for the experimental data have been plotted
by fitting the available data points using 2nd order polynomial fitting.
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Figure 5.5: Comparison of XPROP’s Thrust
Coefficient (CT ) trends obtained using flow solvers

with experimental data.
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Figure 5.6: Comparison of XPROP’s Power
coefficient (CP ) trends obtained using flow solvers

with experimental data.
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Figure 5.7: Comparison of XPROP’s Efficiency (η)
trends obtained using flow solvers with experimental

data.

The thrust coefficient CT curve predicted by ANSYS Fluent has a linear variation with respect to
the advance ratio. Whereas, the experimental curve tends to be less linear. ANSYS Fluent overpredicts
the thrust coefficient at low and high advance ratios with respect to the experimental curve. Relatively,
lower differences between the experimental and ANSYS Fluent’s computed values at moderate advance
ratios. Whereas in the case of power coefficient CP curves, ANSYS Fluent tends to underpredict CP



5.1. Flow Solver Comparison 34

values for a large range of advance ratios with respect to experimental data. It overpredicts the CP

values at low advance ratios and high advance ratios. Based on the difference between the computed
and experimental values, ANSYS Fluent’s thrust curves exhibit better agreement with the experimental
data for a large part of the operating range in comparison with the power curves.

On comparing values from SU2 with experimental data, it can be inferred that SU2 underpredicts the
thrust coefficient CT values for the whole range of the advance ratios except for advance ratios beyond
J=1.1. At J=1.1, the experimental thrust curve crosses that of SU2’s, beyond which SU2’s computations
result in a higher thrust coefficient CT . A similar trend is seen for the power coefficient CP curves, as
SU2 underpredicts the CP values for the almost whole range of computed advance ratios except at the
advance ratio close to J=1.2 where it meets experimental the CP curve. In comparison to the CT curve,
it can be seen that larger differences are obtained between SU2’s computed and experimental values for
the CP curve.

On comparing the thrust and power curves of SU2 and ANSYS Fluent, results from both solvers
exhibit similar curves with increasing advance ratios. However, SU2 predicts lower CT and the CP

values than ANSYS Fluent for the whole range of advance ratios. Additionally, a trend of decreasing
differences between the computed values of SU2 and ANSYS Fluent with increasing advance ratio is
seen for both CT and the CP curves.

On observing the trends, the discrepancies between the numerical calculations and the experimental
results can be the result of the differences in the blade pitch angle of the simulated blades and experimental
blade. This difference in the blade pitch angle arises due to the change zero-lift angle of attack at high
advance ratios, where the Reynolds number is low. As can be seen from Table 5.2, the Reynolds number
with respect to 70% radius is lower than 1.5*105 for J >0.9. At such high advance ratios (on varying
the RPM), the viscous effects become important and the performance of the propeller is sensitive to the
Reynolds number for Re < 1.5*105 [49]. Additionally, the CFD simulations have been performed with
fully turbulent flow over the blade section, while this might not be the case for the experimental runs.

Whereas, the results from ANSYS Fluent and SU2 display a similar trend but the offset in the values
could be the result of the difference in the numerical schemes used by the two solvers. Further investigation
is performed in Subsection 5.1.3, drawing the comparisons between the pressure distributions from the
two solvers to gain an insight into the reason behind such discrepancies at a given condition. Although
the differences exist, the results from SU2 are deemed to be satisfactory for further computations.

Optimized XPROP
Figure 5.8 and 5.9 depicts the trends of thrust coefficient CT and power coefficient CP over a range of
advance ratios for Optimized XPROP. Much similar to the case of XPROP, the ANSYS Fluent predicts
higher value of CT as compared to SU2 throughout the range of computed advance ratios. Similar
inference can be made from the CP curves, where ANSYS Fluent predicts higher values for simulation
for any given advance ratios. The trend of the curves from both the solvers are same for the thrust and
power. However, CT curve exhibits a linear relation to advance ratio, while CP displays a more curvy
relation. Similar to the XPROP’s trends, a decrease in offset is seen for the CT and CP curves with
increasing advance ratios.

Based on the inferences from thrust and power curves, the effect tends to cancel out and there is a
marginal difference in the efficiency curve for the two solvers upto J=1.0, as displayed in Figure 5.10.
Although, SU2 tends to predict higher efficiency upto J=0.9. Beyond this point, the ANSYS Fluent
tends to predict higher efficiencies at higher advance ratios. Highest efficiency for both the solvers is
attained at the advance ratio of J=1.1, before peaking down at J=1.2.



5.1. Flow Solver Comparison 35

0.6 0.7 0.8 0.9 1 1.1 1.2

0.1

0.15

0.2

0.25

0.3

0.35

Figure 5.8: Comparison of Optimized XPROP’s
Thrust Coefficient (CT ) trends obtained with SU2

and ANSYS Fluent.
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Figure 5.9: Comparison of Optimized XPROP’s
Power coefficient (CP ) trends obtained with SU2

and ANSYS Fluent.
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Figure 5.10: Comparison of Optimized
XPROP’s Efficiency (η) trends obtained with SU2

and ANSYS Fluent.

A comparison of aerodynamic performance of XPROP and Optimized XPROP propellers will be
presented later in Section 5.2.
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5.1.3. Pressure Distribution
This subsection presents a comparison between the pressure distributions obtained with ANSYS Fluent
and SU2 at various radial positions along the XPROP and Optimized XPROP propeller at J=1.0. In
this reaerch, pressure coefficient Cp is defined based on the freestream velocity and rotational velocity at
a considered radial section, as show in equation 5.1

Cp =
P − P∞

1
2ρ∞[V 2

∞ + (ω.r)2]
(5.1)

XPROP
Figure 5.11 shows the pressure distributions from ANSYS Fluent and SU2 at radial locations- 25%, 40%,
60%, 80% and 95%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

(a) r/Rp = 25%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

(b) r/Rp = 40%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

(c) r/Rp = 60%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

(d) r/Rp = 80%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

(e) r/Rp = 95%

Figure 5.11: Pressure distribution at different radial spans of XPROP at J=1.0 from ANSYS Fluent and SU2.

On comparing the surface pressure distributions from the two solvers, a reasonable agreement is seen
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for the pressure distributions at 25%, 40%, and 60% radius for most of the surface, except the trailing
edge. In contrast to ANSYS Fluent, SU2 predicts spikes along the trailing edge of the blade section.

At 80% radius, a difference in the pressure distribution near the trailing edge can be noticed as SU2
predicts lower Cp values on the suction side as well as the pressure side as compared to ANSYS Fluent.
A similar trend is seen for the pressure distribution along the trailing edge of the blade section at the
95% radius. As seen in the inboard sections, SU2’s predicts the spikes at the trailing edge of the blade
sections at outboard radial positions as well. Similar discrepancies along the trailing edge were observed
in the works of Dhert [9] and Economon et al. [13]. Economon et al. related such spikes to be the result
of the presence of a sharp trailing edge. Moreover, SU2 predicts Cp greater than 1 at the stagnation
point at 80% and 95% span, for a tip Mach number of 0.28, i.e., incompressible flow.

Based on the above observations, it can be inferred that SU2 and ANSYS Fluent predict similar
pressure distribution for large part of the blade sections, except the discrepancies at the trailing edges of
all the blade sections with SU2. Additionally, the SU2 predicts higher value of Cp at the stagnation
point. Such differences in the pressure distributions could lead to integrated loads and flowfield, different
from that obtained with ANSYS Fluent. This can also explain the offset in the performance parameter
curves of the two solvers, as discussed in the preceding Subsection 5.1.2.

Optimized XPROP
Figure 5.12 shows the pressure distributions from ANSYS Fluent and SU2 at radial locations- 25%, 40%,
60%, 80% and 95%, of Optimized XPROP’s blade.

On observing the pressure distributions from two solvers, similar inferences are made as were
highlighted in the case of XPROP’s blade. Except the trailing edge, identical pressure distributions are
seen on large part of pressure and suction side at 25%, 40%, and 60% radius for the two solvers. Similar
to XPROP, SU2 predicts spikes at the trailing edges of the blade sections at all the radial positions
along Optimized XPROP’s blade. SU2 predicts value of Cp greater than 1 at the stagnation point of the
Optimized XPROP’s blade at 80% and 95% span.

Based on the pressure distributions of Optimized XPROP, similar differences are seen in the trends
as were pointed out in the case of XPROP. Therefore, the trailing edge Cp spikes and higher value of Cp

at the stagnation point seen in SU2’s prediction, could potentially explain the differences between the
performance curves of the two solvers.
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Figure 5.12: Pressure distribution at different radial spans of Optimized XPROP at J=1.0 from ANSYS Fluent and SU2.

5.1.4. Convergence Analysis
The convergence history of the residuals of flow equations on same computational mesh, from ANSYS
Fluent and SU2 have been presented and compared here. The discussion is presented for XPROP and
Optimized XPROP blade.

XPROP
The steady state calculations were performed using single rotating reference frame and conformal periodic
boundary conditions with ANSYS Fluent and SU2. As discussed in Section 4.2.2, the CFL number of
1.0 was used for both the calculations. The criteria used to monitor and determine the convergence of
the solution was a drop of at least 4 orders of magnitude for the continuity residual. Figure 5.13 displays
the plots of convergence history from the two solvers.
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(b) SU2’s CFD Solver.

Figure 5.13: Convergence history for XPROP at J=1.0 with ANSYS Fluent and SU2

On observing the residuals, it can be inferred that ANSYS Fluent attains a drop of 4 orders of
magnitude within 1500 iterations. Whereas, it takes 23,000 iterations for the SU2’s solver to drop by 4
orders of magnitude.

Optimized XPROP
Similar to the setup of XPROP, CFL number of 1.0 was used for the simulations and convergence criteria
was set at 4 orders of drop in residuals of the continuity equations. Figure 5.14 displays the plots of
convergence history from the two solvers.
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Figure 5.14: Convergence history for Optimized XPROP at J=1.0 with ANSYS Fluent and SU2.

For the Optimized XPROP’s case, residuals of continuity equation with ANSYS Fluent attains a
drop of 4 orders of magnitude within 1500 iterations. Whereas, it takes 22,000 iterations for the residual
of continuity equation with the SU2’s flow solver to meet the convergence criteria.

5.1.5. Discussion of Results
The SU2’s results were compared and validated against the results obtained from commercial CFD
solver ANSYS Fluent and experimental data (for the case of XPROP). Based on the grid convergence
study, SU2’s solutions were relatively more sensitive to the grid refinement for both the propeller cases
as a larger deviation between the solution is observed as compared to the ANSYS Fluent’s solution on
the same grids. For all the cases of GCI, higher discretization error was attained with SU2.

Based on the observation of the performance curves, even though the two solvers show similar trends
for the variation of CT and CP with advance ratios, SU2 underpredicted the values for both the propeller
test cases at any given advance ratio. Such difference in the magnitude of the values can be partly
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attributed to the difference in the type of solvers and numerical schemes the two CFD solvers use. The
pressure distribution curves with the two solvers were compared to get an insight into the reason that
could potentially explain such a difference in the performance curves.

Overall, a satisfactory agreement is seen between the ANSYS Fluent’s and SU2’s results based on
the pressure distributions. However, discrepancies are seen in the pressure distribution with SU2 at the
trailing edge of the blade sections in terms of large spikes in Cp. Additionally, SU2 tends to predict
Cp greater than 1 at the stagnation points of the outboard blade sections for a flow with helical tip
Mach number of 0.28. As such discrepancies in the pressure distribution could lead to different values of
integrated loads and flowfield, it can be used to explain the offset seen in the performance parameter
curves with the two solvers.

5.2. Aerodynamic Comparison of Isolated Propeller Configurations
The aerodynamic performance of XPROP and Optimized XPROP have been compared in this section
for a range of advance ratio 0.6-1.2. As aforementioned, the simulations have been performed at fixed
operating conditions as shown in Table 5.1. The results presented here are based on the flow simulations
performed with SU2’s CFD solver.

5.2.1. Performance Parameters
Figure 5.15, 5.16, and 5.17 depict the performance of both isolated propellers in terms of thrust coefficient,
power coefficient, and efficiency versus advance ratio, respectively. Table 5.7 presents the quantitative
values of the performance parameters for two propellers.

Table 5.7: Performance parameters of XPROP and Optimized XPROP

J Thrust Coefficient (CT ) Power Coefficient (CP ) Efficiency (η)
XPROP Optimized XPROP XPROP Optimized XPROP XPROP Optimized XPROP

0.6 0.314 0.318 0.324 0.329 0.582 0.579 (-0.374%)
0.7 0.284 0.286 0.309 0.313 0.643 0.642 (-0.196%)
0.8 0.251 0.254 0.289 0.293 0.694 0.693 (-0.105%)
0.9 0.21 0.219 0.265 0.269 0.736 0.735 (-0.058%)
1.0 0.181 0.184 0.236 0.239 0.766 0.766 (+0.087%)
1.1 0.143 0.146 0.201 0.205 0.782 0.783 (+0.190%)
1.2 0.103 0.106 0.161 0.164 0.72 0.776 (+0.469%)

From Figure 5.15, it can be inferred that the optimized XPROP yields higher thrust than the baseline
XPROP propeller throughout the range of computed advance ratios. Qualitatively, a linear CT is
observed for both propellers.
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Figure 5.15: Comparison of Thrust Coefficient
(CT ) of XPROP and Optimized XPROP.
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Figure 5.16: Comparison of Power coefficient (CP )
of XPROP and Optimized XPROP.
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Figure 5.17: Comparison of Efficiency (η) of
XPROP and Optimized XPROP.

Similar to the observations of the thrust curve, the Optimized XPROP attains higher power at any
given advance ratio in comparison to XPROP as shown in Figure 5.16. Nonlinear identical curves are
attained for both propellers throughout the operating range.

The above observations translate to the efficiency curves of both propellers shown in Figure 5.17.
It can be seen that the Optimized XPROP experiences marginal loss in aerodynamic efficiency at low
advance ratios from J=0.6 to J=0.9. While the benefit in terms of aerodynamic efficiency is attained at
moderate and high advance ratios, with the largest gain of +0.469% at an advance ratio of J=1.2. For
both propellers, the peak efficiency is achieved at J=1.1, beyond which the curve starts to drop off.
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5.2.2. Blade Loading
Figure 5.18a and 5.18b displays radial thrust and torque distribution of XPROP and Optimized XPROP
for various advance ratios, respectively. These distribution plots provide an insight into the reason for
difference in the performance of the two blades. The radial thrust and torque distribution are plotted
using the components of pressure and viscous forces acting on a spanwise element along the axis of
rotation.
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Figure 5.18: Comparison of radial blade loadings of XPROP and Optimized XPROP.

On observing the radial thrust distribution of both the propeller blades at different advance ratios
shown in Figure 5.18a, as the radial thrust loading flattens out as the advance ratio increases. It can
be inferred that both blades obtain an identical load distribution for most part of the blade except
outboard portion of the blade. Optimized XPROP attains a higher tip loading than the XPROP’s blade.
While, a redistribution of load is visible in 80%-90% span, as lower values of thrust are attained for the
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Optimized XPROP’s blade.
On observing the radial torque (power) distribution in Figure 5.18b, the torque loading of the two

blades slightly differs along the span at any given advance ratio, contrary to the observations made
for the thrust distribution. It can be seen that the elements within 70%-90% span along Optimized
XPROP’s blade generate lower torque as compared to XPROP. While the significant difference in
comparison to XPROP’s loading is seen at the tip, as Optimized XPROP’s tip results in higher torque.
In comparison with the thrust distribution, the deficit between the power distributions of the two blades
especially at 80%-95% radius is larger at any given advance ratio.

From the foregoing observations, it can be inferred that for identical flow conditions, the sweep along
Optimized XPROP’s blade results in higher tip loading in comparison to the baseline XPROP blade.
Moreover, a larger deficit exists in power distribution as compared to the thrust distribution of the two
blades at any given advance ratio. This contributes to higher thrust and torque (power) values attained
for the whole range of advance ratios as seen in the performance charts in Section 5.2.1.

5.2.3. Pressure Distribution
Figure 5.19 displays the pressure distribution curves of XPROP and Optimized XPROP blades at J=1.0
at different radial positions.

At 25% radius, two suction peaks represented by a negative value of Cp, are observed as a consequence
of the incidence angle at the blade section being negative. As seen in Figure 5.19a, the first suction
peak is attained at the pressure side followed by a second suction peak on the suction side. On moving
outboard from the root section, the local incidence angle increases and the suction peak on the pressure
side tends to reduce as the stagnation point moves towards the lower surface of the blade section. At
40% and 60% radius, similar pressure distributions are attained by the two propellers.

A similar shape of pressure distribution is observed at 80% radius, but the Optimized XPROP’s
blade has a marginally lower suction peak. This can be attributed to the increase in Mid chord alignment
(MCA) i.e., sweep, on moving outboard. As aforementioned in Subsection 5.1.3, SU2 predicts a value of
Cp greater than 1 at the stagnation point for both blades even though the flow is incompressible for
this condition as tip helical Mach number is 0.28. A similar peak can be noticed in the incompressible
simulations performed using SU2 [9]. At 95%, the Optimized XPROP attains a lower suction peak.
Moreover, the Optimized XPROP attains slightly lower Cp values on the suction side’s aft portion of
the blade in comparison with XPROP.

On moving further outboard, it can be inferred that the pressure distributions at the 98% radius
show the largest difference between the two blades. It must be mentioned that this radial position
has the largest sweep (high MCA), in comparison to other radial positions shown in Figure 5.19. A
redistribution of chordwise loading is apparent, as Optimized XPROP attains a lower suction peak at
the leading edge and higher aft loading in comparison with the XPROP’s section. The Cp value at
Optimized XPROP’s stagnation point is lower than that of XPROP. Such a difference in the Cp values
at the stagnation point of the two blades could be potentially attributed to the different local induction
factors as a result of different blade tip geometry [15]. Moreover, on observing XPROP’s Cp curve, a
small suction peak is visible on the pressure side of the leading edge. Whereas, Optimized XPROP’s Cp

seems to operate at an inflow incidence angle higher than that of the XPROP at the considered section.
Thus, it would result in higher lift contributing towards high tip loading of Optimized XPROP.
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Figure 5.19: Pressure distribution at different radial spans of XPROP and Optimized XPROP at J=1.0.
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5.2.4. Vorticity
In order to analyze the effect of the geometrical differences between the two propellers on the flow field,
the vorticity distribution was analyzed at a station located 10%Rp downstream of the propeller blade for
a steady-state computation at J=1.0. The vorticity distributions for XPROP and Optimized XPROP
are shown in Figure 5.20a and 5.20b, respectively.

According to Figures 5.20a and 5.20b, two major regions of high vorticity are located at the blade
tip and along the inboard portion of the blade near the root. The edge of the blade tips shed vortices
downstream. Similarly, vortices from the inboard portion of the blade are shed downstream from the
trailing edges. This acts as a source of the blade turbulence noise. Although, this turbulence noise will
be negligible as compared to the tonal noise which comprises of loading and thickness noise.

On comparing the vorticity distribution between the two propellers, it can be seen that the vorticity
magnitude near the tip of the Optimized XPROP’s blade is higher as compared to the XPROP. Whereas,
a smaller magnitude of vorticity can be seen along the inboard section of Optimized XPROP. The higher
magnitude at the tip could be attributed to the higher tip loading of Optimized XPROP. From the
preliminary judgement, it can be inferred that the high tip loading could result in increased sound
radiation from the tip. With that being said, more insights into sound radiation from two blades can be
provided by implementing an aeroacoustic model.

(a) XPROP. (b) Optimized XPROP.

Figure 5.20: Vorticity Distribution of XPROP and Optimized XPROP at J =1.0, at a downstream location
10%Rpfromtheblade.

5.2.5. Discussion of Results
On comparing the performance of the propellers based on the aerodynamic analysis done using SU2’s
CFD solver, it can be concluded that Optimized XPROP tends to achieve a higher thrust coefficient and
power coefficient for the whole range of the computed advance ratios. For the identical flow conditions,
the optimized blade operates with different loading distributions as a result of the swept tip. The blade
thrust and power distributions showed higher load at the tip of the blade for Optimized XPROP at
any given advance ratios. Although the thrust distribution is largely identical for a large part of the
blade for the two propellers, the power distribution varies. A larger deficit in power distribution can
be seen between the two blades as compared to the thrust distribution at any given advance ratio.
Such differences have an effect on the aerodynamic efficiencies of the two propellers. As the advance
ratio increased (lower helical tip Mach number), the Optimized XPROP gains a marginal increase in
aerodynamic efficiency. The highest gain in efficiency of +0.47% is achieved at J=1.2. Whereas, the
introduction of sweep results in a marginal loss in efficiency at lower advance ratios, the largest being at
J=0.6 i.e., -0.37%.

The study of pressure distributions of the two blades didn’t depict large differences for inboard blade
sections, except redistribution of surface pressure for Optimized XPROP at 98% which was different
from that of the XPROP. The redistribution of load at the tip results in higher lift and could be used to
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explain the Optimized XPROP’s higher tip loading. While studying the results it must be stated that
there could be discrepancies in results due to the overprediction of pressure coefficient Cp values at the
stagnation point by SU2’s CFD solver. Additionally, the pressure spikes at the trailing edge of the blade
where the pressure is interpolated smoothly can make results inconsistent.

The comparison of vorticity distribution showed variation in the magnitude of the vorticity shed by
the two blades as a result of differences in the loading distribution. An increase in vorticity magnitude
was observed near the tip of the Optimized XPROP blade due to higher tip loading. While there was a
reduction in the vorticity magnitude near the inboard portion of the blade. Based on the observation
of the spanwise blade loadings and vorticity distribution, a preliminary judgement can be made about
the acoustic radiation of the blades, wherein higher tip loading could result in high sound radiation.
Even though the introduction of sweep contributes to the reduction in sound but one must bear in mind
that the operating conditions play a significant role. As concluded by Hanson, the shape variations have
less influence at low Mach numbers [19]. That being said, the implementation of an aeroacoustic model
would allow an exhaustive comparison between the acoustic performance of the two blades.



6
Sensitivity Analysis

This chapter presents setup and results of adjoint-based sensitivity analysis. The setup of the adjoint
solver and parameterization of the blade is presented in Section 6.1. The results from adjoint-based
sensitivity analysis of the XPROP and Optimized XPROP are discussed in Section 6.2 and Section 6.3
respectively. Finally, Section 6.4 presents a comparison between the two propeller blades cases based on
the results of sensitivity analysis.

6.1. Parameterization and Adjoint Solver Setup
This section presents a discussion on parameterization of the test cases and setup of SU2’s adjoint solver.
The setup of adjoint solver comprises of - numerical implementation of the solver, choice of objective
functions, and the effect of sharp edges on the sensitivity.

6.1.1. Parameterization

(a) XPROP (b) Optimized XPROP

Figure 6.1: Parameterization of XPROP and Optimized XPROP blades using FFD method.

In this research, the design variables have been chosen by using Free-Form Deformation (FFD) method.
The number of FFD boxes and the control points have been chosen such that effect of surface deformation

47
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on the objective function can be computed at large number of points on the blade. This provides crucial
insights into the design of the aerodynamic surfaces and identify the most sensitive regions of surface
for each objective function. In this study, the geometry of the blade is encapsulated by assigning 8
FFD boxes for parameterization as shown in Figure 6.1. The decision to use multiple FFD boxes for
parameterization was to encapsulate the blade from root to tip while conforming to its varying shape
due to twist and sweep distribution along the blade. The FFD control points of the defined FFD boxes
are the three dimensional design variables used for surface deformation. Movement of the control points
in the surface normal direction i.e., Z-direction was defined for all the 288 control points in the upper
and lower surface of the FFD boxes. Even though dimensionality study has not been performed in
this research, the number of FFD control points along the chord of the blade have been chosen based
on the parameterization used in the different blade design studies [12]. Since, the FFD boxes for two
blades have an orientation to conform to the twist and sweep distribution of the respective blades, the
displacement of a particular FFD control point would result in different geometrical deformations in the
two blades.

6.1.2. Adjoint Solver Setup
Numerical Implementation
After solving the RANS equations, the solution from the SU2’s CFD solver and the computational
mesh are used as an input to SU2’s adjoint solver. Wherein, the adjoint solver uses the input to
solve the adjoint counterpart of the RANS equations. SU2’s discrete adjoint solver is implemented to
perform the sensitivity analysis of the isolated propeller blades in this study. Similar to the flow solver,
Jameson-Schmidt-Turkel (JST) centred scheme is used for the discretization of the convective fluxes.
The convection of adjoint turbulence quantity is discretized using a scalar upwind scheme.

Objective functions
While setting up SU2’s adjoint solver, the user needs to define the objective function and constraints
for performing design studies. Since the current research deals with the sensitivity analysis itself,
only objective functions were defined. This study deals with the sensitivity analysis of the propeller’s
performance parameters - thrust coefficient and torque coefficient, with respect to the geometric
deformation of the propeller blade. Since thrust and torque have a combined affect on the aerodynamic
efficiency of the propeller in the form of thrust to torque ratio, it was decided to perform the sensitivity
analysis of the two parameters to study their individual response to the geometric deformation.

In contrast to the foregoing definition of thrust coefficient and torque coefficient in Chapter 5,
alternative definitions are used- TC and QC . Equation 6.1 and 6.2 present the alternative definitions of
thrust coefficient, TC , and torque coefficient, QC , respectively.

TC = T/(q∞D2) (6.1)

QC = Q/(ρ∞V 2
∞D3) (6.2)

It can be inferred from the above equations that TC and QC are defined based on the freestream
conditions. These definitions provide clear insights into the average disk loading and the torque generated
at the actuator disk.

Sharp Edge Sensitivity
The evaluation of the effect of the sharp edges in the geometry is important for the design studies as
they impact the overall performance characteristics of the blade. The sharp edges can induce surface
sensitivities that are an order of magnitude higher than the rest of the geometry and are, therefore,
considered as an important design setting [38]. While it is a crucial setting from the design point, the
evaluation of the sensitivities is difficult in these non-smooth regions.

The sharp edges are typically located at the trailing edge of the propeller blade. SU2 provides a
sharp edge filter, that detects the sharp edges in the geometry and assigns sensitivity to 0 at that region.
The effect of SU2’s sharp edge filter on the surface sensitivities of the XPROP blade with TC as the
objective function is shown in Figure 6.2.

Due to the difference in the orders of magnitude in the surface sensitivities of the two cases, two
contour bands with different ranges are shown. From the contours of TC surface sensitivity, stark
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(a) Without sharp edge filter. (b) With sharp edge filter

Figure 6.2: Effect of SU2’s sharp edge filter on the surface sensitivity of XPROP, with TC as the objective function at
J =0.8.

differences are seen in terms of the magnitude of surface sensitivities as the sharp edge filter tends to
produce a contour where it is difficult to visualize the sensitive regions in Figure 6.2b. Whereas, the
sensitive regions are clearly visible for the case without sharp edge filter as seen in Figure 6.2a. Based on
the results, it can be concluded that the contribution from sharp edges is important for the sensitivity
analysis of the propeller blade. Therefore, it was decided not to use SU2’s sharp edge filter for further
computations.

6.2. Sensitivity Analysis of XPROP
This section presents the results and discussion from the sensitivity analysis of the XPROP’s aerodynamic
performance parameters using the discrete adjoint method.

6.2.1. Convergence Analysis
The convergence history of SU2’s flow solver and adjoint solvers for thrust coefficient and torque
coefficient are shown in Figure 6.3, 6.4 and 6.5, respectively. For the convergence of the SU2’s CFD
solver, the residual of continuity equation is used as a monitor to meet the required threshold for the
flow to be converged. From the flow solver’s convergence history it can be inferred that the residual of
continuity equation drops by 3 orders of magnitude within 23000 iterations. Similar observation is made
for the component of momentum equations along the three spatial coordinates of the domain.
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Figure 6.3: Flow Solver’s convergence history for
XPROP at J=.0.

According to the residuals from SU2’s adjoint solver shown in Figure 6.4 and 6.5, the residual of
the adjoint continuity equation ends up stagnating after 1.5 orders of drop in the magnitude. Similar
convergence behaviour is observed for the residual of X-component of momentum equation for the two
objective functions. In comparison to the flow solver, it can be noticed that it was more difficult to
converge the adjoint solver. One of the potential reason for stall of the adjoint solver could be due to
(relative) poor convergence of flow solver for the set criterion. Based on the validation of the adjoint
gradients and deformation studies, a discussion on the convergence of adjoint solver is presented in
Section 6.6.
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Figure 6.4: Adjoint Solver’s convergence history
for XPROP at J=1.0, with thrust coefficient as

objective function.
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Figure 6.5: Adjoint Solver’s convergence history
for XPROP at J=1.0, with torque coefficient as

objective function.

6.2.2. Objective function: Thrust Coefficient
Surface Sensitivities
The discrete adjoint method has been applied to analyze the sensitivity of the propeller’s thrust coefficient
TC , to the deformation of blade shape controlled by the design variables, i.e., FFD control points. As
mentioned before, the FFD control points are displaced in the surface normal direction (+Z-direction).

Figure 6.6 displays the surface sensitivity contours of XPROP’s suction and pressure side for objective
function TC at different advance ratios. The surface sensitivity maps display the gradient of the objective
function with respect to the normal displacement of the surface. It provides an insight to the designer by
highlighting the regions of high sensitivity that on perturbation have a dominant effect on the objective
function, as compared to regions of low sensitivity.

In Figure 6.6, the regions of high sensitivity are highlighted as yellow and dark blue regions. For
yellow region, normal displacement of the surface outwards (i.e. in +Z direction) will result in an
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(a) J=0.6 (b) J=0.8

(c) J=1.0 (d) J=1.2

Figure 6.6: Surface sensitivity contours of XPROP’s suction and pressure sides with Thrust (TC ) as objective function
at various advance ratios.

improvement of the objective function i.e., TC in this case. Whereas, moving the dark blue region
inwards would improve TC of the blade. The displacement of the light green region would relatively
have a little effect on the objective function.

On observing the suction side of XPROP’s blade at any given advance ratio, it can be inferred that
region of high sensitivity (yellow spots) increases from root to tip, with highest being at 80%-90% radius.
This region of high sensitivity along 80%-90% span, could due to the fact that region of highest radial
blade loading is located here. The magnitude of this high sensitivity region tends to reduce on increasing
the advance ratio from J=0.6 to J=1.2.

Additionally, regions of high sensitivity (yellow region) can be noticed along the leading edge of the
blade’s suction side. As the advance ratio increases, the extent of this high sensitivity region along the
blade’s leading edge tends to increase, extending from mid-span up to the blade’s tip. Here, the regions
of high sensitivity indicated in yellow suggest that on displacing the surface outwards in the normal
direction, will increase the thrust as a result of increased camber near the leading edge.

Another region of high sensitivity (yellow region) lies at the tip of the blade’s suction side. This
high sensitivity region is apparent at a low advance ratio of J=0.6 and tends to reduce/disappear with
increasing advance ratio. This could be explained by the presence of tip vortex at the blade’s tip, and
its intensity tends to reduce with increasing advance ratio (thus, low tip Mach number).
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On the blade’s pressure side, a region of high sensitivity (yellow region) is located along the trailing
edge of the blade. This could potentially be a sensitive region, but one must bear in mind that sharp
edges along the trailing edges can introduce gradients that are an order of magnitude higher than the
rest of the geometry [38]. The effect of this was investigated in Section 6.5.

Gradients
Chordwise gradients of TC at different radial positions along XPROP’s blade are shown in Figure 6.7.
The plots depict the variation of the chordwise gradients at different FFD control points along the chord,
where design variable number DV = 1 to 9 represents the FFD control points starting from leading edge
to trailing edge at all the radial positions. These gradients are with respect to the deformation of the
FFD control points on the upper side of the FFD boxes.
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Figure 6.7: Adjoint gradient for thrust coefficient (TC ) as objective function along the chord at different span positions
of XPROP blade. Here, DV=1 is located near leading edge and DV=9 is located aft of trailing edge.

On observing the chordwise gradient plots of TC at different radial locations in Figure 6.7, it can
be inferred that the magnitude of increment in the thrust gradient at a given chord position increases
from root to tip. This is similar to the inference made from the surface sensitivity contours, indicating
that any modification in the inboard section of the blade’s suction side would have a little effect on
TC . Whereas, TC will be relatively more sensitive to the deformation of outboard sections due to the
increased loading.

From the chordwise gradient plots at all the radial positions, a variation in the magnitude of the
thrust gradient with the chordwise position from leading edge to trailing edge is visible. It can be
inferred that at a given radial position, the magnitude of thrust gradient increases upto design variable
number DV=7, and beyond this point the direction of thrust gradient changes. The negative value of the
thrust gradient on displacement of design variable DV=9, the displacement of this FFD control point in
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+Z-direction would have a diminishing effect on the cost function. In other words, the cost function can
be improved by moving the FFD control point in the opposite direction normal to the surface.

Based on the modulus of the thrust gradient, highest sensitivities are attained at the trailing edge of
the blade for all the radial locations shown here. Although, part of the reason for high magnitude along
the trailing edge could have been due to the presence of sharp edges at the trailing edge, however based
on the investigation in Section 6.5, manual deformation of trailing edge had a dominant effect on the
blade’s performance.

At any given radial position on the outboard part of the blade, a trend of higher thrust gradient
with increasing advance ratio is seen. This trend is clearly visible at the control points located on the
aft part of the blade section. It can be explained by the variation in local flow characteristics at a given
blade section due to varying advance ratio thus, affecting the local surface pressure distribution. For a
constant freestream velocity, increasing the advance ratio by reducing the rotational speed, decreases the
Reynolds number as well as local angle of attack. Such conditions alter the boundary layer characteristics
of the flow and therefore it is important to inspect the boundary layer characteristic at a given section
to explain the trend. A low-fidelity calculation using XFOIL was performed for this purpose.

Since it is essential to know the local angle of attack at the blade section to inspect the boundary
layer characteristics, the following procedure is used. Local pressure distribution at 70% radius is
extracted from the computed RANS solution at different advance ratios. Based on the area under the
Cp curve (curve integral), the sectional normal force coefficient is calculated. XFOIL is used to perform
the calculations on the extracted airfoil blade section at 70% propeller radius, for a range of operating
conditions similar to the ones used for RANS calculations. For XFOIL computations, calculations
are performed at Mach number and Reynolds number based on the local relative velocity at the 70%
radius for each operating condition as shown in Table 6.1. Since the data RANS calculations were fully
turbulent, the transition location was placed at 2% chord to simulate a fully turbulent flow over the airfoil
in XFOIL. XFOIL calculations were performed for a range of angles of attack computed the pressure
distributions along with other boundary layer parameters. The data obtained from XFOIL calculations
are used to compare and find the normal force coefficient value which is same as that obtained from
SU2’s pressure distribution curves. The pressure distribution curves from two solvers are shown in Figure
6.8a. Even though this procedure does not lead to an exact equivalent pressure distribution between
XFOIL’s 2D and SU2’s 3D Cp curves, it does estimate the magnitude of the local angle of attack at
each advance ratio. Table 6.1 shows the estimated local angle of attack at 70% propeller radius for a
range of advance ratio.

Table 6.1: Calculated conditions from CFD simulations.

J Re0.7Rp
Mrel α0.7Rp

0.6 7.091e6 0.321 3.87◦
0.8 5.465e6 0.247 2.09◦
1.0 4.519e6 0.205 0.04◦
1.2 3.910e6 0.177 -2.05◦

On studying the boundary layer parameters obtained from the XFOIL calculations, the shape factor
on the suction side of the airfoil is plotted. Figure 6.8 depicts the variation of shape factor on the suction
side of the airfoil. High values of shape factor are attained at the leading-edge depicting transition
from laminar flow, followed by a reduction in its value after transition. A shape factor of H=1.3-1.4 on
the large part of the airfoil indicates turbulent flow. The shape factor towards trailing edge increases,
indicative of increasing adverse pressure gradient and leading towards separation. It can be inferred
that higher shape factor is attained at lower advance ratios. As the shape factor increases, the flow
experiences higher adverse pressure gradient and increases as the flow approaches separation point. Thus,
at low advance ratios the blade section experiences stronger adverse pressure gradient as compared to
higher advance ratios. A deformation of geometry at low advance ratio could increase adverse pressure
gradient and lead to an early onset of separation. Therefore, effect of geometry deformation on thrust
would have higher benefit at higher advance ratios as compared to low. Moreover, the thicker boundary
layer results in the reduced lift for the cases with strong adverse pressure gradient.
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(a) Comparison of pressure distributions from SU2
and XFOIL calculations at various advance ratios.
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Figure 6.8: XFOIL Calculations for boundary layer properties at r/Rp = 0.7 of XPROP blade.

The adjoint gradients obtained using SU2’s discrete adjoint solver are validated by performing the
gradient calculation using Finite Differences (FD) method. A suitable step size of 0.001 was chosen for
the gradient computation using FD method. Figure 6.9 shows the comparison between TC gradients
of XPROP’s blade for J=1.0 at 57% and 89% radial positions. The comparison is drawn between the
design variables located on the upper surface of the FFD box.
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Figure 6.9: Gradient comparison of XPROP’s thrust coefficient TC at J=1.0.

On comparing the FD gradients with that of adjoint in Figure 6.13, chordwise trends of the two
gradients are in good agreement in terms of the direction of the gradients at both the radial positions.
On inspecting closely, differences are seen for the FFD points close to the leading edge at both the
radial positions. While at the 57% radius, the gradients are well matched in terms of magnitude for the
design variables located aft of design variable DV=6. In comparison to 57% radius, higher differences
are noticed at 89% radius with largest for the design variable aft of the blade’s trailing edge. Overall, a
good agreement is seen between the gradients from the two methods.

Adjoint Flowfield
As pointed out by Marta et al. [31], an adjoint flowfield represents the adjoint solution at each grid
point and is an adjoint counterpart of the physical flow variables. For example, an adjoint density is
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interpreted as the amount by which the mass flux must be changed to increase/decrease the objective
function of interest. This change can be induced by either changing the design of the blade or by
changing the boundary conditions. Figure 6.10 shows the contours for adjoint momentum (X-direction)
at 70% propeller radius of XPROP for different advance ratios.

The plots indicate that the region where momentum must be increased is largely present along
the suction side of the blade section in the vicinity of the boundary layer. Especially, increasing the
momentum in the region along the suction side’s trailing edge would have a dominant effect on the
thrust coefficient TC . This is in line with the chordwise gradients, as the largest gradient was attained
at the trailing edge for the radial position close to 70% propeller radius.

With increasing advance ratio, this region along the boundary layer spreads out further upstream
with respect to the point close to the trailing edge, suggesting an increased portion of flow where higher
momentum would reap benefits in TC . Based on the adjoint flowfield, a designer can make geometrical
changes to induce changes in the flow variables and attain the desired flowfield.

(a) J=0.6 (b) J=0.8

(c) J=1.0 (d) J=1.2

Figure 6.10: Adjoint solution for Momentum (X-direction) at 70% Rp of XPROP with Thrust coefficient (TC ) as
objective function at various advance ratios.
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6.2.3. Objective function: Torque Coefficient
Surface Sensitivities
Figure 6.28 displays the surface sensitivities of the XPROP’s blade with torque coefficient QC as the
objective function.

(a) J=0.6 (b) J=0.8

(c) J=1.0 (d) J=1.2

Figure 6.11: Surface sensitivity contours of XPROP with Torque (QC ) as objective function at various advance ratios.

On the blade’s suction side at any given advance ratio, the region of high sensitivity (dark blue)
increases from hub to tip. It can be seen that the highest concentration of this sensitive region is
found close to the blade tip. This can be attributed to the increase in torque loading from hub to tip.
The spread of the high sensitivity region on the outboard suction side increases and spreads aft with
increasing advance ratio. This indicates that the blade’s torque coefficient becomes highly sensitive to
the deformation in this region as the advance ratio increases.

Towards the trailing edge of the suction side a region of high sensitivity depicted as yellow is present.
A similar trend was seen in the case of thrust gradient’s surface sensitivity. This could be a sensitive
region, but as aforementioned, sharp edges along the trailing edges can introduce gradients that are an
order of magnitude higher than the rest of the region [38].

While on the pressure side, a similar increase in the sensitive region from root to tip is visible at any
given advance ratio. However contrary to the suction side, this region of high sensitivity reduces on
increasing the advance ratio from J= 0.6 to J=1.2, as can be inferred from Figure 6.11.
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Gradients
Chordwise gradients of QC at different radial span positions along XPROP’s blade are shown in Figure
6.12. Similar to the foregoing section, design variables 1 to 9 are the FFD control points along the
blade’s chord from leading edge to trailing edge.
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Figure 6.12: Adjoint gradient for torque coefficient (QC ) as objective function along the chord at different span positions
of XPROP blade.

The torque gradient at a given chordwise position increases from root to tip, similar to the inference
made from the surface sensitivity contours. On observing the variation of torque gradient at different
chord positions along the section, it can be inferred that the higher improvement in torque is attained
on going downstream from the leading edge towards trailing edge for the surface normal deformation
until design variable 7. Beyond DV = 7, the direction of the gradient tends to change towards the
opposite direction. The highest modulus of torque gradient is attained at the trailing edge. This
observation is similar to the trend seen in the case of thrust gradient. This trend is expected, as the
normal displacement of the FFD control point in the +Z direction would increase the blade section lift
due to an increase in camber. The increased lift results in an increase in thrust as well as torque. As
the contribution from lift dominates towards the thrust and torque for the advance ratio except for the
conditions close to zero thrust.

Similarly, the modulus of increment in torque gradient increases with increasing advance ratio which
can be explained based on the increasing displacement thickness and shape factor at lower advance
ratios, making it highly susceptible to separation. Thus, lowering the margin to improve the objective
function. While interpreting the results, one must bear in mind that the term ’improvement’ refers to
the increment of the objective function. In practice, the propellers are designed to minimize the torque,
in order to maximize the propeller’s aerodynamic efficiency at a given thrust requirement. Thus, one
would want to use the predicted gradient information to reduce the torque.
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After observing the trends of the chordwise torque gradients, it is worth mentioning that the direction
of the regions of the high sensitivity of QC (Figure 6.11) are opposite to that indicated by the chordwise
gradients on the suction side. Such a trend is surprising.

The torque gradients from discrete adjoint solver are validated against the FD method. Figure
6.13 shows the comparison between QC gradients of XPROP’s blade for J=1.0 at 57% and 89% radial
positions. The comparison is drawn between the design variables located on the upper surface of the
FFD box.
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Figure 6.13: Gradient comparison of XPROP’s torque coefficient QC at J=1.0.

The agreement between the QC gradients from discrete adjoint and FD method is good, as they
exhibit gradients with same sign for all the design variables. Although, the adjoint method predicts a
larger gradient for the design variable at the trailing edge of the blade sections at 57% and 89% radius.
As seen in the case of TC , the better agreement is seen of the design variables along 57% radius than the
one along 89% radius.

Adjoint Flowfield
Figure 6.14 displays the contours for adjoint momentum (X-direction) at 70% blade radius of XPROP
for different advance ratios with respect to the torque coefficient.

From the plots, it can be observed that any change in the region within the vicinity of the boundary
layer along the blade’s suction side would have a dominant effect on the variation of the QC as compared
to other regions in the flowfield. While the change along the trailing edge portion of the blade section’s
suction side would have the highest effect. Similar trends were observed for the chordwise gradient at a
span location close to 70% blade radius.

As the advance ratio is increased, the adjoint momentum close to the trailing edge increases. This
suggests that there is a potential to obtain a larger increment in the QC by inducing delta change in the
momentum (as a result of geometry variation or operating condition) at higher advance ratios. From the
perspective of the propeller’s aerodynamic performance, a lower torque is desired. In other words, the
trailing edge must be designed with care as it has a dominant effect on the performance of the propeller.

Based on the adjoint flowfield for TC and QC for XPROP, it can be concluded that the change
induced in momentum along the suction side’s trailing edge by altering the geometry, would have a
dominant effect on the propeller’s performance.
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(a) J=0.6 (b) J=0.8

(c) J=1.0 (d) J=1.2

Figure 6.14: Adjoint solution for Momentum (X-direction) at 70% Rp of XPROP with torque coefficient (QC ) as
objective function at various advance ratios
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6.3. Sensitivity Analysis of Optimized XPROP
This section presents the results and discussion from the sensitivity analysis of the Optimized XPROP’s
aerodynamic performance using discrete adjoint method.

6.3.1. Convergence Analysis
The convergence history of the flow solver and adjoint solvers for thrust coefficient and torque coefficient
are shown in Figure 6.15, 6.16 and 6.17, respectively with Optimized XPROP at J=1.0. Similar to the
case setup of XPROP, the continuity equation was assigned as the monitor variable for the convergence
of the flow solver on meeting the threshold value. The residuals of continuity equation drop by 3 orders
of magnitude within 22000 iterations. Similar order of drop is seen for the residuals of the momentum
equations.
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Figure 6.15: Flow Solver’s convergence
history for XPROP at J=1.0.

The residuals of the adjoint continuity equation for the thrust coefficient and torque coefficient
stagnates after 1.5 orders of magnitude and does not change after 15000 iteration. This convergence
behaviour is similar to the one observed in the case of XPROP. As aforementioned, one of the potential
reasons could be the (relatively) poor convergence of flow solver. Based on validation of the gradients
and deformation studies, a comment on the convergence of adjoint solver is made in Section 6.6.
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Figure 6.16: Adjoint Solver’s convergence
history for Optimized XPROP at J=1.0, with

thrust coefficient as objective function.
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Figure 6.17: Adjoint Solver’s convergence
history for Optimized XPROP at J=1.0, with

torque coefficient as objective function.
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6.3.2. Objective function: Thrust Coefficient
Surface Sensitivities
Figure 6.18 shows the surface sensitivity contours of XPROP’s suction and pressure side for a thrust
objective function at different advance ratios.

(a) J=0.6 (b) J=0.8

(c) J=1.0 (d) J=1.2

Figure 6.18: Surface sensitivity contours of Optimized XPROP with Thrust (TC ) as objective function at various
advance ratios.

The regions of high sensitivity (yellow region) on the suction side become apparent on the outboard
part of the Optimized XPROP at any given advance ratio. Similar to the case of XPROP, a region of
high sensitivity (yellow region) is apparent along the leading edge of the blade that tends to increase
along the leading edge, extending from mid-span upto the tip with increasing advance ratio.

While focusing on the effect of tip sweep on thrust in Figure 6.18a, a region of high sensitivity is
attained at the contour of the tip. It tends to reduce with increasing advance ratio, as can be inferred
from Figure 6.18b, 6.18c, and6.18d. This region of high sensitivity can be attributed to the presence of
leading edge vortex at the blade’s tip, as a result of high incidence angle at low advance ratios. Similar
to XPROP, a region of high sensitivity (yellow region) is located along the trailing edge of the blade
near the tip on the pressure side. This region tends to decrease with increasing advance ratio.
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Gradients
Figure 6.19 displays the chordwise gradients of the thrust coefficient TC for Optimized XPROP at
various radial positions for different advance ratios.

1 2 3 4 5 6 7 8 9

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

1 2 3 4 5 6 7 8 9

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

1 2 3 4 5 6 7 8 9

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

1 2 3 4 5 6 7 8 9

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Figure 6.19: Chordwise adjoint gradient with thrust coefficient (TC ) as objective function at different radial positions
along Optimized XPROP blade’s suction side.

The thrust gradient at a given chord position increases from the root towards the tip as was seen in
the case of XPROP. This means that the movement of the FFD control point located close to the root
of the blade (and thus deforming region close to that) will have little effect on the thrust coefficient
of the blade at any given advance ratio. While at 26%, 47%, and 68% radius, the highest modulus of
thrust gradient is attained by moving the FFD control point located near the trailing edge.

The observed trends are similar to that of XPROP when it comes to the variation of the chordwise
gradients with advance ratio at a radial span of 26%, 47%, and 68%. This is due to the fact that
Optimized XPROP and XPROP have same airfoil chord and twist distribution, therefore reaping similar
trends at a given advance ratio. Additionally, the sweep in this region of the blade is relatively less as
compared to the outboard part of the blade.

Normal displacement of design variables near the blade tip at 89% radius results in a unique behaviour
of chordwise gradients from leading edge to trailing edge for Optimized XPROP. This is the region where
higher MCA i.e., sweep, is introduced in the blade extending up to the tip. Unlike the gradients at other
radial positions, the trailing edge doesn’t have a dominant effect on the objective function at this radius.
Such a difference in the gradients could be explained by the differences between pressure distribution
of blade sections in the tip region and the inboard sections. Based on the discussion on aerodynamic
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performance of Optimized XPROP in Section 5.2, the chordwise load redistribution towards aft portion
of the blade on suction side as well as leading edge vortex resulted in a Cp curve which was different
from the ones at the inboard sections.

Except for 89% radius, the gradients located near the trailing edge of the blade sections are more
sensitive to the variation in advance ratios. Whereas at 89% radius, these design variables are relatively
less sensitive to the variation in advance ratios.

Figure 6.20 shows the comparison between discrete adjoint and FD gradients of XPROP’s blade
for J=1.0 at 57% and 89% radial positions with TC as objective function. The comparison is drawn
between the design variables located on the upper surface of the FFD box.
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Figure 6.20: Gradient comparison of Optimized XPROP’s thrust coefficient TC at J=1.0 along the suction side.

From the gradient validation plots, it can be inferred that the direction of the gradients with FD
and adjoint method are in a good agreement for the two radial positions. Although, differences in
the magnitude is apparent. At 57% radius, the difference is dominant near the leading edge, where
adjoint method predicts slightly higher magnitude of gradient. While, adjoint method underpredicts
the magnitude of the gradients with respect to FD method for aft portion of the blade. At 89% radius,
dominant differences between the gradients of two methods is seen for the design variables located
along the mid chord at 89% radius, with largest for design variable DV=7. Part of the reason for such
discrepancies can be attributed to the fact that FD method is prone to truncation errors. In comparison
to the XPROP’s gradient validation, larger differences are seen in the case of Optimized XPROP. Overall,
a satisfactory agreement is seen between the gradients from two method.

Adjoint Flowfield
Figure 6.21 displays the flowfield of adjoint momentum (X-direction) at 70% blade radius of Optimized
XPROP at different advance ratios, with thrust coefficient TC as the objective function.

From the adjoint momentum (X-direction) plots, it can be inferred that inducing change in the region
along the blade section’s suction side has a higher potential for the increase in the TC as compared to
other regions. The observations of this adjoint solution is similar to that of XPROP with TC , as any
variation in the region close to suction side’s trailing edge has a dominant effect on the thrust and this
region is in the vicinity of the boundary layer. Similarly, the effect of variation of the advance ratio is
same as that observed for XPROP.
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(a) J=0.6 (b) J=0.8

(c) J=1.0 (d) J=1.2

Figure 6.21: Adjoint solution for Momentum (X-direction) at 70% Rp of Optimized XPROP with thrust coefficient (TC )
as objective function at various advance ratios
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6.3.3. Objective function: Torque Coefficient
Surface Sensitivities
Surface sensitivities contours of Optimized XPROP blade with torque coefficient as the objective function
at various advance ratios is displayed in Figure 6.22.

(a) J=0.6 (b) J=0.8

(c) J=1.0 (d) J=1.2

Figure 6.22: Surface sensitivity contours of Optimized XPROP with Torque (QC ) as objective function at various
advance ratios.

From the observation of the Optimized XPROP’s suction side, the region of high sensitivity (dark
blue) increases along the span of the blade at any given advance ratio. This is attributed to the increased
torque loading with the radial position. Whereas, the concentration of this high sensitivity region tends
to increase and spread towards the aft of the blade with the increasing advance ratios. This could be
explained by the decreasing local angle of attack at the blade section with increasing advance ratios.

Similar to the thrust gradient, a region of high sensitivity (dark blue and yellow region) is visible at
the contour of the swept tip Figure 6.22a. This region tends to disappear/reduce in concentration with
increasing advance ratio. This could suggest the presence of vortex formation along the leading edge of
the swept tip, which tends to reduce at higher advance ratios (low loading).

Whereas on the pressure side, a region of high sensitivity (dark blue) increases from hub to tip. On
increasing the advance ratio, this region tends to reduce. Additionally, region of high sensitivity (yellow)
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is apparent along the trailing edge of the blade’s pressure side.

Gradients
Figure 6.23 displays the chordwise gradients of the torque coefficient QC for Optimized XPROP at
various radial positions for different advance ratios.
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Figure 6.23: Adjoint gradient for torque coefficient (QC ) as objective function along the chord at different span positions
of Optimized XPROP blade.

On analyzing the chordwise torque gradients at 26%, 47%, and 68% radius, it can be inferred that
magnitude of gradient increases from the root towards the tip as was seen in the case of XPROP.
This means that the movement of the design variables located close to the root of the blade (and thus
deforming region close to that) will have little effect on the torque coefficient of the blade at any given
advance ratios. At these radial positions, highest modulus of thrust gradient is attained by moving
the design variables located near the trailing edge. As was seen in the case of XPROP, higher torque
gradient with increasing advance ratio is attained at a given radius and this effect is more apparent in
the aft of the blade section. This can be attributed to the stronger adverse gradients experienced at
lower advance ratios, making it reap less advantage of the geometric deformation.

Whereas, at 89% radius, the chordwise trends are unlike the ones observed at the inboard portion.
As aforementioned introduction of sweep in the outboard portion of the blade redistributes the chordwise
pressure distribution and could explain such a deviation from the trend of chordwise gradients seen at
the inboard section. The QC gradients at 89% radius show a trend similar to the ones observed in case
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of TC , as the design variable that has a dominant effect on the objective function is now located along
the mid-chord of the section, except for the case of J=0.8.

As was seen in the case XPROP, the gradients of QC suggest a trend opposite to that of the surface
sensitivity contours. That is, the surface sensitivity contours depict the reduction in Optimized XPROP’s
QC , on the normal displacement of the design variables in +Z-direction. Whereas the gradients shown
in Figure 6.23, suggest that QC would increases on moving the design variables in +Z-direction.

Figure 6.17 shows the QC gradient comparison between the discrete adjoint and FD gradients for
Optimized XPROP at 57% and 89% radius for J=1.0.
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Figure 6.24: Gradient comparison of Optimized XPROP’s torque coefficient QC at J=1.0.

The direction of the gradients from the two methods at the 57% and 89% radius are in good agreement.
Although, deviation is seen at 57% radius in terms of magnitude where adjoint method underpredicts
the gradients for design variables near the leading edge of the blade, while overpredicting for the ones
along the aft portion of the blade. Larger discrepancy is seen in the gradients with respect to the FFD
control points located along the mid chord of the section at 89% radius, as adjoint method predicts larger
values. As aforementioned, this could be partly due to the truncation error in FD method. However, a
satisfactory agreement is seen between the two methods.

Adjoint Flowfield
Figure 6.25 displays the contours of adjoint momentum (X-direction) at 70% blade radius of Optimized
XPROP at different advance ratios, with torque coefficient QC as the objective function.

On observing the adjoint momentum (X-direction) flowfield, inferences similar to the XPROP’s
adjoint momentum flowfield for QC are derived. Based on the adjoint flowfield of TC and QC for
Optimized XPROP, it can be concluded that the change induced in momentum along the suction side’s
trailing edge by altering the geometry, would have a dominant effect on the propeller’s performance.
This holds true for all advance ratio. As the advance ratio is increased from J=0.6 to J=1.2, this region
in the vicinity of boundary layer increases and extends upstream with respect to the trailing edge of the
blade.
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(a) J=0.6 (b) J=0.8

(c) J=1.0 (d) J=1.2

Figure 6.25: Adjoint solution for Momentum (X-direction) at 70% Rp of Optimized XPROP with torque coefficient
(QC ) as objective function at various advance ratios
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6.4. Comparison of XPROP and Optimized XPROP
To analyse the effect of sweep on the adjoint gradients and sensitivities under same operating conditions,
a comparative study has been performed by analysing the foregoing results of XPROP and Optimized
XPROP for thrust coefficient TC and torque coefficient QC .

6.4.1. Objective function: Thrust Coefficient
Surface Sensitivities
The surface sensitivity contours of XPROP and Optimized XPROP for thrust coefficient TC at advance
ratio of J=1.0 are shown in Figure 6.26. On comparing the suction side of the blade, nearly identical
regions of high sensitivity are apparent along the leading edge of the blade. Although, Optimized
XPROP tends to have higher concentration of high sensitivity region along the tip of the blade. This is
especially visible along tip’s leading edge where sweep of the blade is added. While, both the blades
exhibit region of high sensitivity along the trailing edge of the blade on the pressure side. Based on the
surface sensitivities, both blades have nearly similar sensitivity map at the given condition.

(a) XPROP (b) Optimized XPROP

Figure 6.26: Comparison of Surface sensitivity contours of XPROP and Optimized XPROP with Thrust (TC ) as
objective function at J=1.0.

Gradients
After comparing the surface sensitivity contours of the blades, the chordwise gradients of TC at different
radial positions have been compared here. Figure 6.27 shows the chordwise gradients with respect to
the FFD control points at 26%, 68%, 89%, and 101% propeller radius. It must be noted that since the
orientation of the FFD boxes are defined to conform to the twist and sweep distribution of the respective
blades, the displacement of a particular FFD control point would induce a change in geometry which
will be different for the two blades. However, the results are presented to study how the gradients for
the two blades differ especially for the region close to blade’s tip.

Both the propeller blades display identical gradient behaviour for displayed radial spans except at
the tip. Starting at the root, no apparent difference is seen in the gradients at 26% radius in terms of
magnitude and direction. This is attributed to the fact that the blade section is the same for the two
propellers at this span as well as due to the low loading in this region. At the 68% radius, it can be
inferred that the difference in the gradient for the forward portion of the blade section is negligible and
it is only after the design variable DV=7 that a deviation is seen where a displacement of design variable
DV=9 affects the magnitude of the thrust differently for the two blades.

Optimized XPROP’s gradients attained at design variables at 89% and 101% radius, show a chordwise
trend different from that of XPROP’s. This is the region where higher sweep (higher MCA) is introduced
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in the Optimized XPROP’s blade. It can be inferred that the normal displacement of the design variables
located near the forward portion of the blade section would result in higher increment in thrust for
Optimized XPROP in comparison to the XPROP. The increment in thrust is a result of the camber
addition by normal displacement of the design variable. Whereas, same displacement of the design
variables near the aft portion of the blade sections would result in higher gains in thrust for XPROP.
It is interesting to notice the lower magnitude of gradients attained for the design variables located at
the trailing edge for Optimized XPROP. Such variatiom in the chordwise gradients at 89% and 101%
radius for the two blades can explained by the differences in the Cp curves of the two blades discussed in
Section 5.2. Variation in load distribution along the chord (as a result of geometry) and local angle of
attack could explain such differences in the gradients around this region.
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Figure 6.27: Comparison of Adjoint gradient for thrust coefficient (TC ) as objective function along the chord at different
span positions of Optimized XPROP blade.
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6.4.2. Objective function: Torque Coefficient
Surface Sensitivities
Figure 6.28a displays the surface sensitivity contours of XPROP and Optimized XPROP at J=1.0. On
comparing the suction side of the two blades, it can be inferred that Optimized XPROP’s blade has
larger concentration of high sensitive region (dark blue) along the outboard of the blade as compared to
XPROP. This region of high sensitivity is dominated towards the leading edge of the blade tip. Whereas,
region of high sensitivity on the pressure side of the two blades are visibly same and largely spread
across the outboard part of the blade. Along the trailing edge of the pressure side, a light yellow region
is indicative of the region of high sensitivity too. This is apparent in the case of both the blades.

(a) XPROP (b) Optimized XPROP

Figure 6.28: Comparison of surface sensitivity contours of XPROP and Optimized XPROP with Torque (QC ) as
objective function at J=1.0.

Gradients
Chordwise gradients of torque coefficient QC of XPROP and Optimized XPROP are compared at
different radial positions for J=1.0 as shown in Figure 6.29.

The trends observed here are similar to the thrust gradients observed for both the blades. This is as
expected, since increment in the thrust due to additional camber by displacement of the design variable
results in an increase in torque and vice versa. The addition of camber to the blade section by displacing
the design variables along 26% radius have little effect on the torque for both blades. And the effect of
displacing the design variable in normal direction reaps larger effect in terms of gain in torque for both
the blades at 68% span as well. At these two radial positions, differences are seen for the gradients with
respect to the displacement of the design variable located next to the trailing edge i.e., DV=9.

As the higher sweep is encountered at 89% and 101% radius of Optimized XPROP’s blade, the
trend of chordwise gradient of QC tends to vary as compared to XPROP. Similar to the observations
made in previous subsection, normal displacement of the design variables in the forward portion of the
blade section would have larger effect on torque for Optimized XPROP as a result of increased camber.
Whereas, increasing the camber by displacing the design variables located in the aft of the blade section
would have a larger effect on the XPROP’s torque. As aforementioned, such a difference in the trend
of chordwise gradients could be explained by the variation in the Cp curves for a blade section in this
region.
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Figure 6.29: Comparison of adjoint gradient for torque coefficient (QC ) as objective function along the chord at different
span positions of Optimized XPROP blade.

6.5. Deforming the Surface using Adjoint data
Similar to the design information gained using adjoint based sensitivity analysis in the foregoing sections,
designer is provided with key insights into the design of the aerodynamic body which can be used to
improve the design objective function by translating this information into deformation of the body. The
sensitivity maps, gradients, and adjoint flowfield of the performance parameters of both the blades have
provided some interesting insights. In this section, this information is used to deform the surface of the
propeller blade by displacing specific FFD control points and quantify the effect in terms of change in
the performance parameters of the blade. In the case of an optimization study, this is considered first
design iteration to attaining an optimal shape design.
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6.5.1. Case-1-Deformation along the leading edge
As could be inferred from the surface sensitivity maps, gradients, and adjoint flowfield for the XPROP
blade, displacement of the design variable normal to the surface in +Z-direction on the outboard part
of the blade results in an increment in thrust coefficient TC and torque coefficient QC . Using this
information, the design variables of the FFD boxes located on the outboard part’ leading edge of the
blade are displaced to morph the blade surface as shown in Figure 6.30.

Figure 6.30: Deforming XPROP’s leading edge by displacing the FFD control points and slice of the blade section at
70% radius. In the figure- Black: Baseline FFD Box and blade section; Red: Deformed FFD Box and blade section.

Table 6.2: Performance parameters of baseline XPROP and deformed XPROP for Case-1

Parameter Baseline Deformed
Thrust coefficient TC 0.363 0.368
Torque coefficient QC 0.038 0.039

Flow over deformed blade was simulated for advance ratio J=1.0 and the resulting performance
parameters are shown in Table 6.2. It can be inferred from the table that, deformed blade attains higher
thrust coefficient TC and torque coefficient QC as compared to the baseline blade. The deformed blade
has gains an increment of 1.28% and 1.43% in the TC and QC respectively. The normal displacement
of the FFD control points in the +Z direction morphs the surface of the blade by adding a marginal
amount of camber along 20%-50% chord wise position of the blade section. The higher camber results in
increased lift at a given blade section, therefore increasing the thrust and torque of the blade. Therefore,
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the results are in line with the adjoint information.

6.5.2. Case-2-Deformation along the blade’s trailing edge
From the gradient information of the propeller blades, it was inferred that displacement of the control
points located along the blade’s trailing edge have a dominant effect on the magnitude of the performance
parameter as compared to displacement of any other control points. To validate this, the design variables
located along the trailing edge of the blade’s outboard part are displaced in the +Z-direction. The effect
of the displacement on the FFD box and the blade section at 70% radius is shown in Figure 6.31.

Figure 6.31: Deforming XPROP’s trailing edge by displacing the FFD control points and slice of the blade section at
70% radius. In the figure- Black: Baseline FFD Box and blade section; Red: Deformed FFD Box and blade section.

Table 6.3: Performance parameters of baseline XPROP and deformed XPROP for Case-2

Parameter Baseline Deformed
Thrust coefficient TC 0.363 0.329
Torque coefficient QC 0.038 0.034

The results of the effect of deformation along the trailing edge are shown in Table 6.3. It can be seen
the deformation of the blade by displacing the FFD points along the trailing edge of the blade results in
a reduction in the thrust coefficient TC and torque coefficient QC as compared to the baseline blade.
Decrements of 9.5% and 10.5% is attained in the TC and QC respectively, on adding the camber towards
the aft of the blade section. On comparing the magnitude of effect on the performance parameters of
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the current case with that of the previous case of leading edge deformation, it can be confirmed that
FFD control points along the trailing edge tend to have dominant effect on the performance of the blade.
In other words, performance of the blade is highly sensitive to the deformation along the trailing edge.
The decrease in the TC and QC as a result of deformation of the blade in this case, is consistent with
the gradient information as the adjoint solver predicts negative gradient on displacing the FFD control
points located along the trailing edge.

6.6. Discussion on Adjoint Solver’s Convergence
The key step in RANS-based design study employing an adjoint solver is accurate and efficient computa-
tion of the adjoint counterpart of RANS equations. According to Xu and Timme [58], as the stiffness
and linear stability of the nonlinear flow equations is derived by the adjoint equations, it is challenging
to solve the stiff adjoint equations.

Based on the observations of the convergence history of the adjoint solvers in Section 6.2 and 6.3, it
was inferred that convergence of adjoint continuity equation was difficult to converge as the residuals drop
by 1.5 orders of magnitude. Beyond 15000 iterations, the residuals of the adjoint continuity equation
stagnate for both the propeller blades. The convergence of the residual of equations is essential for the
accuracy of the solution. The stagnation of the adjoint equations after a certain number of iterations,
made the author question whether the resulting gradients and sensitivities are trustworthy. Xu and
Timme [58], list some known reasons that could stall the convergence of adjoint equations - simulating
the complex configuration in off-design conditions, numerical stiffness due to ill-conditioned coefficient
matrix, destabilisation of the solver due to large separation. Based on the comparison between the
residuals of flow and adjoint solver, along with the gradient validation an engineering judgement is used
to conclude that resulting adjoint results are reasonable. This judgment is also based on the results
obtained with deformation studies, which were in line with the predicted adjoint gradients.



7
Conclusions and Recommendations

7.1. Conclusions
The main aim of this thesis was to implement SU2’s adjoint capabilities to perform the multi-point
sensitivity analysis of an isolated propeller blade’s aerodynamic performance parameters with respect to
the deformation to its shape design. Two blades were used to proceed with the study- XPROP and
Optimized XPROP. The only difference between the two propellers was that the latter blade has an
additional sweep distribution from hub to tip.

Due to the coupling between the adjoint and flow solver, the SU2’s flow solver was verified and
validated against the calculations from commercial CFD software ANSYS Fluent. The comparison is
drawn by comparing the grid convergence, discretization error, performance parameters, and spanwise
pressure distribution. The solutions with SU2 were more sensitive to the mesh refinement as compared
to ANSYS Fluent’s, as a higher relative difference in solution was attained for SU2. The least-squares
method of GCI was implemented to determine the numerical discretization error. For the RANS-based
simulation on the same computational meshes of two blades, SU2 had a higher discretization error as
compared to ANSYS Fluent. In the case of XPROP’s CT behaviour, discretization error of 0.31 % and
6.85% was found with ANSYS Fluent and SU2, respectively. While, solution of XPROP’s CP with
ANSYS Fluent and SU2 result in the discretization error of 0.38% and 5.58%, respectively. Similar
trends are seen in the case of Optimized XPROP, as the discrteization error with ANSYS Fluent and
SU2 for CT ’s convergence are estimated to be 0.4% and 3.9%, respectively. For Optimized XPROP’s
CP solutions on the same computational mesh result in discrteization errors of 0.42% and 11.78% with
ANSYS Fluent and SU2, respectively.

Based on the comparison of the performance parameters, both solvers exhibited similar trends of
curves for all advance ratios. However, offset between the curves of performance parameters with two
solvers is attained. This could be attributed to the difference in the type of solvers and numerical
schemes used discretization of the governing equations. However, on further inspection of the pressure
distributuion curves with SU2 and ANSYS Fluent at J =1.0, discrepancies were seen at the trailing
edge of all blade section, as well as the mismatch between the value of Cp at the stagnation point for
outboard sections. As such discrepancies could potentially result in the values different from that of
ANSYS Fluent, this observation can be potentially used to explain the offset seen in the performance
curves.

Results obtained from SU2’s flow solver were further used to perform a comparative study between
the aerodynamic performance of the XPROP and Optimized XPROP. This was done in order to study
the effect of adding a sweep to the blade on the propeller’s aerodynamic performance for a range of
advance ratios. Based on the study, it was found that introduction of sweep results in higher thrust
and power at any given advance ratio on being compared to the baseline XPROP blade. For identical
flow conditions, the sweep alters blade’s thrust and torque loading. On inspecting the radial blade
loading distributions, it was observed that larger deficit is attained between the power distribution of
the Optimized XPROP and XPROP as compared to the differences in the thrust loading. As a result of
which both the differences in the efficiencies of the two propellers exists. This trend makes Optimized
XPROP operate at a higher efficiency as compared to the baseline XPROP at advance ratios J>0.9 as
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the differences in thrust and torque are cancelled. The largest gain of +0.47% in aerodynamic efficiency
is reaped at J=1.2 with respect to the baseline blade. Whereas, the introduction of sweep causes a
decrement in the efficiency at low advance ratios, with the largest drop -0.37% taking place at J=0.6.

The adjoint solver implementation with FFD parameterization provided insights into identifying the
regions of the blade that have a dominant effect on the aerodynamic performance of the propeller on
geometric deformation. The discrete adjoint solver was implemented to perform a multi-point sensitivity
analysis of the XPROP and Optimized XPROP blades. For baseline XPROP blade, the regions of high
sensitivity on the suction side increases from hub to tip for both TC and QC . The spread of this region
tends to extend to a larger portion of the blade with the increasing advance ratio. Likewise, the sensitive
region across the blade’s leading edge on the suction side increases with advance ratio, spanning from
midspan to the tip. Additionally, a region of high sensitivity was observed at blade’s tip for low advance
ratio (J =0.6). This sensitive region could suggest the presence of leading edge vortex, as the this region
tends to reduce with increasing advance ratios. For the case of Optimized XPROP, similar observations
were made for the surface sensitivity contours.

Based on the information from the thrust and torque gradients, at a given radius, the increment
in the design objective increases for the normal displacement of the design variables, spanning up to
60%-70% of the section chord for XPROP. Beyond this point, the direction of gradient changes and
highest gradients are attained on the deformation of the design variables close to the trailing edge. The
increment in the design objective tends to vary with the advance ratios, as higher increments in the
design objective are attained at the higher advance ratios. Similar trends were observed for the case of
the Optimized XPROP, except in the regions close to the tip where the sweep is large. The addition of
sweep at the tip has an effect on the thrust and torque gradients as the sensitivity of the gradients to
advance ratio reduces. Moreover, the design variable with a dominant effect on the objective function is
now located at the mid-chord region instead of the trailing edge. Therefore, the addition of sweep at the
tip modifies the thrust and torque gradients.

The adjoint flowfield for both the blades with thrust and torque coefficient as the objective functions,
suggested that these performance parameters are sensitive to change induced in the momentum (X-
direction) in the region close to the blade section’s suction side. While, inducing such a change along
suction side’s trailing edge would have a dominant effect on the performance parameters, at any given
advance ratio. Since, changing the momentum in this region would have a same effect on the thrust
and torque due to the same direction of adjoint variable, care must be taken while interpreting this
information when designing an aerodynamically efficient propeller blade.

In addition to validation of the gradients with FD method, a validation study of the gradients was
performed by manually displacing the design variables and deforming the blade surface. The results of
the deformation study were in line with information obtained from adjoint-based sensitivity analysis.
On deforming the leading edge of the propeller blade’s outboard section by adding camber results in an
increase in TC and QC by 1.28% and 1.43%, respectively. Whereas, deforming the blade’s trailing edge
by displacing the design variables in the surface normal direction results in a decrement of 9.5% and
10.5% in the TC and QC , respectively. Thus, indicating that reducing the camber along the trailing
edge would result in an increment of TC and QC . Similarly, on comparing the magnitude of difference in
the performance parameters, it can be confirmed that the trailing edge of the blade along the outboard
part is the most sensitive region at any given advance ratio.

To conclude, this study aimed at the multi-point sensitivity analysis of the propeller using the adjoint
method provides insights into sensitivity information for designing aerodynamically efficient propeller
blades as shown by the deformation studies.

7.2. Recommendations
The following recommendations for future studies are made -

• As SU2’s adjoint solver tends to stagnate and was difficult to converge for both the propeller cases,
using a structured mesh with periodic boundary conditions could be used to check whether the
mesh of the geometry itself is the reason for stagnation of the adjoint solver.

• Implementation of CAD-based parameterization would allow to perform a sensitivity analysis of
the propeller’s performance with respect to the geometry parameters used to define the blade
shape such as twist distribution, chord distribution etc. Such a study would provide the sensitivity
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information with respect to propeller geometric parameters, wherein large number of design
variables can be used.

• To analyze the acoustic performance of the two propellers, an aeroacoustic model can be coupled
with the CFD method and analyze whether the swept blade has better aeroacoustic performance
as a result of sweep for the operating conditions used in this study.

• As per the original research objective, employing an aeroacoustic model to perform the sensitivity
analysis using adjoint eqautions to gain insights into designing efficient yet quieter propeller blades.

• An aerodynamic optimization of the propeller blades can be performed based on the gradient
information obtained from this study, and placing the FFD boxes in the regions of high sensitivity.



A
Gradients for XPROP

In this appendix, the chordwise gradients of thrust coefficient TC and torque coefficient QC are presented
for XPROP’s blade at various advance ratios. Figure A.1 shows the radial location over which the upper
edges of the FFD boxes from root to tip. In this research, gradients have been computed using the
FFD control points located at these radial locations indicated by design variables DV = 1 to 9. FFD
control point located near the leading edge at a given radial position is designated as design variable
DV=1, which counts upto 9 control points along the radial span to design variable DV=9 located near
the trailing edge at a section.

101% Rp89% Rp79% Rp68% Rp57% Rp47% Rp36% Rp26% Rp18% Rp

Figure A.1: Radial position of the edges of upper side FFD boxes along XPROP’s blade.

Plots in Figures A.2 and A.3 represents the chordwise adjoint gradients with thrust coefficient TC

and torque coefficient QC as the objective function, respectively, at different radial positions of XPROP.
The gradients are shown for advance ratios J=0.6, 0.8, 1.0, and 1.2.
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Figure A.2: Chordwise adjoint gradient with thrust coefficient (TC ) as objective function at different radial positions of
XPROP’s blade.
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Figure A.3: Chordwise adjoint gradient with torque coefficient (QC ) as objective function at different radial positions of
XPROP’s blade.



B
Gradients for Optimized XPROP

In this appendix, the chordwise gradients of thrust coefficient TC and torque coefficient QC are presented
for XPROP’s blade at various advance ratios. Figure B.1 shows the radial location over which the upper
edges of the FFD boxes from root to tip of Optimized XPROP’s blade. In this research, gradients
have been computed using the FFD control points located at these radial locations indicated by design
variables DV = 1 to 9. FFD control point located near the leading edge at a given radial position is
designated as design variable DV=1, which counts upto 9 control points along the radial span to design
variable DV=9 located near the trailing edge at a section.

101% Rp89% Rp79% Rp68% Rp57% Rp47% Rp36% Rp26% Rp18% Rp

Figure B.1: Radial position of the edges of upper side FFD boxes along Optimized XPROP’s blade.

Plots in Figures B.2 and B.3 represents the chordwise adjoint gradients with thrust coefficient TC and
torque coefficient QC as the objective function, respectively, at different radial positions of Optimized
XPROP. The gradients are shown for advance ratios J=0.6, 0.8, 1.0, and 1.2.
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Figure B.2: Chordwise adjoint gradient with thrust coefficient (TC ) as objective function at different radial positions of
Optimized XPROP’s blade.
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Figure B.3: Chordwise adjoint gradient with torque coefficient (QC ) as objective function at different radial positions of
Optimized XPROP’s blade.
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