1
TUDelft G

ENVIRONMENT OBSERVATION MODULE FOR THE DECI ZEBRO

Obstacle and Motion Detection using a Laser
Rangefinder and Optical Flow

THESIS FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL

ENGINEERING PRESENTED BY:

Oxana QOosterlee 4374428
Sjors Peterse 4342208

SUPERVISOR:
Chris Verhoeven

DAILY SUPERVISOR:
Daniél Booms

ADVISORS:
Edwin Hakkennes
Ronald Bos

JUNE 19, 2017

DELFT UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS

AND COMPUTER SCIENCE

ELECTRICAL ENGINEERING PROGRAMME

Abstract

A Camera Submodule for the Environment Observation Module for a Zebro robot was designed. It is able
to collect data about obstacles to ensure Zebro’s safety and send this to the main processor of the module
using UART. The two main functions that were implemented are a laser rangefinder based on triangulation
and a motion detector based on optical flow.

The laser rangefinder calculates the distance to an obstacle by finding its own laser point in a frame. Testing
showed that it is especially accurate at short distances (0-4 cm), and the range can differ between 0.30 to
6m due to environmental light and obstacle color.

The motion detector uses dense optical flow data that is provided by the h264 encoder of the Pi Camera.
This data is filtered and moving obstacles are grouped together. In the tests, a moving obstacle was detected
every time, but 29% also showed false positives.

Contents

I Introduction| 7
1.1 TheZebro Project] 7
1.2 The Environment Observation Module| 7
L3 Stateofthe Artl e 8
1.4 Thesis Structure] o e e e 9

2 Programme of Requirements| 11
2.1 Environment Observation Module Functional Requirements| 11
22 Thesis Requirements| L 11
..................................... 11
2.4~ Camera Submodule Functional Requirements| 12

[3__General design| 13
B _MotonDeteCion] - - -+« « v v vt e e e 13
32 Obstacle Detection] e 13
[3.3 Processing and Camera Hardware] 14

. etection o odes| 14

{4 Design of the Laser Rangefinder| 15
@ CIUD| .« . o e e e e e 15
472 Physical Parameter Design| 16
B3 Laser TYDE. - -« - o oo oo oo 16
B4 Software]. 18

[3__Design of Motion Detection| 23
5.1 Hardware and Libraries| e 23
5.2 Softwarel. e e 23

[6_ Module Integration| 27
BT Software INEEIATON . . . - . . o . o oo 27
B2 Communicaion] - .« o vt e e 27
[6.3 Hardware Integration| L o 28

3T Power COMSUMPTON] - - - « « « o o oo oo e 29
|6.4 Physical Integration in Module Enclosure| 29

[7_Test Results| 31

7.1 ~Validation Laser Rangefinder| 31
[7.I.1 AccuraCy| 31
................................... 32
13 Discussion of TeSUlls] v v v v v oot e e 34

7.2 Validation QR-code Detector] 34
[72.1 Discussionof Results|. 34

[Z.3 Vahdation Motion Detection| oo oo 35
... 35
32 ResullSl -« o ot e 36
[7/33 Discussionofresults] 37

6 CONTENTS
8 Conclusionl 39
9 _Recommendations| 41
9.1 Laser Rangefinder|. 41
92 Motion Detection] e e 41
9.3 QR Code Detection| e 42
9.4 Other Proposed Ideas| 42
Append 43
A Important Variables in Submodule Code| 45
|IA.1 Adjustable Variables in laserclass.py| 45
|IA.2 Relevant Classes, Constants and Variables in MotionAnalysis.py| 47

B Bill of Materials 49
51

Chapter 1

Introduction

1.1 The Zebro Project

Zebro is a six-legged robot developed by the Zebro Team at TU Delft. The robust design of Zebro makes it
possible to conquer rough terrains. Zebro comes in various sizes, like the matchbox-sized Nano Zebro and
the shoe box-sized Deci Zebro. Zebro is supposed to be employed as a swarm robot. The first real ‘Zebro
swarm’ will consist out of 100 Deci Zebro’s. Currently, Zebro is only able to walk. For their bachelor the-
sis, three groups of six people have worked on different modules that can be attached to Zebro to increase
functionality. These are: The Autonomous Charging module, the Localization & Charging module, and
the Environment Observation module. This thesis is part of the Environment Observation Module

1.2 The Environment Observation Module

Zebro needs to be able to walk autonomously, and therefore has to keep itself safe. Possible environments
Zebro has to navigate through range from a table with obstacles, the university’s campus, to the moon. The
‘Environment Observation Module’ is designed so that Zebro can keep itself safe using different kinds of
sensors. The module is completely self-contained, and collects and processes its own sensor data. This
data can be acquired by Zebro’s top-level controller via the Zebro bus, which will make the final decision
on what to do with the data.

The Environment Observation module was designed by three groups of two students. An overview of the
division of functions is shown in Figure [I.T} This thesis is about the ‘Camera Submodule’, indicated by
the green frame. The camera is used for visual information, the laser is used in a laser rangefinder system,
and all processing is done on a Raspberry Pi, separate from the rest of the module. Its main functions is
obstacle detection, either static or moving. The Camera Submodule will deliver all its information to the
main processor of the Environment Observation module, which in turn can deliver it to the Zebro Bus.
Information about the other parts of the module can be found in [1] [2], which also include the design of a
custom PCB and an enclosure for the module.

8 Introduction

Camera submodule
Zebro Bus
7
Laser Module d
KY-008 A\ Sonar Obstacle
Pi Camera V2 Detection
Main processing unit
LED rin
—J ATmega2560 9
IR Cliff Detection
Raspberry Pl Zero
Temperature sensor Humidity sensor PCB
Laser Rangefinder Motion Detection . Overheat and
Light sensor current protection Module Enclosure
QR-code Detection Gyroscope/ :
Accelerometer Piezo Speaker

Figure 1.1: Overview of the complete Environment Observation module. This thesis is about the ‘Camera Submodule’.

1.3 State of the Art

Obstacle detection and avoidance is a widely covered subject in robotics, as it is required to ensure the
safety of autonomous moving robots (AMRs). There exists a large amount of obstacle avoiding methods.
These can be vision based and non-vision based.

Vision-based methods include stereo vision and monovision. Stereo vision can give a detailed 3D-map of
the environment, but suffers very high computational costs [3] [4]. Obstacle detection using monovision
can be done by optical flow or color segmentation. Optical flow comes in two flavours: sparse or dense.
Sparse optical flow computes motion on specific feature points, whereas dense optical flow uses the entire
frame. Sparse optical flow is used by [5]], [6]] and [[7]]. In [5] the expected optical flow when driving through
a (virtual) narrow tunnel is calculated, and compared with the observed optical flow. Deviations mean that
the ‘tunnel’ is blocked by an obstacle. In [[6], a homography-based motion detection is used and in [7]], the
Time To Contact (TTC) is used to determine the distance to stationary objects. Dense optical flow is used
in [[8]], in which the Focus of Expansion and the TTC is used to determine a balance strategy for obstacle
avoidance.

When using color segmentation based methods, known characteristics (color, texture) are used to distin-
guish obstacles from the background [9] [10]. A good application for this is for example in a green-
house [11]], where green plants, fruits, and the white greenhouse roof can be easily characterized. The pro-
cess of making this distinction however is complicated, even more when a robot is deployed in unknown
areas. Especially distinguishing an object when it is the same color as the background is a challenge when
it comes to monovision.

Vision based systems have common drawbacks, namely computational cost and that they need good illu-
mination. Therefore, in AMR’s often other types of sensors are deployed next to, or instead of a vision
based system. There exist various types of sensors that can be used, ranging from expensive (e.g. LIDAR)
to cheap (e.g. ultrasonic). Different situations in which obstacle detection is deployed, call for a different
kind of approach. For example, self-driving cars use different (and more) sensors than a Roomba.

Hanumante et al propose a low cost obstacle avoidance robot using IR sensors [[12]. This can detect obsta-
cles right in front of the robot, but does not work well outside and on dark-colored obstacles.

A type of sensor that does not suffer from the constraints of light- and vision based types of sensors, are
ultrasonic sensors. In [[13]] ultrasonic sensors are used in a UAV (Unmanned Aerial Vehicle) so it can be
used in an environment with gas or smoke. The system had problems with detection soft surfaces as foam

1.4 Thesis Structure 9

and people wearing clothes, but was able to detect water and glass surfaces, which the (simultaneously
tested) IR sensors couldn’t. Because the detections of the ultrasonic sensors were not reliable enough, they
argue that they should always be used in combination with other sensors.

Fu et al. [[14] demonstrate a triangulation laser scanner as a small, simple, low-power and low-cost method
of extracting information from the surroundings of a robot. Distances up to 600 mm were measured with
high accuracy, with the limiting factor being the environmental light.

1.4 Thesis Structure

This document serves two main purposes: it describes our methods, thoughts and experiments during the
project, but is also serves as a reference for the designed camera submodule when it will be used by others.
The chapter layout is as follows:

* Chapter 2] lists the requirements of the module, and the camera submodule. This includes the initial
requirements as set by the Zebro team, as well as additional requirements for our submodule.

* In Chapter 3] general design considerations are discussed such as the methods used and the hardware
employed. Moreover, the use of a camera is justified.

* In Chapter [} the design of the laser rangefinder including physical parameter design and software,
is described.

* In Chapter[3] the design and software of the motion detection system is explained.

* Chapter|[6]discusses the entire module integration and how the camera submodule fits in the Environ-
ment Observation module.

. Chapterdeals with the tests, results and discussion of the submodule.
¢ In Chapter[8] a summary will be given on the achieved results.

* Finally, additional recommendations and ideas will be given in Chapter 0]

10

Introduction

Chapter 2

Programme of Requirements

2.1 Environment Observation Module Functional Requirements

From the Zebro Team, the Environment Observation Module as a whole had the following functional
requirements (the ones relevant for this thesis are in bold):

[1.1] Detect obstacles

[1.2] Detect cliffs

[1.3] Discern between scalable and dangerous obstacles and cliffs
[1.4] Determine the system’s temperature

[1.5] Determine the system’s voltage, currents and power flow

[1.6] Implement an Autonomous Module Damage Prevention System (AMDPS)

2.2 Thesis Requirements

For the thesis, the following requirements are expected:

[2.1] Develop a test bench to run and record different parameters of Environment Observation performance
[2.2] Develop and test at least three types of sensor systems

[2.3] Develop the necessary software, hardware, control and their architectures for requirement [1.3]

[2.4] Develop the necessary software, hardware, control and their architectures for requirement [1.6]

2.3 System Requirements

The Environment Observation Module should also meet the following criteria:
[3.1] It should be self-contained

[3.2] It should have very well-defined interfaces with the outside world, that is, the Physical interface, the
power interface and the control & status interface.

[3.3] The module must be modular and easily replaceable by another robot.
[3.4] The system must be built cost-effective, as 100 Zebro’s are planned to be built.

[3.5] The system must be able to survive in an unknown environment, including rough terrain and public
areas with people.

12 Programme of Requirements

2.4 Camera Submodule Functional Requirements

Requirements [1.1] and [1.2] are carried out by [2]] and requirements [1.4], [1.5] and [1.6] are covered
by [1f]. This thesis will address [1.1] and [1.3].

In order to make requirement [1.3] more concrete, we define dangerous as being a moving object, and
scalable as being an obstacle that can be overcome by Zebro. Furthermore, three additional requirements
were drawn up that are specific to the submodule described in this thesis:

[4.1] Detect and read QR-codes.

[4.2] The system must communicate with the rest of the module, which in turn will communicate with the
Zebro Bus.

[4.3] The system must work on 5V.

Chapter 3

General design

3.1 Motion Detection

The choice of using a camera came about by viewing Zebro as an animal rather than a robot. Even though
the module is officially called the “Environment Observation Module”, we are effectively implementing the
senses for this animal. When considering the five human senses, vision makes the most sense to implement
in robotics. One problem that arises however, is the fact that complete obstacle recognition would not only
be extremely difficult but also very computationally expensive, leading to expensive hardware, leading to
an unfeasible module.

The way that follows nature most closely is a stereo-vision solution. The DelFly Project [15] is an example
of a project that makes use of two cameras and computes a disparity map in order to see depth. A few
weeks have been spent trying to use this platform for the Environment Observation Module, because it
was believed to be a very cheap option. However, when it turned out that this was not the case (around
80 euros), together with the fact that no documentation was available, this plan was aborted. Other stereo
cameras on the market are even more expensive than the DelFly.

After this, using two eyes was no longer considered an option. However, this is not the only way to view
depth using vision. Some animals, for example birds or locusts [16], make use of motion parallax by
moving their heads in order to see depth. This lead to the idea of using optical flow in order to estimate
distances to objects. This has been implemented using the idea of Wilfried Enkelmann [5] and making
use of the OpenCV library. Enkelmann implemented an algorithm that was to be used for cars to detect
obstacles on the road.

This algorithm makes a virtual tunnel though which the car can drive and calculates the expected flow
vectors based on that tunnel. This is then compared to the real flow vectors and if the real vectors flow
faster than the ones in the tunnel, this is due to an obstacle blocking the road. Two necessary assumptions
are based on the car motion: the velocity is known and the camera only translates in one direction (no
rotations). For Zebro, neither of these assumptions hold. Furthermore, calculating optical flow can be
computationally expensive (in OpenCYV, in which a limited number of features are tracked, took about 0.5
seconds per frame).

Luckily, another solution is available. The Pi Camera has on-board hardware that is capable of outputting
motion data directly, practically without delay (without processing this can reach 20 frames per second).
This data can be used by the Zebro to detect motion in its surroundings, for example moving people or
cars. This is important for Zebro in order to function properly in society. For example, Zebro can notify
that it is aware of the presence of humans by making sound or it can lie down when something dangerous
is approaching. The design for motion detection is explained in Section [5]

3.2 QObstacle Detection

A method for obstacle detection is also integrated in another part of the Environment Observation Module
in the form of an ultrasound sonar system. This gives a good indication of the surroundings of the Zebro,

14 General design

but not all obstacles can be correctly detected due to reflection and absorption of the ultrasound waves.
Another sensor type should be deployed as an addition to the the ultrasound sonar system to make obstacle
detection more reliable.

It was therefore decided that the Camera Submodule should have an obstacle detection method based on
sensors, that provides the distance to an obstacle. Although movement can be used to become aware of
the presence of possible dangers, it is not really functional for absolute distance measurements. Purely
visual methods were therefore not considered a reliable option. Finally, a laser rangefinder system based
on triangulation was chosen as a cheap, reliable option. This was chosen for the following reasons:

* The laser rangefinder will work alongside the sonar system. The laser rangefinder can therefore
be used to give extra critical information for the most important direction: forward. According to
literature [14]] [[17] [[18]], a laser rangefinder is considered to be very accurate, especially in close
range, so it is very suitable for this task.

* The laser rangefinder works on materials that the sonar system does not well on. This includes wave
absorbing materials and objects at an angle that reflect the wave the wrong direction. Furthermore
it is less prone to false detections (for the sonar system this can be caused by floor reflections for
example).

* A laser makes it visible to humans what the robot is looking at, which is good from a human inter-
action point of view.

3.3 Processing and Camera Hardware

Image processing is not done on the ATmega2560 that is used by the rest of the submodule, as it is not
suitable for this task due to insufficient storage and processing power. Moreover, because image processing
is very different from the functions that the main processor of the module has, it was also deemed logical
that the Camera Submodule should work ‘separate’ from the rest for the sake of modularity. The Raspberry
Pi is suitable for image processing, and it is very user friendly. The latter is important for making it easy
to make adjustments to the vision system with a specific task in mind, and also handy for when the Zebro
team decides on enhancing the vision system. The type of Raspberry Pi (RP1) used is the Raspberry Pi Zero
W. The Pi Zero is the cheapest and smallest available but therefore has also limited processing capabilities.
The ‘W’ variant of the Pi Zero provides wireless LAN which was useful during the design process.

The camera used is the Raspberry Pi Camera V2 [19], with an 8-megapixel camera and HD filming possi-
bilities. The Pi Camera can be connected easily to any Raspberry Pi with a ribbon connector, and contains
a lot of build-in features. The Pi Camera is a popular product, and therefore a lot of documentation can be
found online making it a relatively easy camera to work with.

3.4 Detection of QR Codes

As a demonstration of the possibilities that having a camera brings, a simple QR Code detector and decoder
was implemented. When a QR Code is detected, it outputs a string with the translated data.

As this functionality is out of the project’s scope, it was implemented using the ready-to-use ‘ZBar’ pack-
age. ZBar is an open source bar code reader, that can also be used for detecting and translating QR Codes.
Some possible usages of this functionality include:

1. Recognize and classify other Zebro-related objects like a charger, other Zebros or other objects it
could use.

2. Give commands to Zebro, e.g. when a QR code with the command ‘stop’ is shown, Zebro stops
moving.

Chapter 4

Design of the Laser Rangefinder

To measure distances to obstacles that Zebro is facing, a laser rangefinder based on triangulation was de-
signed. The basic principle of this laser rangefinder is: Zebro shines on an obstacle with a laser, the laser
dot is detected by the camera, after which the distance can be calculated using known parameters.

41 Setup

The setup of the laser rangefinder is shown in Figure 4.1} The laser is placed at a horizontal distance of 10
cm from the camera’s center, at an angle of 80°. The laser is placed next to the camera, instead of above
or below, because the design of the complete module enclosure made it impossible to place the laser at a
sufficient vertical distance from the camera. The distance of 10 cm is also close to the maximal attainable
width on the enclosure.

Laserpoint/

;

X

:

i

:

:

:

i

:

1

1

.

.

DI

1

1
Point :
Angle !
i | Laser angle
- r80° L--\ i
P Y
. Jo B
D L=10cm
Camera Laser

Figure 4.1: Setup of the laser rangefinder.

The Pi Camera’s field of view is 62.2° [19]. Knowing the width of one camera frame, the angle per pixel
can be calculated. With the angle per pixel and the laser point’s x-coordinate in the frame, the angle at
which the laser point is detected (the Point angle), can easily be calculated (Equation[d.1)). Point Angle can
be positive or negative, depending on whether the laser point is in the right or in the left half of the camera’s
field of view.

Field of view(°)
Frame width (pixels)

Point angle = - Dist. to laser point from field of view center (pixels) “.1)

16 Design of the Laser Rangefinder

After determining the Point Angle, the distance D to the laser point can be calculated using Equation {.2]
This is the distance Zebro can go forward until the obstacle the laser points to is reached.

tan(3) - tan(laser angle)
tan(B) + tan(laser angle)

The plot of this equation is shown in Figure as a function of the Point Angle instead of /.

D=L 4.2)

Top-view of the laser

-0 0 10
-20 20 Theoretical distance
-30 30 500 . : ;
200 400 1
1S
L
150 © 300 |
5]
c
£200
100 a
100 1
50 oL |) ! I - !
-30 -20 -10 0 10 20 30
0 Point angle [degrees]
(a) Top-view of the laser, as seen from the cam- (b) A linear plot clearly shows that the distance has an asymp-
era’s Field of View. The laser is located on the tote on -10°, which corresponds to the Laser Angle.

right side of the camera.

Figure 4.2: Angle versus distance plots, with Laser Angle = 80° and separation L = 10 cm.

4.2 Physical Parameter Design

There are two parameters in Figure[d.1]that had to be chosen: The Laser Angle and the space between laser
and camera, L. For choosing these values, four things were considered:

* The Laser Angle cannot be less than 58.9°, as this would mean the laser would go out of the Field of
View of the camera at larger distances.

» The Laser Angle should be somewhat close to 90° , as it is important to see what is directly in front
of Zebro.

* Increasing L and the Laser Angle increases the resolution at larger distances. See Figure[4.3]

* Decreasing L and the Laser Angle decreases the minimum distance at which something is detected.
See Figure 4.4

The last two considerations lead to a trade-off between resolution and minimum detectable distance. With
all these considerations in mind, the Laser Angle has been set on 80°, and L has been set to 10 cm. This
results in a minimum distance that can be detected at 12.8 cm, a resolution of one cm per pixel at 77 cm
and a resolution of 10 cm per pixel at 246 cm.

4.3 Laser Type

For the choice of laser the following characteristics were considered: color, type (point or line) and price.
For the color of the laser optimally a green laser is used as the camera is more sensitive for green light than
for red [20]. However, green lasers are around four times as expensive than red lasers, and therefore a red
laser is used (which still gives acceptable results). An IR laser was considered but deemed inappropriate

4.3 Laser Type 17

Selecting L
J Selecting LaserAngle
10
© —
g= 9]
S 100 a
(0] —
2 L=4cm 8
(.E) L=6cm (_E) LA =70 deg
1071 L=8cm LA = 75 deg
L=10cm LA =80 deg
L=12cm LA = 85 deg
0 100 200 300 400 500 0 100 200 300 400 500
Distance Distance
(a) A larger L results in less cm per pixel, so a (b) A larger Laser Angle results in less cm per
better resolution. pixel, so a better resolution.

Figure 4.3: For better resolution, L and the Laser angle should be as large as possible.

Minimum distance

25
L=4cm Minimum distance
L=6cm T T T
L=8cm LA =70deg|]25
) L=10cm| |20 LA = 75 deg
T L=12cm -
— LA =80 deg 20
—— =3 LA =85 deg _
\ 15 8, \ 3
© K=
e 15 ©
s T 2
10 2 e =
T T e e 10 @
B —— s}
T e g 5
0 : ‘ ‘ : 0
25 26 27 28 29 30 31 24 26 28 30
Point angle [degrees] Point angle [degrees]
(a) A smaller L results in a smaller minimum (b) A smaller Laser Angle results in a smaller
distance minimum distance.

Figure 4.4: The minimum distance at which the laser can be detected is when the laser is at the right side of the FoV,
which is at 31.1°.

for the Zebro. For applications in which Zebro walks around public places, the risk of someone looking
into the laser unknowingly and risking eye damage is too high.

Second, a choice was made between a line laser and a point laser. A laser line provides information about
the whole horizontal or vertical field of view at a certain point, a laser point only provides information about
the point it shines at. Ultimately a point laser was chosen. The reason for this was that one of the perceived
uses of Zebro is that it can walk over campus. In that case, by humans, it can be perceived as ‘annoying’
when there are laser lines everywhere. A point laser is less obtrusive, and therefore more desirable from
a human interaction point of view. Furthermore, the laser works as an enhancement for the sonar system,
which will already provide initial information about the whole field of view. The laser will only provide
extra information about the most critical direction for the robot: what it is moving towards.

The laser used is the KY-008 Laser module, which transmits 650 nm (red) light. This laser module is cheap
(<€2), and has a fixed resistor on it. It is controlled by one of the RPi’s GPIO pins, which outputs 3.3V.
The laser requires 5V, therefore the laser is connected using a transistor as switch as shown in the schematic

of Figure[4.5]

18 Design of the Laser Rangefinder

KY-008
Laser module

Raspberry PI

GPIO

GND

Figure 4.5: Schematic of the laser module connected to the Raspberry Pi GPIO pin.

4.4 Software

The software for the laser rangefinder needs:
1. To detect a laser spot
2. Calculate the distance using the detected spot
3. Distinguish between its own laser spot and possible others.

Two methods were tested for detecting the laser in a frame. For one method, the ‘difference method’ the
laser was turned on and off with each frame. A frame with laser was then compared to the previous frame
without laser. The area that differed could then be determined as the laser spot. However, it turned out that
the frame rate was not high enough and therefore the difference between two subsequent frames was more
than just the laser. This method was then deemed unusable for this application.

The method that was implemented uses the visual characteristics of the laser to detect it in a frame. Every
time the camera captures a frame, Zebro will look for its own laser in the frame by searching for red, bright
areas. The general process for this is illustrated in Figure [4.6] For the laser detection the OpenCV library
was used.

The code for the laser rangefinder contains a lot of variables that can be used to optimize the code for
different situations and Zebro’s behaviour (e.g. speed and average amount of Zebros in a given area). For
future reference, these variables can be found together with an explanation in Appendix [AT]

4.4 Software 19

) Are laser_x and laser_y
[Get new frame] > known? >
[
True¢ ¢ False
Set 'small ROI' around Set 'big ROI' around all
laser_x, laser_y coordinate possible laser locations
I [
1]
Extract ROI

Y

Extract red contours

(BGR > minBGR)
¢ Last contour
Determine percentage pixels | For every contour checked .
with HSV > minHSV y —> Multiple lasers found
A
percentage > False
HSV._threshold? ——- One laser found
True
Y
Save laser coordinates in L > No laser found
lasers[]

Figure 4.6: Algorithm for the detection of laser(s) in a frame.

After loading a frame, Zebro does not check the whole frame for a laser but only a Region Of Interest (ROI).
When a laser was detected in a previous frame, the Zebro only checks a small area, smallROI, around that
point. When Zebro doesn’t know the laser’s previous location, it checks the bigROI, that entails all possible
locations of the laser. Because of the laser rangefinder’s setup, this is only a small part of the whole frame.
The laser point will always be around a fixed height, and due to the angle of the laser, cannot be in the far
left of the frame (see Fig[4.2a).

The code starts using bigROI, visible as a light-blue frame in Figure Next, it checks for lasers in the
selected ROI. As a first step, the code searches for contours with a high red value. This is visualised in
Figure In (a), the retrieved frame is shown, with the laser point visible in the middle of bigROI. Using
OpenCV’s inRange() function, pixels with a BGR (Blue, Green, Red) value of which Red is higher than the
set threshold, are set white (b). Then in (c), OpenCV’s dilate() function is used to enlarge small contours
(which the laser often is), and erase some of the noise in larger white areas. This decreases the number of
contours found, which increases the speed of the code. Using OpenCV’s findContours() function, contours
of white areas are found. In (d) the contours found after this process are lined purple.

20 Design of the Laser Rangefinder

(a) Retreived frame with the laser visible in the middle (b) A BGR threshold (minBGR) is applied using in-
of bigROI Range(), areas with a high R value remain

(c) Areas are enlarged using dilate() (d) Contours found with findContours() are lined purple

Figure 4.7: The process of finding red contours in a frame.

Following the extraction of red contours, every contour is checked whether it is a laser or not. The charac-
teristic used to do this is the laser’s brightness. Each contour is converted to the HSV space. HSV (Hue,
Saturation, Value/Brightness) is a cylindrical-coordinate representation of points of the RGB color model.
By trial the minimal values of the HSV range (minHSV) the laser often falls into were determined.

The process starts by drawing a minimal enclosing rectangle around each previously detected contour that
is small enough to be a laser (Figure[4.8a). These contours are then converted to the HSV space. By using
the inRange() function for every contour the percentage of pixels with a HSV value larger than minHSV
is determined (Figure 4.8b). When the percentage in the minimal enclosing rectangle is at least 85%, the
contour is determined to be a laser spot. In Figure[4.8c|the contour determined to be a laser spot is indicated
with a red circle, and is indeed the laser. In this case, in the next frame the code will only search around
smallROI shown in Figure #.8d|

4.4 Software 21

(a) The contours that will be checked on whether it is a (b) The contours are converted to the HSV space and the

laser or not are marked by dark blue squares. minHSYV threshold is set using inRange() (for illustration
purposes the whole frame is converted). The contour of
the laser is fully white.

(¢) The contour with a high enough percentage bright (d) smallROI is drawn around the found laser point.
pixels is marked as laser. A minimal enclosing cir-

cle (red) is drawn around the contour to determine the

laser’s x- and y-coordinates.

Figure 4.8: The process of determining which red contour(s) is/are a laser spot.

After the process of detecting laser spots in the frame, there are three situations possible: There is no laser
found, there is only one laser found, or there are multiple lasers found.

The case in which one laser is found is the most straightforward, as shown in Figure .9] The coordinates
of the laser’s center are determined by drawing a ‘smallest enclosing circle’ around the laser contour. The
laser’s coordinates are equal to the center of that circle. The value for minHSV is decreased a bit so the laser
can be detected easier in the next frame, as the probability of a false detection is lower for the smallROI.

Determine smallest laser_x, laser_y = center
One laser found —> enclosing circle around of smallest enclosing decrease minHSV

laser contour circle

Figure 4.9: Algorithm for when only one laser has been found.

When no laser is found, the code continues as shown in Figure @ Every time no laser is found, the
notfound variable is increased by 1. When the laser is not found too many times in a row, the laser spot is
deemed unknown and the Zebro will start searching in the bigROI again with increased minHSV (to avoid

22

Design of the Laser Rangefinder

false detections). Every time a laser is found, notfound is reset to 0.

No laser found —>

notfound + 1

notfound ==
notfound_threshold?

False

True
laser_x, laser_y = None

(Continue

J [increase minHSV l

Figure 4.10: Algorithm for when no laser is found.

The case in which Zebro detects multiple lasers in one frame, is somewhat more complicated. A flowchart
of the algorithm is shown in Figure d.T1] When multiple lasers are found, multilaser_max is set, which is
the threshold of how much frames in a row multiple lasers have to be found before taking action. This is
set randomly every time, so it will be different for different Zebros. Multilaser_max is reset when either no

or 1 laser is found, or when its value has been reached and action is taken.

When multilaser_max is reached, Zebro turns its own laser off. Every area (small ROI) around detected
laser locations, stored in lasers(], is then checked for the presence of a laser using the same method as
for the initial laser detection described previously. The area in which no laser can be found anymore, is
set to be Zebro’s own laser location. Because of the possibility of something going wrong in this stage,
the Zebro’s laser coordinates are only changed when there is really only one area in which no laser can be

found anymore.

Multiple lasers found

Turn off own laser

/

Load new frame

> Is multilaser_max set?

True

/

False
3

set random multilaser_max

multilaser += 1

i

True multilaser == False _[)
multilaser_max? L Continue]
. Extract small ROl around
For each laser in lasers [] laser coordinates
A
Last area +
checked Check for laser in ROI
Is there only 1 ROl in which "\ False (Conti
no laser was found? L ontinue

¢True

laser_x, laser_y =
coordinates from ROl in
which no laser was found

Figure 4.11: Algorithm for when multiple lasers are found in one frame.

When the location of Zebro’s own laser is known after finishing one of the three processes (one laser, no
laser or multiple lasers), the distance to the obstacle the laser shines on is calculated using Equation {.2]
This formula is implemented in the function calcDistance(). After that, the next frame is grabbed and the
whole process will start over from the beginning again.

Chapter 5

Design of Motion Detection

5.1 Hardware and Libraries

The motion estimation is done by the h264-encoder on the Pi Camera [21]]. This is done using a block-
matching algorithm. In short, this divides the screen in blocks of 16x16 pixels and tries to find out where
this block went in the next frame, using a search window. This process has been encapsulated by the Pi
Camera API [22]. After that, it is ready for analysis. The result is shown in Figure[5.1]

5.2 Software

For a frame that is 640x480 (experiments showed that this was the best trade-off between resolution and
processing cost), the resulting motion array provided by the encoder is 41x30. The first step is that all
the lengths of the motion vectors are computed, and the lower section of the screen is discarded. This
is because very often, the motion data about the surface Zebro is walking on is very chaotic, so that this
information has to be discarded. See Figure[5.1] The threshold for ignoring data is defined by a constant
called ROAD_THRESH and can be found in Camera_Module/Autoboot/MotionAnalysis.py. Another way
to ignore the chaos is based on the ‘SAD’ (Sum of Absolute Difference)-value that is also provided by the
h264-encoder. Sadly, finding a robust threshold value can be difficult, because if the limit is too low it
might also ignore actual moving objects. This would defeat the purpose of doing motion detection.

24 Design of Motion Detection

Figure 5.1: Motion Data when the Zebro is moving forward, without moving obstacles. At the bottom of the figure,
the data is very unreliable. Motion vectors with a ‘SAD’ value higher than 400 are colored red. The data in the top-left
of the figure is the data of the gyroscope (Yaw, Pitch, Roll) in degrees. “Diff” is the difference in degrees with respect
to the previous frame.

In the second step, the Motion Matrix is formed. A Motion class instance represents one motion vector and
is created for vectors that are sufficiently large to be considered relevant. “Sufficiently large” is defined by
the parameter MOTION_THRESH and can be found in the same file. The Motion Matrix is a 2D-list of
Motion instances. In the third step, the motions are grouped together to form a Danger instance. A Danger
can be a person, a car or any other moving object. The Danger class includes a get_severity() method that
determines the total motion in a Danger instance. Figure[5.2] visualizes the Motion and Danger classes.

Motion_matrix

Motion

N

Danger 1 Danger 2

Figure 5.2: The Motion_matrix, Motion and Danger visualized.

5.2 Software 25

I\/'I: Sfl'leovzry'llargltzhs; Lengths for the lower Lengths are Motion_data is
o= .’ € section of the screen [€— computed with ‘€— loaded from the START
a Motion instance is f
are discarded NumPy encoder
created
4 v
These instances are While scanning Is atleastone \Yes /' arotheypartof \Yes
storedin [motion_matrix, pick neighbour part of a diferent Dangers? Merge thase Dangers
motion_matrix one Motion Danger? !
+ Done + No + No
Translate Dangers to) .
Discard minor Make new Danger ;
angles and send to | Dangers and join it Join that Danger
Arduino
FINISH
S

Figure 5.3: The entire process of motion detection. The arrows in red indicate a loop.

The Motion instances are grouped together in the following way: the Motion Matrix is scanned from left
to right, top to bottom. When it encounters a Motion instance, this is linked to a Danger instance. First, it
checks the neighbouring locations in the Motion Matrix that it has already processed (that is, one position
to the left, top-left, top and top-right). If any of those are Motions (and thus already linked to a Danger),
join that Danger. If two neighbours are part of different Dangers, merge the Dangers to one as they are
apparently connected. If there are no neighbouring Motions, a new Danger is instantiated. The result is if
two people are moving within a frame, both can be treated as separate entities.

Then, “minor” Dangers are discarded . These are dangers that may be due to moving objects in the far
distance, or due to motion noise. A Danger is considered “Dangerous” if its severity() (simply the length
of all the Motions summed) is larger than MIN_SEVERITY and the number of different Motions is larger
than MIN_MOTIONS.

Finally, the angles that correspond to the location of the moving object are calculated based on the leftmost
and rightmost motion vector of each Danger. This, together with the severity of each Danger, is sent to the
PCB. The entire process is shown in Figure [5.3] and all the relevant classes, constants and variables are
summarized in Table[A-2] The parameters mentioned in this table can be adjusted in order to make Zebro
more curious, or more shy.

26 Design of Motion Detection

Figure 5.4: Final result of the motion detection. A person is walking and his motion is detected. At the moment of
the capture, only his right leg is moving. The red arrows show small movement due to the camera motion. The black
arrows represent motion larger than MOTION_THRESH.

Chapter 6

Module Integration

6.1 Software Integration

In Chapters and[5] three different functionalities have been described:
¢ The detection of QR-codes
» Distance measurements using the laser rangefinder
* Motion detection

These functions are carried out by classes called AnalyzeQR, AnalyzeLaser and AnalyzeMotion respec-
tively, and are instantiated in main.py. This main python script starts automatically when the Raspberry Pi
is booted. The three classes all have an analyze method that is called by the picamera package [22] when-
ever a new frame is available. The Raspberry Pi Camera has four possible video streams, two of which
are used for distance measurement and QR-code detection, and one is used for streaming motion data. The
fourth stream is reserved for future use.

6.2 Communication

For communication between the Raspberry Pi and the ATMega controller on the PCB, two options were
considered: UART and I2C. When using 12C, the Raspberry Pi can only act as the master [23], but the
ATMega in this case has to act as master to communicate with attached sensors. Therefore, UART was
chosen.

The ATMega’s pins work on 5V, whereas the RPi’s pins work on 3.3V. To prevent damage to the RPi due
to over-voltage, a voltage divider is needed between the ATMega’s TX and the RPi’s RX. Because 3.3V is
still seen as a logic high by the ATMega, no level converter is needed for the other line. The connections
for communication are schematically shown in Figure

Raspberry PI ATMega 2560
TX RX
RX 3.3V ,Mi)l 5V TX
GND 4.7kQ GND

Figure 6.1: Connection for serial communication between the RPi and the ATMega2560.

In main.py, a separate thread is dedicated for communication. The ATMega can control what functions
will run by sending commands, see Tables @] and[@ If get data is called, the RPi checks if new data is
available for every function. If so, it is loaded in DATA. If no new information is available since the last
call, DATA is “Same”. If no QR-codes or laser is found, they will return None.

28

Module Integration

Table 6.1: Communication protocol between the Raspberry Pi and the PCB

RPi Receives | RPi Sends

RPi action

“Laser = DATA/None”
“Motion = DATA”

“laser on” “laser is on” Turn laser on

“laser oft” “laser is off” Turn laser off

“qr on” “qris on” QR search function is called every frame
“qr off” “qr is off” QR search function is not called anymore
“get data” “QR = DATA/None”

Table 6.2: DATA format

Function | Format
QR Decoded QR string
Laser ”Obstacle: [Angle Distance]”
Angle in degrees (pos or neg), distance in cm, all numbers
are integers.
Motion “Danger 1: [startAngle endAngle severity]”
“Danger 2: ...”
Angles are in degrees, all numbers are integers.

6.3 Hardware Integration

The connections of the Camera Submodule with the rest of the Environment Observation Module are shown
in Figures 6.2 and [6.3] with the relevant pin connection in Tables[6.3|and [6.4} The Bill of Materials for the
complete module can be found in Appendix [B]

Y, Laser_neg

PCB

5V 5V
PI_RX RX
PI TX 2.2k X
=TT ATmega
2N3904
lLaser sig . 3.3k 4.7k
GND GND

Figure 6.2: Overview of the connections of the Raspberry Pi to the PCB, and the relevant components on the PCB.
The camera is directly connected to the Raspberry Pi with a flex cable.

6.4 Physical Integration in Module Enclosure 29

Table 6.3: Raspberry Pi physical connections Table 6.4: Laser physcial connections

Pi Pin | Pi Name | PCB Pin (J12) | PCB Name Laser Pin | PCB Pin (J23) | PCB Name
02 | 5V 1|5V Sig 1|5V
06 | Ground 2 | GND Gnd 2 | Laser_neg
08 | TXDO 4 | PIL.RX
10 | RXDO 3 | PLLTX
16 | GP1IO23 5 | Laser_sig

- 430 149 Jad6

Figure 6.3: The PCB that has been designed by @] The insets show the connections relevant for the Camera module.

6.3.1 Power Consumption

The Raspberry Pi and the laser will be powered by the rest of the submodule, which also includes overheat
and over-current protection [I]]. Both the laser and the RPi will be connected to a 5V source. The current
usage was calculated as in Table [6.5]

Table 6.5: Calculated current usage by the Camera Submodule

| Part | Avg. current consumption (mA) |
Raspberry Pi 150
Pi Camera 250
Laser circuit 30.55
Serial communication | 0.77
Total 431.32

With a current measurement the total average current was measured to be around 450 mA, with occasional
peaks to 500 mA maximum.

6.4 Physical Integration in Module Enclosure

The complete hardware for the Environment Observation module is confined in one enclosure. An im-
pression of the enclosure can be seen in Figure [6.4a and Figure [6.4b] A detailed description of the design
process of the enclosure can be found in [2].

30 Module Integration

(a) 3D-model of the module enclosure (not yet finalized). (b) The enclosure attached to a Zebro. This was one
version previous to the 3D model shown in (a).

Figure 6.4: Visuals of the module enclosure. The laser will be placed on the left protrusion, the camera will be attached
to the right protrusion. The Raspberry Pi will be placed in the middle of the closed area, above the PCB.

The laser should be placed at the exact horizontal distance of 10 cm from the camera and at an angle of 80°,
as specified before (see Sec. [4.1). Especially when the angle differs slightly, this can have a big effect on
the accuracy of the distance measurement. In the case that the angle is not correct, the Laser angle needs
to be adjusted accordingly in the code (see Appendix [A.T).

The height at which the camera is placed does not affect the distance measurement. For the Zebro to
be able to distinguish between scalable and non-scalable objects, it is advised to place the laser at the
maximum scalable height. This way, the laser ranger doesn’t detect anything when the obstacle is scalable,
and non-scalable obstacles are detected.

Chapter 7

Test Results

7.1 Validation Laser Rangefinder

For testing the laser rangefinder, the setup (as in Figure 4.1)) was made. Data from the RPi was retrieved
using serial communication with an Arduino and a serial monitor on a PC.

For testing the result of the laser rangefinder, the following tests were done:
1. Testing the accuracy of the distance measurement

2. Testing the range in which the laser can be detected for different situations

7.1.1 Accuracy

The first test was done in an indoor environment on an object on which the laser is easy to detect. The real
distance to the object was measured using a measuring tape, and compared to the result given by the laser
rangefinder. This was done until a distance of 6 meters. The result of the measurements can be seen in

Figure

Accuracy of the laser ranger Accuracy of the laser ranger (until 1 m)
1 F]
(o)
o 0.9
0.8
0.7
O

I
o2}
.

Distance (m)
QOOO s PO WWWW RS U'IU'IU’IU'I

OB DO RDDENN B DRV B DI EDDUTBHRD
Distance (m)
o o o
w R (6]
; ;
Q

O
e
o

—— Real distance

] 0.1 "
O Distance measured by laser ranger | R?a' distance
1 0 O Distance measured by laser ranger
measurements measurements
(a) Accuracy from 0.15m to 6m. (b) Accuracy from 0.15m to Im.

Figure 7.1: The accuracy of the laser ranger distance measurement at different distances. In close range the accuracy
is very good, but starts decreasing after 1 m.

From the Figure, it is clear that the laser rangefinder is very accurate at close range. Until about 1 m,
deviations are between 0 - 4cm. These small variations can also be partially caused by measurement errors.
At further distances, the accuracy decreases, leading to variations from 10 to 60 cm. This is caused by the

32 Test Results

resolution (cm/pixel) that decreases at larger distances, which was explained in Section[d.2] The minimal
detectable distances lies around 15 cm. At smaller distances, the laser is not in the camera’s field of view.

7.1.2 Maximum Range

During the design process, it became clear that different situations and obstacles can affect how well the
laser rangefinder is able to detect the laser spot. Therefore, the maximum distance at which the laser can
be detected was determined in the following situations:

* Indoor medium-lit environment, with a grey, white, and black obstacle.
* Qutside in the shade, with a grey, white, and black obstacle.
* Qutside in the sun, with a grey, white, and black obstacle.

* A red brick wall, in direct sunlight and in the shade

A few of these situations are shown in Figure[7.2]

(a) Outdoors in sunlight, grey object

(¢) Outdoors in shade, white object (d) Brick wall in direct sunlight

Figure 7.2: The laser pointing at different colored objects in different situations. The laser is often hard to detect by
the human eye in the pictures

The grey obstacle is considered easy to detect a laser spot on. The choice for the black and white obstacles
comes from that these are the two ‘extremes’ on which it is the hardest to detect a laser on. Black objects
absorb a lot of light, whereas white objects reflect a lot of light.

7.1 Validation Laser Rangefinder 33

Table 7.1: The maximum distance at which the laser is detected for various situations and object colors

Situation Object color Max. detectable | Notes
distance (m)
Indoors Grey 6 Max. measured distance
Indoors White 6 Max. measured distance
Indoors Black 1.20 R too low
Outdoors shadow | Grey 2.2 R too high
Outdoors shadow | White 1.3 R too low
Outdoors shadow | Black 0.7 R too high
Outdoors sunlight | Grey 0.65 R too high
Outdoors sunlight | White 0.65 R too low
Outdoors sunlight | Black 0.55 R too high
Outdoors shadow | Red brick wall | 1.30 R too high, especially when Zebro
itself is in the sun
Outdoors sunlight | Red brick wall | 0.30 R too high

From the results shown in Table[7.1] it becomes clear that the performance varies greatly between different
settings. It is harder to detect the laser in bright areas, than in darker areas. Especially direct sunlight on
an object makes it hard to detect, as the contrast between the laser and the surrounding area is not as clear
anymore.

A black obstacle absorbs a lot of the laser’s light, making it hard to detect a red contour on the surface when
the minBGR value is set too high. A white object has the problem that the minBGR value is sometimes not
high enough, such that the laser cannot be distinguished from the white area surrounding it (which also has
a high R value). Because both are influenced by an increase/decrease of the minBGR value there exists a
trade-off between the different situations.

Furthermore, sunlight on a white object also increases the amount of false detections. On white often con-
tours are found that are not lasers, and in direct sunlight the white will become so ‘bright’ that the HSV
values are also higher than minHSV, which leads to contours falsely being judged as laser. In this case,
Zebro can determine its own laser by setting it off and on (as described in [4.4), but this takes some extra
time. An increase of the minHSV’s saturation (S) value could overcome this problem as in this case the
laser spot’s saturation value is usually higher than its surroundings, but this can also decrease the perfor-
mance in other situations in which this is not the case.

Another important thing to note is that the Pi Camera’s automatic white balance also sometimes decreases
the detection range. Figure[/.3| shows the same wall in the shade. In (a) the camera is in the shade too,
but in (b) the camera is in the sun. Because of the camera being in the sun, the camera’s white balance
changes making the wall and it surroundings appear darker. This makes it harder to detect the laser on the
wall (because of R being too high).

34 Test Results

(a) 100 cm (b) 110 cm

Figure 7.3: The same brick wall at 100 and 110 cm. Because the camera is in the sun in (b), the camera adjusts its
white balance, making the wall appear darker.

7.1.3 Discussion of results

According to requirement [1.1], the Zebro should be able to detect obstacles. Even in the case of direct
sunlight making the laser detection very difficult, Zebro was still able to detect an obstacle at about 30
cm distance. This can still be considered a well-enough distance for Zebro to react on this information in
time. Therefore, requirement [1.1] is met. Furthermore, the laser rangefinder is very accurate at distances
until one meter, which makes the system reliable such that obstacles can be approached closely without
bumping into them. Distance measurements further away are less accurate, but since high accuracy at large
distances is not a strict requirement for Zebro’s functionalities, this can be considered acceptable.

7.2 Validation QR-code Detector

For testing the QR-code detector, the QR-code shown in Figure [7.4] was printed out in different sizes and
held in front of the camera. For each size, the maximum distance at which the QR-code was detected was
measured. These results are shown in Table[7.2]

Table 7.2: Max. detectable distance for different QR code sizes

QR-code side length (cm) Max. detectable distance
(cm)

4.0 26

5.5 46

6.75 76

8.8 98

Figure 7.4: “Hello Zebro!”
QR-code

7.2.1 Discussion of Results

Currently, the QR-detection does not perform very well. For example, a QR code put on a Zebro would
probably be of side length 5.5 cm at maximum. A maximal detectable distance of 46 cm would then require
another Zebro to approach it very closely before it can read it. For large QR-codes a range of around 1 m

7.3 Validation Motion Detection 35

can be considered reasonable, but it all depends on the application.

The current QR-code detector can be viewed as a proof of concept that probably needs improvement for
certain applications. Finally, what should be noted is that the QR-code detector proves that it is possible to
add another vision-based functionality next to the laser rangefinder and the motion detector.

7.3 Validation Motion Detection

7.3.1 Setup

In order to analyze the performance of the motion detection, an RC car has been used to model the move-
ments of a Zebro. Several scenarios have been tested in different locations. The locations that were picked
as representatives are:

¢ Inside, on a table.
* On the campus, on grass.
* On a biking trail.
* On a bus lane.
For most of these locations, a number of scenarios has been tested.
1. Driving without obstacles.
2. Driving to a stationary obstacle.
3. Driving to an obstacle that moves perpendicular to the motion of the car.
4. Driving to an obstacle that moves towards the car.
5. Standing still, obstacle moves perpendicular.
6. Standing still, obstacle moves towards the car.

For practical and technical reasons, not all possible combinations of location and scenario have been tested,
but the results should still reflect the overall performance. Figure gives an idea of the testing environ-
ments.

36 Test Results

YPR: 44.96 4.72 -0.10 L 3 YPR: 33.35 10.44 —1.52

Metion count: 118

1) J4 Sewerity: 4147

(a) Sometimes, stationary objects are detected. (b) Camera egomotion still leads to false positives, see

Section

YPR: RecelveError N, e . LA YPR: 38.47 6.22 0.20
diff: [0. 0. 0.] | Plct k i diff: [0.98 033 0.88]

(¢) Perpendicular motion works best. (d) Detecting approaching bicyclists.

Figure 7.5: Different locations in which the motion detection has been tested. An image of the bus lane is shown in
Figure[5.4, The upper-left corner shows the current gyroscope data in Yaw, Pitch, Roll, and the difference with the
previous frame

7.3.2 Results

The results of the tests that are described in Section [7.3.1] are shown in Table[7.3] Each testing video clip
has been assessed on two criteria: whether the obstacle was detected and if there were false positives.

7.4 Timing

37

Table 7.3: Test results for the motion detection.

All these results can be verified and analyzed by
era_Submodule/Motion_Detection/Testing.

The test number definitions can be found in Section
running “Interpret_motion_data.py”, found in Cam-

Test | Table Grass Cycling road Bus lane
1 v No false positives | X No false positives X No false positives
2 v/ Detected obstacle | v Detected obstacle X Detected obstacle
v No false positives | X No false positives X No false positives
3 v Detected obstacle v Detected obstacle
X No false positives v No false positives
4 v/ Detected obstacle v Detected obstacle | v Detected obstacle
v/ No false positives v No false positives | « No false positives
5 v Detected obstacle v Detected obstacle | v Detected obstacle
v/ No false positives v No false positives | « No false positives
6 v Detected obstacle | v Detected obstacle v Detected obstacle
v No false positives | v No false positives v No false positives

7.3.3 Discussion of results

Test 1 - driving without obstacles - appears to do worse than with obstacles. This is due to the fact that the
car was driving faster than in the other tests. What is most notable from the results is that there are still
many false positives. There are two main reasons for this:

* Apparent motion due to the adjusting of the white balance at the start of a video. This is only a
problem from the testing videos, since the camera will be on all the time when in operation.

e The car ego-motion. The situations in which this causes false positives were when the car drove
faster and with sharper turns. This will be discussed in Section[9.2]

The obstacle was nearly always detected (the moving ones were always detected), although with the sta-
tionary object it was not able to detect it until just before collision. However, since Zebro has two other
sensors for detecting stationary objects (ultrasonic, laser), this is not a problem. By considering the moving
objects as ‘dangerous’, requirement [1.3] is met.

7.4 Timing

In order to determine the total frame rate, the total run times of all the functionalities that are currently
implemented have been measured. See Table For completeness: all computations are done on a
Raspberry Pi Zero W.

Table 7.4: Run times of the separate functions. In reality, these functions run in separate threads so that the QR-code
scanner does not stall the more important functionalities. When it all works together, a frame-rate between 7 and 11
frames per second is achieved.

Function Min. time (ms) | Max. time (ms) | Avg. time (ms)
Find laser in smallROI and calc. distance | 37.7 60.9 45.1

Find laser in bigROI and calc. distance 41.9 180.7 152.5

Motion Detection (little motion) 37.2.6 90.3 65.9

Motion Detection (much motion) 57.4 170.5 108.6
Scanning QR codes (found) 562.5 593.1 570.2
Scanning QR codes (not found) 409.6 431.8 419.2

38

Test Results

Chapter 8

Conclusion

For the Zebro Environment Observation Module, a Camera Submodule was designed. This submodule
helps keeping Zebro safe by detecting obstacles, either static or moving. Furthermore, it was integrated
with the rest of the Environment Observation Module.

Using a laser rangefinder based on triangulation, Zebro can detect and measure the distance to an object
in front of it. By placing the laser at the height of a maximum scalable object, scalable and non-scalable
objects can be distinguished. At distances shorter than 1 m the distance is accurate to a couple centimeters,
and at larger distances the system still gives good enough results for Zebro’s perceived uses. The maximal
detectable range is 6 m or larger, but in practice this is often decreased due to environmental light and
object color. In worst-case scenario the range can be reduced to 30 cm, but this is still considered a large
enough distance for Zebro to avoid an obstacle.

Moving obstacles also pose a potential threat to Zebro. Motion detection is done by analyzing all the mo-
tion vectors in every frame and grouping possible threats together. By tuning the detection parameters,
Zebro can become either more curious or more shy. Detected motion can be used by Zebro to act accord-
ingly, this can be making sound and/or lying down. During tests, obstacles were detected in 16 out of the
17 test cases. However, in 5 cases, there were also false positives due to the camera motion. Solutions are
proposed in the Recommendations.

To demonstrate the possibilities of the camera, a simple QR-detector was also implemented. This was not
in the initial requirements, but it turned out this feature would be appreciated by the Zebro team. It also
showed how easy it is to add additional features to the Camera submodule.

The laser and camera are placed at Zebro’s front on the module enclosure. The main processing unit of the
Environment Observation Module is a ATmega2650. The Camera Submodule, that runs on a Raspberry
Pi Zero, can successfully send its own acquired information to the main processor using serial communi-
cation. This is information about at what angle and distance an object is detected, how much motion is
detected between which angles and possible detected QR-codes.

The main function requirements of the submodule have been met. With the Camera Submodule, Zebro is
able to detect obstacles (Requirement [1.1]). Low obstacles are not detected by the laser and moving ob-
jects are considered extra dangerous, so Zebro is able to discern between scalable and dangerous obstacles
(Requirement [1.3]). It is able to detect and read QR-codes (Requirement[4.1]) and it can communicate
with the rest of the module using UART (Requirement [4.2]).

40

Conclusion

Chapter 9

Recommendations

9.1 Laser Rangefinder

For the laser ranger some ideas could not yet be implemented and tested. There are several ways the laser
ranger can be improved when a higher detection rate and range is desired:

* Replacing the laser with a stronger one, which is the easiest method. A strong laser is also more
‘dangerous’, making this not the best option.

* Making the minBGR value dynamic and adjusting it to the situation. For example, the minBGR can
be determined each frame using the average BGR value in the ROL. If this works, it could increase
the detection range for very dark and very light objects for which now the R value is sometimes too
high or too low.

¢ Instead of testing BGR and HSV separately on set values, a threshold could be set for the sum of the
HSV and BGR values. In some situations the laser can be easily located using the HSV threshold,
but not using the BGR threshold (or the other way around). Therefore, setting a combined threshold
(e.g. V + R > 300) could possibly make detections better.

9.2 Motion Detection

From the results in Section the biggest cause for error is the lack of ego-motion compensation.
Specifically when the Zebro is making a sharp turn, a lot of motion is observed. There are several solutions
to this problem:

* One option is the use of the built-in video_stabilization property [22]]. This sounds promising, but
can only compensate for vertical and horizontal motion, not rotation.

« If this does not work properly, another option is to find the motion vectors that are most common,
and subtract these from all vectors. This, too, does not take rotation into account.

 There is another option that does have the potential of compensating for rotation. This is through
the use of the gyroscope that is connected to the Arduino. This approach is used in [7] and the
hardware has been implemented, but has not yielded satisfactory results so far. This was partly
due to timing constraints. To experiment with this solution, the Zebro team is encouraged to have
a look at the testing data, by running “Interpret_motion_data.py”, found in Camera_-Submodule/
Motion_Detection/Testing. These tests already include per-frame synchronized gyroscope data, as
shown in the upper left corner of Figures[7.5]

Another interesting idea is to discern between obstacles that are coming towards the Zebro and those that
are passing by. With the Danger class, this can be done by calculating the divergence. If the obstacle is
passing by, the divergence is approximately zero.

42 Recommendations

9.3 QR Code Detection

The QR code detection can be improved by using another method than using the ZBar package. A method
that seems promising can be found in [24]]. Using this method we developed a code for detecting of the QR
code’s corners, but not further than that. The reason was that it was too time consuming for a functionality
that strictly fell out of the scope of the project.

9.4 Other Proposed Ideas

Some other functionalities for the camera submodule were explored but not implemented due to the short
duration of the project. We would still like to mention some of them, as it may serve as an inspiration for
future projects within the Zebro team.

e The camera module can serve as the ‘Black Box’ of a Zebro. The picamera package offers the
functionality of recording to a circular stream [25]], like surveillance cameras. Whenever Zebro
encounters something of interest (errors included), this can be recorded, including the fragment
before the moment of interest. Naturally, it is also possible to take pictures. This data can be helpful
for debugging purposes.

* There is a lot of documentation to be found on using HAAR-cascades with OpenCV. HAAR-cascades
can be used for object recognition in an image. Using a lot of pictures, it is possible to train your
own classifier that is able to recognize a specific object of choice [26]. This can for example be a
Zebro.

* OpenCV already provides some HAAR-classifiers, like for face- and eye recognition [27]. This can
be used so Zebro can know whether it is noticed by a person (because their eyes/face point at the
Zebro). This information can be used to influence Zebro’s behaviour.

» Water is still a potential hazard for Zebro, especially when the water is not substantially lower than
the surface Zebro walks and it cannot be detected as a ‘cliff’. Visual water detection can be a solution,
but requires a complex texture segmentation algorithm like in [28]].

Appendices

Appendix A

A1

Important Variables in Submodule Code

Adjustable Variables in laserclass.py

| Variable | Type | Original value | Description | Change when
minHSV1 tuple | (125,10,100) HSYV threshold for bigROI Adjust when red contours
are not classified correctly as
laser/no laser
minHSV?2 tuple | (100,0,75) HSYV threshold for smallROI | Adjust when red contours
are not classified correctly as
laser/no laser
minBGR tuple | (0,0,220) BGR thrsehold for finding | Change when the laser con-
contours tour is not found too often
xstart_big, int 148, 640 Left- and right x-coordinates | Adjust when laser angle is
xend_big of bigROI changed, and the laser can
have an x-coordinate outside
of this range.
ystart_big, int 260, 360 Upper- and lower coordi- | Adjust when laser height is
yend_big nates of bigROI. Can be | changed, or when it does not
small because the laser will | shine directly straight for-
always be in the same height | ward
of the frame when it is
placed to shine straight for-
ward.
smallroi_width, | int 90, 40 Width and height of small- | Should be increased when
smallroi_height ROI the laser is ‘lost’ too often
(can be caused by low fram-
erate)
perc_thresh int 0.85 Percentage of pixels within | Adjust when red contours
HSV range for the contour | are not classified correctly as
to be classified as laser laser / no laser
laser_angle int 80 Angle at which the laser is | This should match the real
placed exact laser angle. When the
laser is not placed at exactly
this angle, this can have big
consequences for the calcu-
lation of the distance, espe-
cially in far-range
notfoundmax int 10 ROI changes to bigROI after | Should be lowered when the
this amount of subsequent | laser is ‘lost’ too often (e.g.
frames in which the laser is | because of low framerate or
not found high Zebro walking speed)

46

Important Variables in Submodule Code

A.2 Relevant Classes, Constants and Variables in MotionAnalysis.py

47

A.2 Relevant Classes, Constants and Variables in MotionAnaly-

sis.py

Name

| Description

| Attributes

Class: Motion

Represents one vector such as shown in fig-

ure

coords: Tuple containing X and y coordi-
nates in the motion_matrix.

length: The length of the vector.
of_danger: Reference to the Danger it is
part of.

Class: Danger

Represents a group Motions that form one
connected entity.

motion_list: List of Motion instances that
make up the Danger.

xmin, xmax, ymin, ymax: Scope of the
Danger.

Constant:
ROAD_THRESH

Contant that determines which part of the
screen to ignore. The higher this value, the
closer it is to the bottom of the screen.

Current value: 13

Constant:
MOTION_THRESH

Threshold value for making a Motion ob-
ject. Any vectors with smaller lengths will
be ignored.

Current value: 20

Variable:
motion_data

Three-dimensional NumPy array that is
provided by the encoder.

‘x’, ‘y’: Same coordinates as in the Motion
class.

‘sad’: Quantity of how well the motion
vector fits the two video frames.

Variable: lengths

Two-dimensional NumPy array containing
all the lengths of motion_data.

Variable:
motion_matrix

Two-dimensional List that contains all the
Motion instances of the frame.

48

Important Variables in Submodule Code

Appendix B

Bill of Materials

€/ 10 — price for one when ordering 10 at once

Re-
Component Part number # €/10 | €/100 | seller | €/100 | Reseller World
NL
Buck Converter 173010578 1 8.32 6.70 | Farnell 0.50 | AliExpress
Temperature sensor MCP9701-E/TO 4 0.94 0.712 | Farnell | 0.712 | Farnell
Gyro/accelero MPU-6050 1 7.24 6.97 Farnell 230 | DX.com
Light intensity sensor LDR 1 0.871 0.743 | Farnell | 0.045 | AliExpress
Humidity sensor SHT21 1 4.10 3.74 | Farnell 1.86 | AlieExpress
Speaker ABT-414-RC 1 1.81 0.896 | Farnell 0.09 AliExpress
Distance sensor HC-SR04 1 3.75 3.55 Antratek 0.79 AliExpress
Cliff sensor GP2YO0A21YKOF | 2 8.66 7.18 Farnell 3.45 AliExpress
hobby-
Laser KY-008 1 1,95 1,95 elec- 0.67 AliExpress
tronica
Pi Camera 1 17,97 17,97 | Farnell 17,78 | AliExpress
Kiwi
Raspberry Pi Zero W 1 11 11 Elec- 11 Kiwi Electronic
tronic
Kiwi
SD Card for RPi (8 GB) 1 7,40 7,40 Elec- 5 AliExpress
tronic
Kiwi
Pi Camera (long) flex cable 1 4,43 3,93 Elec- 1,70 AliExpress
tronic
Microcontroller ATmega2560 1 12.67 10.51 | Farnell 3.80 | AliExpress
Loose components PCB Various 1 5.82 4.55 Farnell 4.55 Farnell
Euro-
PCB Manufacturing 1 8.82 2.89 Cir- 0.66 | ALLPCB
cuits
Plastic Enclosure 1 13.14 11.68 3Dhubs 11.10 | 3Dhubs (China)
Total 130.37 | 111.68 71.59

50

Bill of Materials

Bibliography

[1] S. van Leeuwen and P. Goris, “Safety and sensor submodule,” Bachelor thesis, TU Delft, June 2017.

[2] L. de Herdt and J. M. Buis, “Obstacle and cliff detection for robotics applications using miniaturized
sonar and ir distance triangluation,” Bachelor thesis, TU Delft, June 2017.

[3] C. Ttofis, C. Kyrkou, and T. Theocharides, “A low-cost real-time embedded stereo vision system
for accurate disparity estimation based on guided image filtering,” IEEE Transactions on Computers,
vol. 65, no. 9, pp. 2678-2693, Sept 2016.

[4] J. Zbontar and Y. LeCun, “Stereo matching by training a convolutional neural network
to compare image patches,” CoRR, vol. abs/1510.05970, 2015. [Online]. Available: http:
/farxiv.org/abs/1510.05970

[5] W. Enkelmann, “Obstacle detection by evaluation of optical flow fields from image sequences,” Image
and Vision Computing, vol. 9, no. 3, pp. 160—168, June 1991.

[6] W.J. Kim and L.-S. Kweon, “Moving object detection and tracking from moving camera,” in 2011
8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Nov 2011, pp.
758-759.

[7] T. Low and G. Wyeth, “Obstacle detection using optical flow,” in in Proceedings of the 2005 Aus-
tralasian Conf. on Robotics & Automation, 2005.

[8] K. Souhila and A. Karim, “Optical flow based robot obstacle avoidance,” International Journal of
Advanced Robotic Systems, vol. 4, no. 1, p. 2, 2007.

[9] S. Sousa Filho and F. C. Flores, Attribute Operators for Color Images: Image Segmentation Improved
by the Use of Unsupervised Segmentation Evaluation Methods. Cham: Springer International Pub-
lishing, 2017, pp. 249-260.

[10] P.Sidike, D. Prince, A. Essa, and V. K. Asari, “Automatic building change detection through adaptive
local textural features and sequential background removal,” in 2016 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), July 2016, pp. 2857-2860.

[11] S. Nissimov et al., “Obstacle detection in a greenhouse environment using the kinect sensor,” Com-
puters and Electronics in Agriculture, vol. 113, no. C, pp. 104—-115, April 2015.

[12] V. Hanumante et al., “Low cost obstacle avoidance robot,” International Journal of Soft Computing
and Engineering (IJSCE), vol. 3, no. 4, 2013.

[13] N. Gageik et al., “Obstacle detection and collision avoidance using ultrasonic distance sensors for an
autonomous quadrocopter,” University of Wrzburg, Aerospace Information Technology, Tech. Rep.,
2012.

[14] G. Fu et al., “An integrated triangulation laser scanner for obstacle detection of miniature mobile
robots in indoor environment,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 4, pp. 778—
783, 2011.

[15] C. De Wagter, S. Tijmons, B. D. W. Remes, and G. C. H. E. de Croon, “Autonomous Flight of a
20-gram Flapping Wing MAV with a 4-gram Onboard Stereo Vision System,” I[EEE International
Conference on Robotics & Automation (ICRA), pp. 4982-4987, 2014.

http://arxiv.org/abs/1510.05970
http://arxiv.org/abs/1510.05970

52 BIBLIOGRAPHY

[16] E. C. Sobel, “The locust’s use of motion parallax to measure distance,” Journal of
Comparative Physiology A, vol. 167, no. 5, pp. 579-588, 1990. [Online]. Available:
http://dx.doi.org/10.1007/BF00192653

[17] H. Lamela, J. R. Lopez, and E. Garcia, “Low cost rangemap obtaining for mobile robots based on a
triangulation rangefinder,” in Industrial Electronics, Control and Instrumentation, 1997. IECON 97.
23rd International Conference on, vol. 3, Nov 1997, pp. 1284—-1287 vol.3.

[18] P. Kalden and E. Stern, “Development of a low-cost laser range-finder (lidar),” Master’s thesis,
Chalmers University of Technology, 2015.

[19] (2016) Camera module - raspberry pi documentation. [Online]. Available: https://www.raspberrypi.
org/documentation/hardware/camera/

[20] K. Hufkens. (2016) Raspberry pi camera v2: spectral response curve. [Online]. Available:
http://khufkens.com/2016/06/05/raspberry-pi-camera-v2-spectral-response-curve/

[21] (2017) Recording motion vector data. [Online]. Available: http://picamera.readthedocs.io/en/
release-1.12/recipes2.html#recording-motion- vector-data

[22] (2016) Picamera api. [Online]. Available: http://picamera.readthedocs.io/en/release-0.8/api.html

[23] S. Igor. (2017) I2c communication in raspberry pi. [Online]. Available: |http://radiostud.io/
howto-i2c-communication-rpi/

[24] P. Bharath. (2014) Opencv: Qr code detection and extraction. [Online]. Available: |http:
//dsynflo.blogspot.nl/2014/10/opencv-qr-code-detection-and-extraction.html

[25] (2017) Splitting to/from a circular stream. [Online]. Available: http://picamera.readthedocs.io/en/
release- 1.12/recipes2.html#splitting-to-from-a-circular-stream

[26] Cascade classifier training. [Online]. Available: |http://docs.opencv.org/trunk/dc/d88/tutorial
traincascade.html

[27] Face detection using haar cascades. [Online]. Available: http://docs.opencv.org/trunk/d7/d8b/
tutorial_py_face_detection.html

[28] P. Santana, R. Mendona, and J. Barata, “Water detection with segmentation guided dynamic texture
recognition,” in 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dec
2012, pp. 1836-1841.

http://dx.doi.org/10.1007/BF00192653
https://www.raspberrypi.org/documentation/hardware/camera/
https://www.raspberrypi.org/documentation/hardware/camera/
http://khufkens.com/2016/06/05/raspberry-pi-camera-v2-spectral-response-curve/
http://picamera.readthedocs.io/en/release-1.12/recipes2.html#recording-motion-vector-data
http://picamera.readthedocs.io/en/release-1.12/recipes2.html#recording-motion-vector-data
http://picamera.readthedocs.io/en/release-0.8/api.html
http://radiostud.io/howto-i2c-communication-rpi/
http://radiostud.io/howto-i2c-communication-rpi/
http://dsynflo.blogspot.nl/2014/10/opencv-qr-code-detection-and-extraction.html
http://dsynflo.blogspot.nl/2014/10/opencv-qr-code-detection-and-extraction.html
http://picamera.readthedocs.io/en/release-1.12/recipes2.html#splitting-to-from-a-circular-stream
http://picamera.readthedocs.io/en/release-1.12/recipes2.html#splitting-to-from-a-circular-stream
http://docs.opencv.org/trunk/dc/d88/tutorial_traincascade.html
http://docs.opencv.org/trunk/dc/d88/tutorial_traincascade.html
http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html
http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html

	Introduction
	The Zebro Project
	The Environment Observation Module
	State of the Art
	Thesis Structure

	Programme of Requirements
	Environment Observation Module Functional Requirements
	Thesis Requirements
	System Requirements
	Camera Submodule Functional Requirements

	General design
	Motion Detection
	Obstacle Detection
	Processing and Camera Hardware
	Detection of QR Codes

	Design of the Laser Rangefinder
	Setup
	Physical Parameter Design
	Laser Type
	Software

	Design of Motion Detection
	Hardware and Libraries
	Software

	Module Integration
	Software Integration
	Communication
	Hardware Integration
	Power Consumption

	Physical Integration in Module Enclosure

	Test Results
	Validation Laser Rangefinder
	Accuracy
	Maximum Range
	Discussion of results

	Validation QR-code Detector
	Discussion of Results

	Validation Motion Detection
	Setup
	Results
	Discussion of results

	Timing

	Conclusion
	Recommendations
	Laser Rangefinder
	Motion Detection
	QR Code Detection
	Other Proposed Ideas

	Appendices
	Important Variables in Submodule Code
	Adjustable Variables in laserclass.py
	Relevant Classes, Constants and Variables in MotionAnalysis.py

	Bill of Materials
	Bibliography

