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Rényi entropy flows from quantum heat engines
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We evaluate Rényi entropy flows from generic quantum heat engines (QHE) to a weakly coupled probe
environment kept in thermal equilibrium. We show that the flows are determined not only by heat flow but also by
a quantum coherent flow that can be separately measured in experiment apart from the heat flow measurement.
The same pertains to Shannon entropy flow. This appeals for a revision of the concept of entropy flows in quantum
nonequlibrium thermodynamics.
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I. INTRODUCTION

Entropy production in heat engines has been a key concept
in establishing the fundamental laws of thermodynamics [1].
Recently, the laws have been reconsidered for small systems
in the context of fluctuation relations [2], which gave rise
to much of experimental [3] and theoretical [4] research. It
is worth noting that the fluctuation relations are traditionally
formulated in terms of entropy production that is computed
with the definition described in Ref. [5]. While the definition
is perfect for classical states, its validity needs to be revisited
in quantum mechanics, where Shannon entropy is nonlinear
in density matrix and its change is not necessarily related
to the expectation value of any operator, and therefore its
measurability is questionable [6].

A quantum heat engine is a system of several discrete
quantum states and, similar to a common heat engine, is con-
nected to several environments kept at different temperature
(see Fig. 1). The motivation for research in QHE comes from
studying models of photocells and photosynthesis [7]. It has
been demonstrated that quantum effects can dramatically
change the thermodynamics of QHEs [8] and their fluctuations
[9], manifesting the role of quantum coherence. We need to
stress that the mere presence of discrete quantum states in the
engine is not enough to reveal the coherence. The effects come
from nondiagonal elements of the engine density matrix that
require a coherent drive and/or degeneracy of the engine states
to facilitate the formation of quantum superpositions [9].

A generalization of Shannon entropy is the Rényi entropy
[10], define here (see Appendix A) as SM ≡ Tr[ρ̂M ], with
ρ being the density matrix of a quantum system. Shannon
entropy S is obtained from SM by taking a formal limit
S = limM→1 ∂SM/∂M . Much theoretical research addresses
Rényi entropies in strongly interacting systems [11,12], in
particular spin chains [13]. Since SM is not linear in a density
matrix, its observability is not evident: some tricks [14] may
help in certain situations. Similar to the flows of physical
conserved quantities, such as charge and energy, conserved
measures, such as Shannon and Renyi entropies, flow between
subsystems.

Recently, one of the authors has proposed a method for
consistent quantum evaluation of Rényi entropy flows, R-flows
[15], defined as FM ≡ −d ln SM/dt = −(dSM/dt)/SM . The
Shannon entropy flow FS is obtained by taking limit FS =
limM→1 ∂FM/∂M . In this paper, we adjust and apply this
method for QHE.

FIG. 1. Schematics of QHE. A quantum system with two sets
of states separated by energy Eu − Ed is driven by external field
at matching frequency. The system interacts with a number of
environments inducing transitions between the states. We study the
R-flows to a weakly coupled probe environment.

We evaluate R-flows from a generic heat engine to a probe
environment that is weakly coupled [16] with the engine,
thus not disturbing its workings. We find that R-flows can be
naturally separated into incoherent and coherent parts; this also
pertains to the flow of Shannon entropy. The incoherent part
is related to the heat flow Q to the environment: For Shannon
entropy flow we recover the textbook formula FS = Q/T ,
T being the temperature of the probing environment. The
coherent part is specific for coherent drive and is proportional
to the second power of the density matrix of the engine.
This raises concerns about its observability. However, the
coherent part can be accessed in an experiment that is different
from heat flow measurement: There, one measures averaged
forces acting on the environment and computes the would-be
dissipation due to these forces. While this fictitious dissipation
is not the heat flow, it does contribute to the entropy flows.

II. GENERAL MODEL: SYSTEM AND ENVIRONMENTS

We consider a quantum system with discrete states |n〉
separated into two sets {u},{d}. All states within a set
have approximately the same energy Eu(Ed ), the splitting
εn within a set being much smaller than Eu − Ed > 0. The
system is subject to the external field with the frequency
ω ≈ Eu − Ed (we set �,kB = 1 where appropriate) described
by the Hamiltonian Hdr = ∑

m,n �mn|m〉〈n|e−iωt + H.c., and
the relevant matrix elements are between the states of two sets.

The quantum system is coupled to a number of en-
vironments labeled by a kept at different temperatures
Ta . The interaction with the environment is described
by Hint = ∑

mn |m〉〈n|X̂(a)
mn, with X̂(a)

mn being the operators
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in the space of environment a. We assume linear re-
sponse of each environment on the state of quantum sys-
tem. In this case, each environment is completely char-
acterized by the set of frequency-dependent generalized
susceptibilities χ (a)

mn,pq (ν) that are related to the correla-

tors of X̂a defined as S(a)
mn,pq (t) ≡ Tra{X̂a

mn(0)X̂a
pq(t)ρa}.

The fluctuation-dissipation theorem yields the relations
in frequency domain: Smn,pq (ν) = nB(ν/T )χ̃mn,pq(ν) where
χ̃mn,pq (ν) ≡ (χmn,pq(ν) − χpq,mn(−ν))/i, and the Bose distri-
bution nB(ν/T ) ≡ 1/(exp(βν) − 1).

The environments produce transition rates between the
states of quantum system and affect the coherence of its density
matrix ρnm. The dynamics are expressed by the Bloch-master
equation in the rotating wave approximation:

dρmn

dt
= −i

∑
p

(Hmpρpn − ρmpHpn)

− 1

2

∑
p

(
mpρpn + ρmp
pn) +
∑
p,q


mn,pqρpq. (1)

To distinguish the sets, let us introduce a matrix ηnm, ηnm = 1
if n ∈ {u} and m ∈ {d}, ηnm = −1 if n ∈ {d} and m ∈ {u},
ηnm = 0 otherwise. The residual Hamliltonian is composed of
three groups of terms:

Hnm = εnδnm + Re�nmη2
nm + iηnmIm�nm

+
∑
a,k

∫
dν

2π

Snk,km(ν)

ν − Ek + Em

. (2)

The first term is the original small splitting of the states, the
second and third terms represent the coherent drive, and the
last term is the renormalization due to the interaction with
the environments. The dissipative terms 
 are sums over the
contributions of each environment,


mn,pq ≡
∑

a

S(a)
qn,mp(Emp); 
mn ≡

∑
k


kk,mn, (3)

with Emp ≡ Em − Ep. The relevant terms satisfy Emp ≈ Enq .
In the rotating-wave approximation we can replace Emn with
ωηmn. In the absence of the drive and for the nondegenerate
states the only relevant 
’s are the transition rates from m to
n, the density matrix is diagonal, and the equation reduces to
the master equation.

The Bloch equation (1) can be obtained by time-dependent
perturbation theory for density matrix in time interval (−∞,t]
where evolution operators for bra and ket are expanded in
terms of X̂; this sets the time ordering along the Keldysh
contour that has opposite time directions for bra and ket (left
diagram in Fig. 2). For relevant diagrams the X̂(a) are pairwise
grouped, and the result of tracing over the environment is
readily expressed in terms of Smn,pq (t). The density matrix
ρ̂(t) is obtained by summation over all such diagrams. The
compact way to achieve the summation is to take the diagrams
ending at τ = t and thus contributing to dρ̂/dt at τ = t and
replace ρ̂(−∞) with ρ̂(t): This reproduces Eq. (1).

III. PERTURBATION THEORY

To evaluate the Rényi entropy flow of Mth order to an
environment b we need to use the perturbation theory for the

FIG. 2. Left: Perturbation on the Keldysh contour for a single
world, where operator X̂’s are pairwise grouped. Right: The same for
M = 3 worlds. The Keldysh contour for the degrees of freedom of
environment b (black line) is closed, encompassing all the worlds.
For relevant diagrams, X̂ are either in the same or different worlds:
This gives two parts of FM .

Mth power of its density matrix, Trb {ρb(t)}M . To this end,
we consider M copies of the world consisting of the quantum
system and the environments [15], each world bringing its
own double Keldysh contour. The contour for the degrees
of freedom of environment b, defining the ordering of X̂b,
encompasses all the worlds imposing the matrix multiplication
of ρb required and finally closes (see right diagram in Fig. 2).
For all other degrees of freedom, the bra and ket parts of the
contours are closed within each world providing the partial
trace over these degrees of freedom: That yields ρb for each
world. The relevant diagrams are pairwise grouped. For those
arising from the environments other than b, both operators are
within the same world. Summation over these diagrams repro-
duces evolution equation (1). The operators in diagrams from
environment b can be either in the same world or in different
worlds. The same-world diagrams have already been consid-
ered in Ref. [15]. The different-world diagrams though contain
nondiagonal elements of the system density matrix and are thus
specific for the case of coherent drive and degeneracies.

In this paper, we restrict ourselves to a simple case when
the transition rates induced by environment b are smaller than
those induced by others. The environment b is thus probe one
and hardly affects the density matrix of the system. In this case,
Rényi entropy flow to the environment b is directly given by the
second-order diagrams encompassing two operators X̂(b). The
diagrams are expressed in terms of the generalized correlators
of two X̂(b) that contain multiple powers of ρb,

SN,M
mn,pq (τ ) ≡ T rb

{
X̂mn(t)ρN

b X̂pq(t + τ )ρM−N
b

}/
T rb

{
ρM

b

}
,

(4)

and, for general ρb, do not correspond to any physical
quantities. However, we derive that for the probe environment
in the state of thermal equilibrium the correlators obey the
generalized Kubo-Martin-Schwinger (KMS) [17] relation (see
Appendix C)

SN,M
mn,pq (ν) = n̄B(Mν/T )eβνN χ̃mn,pq (ν) (5)

and therefore are all expressed in terms of the dissipative
susceptibilities. In derivation, we assume that χ̃ does not
depend on temperature. If this is not so, χ̃ is taken at β∗ = βM .
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Collecting all diagrams (see Appendix B), we obtain for
FM the following expressions:

FM = MnB(Mω/T )

nB((M − 1)ω/T )nB(ω/T )ω
(Qi − Qc), (6)

Qi = ω

⎧⎨
⎩

∑
mnp;ηnp=1

ρmnχ̃pm,np(ω)(1 + nB(ω/T ))

−
∑

mnp;ηpm=1

ρmnχ̃np,pm(ω)nB(ω/T )

⎫⎬
⎭ , (7)

Qc = ω
∑

mnpq;ηpq=1

ρnmρqpχ̃mn,pq (ω). (8)

The R-flow is naturally separated into two parts, which we
name incoherent and coherent. The same-world diagrams
contribute to the incoherent part that is proportional to Qi .
Qi is linear in ρ so that is an observable. The different-world
diagrams form the coherent part ∝Qc that is quadratic in ρ

and in principle would not be observable. The M dependence
is identical for both parts.

Let us interpret the parts and the quantities Qi,c. Inspection
of the rates in Eq. (1) unambiguously identifies Qi with an
observable: the total energy flow to the probe environment. The
terms ∝1 + nB describe absorption of energy quanta �ω by
the environment, while those ∝nB correspond to the emission
to the system. Upon taking limit M → 1, the incoherent part
reproduces the textbook equation for the entropy flow, FS =
Qi/Tb. We prove that for a general situation where elementary
energy transfers are not restricted to ±�ω, this part of the
R-flows is related to full counting statistics of energy transfers
and therefore can be measured [18].

The interpretation of the coherent part is more involved and
interesting. To proceed, let us replace in Hint the operators
|m〉〈n| with classical external forces fmn that are numerically
equal to the elements of the system density matrix. The time
dependence of these forces is given by fmn ∝ exp(−iωηmn).
These classical forces would cause energy dissipation to
the probe environment that is determined from the forces
and the dissipative part of susceptibility χ̃ . This fictitious
energy dissipation is precisely Qc. We stress that this is not
the physical dissipation occurring in the probe environment
given by Qi( �=Qc). However, Qc can be extracted from
the measurement results: For this, one can characterize
the susceptibilities involved, measure ρmn (or corresponding
〈Xmn(t)〉), and compute Qc.

Therefore we show that both parts of R-flows can be
extracted from the measurement results, although in a different
way: R-flows are physical. In addition, we show that the
entropy flow is not directly related to energy flow. Rather,

FS = (Qi − Qc)/Tb, (9)

the difference is due to quantum coherent effects in our heat
engine.

Let us discuss M dependence of the R-flows. In
Fig. 3 (left panel) we plot FM/FS = MnB(Mβω)/(nB((M −
1)βω)nB(βω)βω that conveniently depends on βω only.

FIG. 3. (Color online) Left: Universal M dependence of R-flow
at different temperatures, β = 1/kBT . Flows are normalized by
(dF/dM)M→1 ≡ FS and are suppressed at T → 0. Right: Flows Qc

and Qi for the simplest QHE, at zero-temperature probe environment,
for different T ∗, vs drive strength. Coherent flow Qc reaches
maximum at � ≈ 
.

We see that for M � 1 the ratio FM/FS = M(1 −
exp(−βω))/βω, that is proportional to the number of worlds
involved; the same is seen for moderate M . The proportionality
coefficient drops down with decreasing temperature. From the
other hand, at M → 1FM/FS ≈ (M − 1) with a coefficient
not depending on temperature. This sets qualitative behavior
of the curves plotted in Fig. 3. The low-temperature limit of
R-flows reads

FM = M(Qi − Qc)/ω (10)

(this limit does not commute with M → 1 since FS diverges
at low temperatures). In the absence of coherent effects, low-
temperature R-flow is readily interpreted semiclassically [15]
as number of events (in our case, �ω quantum absorptions) per
second in M parallel worlds. With coherencies, such simple
interpretation does not work since FM can be negative.

IV. THE SIMPLEST QUANTUM HEAT ENGINE

Let us illustrate the behaviors of Qi,c for the simplest
quantum heat engine possible. It has only two states, |0〉
and |1〉, coupled by coherent drive amplitude �, with
driving frequency exactly matching the energy difference
E1 − E0 = ω. The relevant susceptibilities are χ̃01,10(ω) ≡

b. The main environment kept at temperature T ∗ produces the
transition rates 
↑ = 
nB(ω/T ∗), 
↓ = 
(1 + nB(ω/T ∗)),
while the probing environment produces similar rates 
b

↑ =

bnB(ω/Tb), 
b

↓ = 
b(1 + nB(ω/Tb)), with 
b � 
.
The Qi,c in this case are expressed as

Qi/ω = 
b
↓p1 − 
b

↑p0; Qc/ω = 
b|ρ01|2, (11)

where the elements of the density matrix are determined from
Eq. (1) and read p1 = 1 − p0,

p0 = 
↓(
↓ + 
↑) + �2

(
↓ + 
↑)2 + 2�2
, ρ10 = − i�(p1 − p0)


↓ + 
↑
. (12)

The plots of the Qi,c versus drive strength are given in Fig. 3
(right panel) for zero Tb and different ω/T ∗. The coherent
dissipation Qc is absent in the absence of the drive, reaches
maximum 
bω/8 at T ∗ = 0, and vanishes upon increasing �

since nondiagonal elements of ρ vanish in this limit. Finite T ∗
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suppresses the coherence and therefore Qc. The heat flow Qi

at T ∗ = 0 is absent at � = 0 since the system is not excited. It
increases and saturates at 
bω/2 for � � 
 when the states
|0〉 and |1〉 are equally populated. At finite T ∗, Qi is present
in the absence of the drive as well.

V. DISCUSSION

Before summarizing, let us shortly outline how to compute
R-flows to an environment that essentially disturbs the dynam-
ics of the system: For the example considered, this implies

b � 
. In this case, the summation of the second-order
diagrams leads to a linear evolution equation that generalizes
Eq. (1). This equation is for a matrix R that is an analog of
density matrix of M copies of the system and is indexed by a
compound I ≡ {i1, . . . ,iM} encompassing all the worlds. The
linear equation has a set of eigensolutions R(t) � exp(−�t).
In distinction from a usual equation for density matrix, there is
no solution with � = 0. The R-flow is shown to be given
by FM = �0, �0 being the eigenvalue which is closest
to 0. The eigenvalues for a given number of worlds M and
concrete situation can be readily solved numerically. However,
the analytical continuation to arbitrary M is not evident for this
moment and requires further research.

To conclude, we have computed Rényi entropy flows from
a generic quantum heat engine to a probe environment and
obtained Shannon entropy flows by taking limit M → 1. The
flows are expressed in terms of two quantities Qi,c with Qi

being the heat flow and Qc being an energy dissipation for the
situation where the driven heat engine is replaced by fictitious
coherent time-dependent classical forces. Both quantities are
measurable. The entropy flow is proportional to Qi − Qc. This
is in contrast with frequently used [5] relations for entropy
production along classical stochastic trajectory and implies
that the concept of (Rényi) entropy flows requires revision and
clarification in quantum case.
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APPENDIX A: DEFINITION OF RÉNYI ENTROPY
AND ITS FLOW

Our definition of Renyi entropy differs by a constant factor
from the widely used one SM = (1 − M)−1T r(ρM ). Since we
compute the flows, which are time derivatives of the Renyi
entropy log, i.e., FM = (1/SM )dSM/dt , the constant factor
(1 − M)−1 in the definition cannot and does not play any role.
In fact, the “standard” definition may lead to the confusion:
It looks like the Shannon entropy can be obtained by taking
the limit of Renyi entropy while in fact it is the limit of its
derivative with respect to M . Therefore, in using our definition,
one must notice that the flow of Shannon entropy is provided
by FS = limM→1 ∂FM/∂M .

APPENDIX B: DIAGRAMMATIC RÉNYI
ENTROPY FLOWS

Let us compute the R-flows from expansion of Bloch
equation in the second order of interaction Hamiltonian.
Considering that far in the past the coupling between system
and environment is absent, the evolution is formally

ρ(t) = T ei
∫ t

−∞ dτHint(τ ) ρ T̃ e−i
∫ t

−∞ dτHint(τ ). (B1)

T exp (T̃ exp) refers to forward time ordering (backward
time ordering). Without loss of generality, the system-bath
Hamiltonian can be taken Hint = HsHb, where Hs(b) acts
on the system (bath), given Gaussian correlations of the
bath: 〈Hb(t2)Hb(t1)〉 = trb{Hb(t1)Hb(t2)ρb}. In the second-
order expansion, we place one Hint at t and the second one
at any time before it, say, t − τ for 0 � τ < ∞. Without loss
of generality we can set the global time to t = 0. The system
density matrix in interaction picture ρs = Us(0,t)ρ ′

s(t)Us(t,0)
evolves according to

dρs

dt
=

∫ ∞

0
dτ {〈Hb(−τ )Hb(0)〉Hs(0)ρsHs(−τ )

+ 〈Hb(0)Hb(−τ )〉Hs(−τ )ρsHs(0)

− 〈Hb(0)Hb(−τ )〉Hs(0)Hs(−τ )ρs

+ 〈Hb(−τ )Hb(0)〉ρsHs(−τ )Hs(0)} .

(B2)

Given that Renyi entropy is SM = TrρM , its flux dSM/dt

can be determined directly from the generalization of Eq. (B2).
Evolution of M copies of ρM

1 can influence more than one
copy of the worlds. In this sense the evolution of Renyi
entropy is more complex than Eq. (B2) because different
worlds may exchange energies. For this aim, calculating
a generalized correlator 〈Hb(0)ρN

b Hb(−τ )ρM−N
b 〉 with 0 �

N � M is required. We use the following diagrams to evaluate
the partial evolution. In the diagrams the solid (black) line
denotes evolution of the system and narrow double (white)
line the rest of a world except its system.

In a typical diagrams with M worlds, given that there are N

worlds between the operators A(t) and B(t + τ ), the Fourier
transformed correlations consist of two parts: SN,M

A,B and �
N,M
AB .

These two are related through a generalized Kramers-Kronig
relation. The forward correlator is∫ ∞

0
dτeiωτ Tr

(
A (0) ρN

envB (±τ ) ρM−N
env

) /
Tr

(
ρM

env

)

≡ 1

2
S

N,M
AB (±ω) ± i�

N,M
AB (±ω) (B3)

with the following properties:

S
N,M
AB (−ω) = S

M−N,M
AB (ω), (B4)

�
N,M
AB (−ω) = −�

M−N,M
BA (ω) , (B5)

�
N,M
AB (ω) = − 1

2π

∫
dzS

N,M
AB (z)

z − ω
. (B6)

104303-4
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1. Single-world diagrams:

Different time order of the two interactions applied in one
world provides the following four diagrams for each world:

Determining the diagrams from Eq. (B2) and using the
relations using Eq. (B3) over the diagram (a–d) can make the
single-world dynamics into the following form:

∑
x ′y ′y

ρx ′y ′

(
−1

2
S

0,M
y ′y,yx ′ (ωηyx ′ ) + i�

0,M
y ′y,yx ′ (ωηyx ′ )

+1

2
S

1,M
yx ′,y ′y(ωηy ′y) − i�

1,M
yx ′,y ′y(ωηy ′y)

−1

2
S

0,M
y ′y,yx ′ (−ωηy ′y) − i�

0,M
y ′y,yx ′ (−ωηy ′y)

+1

2
S

1,M
yx ′,y ′y(−ωηyx ′ ) + i�

1,M
yx ′,y ′y(−ωηyx ′ )

)
.

(B7)

Due to the conservation of energy in these diagrams Ey ′ −
Ey = Ex ′ − Ey , which means ηyx ′ = −ηyy ′ . Substituting this
in Eq. (B7) gives∑

x ′y ′y

ρx ′y ′
(−S

M,M
yx ′,y ′y(ωηy ′y) + S

1,M
yx ′,y ′y(ωηy ′y)

)
. (B8)

2. Multiworld diagrams:

Different time orders of the two interactions applied each
in one world, different from that of the other one, provide the
following typical diagrams:

By obtaining the diagrams from Eq. (B2) and using the
relations with Eq. (B3), one can get the sum of the forward-
propagating diagrams (e–h) and backward-propogating ones
in diagrams (i–l):

∑
xx ′yy ′

ρx ′xρy ′y

(
−S

n−1,M
yy ′,xx ′ (−ωηyy ′ ) − 2i�

n−1,M
yy ′,xx ′ (−ωηyy ′ ) + 1

2
S

n,M
yy ′,xx ′ (−ωηyy ′ ) + i�

n,M
yy ′,xx ′ (−ωηyy ′ )

+ 1

2
S

n−2,M
yy ′,xx ′ (−ωηyy ′ ) + i�

n−2,M
yy ′,xx ′ (−ωηyy ′ )

)
+

∑
xx ′yy ′

ρx ′xρy ′y

(
−S

n−1,M
xx ′,yy ′ (ωηyy ′ ) + 2i�

n−1,M
xx ′,yy ′ (ωηyy ′ )

+ 1

2
S

n,M
xx ′,yy ′ (ωηyy ′ ) − i�

n,M
xx ′,yy ′ (ωηyy ′ ) + 1

2
S

n−2,M
xx ′,yy ′ (ωηyy ′ ) − i�

n−2,M
xx ′,yy ′ (ωηyy ′ )

)
, (B9)

where n = 2 to n = M ′. This M ′ shows the maximum number of worlds between two interactions in our diagrams. If the first
interaction is in the topmost world, the second one can go from the second world up to the bottommost world. This shows M ′ is
M . However, if we ignore the first world and put the first interaction on the second world from top, then M ′ becomes M − 1.
This continues until M ′ becomes 2. The total summation of all diagrams becomes

∑
xx ′yy ′

ρx ′xρy ′y

M∑
M ′=2

M ′−1∑
n=1

(
−S

n,M
xx ′,yy ′ (ωηyy ′ ) + 1

2
S

n+1,M
xx ′,yy ′ (ωηyy ′ ) + 1

2
S

n−1,M
xx ′,yy ′ (ωηyy ′ )

+ 2i�
n,M
xx ′,yy ′ (ωηyy ′ ) − i�

n−1,M
xx ′,yy ′ (ωηyy ′ ) − i�

n+1,M
xx ′,yy ′ (ωηyy ′ )

)

= M

2

∑
xx ′yy ′

ρx ′xρy ′y

(
S

0,M
xx ′,yy ′ (ωηyy ′ ) − S

1,M
xx ′,yy ′ (ωηyy ′ ) − S

M−1,M
xx ′,yy ′ (ωηyy ′ ) + S

M,M
xx ′,yy ′ (ωηyy ′ )

− 2i�
0,M
xx ′,yy ′ (ωηyy ′ ) + 2i�

1,M
xx ′,yy ′ (ωηyy ′ ) + 2i�

M−1,M
xx ′,yy ′ (ωηyy ′ ) − 2i�

M,M
xx ′,yy ′ (ωηyy ′ )

)
. (B10)
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Let us look at a typical � term:
∑

xx ′,yy ′ ρx ′xρy ′y�
a,M
xx ′,yy ′ (ωηyy ′ ) with a = 0,1,M − 1,M . In the energy eigenbasis of four states

n,m,k,l with the property En − Em = El − Ek > 0 the series summation is expanded into ρnmρkl[�
a,M
mn,lk(ω) − �

M−a,M
mn,lk (ω)] +

ρmnρlk[−�
M−a,M
kl,nm (ω) + �

a,M
kl,nm(ω)]. By substituting in Eq. (B10) the � terms vanish.

As a result the Renyi entropy flow becomes

1

SM

dSM

dt
= M

⎛
⎝∑

x ′y ′y

ρx ′y ′
(−S

M,M
yx ′,y ′y(ωηy ′y) + S

1,M
yx ′,y ′y(ωηy ′y)

)

+ 1

2

∑
xx ′yy ′

ρx ′xρy ′y
(
S

0,M
xx ′,yy ′ (ωηyy ′ ) − S

1,M
xx ′,yy ′ (ωηyy ′ ) − S

M−1,M
xx ′,yy ′ (ωηyy ′ ) + S

M,M
xx ′,yy ′ (ωηyy ′ )

)
.

⎞
⎠ (B11)

APPENDIX C: GENERALIZED KMS

The generalized correlator of two operators A and B is defined [see Eq. (4)] as

S
N,M
AB (ω) =

∫
dτeiντ Tr

{
A(0)ρN

b B(τ )ρM−N
b

}/
TrρM

b .

This correlator in the energy eigenbasis can be rewritten in matrix form:

SN,M
nm,mn =

∫
dτeiντ

(
Anm

e−βNEm

Z(β)N
Bmne

i(Em−En)τ e−βEn(M−N)

Z(β)M−N

)
Z(β)M

Z(βM)
= 2πδ (Em − En + ν)

AnmBmne
−βEnM

Z(βM)
eβNν, (C1)

where Z(β) is the partition function defined as Z(β) = ∑
i e

−βEi . The standard correlator is SAB (ω) =∫
dτ exp(iντ )Tr{A(0)B(τ )ρb}/Trρb which after simplification becomes equal 2πδ (Em − En + ν) AnmBmne

−βEn/Z(β), where
the KMS relation links this to dynamical susceptibility: SAB(ν) = χ̃AB(ν)nB(ν/T ). By substituting this in Eq. (C1) a generalized
KMS relation is obtained:

S
N,M
AB (ω) = nB (Mω/T ) eβωN χ̃AB (ω) . (C2)

APPENDIX D: RENYI ENTROPY FLOW

By substituting the generalized KMS relation (C2) in Eq. (B11), the Renyi entropy flow is determined based on susceptibility:

1

SM

dSM

dt
= −M

∑
x ′y ′y

ρx ′y ′ χ̃yx ′,y ′y(ωηy ′y)
nB(Mωηy ′y/T )

nB((M − 1)ωηy ′y/T )
eβωηy′y

+ M

2

∑
xx ′yy ′

ρx ′xρy ′yχ̃xx ′,yy ′ (ωηyy ′ )
nB(Mωηyy ′/T )

nB((M − 1)ωηyy ′/T )
(eβωηyy′ − 1). (D1)
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