TU Delft

Discovering the metrics for assessing a project’s maturity: An analysis of key
indicators of maturity

Kendra Sartori

Supervisor(s): Sebastian Proksch, Shujun Huang

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Kendra Sartori
Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Shujun Huang, Fenia Aivaloglou

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Continuous integration (CI) is a software engineer-
ing practice that promotes frequent code integra-
tion into a shared repository, improving the pro-
ductivity within development teams as well as the
quality of the software being developed. While
CI adoption has gained traction, studies have ex-
amined its effective implementation and associated
challenges. The idea that multiple contextual fac-
tors influence the adoption of CI prompts an explo-
ration of suitable descriptive metrics for describing
the CI practices employed. This paper aims to ex-
plore the metrics that best depict the level of ma-
turity of a project, addressing the question: “What
metrics can be used to describe the maturity level
of a project?”. With a lack of a comprehensive ma-
turity framework, we leverage GitHub’s API in an
attempt to analyze various metrics to be used to cre-
ate a framework for filtering projects.

Our findings indicate that project maturity can-
not be captured by a single metric, but rather a
combination of metrics reflecting different aspects
throughout the project’s lifecycle. Activity levels,
including commits and pull requests, popularity in-
dicators like stargazers, forks, and contributors, as
well as repository size and age, emerge as primary
indicators of maturity. By combining these met-
rics, a unified framework for categorizing mature
projects can be established and further developed.

1 Introduction

Continuous Integration (CI) is a software engineering prac-
tice that enables developers to integrate their work into a
shared repository while consistently reviewing each other’s
code, leading to high qualitative results [1]. CI has gained sig-
nificant popularity among software development teams and
has attracted the interest of researchers investigating its ad-
vantages. Previous studies indicate that CI can, for exam-
ple, enhance software quality by detecting errors at an earlier
stage in the software development process [2], as well as the
level of productivity within development teams [3].

In the past, studies have explored methods to improve the
adoption and implementation methods of CI from multiple
points of view, for example researching methods to reduce
the associated costs [4]. On the other hand, through research,
different anti-patterns that can determine the benefits associ-
ated with CI have been described [5], with studies highlight-
ing the existence of uncertainties and drawbacks surrounding
the adoption and implementation of CI within development
teams [2]. In this sense, Elzhary et al. [2] suggest that the
adoption and implementation of CI practices are influenced
by the specific context in which they are employed. To that
extent, the idea that there may be multiple factors influencing
CI implementation is presented.

The primary objective of this study is to examine which
descriptive metrics within a project have an impact on the
adoption of CI and how these metrics can be utilized to estab-

lish a framework for enhancing the CI implementation pro-
cess. This gives rise to a complicated problem that requires
a multi-faceted approach and a clear delineation of the dif-
ferent components that it is composed of. Thus, through this
study, we will investigate the different metrics that describe
a project’s activity, maturity and context, as well as the way
that project is performed in the build life cycle and the way
that the CI pipeline is implemented.

Narrowing down the research to one of these dimensions,
this paper focuses on the study of project maturity and aims to
investigate which project metrics can be used to describe and
classify projects as mature. The goal is to develop a guideline
or framework that assists in determining the maturity level of
projects with the help of the identified metrics.

Project maturity is an important aspect in project manage-
ment as it indicates the level of development of a project
as well as the quality of the work being carried out. In
fact, project maturity is considered to be closely correlated
to the notion of release-readiness, constituting an indicator of
whether a project has reached a stage where it can be deliv-
ered to a stakeholder [6].

Realising the importance of this notion in the realm of soft-
ware development, the main research question that will be an-
swered through this research is: ’What metrics can be used
to describe the maturity level of a project?”. In order to an-
swer the main question, the different aspects to analyse have
been divided into several sub-questions:

RQ1: To what degree does a project’s activity reflect its
level of maturity?

RQ2: To what extent is the popularity and community in-
volvement of a project descriptive of its level of maturity?

RQ3: What additional metrics can be used to categorize a
project as mature?

Following a concise overview of related work in this do-
main, the remainder of this paper focuses on the methodology
employed for extracting projects and relevant metrics, as well
as clustering projects into two groups: mature and immature
projects. Subsequently, we outline the meaningful observa-
tions we were able to make by comparatively analysing rel-
evant metrics. Final sections outline practices of responsible
research regarded in our work as well as further work that can
be carried out and conclusions that have been reached in this

paper.

2 Related work

To establish a strong groundwork for investigating metrics
that can effectively describe the maturity level of a project, it
is important to conduct a comprehensive analysis of prior re-
search in this field. This analysis serves two purposes. Firstly,
it allows for a deeper comprehension of the various perspec-
tives on project maturity. Secondly, the literature review aids
the consolidation of a list of relevant metrics that we can fur-
ther investigate.

2.1 Maturity models

A considerable body of research has investigated the concept
of project maturity and its description in the context of project
management. In this sense, a large body of maturity models

have been developed which describe frameworks for assess-
ing the level of maturity of the process employed by a com-
pany while developing a new product. One of the most widely
recognized such maturity models is the Capability Maturity
Model (CMM). The CMM is a framework that provides a
structured approach for assessing and improving the maturity
of an organization’s software development processes. It of-
fers a set of recommended practices and process areas that
have been proven to enhance software development capabil-
ity and quality [7]. There are also other maturity models such
as the Capability Maturity Model Integration (CMMI) which
extends upon the CMM, or other models that also relate to
process maturity such as the Open Source Usability Maturity
Model (OS-UMM).

However, it is important to mention that while these matu-
rity models have proven to be very useful to assess the level of
maturity of the processes employed within companies, they
offer a more generalised framework for assessing maturity.
These models offer an overview of the maturity from multi-
ple points of view, with lesser focus on the implementation
aspect of a project and more focus on the processes followed
within teams.

2.2 Descriptive metrics in literature

Although the concept of maturity at project level can often-
times be considered common knowledge among developers,
the literature review has revealed that there is no general com-
mon perception about what makes a project mature. Thus, it
comes as no surprise that a unified framework for classifying
projects as being mature has yet to be developed.

The filtering method developed by Gallaba and Mclntosh
[8] emerged as the closest approximation to a framework
for classifying mature projects. To ensure the integrity of
their findings, the researchers focused their analysis solely on
projects that had achieved a specific level of maturity, thereby
mitigating the potential impact of immature projects on their
conclusions. To refine their project selection, the researchers
have developed a filtering method consisting of four criteria,
applied sequentially on a large set of repositories, in order to
filter out only the projects of interest. Their filtering process
involves identifying active projects based on commit activ-
ity and size of a repository, selecting projects that use Travis
CI, excluding forked projects, and filtering out duplicates to
minimize bias in the analysis. In Section 3, we will describe
how this filtering method will be adopted and customized in
this study in an attempt to cluster our dataset into mature and
immature projects.

While no research with the same goal as ours has been
found through literature review, in addition to Gallaba and
MclIntosh’s [8] filtering method, numerous research articles
mention project maturity as a criterion for filtering projects,
highlighting metrics that they consider indicative of maturity.
By scrutinizing these previous studies, a set of appropriate
metrics to analyze can be compiled, which combined and ver-
ified could help set the foundations of a framework for clas-
sifying projects.

Previous studies have outlined different aspects of the com-
mits within a repository as being descriptive of a projects
level of maturity. Brindescu et al. [9], have indicated that

commits tend to decrease in size over time, with a shift to-
wards small fixes rather than the implementation of new fea-
tures. In line with this finding, our research considers com-
mit churn, which quantifies the ratio of lines added to lines
deleted within a commit, as a metric to assess project matu-
rity [10]. Additionally, the number of non-merged commits
is surfaces as an indicator of maturity, as it is considered to
have a tendency to decrease as projects age [10].

Another important category to consider for study is the
metrics associated with pull requests. These metrics have
been observed to hold significance in analyzing project ma-
turity. Merges are observed to occur more rapidly [11], sug-
gesting that these tend to involve smaller and easier-to-review
changes. Furthermore, as mentioned earlier, the observation
that commit size tends to decrease in more mature projects
[9] can also impact the size of pull requests, in the number of
additions, deletions and files changed.

Several studies employ popularity and community engage-
ment when talking about a project’s maturity [12], [10].
While quantifying popularity and community engagement
may pose challenges, as they are not the primary focus of our
paper, we will consider the metrics discussed in the literature
as reliable indicators of these factors. Previous studies have
relied on the number of stars [13] and the number of forks
[14] to assess a project’s reputation and popularity. Others,
consider the growing number of pull requests received by a
repository as indicative of the growing interest shown in a
project [10]. Furthermore, the number of contributors asso-
ciated with a repository is considered an indicator of its ma-
turity as more contributors typically suggest a higher level of
community involvement and stability [10].

Nery et al. [15] have employed the age of a repository
as a criterion for categorizing projects as mature. Similarly,
Ghaleb et al. [14] have identified several metrics to differen-
tiate between mature and immature projects, mentioning age,
source lines of code, and test density as particularly indicative
of maturity.

Jin and Servant [16] consider that pojects with larger test
cases and more source code lines or projects with longer us-
age of CI tend to have a higher rate of first build failures.
They attribute this finding to the idea that as projects age and
become more mature, they either demonstrate an improve-
ment in bug-detection capabilities or more bugs affect their
builds. Continuing the discussion on builds, Durieux et al.
[13] suggest that the number of restarted builds is directly
proportional to the complexity and maturity level of a project.

Table 1 contains a condensed list of metrics that have been
identified as relevant in the existing literature. These met-
rics will form the theoretical basis for the research conducted
in our study in an attempt to gain a deeper understanding
between these and project maturity, providing insights for
the development of a comprehensive framework for assess-
ing and categorizing projects based on their maturity level.

3 Methodology

In this section we analyze the methodology employed for
conducting our research, which was structured into two im-
portant parts. Firstly, we conducted data extraction to ob-

Table 1: Metrics used for analysis of project maturity

Category Metric

Description

Commit size

non-merge commits
Activity level Merge speed
metrics

Pull request size

Number of changes in a commit calculated as the commit churn
(# additions + # deletions)

Number of commits that were not merged into the default branch
Time interval between the time a pull request was opened and
the time a pull request was closed

Number of changes introduced by a pull request in terms of code
churn and # files changed

stargazers
forks
contributors

Popularity &
community
engagement metrics
Pull request frequency

Number of stars a GitHub repository has received

Number of repository forks for a project

Number of unique GitHub users that have modified code in a
repository

The frequency at which new pull requests are opened

Project age

Project size (SLOC)
Other Team size
metrics Test density

first build failures

Frequency of restarted builds

tain a comprehensive dataset. Secondly, the filtering method
ensured the creation of two clusters: mature and immature
projects. This allowed us to conduct a comparative analysis
and identify the metrics that are indicative of project maturity.

3.1 Data extraction

The rise of GitHub!, renowned for its “’social coding” fea-
tures that support collaboration and sharing, has propelled
collaborative software development to unprecedented levels
[17]. As the largest code host in the open source community,
GitHub has become a central hub for developers worldwide
[17]. This remarkable growth and influence serve as the pri-
mary motivation for selecting GitHub as the platform for ex-
tracting repositories to be analyzed in this study. With that in
mind, we leveraged the functionalities offered by PyGitHub?,
a Python library which facilitates the access to the GitHub
APP [18].

3.1.1 Repository extraction
In order to collect a dataset for analysis, projects were ex-
tracted from GitHub using the search API provided in Py-
Github. This API allows programmatic access to the GitHub
search functionality, enabling us to retrieve repositories based
on specific criteria.

To ensure the relevance and quality of the extracted
projects, the following filtering criteria were applied:

e Public Repositories: Only repositories that were pub-
licly available on GitHub were included in the dataset.
This criterion was implemented to ensure that the ex-
tracted projects were accessible and transparent.

¢ Non-Templates: GitHub provides a feature to create
template repositories, which serve as a starting point for

"https://github.com/
Zhttps://pygithub.readthedocs.io/en/latest/introduction.html
*https://docs.github.com/en/rest?api Version=2022-11-28

The difference in time between the present moment and the time
the repository was created

Number of source lines of code of a project

The size of the team working on a project

The number of test cases per 1000 source lines of code

Number of builds that fail on their first run

Number of builds that are restarted after a failure

similar projects. To focus on analyzing original projects,
template repositories were excluded from the dataset.

* Non-Forks: A fork represents a repository that enher-
its code and a number of settings from another, “up-
stream” repository [19]. To ensure that the analyzed
projects were not derivatives of other projects, we ex-
cluded forked repositories from our dataset.

¢ Older than 1 year: To ensure data adequacy for anal-
ysis, only repositories in existence for over a year were
included. The purpose of this condition was to increase
the likelihood of obtaining meaningful results by exclud-
ing repositories that were in their early stages of devel-
opment.

After a first iteration of the repository retrieval with the
aforementioned query parameters, it was observed that the
search API’s default retrieval order was based on the number
of stars. This limitation seemed to impact certain metrics that
are studied in our research and thus compromise the quality
of the data. In order to avoid extracting only the repositories
with highest numbers of stars while still satisfying the other
query criteria, the project extraction process was divided into
batches. A query parameter indicating the number of stars
being in a certain interval was added for each batch. After
retrieving 50 batches of 20 repositories each, 10 repositories
were randomly selected from each batch, leaving us with 500
repositories to further analyse. The choice of narrowing down
the list to 500 repositories was made in the interest of time
allocated for conducting our study.

By utilizing the search API and applying the aforemen-
tioned criteria, a diverse dataset of 500 non-forked, non-
template, and public repositories with different levels of star
count was obtained for further analysis.

3.1.2 Metrics extraction

The next step in our research process, following the extrac-
tion of the repositories we want to study, is to extract relevant
metrics that describe these repositories. Following the litera-
ture review we were able to compile a list of metrics that we
would like to study, as described in Section 2.2, and split them
into three categories, each of which aids to support answering
one of the research questions.

Some of these metrics are available to us through the use
of GitHub API, while for some of the metrics we need to
compute additional information. For instance, for the weekly
aggregates of additions and deletions, we include an array
that incorporates the churn metric, calculated as the sum of
additions and deletions [10]. Listing 1 outlines the extracted
metrics.

Listing 1: Repository metrics extracted

repository_name: {
"created_at": Timestamp,
"forks_count": Integer,
"stargazers_count": Integer,
"watchers_count": Integer,
"open_issues_count": Integer,
"contributors_count": Integer,
"commits_count": Integer,
"open_pull_requests_count": Integer,
"all_pull_requests_count": Integer,
"weekly_code_frequency": Integer Array,
"weekly_code_additions": Integer Array,
"weekly_code_deletions": Integer Array,
"weekly_commit_count_last_year": Integer Array

In addition to the metrics that describe a repository, we also
extract the last six months of pull requests for each repos-
itory. This data allows us to formulate part of the answers
for the first two research questions, testing multiple assump-
tions such as the idea that the speed at which merges occur
increases as projects mature [10] or the fact that a growing
number of pull requests might be an indicator of growing pop-
ularity in mature projects [11]. Listing 2 outlines the metrics
extracted for a pull request.

Listing 2: Pull request metrics extracted

{ "title": String,
"additions": Integer,
"deletions": Integer,
"churn": Integer,
"changed_files_count": Integer,
"commit_count": Integer,
"created_at": Timestamp,
"merged": Boolean,
"closed_at": Timestamp,
"merged_at": Timestamp

By extending our analysis using these metrics, we seek to
gain insights and validate the findings documented in previ-
ous research, in order to uncover the metrics that are descrip-
tive of maturity.

3.2 Project filtering

After the initial extraction of repositories and metrics, the
next step involved filtering the projects and categorizing them
into two groups: mature and immature projects. Given that

Gallaba and MclIntosh’s filtering process [8] represents the
closest approximation to a viable framework for identifying
mature projects, as described in Section 2.2, we adopted their
work as a foundational reference. Their method serves as a
basis for the methodology employed to filter mature reposi-
tories from GitHub, with the necessary adjustments to fit this
research and the time frame that it takes place in. The follow-
ing three are the filters that we applied in order to divide our
dataset into two clusters:

CI implementation filter

The first filter focused on identifying projects that imple-
mented CI practices aligning with the research’s primary ob-
jective of studying the broader implementation and adop-
tion of CI practices. Unlike studies that focus solely on
a specific CI tool, such as the work conducted by Gallaba
and Mclntosh [8], our research considers a comprehensive
range of widely used CI tools, including but not limited to
GitHub Actions, Travis CI, and Jenkins. In order to filter the
projects, we searched the repositories for directories of files
that had names containing common CI tool file names such
as ”.travis.yml” or ".circleci”. This approach allowed for the
detection of potential indications of CI implementation based
on the file naming conventions. If such files or directories
were found, the repository was considered to have CI imple-
mented.

Repository size filter

The second filter aimed to identify projects with a substan-
tial number of files. According to Gallaba and McIntosh’s
analysis [8], a number of 500 files or higher is indicative of
mature projects. Thus a threshold of 500 files was used for
this filter. In order to accomplish this, the total number of files
in a repository was recursively counted and tested against the
threshold of 500 files.

Development stage filter

Gallaba and Mclntosh [8] created a commit-based filter-
ing approach for the activity of projects. However, we found
this filtering method to be ineffective when we applied it to
categorize our own set of projects and thoroughly examined
the resulting clusters. We attributed the limitations of the ini-
tial activity filter to the fact that in our study, we extract data
through GitHub API, whereas their research utilized the pub-
lic GitHub dataset on Google BigQuery.

With that in mind, we decided to look at the activity of a
project from the point of view of the weekly code churn in an
attempt to identify patterns in the activity levels of projects,
and find a delineation between implementation stages and
maintenance stages. This idea was based on Zhao et al.’s [10]
observation that as projects mature they tend to reach a more
stationary phase, with code changes becoming smaller as no
new features are being implemented.

To shape our final filter, we have leveraged the code churns
extracted and computed as described in Section 3.1.2 and per-
formed the following steps:

1. The code frequencies have been divided into intervals
of 26 weeks, which corresponds approximately to a 6-

500

repositories

Filter 3:
Development stage
filter

Filter 1
Cl implementation filter

451 repositories Filter 2. 315 repositories
left Repository size filter left

137 mature

repositories

363 immature
repositories

Figure 1: Results of sequentially applying filters to the repositories

month period, since the code frequencies are recorded
on a weekly basis.

2. Subsequently, a dynamic threshold for each repository
was calculated by multiplying the average code fre-
quency with a ratio of 0.8, determined through multiple
experiments.

3. Within each interval, we examined whether the code fre-
quencies exceeded the dynamic threshold in at least 80%
of the weeks, and ensured that there were no weeks with-
out any code changes.

4. If two intervals exhibited signs of constant implemen-
tation and were not the final interval, it was considered
that the code frequency indicated a mature project. The
exclusion of the last interval aimed to classify only those
projects in a maintenance stage as mature.

5. The final check involved observing the previous 52
weeks, equivalent to a year, and verifying that the repos-
itory had updates in at least one quarter of that period.
This check aimed to identify if the projects were still be-
ing actively maintained.

By applying these filters, our dataset was divided into two
distinct clusters, enabling us to conduct a focused analysis
of relevant metrics and draw insightful conclusions regarding
the indicators of project maturity. These filters facilitated the
identification of repositories exhibiting signs of maturity. Af-
ter the filtering process, 137 projects were considered mature,
while the remaining 363 were labelled as being immature.

4 Experimental Setup and Results

Once all the necessary data was collected for our investiga-
tion, we proceeded with an analysis phase to examine various
repositories and their associated metrics. The primary objec-
tive of our research is to investigate these metrics and their
effectiveness in evaluating project maturity. Moreover, our
dataset is divided into two distinct categories: mature projects
and immature projects. This division allows us to perform a
comparative analysis between these categories, enabling us
to determine which metrics are more descriptive of either cat-
egory. By conducting this comparative analysis, we aim to
gain insights into the unique characteristics and factors that
contribute to the maturity levels of different projects.

4.1 RQI1: To what degree does a project’s activity
reflect its level of maturity?

Commit size Our first research question aims to investigate

whether the activity level in a project can serve as an indicator

of its maturity level. To do this, we will first analyze the

Yearly Average Number of Code Changes

mmm Mature projects

3000 1 N
Immature projects

2000 A

1000 4

0_||,||II||I_II

Average Yearly Code Churn

=1000 4

Figure 2: Yearly code churn average

trends in commit size. As a first step, we calculated the code
churn by summing the weekly additions and deletions in a
repository. Subsequently, we determined the yearly average
of code churn and conducted a comparative analysis of the
average code churns between mature and immature projects.

In Figure 2, we present the trend of commit sizes over the
years, represented by the average code churn, calculated as
described in Section 3.1.2. Notably, we observe that as time
progresses, both mature and immature projects experience
an increase in the number of code modifications. Interest-
ingly, mature projects tend to exhibit negative churns more
frequently compared to immature projects. This observation
reinforces the idea that as projects mature, the focus shifts to-
wards code fixes rather than the implementation of new fea-
tures [10].

Yearly Average Number of Code Additions and Deletions

B Mature project additions
Mature project deletions

10000 | ™ Immature project additions

mmm Immature project deletions

..ktLLthhal11!1!|1

5000 4

Average Yearly Code Churn
o

—5000 1

—10000 -

Figure 3: Yearly average additions and deletions

Additionally, by examining the data presented in Figure
3, we can gain a clearer understanding of the average num-
ber of deletions and additions. It is evident that both mature
and immature projects show an increasing trend in the num-

Table 2: Pull Request characteristics for Mature and Immature Projects

Maturity | Avg. PRs PRs PRs PRs PRs PRs PRs # PRs
churn with with with with merged | closed open
code churn > | < 1] <1 file w/o
churn = | avg. commit | changed merging
0
Mature | 628.72 0.25 0.04 0.4 0.54 0.72 0.16 0.09 42714
Immature| 442.55 0.23 0.06 0.38 0.54 0.74 0.22 0.12 61742

ber of changes. However, the rate of growth in changes is
more pronounced for immature projects, slowly surpassing
the number of changes in mature projects as time progresses.
This observation might imply that the immature projects we
have selected are currently in the implementation stage, while
the projects classified as mature have reached a certain level
of maturity during the more recent years. This trend is also
evident in both figures, where the number of code changes
begins to stabilize and remains relatively constant for mature
projects.

1e6 Distribution of Average Merge Speeds

Merge Speed

T T
Mature Projects Immature Projects

Figure 4: Average Pull request merge speed comparison

Pull request merge speed In our study, we have found
that previous research conducted, highlighted a correlation
between pull request (PR) trends and project maturity. The
hypothesis that merges happen more quickly in projects that
are more mature [11] was tested by examining the time it took
for all PRs opened in the last six months to be merged after
they were opened for our selected repositories. We then cal-
culated the average speed of merging for each repository and
categorized this data based on two predefined clusters. The
results of the comparative analysis can be seen in Figure 4.
Overall, it is evident that merges tend to occur more rapidly
in mature projects, with an average time of 6286.80 seconds,
compared to immature projects, where the average time be-
fore merging is 8985.75 seconds.

Pull request size On the same consideration that commit
sizes decrease as projects age [9], we tested the hypothesis
that PRs might also shrink in size as projects grow more ma-

ture. Figure 5 illustrates the average sizes of PRs, expressed
in terms of code churn, in both mature and immature projects
over the past six months. It is straightforward to observe that
the PR sizes in terms of code churn tend to be slightly larger
for immature projects, with a few minor exceptions. Addi-
tional information about PR sizes is highlighted in Table 2,
for a more comprehensive comparative analysis.

Average Churn of Pull Requests Over The Last 6 Months (Weekly)

3000 —— Mature Projects
Immature Projects

2000

- A A

—1000 -

o

Average Churn

—2000 -

T T T T
2023-04 2023-05 2023-06 2023-07

Date

T T T
2023-01 2023-02 2023-03

Figure 5: Pull Request churn over the past 6 months

4.2 RQ2: To what extent is the popularity and
community involvement of a project
descriptive of its level of maturity?

Number of stars, forks and contributors We begin our
study of the impact of the popularity and community engage-
ment of a repository on its level of maturity by studying the
number of stars, forks and contributors for the 500 reposito-
ries we selected. In Figure 6 we can observe the disparity
in the average counts of these metrics between mature and
immature projects. Specifically, mature projects exhibit an
average of approximately 16,950 stars, 4,500 forks, and 300
contributors, whereas immature projects show an average of
15,100 stars, 2,600 forks, and 160 contributors. The fact that
immature projects have a significantly lower number of con-
tributors and forks compared to mature projects enforces the
idea that these metrics might be descriptive of a project’s ma-
turity. While the number of stars can also be viewed as an in-
dicator of a project’s maturity based on our results, it should

be approached cautiously. It tends to be higher in mature
projects, but the default retrieval ordering of GitHub’s API
could introduce a potential bias in the count of stars, regard-
less of the strategy we used to try to mitigate this limitation.

Average Number of Stars, Contributors, and Watchers

BN Mature Projects
Immature Projects

16000 -
14000
12000 -

10000 -

8000

Average Value

6000 -

4000 1

2000 4

¥
Average Stars Contributors Forks

Figure 6: Average numbers of stars, watchers and contributors for
mature and immature projects

Growth of the Number of Pull Requests over Time

—— Mature Projects
Immature Projects

0.8 1

0.6

0.4

Cumulative Count of Pull Requests

0.2

0.0

T T T T T

3> v & &> & ’59@
SV

0

Figure 7: Growth of the number of Pull Requests opened over time

Growth rate in the number of PRs To further investigate
the second research question, we analyze the growth rate of
the number of PRs opened in the past six months. In Fig-
ure 7, both mature and immature projects demonstrate an up-
ward trend in the number of PRs over time. However, ma-
ture projects exhibit a steeper growth compared to immature

projects. This observation leads us to consider that the ac-
celerated growth in the number of PRs for mature projects
signifies a sudden increase in interest in the project once it
has reached a certain level of maturity. In contrast, we could
interpret the relatively consistent growth in PR numbers for
immature projects as an ongoing implementation phase.

4.3 RQ3: What other metrics can be employed
when studying the maturity of a project?

Age One of the concepts that is generally most associated
with maturity is age. By studying this metric, we would
like to investigate whether projects that exhibit signs of ma-
turity are generally older than those that don’t. Figure 8 high-
lights the age distribution in our dataset in the two clusters
of projects. The plot on the left, which represents mature
projects, highlights that the age distribution centers around 8§
years and tends to be predominantly above this value. Con-
versely, the plot on the right, representing immature projects,
displays an inverse pattern compared to the mature projects.
Here, the majority of projects are clustered around the 4-5
year mark, with very few projects extending beyond 10 years
of age.

Distribution of Project Ages

04 S E—

Mature projects Immature projects

Project Type
Figure 8: Age distribution of mature and immature projects

Size Due to time limitations, it was not feasible to study
the size of the repositories in terms of source lines of code.
However, we have analysed other metrics that can be re-
lated to size such as number of commits, pull requests, issues
and watchers, considering how easily accessible these met-
rics were using GitHub’s API. Our analysis revealed that ma-
ture projects generally exhibit higher values for these metrics
compared to immature projects, as indicated in Table 3. How-
ever, it’s important to note that our data may be influenced
by the initial filtering approach used to cluster the projects,
which involved evaluating project size based on file count.

5 Responsible Research

This section aims to address various aspects of the study
to ensure the validity and reliability of our findings. Hon-
esty, scrupulousness, transparency, independence and respon-

Table 3: Comparison of Size Related Metrics for Mature and Immature Projects

Avg # Watchers ‘ Avg # Commits ‘ Avg # PRs ‘ Avg # Open PRs ‘ Avg # Open Issues

Mature 16933.80

50571.47
15156.69

Immature 6937.87

sibility are the five most highly regarded principles by the
“Netherlands Code of Conduct for Research Integrity” [20].
In this context, our objective is to examine potential threats
to the validity of our research and propose strategies to miti-
gate them, while also emphasizing the reproducibility of our
study.

5.1 Construct validity

Construct validity refers to discrepancies between “theory
and observations” [12]. We recognize the following aspects
as threats to the construct validity of our research:

¢ The filtering method is based on the closest approxima-
tion we could find through literature review for a frame-
work to filter projects but this is not a generally adopted
method for performing such task. Considering that we
only filter the projects based on 3 criteria, it might be
the case that some project falsely exhibit signs of matu-
rity. Furthermore, the first filter, for CI implementation,
might not contain an exhaustive list of all the naming
conventions used for all CI tools, which might lead to
falsely labelling a project as immature.

* We acknowledge that the use of median values for anal-
ysis across clusters might negatively impact the compar-
ative study conducted as some key information might be
obscured.

* GitHub’s default sorting based on stars may affect the
quality and diversity of studied repositories, potentially
introducing bias in the selection of projects. Although,
we have tried mitigating this through batch retrieval of
projects, there might still be bias in the data selected.

5.2 External validity

External validity is concerned with the extent to which our
results can be generalised. With this, we acknowledge the
following threats to external validity:

* Our study is based on a small dataset of 500 projects,
split into mature and immature projects. Furthermore,
the study of pull requests only considers a maximum of
500 pull requests and for a time frame of maximum 6
months. Thus, the generalizability of our finding is lim-
ited as the representativeness of the dataset under study
is limited.

* When studying commits, we only take into considera-
tion weekly churn for the lifetime of the project and the
commit count for the past year. This approach may over-
look important information and not be representative or
comprehensive enough. This could impact the general-
izability of the findings to a broader range of projects.

11596.48
2344.48

1257.96

155.17
333.96

48.79

* We justify the limited amount of data analyzed by con-
sidering the API limit of 5000 requests per hour and the
time frame in which the research was conducted.

5.3 Internal validity

Internal validity refers to the reliability of the results reached
based on the methodology employed when conducting the
study. Related to internal validity we make the following ob-
servations:

* The analysis and our results are limited to a rather small
number of metrics. The knowledge gap regarding the
general conception about project maturity contributed to
the compilation of a very concise list of metrics which
are generally perceived to be in relation with maturity.

* Our study fails to analyse some of the relevant metrics
found through literature such as the relation between
build level metrics and maturity, due to the limited time
available for conducting the research.

* We base our observations on the comparative analysis
of the two clusters of repositories, which were created
using a filtering method of which reliability is only con-
firmed by one study and is not a generally recognized
framework. Thus, the filtering process may have some
faults, given that it is based solely on three aspects of
projects, which we have not yet found in our research.

5.4 Reproducibility

To ensure the reproducibility of our research, we have made
the code base publicly available on GitHub. The code can be
accessed through a public repository named “Descriptive-CI-
Metrics”*. This repository serves as the foundation for our re-
search and provides a comprehensive resource for replicating
and verifying our results. By sharing the code base, we en-
able other researchers to examine and reproduce our methods,
promoting transparency and facilitating further exploration in
this domain.

By acknowledging and addressing the various limitations
and threats to the validity of our research, as well as en-
suring the reproducibility of our study, we have conducted
the research responsibly. These considerations demonstrate
our commitment to responsibility and transparency in our
methodology.

6 Conclusions and Future Work

The primary goal of our study is to determine which metrics
are most indicative of a project’s maturity level. To address
this, we conducted an extensive literature review to identify

*https://github.com/raduConstantinescu/Descriptive-CI-Metrics

relevant metrics. Subsequently, we divided our dataset into
two clusters, classifying projects as either mature or imma-
ture based on the only approximation of a framework to do
so derived from the literature. By conducting a comparative
analysis of these clusters we tried to measure the relevance
that the previously identified metrics could hold in classify-
ing mature projects.

To comprehensively investigate the impact of metrics on
project maturity, we adopted a threefold approach, by di-
viding our main research question into three research sub-
questions. We examined the level of activity in projects, con-
sidering factors such as commit size and pull request merge
speed, the influence of a project’s popularity and commu-
nity involvement, analyzing metrics like the number of stars,
forks, and contributors, as well as the growth rate of pull re-
quests and lastly, we investigated the significance of other
project related metrics, such as a project’s age and size.

In terms of activity levels, our findings suggest that com-
mit size and pull request merge speed can serve as indica-
tors of maturity. Mature projects tend to have smaller com-
mit sizes, reflecting a focus on code fixes rather than the im-
plementation of new features. Additionally, pull requests are
merged more rapidly in mature projects compared to imma-
ture ones, indicating a higher level of project management
and efficiency.

The main metrics related to popularity and community in-
volvement, which show correlations with project maturity are
the number of stars, forks, and contributors. Mature projects
generally exhibit higher counts in these metrics, suggesting a
greater level of recognition and engagement from the devel-
oper community. Although the growth rate of pull requests
seems to be more accelerated in mature projects, this might
be an area of further improvements in our study.

While age alone is not a definitive indicator of maturity,
it can be used in conjunction with other metrics to provide
additional insights into the maturity level. Size metrics, such
as the number of commits, pull requests, and issues, also tend
to be higher in mature projects. This could be either due to
a more extensive development history and a larger user base,
which correlates back to other metrics studied, or it could be
a small imbalance in our dataset due to how we approached
the clustering of projects.

Overall, our findings emphasize the importance of consid-
ering multiple metrics when evaluating project maturity. A
combination of activity levels, popularity and community in-
volvement, age, and size metrics provides a more compre-
hensive perspective on a project’s maturity level compared to
relying on individual metrics alone.

It is worth noting that our research is based on a spe-
cific and rather limited dataset, as described in Section 3.1.1,
which was chosen while bearing in mind the time limitations
for conducting the research and focused on a particular set
of metrics. Future studies could expand upon our research to
consolidate our findings by extending the dataset and study a
higher number of repositories, while other studies could ex-
tend the list of metrics, such as metrics related to build perfor-
mance, to further the exploration into the field of descriptive
metrics that could offer information about a project’s level of
maturity.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

Moritz Beller, Georgios Gousios, and Andy Zaidman.
Oops, my tests broke the build: An analysis of travis ci
builds with github. 04 2016.

Omar Elazhary, Colin Werner, Ze Li, Derek Lowlind,
Neil Ernst, and Margaret-Anne Storey. Uncovering the
benefits and challenges of continuous integration prac-
tices. 03 2021.

Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar
Devanbu, and Vladimir Filkov. Quality and productivity
outcomes relating to continuous integration in github.
pages 805-816, 08 2015.

Xianhao Jin and Francisco Servant. A cost-efficient ap-
proach to building in continuous integration. In 2020
IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), pages 13-25, 2020.

Carmine Vassallo, Sebastian Proksch, Harald C. Gall,
and Massimiliano Di Penta. Automated reporting of
anti-patterns and decay in continuous integration. In
2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE), pages 105-115, 2019.

Miroslaw Staron, Wilhelm Meding, and Klas Palm. Re-
lease readiness indicator for mature agile and lean soft-
ware development projects. In Claes Wohlin, editor,
Agile Processes in Software Engineering and Extreme
Programming, pages 93-107, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber.
Capability maturity model, version 1.1. IEEE Software,
10(4):18-27, 1993.

Keheliya Gallaba and Shane McIntosh. Use and misuse
of continuous integration features: An empirical study
of projects that (mis)use travis ci. IEEE Transactions on
Software Engineering, PP:1-1, 05 2018.

Caius Brindescu, Mihai Codoban, Sergii Shmarkatiuk,
and Danny Dig. How do centralized and distributed ver-
sion control systems impact software changes? In Pro-
ceedings of the 36th international conference on Soft-
ware Engineering, pages 322-333, 2014.

Yangyang Zhao, Alexander Serebrenik, Yuming Zhou,
Vladimir Filkov, and Bogdan Vasilescu. The impact
of continuous integration on other software develop-
ment practices: a large-scale empirical study. In 2017
32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 60-71. IEEE,
2017.

Sebastian Baltes, Jascha Knack, Daniel Anastasiou,
Ralf Tymann, and Stephan Diehl. (no) influence of
continuous integration on the commit activity in github
projects. In Proceedings of the 4th ACM SIGSOFT In-
ternational Workshop on Software Analytics, pages 1-7,
2018.

Carmine Vassallo, Sebastian Proksch, Harald Gall, and
Massimiliano Di Penta. Automated reporting of anti-

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

patterns and decay in continuous integration. pages
105-115, 05 2019.

Thomas Durieux, Claire Goues, Michael Hilton, and
Rui Abreu. Empirical study of restarted and flaky builds
on travis ci, 03 2020.

Taher A Ghaleb, Safwat Hassan, and Ying Zou. Study-
ing the interplay between the durations and breakages
of continuous integration builds. /[EEE Transactions on
Software Engineering, 2022.

Gustavo Sizilio Nery, Daniel Alencar da Costa, and Uira
Kulesza. An empirical study of the relationship be-
tween continuous integration and test code evolution. In
2019 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pages 426-436. IEEE,
2019.

Xianhao Jin and Francisco Servant. A cost-efficient ap-
proach to building in continuous integration. In Pro-
ceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering, pages 13-25, 2020.

Bogdan Vasilescu, Stef van Schuylenburg, Jules Wulms,
Alexander Serebrenik, and Mark Brand. Continuous in-
tegration in a social-coding world: Empirical evidence
from github. 12 2014.

PyGitHub README. https://github.com/PyGithub/
PyGithub. Accessed June 21, 2023.

GitHub. About forks. GitHub Documentation.

K Algra, L Bouter, A Hol, J van Kreveld, D An-
driessen, C Bijleveld, R D’Alessandro, J Dankelman,
and P Werkhoven. Netherlands code of conduct for re-
search integrity 2018, 2018.

https://github.com/PyGithub/PyGithub
https://github.com/PyGithub/PyGithub

	Introduction
	Related work
	Maturity models
	Descriptive metrics in literature

	Methodology
	Data extraction
	Repository extraction
	Metrics extraction

	Project filtering

	Experimental Setup and Results
	RQ1: To what degree does a project’s activity reflect its level of maturity?
	RQ2: To what extent is the popularity and community involvement of a project descriptive of its level of maturity?
	RQ3: What other metrics can be employed when studying the maturity of a project?

	Responsible Research
	Construct validity
	External validity
	Internal validity
	Reproducibility

	Conclusions and Future Work

