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In this paper we consider Lp-regularity estimates for solutions to stochastic evolution 
equations, which is called stochastic maximal Lp-regularity. Our aim is to find a 
theory which is analogously to Dore’s theory for deterministic evolution equations. 
He has shown that maximal Lp-regularity is independent of the length of the time 
interval, implies analyticity and exponential stability of the semigroup, is stable 
under perturbation and many more properties. We show that the stochastic versions 
of these results hold.

© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we study sharp Lp-regularity estimates for solutions to stochastic evolution equations. This
we will call stochastic maximal Lp-regularity. From a PDE point of view it leads to natural a priori estimates, 
and this can in turn be used to obtain local existence and uniqueness for nonlinear PDEs (see e.g. [24,46,
47]). In the deterministic setting [12] Dore has found several stability properties of maximal Lp-regularity 
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(see also the monograph [46]). A list of results can be found below Definition 2.3. These properties are 
interesting to know from a theoretical point of view. In practice one usually checks the conditions of Weis’ 
theorem which states that maximal Lp-regularity is equivalent to R-sectoriality if the underlying space is 
a UMD space. If p = 1, p = ∞ or X is not UMD, then one can not rely on the latter results, and thus 
Dore’s theory becomes more relevant. Alternative ways to derive maximal Lp-regularity can be to use the 
Da Prato-Grisvard theorem (see [16, Theorem 9.3.5]) or put more restrictive conditions on the generator A
(see [22]).

In [40–42] stochastic maximal Lp-regularity for an operator A (or briefly A ∈ SMR(p, T )) was proved 
under the condition that A has a bounded H∞-calculus (see Theorem 3.6 below). These results have been 
applied in several other papers (e.g. [1,18,39]). Recently, extensions to the time and ω-dependent setting 
have been obtained in [44]. The stochastic maximal regularity theory of the above mentioned papers provides 
an alternative approach and extension of a part of Krylov’s Lp-theory for stochastic PDEs (see [26] and the 
overview [27]).

The aim of the first part of the current paper is to obtain stochastic versions of Dore’s results [12]. In 
many cases completely new proofs are required due to the fact that stochastic convolutions behave in very 
different way. Assume −A generates a strongly continuous semigroup (S(t))t≥0 on a Banach space X with 
UMD and type 2. In Sections 3–7, for all p ∈ [2, ∞) and T ∈ (0, ∞], we obtain the following stability 
properties of stochastic maximal Lp-regularity:

• the class SMR(p, T ) is stable under appropriate translations and dilations;
• independence of the dimension of the noise;
• if A ∈ SMR(p, T ), then S is an analytic semigroup;
• if A ∈ SMR(p, ∞), then S is exponentially stable;
• SMR(p, ∞) ⊆ SMR(p, T ) = SMR(p, T̃ ), for any T̃ ∈ (0, ∞);
• if A ∈ SMR(p, T ) and S is exponentially stable, then A ∈ SMR(p, ∞);
• perturbation results;
• weighted characterizations.

A p-independence result similar to Dore’s result holds as well, but it is out of the scope of this paper to 
prove this. Note that in [12] the p-independence in the deterministic case was derived from operator-valued 
Calderón–Zygmund theory. A stochastic Calderón–Zygmund theory has been recently obtained in [32] where 
among other things the p-independence of SMR(p, T ) is established.

The aim of the second part of the paper is to introduce a weighted version of stochastic maximal regularity 
(see Section 7). In a future paper we will use the theory of the current paper to study quasilinear stochastic 
evolution equations. In particular we plan to obtain a version of [17,18] with weights in time. Because of 
the weights in time one can treat rough initial data. This has already been demonstrated by Portal and the 
second author in [44] in the semilinear case.

Notation. We write A �P B, whenever there is a constant C only depending on the parameter P such that 
A ≤ CB. Moreover, we write A �P B if A �P B and A �P B.

Acknowledgment. The authors would like to thank Emiel Lorist and the anonymous referees for helpful com-
ments. The authors would also like to thank Bounit Hamid for pointing out the reference [5] for Lemma 4.4.

2. Preliminaries

In this section we collect some useful facts and fix the notation, which will be employed through the 
paper.
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2.1. Sectorial operators and H∞-calculus

For details on the H∞-calculus we refer the reader to [16,20,29]. For ϕ ∈ (0, π) we denote by Σϕ := {z ∈
C : | arg(z)| < ϕ} the open sector of angle ϕ. Moreover, for a closed linear operator A on a Banach space 
X, D(A) and R(A) denote its domain and range respectively. We say that A is sectorial if A is injective, 
R(A) = D(A) = X and there exists ϕ ∈ (0, π) such that σ(A) ⊆ Σϕ and

sup
z∈C\Σϕ

‖zR(z,A)‖L (X) < ∞.

Moreover, we ω(A) denotes the infimum of all ϕ ∈ (0, π) such that A is sectorial of angle ϕ.
For ϕ ∈ (0, π), we denote by H∞

0 (Σϕ) the set of all holomorphic function f : Σϕ → C such that 
|f(z)| ≤ C|z|ε/(1 + |z|2ε) for some C, ε > 0 independent of z ∈ Σϕ. Let A be a sectorial operator of angle 
ω(A) < ν < ϕ. Then for f ∈ H∞

0 (Σϕ) we set

f(A) := 1
2πi

∫
∂Σν

f(z)R(z,A) dz; (2.1)

where the orientation of ∂Σν is such that σ(A) is on the right. By [20, Section 10.2], f(A) is well-defined in 
L (X) and it is independent of ν ∈ (ω(A), ϕ).

Furthermore, the operator A is said to have a bounded H∞(Σϕ)-calculus if there exists C > 0 such that 
for all f ∈ H∞

0 (Σϕ),

‖f(A)‖L (X) ≤ C‖f‖H∞(Σϕ) ,

where ‖f‖H∞(Σϕ) = supz∈Σϕ
|f(z)|. Lastly, ωH∞(A) denotes the infimum of all ϕ ∈ (ω(A), π) such that A

has a bounded H∞(Σϕ)-calculus.

Remark 2.1. Nowadays it is known that a large class of elliptic operators have a bounded H∞-calculus. For 
instances see [10], [39, Example 3.2], [44, Subsection 1.3], [20, Section 10.8] and in the reference therein.

Let BIP(X) denote the set of sectorial operators which have bounded imaginary powers, i.e. Ait extends 
to a bounded linear operator on X and sup|t|≤1 ‖Ait‖L (X) < ∞. Moreover, we set

θA := lim sup
|t|→∞

1
|t| log ‖Ait‖L (X).

If A has a bounded H∞(Σν)-calculus for some ν ∈ (0, π), then A ∈ BIP(X) and θA ≤ ωH∞(A).
Let (rn)n≥1 be a Rademacher sequence on (Ω, F , P ), i.e. a sequence of independent random variables 

with P (rn = 1) = P (rn = −1) = 1
2 for all n ≥ 1. A family of bounded linear operators T ⊆ L (X, Y ) is said 

to be R-bounded if there exists a constant C > 0 such that for all x1, . . . , xN ∈ X, T1, . . . , TN ∈ J one has

∥∥∥ N∑
j=1

rjTjxj

∥∥∥
L2(Ω;X)

≤ C
∥∥∥ N∑

j=1
rjxj

∥∥∥
L2(Ω;X)

.

For more on this notion see [20, Chapter 8].
An operator A is called R-sectorial if for some σ ∈ (0, π) one has C \Σσ ⊆ ρ(A) and the set {λR(λ, A) :

λ ∈ C \ Σσ} is R-bounded. Finally, ωR(A) denotes the infimum of such σ’s. For more on this see [20,46].
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Remark 2.2. Let X be a UMD Banach space. Then A ∈ BIP(X) implies that A is R-sectorial on X and 
ωR(A) ≤ θA (see [46, Theorem 4.4.5]).

For details on UMD spaces we refer to [19, Chapter 4].

2.2. Deterministic maximal Lp-regularity and R-boundedness

Deterministic maximal Lp-regularity has been investigated by many authors and plays an important role 
in the modern treatment of parabolic equations, see e.g. [11,29,46,47] and the references therein.

If −A generates a strongly continuous semigroup S := (S(t))t≥0, then ω0(−A) denotes the exponential 
growth bound of S

ω0(−A) := inf{ω ∈ R : sup
t>0

e−ωt‖S(t)‖ < ∞}.

Thus ω0(−A) < 0 if and only if S is exponentially stable. Moreover, if A is a densely defined operator and 
w > ω0(−A), then w + A is a sectorial operator on X; thus one can define (w + A)1/2 as a closed operator 
on X.

Definition 2.3 (Deterministic maximal Lp-regularity). Let T > 0 and p ∈ [1 ∞]. A closed linear operator A
on a Banach space X is said to have (deterministic) maximal Lp-regularity on (0, T ) if for all f ∈ Lp(0, T ; X)
there exists an unique u ∈ W 1,p(0, T ; X) ∩ Lp(0, T ; D(A)) such that

u′ + Au = f, u(0) = 0.

In this case we write A ∈ DMR(p, T ).

Stability properties of the deterministic maximal Lp-regularity have been studied in [12] (see also the 
monograph [46]): For all p ∈ [1, ∞] and T ∈ (0, ∞]

• the class DMR(p, T ) is stable under appropriate translations and dilations;
• if A ∈ DMR(p, T ), then −A generates an analytic semigroup;
• if A ∈ DMR(p, ∞), then ω0(−A) < 0;
• DMR(p, ∞) ⊆ DMR(p, T ) = DMR(p, T̃ ) if T, T̃ ∈ (0, ∞),
• if A ∈ DMR(p, T ) and ω0(−A) < 0, then A ∈ DMR(p, ∞);
• perturbation results;
• DMR(p, T ) ⊆ DMR(q, T ) for all q ∈ (1, ∞) with equality if p ∈ (1, ∞).

Finally let us mention that weighted versions of deterministic maximal Lp-regularity have been studied in 
[45] for power weights and in [7,8] for weights of Ap-type.

The following result was proven in [56], it has been very influential and is by now a classical result: for 
a UMD space X, p ∈ (1, ∞) and 0 ∈ ρ(A) one has A ∈ DMR(p, ∞) if and only if A is R-sectorial of angle 
< π/2.

2.3. γ-radonifying operators

In this subsection we briefly review some basic facts regarding γ-radonifying operators; for further dis-
cussions see [20, Chapter 9]. Through this subsection (γn)n∈N denotes a Gaussian sequence, i.e. a sequence 
of independent standard normal variables over a probability space (Ω̃, Ã, P̃ ).
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Let H be a Hilbert space (with scalar product (·, ·)) and X be a Banach space with finite cotype. Recall 
that H ⊗X is the space of finite rank operators from H to X. In other words, each T ∈ H ⊗X has the 
form

T =
N∑

n=1
hn ⊗ xn ,

for N ∈ N and (hn)Nn=1 ⊂ H . Here h ⊗ x denotes the operator g �→ (g, h)x.
For T ∈ H ⊗X define

‖T‖2
γ(H ,X) := sup Ẽ

∥∥∥ N∑
n=1

γnThn

∥∥∥2

X
< ∞ ;

where the supremum is taken over all finite orthonormal systems (hn)Nn=1 in H . Then ‖T‖ ≤ ‖T‖γ(H ,X). 
The closure of H ⊗X with respect to the above norm is called the space of γ-radonifying operators and is 
denoted by γ(H , X).

The following property will be used through the paper.

Proposition 2.4 (Ideal property). Let T ∈ γ(H , X). If G is another Hilbert space and Y a Banach space, 
then for all U ∈ L (X, Y ) and V ∈ L (G, H ) we have UTV ∈ γ(G, Y ) and

‖UTV ‖γ(G,Y ) ≤ ‖U‖L (X,Y )‖T‖γ(H ,X)‖V ‖L (G,H ).

We will be mainly interested in the case that H = L2(S; H) where (S, A, μ) is a measure space and H
is another Hilbert space. In this situation we employ the following notation:

γ(S;H,X) := γ(L2(S;H), X)

and γ(a, b; H, X) := γ(L2(a, b; H), X), if S = (a, b), μ is the one dimensional Lebesgue measure and A is 
the natural σ-algebra. If H = R we simply write γ(a, b; X) := γ(L2(a, b), X).

An H-strongly measurable function G : S → L (H, X) (i.e. for each h ∈ H the map s �→ f(s)h is strongly 
measurable) belongs to L2(S; H) scalarly if G∗(s)x∗ ∈ L2(S; H) for each x∗ ∈ X∗. Such a function represent
an operator R ∈ γ(S; H, X) if for all f ∈ L2(S; H) and x∗ ∈ X∗ we have∫

S

〈G(s)f(s), x∗〉 ds = 〈R(f), x∗〉.

It can be shown that if R is represented by G1 and G2 then G1 = G2 almost everywhere. It will be convenient 
to identify R with G and we will simply write G ∈ γ(S; H, X) and ‖G‖γ(S;H,X) := ‖R‖γ(S;H,X). By the 
ideal property, if S = S1 ∪ S2 and S1 and S2 are disjoint, then

‖G‖γ(S;H,X) ≤ ‖G‖γ(S1;H,X) + ‖G‖γ(S2;H,X). (2.2)

Another consequence of the ideal property is that for G ∈ γ(S; H, X), φ ∈ L∞(S) and S0 ⊆ S, we have

‖φG‖γ(S;H,X) ≤ ‖φ‖∞‖G‖γ(S;H,X), ‖1S0G‖γ(S;H,X) = ‖G‖γ(S0;H,X) (2.3)

To conclude this section, we recall the following embedding:
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Proposition 2.5. Let X be a Banach space with type 2, then

L2(S; γ(H,X)) ↪→ γ(L2(S), γ(H,X)) ↪→ γ(L2(S;H), X).

Proof. Since X has type 2, also γ(H, X) has type 2, because it is isomorphic to a closed subspace of 
L2(Ω̃; X) (see [20, Proposition 7.1.4]). Now the first embedding follows from [20, Theorem 9.2.10]. The second 
embedding follows by considering finite rank operators and applying [20, Theorem 7.1.20] with orthonormal 
family {γ̃iγ̂j : i, j ∈ N}, where γ̃i and γ̂j are defined on probability spaces Ω̃ and Ω̂, respectively. �
2.4. Stochastic integration in UMD Banach spaces

The aim of this section is to present basic results of the stochastic integration theory in UMD Banach 
spaces developed in [38]. Let (Ω, A , P ) be a probability space with filtration F = (Ft)t≥0 and throughout 
the rest of the paper it is fixed. An F -adapted step process is a linear combination of functions

(1A×(s,t] ⊗ (h⊗ x))(ω, t) := 1A×(s,t](ω, t)(h⊗ x) ,

where 0 ≤ s < t ≤ T and A ∈ Fs. Let T > 0, we say that a stochastic process G : [0, T ] × Ω → L (H, X)
belongs to L2(0, T ; H) scalarly almost surely if for all x∗ ∈ X∗ a.s. the G∗x∗ ∈ L2(0, T ; H). Such a process 
G is said to represent an L2(0, T ; H)-strongly measurable R ∈ L0(Ω; γ(0, T ; H, X)) if for all f ∈ L2(0, T ; H)
and x∗ ∈ X∗ we have

〈R(ω)f, x∗〉 =
T∫

0

〈G(t, ω)f(t), x∗〉 dt.

As done in Subsection 2.3, we identify G and R in the case that R is represented by G. Moreover, we say that 
G ∈ Lp(Ω; γ(0, T ; H, X)) if R ∈ Lp(Ω; γ(0, T ; H, X)) for some p ∈ [0, ∞). We say that R : Ω → γ(0, T ; H, X)
is elementary adapted to F if it is represented by an F -adapted step process G. Lastly,

Lp
F (Ω; γ(0, T ;H,X))

denotes the closure of all elementary adapted R ∈ Lp(Ω; γ(0, T ; H, X)). In the paper we will consider 
cylindrical Gaussian noise.

Definition 2.6. A bounded linear operator WH : L2(R+; H) → L2(Ω) is said to be an F -cylindrical Brownian 
motion in H if the following are satisfied:

• for all f ∈ L2(R+; H) the random variable WH(f) is centered Gaussian;
• for all t ∈ R+ and f ∈ L2(R+; H) with support in [0, t], WH(f) is Ft-measurable;
• for all t ∈ R+ and f ∈ L2(R+; H) with support in [t, ∞], WH(f) is independent of Ft;
• for all f1, f2 ∈ L2(R+; H) we have E(WH(f1)WH(f2)) = (f1, f2)L2(R+;H).

Given an F -cylindrical Brownian motion in H, the process (WH(t)h)t≥0, where

WH(t)h := WH(1(0,t] ⊗ h) , (2.4)

is an F -Brownian motion.
At this point, we can define the stochastic integral with respect to an F -cylindrical Brownian motion in 

H of the process 1A×(s,t] ⊗ (h ⊗ x):
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∞∫
0

1A×(s,t] ⊗ (h⊗ x)(s) dWH(s) := 1A ⊗ (WH(t)h−WH(s)h)x , (2.5)

and we extend it to F -adapted step processes by linearity.

Theorem 2.7 (Itô isomorphism). Let T > 0, p ∈ (0, ∞) and let X be a UMD Banach space, then the mapping 
G →

∫ T

0 G dWH admits a unique extension to a isomorphism from Lp
F (Ω; γ(0, T ; H, X)) into Lp(Ω; X) and

E sup
0≤t≤T

∥∥∥ t∫
0

G(s) dWH(s)
∥∥∥p
X

�p,X E‖G‖pγ(0,T ;H,X).

If G does not depend on Ω, then the above holds for every Banach space X and the norm equivalence 
only depends on p ∈ (0, ∞).

For future references, we make the following simple observation. To state this, we denote by Lp
F (Ω ×

(0, T ); γ(H, X)) the closure in Lp(Ω × (0, T ); γ(H, X)) of all simple F -adapted stochastic process.
As a consequence of Proposition 2.5 one easily obtains the following:

Corollary 2.8. Let T > 0, p ∈ (0, ∞) and let X be a UMD Banach space with type 2. Then the mapping 
G �→

∫ T

0 G dWH extends to a bounded linear operator from Lp
F (Ω ×(0, T ); γ(H, X)) into Lp(Ω; X). Moreover,

E sup
0≤t≤T

∥∥∥ t∫
0

G(s) dWH(s)
∥∥∥p
X

�p,X,T E‖G‖pL2(0,T ;γ(H,X)).

3. Stochastic maximal Lp-regularity

Throughout the rest of the paper we assume that the operator −A with domain D(A) is a closed operator 
and generates a strongly continuous semigroup (S(t))t≥0 on a Banach space X with UMD and type 2.

3.1. Solution concepts

For processes F ∈ L1
F (Ω × (0, T ); X) and G ∈ L2

F (Ω × (0, T ); γ(H, X)) for every T < ∞, consider the 
following stochastic evolution equation{

dU + AUdt = Fdt + GdWH , on R+,

U(0) = 0.
(3.1)

The mild solution to (3.1) is given by

U(t) = S ∗ F (t) + S �G(t) :=
t∫

0

S(t− s)F (s)ds +
t∫

0

S(t− s)G(s) dWH(s),

for t ≥ 0. It is well-known that the mild solution is a so-called weak solution to (3.1): for all x∗ ∈ D(A∗), 
for all t ≥ 0, a.s.

〈U(t), x〉 +
t∫
〈U(s), A∗x∗〉ds =

t∫
〈F (s), x∗〉ds +

t∫
G(s)∗x∗dWH(s).
0 0 0
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Conversely, if U ∈ L1
loc(R+; X) a.s. is a weak solution to (3.1), then U is a mild solution. Moreover, if 

U ∈ L1
loc(R+; D(A)), then additionally U is a strong solution to (3.1): for all t ≥ 0 a.s.

U(t) +
t∫

0

AU(s)ds =
t∫

0

F (s)ds +
t∫

0

G(s)dWH(s).

For details we refer to [9] and [54].

3.2. Main definitions

Definition 3.1 (Stochastic maximal Lp-regularity). Let X be a UMD space with type 2, let p ∈ [2, ∞), 
w > ω0(−A) and let J = (0, T ) with T ∈ (0, ∞]. The operator A is said to have stochastic maximal 
Lp-regularity on J if for each G ∈ Lp

F (Ω × J ; γ(H, X)) the stochastic convolution S � G takes values in 
D((w + A)1/2) P × dt-a.e., and satisfies

‖S �G‖Lp(Ω×J;D((w+A)1/2)) ≤ C‖G‖Lp(Ω×J;γ(H,X)), (3.2)

for some C > 0 independent of G. In this case we write A ∈ SMR(p, T ).

Note that, the class SMR(p, T ) does not depend on w > ω0(−A). Indeed, for any w, w′ > ω0(−A), 
D((w + A)1/2) = D((w′ + A)1/2) isomorphically.

Some helpful remarks may be in order.

Remark 3.2. In Definition 3.1 it suffices to consider G in a dense class of a subset of Lp
F (Ω ×R+; γ(H, X))

for which the stochastic convolution process (w +A)1/2S �G(t) is well-defined for each t ≥ 0. For example, 
the set of all adapted step processes with values in D(A) (or the space Lp

F (Ω ×J ; γ(H, D(A)))) can be used. 
Indeed, if G ∈ Lp

F (Ω × J ; γ(H, D(A))), then s �→ (w+A)1/2S(t − s)G(t) belongs to Lp(Ω × J ; γ(H, X)) for 
each t ∈ J . Thus for t ∈ J ,

E

t∫
0

‖(w + A)1/2S(t− s)G(s)‖pγ(H,X) ds ≤ M2E

t∫
0

‖(w + A)1/2G(s)‖pγ(H,X) ds

≤ cM2‖G‖Lp(Ω×J;γ(H,D(A))),

where M := sups≤t ‖S(t)‖. Therefore, for each t ∈ J , the well-definedness of (w+A)1/2S �G(t) follows from 
Corollary 2.8.

Remark 3.3. In the setting of Definition 3.1, for α ∈ [1/2, 1], one could ask for

‖S �G‖Lp(Ω×J;D((w+A)α)) ≤ C‖G‖
Lp(Ω×J;γ(H,D((w+A)α− 1

2 )))
, (3.3)

for each G ∈ Lp
F (Ω × J ; γ(H, D((w + A)α− 1

2 ))). One can easily deduce that A satisfies (3.3) if and only if 
A ∈ SMR(p, T ).

Before going further, we introduce an homogeneous version of stochastic maximal Lp-regularity:

Definition 3.4 (Homogeneous stochastic maximal Lp-regularity). Let X be a UMD space with type 2 and 
let p ∈ [2, ∞). The operator A is said to have homogeneous stochastic maximal Lp-regularity if for each 
G ∈ Lp (Ω ×R+; γ(H, X)) the stochastic convolution S �G takes values in D(A1/2) P × dt-a.e. and
F
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‖A1/2S �G‖Lp(Ω×R+;X) ≤ C‖G‖Lp(Ω×R+;γ(H,X)), (3.4)

for some C > 0 independent of G. In this case we write A ∈ SMR0(p, ∞).

There is no need for the homogeneous version of SMR(p, T ) for J = (0, T ) with T < ∞, since in this 
situation by Corollary 2.8 we have

‖S �G‖Lp(Ω×J;X) ≤ cT ‖G‖Lp(Ω×J;γ(H,X)).

Moreover, it is clear that if A ∈ SMR0(p, ∞) for some p ∈ [2, ∞) and 0 ∈ ρ(A) (thus 0 ∈ ρ(A1/2)) then 
A ∈ SMR(p, ∞). The converse is also true as Corollary 4.9 below shows.

We will mainly study the class SMR(p, T ) (for T ∈ (0, ∞]). However, many results can be extended to 
the class SMR0(p, ∞) without difficulty.

In order to state the following result we introduce the following condition:

Assumption 3.5. Let X be a UMD Banach space with type 2 and let p ∈ [2, ∞). Assume that the following 
family is R-bounded

{Jδ}δ>0 ⊆ L (Lp
F (Ω ×R+; γ(H,X)), Lp(Ω ×R+;X)),

where Jδf(t) := 1√
δ

∫ t

(t−δ)∨0 f(s)dWH(s).

The above holds for p ∈ (2, ∞) if X is isomorphic to a closed subspace of an Lq(S) space with q ∈ [2, ∞). 
If q = 2, one can also allow p = 2. The following central result was proved in [40–42]; see also Remark 7.13.

Theorem 3.6. Suppose that Assumption 3.5 is satisfied. If A has a bounded H∞-calculus with ωH∞(A) < π/2, 
then A ∈ SMR0(p, ∞).

3.3. Deterministic characterization and immediate consequences

In the next proposition we make a first reduction to the case where G does not depend on Ω.

Proposition 3.7. Let X be a UMD space with type 2, let p ∈ [2, ∞), let J = (0, T ) with T ∈ (0, ∞] and fix 
w > ω0(−A). Then the following are equivalent:

(1) A ∈ SMR(p, T ).
(2) There exists a constant C such that for all G ∈ Lp(J ; γ(H, D(A))),

( T∫
0

‖s �→ (w + A)1/2S(t− s)G(s)‖pγ(0,t;H,X) dt
)1/p

≤ C‖G‖Lp(J;γ(H,X)).

Proof. (1) ⇒ (2): For G ∈ Lp(J ; γ(H, D(A))), Theorem 2.7 provides the two-sides estimates

‖(w + A)1/2S �G(t)‖Lp(Ω;X) �p,X ‖s �→ (w + A)1/2S(t− s)G(s)‖γ(0,t;H,X).

Now the claim follows by taking Lp(J)-norms in the previous inequalities.
(2) ⇒ (1): As in the previous step, we employ Theorem 2.7. Indeed, for any t ∈ J and G an adapted step 

process, we have
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‖(w + A)1/2S �G(t)‖pLp(Ω;X) �p,X E‖s �→ (w + A)1/2S(t− s)G(s)‖pγ(0,t;H,X).

Integrating over t ∈ J , we get

‖(w + A)1/2S �G‖pLp(Ω×J;X) �X,p E

T∫
0

‖s �→ (w + A)1/2S(t− s)G(s)‖pγ(0,t;H,X) dt

≤ CpE

T∫
0

‖G(t)‖pγ(H,X) dt = Cp‖G‖pLp(Ω×J;γ(H,X)),

where in the last we have used the inequality in (2) pointwise in Ω. The claim follows by density of the 
adapted step process in Lp

F (Ω × J ; γ(H, X)). �
Proposition 3.8. Let X be a UMD space with type 2, let p ∈ [2, ∞). Let J = (0, T ) with T ∈ (0, ∞] and 
assume A ∈ SMR(p, T ). Then:

(1) If T < ∞ and λ ∈ C, then A + λ ∈ SMR(p, T ).
(2) If T = ∞ and λ ∈ C is such that Reλ ≥ 0, then A + λ ∈ SMR(p, ∞).
(3) If T ∈ (0, ∞] and λ > 0, then λA ∈ SMR(p, T/λ).

Proof. (1): Note that −A − λ generates (e−λtS(t))t>0. Then, fix w > ω0(−A − λ) (thus w + λ > ω0(−A)) 
and let G ∈ Lp(J ; γ(H, D(A))). By (2.3) one has

‖s �→ (w + λ + A)1/2e−λ(t−s)S(t− s)G(s)‖γ(0,t;H,X)

≤ MT,λ‖s �→ (w + λ + A)1/2S(t− s)G(s)‖γ(0,t;H,X),

where MT,λ = sup{0<s<t<T} e
−(Reλ)(t−s). Therefore, taking the Lp(J)-norms, Proposition 3.7 implies the 

required result.
(2): Follows by the same argument of (1) but in this case M∞,λ = sup{0<s<t} e

−(Reλ)(t−s) is finite if and 
only if Reλ ≥ 0.

(3): Note that −λA generates (S(λt))t>0. Fix G ∈ Lp(0, T/λ; γ(H, D(A))) and w > ω0(−λA) (thus 
w/λ > ω0(−A)), one has

‖s �→ (w + λA)1/2S(λ(t− s))G(s)‖γ(0,t;H,X)

= ‖s �→ (w + λA)1/2S(λs)G(t− s)‖γ(0,t;H,X)

�λ ‖s �→ (w
λ

+ A)1/2S(s)G(t− s

λ
)‖γ(0,λt;H,X).

Then integrating over 0 < t < T/λ, one has

T
λ∫

0

‖s �→ (w+λA)1/2S(λ(t− s))G(s)‖pγ(0,t;H,X) dt

�λ

T
λ∫
‖s �→ (w

λ
+ A)1/2S(s)G(t− s

λ
)‖pγ(0,λt;H,X) dt
0
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�λ

T∫
0

‖s �→ (w
λ

+ A)1/2S(s)G(τ − s

λ
)‖pγ(0,τ ;H,X) dτ

≤ Cλ,p,A

T∫
0

‖G( s
λ

)‖pγ(H,X)ds = Cλ,p,A

T
λ∫

0

‖G(s)‖pγ(H,X)ds;

where in the last inequality we have used that A ∈ SMR(p, T ). Thus Proposition 3.7 ensures that λA ∈
SMR(p, T/λ). �

In Corollary 5.3 we will see a refinement of Proposition 3.8.

3.4. Independence of H

Theorem 3.9. Let X be a UMD space with type 2, let p ∈ [2, ∞) and let J = (0, T ) with T ∈ (0, ∞]. The 
following are equivalent:

(1) A ∈ SMR(p, T ) for H = R.
(2) A ∈ SMR(p, T ) for any Hilbert space H.

Proof. It suffices to prove (1)⇒(2), since the converse is trivial. Assume (1) holds. Without loss of generality 
we can assume H is separable (see [20, Proposition 9.1.7]). Let Γ : R+ → Lp(Ω̃; X) be defined by Γ(s) =∑

n≥1 γnG(s)hn, where (hn)n≥1 is an orthonormal basis for H and (γn) on Ω̃ is as in Section 2.3. Then by 
the Kahane–Khintchine inequalities and the definition of the γ-norm we have

‖G(s)‖γ(H,X) = ‖Γ(s)‖L2(Ω̃;X) �p ‖Γ(s)‖Lp(Ω̃;X). (3.5)

By Proposition 2.5

‖s �→ (w + A)1/2S(t− s)G(s)‖γ(0,t;H,X)

�X ‖s �→ (w + A)1/2S(t− s)G(s)‖γ(0,t;γ(H,X))

= ‖s �→ (w + A)1/2S(t− s)Γ(s)‖γ(0,t;L2(Ω̃;X))

(∗)= ‖s �→ (w + A)1/2S(t− s)Γ(s)‖L2(Ω̃;γ(0,t;X))

≤ ‖s �→ (w + A)1/2S(t− s)Γ(s)‖Lp(Ω̃;γ(0,t;X)),

where we applied the γ-Fubini’s theorem (see [20, Theorem 9.4.8]) in (∗). By Fubini’s theorem and Propo-
sition 3.7 we obtain∫

J

‖s �→(w + A)1/2S(t− s)G(s)‖pγ(0,t;H,X)dt

≤ Ẽ

∫
J

‖s �→ (w + A)1/2S(t− s)Γ(s)‖pγ(0,t;X)dt

≤ CpẼ‖Γ‖pLp(J;X) = Cp‖Γ‖p
Lp(J;Lp(Ω̃;X))

�p Cp‖G‖Lp(J;γ(H,X)),

where in “�p” we used (3.5). Now the result follows from Proposition 3.7. �
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4. Analyticity and exponential stability

The main result of this section is the following.

Theorem 4.1. Let X be a Banach space with UMD and type 2 and let p ∈ [2, ∞). Let J = (0, T ) with 
T ∈ (0, ∞]. If A ∈ SMR(p, T ), then −A generates an analytic semigroup.

The proof consists of several steps and will be explained in the next subsections.

4.1. Square function estimates

Next we derive a simple square function estimates from SMR(p, T ). In order to include the case T = ∞
we need a careful analysis of the constants.

Lemma 4.2. Let X be a UMD space with type 2, let p ∈ [2, ∞), let J = (0, T ) with T ∈ (0, ∞] and let 
w > ω0(−A). If A ∈ SMR(p, T ), then there is a constant C such that for all x ∈ X,

‖s �→ (w + A)1/2S(s)x‖γ(J;X) ≤ C‖x‖. (4.1)

Proof. First assume T < ∞ and fix h ∈ H with ‖h‖ = 1. Let G ∈ Lp(J ; γ(H, X)) be given by G(t) = 1Jh ⊗x. 
Then for t ∈ [T/2, T ] one can write

‖s �→ (w + A)1/2S(s)x‖γ(0,T/2;X) ≤ ‖s �→ (w + A)1/2S(s)x‖γ(0,t;X)

= ‖s �→ (w + A)1/2S(t− s)x‖γ(0,t;X)

= ‖s �→ (w + A)1/2S(t− s)G(s)‖γ(0,t;H,X).

Therefore, taking p-th powers on both sides integration over t ∈ J , and applying Proposition 3.7 yields

T‖s �→ (w + A)1/2S(s)x‖pγ(0,T/2;X) ≤
T∫

0

‖s �→ (w + A)1/2S(t− s)G(s)‖pγ(0,t;H,X) dt

≤ Cp‖G‖pLp(J;γ(H,X)) = CpT‖x‖p.

Therefore,

‖s �→ (w + A)1/2S(s)x‖γ(0,T/2;X) ≤ C‖x‖, x ∈ X. (4.2)

By the left-ideal property and (4.2) we see that

‖s �→ (w + A)1/2S(s)x‖γ(T/2,T ;X) = ‖s �→ S(T2 )(w + A)1/2S(s− T
2 )x‖γ(T/2,T ;X)

≤ ‖S(T2 )‖ ‖s �→ (w + A)1/2S(s)x‖γ(0,T/2;X)

≤ C‖S(T2 )‖ ‖x‖.

Combining this with (4.2) and (2.2) yields

‖(w + A)1/2S(s)x‖γ(J;X)

≤ ‖(w + A)1/2S(s)x‖γ(0,T/2;X) + ‖(w + A)1/2S(s)x‖γ(T/2,T ;X)

≤ CS,T ‖x‖.
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Next we consider T = ∞. Applying Proposition 3.7 with G1[0,R] with R > 0 fixed and (2.3) gives that

( R∫
0

‖s �→ (w + A)1/2S(t− s)G(s)‖pγ(0,t;H,X) dt
)1/p

≤ C‖G‖Lp(0,R;γ(H,X)),

where C is independent of R. Therefore, arguing as in (4.2) we obtain that for all R < ∞,

‖s �→ (w + A)1/2S(s)x‖γ(0,R/2;X) ≤ C‖x‖.

The result now follows since (see [38, Proposition 2.4])

‖s �→ (w + A)1/2S(s)x‖γ(R+;X) = sup
R>0

‖s �→ (w + A)1/2S(s)x‖γ(0,R/2;X). �
4.2. Sufficient conditions for analyticity

To prove Theorem 4.1 we need several additional results which are of independent interest. The next 
result is a comparison result between γ-norms and Lp-norms of certain orbits for spaces with cotype p. 
Related estimates for general analytic functions can be found in [55, Theorem 4.2], but are not applicable 
here.

Lemma 4.3. Let X be a Banach space with cotype p. Let ω0(−A) < 0. Then for all q > p there exists a 
C > 0 such that for all x ∈ D(A2),

‖t �→ A1/qS(t)x‖Lq(R+;X) ≤ C‖t �→ A1/2S(t)x‖γ(R+;X).

Moreover, if p = 2, then one can take q = 2 in the above.

The right-hand side of the above estimate is finite. Indeed, for x ∈ D(A2), we have A1/2S(·)x =
S(·)A1/2x ∈ C1([0, T ]; X), thus it follows from [20, Proposition 9.7.1] that A1/2S(·)x ∈ γ(0, T ; X). Now 
since S is exponentially stable we can conclude from [43, Proposition 4.5] that A1/2S(·)x ∈ γ(R+; X).

Proof. By an approximation argument we can assume x ∈ D(A3). Let (φn)n≥0 be a Littlewood-Paley 
partition of unity as in [4, Section 6.1]. Let f : R → X be given by f(t) := A1/qS(|t|)x. Then f ′(t) =
sign(t)Af(t) for t ∈ R \ {0}. Let fn := φn ∗ f for n ≥ 0. Let ψ be such that ψ̂ = 1 on supp φ̂1 and 
ψ̂ ∈ C∞

c (R \ {0}). Set ψ̂n(ξ) = ψ̂1(2−(n−1)ξ) for n ≥ 1. Then fn = ψn ∗ fn.
Step 1: We will first show that for all α ∈ (0, 1), there is a constant C such that for all n ≥ 0

‖fn‖p ≤ C2−αn‖Aαfn‖p, (4.3)

where we write ‖ · ‖p := ‖ · ‖Lp(R;X). As a consequence the estimate (4.3) holds for an arbitrary α > 0 if 
one takes x ∈ D(Ar+2) (where α < r ∈ N). For n = 0 the estimate is clear from 0 ∈ ρ(Aα). To prove the 
estimate for n ≥ 1 note that by the moment inequality (see [13, Theorem II.5.34]) and Hölder inequality,

‖Afn‖p ≤ C‖Aαfn‖
1

2−α
p ‖A2fn‖

1−α
2−α
p . (4.4)

Using fn = ψn ∗ fn and the properties of S we obtain

sign(·)Afn = d
fn = ψ′

n ∗ fn. (4.5)

dt
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Therefore, by Young’s inequality

‖A2fn‖p = ‖ψ′
n ∗Afn‖p ≤ ‖ψ′

n‖1‖Afn‖p ≤ Cψ2n‖Afn‖p.

Combining this with (4.4) we obtain

‖Afn‖p ≤ C2n(1−α)‖Aαfn‖p. (4.6)

Next we prove an estimate for ‖fn‖p. Let dt = d
dt and set Jβ = (1 −d2

t )β/2 for β ∈ R. Then Jβ1Jβ2 = Jβ1+β2

for β1, β2 ∈ R. Recall from the proof of [2, Theorem 6.1] that for any g ∈ Lp(R; X) and β ∈ R, we have

‖Jβψn ∗ g‖p ≤ Cβ,ψ2βn‖ψn ∗ g‖p.

Therefore,

‖fn‖p = ‖ψn ∗ ϕn ∗ f‖p = ‖J−2ψn ∗ (J2ϕn) ∗ f‖p ≤ Cψ2−2n‖ψn ∗ (J2ϕn) ∗ f‖p.

Now since J2 = 1 − d2
t we can estimate

‖ψn ∗ (J2ϕn) ∗ f‖p ≤ ‖ψn ∗ ϕn ∗ f‖p + ‖d2
t (ψn ∗ ϕn ∗ f)‖p

≤ Cψ‖fn‖p + ‖ψ′
n ∗ ϕn ∗ f ′‖p.

By Young’s inequality

‖ψ′
n ∗ ϕn ∗ f ′‖p ≤ ‖ψ′

n‖1‖ϕn ∗ f ′‖p ≤ Cψ2n‖(fn)′‖p = Cψ2n‖Afn‖p,

where in the last equality we have used (4.5). Thus we can conclude

‖fn‖p ≤ Cψ2−n(‖fn‖p + ‖Afn‖p) ≤ Cψ,A2−n‖Afn‖p, (4.7)

where in the last step we used the fact that A is invertible.
Now (4.3) follows by combining (4.6) and (4.7).
Step 2: By Step 1 with α := 1

2 − 1
q and [49, Lemma 4.1] we can estimate

‖fn‖p ≤ C2−nα‖Aαfn‖p ≤ Cp,X2−nα2
n
2 −n

p ‖Aαfn‖γ(R;X).

Multiplying by 2
n
p −n

q and taking �p-norms and applying [21, Lemma 2.2] in the same way as in [21, Theorem 
1.1] gives

‖f‖
B

1
p
− 1

q
p,p (R;X)

≤ Cp,X(
∑
n≥0

‖Aαfn‖pγ(R;X))
1/p

≤ C ′
p,X‖Aαf‖γ(R;X) ≤ 2C ′

p,X‖t �→ A1/2S(t)x‖γ(R+;X),

where in the last step we used (2.2).
It remains to note that B

1
p− 1

q
p,p (R; X) ↪→ Lq(R; X) (see [36, Theorem 1.2 and Proposition 3.12]).

The final assertion for p = 2 is immediate from Proposition 2.5. �
Next we show that certain Lp-estimates for orbits implies analyticity of the semigroup S.
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Lemma 4.4. Let X be a Banach space and let w > ω0(−A). If for some T ∈ (0, ∞], C > 0, p ≥ 2, the 
operator A satisfies

‖t �→ (w + A)1/pS(t)x‖Lp(0,T ;X) ≤ C‖x‖X , x ∈ D(A), (4.8)

then −A generates an analytic semigroup.

It seems that the above result was first observed in [5, Proposition 2.7]. The proof below is different and 
was found independently.

Proof. Clearly, we can assume T < ∞. Moreover, without loss of generality, one can reduce to the case that 
S is exponentially stable and w = 0. Finally, we can also assume that p ≥ 2 is an integer. Indeed, fix n ∈ N

such that n ≥ p. By the moment inequality (see [13, Theorem II.5.34]) for all t ∈ [0, T ], we have

‖(w + A)1/nS(t)x‖n �n,p,A,w ‖S(t)x‖n−p‖(w + A)1/pS(t)x‖p

�n,p,A,T ‖x‖n−p‖(w + A)1/pS(t)x‖p.

Therefore,

T∫
0

‖(w + A)1/nS(t)x‖ndt �n,p,A,T,w ‖x‖n−p

T∫
0

‖(w + A)1/pS(t)x‖pdt ≤ Cn‖x‖n.

To prove that (S(t))t≥0 is analytic, it suffices by [13, Theorem II.4.6] to show that {tAS(t) : t ∈ (0, T ]} ⊆
L (X) is bounded. To prove this fix x ∈ D(A). Let M = supt≥0 ‖S(t)‖. Let tn = T

p2n for n ≥ 0. Then for 
all t ∈ [tn+1, tn] we have ‖A1/pS(tn)x‖ ≤ M‖A1/pS(t)x‖ and thus integration gives

1
2 tn‖A

1/pS(tn)x‖p = (tn − tn+1)‖A1/pS(tn)x‖p

≤ Mp

∫
J

‖A1/pS(t)x‖pdt ≤ MpCp‖x‖p.

Now fix t ∈ (0, T/p]. Choose n ≥ 0 such that t ∈ [tn+1, tn]. Then we obtain

t‖A1/pS(t)x‖p ≤ 2Mptn+1‖A1/pS(tn+1)x‖p ≤ 4M2pCp‖x‖p.

By density it follows that S(t) : X → D(A1/p) is bounded and t1/p‖A1/pS(t)‖ ≤ 41/pM2C for each 
t ∈ (0, T/p]. We can conclude that for all t ∈ (0, T ],

‖tAS(t)‖ = ‖(t1/pA1/pS(t/p))p‖ ≤ t‖A1/pS(t/p)‖p ≤ 4pM2pCp. �
Proposition 4.5. Let X be a Banach space with finite cotype. Let J = (0, T ) with T ∈ (0, ∞]. Let w > ω0(−A). 
If there exists a c > 0 such that

‖t �→ (w + A)1/2S(t)x‖γ(J;X) ≤ c‖x‖, x ∈ X, (4.9)

then −A generates an analytic semigroup.

Proof. By rescaling we can assume that S is exponentially stable, thus we may take w = 0. Moreover, by 
[43, Proposition 4.5] we can assume T = ∞. Now the result follows by combining Lemmas 4.3 and 4.4. �
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Proof of Theorem 4.1. By Lemma 4.2 the estimate (4.9) holds. Moreover, since X has type 2, it has finite 
cotype (see [20, Theorem 7.1.14]). Therefore, by Proposition 4.5, −A generates an analytic semigroup. �

From the proof of Theorem 4.1 we obtain the following.

Remark 4.6. Assume A ∈ SMR(p, T ), ω0(−A) < 0 and X has cotype p0. Let p > p0. Then there is a 
constant C such that for all x ∈ X,

∫
R+

‖A1/pS(t)x‖pdt ≤ Cp‖x‖p.

This type of estimate gives the boundedness of some singular integrals.

4.3. Exponential stability

Proposition 4.7 (Stability). Let X be a UMD space with type 2, let p ∈ [2, ∞). If A ∈ SMR(p, ∞), then 
ω0(−A) < 0.

Proof. Let w > ω0(−A). Let y ∈ X be arbitrary. Taking x = (w + A)−1/2y in Lemma 4.2 one obtains

‖s �→ S(s)y‖γ(R+;X) ≤ C‖(w + A)−1/2y‖ ≤ C ′‖y‖.

Thus from [15, Theorem 3.2] it follows that there is an ε > 0 such that {(λ + A)−1 : λ > −ε} is uniformly 
bounded. From Theorem 4.1 it follows that A generates an analytic semigroup, and hence 0 > s0(−A) =
ω0(−A) (see [13, Corollary IV.3.12]). �

By combining Theorem 4.1 and Proposition 4.7 we now obtain that every A ∈ SMR(p, ∞) is a sectorial 
operator. Therefore, choosing w = 0 in (4.2) in Lemma 4.2, we obtain the following:

Corollary 4.8. Suppose that A ∈ SMR(p, ∞), ω0(−A) < 0 and set ϕ(z) := z1/2e−z, then there exists a 
constant c > 0 such that

‖t �→ ϕ(tA)x‖γ(R+, dtt ;X) ≤ c‖x‖ ,

for all x ∈ X.

As announced in Section 3 we now can prove the following:

Corollary 4.9. Let A ∈ SMR0(p, ∞). Then A ∈ SMR(p, ∞) if and only if 0 ∈ ρ(A).

Proof. It remains to show that A ∈ SMR(p, ∞) implies 0 ∈ ρ(A) and this follows by Proposition 4.7. �
Remark 4.10. The assertion of Proposition 4.7 does not hold if instead we only assume A ∈ SMR0(p, T ). 
Indeed, −Δ satisfies SMR0(p, T ) on Lq(Rd) with q ∈ [2, ∞) (see [40, Theorem 1.1 and Example 2.5]), but 
of course ω0(Δ) = 0.
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5. Independence of the time interval

5.1. Independence of T

It is well-known in deterministic theory of maximal Lp-regularity that maximal regularity on a finite 
interval J and exponential stability imply maximal regularity on R+. We start with a simple result which 
allows to pass from R+ to any interval (0, T ).

Proposition 5.1. Let X be a UMD space with type 2, let p ∈ [2, ∞) and let J = (0, T ) with T ∈ (0, ∞). If 
A ∈ SMR(p, ∞), then A ∈ SMR(p, T ).

Proof. Let w > ω0(−A). Let G ∈ Lp
F (Ω × J ; γ(H, X)) and extending G as 0 on (T, ∞) it follows that

‖S �G‖Lp(Ω×J;D((w+A)1/2)) ≤ ‖S �G‖Lp(Ω×R+;D((w+A)1/2))

≤ C‖G‖Lp(Ω×R+;γ(H,X)) = C‖G‖Lp(Ω×J;γ(H,X)). �
Next we present a stochastic version of [12, Theorem 5.2] of which its tedious proof is due to T. Kato. 

Our proof is a variation of the latter one.

Theorem 5.2. Let X be a UMD Banach space with type 2 and let p ∈ [2, ∞). If A ∈ SMR(p, T ) and 
ω0(−A) < 0, then A ∈ SMR(p, ∞).

Proof. It suffices to check the estimate in Proposition 3.7(2) with w = 0. Let J = (0, T ) and for each j ∈ N

set Tj := jT/2 and Gj := 1[Tj ,Tj+1)G. In this proof, to shorten the notation below, we will write

‖G‖γ(a,b) := ‖G‖γ((a,b);H,X).

It follows from the triangle inequality and (2.2) that

( ∞∫
0

‖s �→ A1/2S(t− s)G(s)‖pγ(0,t) dt
) 1

p

≤
( T∫

0

‖s �→ A1/2S(t− s)G(s)‖pγ(0,t) dt
) 1

p

+
(∑

j≥2

Tj+1∫
Tj

‖s �→ A1/2S(t− s)G(s)‖pγ(0,t) dt
) 1

p

≤
( T∫

0

‖s �→ A1/2S(t− s)G(s)‖pγ(0,t) dt
) 1

p

+
(∑

j≥2

Tj+1∫
Tj

‖s �→ A1/2S(t− s)G(s)‖pγ(0,Tj−1) dt
)1/p

+
(∑

j≥2

Tj+1∫
Tj

‖s �→ A1/2S(t− s)(Gj−1(s) + Gj(s))‖pγ(Tj−1,t) dt
) 1

p

=: R1 + R2 + R3.
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By Proposition 3.7, to prove the claim, it is enough to estimate Ri for i = 1, 2, 3. By assumption, A ∈
SMR(p, T ), then by Definition 3.1 one has

R1 :=
( T∫

0

‖s �→ A1/2S(t− s)G(s)‖pγ(0,t) dt
) 1

p ≤ C‖G‖Lp(J;X) ≤ C‖G‖Lp(R+;X).

Since t − T/2 ≥ Tj−1 for t ∈ [Tj , Tj+1], by (2.3) the second term can be estimated as,

R2 =
(∑

j≥2

Tj+1∫
Tj

‖s �→ A1/2S(t− s)G(s)‖pγ(0,Tj−1) dt
) 1

p

≤
( ∞∫

T

‖s �→ A1/2S(t− s)G(s)‖p
γ(0,t−T

2 ) dt
) 1

p

.

By Theorem 4.1, (S(t))t≥0 is exponentially stable and analytic. Therefore, there are constants a, M > 0
such that for all t ∈ R+ one has ‖A1/2S(t)‖ ≤ Mt−1/2e−at/2. By Proposition 2.5, for t ≥ T one has

‖s �→A1/2S(t− s)G(s)‖γ(0,t−T
2 )

≤ τ2,X‖s �→ A1/2S(t− s)G(s)‖L2((0,t−T
2 );γ(H,X))

≤ τ2,X‖s �→ M(t− s)−1/2e−a(t−s)/2G(s)‖L2((0,t−T
2 );γ(H,X))

≤ L‖s �→ e−a(t−s)/2G(s)‖L2((0,t−T
2 );γ(H,X))

≤ L
( t∫

0

e−a(t−s)‖G(s)‖2
γ(H,X) ds

)1/2

= L(k ∗ g)1/2,

where L = τ2,XM(T/2)−1/2, k(s) = 1R+(s)e−as and g(s) = 1R+(s)‖G(s)‖2
γ(H,X). Taking Lp(T, ∞)-norms 

with respect to t, from Young’s inequality we find that

R2 ≤ L‖(k ∗ g)1/2‖Lp(R) ≤ L‖k‖1/2
L1(R)‖g‖

1/2
Lp/2(R) = La−1/2‖G‖Lp(R+;γ(H,X)).

To estimate R3, writing Gj−1,j = Gj−1 + Gj for each j ≥ 2 we can estimate

Rp
3j :=

Tj+1∫
Tj

‖s �→ A1/2S(t− s)Gj−1,j(s)‖pγ(Tj−1,t) dt

=
Tj+1∫
Tj

‖s �→ A1/2S(t− s− Tj−1)Gj−1,j(s + Tj−1)‖pγ(0,t−Tj−1) dt

≤
T∫
‖s �→ A1/2S(t− s)Gj−1,j(s + Tj−1))‖pγ(0,t) dt
T/2
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≤
T∫

0

‖s �→ A1/2S(t− s)Gj−1,j(s + Tj−1))‖pγ(0,t) dt

≤ Cp‖Gj−1,j(· + Tj−1)‖pLp(J;γ(H,X)),

where in the last step we have used the assumption and Proposition 3.7. Thus, for the third term we write

R3 =
(∑

j≥2
Rp

3j

) 1
p ≤ C

(∑
j≥2

‖Gj−1,j(· + Tj−1)‖pLp(J;γ(H,X))

) 1
p

≤ 2C
(∑

j≥1
‖Gj‖pLp(R+;γ(H,X))

) 1
p ≤ 2C‖G‖Lp(R+;γ(H,X)) ,

in the last step used that the Gj ’s have disjoint support. This concludes the proof. �
Now we can extend Proposition 3.8.

Corollary 5.3. Let X be a UMD space with type 2, let p ∈ [2, ∞). Let T1 < ∞ and suppose that A ∈
SMR(p, T1), then the following holds true:

(1) For any λ > ω0(−A) one has λ + A ∈ SMR(p, ∞).
(2) For any T2 > 0, A ∈ SMR(p, T2).
(3) If T ∈ (0, ∞] and λ > 0, then λA ∈ SMR(p, T ).

Proof. (1): By Proposition 3.8(2) λ +A ∈ SMR(p, T1) if λ > ω0(−A). Since ω0(−(A +λ)) < 0 for λ > ω0(A), 
by Theorem 5.2, we obtain that A + λ ∈ SMR(p, ∞).

(2): By (1) we know that there exists w such that A + w ∈ SMR(p, ∞). Now applying Proposition 5.1
we find w + A ∈ SMR(p, T2), and thus the result follows from Proposition 3.8(1).

(3): Proposition 3.8(3) ensures that λA ∈ SMR(p, T/λ). Now (2) implies λA ∈ SMR(p, T ). �
5.2. Counterexample

In this final section we give an example of an analytic semigroup generator −A such that A /∈ SMR(p, T ).

Proposition 5.4. Let X be an infinite dimensional Hilbert space. Then there exists an operator A such 
that −A generates an analytic semigroup with ω0(−A) < 0, but A /∈ SMR(p, T ) for any T ∈ (0, ∞] and 
p ∈ [2, ∞).

Proof. Let (en)n∈N be a Schauder basis of H, for which there exists a K > 0 such that for each finite 
sequence (αn)Nn=1 ⊂ C and

∥∥∥ ∑
1≤n≤N

αnen

∥∥∥ ≤ K
( ∑

1≤n≤N

|αn|2
)1/2

,

sup
{∑

n≥1
|αn|2 :

∥∥∥∑
n≥1

αnen

∥∥∥ ≤ 1
}

= ∞;

for the existence of such basis see [51, Example II.11.2] and [20, Example 10.2.32]. Then, define the diagonal 
operator A by Aen = 2nen with its natural domain. By [20, Proposition 10.2.28] A is sectorial of angle zero 
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and 0 ∈ ρ(A). This implies that −A generates an exponentially stable and analytic semigroup S on X. In 
[30, Theorem 5.5] it was shown that for such operator A there exists no C > 0 such that for all x ∈ D(A),

‖t �→ A1/2S(t)x‖L2(R+;X) ≤ C‖x‖, x ∈ X.

If A ∈ SMR(p, ∞), for some p ∈ [2, ∞), then Lemma 4.2 for w = 0 provides such estimate (recall that for 
Hilbert space X one has γ(R+; X) = L2(R+; X)), this implies A /∈ SMR(p, ∞) for all p ∈ [2, ∞). Since 
ω0(−A) < 0, then Theorem 5.2 shows that A /∈ SMR(p, T ) for any T ∈ (0, ∞]. �
Remark 5.5. The adjoint of the example in Proposition 5.4 gives an example of an operator which has 
SMR(2, ∞), but which does not have a bounded H∞-calculus (see [3, Section 4.5.2], [30, Theorems 5.1-5.2]
and [20, Example 10.2.32]). Note that in the language of [30] for the Weiss conjecture, A ∈ SMR(2, ∞) if 
and only if A1/2 is admissible for A. See [32] for more on this.

6. Perturbation theory

Combining the results of [41] (cf. Theorem 3.6) with additive perturbation theory for the boundedness of 
the H∞-calculus, in many situations, one can obtain perturbation results for stochastic maximal regularity. 
Perturbation theory for the boundedness of the H∞-calculus is quite well-understood. It allows to give 
conditions on A and B such that the sum A + B has a bounded H∞-calculus again. Unfortunately, if B is 
of the same order as A, then a smallness condition on B is not enough (see [34]). Positive results can be 
found in [10,23]. In this section, we study more direct methods which give several other conditions on A and 
B such that the stochastic maximal regularity of A implies stochastic maximal regularity of Ã := A + B.

Fix w > ω0(−A) and let Xα := D((w + A)α) with ‖x‖Xα
= ‖(w + A)αx‖ for α > 0, and Xα is the 

completion of X with ‖x‖Xα
= ‖(w + A)αx‖ for α < 0 and X0 := X. These spaces do not dependent 

on the choice of w, and the corresponding norms for different values of w are equivalent. Moreover, for 
each β, α ∈ R, (w + A)α : D((w + A)α) → R((w + A)α) extends as to an isomorphism between Xβ+α

to Xβ and, with a slight abuse of notation, we will still denote the extension by (w + A)α. Lastly, define 
Aα : D(Aα) ⊆ Xα → Xα where D(Aα) = {x ∈ Xα : Ax ∈ Xα} the operator given by Aαx = Ax for 
x ∈ D(Aα); see e.g. [23,28] for more on this. Then if −A generates a strongly continuous semigroup on X, 
then −Aα generates a strongly continuous semigroup (Sα(t))t≥0 on Xα.

Lastly, in case w + Ã is sectorial, consider the following condition for fixed α ∈ [1/2, 1]:

(H)α D((w + Ã)α) = Xα and D((w + Ã)α− 1
2 ) = Xα− 1

2
.

In Theorem 6.1(1) and (2) below the smallness assumption already shows that D(Ã) = D(A). Therefore, 
in the important case α = 1 condition (H)α reduces to the condition D(Ã1/2) = D(A1/2).

The following is the main result of this section.

Theorem 6.1. Let X be a UMD space with type 2, let p ∈ [2, ∞), α ∈ [1/2, 1] and let J = (0, T ) with 
T ∈ (0, ∞). Assume that A ∈ SMR(p, T ), B ∈ L (Xα, Xα−1) and set Ã := (Aα−1 +B)|X . Then Ã generates 
an analytic semigroup and Ã ∈ SMR(p, T ) if (H)α holds and at least one of the following conditions is 
satisfied:

(1) A ∈ DMR(p, T ). Moreover, for some ε > 0 small enough, some C > 0 and all x ∈ Xα, one has

‖Bx‖Xα−1 ≤ ε‖x‖Xα
+ C‖x‖Xα−1 ;

(2) B ∈ L (Xα, Xα−1+δ) for some δ ∈ (0, 1];
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(3) −Ã generates a strongly continuous semigroup on X and the operator Ãα−1 := Aα−1 + B : Xα ⊂
Xα−1 → Xα−1 belongs to DMR(p, T ).

Recall that DMR(p, T ) stands for deterministic maximal Lp-regularity. The result in (1) is a relative 
perturbation result. In (2) no deterministic maximal regularity is needed. The perturbation result in (3)
avoids an explicit smallness assumption of B with respect to A. This result is inspired by [44, Theorem 3.9]
where a more general setting is discussed in the case α = 1, but where a slightly different notion of stochastic 
maximal Lp-regularity is considered since there the spaces X1/2 are assumed to be complex interpolation 
spaces (see [44, Definition 3.5]).

Proof of Theorem 6.1(1). Step 1: First we prove the result under the additional condition C = 0. This part 
of the argument is valid for T ∈ (0, ∞]. If T = ∞, then Proposition 4.7 yields ω0(−A) < ∞. If T < ∞, 
then by Proposition 3.8 we may assume ω0(−A) < 0. It follows from [28, Theorem 8, Remark 17] that 
−Ã generates an analytic semigroup; which we denote by (S̃(t))t≥0. Moreover, for ε small enough, we have 
ω0(−Ã) < 0. By Remark 3.3 and condition (H)α, we have to prove that there exists C > 0 such for all for 
each G ∈ Lp

F (Ω × J ; γ(H; Xα−1/2)),

‖S̃ �G‖Lp(Ω×J;Xα) ≤ C‖G‖Lp(Ω×J;γ(H,Xα−1/2)). (6.1)

To do this, fix G ∈ Lp
F (Ω ×J ; γ(H, Xα−1/2)). Let us denote with L the map from Lp

F (Ω ×J ; Xα) into itself 
given by

Lu = −Sα−1 ∗Bu + Sα−1 �G.

To see that L maps Lp
F (Ω × J ; Xα) into itself, note that S �G ∈ Lp

F (Ω × J ; Xα) since A ∈ SMR(p, T ). By 
assumption A ∈ DMR(p, T ) we also have Aα−1 ∈ DMR(p, T ). Thus for u, v ∈ Lp

F (Ω × J ; Xα),

‖L(u) − L(v)‖Lp(Ω×J;Xα) = ‖Sα−1 ∗B(u− v)‖Lp(Ω×J;Xα)

≤ CA,p‖B(u− v)‖Lp(Ω×J;Xα−1)

≤ CA,pε‖u− v‖Lp(Ω×J;Xα).

Therefore, if ε < 1/CA,p, then L is a strict contraction, and by Banach’s theorem L has a unique fixed 
point u. This yields

u = −Sα−1 ∗Bu + S �G, (6.2)

and

‖u‖Lp(Ω×J;Xα) = ‖L(u)‖Lp(Ω×J;Xα)

≤ ‖L(u) − L(0)‖Lp(Ω×J;Xα) + ‖L(0)‖Lp(Ω×J;Xα)

≤ CA,pε‖u‖Lp(Ω×J;Xα) + M‖G‖Lp
F (Ω×J;γ(H,Xα−1/2)).

Therefore,

‖u‖Lp(Ω×J;Xα) ≤ (1 − CA,pε)−1M‖G‖Lp
F (Ω×J;γ(H,Xα−1/2)). (6.3)

To conclude, note that (6.2) and “mild solutions ⇒ strong solutions” (see Subsection 3.1) implies that 
for all t ∈ J a.s.
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u(t) +
t∫

0

Aα−1u(s) + Bu(s) ds =
t∫

0

G(s) dWH(s).

Writing Aα−1u + Bu = Ãu, “strong solutions ⇒ mild solutions” yields that

u(t) = S̃ �G(t) , ∀t ∈ J.

This together with the inequality (6.3) concludes the proof of Step 1.
Step 2: Next assume C > 0. We will show how one can reduce the proof to the case C = 0. In this part of 

the proof we use T < ∞. As before we can assume ω0(−A) < 0 and w = 0. Thus, A is a sectorial operator 
and for each s ∈ [0, 1], the families of operators {As(λ + A)−s : λ > 0} and {λs(λ + A)−s : λ > 0} are 
uniformly bounded in L (X) by a constant M depending only on A, w and s (see [28, Lemma 10, Remark 
17]). The assumption can be rewritten as

‖Aα−1BA−αx‖ ≤ ε‖x‖ + C‖A−1x‖, x ∈ X. (6.4)

For each λ > 0 and for x ∈ X, one has

‖(λ + A)α−1B(λ + A)−αx‖ = ‖(λ + A)α−1A1−α(Aα−1BA−α)Aα(λ + A)−αx‖
(i)
�A ‖(Aα−1BA−α)Aα(λ + A)−αx‖
(ii)
≤ ε‖Aα(λ + A)−αx‖ + C‖A−1+α(λ + A)−αx‖
(iii)
�A ε‖x‖ + C‖(λ + A)−αx‖
(i)
�A ε‖x‖ + Cλ−α‖x‖,

where in (i) we used the uniform boundedness of Aα(λ + A)−α and λα(λ + A)−α for λ > 0. In (ii) we 
used (6.4). In (iii) we used that 0 ∈ ρ(A) and −1 + α ≤ 0. If we choose ε small enough and λ > 0 large 
enough, then the condition of Step 1 holds, with the operator A replaced by A +λ. Therefore, by Step 1 we 
obtain Ã+ λ generates an analytic semigroup and Ã+ λ ∈ SMR(p, ∞). Therefore, Ã generates an analytic 
semigroup and Proposition 3.8 implies that Ã ∈ SMR(p, T ). �

If the perturbation is of a lower order, than the assumption that A has deterministic maximal 
Lp-regularity can be avoided.

Proof of Theorem 6.1(2). As in the proof of (1) one sees that Ã generates an analytic semigroup. As in 
(1), due to Remark 3.3 and the hypothesis (H)α, we have only to show the estimate (6.1). Thanks to 
Corollary 5.3(2), we can prove the estimate (6.1) where J is replaced by any other interval J1 := (0, T1), 
where T1 will be chosen below.

Fix G ∈ Lp
F (Ω ×J1; γ(H, Xα− 1

2
)). Let L on Lp

F (Ω ×J1; Xα) be defined by Lu = −Sα−1 ∗Bu +S �G. By 
assumption we have S �G ∈ Lp

F (Ω ×J1; Xα). Moreover, by the analyticity of Sα−1, for u ∈ Lp
F (Ω ×J1; Xα)

we obtain

‖Sα−1 ∗Bu(t)‖Xα
=

∥∥∥ t∫
(w + Aα−1)1−δSα−1(t− s)(w + Aα−1)δBu(s) ds

∥∥∥
Xα−1
0
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≤ CA,δ‖B‖
t∫

0

(t− s)−(1−δ)‖u(s)‖Xα
ds.

Therefore, taking Lp-norms and Young’s inequality yields

‖(w + Aα−1)Sα−1 ∗Bu(t)‖Lp
F (Ω×J1;Xα) ≤ CA,δT

δ
1 ‖B‖ ‖u‖Lp

F (Ω×J1;Xα).

Analogously for u, v ∈ Lp
F (Ω × J1; Xα), one has

‖L(u) − L(v)‖Lp(Ω×J1;Xα) = ‖Sα−1 ∗B(u− v)‖Lp(Ω×J1;Xα)

≤ CA,δT
δ
1 ‖B‖ ‖u− v‖Lp(Ω×J1;Xα).

Therefore, if T1 is such that CA,δ‖B‖T δ
1 < 1/2, then L is a contraction, and by Banach’s theorem L has a 

unique fixed point u. This yields

u = −Sα−1 ∗Bu + S �G, (6.5)

and

‖u‖Lp(Ω×J1;Xα) = ‖L(u)‖Lp(Ω×J1;Xα)

≤ ‖L(u) − L(0)‖Lp(JΩ×J1;Xα) + ‖L(0)‖Lp(Ω×J1;Xα)

≤ 1
2‖u‖Lp(Ω×J1;Xα) + CA,δT

δ
1 ‖B‖ ‖G‖Lp

F (Ω×J1;γ(H,Xα−1/2)).

Therefore,

‖u‖Lp(Ω×J1;Xα) ≤ 2CA,δT
δ
1 ‖B‖‖G‖Lp

F (Ω×J1;γ(H,Xα−1/2)).

Now the proof can be completed as in the final part of Step 1 of the proof of (1). �
Proof of Theorem 6.1(3). This part of the proof also holds for T = ∞.

By assumption −Ã generates a strongly continuous semigroup S̃ on X. Moreover, since Ãα−1 ∈
DMR(p, T ), then −Ãα−1 generates an analytic semigroup S̃α−1 on Xα−1; see Subsection 2.2 or [12, Corollary 
4.2 and 4.4]. Of course, if α = 1, then S̃α−1 = S̃ and the first assumption is redundant.

By Proposition 3.8 we may assume ω0(−Ã) < 0, J = R+ and we set w = 0. From here, the argument 
is the same performed in [44, Theorem 3.9] with minor modifications, so we only sketch the main step. To 
begin let G ∈ Lp

G (Ω ×R+, wα; γ(H, Xα−1/2)), since A ∈ SMR(p, ∞), if V := Sα−1 �G then

‖V ‖Lp(Ω×R+;Xα) �α,A ‖G‖Lp(Ω×R+;γ(H;Xα−1/2)).

Moreover, one can readily check that U := S̃ �G = V − S̃α−1 ∗BV , since U is the unique weak solution to

dU + ÃUdt = GdWH , U(0) = 0;

cf. Subsection 3.1. Since Ãα−1 ∈ DMR(p, ∞), one has

‖U‖Lp(Ω×R+;D(Ãα))�α,A,Ã‖U‖Lp(Ω×R+;Xα)

≤ ‖Sα−1 �G‖Lp(Ω×R+;Xα) + ‖S̃α−1 ∗BV ‖Lp(Ω×R+;Xα)
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�A,Ã,α,p‖Sα−1 �G‖Lp(Ω×R+;Xα) + ‖BV ‖Lp(Ω×R+;Xα−1)

≤ ‖Sα−1 �G‖Lp(Ω×R+;Xα) + ‖B‖‖V ‖Lp(Ω×R+;Xα)

�A,p,B‖G‖Lp(Ω×R+;γ(H,Xα−1/2))

�α,A,Ã,p,B‖G‖Lp(Ω×R+;γ(H,D(Ãα−1/2)),

where in the first and last step we have used (H)α. The conclusion follows by Remark 3.3 and Theo-
rem 4.1. �
Remark 6.2. Theorem 6.1(3) is also valid for T = ∞. If C = 0, then Theorem 6.1(1) also holds for T = ∞.

7. Weighted inequalities

7.1. Preliminaries

In this section we recall some basic fact about vector-valued Sobolev spaces and Bessel potential spaces 
with power weights. We refer to [31,36] for details. Let I ⊆ R+ be an open interval and let X be a Banach 
space. For p ∈ (1, ∞), α ∈ R and wα(t) := tα we denote by Lp(I, wα; X) (or Lp(a, b, wα; X) if I = (a, b)) 
the set of all strongly measurable functions f : I → X such that

‖f‖Lp(I,wα;X) :=

⎛⎝∫
I

‖f(t)‖pXwα(t) dt

⎞⎠1/p

< ∞.

It is of interest to note that wα belongs to the Muckenhoupt class Ap if and only if α ∈ (−1, p − 1). For 
k ∈ N, let W k,p(I, wα; X) denote the subspace of Lp(I, wα; X) of all functions for which ∂jf ∈ Lp(R, wα; X)
for j = 0, . . . , k.

As usual, S(R; X) denotes the space of X-valued Schwartz functions and S ′(R; X) := L (S(R); X)
denotes the space of X-valued tempered distributions. Let Js be the Bessel potential operator of order 
s ∈ R, i.e.

Jsf = F−1((1 + | · |2)s/2F(f)) , f ∈ S(R);

where F denotes the Fourier transform. Thus, one also has Js : S ′(R; X) → S ′(R; X). For s ∈ R, p ∈ (1, ∞), 
α ∈ (−1, p −1), Hs,p(R, wα; X) ⊆ S ′(R; X) denote the Bessel potential space, i.e. the set of all f ∈ S ′(R; X)
for which Jsf ∈ Lp(R, wα; X) and set ‖f‖Hs,p(R,wα;X) := ‖Jsf‖Lp(R,wα;X).

To define vector valued weighted Bessel potential spaces on intervals, we use a standard method. Let 
D(I; X) = C∞

c (I; X) with the usual topology and let D′(I; X) = L (D(I), X) denote the X-valued distri-
butions.

Definition 7.1. Let p ∈ (1, ∞), α ∈ (−1, p − 1) and I ⊆ R+ an open interval. Let

Hs,p(I, wα;X) = {f ∈ D′(I;X) : ∃g ∈ Hs,p(R, wα;X); s.t. g|I = f} ,

endowed with the quotient norm ‖f‖Hs,p(I,wα;X) = inf{‖g‖Hs,p(R,wα;X) : g|I = f}.
Let Hs,p

0 (R+, wα; X) be the closure of C∞
c (R+; X) in Hs,p(R+, wα; X).

To handle Bessel potential space on intervals we need the following standard result, which can be proved 
as in [31, Propositions 5.5 and 5.6], where the case I = R+ was treated.
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Proposition 7.2. Let p ∈ (1, ∞), α ∈ (−1, p − 1), and let X be a UMD Banach space. Let I ⊆ R+ be an 
open interval.

(1) For every k ∈ N there exists an extension operator Ek : Hs,p(I, wα; X) → Hs,p(R, wα; X) such that 
Ekf |I = f for all f ∈ Hs,p(I, wα; X) and for each s ∈ [0, k] and Ek : Ck(I; X) → Ck(I; X).

(2) If k ∈ N, p ∈ (1, ∞), then Hk,p(I, wα; X) = W k,p(I, wα; X).
(3) Let θ ∈ (0, 1) and s0, s1 ∈ R and set s := s0(1 − θ) + θs1. Then

[Hs0,p(R+, wα;X), Hs1,p(R+, wα;X)]θ = Hs,p(R+, wα;X).

In the case I = (0, T ) with T ∈ (0, ∞) it is possible to construct Ek such that its norm is T -independent 
(see [35, Lemma 2.5]).

The following density lemma will be used several times. Let I denote an interval. We write Ck
c (I; X)

for the space of X-valued functions f : I → X such that the derivatives up to order k are continuous and 
bounded with compact support. Note that Ck

c (I; X) = Ck(I; X) if I is bounded.

Lemma 7.3. Let X and Y be Banach spaces such that Y ↪→ X densely. Let k ∈ N, s ∈ [−k, k], p ∈ (1, ∞), 
α ∈ (−1, p − 1). Then Ck

c (I) ⊗ Y is dense in Hs(I, wα; X) and in Hs(I, wα; X) ∩ Lp(I; wα; Y ).

Proof. By Proposition 7.2 it suffices to prove the statements in the case I = R. The density of Ck
c (R) ⊗X

in Hs(R, wα; X) follows from [31, Lemma 3.4]. Now since Y is densely embedded in X the result follows.
To prove the density in E := Hs(R, wα; X) ∩ Lp(R; wα; Y ), let f ∈ E. Let ϕ ∈ C∞

c (R) be such that 
ϕ ≥ 0 and ‖ϕ‖1 = 1. Let ϕn(x) = n−1ϕ(nx). Then ϕn ∗ f → f in E. Therefore, it suffices to approximate 
g = ϕn ∗ f for fixed n. Since g ∈ Hs,p(R, wα; Y ) and Hs,p(R, wα; Y ) ↪→ E it suffices to approximate g in 
Hs,p(R, wα; Y ). This follows from the first statement of the lemma. �

The following deep result follows from [31, Proposition 6.6, Theorems 6.7 and 6.8]. The scalar unweighted 
case is due to [50].

Theorem 7.4. Let p ∈ (1, ∞), α ∈ (−1, p − 1) and let X be a UMD space. Then the following holds true:

(1) If k ∈ N0 and k + 1+α
p < s < k + 1 + 1+α

p , then

Hs,p
0 (R+, wα;X) = {f ∈ Hs,p(R+, wα;X) : tr(f) = 0, . . . , tr(f (k)) = 0}.

(2) Let θ ∈ (0, 1) and s0, s1 ∈ R, define s := s0(1 − θ) + θs1. Suppose s0, s1, s /∈ N0 + (1 + α)/p, then

[Hs0,p
0 (R+, wα;X), Hs1,p

0 (R+, wα;X)]θ = Hs,p
0 (R+, wα;X).

(3) The realization of ∂t on Lp(R+, wα; X) with domain H1,p
0 (R+, wα; X) has a bounded H∞-calculus of 

angle π/2. In particular, D((∂t)s) = Hs,p
0 (R+, wα; X) provided s /∈ N0 + (1 + α)/p.

Let A be a sectorial operator on a Banach spaces X and assume 0 ∈ ρ(A). As usual, for each m ∈ N, we 
denote by D(Am) the domain of Am endowed with the norm ‖ · ‖D(Am) := ‖Am · ‖X . Then for each ϑ > 0
and p ∈ (1, ∞) we define

DA(ϑ, p) := (X,D(Am))ϑ/m,p;

where ϑ < m ∈ N and (·, ·)ϑ/m,p denotes the real interpolation functor (see e.g. [4,33,53]). It follows from 
reiteration (see [53, Theorem 1.15.2]) that DA(μ, p) does not depend on the choice of m > ϑ, moreover
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(X,DA(ϑ, p))ν,q = DA(ν ϑ, q),

for all ν > 0 and q ∈ (1, ∞). We refer to [53, Chapter 1], [33, Chapter 1] and [46, Chapter 3] for more on 
this topic.

The following trace embedding is due to [37, Theorem 1.1] where the result was stated on the full real 
line. The result on R+ is immediate from the boundedness of the extension operator of Proposition 7.2 and 
the density Lemma 7.3.

Theorem 7.5. Let A be an invertible sectorial operator with dense domain and let p ∈ (1, ∞), α ∈ (−1, p −1)
and k > s > (1 + α)/p, where k ∈ N. Then the trace operator (trf) := f(0) initially defined on 
Ck

c ([0, ∞); D(Ak)), extends to a bounded linear operator on Hs,p(R+, wα; X) ∩ Lp(R+, wα; D(As)). More-
over,

tr : Hs,p(R+, wα;X) ∩ Lp(R+, wα;D(As)) → DA(μ, p),

where μ := s − (1 + α)/p.

The following proposition, besides its independent interest, will play an important role in the proof of 
Theorem 7.16 below. There, for a Banach space X and an interval I, C0(I; X) denotes the Banach space of 
all continuous functions on I with values in X which vanish at infinity.

Corollary 7.6. Let p ∈ (1, ∞), α ∈ [0, p − 1) and let X be a UMD space and define I := (0, T ) ⊆ R+ where 
T ∈ (0, ∞]. Let A be an invertible sectorial operator on X. Then the following assertions hold:

(1) If s > (α + 1)/p, then

Hs,p(I, wα;X) ∩ Lp(I, wα;D(As)) ↪→ C0(I,DA(μ, p)),

where μ := s − α+1
p .

(2) If s > 1/p and δ > 0, then

Hs,p(Iδ, wα;X) ∩ Lp(Iδ, wα;D(As)) ↪→ C0(Iδ;DA(s− 1
p , p)),

where Iδ := (δ; T ).

By similar arguments as in [37] using embedding theorems into Triebel–Lizorkin spaces one can avoid 
the use of the UMD property in the above result. We do not require this generality here and we only proof 
the special case.

Proof. By Proposition 7.2 it suffices to consider I = R+.
(1): To prove the required embedding by the density Lemma 7.3 it suffices to check that

supt≥0 ‖f(t)‖DA(μ,p) ≤ C‖f‖E for every f ∈ Ck
c (I; D(Ak)), here E := Hs,p(R+, wα; X) ∩Lp(R+, wα; D(As)). 

To prove this we extend a standard translation argument to the weighted setting. Let (T (t))t≥0 the left-
translation semigroup, i.e. (T (t)f)(s) := f(t + s) on Lp(R+; X). Since α ≥ 0, T (t) is contractive on 
Lp(R+, wα; X) as well. Since T (t) commutes with the first derivative ∂s it is immediate that (T (t))t≥0
defines a contraction on W k,p(R+, wα; X). By complex interpolation and Proposition 7.2 it follows that 
there exists a constant M such that ‖T (t)‖L (Hs,p(R+,wα;X)) ≤ M for t ∈ R+, and consequently the same 
holds on E. Now by Theorem 7.5 we obtain
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‖f(t)‖DA(μ,p) = ‖(T (t)f)(0)‖DA(μ,p) ≤ C‖T (t)f‖E ≤ CM‖f‖E ,

as required.
(2): As before it suffices to estimate supt≥δ ‖f(t)‖DA(μ,p). Since α ≥ 0,

Hs,p(Iδ, wα;X) ∩ Lp(Iδ, wα;D(As)) ↪→ Hs,p(Iδ;X) ∩ Lp(Iδ;D(As)).

Therefore, since (1) extends to any half line [δ, ∞) ⊆ [0, ∞) the required result follows from (1) in the 
unweighted case. �
7.2. Weighted stochastic maximal Lp-regularity

As before, in this section X is a Banach space with UMD and type 2.
For p ∈ [2, ∞) and α ∈ R and T ∈ (0, ∞], let Lp

F (Ω × (0, T ), wα; X) denote the closure of the adapted 
step processes in Lp(Ω; Lp((0, T ), wα; X))).

First we extend Definition 3.1 to the weighted setting:

Definition 7.7. Let X be a UMD space with type 2, let p ∈ [2, ∞), w > ω0(−A), T ∈ (0, ∞] and α ∈ R. We 
say that A belongs to SMR(p, T, α) if there is a constant C such that for all G ∈ Lp

F (Ω ×(0, T ), wα; γ(H, X))
one has

‖S �G‖Lp(Ω×(0,T ),wα;D((w+A)1/2)) ≤ C‖G‖Lp
F (Ω×(0,T ),wα;γ(H,X)).

Remark 7.8. Note that for every G ∈ Lp
F (Ω ×(0, T ), wα; γ(H, D(A))) the stochastic integral (w+A)1/2S �G

is well-defined in X. Indeed, since α < p
2 − 1 by Hölder’s inequality one obtains that for all T < ∞

Lp(0, T, wα;X) ⊆ L2(0, T ;X);

and the claim follows as in Remark 3.2.

The main result of this subsection is a stochastic analogue of [45, Theorem 2.4].

Theorem 7.9. Let X be a UMD space with type 2, let p ∈ [2, ∞) and α ∈ (−1, p2 − 1). Then the following 
assertions are equivalent:

(1) A ∈ SMR(p, ∞).
(2) A ∈ SMR(p, ∞, α).

As a consequence SMR(p, ∞, α) = SMR(p, ∞) for all α ∈ (−1, p2 − 1).
To prove the result we will prove the following more general result, which can be viewed as a stochastic 

operator-valued analogue of [52].

Theorem 7.10. Let p ∈ [2, ∞), α ∈ (−∞, p2 − 1) and let X be a Banach space and let Y be a UMD Banach 
space with type 2. Let X0 be a Banach space which densely embeds into X. Let Δ = {(t, s) : 0 < s < t < ∞}
and let K ∈ C(Δ; L (X, Y )) be such that ‖K(t, s)‖ ≤ M/(t − s)1/2 and ‖K(t, s)x‖ ≤ M‖x‖X0 for all 
t > s > 0. For adapted step processes G let TKG be defined by

TKG(t) = K �G(t) =
t∫
K(t, s)G(s) dWH(s), t ∈ R+.
0
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Let p ∈ [2, ∞) and α ∈ (−∞, p2 − 1). The following assertions are equivalent:

(1) TK is bounded from Lp
F (Ω ×R+, wα; γ(H, X)) into Lp(Ω ×R+, wα; Y ).

(2) TK is bounded from Lp
F (Ω ×R+; γ(H, X)) into Lp(Ω ×R+; Y ).

As a consequence the boundedness of TK does not depend on α ∈ (−∞, p2 − 1).
To prove the theorem we prove a stochastic version of a standard lemma (see [52], [25] and [45, Proposition 

2.3]).

Lemma 7.11. Let X be a Banach space and let Y be a UMD Banach space with type 2. Let p ∈ [2, ∞) and 
β ∈ (−∞, 12 − 1

p ). Let Δ = {(t, s) : 0 < s < t < ∞}. Let K be as in Theorem 7.9. Then the operator 
TK,β : Lp

F (Ω ×R+; γ(H, X)) → Lp(Ω ×R+; Y ) defined by

TK,βG(t) =
t∫

0

K(t, s)((t/s)β − 1)G(s) dWH(s)

is bounded and satisfies ‖TK,β‖ ≤ Cp,Y CβM .

Proof. By density it suffices to bound TK,βG for adapted step processes G. Note that for all t > s > 0 one 
has

‖K(t, s)((t/s)β − 1)‖2 ≤ M2kβ(t, s),

where kβ : {(s, t) ∈ (0, ∞)2 : s < t} → R+ is given by kβ(t, s) = ((t/s)β − 1)2/(t − s).
By Corollary 2.8 we have

E‖TK,βG(t)‖p ≤ Cp
p,Y E

( t∫
0

‖K(t, s)((t/s)β − 1)‖2‖G(s)‖2
γ(H,X) ds

)p/2

≤ Cp
p,Y M

pE
( t∫

0

kβ(t, s)‖G(s)‖2
γ(H,X) ds

)p/2
.

To conclude, it suffices to prove that

∫
R+

( t∫
0

kβ(t, s)|f(s)|2 ds
)p/2

dt ≤ Cp
β‖f‖

p
Lp(R+) ,

for any f ∈ Lp(R+). Let us set g(s) = |f(s)s1/p|2 for s > 0, then

t∫
0

kβ(t, s)|f(s)|2 ds = 1
t2/p

∞∫
0

hβ(t/s)g(s) ds
s

= hβ ∗ g(t)
t2/p

,

where the convolution is in the multiplicative group (∗, R+ \ {0}) with Haar measure dμ(s) = ds
s and 

hβ(x) := 1(1,∞)(x) (xβ−1)2
x−1 x2/p for x > 0. Taking p

2 -powers and integrating over t ∈ R+ and applying 
Young’s inequality yields
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∫
R+

( t∫
0

kβ(t, s)|f(s)|2 ds
)p/2

dt = ‖hβ ∗ g‖p/2
Lp/2(R+,μ) ≤ ‖hβ‖p/2L1(R+,μ)‖g‖

p/2
Lp/2(R+,μ)

= ‖hβ‖p/2L1(R+,μ)‖f‖
p
Lp(R+).

Finally, one easily checks that

‖hβ‖L1(R+,μ) =
∞∫
1

(xβ − 1)2

x− 1 x2/p dx

x

is finite if and only if β < 1
2 − 1

p . This concludes the proof. �
Proof of Theorem 7.10. By density it suffices to prove uniform estimates for TKG where G is a X0-valued 
adapted step process.

(1) ⇒ (2): Set Gβ(s) := sβG(s) where β = α/p. Observe that

tβTKG(t) = TKGβ(t) + TK,βGβ(t), (7.1)

where TK,β is as in Lemma 7.11. By (1) one has

‖TKGβ‖Lp(Ω×R+;Y ) ≤ C‖Gβ‖Lp(Ω×R+;γ(H,X)) = C‖G‖Lp(Ω×R+,wα;γ(H,X)).

Moreover, by Lemma 7.11 one has

‖TK,βGβ‖Lp(Ω×R+;Y ) ≤ C‖Gβ‖Lp(Ω×R+;γ(H,X)) = C‖G‖Lp(Ω×R+,wα;γ(H,X)).

Then by (7.1) and the previous estimates,

‖TKG‖Lp(Ω×R+,wα;Y ) = ‖t �→ tβTKG(t)‖Lp(Ω×R+;Y )

≤ ‖TKGβ‖Lp(Ω×R+;Y ) + ‖TK,βGβ‖Lp(Ω×R+;Y )

≤ 2C‖G‖Lp(Ω×R+,wα;γ(H,X)).

(2) ⇒ (1): Let F−β(s) = s−βG(s) where β = α/p. Similarly to (7.1), one has

TKF (t) = tβTKF−β(t) − TK,βF (t).

As before, applying the assumption to F−β and Lemma 7.11 gives that

‖TKF‖Lp(Ω×R+;Y ) ≤ ‖t �→ tβTKF−β(t)‖Lp(Ω×R+;Y ) + ‖TK,βF‖Lp(Ω×R+;Y )

= ‖TKF−β‖Lp(Ω×R+,wα;Y ) + ‖TK,αF‖Lp(Ω×R+;Y )

≤ C‖F−β‖Lp(Ω×R+,wα;γ(H,X)) + C ′′‖F‖Lp(Ω×R+;γ(H,X))

= (C + C ′′)‖F‖Lp(Ω×R+;γ(H,X)),

from which the result follows. �
Proof of Theorem 7.9. If (1) holds, then by Theorem 4.1 the semigroup S generated by A is analytic. To see 
that (2) also implies analyticity of S, note that the statement of Lemma 4.2 still holds if instead we assume 
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A ∈ SMR(p, ∞, α). To see this one can repeat the argument given there by using α > −1. Therefore, if (2) 
holds, then Proposition 4.5 implies that S is analytic.

By the analyticity of S, the operator-valued family K : Δ → L (X) defined by

K(t, s) := A
1
2S(t− s)

satisfies ‖K(t, s)‖ ≤ C/(t − s)1/2 for t > s > 0. Therefore, the equivalence of (1) and (2) follows from 
Theorem 7.10 with X0 = D(A). �
7.3. Space-time regularity results

To state the last results of this section, we introduce a further class of operators. From now on we will 
assume (S(t))t≥0 is exponentially stable. For θ ∈ [0, 1/2) we set

Sθ(t) := t−θ

Γ(1 − θ)S(t) , t ≥ 0.

Definition 7.12. Let X be a UMD space with type 2, let p ∈ [2, ∞), and θ ∈ [0, 1/2) and assume ω0(−A) < 0. 
We say that operator A belongs to SMRθ(p, ∞) if for each G ∈ Lp

F (Ω × R+; γ(H, X)) the stochastic 
convolution process

Sθ �G(t) :=
t∫

0

Sθ(t− s)G(s) dWH(s) ,

is well-defined in X, takes values in D(A1/2−θ) P × dt-a.e. and satisfies

‖Sθ �G‖
Lp(Ω×R+;D(A

1
2−θ))

≤ C‖G‖Lp(Ω×R+;γ(H,X)),

for some C > 0 independent of G.

By definition, we have SMR0(p, ∞) = SMR(p, ∞).
The following important remark gives sufficient conditions for A ∈ SMRθ(p, ∞) which reduces to Theo-

rem 3.6 if θ = 0.

Remark 7.13. It was shown in [40–42] that, if X satisfies Assumption 3.5, 0 ∈ ρ(A) and A has a bounded 
H∞-calculus of angle < π/2 then A ∈ SMRθ(p, ∞) for any θ ∈ [0, 1/2) and p ∈ (2, ∞). In addition, if 
q = 2, then A ∈ SMRθ(p, ∞) for any p ∈ [2, ∞). Lastly, the assumption 0 ∈ ρ(A) can be avoided using a 
homogeneous version of SMRθ(p, ∞) (see [40, Theorem 4.3]).

Before going further, we make the following observation:

Proposition 7.14. Let X be a UMD space with type 2 and let p ∈ [2, ∞). Let A ∈ SMRθ(p, ∞) be such that 
ω0(−A) < 0 and A is an R-sectorial operator of angle ωR(A) < π/2. Then, for any 0 ≤ ψ < θ < 1/2, we 
have A ∈ SMRψ(p, ∞).

Proof. First observe that an analogue of Proposition 3.7 for SMRθ(p, ∞) holds and we will use it in the 
proof below. By [23, Lemma 3.3] (or [20, Proposition 10.3.2]) the set {(sA)θ−ψS(s/2) : s > 0} is R-bounded 
and hence γ-bounded (see [20, Theorem 8.1.3(2)]). Therefore, by the γ-multiplier theorem (see [20, Theorem 
9.5.1]) we obtain
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‖s �→ A1/2−ψSψ(t− s)G(s)‖γ(0,t;H,X) ≤ C‖s �→ A1/2−θSθ((t− s)/2)G(s)‖γ(0,t;H,X).

Taking Lp-norms on both sides we find that

∞∫
0

‖s �→ A1/2−ψSψ(t− s)G(s)‖pγ(0,t;H,X) dt

≤ Cp

∞∫
0

‖s �→ A1/2−θSθ((t− s)/2)G(s)‖pγ(0,t;H,X)dt

= Cp

2

∞∫
0

‖s �→ A1/2−θSθ((2τ − s)/2)G(s)‖pγ(0,2τ ;H,X)dτ

≤ 2
p
2−1Cp

∞∫
0

‖σ �→ A1/2−θSθ(τ − σ)G(2σ)‖pγ(0,τ ;H,X)dτ

≤ 2
p
2−1CpKp‖G‖Lp(Ω×R+;γ(H,X)),

where we only used elementary substitutions and in the last step we used the assumption applied to the 
function G(2·). �

The following proposition is the analogue of Theorem 7.9 for the class SMRθ(p, ∞).

Proposition 7.15. Let X be a UMD space with type 2. Assume ω0(−A) < 0 and S is an analytic semigroup. 
Let p ∈ [2, ∞), α ∈ (−1, p2 − 1) and θ ∈ [0, 1/2). Then the following are equivalent:

(1) A ∈ SMRθ(p, ∞).
(2) There is a constant C > 0 such that for all G ∈ Lp

F (Ω ×R+, wα; γ(H, X)) we have Sθ �G(t) ∈ D(A 1
2−θ)

P × dt-a.e. and

‖Sθ �G‖
Lp(Ω×R+,wα;D(A

1
2−θ))

≤ C‖G‖Lp(Ω×R+,wα;γ(H,X)).

Proof. Let Kθ : Δ → L (X) be defined by Kθ(t, s) = A
1
2−θ(t −s)−θS(t −s). By analyticity of the semigroup 

(S(t))t≥0, one has ‖Kθ(t, s)‖ ≤ C/(t − s)1/2 for t > s > 0, and thus the result follows from Theorem 7.10
in the same way as in Theorem 7.9. �

We are ready to prove the main result of this section. Recall from Remark 7.13 that all the conditions 
are satisfied if X is isomorphic to a closed subspace of Lq with q ∈ [2, ∞), 0 ∈ ρ(A) and A has a bounded 
H∞-calculus of angle < π/2.

Theorem 7.16. Let X be a UMD space with type 2. Assume ω0(A) < 0, A ∈ BIP(X) with θA < π/2. Let 
p ∈ (2, ∞), let α ∈ (−1, p2 − 1) (or p = 2 and α = 0) and let θ ∈ [0, 12 ). Assume that A ∈ SMRθ(p, ∞).

(1) (Space-time regularity) If θ �= (1 + α)/p, then

E‖S �G‖p
Hθ,p(R+,wα;D(A

1
2−θ))

≤ Cp E‖G‖pLp(R+,wα;γ(H,X)).



32 A. Agresti, M. Veraar / J. Math. Anal. Appl. 482 (2020) 123553
(2) (Maximal estimates) If α ≥ 0 and θ − (1 + α)/p > 0, then

E sup
t∈R+

‖S �G(t)‖p
DA

(
1
2−

1+α
p ,p

) ≤ Cp E‖G‖pLp(R+,wα;γ(H,X)).

(3) (Parabolic regularization) If α ≥ 0 and θ − 1/p > 0, then for any δ > 0

E sup
t∈[δ,∞)

‖S �G(t)‖p
DA

(
1
2− 1

p ,p
) ≤ Cp E‖G‖pLp(R+,wα;γ(H,X)).

In all cases the constant C is independent of G.

Proof. To prepare the proof, we collect some useful facts. Let A be the closed and densely defined operator 
on Lp(R+, wα; X) with domain D(A ) := Lp(R+, wα; D(A)) defined by

(A f)(t) := Af(t);

since A ∈ BIP(X) then also A ∈ BIP(Lp(R+, wα; X)) and θA = θA < π/2. Moreover, 0 ∈ ρ(A ) since 
0 ∈ ρ(A). Let B be the closed and densely defined operator on Lp(R+, wα; X) with domain D(B) :=
W 1,p

0 (R+, wα; X) given by

Bf := f ′.

By Theorem 7.4, B has a bounded H∞-calculus of angle ωH∞(B) = π/2; in particular θB ≤ π/2. Since 
θA + θB < π, by [48, Theorems 4 and 5] the operator

C := A + B, D(C ) := D(A ) ∩D(B),

is an invertible sectorial on Lp(R+, wα; X), moreover has bounded imaginary powers with θC ≤ π/2. By [6, 
Proposition 3.1] one has

(C−γf)(t) = 1
Γ(γ)

t∫
0

(t− s)γ−1S(t− s)f(s) ds. (7.2)

Moreover, for all γ ∈ (0, 1] one has (see [14, Lemma 9.5(b)])

D(C γ) = [Lp(R+, wα;X), D(B)]γ ∩ [Lp(R+, wα;X), D(A )]γ
= Hγ,p

0 (R+, wα;X) ∩ Lp(R+, wα;D(Aγ)),
(7.3)

provided γ �= (1 +α)/p, (the last equality follows from Theorem 7.4(2)). To prove (1) and (2), by a density 
argument, it suffices to consider an adapted rank step process G : [0, ∞) × Ω → γ(H, D(A)).

(1): By the Da Prato–Kwapień–Zabczyk factorization argument (see [6] and [9, Section 5.3] and references 
therein), using (7.2) for γ = θ, the stochastic Fubini theorem and the equality

1
Γ(θ)Γ(1 − θ)

t∫
r

(t− s)θ−1(s− r)−θ ds = 1

one obtains, for all t ∈ R+,
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C−θ(A 1
2−θSθ �G)(t) = A

1
2−θS �G(t) almost surely. (7.4)

Then,

‖A 1
2−θS �G‖Lp(Ω;Hθ,p(R+,wα;X))

(i)
≤ C‖C θA

1
2−θS �G‖Lp(Ω×R+,wα;X)

(ii)= C‖A 1
2−θSθ �G‖Lp(Ω×R+,wα;X)

(iii)
≤ C ′‖G‖Lp(Ω×R+,wα;γ(H,X)),

where in (i) we have used (7.3) (recall that by assumption θ �= (1 + α)/p), in (ii) (7.4) and in (iii) we used 
Proposition 7.15.

(2): By Corollary 7.6(1), we have

Hθ,p(R+, wα;X) ∩ Lp(R+, wα;D(Aθ)) ↪→ C0

(
[0,∞);DA

(
θ − 1 + α

p
, p

))
.

Moreover, since A ∈ BIP(X) with θB < π/2 then ωR(A) < π/2 thus −A generates an analytic semigroup 
on X (see Remark 2.2). Setting ζλ = AλS �G, by Proposition 7.15 and the fact that 0 ∈ �(A), one has

‖ζ 1
2−θ‖Lp

(
Ω;C0

(
[0,∞);DA

(
θ− 1+α

p ,p
)))

≤ K‖ζ 1
2−θ‖Lp(Ω;Hθ,p([0,∞),wα;X)) + K‖ζ 1

2−θ‖Lp(Ω;Lp(R+,wα;D(Aθ)))

= K‖ζ 1
2−θ‖Lp(Ω;Hθ,p(R+,wα;X)) + K‖ζ 1

2
‖Lp(Ω×R+,wα;X))

≤ CK‖G‖Lp(Ω×R+,wα;γ(H,X)).

(7.5)

Since A
1
2−θ : DA(1/2 − (1 + α)/p, p) → DA(θ − (1 + α)/p, p) is an isomorphism (see [53, Theorem 1.15.2 

(e)]), we have

‖S �G‖
Lp

(
Ω;C0

(
[0,∞);DA

(
1
2−

1+α
p ,p

)))
�A,θ,p ‖ζ 1

2−θ‖Lp
(
Ω;C0

(
[0,∞);DA

(
θ− 1+α

p ,p
)))

≤ CK‖G‖Lp(Ω×R+,wα;γ(H,X));

where in the last inequality we have used (7.5).
(3): This follows from the same argument as in (2) using Corollary 7.6(2) instead of Corollary 7.6(1). �

Remark 7.17. Similar to [40, Remark 5.1] (see also the references therein), Theorem 7.16 can be local-
ized via a standard stopping time argument. For future references, we give the explicit formulation for 
Theorem 7.16(3).

Let θ > 1/p, 0 ≤ α < p/2 − 1, A ∈ SMRθ(p, ∞) and let τ > 0 be an F -stopping time then for any 
G ∈ L0

F (Ω; Lp((τ, ∞), wα; γ(H, X))),

S �G ∈ L0
(

Ω;C0

(
(τ ;∞);DA

(
1
2 − 1

p
, p

)))
.
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