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a b s t r a c t

Floating Offshore Wind Turbines (FOWTs) operate in the harsh marine environment with limited
accessibility and maintainability. Not only failures are more likely to occur than in land-based turbines,
but also corrective maintenance is more expensive. In the present study, a mixed model and signal-based
Fault Diagnosis (FD) architecture is developed to detect and isolate critical faults in FOWTs. More spe-
cifically, a model-based scheme is developed to detect and isolate the faults associated with the turbine
system. It is based on a fault detection and approximation estimator and fault isolation estimators, with
time-varying adaptive thresholds to guarantee against false-alarms. In addition, a signal-based scheme is
established, within the proposed architecture, for detecting and isolating two representative mooring
lines faults. For the purpose of verification, a 10 MW FOWT benchmark is developed and its operating
conditions, which contains predefined faults, are simulated by extending the high-fidelity simulator.
Based on it, the effectiveness of the proposed architecture is illustrated. In addition, the advantages and
limitations are discussed by comparing its fault detection to the results delivered by other approaches.
Results show that the proposed architecture has the best performance in detecting and isolating the
critical faults in FOWTs under diverse operating conditions.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The penetration of wind power into the energy mix has been
significantly growing over the past decade [1,2]. In 2018, the global
installed capacity of wind energy reached 591,549 MW worldwide
[3]. Following in the path of onshore wind exploitation, the
development of offshore wind energy picks up the momentum in
the race in transitioning from conventional fossil fuels to renewable
energy. In particular, offshore wind turbines are less intrusive from
a visual and acoustic point of view, and guarantee much higher and
steady generation of power [4]. As the exploitation of offshorewind
energy moves from shallow to deep waters, Floating OffshoreWind
Turbines (FOWTs) become the ideal alternative to replace the
bottom-fixed turbines and capture the abundant wind resources
available over the deep sea [4]. Although FOWTs are evidently ad-
vantageous from the public acceptance and power generation point
@gmail.com (Y. Liu).
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of view, designing, operating andmaintaining them pose a series of
challenges:

1. FOWTs may experience unexpected faults and failures due to
the complex environmental loads, which would in turn lead to
operation interruption, economic losses and thus high Opera-
tion and Maintenance (O&M) costs [5].

2. The reliability of FOWTs decreases with increasing turbine size
and complexity [6]. In particular, FOWTs tend to have larger
rotor diameters than land-based counterpart, and hence struc-
tural faults of the rotor blade are more prominent in FOWTs.

3. FOWTs are usually situated in deep waters at a considerable
distance from the shore, which restrict their accessibility and
maintainability [7]. As a consequence, the O&M cost of a FOWT
may account for as high as 30% of the total life cycle cost [8], and
also is an influential factor in the determination of the turbine’s
cost of energy.

To assess the reliability of wind turbines and to reduce the O&M
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Floating offshore wind turbine benchmark
b Time profile
Dr Change of the nonlinear part of the dynamics
5 Fault class
F1 Fault class 1 being addressed by the model-based

scheme
F2 Fault class 2 being addressed by the signal-based

scheme
hx Modelling uncertainties
hy Output disturbances
4x Process fault function
4y Output fault function
r Nominal nonlinear part of the wind turbine healthy

dynamics
wx Parameter vector of the process fault function
wy Parameter vector of the output fault function
A0 Nominal linear part of the wind turbine healthy

dynamics
C Scale factor of the rotor blade fault
C0 Nominal output matrix
C0
l leth row of the nominal output matrix C0

ei All-zeroes column vector of a suitable size having a
single 1 in its ieth position

K Discrete time index
k0 Unknown time index of faults occurrence
u Controlled input vector
x State vector
y Measured output vector

Model-based scheme
a, d Scalar constants of the threshold
hx Bounding function of the process uncertainties
hy Bounding function of the measurement uncertainties
ry;l Threshold of the fault detection and approximation

estimator
�ðiÞ ieth component of a vector quantityb4x Linearly parameterized function for the actuator faultb4y Linearly parameterized function for the sensor faultb4x;0 General online estimatorbQ0

User designed parameters domain

bwx;l Parameter vector in the linearly parameterized
function for the actuator faultbwy;l Parameter vector in the linearly parameterized
function for the sensor faultbx Predicted state vectorby Predicted output vector

kl Maximum possible parameter estimation error of the
threshold

A, B, C, D System matrices of the fault detection and
approximation estimator

gl Fault-specific shape function of the fault isolation
estimator

kd Fault detection time
L Gain matrix of the fault detection and approximation

estimator
l Index of the estimators
MbQ0 Radius of the user designed parameters domain

ry;l Residuals of the leth estimator
M Size of the output
N Total number of the faults

Signal-based scheme
t Transformed time coordinate
DK;q Distance between the training spectra and the actual

one
hð �Þ Moving window
K Neighborhood size
P Total number of the frequency bins
Q Total number of the training spectra
S€a;q Training spectrum of the tower-top acceleration
S€a Time-frequency spectrum of the tower-top

acceleration
W Angular frequency coordinate
wp Frequency bin

Case study
qin Control input of the pitch angle
Hs Significant wave height
Tp Peak-spectral period
Ts Discrete time step
Tg;in Control input of the generator torque
Uf Fluctuating wind component
Um Constant wind speed
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cost, several Fault Diagnosis (FD) architectures have been proposed
in the literature [9]. In general, FD architectures employ sensor data
for detection, isolation and identification of the faults in the wind
turbine components, whose output can be used to implement fault
tolerant control and condition-based maintenance [10]. Odgaard
et al. [11] introduced a 4.8 MW bottom-fixed wind turbine
benchmark in 2009. Using this benchmark, different FD approaches
were implemented and verified, including a Kalman filter com-
bined with a diagnostic observer approach [12], up-down counter
[13], Gaussian-kernel support vector machine [14] and estimation-
based method [15]. These approaches were summarized compre-
hensively by Odgaard et al. [16]. In fact, it has been found by
Odgaard et al. [11] that most faults in the benchmark can be
detected successfully by the above mentioned approaches.
Recently, several attempts have been made to build FD architec-
tures via alternative approaches, such as interval observer [17],
sliding mode observer [18] and multi-physics graphical model [19].
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Nevertheless, the existing FD architectures which have been
developed for land-based wind turbines can not be directly applied
to the FOWT, the reasons for this include:

1. There is no systematic study, to the best of authors’ knowledge,
addressing prominent faults of FOWTs, such as structural faults
of the rotor blades and of the mooring lines. More specifically,
the published works mainly focus on the pitch system, gearbox,
bearings, and electrical system [11,16] only. One plausible
explanation might be that there is currently no benchmark
including the fault scenarios of the rotor blades and mooring
lines, nor those are implementable in widely-used simulation
packages such as Fatigue, Aerodynamics, Structures, and Tur-
bulence (FAST) [20].

2. The existing FD architectures are, in general, based on a
simplified model of the land-based wind turbine [11,16], which
lacks the descriptions of hydro and mooring line dynamics.



Fig. 1. Lateral view of the DTU 10 MWwind turbine, of the TripleSpar floating platform
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However, the dynamics of the FOWT system are significantly
influenced by the complex interactions among the floating
foundation, the mooring system, and the rotor blades [21].

Therefore, it is urgent to develop an effective FD architecture for
FOWTs, considering the inapplicability of existing architecture,
increased system size and complexity of turbine-foundation
interaction and reduced accessibility for maintenance.

Recently, some preliminary efforts have been made to develop
FD architectures for selected FOWT components. For instance,
Ghane et al. [22] utilized the statistical approach to detect and es-
timate the wear in the drivetrain of the 5 MW spar-type FOWT. Cho
et al. [5] used the model-based approach to detect, isolate and
accommodate the faults of the blade pitch system of the same
FOWT. Zhang et al. [23] employed the data-driven approach,
namely random forests, to detect several actuator and sensor faults
of the 5 MW semi-submersible FOWT. In spite of these designated
contributions, relatively few studies addressed aforementioned
challenges.

Considering the lack of systematic studies concerning the FD
architecture for FOWTs, the present study aims to develop an
effective approach to detect and isolate the fault of the FOWTs, and
therefore contributes in the following aspects.

1. Instead of considering one single component, e.g. blade pitch
system [5], of the FOWT system, a mixed FD architecture is
developed in the present study for the detection and isolation of
faults in both the turbine and mooring systems in FOWTs. In
particular, the proposed mixed FD architecture is established by
integrating the model-based scheme suggested by Ferrari et al.
[24] with a signal-based scheme.

2. In order to verify the proposed architecture, a novel 10 MW
FOWT benchmark is set up based on the DTU three-bladed
variable speed reference wind turbine and Triple-Spar floating
foundation [25,26]. Several critical fault scenarios including not
only actuator and sensor faults, but also structural faults of rotor
blade and mooring lines, are generated for the FD purpose.
Particularly, the models of actuator and sensor faults are
extracted and improved from the models available in the liter-
ature [16,27].

In summary, the main contribution of this study is the FOWT-
oriented mixed FD architecture, which integrates model and
signal-based schemes to encompass most critical faults in FOWTs.
Another novelty is the physics-based FOWT benchmark. For the
first time, a FOWT benchmark is established for the purpose of
developing and verifying a FOWT-oriented FD architecture. In
particular, the structural faults of the rotor blades and of the
mooring lines are taken into consideration.

From detecting and isolating the predefined faults in the
developed 10 MW FOWT benchmark, the effectiveness of the
proposed FD architecture is illustrated. In addition, two classic fault
detection methods are applied to the 10 MW FOWT benchmark
with predefined faults. The comparison concerning the fault
detection hence reveals the advantages and limitations of the
proposed mixed FD architecture.

The remainder of the paper is organized as follows. Section 2
introduces the 10 MW FOWT benchmark. In section 3, the overall
structure and theoretical framework of the mixed FD architecture
are presented. A case study employing the proposed method to
discern the faults of the newly developed 10MWFOWT benchmark
is given in section 4. Then, its advantages and limitations are dis-
cussed by comparing the detection results to other classical ap-
proaches. Section 5 contains concluding remarks.
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2. Description of the 10 MW FOWT benchmark

In this section, the 10 MW FOWT benchmark is presented. It is
based on the DTU three-bladed variable speed reference wind
turbine and the Triple-Spar floating platform [25,26]. Particularly,
several critical fault scenarios, including not only the actuator and
sensor faults, but also the structural faults, are defined and imple-
mented in the benchmark. The overview of the FOWT is portrayed
in Fig. 1 while its specifications are listed in Table 1.

For the purpose of developing the proposed mixed FD archi-
tecture, the dynamics of the 10 MW FOWT and of its actuators in
state-space will be described, by means of the following discrete-
time system

8>><>>:
xðkþ 1Þ ¼ A0xðkÞ þ rðxðkÞ;uðkÞÞ þ bðk� k0Þ�

4xðyðkÞ;uðkÞ;wxÞ þ hxðxðkÞ;uðkÞ; kÞ
yðkÞ ¼ C0xðkÞ þ bðk� k0Þ4y

�
xðkÞ;wy

�þ
hyðxðkÞ;uðkÞ; kÞ

; (1)

where k ¼ 0;1;… is the discrete time index and x2Rn, u2Rm, y2
Rp represent the state, the controlled input and the measured
output vectors, respectively. The contents of u and y are defined in
Table 2. The matrix A02Rn�n and the vector field r : Rn � Rm1Rn

denote the nominal linear and nonlinear parts of the FOWT healthy
dynamics while C02Rp�n is the nominal output matrix. The un-
avoidable modelling uncertainties and output disturbances are
and indication of mooring line faults location.



Table 1
Specifications of the 10 MW FOWT (SWL: Sea water level).

Parameter Value

Turbine system
Rating 10 MW
Rotor orientation, configuration Upwind, 3 blades
Pitch control Variable speed, collective pitch
Drivetrain Medium speed, multiple stage gearbox
Rotor, hub diameter 178.3 m, 5.6 m
Hub height 119 m
Cut-in, rated, cut-out wind speed 4 m/s, 11.4 m/s, 25 m/s
Cut-in, rated rotor speed 6 rpm, 9.6 rpm
Rated tip speed 90 m/s
Floating platform
Total height and draft 66 m, 56 m
Distance from the tower center-line 26 m
Single column diameter 15 m
Column elevation above SWL 10 m
Elevation of tower base above SWL 25 m
Water displacement 29497.7 m3

Mooring lines
Number of lines 3
Line angles from upwind direction 0 � , 120 � , 240 �

Water depth and anchor radius 180 m, 599.98 m
Fairleads above SWL 8.7 m
Fairleads radius 47.181 m
Line diameter 0.18 m
Total length 707 m
Mass/length in air 594 kg/m

Y. Liu, R. Ferrari, P. Wu et al. Renewable Energy 164 (2021) 391e406
described by the functions hx : R
n � Rm � R1Rn and hy : Rn �

Rm � R1Rp.
The terms bðk�k0Þ � 4xðyðkÞ;uðkÞ;wxÞ and bðk�k0Þ�

4yðxðkÞ;wyÞ represent the dynamic changes of the state and output
equation, respectively, due to the occurrence of faults at the un-
known time index k0, similarly to the case reported by Ferrari et al.
[24].

In detail, a fault class F ¼ fF1; F2g consisting of 5 process and 6
output fault functions will be considered, with F1 being addressed
by the model-based scheme, and F2 by the signal-based scheme in
the proposed mixed FD architecture:

Fb

(
4y;1; …; 4y;4;4y;7;4y;8 4x;5; 4x;6; 4x;9;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F1

4x;10; 4x;11|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
F2

)
:

(2)

The details of each fault function in 5 are described in Table 3.
The parameters wy;l; l21;2;4;8 denote the scaling error

magnitude for sensors affected by the scaling type of faults, while
Table 2
Controlled and measured variables of the 10 MW FOWT.

Variable Symbol Units

Control signals
Reference pitch angle qr≡u1 deg
Reference generator torque Tg;r≡u2 Nm
Measurements
Pitch angles qs≡ys; s ¼ 1;…;3 deg
Generator torque Tg≡y4 Nm
Rotor angular speed ur≡y5 rad/s
Generator angular speed ug≡y6 rad/s
Generator power Pg≡y7 W
Blade root bending momentsa Mcm;s≡y7þs; s ¼ 1;…;3 Nm
Tower top acceleration €a≡y10 m/s2

a Mcm;s is the transformed symmetric moment of the seth (s ¼ 1; 2; 3) blade root
via the Coleman transformation [28], which transforms from a rotational coordinate
frame to a fixed one where all periodic parts vanish.
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wy;7 and wy;3 denote, respectively, the stuck and offset value for
these kinds of sensor faults. Similarly, wx;5 and wx;6 denote the same
for actuator type of faults.

The last three faults, described by 4x;9 to 4x;11, denote structural
faults that affect the nonlinear dynamic function r. In order to
describe such structural faults, the notations Drðx; u; wx;lÞbrðx; u;
wx;lÞ� rðx;uÞ, with l ¼ 9; …; 11, are introduced. They represent the
change in the nonlinear part of the dynamics from its nominal
behaviour to a faulty behaviour characterized by the parameter
vectors of wx;l. These vectors contain specific values of structural
parameters which are caused by the structural faults.

In particular, the faulty blade stiffness wx;9 ¼ c,w0
x;9 is used to

describe the abrupt rotor blade faults due to the effects of cracking,
debonding/delamination or fiber breakage [29]. In equations
shown in Table 3, 0 � c<1 is a scale factor quantifying the reduc-
tion of the blade stiffness. Usually, the stiffness reduction of the
blade fault can be divided into three stages [30]. The first two stages
are attributed to non-severe blade faults with a local stiffness
reduction of around 0%� 30%. They are caused by transversematrix
cracks and debonding/delamination, respectively, which exert little
effect on the global bending stiffness. The third stage is severe blade
fault with a local stiffness reduction of at least 30%. It is mostly
induced by the local damage progression and the fiber breaking,
and may have a significant effect on the global dynamics of the
blade. In this paper, only the severe blade fault in stage 3 is taken
into account for investigations.

In order to properly simulate the abrupt rotor blade faults, the
corresponding faulty mode shapes of the blades, which are
dependent on wx;9, are calculated using the tool Modes1 and fed
into the FAST simulator. Note that the last two functions describe
two critical mooring line faults (see Fig. 1) that may occur during
the FOWToperation process [31,32]. In detail, the top segment fault
at the fairleadwill cause themooring line to fall away and reduce its
tension wx;10 to zero. In the case of bottom segment faults, the static
friction forces from the seabed fail to keep the anchor in balance. As
a result, the anchor moves into a new equilibrium position where
the unstretched length wx;11 of the mooring line increases.

Based on the benchmark described above, the 10 MW FOWT
dynamics are simulated by the FAST simulator with Simulink. In
particular, all the fault functions listed in Table 3, describing all the
fault scenarios in 5, are included into the 10 MW FOWT benchmark
by extending the source code of the FAST simulator. More impor-
tantly, critical parameters of the fault functions, e.g. magnitude of
the faults and changed mode shapes of the blades, can be deter-
mined by users through an interface in Simulink, and thereby fed
into the FAST simulator for the fault generation. As presented in
Fig. 2, the lower part of the block diagram illustrates the developed
10 MW FOWT benchmark. In addition, the well-known FAST nu-
merical package [20] is customized to include all kinds of faults and
then simulate the dynamics of a FOWT system containing specific
faults. Furthermore, the control laws which are based on Linear
Time Invariant (LTI) dynamical systems, are implemented in
Simulink [25,26].
3. Mixed FD architecture for Floating Offshore Wind Turbines

In this section the overall structure of the mixed FD architecture
is introduced, which is depicted in the upper part of Fig. 2.

The mixed FD architecture includes a model-based FD approach
in the time domain, which follows the generalized observer scheme
1 Modes: a simple mode-shape generator for towers and rotating blades. https://
nwtc.nrel.gov/Modes.

https://nwtc.nrel.gov/Modes
https://nwtc.nrel.gov/Modes


Table 3
Fault types and functions.

Name Type Description Function

Sensor
f1 scaling Generator speed 4y;1 ¼ wy;1C0

1x

f2 scaling Generator power 4y;2 ¼ wy;2C0
2x

f3 offset Blade root bending moment 4y;3 ¼ wy;3e3
f4 scaling Rotor speed 4y;4 ¼ wy;4C0

4x

f7 stuck Pitch sensor 4y;7 ¼ wy;7 � C0
5x� hy;ð5Þ

f8 scaling Torque sensor 4y;8 ¼ wy;8C0
6x

Actuator
f5 stuck Pitch actuator 4x;5 ¼ � uþ wx;5e5
f6 offset Torque actuator 4x;6 ¼ wx;6e6
Structural
f9 parameter Rotor blade sudden fault 4x;9 ¼ Drðx;u;wx;9Þ
f10 parameter Mooring line (fairlead) 4x;10 ¼ Drðx;u;wx;10Þ
f11 parameter Mooring line (anchor) 4x;11 ¼ Drðx;u;wx;11Þ

Fig. 2. Block diagram of the 10 MW FOWT benchmark in the lower part and the overall
structure of the mixed FD architecture (eqs. 4e16) in the upper part. A fault generator
block is added to allow introducing faults (Table 3) in actuators, sensors, rotor blades
and mooring lines.
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[33]. In detail, a Fault Detection and Approximation Estimator
(FDAE) is used to detect faults and activate a bank of N Fault
Isolation Estimators (FIEs), with N being the number of the pre-
defined faults. Fault decisions produced by the FDAE and the FIEs
are evaluated by a detection and isolation logic in order to produce
a final diagnosis.

For the purpose of coping with the faults associated with
mooring lines, which proved to be elusive for estimator-based de-
tectors, the proposed mixed FD architecture includes as well a
signal-based FD scheme in the frequency domain. The signal-based
scheme consists of a Short Time Fourier Transform (STFT) step
395
followed by a KeNearest Neighbour (KNN) detection and isolation
step.

3.1. Model-based fault diagnosis for the turbine system

To detect and isolate the N ¼ 9 faults belonging to F1, a bank of
N þ 1 nonlinear adaptive estimators is designed and implemented,
each one yielding an output estimate byl2RM ; l ¼ 0;…;N, whereM
is the size of the output. The FDAE (l ¼ 0) detects known faults and
approximate unknown ones, while the FIEs (l ¼ 1; …; N), each
corresponding to one fault in F1, are designed to isolate the
detected fault. For each leth estimator a residual signal is defined as

ry;lðkÞ¼ ylðkÞ � bylðkÞ : (3)

The healthy hypothesis (l ¼ 0) shall be rejected by the FDAE if
the absolute value of at least one component ry;l;ðiÞðkÞ of its re-
siduals, with i2f1; …; Mg, exceeds the corresponding one of a
suitable time-varying threshold, denoted as ry;l;ðiÞðkÞ. The first such
time will be indicated as the detection instant kd. Similarly, each FIE
(l ¼ 1;…;N) will reject its own faulty hypothesis if a component of
its residuals will cross its threshold. If at some time instant every
hypothesis but the leth one has been rejected by the FDAE and FIEs,
then the detection and isolation logic will conclude that the leth
fault occurs.

3.1.1. FDAE and fault detection
The FDAE will be based on a linearized version of the nominal

healthy FOWT dynamics introduced in eq. (1). For time instants
0 � k< kd, that is before detection, it will be described by the
following LTI system�bxðkþ 1Þ ¼ AbxðkÞ þ BuðkÞ þ LðyðkÞ � byðkÞÞbyðkÞ ¼ CbxðkÞ þ DuðkÞ ; (4)

where bxðkÞ and byðkÞ are the predicted state vector and output,
respectively, and the FDAE input and output correspond to the
same variables described in Table 2. Following the block diagram
introduced in the lower part of Fig. 2, the matrices A, B, C and D are
obtained by cascading the LTI systems describing the actuator dy-
namics [25,26] with a linear model of the turbine. Such a linear
model is obtained by applying subspace identification [34] tech-
niques to simulation data produced by FAST. It should be noted that
it is rather difficult to obtain a white-box model due to the
nonlinear dynamics of the FOWT [35], as detailed in Section 4. The
matrix L2RK�M is the FDAE gain, which is chosen such that
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A0bA� LC is stable. The time-varying threshold ry;0ðkÞ is then
designed to bound the healthy residual ry;0ðkÞ, in order to guarantee
no false-positive alarms.

In detail, the ieth component ry;0;ðiÞðkÞ is calculated as,
Table 4
Fault scenarios in the case study.

Number Description Parameter Time

Fault case A
Generator speed 0.95 210 s� 235 s

ry;0;ðiÞðkÞb
Xk�1

h¼0

aðiÞd
k�1�h
ðiÞ ½DrðhÞþhxðhÞ� þaðiÞd

k
ðiÞε

0
x ð0Þþhy;ðiÞðkÞ; i¼1;…;M ; (5)
where two scalar constants aðiÞ and dðiÞ are obtained as in Ref. [36].
hx and hy are the bounding function of the uncertainties in the state
and output equations of the FOWT. The function Dr represents the
difference between the nominal nonlinear healthy dynamics and
the linear model:

� DrðxðkÞ; bx;uðkÞÞbrðxðkÞ;uðkÞÞ � rðbxðkÞ;uðkÞÞ
DrðbxðkÞ;uðkÞÞ bmax

x2Rx
ðkDrðx; bx;uðkÞÞkÞ : (6)

If the condition
��ry;0;ðiÞðkÞ��> ry;0;ðiÞðkÞ holds for some component

i at the time instant k ¼ kd, a fault is detected and the FDAE
equation becomes8<:

bxðkþ 1Þ ¼ AbxðkÞ þ BuðkÞ þ LðyðkÞ � byðkÞÞþb4x;0ðyðkÞ;uðkÞ; bw0ðkÞÞbyðkÞ ¼ CbxðkÞ þ DuðkÞ ;
(7)

where b4x;0 is a general online estimator to learn unknown or un-
structured faults (such as the rotor blade sudden fault f9). For
instance, b4x;0 can be based on a Radial Basis Function (RBF) neural

network, whose parameters are assumed to satisfy cw02
bQ0

, wherebQ0
is a user designed parameters domain. In particular, bQ0

is
chosen here to be an origin-centered hyper-sphere with radius of
MbQ0 .
f1
f2 Generator power 1.1 305 s� 330 s
f3 Blade root bending moment 104 kN m 400 s� 425 s
f4 Rotor speed 1.1 495 s� 520 s
f5 Pitch actuator 0.2 rad 590 s� 615 s
f6 Torque actuator 20 kN m 685 s� 710 s
f7 Pitch sensor 0.2 rad 780 s� 805 s
f8 Torque sensor 0.9 875 s� 900 s
f9 Rotor blade sudden fault c ¼ 0.2 970 s� 1000 s
Fault case B
f10 Mooring line (fairlead) 0 N 300 s� 1000 s
Fault case C
f11 Mooring line (anchor) 150 m 300 s� 1000 s

Table 5
Wind and wave conditions in seven LCs.

LC Wind condition Um (m/s) Hs (m) Tp (s)

1 Laminar 12 2.66 7.42
4 Turbulent
2 Laminar 16 3.78 7.80
5 Turbulent
3 Laminar 20 5.13 8.47
6 Turbulent
7 Laminar, below rated value 8 1.69 7.28
3.1.2. FIE and fault isolation
After a fault is detected at k ¼ kd , the bank of FIEs is activated.

The actuator fault leth FIE’s dynamics, for the actuator faults l ¼ 5;6
are,

8><>:
bxlðkþ 1Þ ¼ AbxlðkÞ þ BuðkÞ þ L

�
yðkÞ � bylðkÞ�þb4x;l

�
yðkÞ;uðkÞ; bwx;lðkÞ

�
bylðkÞ ¼ CbxlðkÞ þ DuðkÞ

; (8)

where b4x;lðkÞbcolðb4x;l;ðiÞðkÞ; i¼ 1;…;MÞ and bwx;lðkÞbcolðbwx;l;ðiÞðkÞÞ.
Particularly, b4x;l;ðiÞðyðkÞ;uðkÞ; bwx;l;ðiÞðkÞÞbbwx;l;ðiÞðkÞTglðiÞðyðkÞ;uðkÞÞ is

a linearly parameterized function. bwx;l;ðiÞðkÞ2 bQl
ðiÞ denotes the

parameter vector and glðiÞ is the fault-specific shape function. bQl
ðiÞ is

assumed to be an origin-centered hyper-sphere with radius ofMbQ l

ðiÞ

as well.
In order to learn the fault function of 4x;l, the parameters of b4x;l

are updated following the learning law,
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bwx;lðkþ1Þ¼ PbQ l

�bwx;lðkÞþglðkÞglðkÞCTrlyðkþ1Þ
�
; (9)

where PbQ l denotes the projection operator on bQl
as
PbQ l

�bwx;l
�
b

� bwx;l ; if
��bwx;l

�� � MbQ l�
MbQ l

	��bwx;l
���,bwx;l ; if

��bwx;l
��>MbQ l

: (10)

In addition, gl
ðiÞðkÞ is calculated as,

glðkÞbml
.�

ε
l þ glðkÞCT2

F

�
; εl > 0; 0 < ml < 2 : (11)

Similarly, the dynamics of the leth FIE corresponding to the
sensor faults, l2f1;2;3;4;7;8g, are

8<:
bxlðkþ 1Þ ¼ AbxlðkÞ þ BuðkÞ þ L

�
yðkÞ � bylðkÞ�bylðkÞ ¼ CbxlðkÞ þ DuðkÞþb4y;l

�
xðkÞ; bwy;lðkÞ

� ; (12)

where b4y;lðkÞbcolðb4y;l;ðiÞðkÞ; i¼ 1;…;MÞ and b4y;l;ðiÞðxðkÞ;bwy;l;ðiÞðkÞÞbbwy;l;ðiÞðkÞTglðiÞðxðkÞÞ.



Fig. 3. Results of the subspace identification in LC1.(a) Generator speed, VAF: 86%, (b) Generator power, VAF: 96%, (c) Bending moment, VAF: 86%, (d) Rotor speed, VAF: 86%.
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As each leth FIE fault function matches the specific fault in F1, it
is possible to compute a dynamic threshold ry;l such that���ry;l;ðiÞðkÞ��� � ry;l;ðiÞðkÞ under the hypothesis that the actual fault is

the leth one, for each i and k. The thresholds for actuator faults are
designed as

ry;l;ðiÞðkÞ¼ hy;ðiÞðkÞ þ aðiÞ

8<: Xk�1

h¼kd

dk�1�h
ðiÞ

n
½DrðhÞþ hxðhÞ� þ

���jglðiÞðhÞj���
�
h
klðhÞþ




bwl
ðiÞðhÞ




b�ðh�kdÞi9=;þ dk�kd
ðiÞ ε

l
xðkdÞ

9=; ;

(13)

where kl is the maximum possible parameter estimation error

klb max
wx;l2

bQ l

�

wx;l � bwx;lðkÞ


� : (14)

The threshold derivation for sensor faults is similar and will not
be repeated here.

It is worth noting that the threshold equation of (13) guarantees
that if the seth fault 4x;s2F1 occurs and is learned by its FIE suc-
cessfully, that residual is guaranteed to be bounded by its threshold.
If at least one component of all the other FIE residuals exceeds its
corresponding threshold, then the seth fault will be successfully
isolated.
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3.2. Signal-based fault diagnosis for the mooring lines

Detecting and isolating faults in F2 which are associatedwith the
mooring system may prove to be difficult using the model-based
approach of previous subsection. In particular, it can be verified
that for realistic values of the FOWT and mooring lines parameters,
such faults do not fulfil the detectability and isolability conditions
stated in Theorem 3.1 and Theorem 3.2 of Ferrari et al. [24]. To cope
with the faults in the mooring system, a signal-based scheme is
proposed, which takes advantage of the noticeable influence that
such faults have on the spectrum of the tower-top acceleration €a.

Remark 1. Although the mooring line faults can be identified
from the platform motions or mooring line tensions, the mea-
surement of these signals are expensive. Furthermore, the accuracy
of the floater motionmeasurement is still questionable, as it should
be further validated [37].

In comparison, the measurement of the tower-top vibration is a
proven technique, which has been widely used in wind farms.
Based on the tower-top acceleration frequency analysis, two
representative mooring line faults will be identified. Such a mixed
model and signal-based architecture allows to detect and isolate all
the considered faults, without requiring the installation of addi-
tional, platform-motions or mooring-lines specific sensors.

In the present study, STFT [38] is utilized to transform the time
series of the tower-top acceleration €a as

S€aðt;wÞ¼
Xþ∞

k¼�∞

€aðkÞhðk� tÞe�jwk ; (15)

where S€a is the time-frequency spectrum of €a, while t and w



Fig. 4. Results of the subspace identification in LC4.(a) Generator speed, VAF: 77%, (b) Generator power, VAF: 96%, (c) Bending moment, VAF: 74%, (d) Rotor speed, VAF: 75%.

Fig. 5. Residual generation and model-based fault detection in LC1. Light grey shadow indicates the fault scenarios corresponding to the fault time in Table 4. (a) Generator speed,
(b) Generator power, (c) Bending moment, (d) Rotor speed, (e) Pitch angle, (f) Generator torque.
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Fig. 6. Residual generation and model-based fault detection in LC4. Light grey shadow indicates the fault scenarios corresponding to the fault time in Table 4. (a) Generator speed,
(b) Generator power, (c) Bending moment, (d) Rotor speed, (e) Pitch angle, (f) Generator torque.

Table 6
MRRT of the proposed FD architecture in seven LCs.

LC1 LC2 LC3 LC4 LC5 LC6 LC7

f1 24.7 1.5 6.7 2.4 1.1 1.1 25.9
f2 50.5 7.5 7.9 20.2 8.1 1.9 16.7
f3 21.3 1.7 3.2 1.0 1.5 1.0 5.9
f4 11.1 3.2 12.5 3.4 1.6 1.2 50.5
f5 26.1 3.4 44.9 11.7 14.8 34.3 61.4
f6 2.7 9.6 5.0 4.0 1.8 1.5 58.9
f7 6.5 1.7 6.7 6.0 2.7 11.9 10.9
f8 1.5 1.8 4.0 1.2 1.2 1.2 0.8
f9 32.6 1.7 5.9 2.0 1.0 1 .0 7.3
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denote, respectively, the transformed time and angular frequency
coordinates. Furthermore, hðkÞ is a window determining the time
and frequency resolution.

Using either experimental or simulation data, several training
spectra Sl€a;qðt;wÞ are obtained, with q ¼ 1;…;Q . The quantity Q in-

dicates the total number of training spectra for each hypothesis, the
possiblehypotheses beingeitherhealthyconditions (l ¼ 0), a fairlead
fault (l ¼ 10) or an anchor fault (l ¼ 11). In order to detect and isolate
mooring lines faults, the KNN algorithm [39] is run on the distance
between the training spectra Sl€a;qðt;wÞ and the actual one S€aðt;wÞ as

Dl
K;qðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXP
p¼1

�
S€a
�
t;wp

�� Sl€a;q
�
t;wp

� �2vuut ; (16)

where wp with p ¼ 1;…; P denotes one frequency bin.2 After
selecting the neighborhood size K, faults can be detected and
2 As the STFT is computed using the discrete fast Fourier transform, only a
discrete number of frequency bins are available.
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isolated by the majority voting criterion [40], where the widely-
used rule K � ffiffiffiffi

Q
p

is employed following [40].

4. Case study and comparison

The effectiveness of the proposed mixed FD architecture is
verified via a case study based on the newly developed 10 MW
FOWT benchmark. Following the case study, the comparisons be-
tween the developed architecture and other two classical ap-
proaches reported in literature are carried out. The advantages and
limitations of the proposed mixed FD architecture are discussed
based on the comparison results.

4.1. Model configuration

The aero-hydro-structural dynamics of the 10 MW FOWT
benchmark are simulated by amodified version of FAST v8.16 [20]. It
is noted that the open-sourced code of FAST is extended by the
authors to incorporate all the faults defined in Table 3. Such a
customized FASTcode is thus embedded in Simulink and connected
to external blocks implementing the basic controllers, actuators
and the turbine’s sensors, as shown in the lower part of Fig. 2.

In total, seven Load Cases (LCs) considering laminar and tur-
bulent wind conditions and irregular waves are simulated in the
10MWFOWT benchmark, as shown in Table 5. In the first three LCs,
a constant wind speed (Um) of, respectively, 12 m/s, 16 m/s and
20 m/s is assumed at the hub height. Regarding LC4-LC6, a three-
dimensional turbulent varying wind field, which is produced by
the TurbSim3 tool, is considered. In addition to these cases above
the rated wind speed (11.4 m/s), a wind condition of 8 m/s which is
below the rated value, is considered in LC7. In details, it can be
described as,
3 TurbSim: a stochastic inflow turbulence tool to generate realistic turbulent
wind fields. https://nwtc.nrel.gov/TurbSim.

https://nwtc.nrel.gov/TurbSim


Fig. 7. Comparisons between measurements and FDAE outputs in LC1. Light grey shadow indicates the fault scenarios corresponding to the fault time in Table 4. (a) Generator
speed, (b) Generator power, (c) Bending moment, (d) Rotor speed.

Fig. 8. Approximation (first 6 outputs) of the RBF neural network in LC1. Light grey shadow indicates the fault scenarios corresponding to the fault time in Table 4. (a) b40ð1Þ, (b)b40ð2Þ, (c) b40ð3Þ, (d) b40ð4Þ, (e) b40ð5Þ, (f) b40ð6Þ.
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UwðkÞ¼Um þ Uf ðkÞ ; (17)

where the constant wind speed Um is used to specify the normal
wind profile and Uf is a fluctuating wind component calculated
from the Normal Turbulence Model (NTM) [41]. NTM is based on
the Kaimal turbulence model according to the turbulence
400
intensities specified in the IEC with class C.
In addition, the wave conditions are computed using the

JONSWAP wave spectrum model. The significant wave height Hs

and peak-spectral period Tp in all LCs are predicted by the condi-
tional probabilistic distribution derived from the long-term
observation campaigns in the North Sea [42]. In each LC, the
simulation lasts 1000 s at a fixed discrete time step of Ts ¼ 0.01s. In



Fig. 9. Fault isolation for the sensor fault ðf2Þ in LC2. Light grey shadow indicates the fault scenarios corresponding to the fault time in Table 4. (a) FIE #2, component 1, (b) FIE #3,
component1, (c) FIE #4, component 1, (d) FIE #5, component 1, (e) Approximated fault function, (f) Approximated parameter.

Fig. 10. Fault isolation for the actuator fault ðf6Þ in LC2. Light grey shadow indicates the fault scenarios corresponding to the fault time in Table 4. (a) FIE#2, component 2, (b) FIE#3,
component 2, (c) FIE #4, component 2, (d) FIE #6, component 1, (e) Approximated fault function, (f) Approximated parameter.
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total, 11 faulty scenarios are simulated during each LC, as described
in Table 4. In particular, the magnitude of f1 � f8 are extracted from
the literature [16,27].
4.2. Model-based FD for the turbine system

For the purpose of developing the FDAE and FIEs in the model-
based FD scheme, the linear model is obtained via the subspace
identification.

The normal operating condition of the 10 MW FOWT bench-
mark, which is articulated in section 2, is simulated via the
extended FAST code to produce data in healthy conditions for
subspace identification at a reduced time step of 20� Ts ¼ 0.2s. In
order to guarantee the persistent excitation of the system dy-
namics, the generalized binary noise [43] is added into the input
pitch angle and generator torque (qin and Tg;in) corresponding to
401
steady state conditions at each of LCs. Then, the subspace identi-
fication procedure [34] is performed to obtain the linear model of
the 10 MW FOWT benchmark.

Figs. 3 and 4 shows the results of the subspace identification run
in laminar wind condition (LC1) and turbulent wind condition
(LC4). The performance of the subspace identification is evaluated
by checking the Variance-Accounted-For (VAF) [44]. It can be seen
that all the VAFs of the identified system in LC1 and LC4 are higher
than 86% and 74%, which indicate that the predicted value from the
linear system is an acceptable match for the real signals. Compared
to LC1, it shows that the VAFs of the generator speed, bending
moment and rotor speed in LC4 are lower. One plausible explana-
tion is that the high-frequency turbulence can not be fully captured
by the linearized model. Despite of such a deviation in the high
frequency region, it is considered that the performance of the
subspace identification is acceptable in both laminar and turbulent



Fig. 11. Fault isolation for the actuator fault ðf4Þ in LC4. Light grey shadow indicates the fault scenarios corresponding to the fault time in Table 4. (a) FIE#2, component 4, (b) FIE#3,
component 4, (c) FIE #4, component 4, (d) FIE #6, component 4, (e) Approximated fault function, (f) Approximated parameter.
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wind conditions. Other plots of the subspace identifications in LCs
2e3 and 5e7 show similar patterns and are thereby omitted for the
sake of brevity.

Based on the derived linear model and on a discrete time step of
20� Ts ¼ 0.2s, the simulation results of the FDAE in LC1 are pre-
sented in Fig. 5 for discussions. In general, it is noticeable that the
faults f1-f9 are detected successfully in LC1 as the residuals in faulty
scenarios exceed the corresponding thresholds, which indicate the
effectiveness of the proposed FDAE. In addition to these actuator
and sensor faults, the structural fault, namely the rotor blade fault
in the simulation time of 970se1000s, is successfully detected by
the proposed mixed FD architecture.

Compared to the laminar wind condition in LC1, a much more
significant disturbance is found in the residuals of LC4 due to the
turbulent wind, according to Fig. 6. In general, most of faults can be
detected successfully by the proposed mixed FD architecture,
except for some detection delay for f3 and f9. One plausible expla-
nation is such a bending moment fault is buried in the fluctuations
in the output signals due to the drastic turbulence and high wind
speeds, and as such is too small to be detected.

Similar results are obtained for other LCs, and are summarized
in Table 6. In order to easily quantify detection robustness, an in-
dicator called Maximum Ratio between Residuals and Thresholds
(MRRT) is introduced. An MRRT is larger than 1 means that for at
least one sample the residual exceeds the threshold: a higher MRRT
implies that the FD architecture has a better fault detection capa-
bility as it is more likely to be able to detect and isolate smaller
faults.

Compared to laminar wind conditions, it can be seen from Ta-
ble 6 that MRRT in turbulent wind conditions (LC4-LC6) is much
lower than in laminar ones. Particularly, the MRRT in LC4 is lower
than LC1 by� 49%, which can be explained by the fact that thewind
turbulence will cause the FOWT to operate more frequently away
from the operating point around which the dynamics used by the
FDAE have been linearized. It induces significant nonlinear effects
on the mixed FD architecture and reduces the fault detection
capability. However, some values in LC4-LC6 are higher than in
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corresponding laminar wind conditions, such as f6 in LC4, f2, f5 and
f7 in LC5 and f7 in LC6. One plausible explanation is that in some
cases the additional uncertainty due to the wind turbulence may
instead positively interfere with the other components affecting
the residual and make it larger, thus easing detection. Regarding
LC7 below the rated wind speed, the proposed FD architecture in
general shows similar results as in LC1 above the value one. It is
interesting to note that f8 is hard to be detected in this case, which
shows a lowerMRRT in LC7. The reason for this is that the generator
torque in this case is smaller than the rated value. This makes the
scaling sensor fault of the torque too small to be detected.

After a successful fault detection, a bankof FIEs is activated for the
isolation step. More specifically, 8 FIEs are employed to match the
structured faults (f1�f8)within F1,while fault f9, beingunstructured,
is learned by the general adaptive approximator of the FDAE.

In detail, the FDAE approximator b40 in eq. (7) is enabled to
approximate the unknown faults and unstructured component
faults. It is based on a 6-input, 20-output RBF neural network with
one hidden layer of 60 fixed neurons covering all the admissible

values for state and input variables. bw0 will have 20,60 components
containing the weights by which the hidden layer outputs are lin-
early combined to calculate the network output.

By including the approximation of the neural network, the re-
sults of FDAE in LC1 is presented in Fig. 7. It can be seen that such an
unstructured blade fault in f9 is eventually learned successfully by
the online adaptive approximator b40. Anyway, some deviations
between the measurements and FDAE are observed during
970se990s due to the oscillating behaviour of the neural network
output, which is induced by the learning law and partially illus-
trated in Fig. 8.

In addition to f9, other faults (f1 � f8) are isolated by the
designed FIEs. Fig. 9 shows the results of the fault isolation and the
approximated fault function of the sensor fault (f2) in LC2. It is
worth nothing that f2 is isolated at the early stage of the fault
scenario (306s), since only the residuals produced by the FIE#2 are
within the range specified by the corresponding thresholds. The
residuals from other FIEs(#1, #3 and #4) exceed their thresholds



Fig. 12. Norm of the distance between the spectral patterns and the measurement output and KNN for the signal-based FD of the mooring line faults in LC3 (K ¼ 8). Light grey
shadow indicates the fault scenarios corresponding to the fault time in Table 4. (a) Top segment fault. (b) Bottom segment fault.
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due to the mismatch between these FIEs and the fault function.
After 330s, the residuals from FIEs (#1, #3 and #4) reduce grad-
ually due to the recovered nominal healthy condition of the FOWT.
In addition, the actual fault function of f2, which essentially is a
multiplicative fault as shown in Table 3, is successfully approxi-
mated according to Fig. 9(eef). It should be noted that FIE #2
slightly underestimates the actual fault function at the beginning
(305se311s) according to Fig. 9(e). After that, the real value of the
fault is gradually approximated by FIE #2.

Similarly, the isolation results of the actuator fault (f6) in LC2
and the sensor fault (f4) in LC4 are presented in Figs. 10 and 11. It is
concluded that both the additive fault function of the generator
torque and multiplicative fault function of the rotor speed, are
gradually learned by FIE#6 and FIE#4. This verifies the effective-
ness of the fault isolation capability of the proposed mixed FD
architecture.
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4.3. Signal-based FD for the mooring lines

Regarding the signal-based FD for the two representative
mooring line faults in F2, the Hamming window function [45] is
used for computing STFT and obtain the training spectral pattern of
€a in healthy and faulty conditions. The length of the moving
Hamming window is 1000 samples while the overlap between
consecutive windows is 10 samples. The length of the fast Fourier
transform, on the other hand, is 2000 samples. During the KNN
classification, P, Q and K in eq. (16) are set to be 1000, 64 and 8,
respectively.

Based on eqs. 15 and 16, some selected FD results of the
mooring line faults are presented in Figs. 12 and 13 for discussion.
In general, KNNs derived from the distance between the spectral
patterns and the measurement output are able to indicate the
state of the mooring lines. Both mooring line faults are success-
fully detected and isolated at around 310s when the neighbors of



Fig. 13. Norm of the distance between the spectral patterns and the measurement output and KNN for the signal-based FD of the mooring line faults in LC4 (K ¼ 8). Light grey
shadow indicates the fault scenarios corresponding to the fault time in Table 4. (a) Top segment fault. (b) Bottom segment fault.

Table 7
Fault detection results of three architectures, where √ is accurate detection, + is delay detection with more than one sample, � is missed detection).

LC Mixed FD PCA DPCA

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

f1 √ + √ √ + + √ √ + � � � � √ √ + � � � � �
f2 √ √ √ √ √ √ √ √ √ + √ √ √ � √ + √ � √ √ �
f3 √ + √ + + + √ √ √ √ � + � √ √ √ √ � + � √
f4 √ √ √ √ √ + √ √ √ √ � + � √ √ √ + � √ � √
f5 √ √ √ √ √ √ √ √ + + + � √ √ � √ √ + � √ √
f6 √ √ √ √ √ + √ √ + + √ √ √ √ √ √ √ � √ + √
f7 √ √ √ √ √ √ √ √ √ √ √ � √ √ √ + √ � � � √
f8 √ + + √ + + � √ √ √ √ √ √ √ √ + √ � √ + �
f9 √ √ √ + √ + √ √ √ √ + � � √ + � √ + � � √
f10 + + + + + + + � � � � � � � � � � � � � �
f11 + + + + + + + � � � � � � � � � � � � � �
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the faulty signals indicate the FOWT benchmark violating nominal
healthy conditions. Moreover, it is evident from Figs. 12 and 13
that the detection delay time [10] is around 10s, which is
dependent on the moving Hamming window length utilized in
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the Fourier transform. Considering the time windows utilized in
the transform (1000� Ts), such a detection time is acceptable. It is
worth noting that the FD results in the turbulent wind condition
(LC4) show similar patterns as the laminar one (LC1), which
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indicates the robustness of the signal-based scheme in the pro-
posed mixed FD architecture.

4.4. Comparison to other approaches

In order to illustrate the advantages and limitations of the
proposed mixed FD architecture, two classical approaches, which
have been developed by previous researchers, are implemented for
the 10MW FOWT benchmark reported in the present study. Briefly,
both of them are introduced here.

1. Principal Component Analysis (PCA): this welleknown tech-
nique employs an orthogonal transformation to convert a series
of correlated variables into linearly uncorrelated variables.
Krüger et al. [46], Pozo et al. [47] and Wang et al. [48] employed
such a PCA-based approach to detect and identify faults in wind
turbines.

2. Dynamic Principal Component Analysis (DPCA): The DPCA
approach uses the time-lagged version of the system input and
output to develop a model for monitoring purposes, and has
been widely used for the fault detection of dynamic systems
[46,48]. Rato and Reis [49] established the DPCAmodel based on
decorrelated residuals to detect several faults and illustrated the
reliability of such an approach in the fault detection.

In order to provide detection data for comparisons, both of
aforementioned two classical approaches, PCA [48] and DPCA [49]
are implemented and applied to detect faults in the 10 MW FOWT
benchmark. Comparisons between the mixed FD architecture
developed in the present study and these two classical approaches
are carried out. The FD results are summarized in Table 7.

It is discerned that the proposedmixed FD architecture detected
most expected faults in laminar wind conditions (LC1-LC3 and LC7),
except for some detection delay on f1, f3, f8, f10 and f11 and missed
detection on f8 in the case below the rated wind speed. However,
the classical PCA and DPCA have missed detection in LC2, LC3 and
LC7 several times. Under turbulent wind conditions (LC4-LC6), the
mixed FD architecture had more detection delay for f1, f3 � f4, f6,
f8 � f11. PCA failed to detect f1, f3 � f4, f10 � f11 and was not always
able to detect f9. DPCA instead failed to detect f1, f3 � f4, f7, f10� f11
and was inconsistent in detecting f2, f6 and f8 � f9, thus seeming the
less reliable method for detecting faults in turbulent wind
conditions.

Based on these comparisons, it is concluded that the proposed
mixed FD architecture has the best performance in detecting the
considered faults in all load cases, despite the fact it needs further
improvement to detect f8 in the wind case below the rated value
(LC7) and to reduce detection delay in some fault scenarios.

5. Conclusions

FOWTs operate in the hostile marine environment with
restricted accessibility and maintainability. Currently, there is no
all-encompassing FD architecture deployed on FOWTs. Such an
absence poses a big challenge to reliability engineers and may
potentially lead to increased O&M costs. In this paper, a mixed FD
architecture is established by integrating a model-based and a
signal-based scheme to detect and isolate a mix of critical faults for
FOWTs. In order to verify the developed mixed FD architecture, a
10 MW FOWT benchmark, including specific predefined faults, is
developed by extending the widely-used FAST code. In particular,
the structural faults of the rotor blades and of the mooring lines, for
the first time, are taken into account for the FD purpose. While the
model-based scheme is used to detect and isolate the actuator and
sensor faults, the signal-based scheme is mainly used to detect the
405
faults associated with the mooring lines, using only existing avail-
able measurements.

In order to illustrate the advantages of the proposed mixed FD
architecture, comparisons are drawn with the two other classic
signal-based FD approaches: PCA and DPCA. When comparing the
detection and isolation of faults, results show that the proposed
mixed FD architecture is able to detect and isolate critical FOWT
faults in different load cases effectively. Compared to two classical
PCA and DPCA approaches, the proposed mixed FD architecture has
the best performance in fault detection of FOWTs in realistic wind
and wave conditions.

Even though this approach shows promising results, some
limitations are still lingering. For instance, it does not take into
account the isolation of the unstructured fault. In addition, the fault
detection robustness, which is affected by the wind turbulence,
should be further investigated.

Based on these discussions, it is suggested that in the future the
architecture could be extended by including a reduced-order
nonlinear physical model of the 10 MW FOWT benchmark, as
well as a more general fault model and the capability to do fault
isolation for unstructured faults. In addition, the proposed mixed
FD architecture can be tailored to other types of FOWTs, such as
Spar type, tension leg platform type of FOWTs. Furthermore, it can
be also extended to bottom-fixed wind turbines. Moreover, fault
tolerant control design for the 10 MW FOWT benchmark should be
investigated by combining the proposed mixed FD architecture
with fault accommodation techniques.
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